OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [tree-ssa-uncprop.c] - Blame information for rev 280

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 280 jeremybenn
/* Routines for discovering and unpropagating edge equivalences.
2
   Copyright (C) 2005, 2007, 2008, 2010
3
   Free Software Foundation, Inc.
4
 
5
This file is part of GCC.
6
 
7
GCC is free software; you can redistribute it and/or modify
8
it under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 3, or (at your option)
10
any later version.
11
 
12
GCC is distributed in the hope that it will be useful,
13
but WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
GNU General Public License for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING3.  If not see
19
<http://www.gnu.org/licenses/>.  */
20
 
21
#include "config.h"
22
#include "system.h"
23
#include "coretypes.h"
24
#include "tm.h"
25
#include "tree.h"
26
#include "flags.h"
27
#include "rtl.h"
28
#include "tm_p.h"
29
#include "ggc.h"
30
#include "basic-block.h"
31
#include "output.h"
32
#include "expr.h"
33
#include "function.h"
34
#include "diagnostic.h"
35
#include "timevar.h"
36
#include "tree-dump.h"
37
#include "tree-flow.h"
38
#include "domwalk.h"
39
#include "real.h"
40
#include "tree-pass.h"
41
#include "tree-ssa-propagate.h"
42
#include "langhooks.h"
43
 
44
/* The basic structure describing an equivalency created by traversing
45
   an edge.  Traversing the edge effectively means that we can assume
46
   that we've seen an assignment LHS = RHS.  */
47
struct edge_equivalency
48
{
49
  tree rhs;
50
  tree lhs;
51
};
52
 
53
/* This routine finds and records edge equivalences for every edge
54
   in the CFG.
55
 
56
   When complete, each edge that creates an equivalency will have an
57
   EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
58
   The caller is responsible for freeing the AUX fields.  */
59
 
60
static void
61
associate_equivalences_with_edges (void)
62
{
63
  basic_block bb;
64
 
65
  /* Walk over each block.  If the block ends with a control statement,
66
     then it might create a useful equivalence.  */
67
  FOR_EACH_BB (bb)
68
    {
69
      gimple_stmt_iterator gsi = gsi_last_bb (bb);
70
      gimple stmt;
71
 
72
      /* If the block does not end with a COND_EXPR or SWITCH_EXPR
73
         then there is nothing to do.  */
74
      if (gsi_end_p (gsi))
75
        continue;
76
 
77
      stmt = gsi_stmt (gsi);
78
 
79
      if (!stmt)
80
        continue;
81
 
82
      /* A COND_EXPR may create an equivalency in a variety of different
83
         ways.  */
84
      if (gimple_code (stmt) == GIMPLE_COND)
85
        {
86
          edge true_edge;
87
          edge false_edge;
88
          struct edge_equivalency *equivalency;
89
          enum tree_code code = gimple_cond_code (stmt);
90
 
91
          extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
92
 
93
          /* Equality tests may create one or two equivalences.  */
94
          if (code == EQ_EXPR || code == NE_EXPR)
95
            {
96
              tree op0 = gimple_cond_lhs (stmt);
97
              tree op1 = gimple_cond_rhs (stmt);
98
 
99
              /* Special case comparing booleans against a constant as we
100
                 know the value of OP0 on both arms of the branch.  i.e., we
101
                 can record an equivalence for OP0 rather than COND.  */
102
              if (TREE_CODE (op0) == SSA_NAME
103
                  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
104
                  && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
105
                  && is_gimple_min_invariant (op1))
106
                {
107
                  if (code == EQ_EXPR)
108
                    {
109
                      equivalency = XNEW (struct edge_equivalency);
110
                      equivalency->lhs = op0;
111
                      equivalency->rhs = (integer_zerop (op1)
112
                                          ? boolean_false_node
113
                                          : boolean_true_node);
114
                      true_edge->aux = equivalency;
115
 
116
                      equivalency = XNEW (struct edge_equivalency);
117
                      equivalency->lhs = op0;
118
                      equivalency->rhs = (integer_zerop (op1)
119
                                          ? boolean_true_node
120
                                          : boolean_false_node);
121
                      false_edge->aux = equivalency;
122
                    }
123
                  else
124
                    {
125
                      equivalency = XNEW (struct edge_equivalency);
126
                      equivalency->lhs = op0;
127
                      equivalency->rhs = (integer_zerop (op1)
128
                                          ? boolean_true_node
129
                                          : boolean_false_node);
130
                      true_edge->aux = equivalency;
131
 
