1 |
280 |
jeremybenn |
/* Vectorizer Specific Loop Manipulations
|
2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com>
|
5 |
|
|
and Ira Rosen <irar@il.ibm.com>
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
10 |
|
|
the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
12 |
|
|
version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "ggc.h"
|
28 |
|
|
#include "tree.h"
|
29 |
|
|
#include "basic-block.h"
|
30 |
|
|
#include "diagnostic.h"
|
31 |
|
|
#include "tree-flow.h"
|
32 |
|
|
#include "tree-dump.h"
|
33 |
|
|
#include "cfgloop.h"
|
34 |
|
|
#include "cfglayout.h"
|
35 |
|
|
#include "expr.h"
|
36 |
|
|
#include "toplev.h"
|
37 |
|
|
#include "tree-scalar-evolution.h"
|
38 |
|
|
#include "tree-vectorizer.h"
|
39 |
|
|
#include "langhooks.h"
|
40 |
|
|
|
41 |
|
|
/*************************************************************************
|
42 |
|
|
Simple Loop Peeling Utilities
|
43 |
|
|
|
44 |
|
|
Utilities to support loop peeling for vectorization purposes.
|
45 |
|
|
*************************************************************************/
|
46 |
|
|
|
47 |
|
|
|
48 |
|
|
/* Renames the use *OP_P. */
|
49 |
|
|
|
50 |
|
|
static void
|
51 |
|
|
rename_use_op (use_operand_p op_p)
|
52 |
|
|
{
|
53 |
|
|
tree new_name;
|
54 |
|
|
|
55 |
|
|
if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
|
56 |
|
|
return;
|
57 |
|
|
|
58 |
|
|
new_name = get_current_def (USE_FROM_PTR (op_p));
|
59 |
|
|
|
60 |
|
|
/* Something defined outside of the loop. */
|
61 |
|
|
if (!new_name)
|
62 |
|
|
return;
|
63 |
|
|
|
64 |
|
|
/* An ordinary ssa name defined in the loop. */
|
65 |
|
|
|
66 |
|
|
SET_USE (op_p, new_name);
|
67 |
|
|
}
|
68 |
|
|
|
69 |
|
|
|
70 |
|
|
/* Renames the variables in basic block BB. */
|
71 |
|
|
|
72 |
|
|
void
|
73 |
|
|
rename_variables_in_bb (basic_block bb)
|
74 |
|
|
{
|
75 |
|
|
gimple_stmt_iterator gsi;
|
76 |
|
|
gimple stmt;
|
77 |
|
|
use_operand_p use_p;
|
78 |
|
|
ssa_op_iter iter;
|
79 |
|
|
edge e;
|
80 |
|
|
edge_iterator ei;
|
81 |
|
|
struct loop *loop = bb->loop_father;
|
82 |
|
|
|
83 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
84 |
|
|
{
|
85 |
|
|
stmt = gsi_stmt (gsi);
|
86 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
|
87 |
|
|
rename_use_op (use_p);
|
88 |
|
|
}
|
89 |
|
|
|
90 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
91 |
|
|
{
|
92 |
|
|
if (!flow_bb_inside_loop_p (loop, e->dest))
|
93 |
|
|
continue;
|
94 |
|
|
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
95 |
|
|
rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
|
96 |
|
|
}
|
97 |
|
|
}
|
98 |
|
|
|
99 |
|
|
|
100 |
|
|
/* Renames variables in new generated LOOP. */
|
101 |
|
|
|
102 |
|
|
void
|
103 |
|
|
rename_variables_in_loop (struct loop *loop)
|
104 |
|
|
{
|
105 |
|
|
unsigned i;
|
106 |
|
|
basic_block *bbs;
|
107 |
|
|
|
108 |
|
|
bbs = get_loop_body (loop);
|
109 |
|
|
|
110 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
111 |
|
|
rename_variables_in_bb (bbs[i]);
|
112 |
|
|
|
113 |
|
|
free (bbs);
|
114 |
|
|
}
|
115 |
|
|
|
116 |
|
|
typedef struct
|
117 |
|
|
{
|
118 |
|
|
tree from, to;
|
119 |
|
|
basic_block bb;
|
120 |
|
|
} adjust_info;
|
121 |
|
|
|
122 |
|
|
DEF_VEC_O(adjust_info);
|
123 |
|
|