132
                      equivalency = XNEW (struct edge_equivalency);
133
                      equivalency->lhs = op0;
134
                      equivalency->rhs = (integer_zerop (op1)
135
                                          ? boolean_false_node
136
                                          : boolean_true_node);
137
                      false_edge->aux = equivalency;
138
                    }
139
                }
140
 
141
              else if (TREE_CODE (op0) == SSA_NAME
142
                       && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
143
                       && (is_gimple_min_invariant (op1)
144
                           || (TREE_CODE (op1) == SSA_NAME
145
                               && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))))
146
                {
147
                  /* For IEEE, -0.0 == 0.0, so we don't necessarily know
148
                     the sign of a variable compared against zero.  If
149
                     we're honoring signed zeros, then we cannot record
150
                     this value unless we know that the value is nonzero.  */
151
                  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
152
                      && (TREE_CODE (op1) != REAL_CST
153
                          || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (op1))))
154
                    continue;
155
 
156
                  equivalency = XNEW (struct edge_equivalency);
157
                  equivalency->lhs = op0;
158
                  equivalency->rhs = op1;
159
                  if (code == EQ_EXPR)
160
                    true_edge->aux = equivalency;
161
                  else
162
                    false_edge->aux = equivalency;
163
 
164
                }
165
            }
166
 
167
          /* ??? TRUTH_NOT_EXPR can create an equivalence too.  */
168
        }
169
 
170
      /* For a SWITCH_EXPR, a case label which represents a single
171
         value and which is the only case label which reaches the
172
         target block creates an equivalence.  */
173
      else if (gimple_code (stmt) == GIMPLE_SWITCH)
174
        {
175
          tree cond = gimple_switch_index (stmt);
176
 
177
          if (TREE_CODE (cond) == SSA_NAME
178
              && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
179
            {
180
              int i, n_labels = gimple_switch_num_labels (stmt);
181
              tree *info = XCNEWVEC (tree, last_basic_block);
182
 
183
              /* Walk over the case label vector.  Record blocks
184
                 which are reached by a single case label which represents
185
                 a single value.  */
186
              for (i = 0; i < n_labels; i++)
187
                {
188
                  tree label = gimple_switch_label (stmt, i);
189
                  basic_block bb = label_to_block (CASE_LABEL (label));
190
 
191
                  if (CASE_HIGH (label)
192
                      || !CASE_LOW (label)
193
                      || info[bb->index])
194
                    info[bb->index] = error_mark_node;
195
                  else
196
                    info[bb->index] = label;
197
                }
198
 
199
              /* Now walk over the blocks to determine which ones were
200
                 marked as being reached by a useful case label.  */
201
              for (i = 0; i < n_basic_blocks; i++)
202
                {
203
                  tree node = info[i];
204
 
205
                  if (node != NULL
206
                      && node != error_mark_node)
207
                    {
208
                      tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
209
                      struct edge_equivalency *equivalency;
210
 
211
                      /* Record an equivalency on the edge from BB to basic
212
                         block I.  */
213
                      equivalency = XNEW (struct edge_equivalency);
214
                      equivalency->rhs = x;
215
                      equivalency->lhs = cond;
216
                      find_edge (bb, BASIC_BLOCK (i))->aux = equivalency;
217
                    }
218
                }
219
              free (info);
220
            }
221
        }
222
 
223
    }
224
}
225
 
226
 
227
/* Translating out of SSA sometimes requires inserting copies and
228
   constant initializations on edges to eliminate PHI nodes.
229
 
230
   In some cases those copies and constant initializations are
231
   redundant because the target already has the value on the
232
   RHS of the assignment.
233
 
234
   We previously tried to catch these cases after translating
235
   out of SSA form.  However, that code often missed cases.  Worse
236
   yet, the cases it missed were also often missed by the RTL
237
   optimizers.  Thus the resulting code had redundant instructions.
238
 
239
   This pass attempts to detect these situations before translating
240
   out of SSA form.
241
 
242
   The key concept that this pass is built upon is that these
243
   redundant copies and constant initializations often occur
244
   due to constant/copy propagating equivalences resulting from
245
   COND_EXPRs and SWITCH_EXPRs.
246
 
247
   We want to do those propagations as they can sometimes allow
248
   the SSA optimizers to do a better job.  However, in the cases
249
   where such propagations do not result in further optimization,
250
   we would like to "undo" the propagation to avoid the redundant
251
   copies and constant initializations.
252
 
253
   This pass works by first associating equivalences with edges in
254
   the CFG.  For example, the edge leading from a SWITCH_EXPR to
255
   its associated CASE_LABEL will have an equivalency between
256
   SWITCH_COND and the value in the case label.
257
 
258
   Once we have found the edge equivalences, we proceed to walk
259
   the CFG in dominator order.  As we traverse edges we record
260
   equivalences associated with those edges we traverse.
261
 
262
   When we encounter a PHI node, we walk its arguments to see if we
263
   have an equivalence for the PHI argument.  If so, then we replace
264
   the argument.
265
 
266
   Equivalences are looked up based on their value (think of it as
267
   the RHS of an assignment).   A value may be an SSA_NAME or an
268
   invariant.  We may have several SSA_NAMEs with the same value,
269
   so with each value we have a list of SSA_NAMEs that have the
270
   same value.  */
271
 
272
/* As we enter each block we record the value for any edge equivalency
273
   leading to this block.  If no such edge equivalency exists, then we
274
   record NULL.  These equivalences are live until we leave the dominator
275
   subtree rooted at the block where we record the equivalency.  */
276
static VEC(tree,heap) *equiv_stack;
277
 
278
/* Global hash table implementing a mapping from invariant values
279
   to a list of SSA_NAMEs which have the same value.  We might be
280
   able to reuse tree-vn for this code.  */
281
static htab_t equiv;
282
 
283
/* Main structure for recording equivalences into our hash table.  */
284
struct equiv_hash_elt
285
{
286
  /* The value/key of this entry.  */
287
  tree value;
288
 
289
  /* List of SSA_NAMEs which have the same value/key.  */
290
  VEC(tree,heap) *equivalences;
291
};
292
 
293
static void uncprop_enter_block (struct dom_walk_data *, basic_block);
294
static void uncprop_leave_block (struct dom_walk_data *, basic_block);
295
static void uncprop_into_successor_phis (basic_block);
296
 
297
/* Hashing and equality routines for the hash table.  */
298
 
299
static hashval_t
300
equiv_hash (const void *p)
301
{
302
  tree const value = ((const struct equiv_hash_elt *)p)->value;
303
  return iterative_hash_expr (value, 0);
304
}
305
 
306
static int
307
equiv_eq (const void *p1, const void *p2)
308
{
309
  tree value1 = ((const struct equiv_hash_elt *)p1)->value;
310
  tree value2 = ((const struct equiv_hash_elt *)p2)->value;
311
 
312
  return operand_equal_p (value1, value2, 0);
313
}
314
 
315
/* Free an instance of equiv_hash_elt.  */
316
 
317
static void
318
equiv_free (void *p)
319
{
320
  struct equiv_hash_elt *elt = (struct equiv_hash_elt *) p;
321
  VEC_free (tree, heap, elt->equivalences);
322
  free (elt);
323
}
324
 
325
/* Remove the most recently recorded equivalency for VALUE.  */
326
 
327
static void
328
remove_equivalence (tree value)
329
{
330
  struct equiv_hash_elt equiv_hash_elt, *equiv_hash_elt_p;
331
  void **slot;
332
 
333
  equiv_hash_elt.value = value;
334
  equiv_hash_elt.equivalences = NULL;
335
 
336
  slot = htab_find_slot (equiv, &equiv_hash_elt, NO_INSERT);
337
 
338
  equiv_hash_elt_p = (struct equiv_hash_elt *) *slot;
339
  VEC_pop (tree, equiv_hash_elt_p->equivalences);
340
}
341
 
342
/* Record EQUIVALENCE = VALUE into our hash table.  */
343
 
344
static void
345
record_equiv (tree value, tree equivalence)
346
{
347
  struct equiv_hash_elt *equiv_hash_elt;
348
  void **slot;
349
 
350
  equiv_hash_elt = XNEW (struct equiv_hash_elt);
351
  equiv_hash_elt->value = value;
352
  equiv_hash_elt->equivalences = NULL;
353
 
354
  slot = htab_find_slot (equiv, equiv_hash_elt, INSERT);
355
 
356
  if (*slot == NULL)
357
    *slot = (void *) equiv_hash_elt;
358
  else
359
     free (equiv_hash_elt);
360
 