DEF_VEC_ALLOC_O_STACK(adjust_info);
|
124 |
|
|
#define VEC_adjust_info_stack_alloc(alloc) VEC_stack_alloc (adjust_info, alloc)
|
125 |
|
|
|
126 |
|
|
/* A stack of values to be adjusted in debug stmts. We have to
|
127 |
|
|
process them LIFO, so that the closest substitution applies. If we
|
128 |
|
|
processed them FIFO, without the stack, we might substitute uses
|
129 |
|
|
with a PHI DEF that would soon become non-dominant, and when we got
|
130 |
|
|
to the suitable one, it wouldn't have anything to substitute any
|
131 |
|
|
more. */
|
132 |
|
|
static VEC(adjust_info, stack) *adjust_vec;
|
133 |
|
|
|
134 |
|
|
/* Adjust any debug stmts that referenced AI->from values to use the
|
135 |
|
|
loop-closed AI->to, if the references are dominated by AI->bb and
|
136 |
|
|
not by the definition of AI->from. */
|
137 |
|
|
|
138 |
|
|
static void
|
139 |
|
|
adjust_debug_stmts_now (adjust_info *ai)
|
140 |
|
|
{
|
141 |
|
|
basic_block bbphi = ai->bb;
|
142 |
|
|
tree orig_def = ai->from;
|
143 |
|
|
tree new_def = ai->to;
|
144 |
|
|
imm_use_iterator imm_iter;
|
145 |
|
|
gimple stmt;
|
146 |
|
|
basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
|
147 |
|
|
|
148 |
|
|
gcc_assert (dom_info_available_p (CDI_DOMINATORS));
|
149 |
|
|
|
150 |
|
|
/* Adjust any debug stmts that held onto non-loop-closed
|
151 |
|
|
references. */
|
152 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
|
153 |
|
|
{
|
154 |
|
|
use_operand_p use_p;
|
155 |
|
|
basic_block bbuse;
|
156 |
|
|
|
157 |
|
|
if (!is_gimple_debug (stmt))
|
158 |
|
|
continue;
|
159 |
|
|
|
160 |
|
|
gcc_assert (gimple_debug_bind_p (stmt));
|
161 |
|
|
|
162 |
|
|
bbuse = gimple_bb (stmt);
|
163 |
|
|
|
164 |
|
|
if ((bbuse == bbphi
|
165 |
|
|
|| dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
|
166 |
|
|
&& !(bbuse == bbdef
|
167 |
|
|
|| dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
|
168 |
|
|
{
|
169 |
|
|
if (new_def)
|
170 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
171 |
|
|
SET_USE (use_p, new_def);
|
172 |
|
|
else
|
173 |
|
|
{
|
174 |
|
|
gimple_debug_bind_reset_value (stmt);
|
175 |
|
|
update_stmt (stmt);
|
176 |
|
|
}
|
177 |
|
|
}
|
178 |
|
|
}
|
179 |
|
|
}
|
180 |
|
|
|
181 |
|
|
/* Adjust debug stmts as scheduled before. */
|
182 |
|
|
|
183 |
|
|
static void
|
184 |
|
|
adjust_vec_debug_stmts (void)
|
185 |
|
|
{
|
186 |
|
|
if (!MAY_HAVE_DEBUG_STMTS)
|
187 |
|
|
return;
|
188 |
|
|
|
189 |
|
|
gcc_assert (adjust_vec);
|
190 |
|
|
|
191 |
|
|
while (!VEC_empty (adjust_info, adjust_vec))
|
192 |
|
|
{
|
193 |
|
|
adjust_debug_stmts_now (VEC_last (adjust_info, adjust_vec));
|
194 |
|
|
VEC_pop (adjust_info, adjust_vec);
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
VEC_free (adjust_info, stack, adjust_vec);
|
198 |
|
|
}
|
199 |
|
|
|
200 |
|
|
/* Adjust any debug stmts that referenced FROM values to use the
|
201 |
|
|
loop-closed TO, if the references are dominated by BB and not by
|
202 |
|
|
the definition of FROM. If adjust_vec is non-NULL, adjustments
|
203 |
|
|
will be postponed until adjust_vec_debug_stmts is called. */
|
204 |
|
|
|
205 |
|
|
static void
|
206 |
|
|
adjust_debug_stmts (tree from, tree to, basic_block bb)
|
207 |
|
|
{
|
208 |
|
|
adjust_info ai;