361
  equiv_hash_elt = (struct equiv_hash_elt *) *slot;
362
 
363
  VEC_safe_push (tree, heap, equiv_hash_elt->equivalences, equivalence);
364
}
365
 
366
/* Main driver for un-cprop.  */
367
 
368
static unsigned int
369
tree_ssa_uncprop (void)
370
{
371
  struct dom_walk_data walk_data;
372
  basic_block bb;
373
 
374
  associate_equivalences_with_edges ();
375
 
376
  /* Create our global data structures.  */
377
  equiv = htab_create (1024, equiv_hash, equiv_eq, equiv_free);
378
  equiv_stack = VEC_alloc (tree, heap, 2);
379
 
380
  /* We're going to do a dominator walk, so ensure that we have
381
     dominance information.  */
382
  calculate_dominance_info (CDI_DOMINATORS);
383
 
384
  /* Setup callbacks for the generic dominator tree walker.  */
385
  walk_data.dom_direction = CDI_DOMINATORS;
386
  walk_data.initialize_block_local_data = NULL;
387
  walk_data.before_dom_children = uncprop_enter_block;
388
  walk_data.after_dom_children = uncprop_leave_block;
389
  walk_data.global_data = NULL;
390
  walk_data.block_local_data_size = 0;
391
 
392
  /* Now initialize the dominator walker.  */
393
  init_walk_dominator_tree (&walk_data);
394
 
395
  /* Recursively walk the dominator tree undoing unprofitable
396
     constant/copy propagations.  */
397
  walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
398
 
399
  /* Finalize and clean up.  */
400
  fini_walk_dominator_tree (&walk_data);
401
 
402
  /* EQUIV_STACK should already be empty at this point, so we just
403
     need to empty elements out of the hash table, free EQUIV_STACK,
404
     and cleanup the AUX field on the edges.  */
405
  htab_delete (equiv);
406
  VEC_free (tree, heap, equiv_stack);
407
  FOR_EACH_BB (bb)
408
    {
409
      edge e;
410
      edge_iterator ei;
411
 
412
      FOR_EACH_EDGE (e, ei, bb->succs)
413
        {
414
          if (e->aux)
415
            {
416
              free (e->aux);
417
              e->aux = NULL;
418
            }
419
        }
420
    }
421
  return 0;
422
}
423
 
424
 
425
/* We have finished processing the dominator children of BB, perform
426
   any finalization actions in preparation for leaving this node in
427
   the dominator tree.  */
428
 
429
static void
430
uncprop_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
431
                     basic_block bb ATTRIBUTE_UNUSED)
432
{
433
  /* Pop the topmost value off the equiv stack.  */
434
  tree value = VEC_pop (tree, equiv_stack);
435
 
436
  /* If that value was non-null, then pop the topmost equivalency off
437
     its equivalency stack.  */
438
  if (value != NULL)
439
    remove_equivalence (value);
440
}
441
 
442
/* Unpropagate values from PHI nodes in successor blocks of BB.  */
443
 
444
static void
445
uncprop_into_successor_phis (basic_block bb)
446
{
447
  edge e;
448
  edge_iterator ei;
449
 
450
  /* For each successor edge, first temporarily record any equivalence
451
     on that edge.  Then unpropagate values in any PHI nodes at the
452
     destination of the edge.  Then remove the temporary equivalence.  */
453
  FOR_EACH_EDGE (e, ei, bb->succs)
454
    {
455
      gimple_seq phis = phi_nodes (e->dest);
456
      gimple_stmt_iterator gsi;
457
 
458
      /* If there are no PHI nodes in this destination, then there is
459
         no sense in recording any equivalences.  */
460
      if (gimple_seq_empty_p (phis))
461
        continue;
462
 
463
      /* Record any equivalency associated with E.  */
464
      if (e->aux)
465
        {
466
          struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
467
          record_equiv (equiv->rhs, equiv->lhs);
468
        }
469
 
470
      /* Walk over the PHI nodes, unpropagating values.  */
471
      for (gsi = gsi_start (phis) ; !gsi_end_p (gsi); gsi_next (&gsi))
472
        {
473
          gimple phi = gsi_stmt (gsi);
474
          tree arg = PHI_ARG_DEF (phi, e->dest_idx);
475
          struct equiv_hash_elt equiv_hash_elt;
476
          void **slot;
477
 
478
          /* If the argument is not an invariant, or refers to the same
479
             underlying variable as the PHI result, then there's no
480
             point in un-propagating the argument.  */
481
          if (!is_gimple_min_invariant (arg)
482
              && SSA_NAME_VAR (arg) != SSA_NAME_VAR (PHI_RESULT (phi)))
483
            continue;
484
 