|
209 |
|
|
|
210 |
|
|
if (MAY_HAVE_DEBUG_STMTS && TREE_CODE (from) == SSA_NAME
|
211 |
|
|
&& SSA_NAME_VAR (from) != gimple_vop (cfun))
|
212 |
|
|
{
|
213 |
|
|
ai.from = from;
|
214 |
|
|
ai.to = to;
|
215 |
|
|
ai.bb = bb;
|
216 |
|
|
|
217 |
|
|
if (adjust_vec)
|
218 |
|
|
VEC_safe_push (adjust_info, stack, adjust_vec, &ai);
|
219 |
|
|
else
|
220 |
|
|
adjust_debug_stmts_now (&ai);
|
221 |
|
|
}
|
222 |
|
|
}
|
223 |
|
|
|
224 |
|
|
/* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
|
225 |
|
|
to adjust any debug stmts that referenced the old phi arg,
|
226 |
|
|
presumably non-loop-closed references left over from other
|
227 |
|
|
transformations. */
|
228 |
|
|
|
229 |
|
|
static void
|
230 |
|
|
adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
|
231 |
|
|
{
|
232 |
|
|
tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
|
233 |
|
|
|
234 |
|
|
SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
|
235 |
|
|
|
236 |
|
|
if (MAY_HAVE_DEBUG_STMTS)
|
237 |
|
|
adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
|
238 |
|
|
gimple_bb (update_phi));
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
|
242 |
|
|
/* Update the PHI nodes of NEW_LOOP.
|
243 |
|
|
|
244 |
|
|
NEW_LOOP is a duplicate of ORIG_LOOP.
|
245 |
|
|
AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
|
246 |
|
|
AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
|
247 |
|
|
executes before it. */
|
248 |
|
|
|
249 |
|
|
static void
|
250 |
|
|
slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
|
251 |
|
|
struct loop *new_loop, bool after)
|
252 |
|
|
{
|
253 |
|
|
tree new_ssa_name;
|
254 |
|
|
gimple phi_new, phi_orig;
|
255 |
|
|
tree def;
|
256 |
|
|
edge orig_loop_latch = loop_latch_edge (orig_loop);
|
257 |
|
|
edge orig_entry_e = loop_preheader_edge (orig_loop);
|
258 |
|
|
edge new_loop_exit_e = single_exit (new_loop);
|
259 |
|
|
edge new_loop_entry_e = loop_preheader_edge (new_loop);
|
260 |
|
|
edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
|
261 |
|
|
gimple_stmt_iterator gsi_new, gsi_orig;
|
262 |
|
|
|
263 |
|
|
/*
|
264 |
|
|
step 1. For each loop-header-phi:
|
265 |
|
|
Add the first phi argument for the phi in NEW_LOOP
|
266 |
|
|
(the one associated with the entry of NEW_LOOP)
|
267 |
|
|
|
268 |
|
|
step 2. For each loop-header-phi:
|
269 |
|
|
Add the second phi argument for the phi in NEW_LOOP
|
270 |
|
|
(the one associated with the latch of NEW_LOOP)
|
271 |
|
|
|
272 |
|
|
step 3. Update the phis in the successor block of NEW_LOOP.
|
273 |
|
|
|
274 |
|
|
case 1: NEW_LOOP was placed before ORIG_LOOP:
|
275 |
|
|
The successor block of NEW_LOOP is the header of ORIG_LOOP.
|
276 |
|
|
Updating the phis in the successor block can therefore be done
|
277 |
|
|
along with the scanning of the loop header phis, because the
|
278 |
|
|
header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
|
279 |
|
|
phi nodes, organized in the same order.
|
280 |
|
|
|
281 |
|
|
case 2: NEW_LOOP was placed after ORIG_LOOP:
|
282 |
|
|
The successor block of NEW_LOOP is the original exit block of
|
283 |
|
|
ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
|
284 |
|
|
We postpone updating these phis to a later stage (when
|
285 |
|
|
loop guards are added).
|
286 |
|
|
*/
|
287 |
|
|
|
288 |
|
|
|
289 |
|
|
/* Scan the phis in the headers of the old and new loops
|
290 |
|
|
(they are organized in exactly the same order). */
|
291 |
|
|
|
292 |
|
|
for (gsi_new = gsi_start_phis (new_loop->header),
|
293 |
|
|
gsi_orig = gsi_start_phis (orig_loop->header);
|
294 |
|
|
!gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
|
295 |
|
|
gsi_next (&gsi_new), gsi_next (&gsi_orig))
|
296 |
|
|
{
|
297 |
|
|
source_location locus;
|
298 |
|
|
phi_new = gsi_stmt (gsi_new);
|
299 |
|
|
phi_orig = gsi_stmt (gsi_orig);
|
300 |
|
|
|
301 |
|
|
/* step 1. */
|
302 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
|
303 |
|
|
locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
|
304 |
|
|
add_phi_arg (phi_new, def, new_loop_entry_e, locus);
|
305 |
|
|
|
306 |
|
|
/* step 2. */
|
307 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
|
308 |
|
|
locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
|
309 |
|
|
if (TREE_CODE (def) != SSA_NAME)
|
310 |
|
|
continue;
|
311 |
|
|
|
312 |
|
|
new_ssa_name = get_current_def (def);
|
313 |
|
|
if (!new_ssa_name)
|
314 |
|
|
{
|
315 |
|
|
/* This only happens if there are no definitions
|
316 |
|
|
inside the loop. use the phi_result in this case. */
|
317 |
|
|
new_ssa_name = PHI_RESULT (phi_new);
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
/* An ordinary ssa name defined in the loop. */
|
321 |
|
|
add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
|
322 |
|
|
|
323 |
|
|
/* Drop any debug references outside the loop, if they would
|
324 |
|
|
become ill-formed SSA. */
|
325 |
|
|
adjust_debug_stmts (def, NULL, single_exit (orig_loop)->dest);
|
326 |
|
|
|
327 |
|
|
/* step 3 (case 1). */
|
328 |
|
|
if (!after)
|
329 |
|
|
{
|
330 |
|
|
gcc_assert (new_loop_exit_e == orig_entry_e);
|
331 |
|
|
adjust_phi_and_debug_stmts (phi_orig, new_loop_exit_e, new_ssa_name);
|
332 |
|
|
}
|
333 |
|
|
}
|
334 |
|
|
}
|
335 |
|
|
|
336 |
|
|
|
337 |
|
|
/* Update PHI nodes for a guard of the LOOP.
|
338 |
|
|
|
339 |
|
|
Input:
|
340 |
|
|
- LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
|
341 |
|
|
controls whether LOOP is to be executed. GUARD_EDGE is the edge that
|
342 |
|
|
originates from the guard-bb, skips LOOP and reaches the (unique) exit
|
343 |
|
|
bb of LOOP. This loop-exit-bb is an empty bb with one successor.
|
344 |
|
|
We denote this bb NEW_MERGE_BB because before the guard code was added
|
345 |
|
|
it had a single predecessor (the LOOP header), and now it became a merge
|
346 |
|
|
point of two paths - the path that ends with the LOOP exit-edge, and
|
347 |
|
|
the path that ends with GUARD_EDGE.
|
348 |
|
|
- NEW_EXIT_BB: New basic block that is added by this function between LOOP
|
349 |
|
|
and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
|
350 |
|
|
|
351 |
|
|
===> The CFG before the guard-code was added:
|
352 |
|
|
LOOP_header_bb:
|
353 |
|
|
loop_body
|
354 |
|
|
if (exit_loop) goto update_bb
|
355 |
|
|
else goto LOOP_header_bb
|
356 |
|
|
update_bb:
|
357 |
|
|
|
358 |
|
|
==> The CFG after the guard-code was added:
|
359 |
|
|
guard_bb:
|
360 |
|
|
if (LOOP_guard_condition) goto new_merge_bb
|
361 |
|
|
else goto LOOP_header_bb
|
362 |
|
|
LOOP_header_bb:
|
363 |
|
|
loop_body
|
364 |
|
|
if (exit_loop_condition) goto new_merge_bb
|
365 |
|
|
else goto LOOP_header_bb
|
366 |
|
|
new_merge_bb:
|
367 |
|
|
goto update_bb
|
368 |
|
|
update_bb:
|
369 |
|
|
|
370 |
|
|
==> The CFG after this function:
|
371 |
|
|
guard_bb:
|
372 |
|
|
if (LOOP_guard_condition) goto new_merge_bb
|
373 |
|
|
else goto LOOP_header_bb
|
374 |
|
|
LOOP_header_bb:
|
375 |
|
|
loop_body
|
376 |
|
|
if (exit_loop_condition) goto new_exit_bb
|
377 |
|
|
else goto LOOP_header_bb
|
378 |
|
|
new_exit_bb:
|
379 |
|
|
new_merge_bb:
|
380 |
|
|
goto update_bb
|
381 |
|
|
update_bb:
|
382 |
|
|
|
383 |
|
|
This function:
|
384 |
|
|
1. creates and updates the relevant phi nodes to account for the new
|
385 |
|
|
incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
|
386 |
|
|
1.1. Create phi nodes at NEW_MERGE_BB.
|
387 |
|
|
1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
|
388 |
|
|
UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
|
389 |
|
|
2. preserves loop-closed-ssa-form by creating the required phi nodes
|
390 |
|
|
at the exit of LOOP (i.e, in NEW_EXIT_BB).