485
          /* Lookup this argument's value in the hash table.  */
486
          equiv_hash_elt.value = arg;
487
          equiv_hash_elt.equivalences = NULL;
488
          slot = htab_find_slot (equiv, &equiv_hash_elt, NO_INSERT);
489
 
490
          if (slot)
491
            {
492
              struct equiv_hash_elt *elt = (struct equiv_hash_elt *) *slot;
493
              int j;
494
 
495
              /* Walk every equivalence with the same value.  If we find
496
                 one with the same underlying variable as the PHI result,
497
                 then replace the value in the argument with its equivalent
498
                 SSA_NAME.  Use the most recent equivalence as hopefully
499
                 that results in shortest lifetimes.  */
500
              for (j = VEC_length (tree, elt->equivalences) - 1; j >= 0; j--)
501
                {
502
                  tree equiv = VEC_index (tree, elt->equivalences, j);
503
 
504
                  if (SSA_NAME_VAR (equiv) == SSA_NAME_VAR (PHI_RESULT (phi)))
505
                    {
506
                      SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
507
                      break;
508
                    }
509
                }
510
            }
511
        }
512
 
513
      /* If we had an equivalence associated with this edge, remove it.  */
514
      if (e->aux)
515
        {
516
          struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
517
          remove_equivalence (equiv->rhs);
518
        }
519
    }
520
}
521
 
522
/* Ignoring loop backedges, if BB has precisely one incoming edge then
523
   return that edge.  Otherwise return NULL.  */
524
static edge
525
single_incoming_edge_ignoring_loop_edges (basic_block bb)
526
{
527
  edge retval = NULL;
528
  edge e;
529
  edge_iterator ei;
530
 
531
  FOR_EACH_EDGE (e, ei, bb->preds)
532
    {
533
      /* A loop back edge can be identified by the destination of
534
         the edge dominating the source of the edge.  */
535
      if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
536
        continue;
537
 
538
      /* If we have already seen a non-loop edge, then we must have
539
         multiple incoming non-loop edges and thus we return NULL.  */
540
      if (retval)
541
        return NULL;
542
 
543
      /* This is the first non-loop incoming edge we have found.  Record
544
         it.  */
545
      retval = e;
546
    }
547
 
548
  return retval;
549
}
550
 
551
static void
552
uncprop_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
553
                     basic_block bb)
554
{
555
  basic_block parent;
556
  edge e;
557
  bool recorded = false;
558
 
559
  /* If this block is dominated by a single incoming edge and that edge
560
     has an equivalency, then record the equivalency and push the
561
     VALUE onto EQUIV_STACK.  Else push a NULL entry on EQUIV_STACK.  */
562
  parent = get_immediate_dominator (CDI_DOMINATORS, bb);
563
  if (parent)
564
    {
565
      e = single_incoming_edge_ignoring_loop_edges (bb);
566
 
567
      if (e && e->src == parent && e->aux)
568
        {
569
          struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
570
 
571
          record_equiv (equiv->rhs, equiv->lhs);
572
          VEC_safe_push (tree, heap, equiv_stack, equiv->rhs);
573
          recorded = true;
574
        }
575
    }
576
 
577
  if (!recorded)
578
    VEC_safe_push (tree, heap, equiv_stack, NULL_TREE);
579
 
580
  uncprop_into_successor_phis (bb);
581
}
582
 
583
static bool
584
gate_uncprop (void)
585
{
586
  return flag_tree_dom != 0;
587
}
588
 
589
struct gimple_opt_pass pass_uncprop =
590
{
591
 {
592
  GIMPLE_PASS,
593
  "uncprop",                            /* name */
594
  gate_uncprop,                         /* gate */
595
  tree_ssa_uncprop,                     /* execute */
596
  NULL,                                 /* sub */
597
  NULL,                                 /* next */
598
  0,                                     /* static_pass_number */
599
  TV_TREE_SSA_UNCPROP,                  /* tv_id */
600
  PROP_cfg | PROP_ssa,                  /* properties_required */
601
  0,                                     /* properties_provided */
602
  0,                                     /* properties_destroyed */
603
  0,                                     /* todo_flags_start */
604
  TODO_dump_func | TODO_verify_ssa      /* todo_flags_finish */
605
 }
606
};
607
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.