|
391 |
|
|
|
392 |
|
|
There are two flavors to this function:
|
393 |
|
|
|
394 |
|
|
slpeel_update_phi_nodes_for_guard1:
|
395 |
|
|
Here the guard controls whether we enter or skip LOOP, where LOOP is a
|
396 |
|
|
prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
|
397 |
|
|
for variables that have phis in the loop header.
|
398 |
|
|
|
399 |
|
|
slpeel_update_phi_nodes_for_guard2:
|
400 |
|
|
Here the guard controls whether we enter or skip LOOP, where LOOP is an
|
401 |
|
|
epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
|
402 |
|
|
for variables that have phis in the loop exit.
|
403 |
|
|
|
404 |
|
|
I.E., the overall structure is:
|
405 |
|
|
|
406 |
|
|
loop1_preheader_bb:
|
407 |
|
|
guard1 (goto loop1/merge1_bb)
|
408 |
|
|
loop1
|
409 |
|
|
loop1_exit_bb:
|
410 |
|
|
guard2 (goto merge1_bb/merge2_bb)
|
411 |
|
|
merge1_bb
|
412 |
|
|
loop2
|
413 |
|
|
loop2_exit_bb
|
414 |
|
|
merge2_bb
|
415 |
|
|
next_bb
|
416 |
|
|
|
417 |
|
|
slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
|
418 |
|
|
loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
|
419 |
|
|
that have phis in loop1->header).
|
420 |
|
|
|
421 |
|
|
slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
|
422 |
|
|
loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
|
423 |
|
|
that have phis in next_bb). It also adds some of these phis to
|
424 |
|
|
loop1_exit_bb.
|
425 |
|
|
|
426 |
|
|
slpeel_update_phi_nodes_for_guard1 is always called before
|
427 |
|
|
slpeel_update_phi_nodes_for_guard2. They are both needed in order
|
428 |
|
|
to create correct data-flow and loop-closed-ssa-form.
|
429 |
|
|
|
430 |
|
|
Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
|
431 |
|
|
that change between iterations of a loop (and therefore have a phi-node
|
432 |
|
|
at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
|
433 |
|
|
phis for variables that are used out of the loop (and therefore have
|
434 |
|
|
loop-closed exit phis). Some variables may be both updated between
|
435 |
|
|
iterations and used after the loop. This is why in loop1_exit_bb we
|
436 |
|
|
may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
|
437 |
|
|
and exit phis (created by slpeel_update_phi_nodes_for_guard2).
|
438 |
|
|
|
439 |
|
|
- IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
|
440 |
|
|
an original loop. i.e., we have:
|
441 |
|
|
|
442 |
|
|
orig_loop
|
443 |
|
|
guard_bb (goto LOOP/new_merge)
|
444 |
|
|
new_loop <-- LOOP
|
445 |
|
|
new_exit
|
446 |
|
|
new_merge
|
447 |
|
|
next_bb
|
448 |
|
|
|
449 |
|
|
If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
|
450 |
|
|
have:
|
451 |
|
|
|
452 |
|
|
new_loop
|
453 |
|
|
guard_bb (goto LOOP/new_merge)
|
454 |
|
|
orig_loop <-- LOOP
|
455 |
|
|
new_exit
|
456 |
|
|
new_merge
|
457 |
|
|
next_bb
|
458 |
|
|
|
459 |
|
|
The SSA names defined in the original loop have a current
|
460 |
|
|
reaching definition that that records the corresponding new
|
461 |
|
|
ssa-name used in the new duplicated loop copy.
|
462 |
|
|
*/
|
463 |
|
|
|
464 |
|
|
/* Function slpeel_update_phi_nodes_for_guard1
|
465 |
|
|
|
466 |
|
|
Input:
|
467 |
|
|
- GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
|
468 |
|
|
- DEFS - a bitmap of ssa names to mark new names for which we recorded
|
469 |
|
|
information.
|
470 |
|
|
|
471 |
|
|
In the context of the overall structure, we have:
|
472 |
|
|
|
473 |
|
|
loop1_preheader_bb:
|
474 |
|
|
guard1 (goto loop1/merge1_bb)
|
475 |
|
|
LOOP-> loop1
|
476 |
|
|
loop1_exit_bb:
|
477 |
|
|
guard2 (goto merge1_bb/merge2_bb)
|
478 |
|
|
merge1_bb
|
479 |
|
|
loop2
|
480 |
|
|
loop2_exit_bb
|
481 |
|
|
merge2_bb
|
482 |
|
|
next_bb
|
483 |
|
|
|
484 |
|
|
For each name updated between loop iterations (i.e - for each name that has
|
485 |
|
|
an entry (loop-header) phi in LOOP) we create a new phi in:
|
486 |
|
|
1. merge1_bb (to account for the edge from guard1)
|
487 |
|
|
2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
|
488 |
|
|
*/
|
489 |
|
|
|
490 |
|
|
static void
|
491 |
|
|
slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
|
492 |
|
|
bool is_new_loop, basic_block *new_exit_bb,
|
493 |
|
|
bitmap *defs)
|
494 |
|
|
{
|
495 |
|
|
gimple orig_phi, new_phi;
|
496 |
|
|
gimple update_phi, update_phi2;
|
497 |
|
|
tree guard_arg, loop_arg;
|
498 |
|
|
basic_block new_merge_bb = guard_edge->dest;
|
499 |
|
|
edge e = EDGE_SUCC (new_merge_bb, 0);
|
500 |
|
|
basic_block update_bb = e->dest;
|
501 |
|
|
basic_block orig_bb = loop->header;
|
502 |
|
|
edge new_exit_e;
|
503 |
|
|
tree current_new_name;
|
504 |
|
|
gimple_stmt_iterator gsi_orig, gsi_update;
|
505 |
|
|
|
506 |
|
|
/* Create new bb between loop and new_merge_bb. */
|
507 |
|
|
*new_exit_bb = split_edge (single_exit (loop));
|
508 |
|
|
|
509 |
|
|
new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
|
510 |
|
|
|
511 |
|
|
for (gsi_orig = gsi_start_phis (orig_bb),
|
512 |
|
|
gsi_update = gsi_start_phis (update_bb);
|
513 |
|
|
!gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
|
514 |
|
|
gsi_next (&gsi_orig), gsi_next (&gsi_update))
|
515 |
|
|
{
|
516 |
|
|
source_location loop_locus, guard_locus;;
|
517 |
|
|
orig_phi = gsi_stmt (gsi_orig);
|
518 |
|
|
update_phi = gsi_stmt (gsi_update);
|
519 |
|
|
|
520 |
|
|
/** 1. Handle new-merge-point phis **/
|
521 |
|
|
|
522 |
|
|
/* 1.1. Generate new phi node in NEW_MERGE_BB: */
|
523 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
524 |
|
|
new_merge_bb);
|
525 |
|
|
|
526 |
|
|
/* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
|
527 |
|
|
of LOOP. Set the two phi args in NEW_PHI for these edges: */
|
528 |
|
|
loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
|
529 |
|
|
loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
|
530 |
|
|
EDGE_SUCC (loop->latch,
|
531 |
|
|
0));
|
532 |
|
|
guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
|
533 |
|
|
guard_locus
|
534 |
|
|
= gimple_phi_arg_location_from_edge (orig_phi,
|
535 |
|
|
loop_preheader_edge (loop));
|
536 |
|
|
|
537 |
|
|
add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
|
538 |
|
|
add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
|
539 |
|
|
|
540 |
|
|
/* 1.3. Update phi in successor block. */
|
541 |
|
|
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
|
542 |
|
|
|| PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
|
543 |
|
|
adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
|
544 |
|
|
update_phi2 = new_phi;
|
545 |
|
|
|
546 |
|
|
|
547 |
|
|
/** 2. Handle loop-closed-ssa-form phis **/
|
548 |
|
|
|
549 |
|
|
if (!is_gimple_reg (PHI_RESULT (orig_phi)))
|
550 |
|
|
continue;
|
551 |
|
|
|
552 |
|
|
/* 2.1. Generate new phi node in NEW_EXIT_BB: */
|
553 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
554 |
|
|
*new_exit_bb);
|
555 |
|
|
|
556 |
|
|
/* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
|
557 |
|
|
add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
|
558 |
|
|
|
559 |
|
|
/* 2.3. Update phi in successor of NEW_EXIT_BB: */
|
560 |
|
|
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
|
561 |
|
|
adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
|
562 |
|
|
PHI_RESULT (new_phi));
|
563 |
|
|
|
564 |
|
|
/* 2.4. Record the newly created name with set_current_def.
|
565 |
|
|
We want to find a name such that
|
566 |
|
|
name = get_current_def (orig_loop_name)
|
567 |
|
|
and to set its current definition as follows:
|
568 |
|
|
set_current_def (name, new_phi_name)
|
569 |
|
|
|
570 |
|
|
If LOOP is a new loop then loop_arg is already the name we're
|
571 |
|
|
looking for. If LOOP is the original loop, then loop_arg is
|
572 |
|
|
the orig_loop_name and the relevant name is recorded in its
|
573 |
|
|
current reaching definition. */
|
574 |
|
|
if (is_new_loop)
|
575 |
|
|
current_new_name = loop_arg;
|
576 |
|
|
else
|
577 |
|
|
{
|
578 |
|
|
current_new_name = get_current_def (loop_arg);
|
579 |
|
|
/* current_def is not available only if the variable does not
|
580 |
|
|
change inside the loop, in which case we also don't care
|
581 |
|
|
about recording a current_def for it because we won't be
|
582 |
|
|
trying to create loop-exit-phis for it. */
|
583 |
|
|
if (!current_new_name)
|
584 |
|
|
continue;
|
585 |
|
|
}
|
586 |
|
|
gcc_assert (get_current_def (current_new_name) == NULL_TREE);
|
587 |
|
|
|
588 |
|
|
set_current_def (current_new_name, PHI_RESULT (new_phi));
|
589 |
|
|
bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
|
590 |
|
|
}
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
|
594 |
|
|
/* Function slpeel_update_phi_nodes_for_guard2
|
595 |
|
|
|
596 |
|
|
Input:
|
597 |
|
|
- GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
|
598 |
|
|
|
599 |
|
|
In the context of the overall structure, we have:
|
600 |
|
|
|
601 |
|
|
loop1_preheader_bb:
|
602 |
|
|
guard1 (goto loop1/merge1_bb)
|
603 |
|
|
loop1
|
604 |
|
|
loop1_exit_bb:
|
605 |
|
|
guard2 (goto merge1_bb/merge2_bb)
|
606 |
|
|
merge1_bb
|
607 |
|
|
LOOP-> loop2
|
608 |
|
|
loop2_exit_bb
|
609 |
|
|
merge2_bb
|
610 |
|
|
next_bb
|
611 |
|
|
|
612 |
|
|
For each name used out side the loop (i.e - for each name that has an exit
|
613 |
|
|
phi in next_bb) we create a new phi in:
|
614 |
|
|
1. merge2_bb (to account for the edge from guard_bb)
|
615 |
|
|
2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
|
616 |
|
|
3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
|
617 |
|
|
if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
|
618 |
|
|
*/
|
619 |
|
|
|
620 |
|
|
static void
|
621 |
|
|
slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
|
622 |
|
|
bool is_new_loop, basic_block *new_exit_bb)
|
623 |
|
|
{
|
624 |
|
|
gimple orig_phi, new_phi;
|
625 |
|
|
gimple update_phi, update_phi2;
|
626 |
|
|
tree guard_arg, loop_arg;
|
627 |
|
|
basic_block new_merge_bb = guard_edge->dest;
|
628 |
|
|
edge e = EDGE_SUCC (new_merge_bb, 0);
|
629 |
|
|
basic_block update_bb = e->dest;
|
630 |
|
|
edge new_exit_e;
|
631 |
|
|
tree orig_def, orig_def_new_name;
|
632 |
|
|
tree new_name, new_name2;
|
633 |
|
|
tree arg;
|
634 |
|
|
gimple_stmt_iterator gsi;
|
635 |
|
|
|
636 |
|
|
/* Create new bb between loop and new_merge_bb. */
|
637 |
|
|
*new_exit_bb = split_edge (single_exit (loop));
|
638 |
|
|
|
639 |
|
|
new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
|
640 |
|
|
|
641 |
|
|
for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
642 |
|
|
{
|
643 |
|
|
update_phi = gsi_stmt (gsi);
|
644 |
|
|
orig_phi = update_phi;
|
645 |
|
|
orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
|
646 |
|
|
/* This loop-closed-phi actually doesn't represent a use
|
647 |
|
|
out of the loop - the phi arg is a constant. */
|
648 |
|
|
if (TREE_CODE (orig_def) != SSA_NAME)
|
649 |
|
|
continue;
|
650 |
|
|
orig_def_new_name = get_current_def (orig_def);
|
651 |
|
|
arg = NULL_TREE;
|
652 |
|
|
|
653 |
|
|
/** 1. Handle new-merge-point phis **/
|
654 |
|
|
|
655 |
|
|
/* 1.1. Generate new phi node in NEW_MERGE_BB: */
|
656 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
657 |
|
|
new_merge_bb);
|
658 |
|
|
|
659 |
|
|
/* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
|
660 |
|
|
of LOOP. Set the two PHI args in NEW_PHI for these edges: */
|
661 |
|
|
new_name = orig_def;
|
662 |
|
|
new_name2 = NULL_TREE;
|
663 |
|
|
if (orig_def_new_name)
|
664 |
|
|
{
|
665 |
|
|
new_name = orig_def_new_name;
|
666 |
|
|
/* Some variables have both loop-entry-phis and loop-exit-phis.
|
667 |
|
|
Such variables were given yet newer names by phis placed in
|
668 |
|
|
guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
|
669 |
|
|
new_name2 = get_current_def (get_current_def (orig_name)). */
|
670 |
|
|
new_name2 = get_current_def (new_name);
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
if (is_new_loop)
|
674 |
|
|
{
|
675 |
|
|
guard_arg = orig_def;
|
676 |
|
|
loop_arg = new_name;
|
677 |
|
|
}
|
678 |
|
|
else
|
679 |
|
|
{
|
680 |
|
|
guard_arg = new_name;
|
681 |
|
|
loop_arg = orig_def;
|
682 |
|
|
}
|
683 |
|
|
if (new_name2)
|
684 |
|
|
guard_arg = new_name2;
|
685 |
|
|
|
686 |
|
|
add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
|
687 |
|
|
add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
|
688 |
|
|
|
689 |
|
|
/* 1.3. Update phi in successor block. */
|
690 |
|
|
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
|
691 |
|
|
adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
|
692 |
|
|
update_phi2 = new_phi;
|
693 |
|
|
|
694 |
|
|
|
695 |
|
|
/** 2. Handle loop-closed-ssa-form phis **/
|
696 |
|
|
|
697 |
|
|
/* 2.1. Generate new phi node in NEW_EXIT_BB: */
|
698 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
699 |
|
|
*new_exit_bb);
|
700 |
|
|
|
701 |
|
|
/* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
|
702 |
|
|
add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
|
703 |
|
|
|
704 |
|
|
/* 2.3. Update phi in successor of NEW_EXIT_BB: */
|
705 |
|
|
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
|
706 |
|
|
adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
|
707 |
|
|
PHI_RESULT (new_phi));
|
708 |
|
|
|
709 |
|
|
|
710 |
|
|
/** 3. Handle loop-closed-ssa-form phis for first loop **/
|
711 |
|
|
|
712 |
|
|
/* 3.1. Find the relevant names that need an exit-phi in
|
713 |
|
|
GUARD_BB, i.e. names for which
|
714 |
|
|
slpeel_update_phi_nodes_for_guard1 had not already created a
|
715 |
|
|
phi node. This is the case for names that are used outside
|
716 |
|
|
the loop (and therefore need an exit phi) but are not updated
|
717 |
|
|
across loop iterations (and therefore don't have a
|
718 |
|
|
loop-header-phi).
|
719 |
|
|
|
720 |
|
|
slpeel_update_phi_nodes_for_guard1 is responsible for
|
721 |
|
|
creating loop-exit phis in GUARD_BB for names that have a
|
722 |
|
|
loop-header-phi. When such a phi is created we also record
|
723 |
|
|
the new name in its current definition. If this new name
|
724 |
|
|
exists, then guard_arg was set to this new name (see 1.2
|
725 |
|
|
above). Therefore, if guard_arg is not this new name, this
|
726 |
|
|
is an indication that an exit-phi in GUARD_BB was not yet
|
727 |
|
|
created, so we take care of it here. */
|
728 |
|
|
if (guard_arg == new_name2)
|
729 |
|
|
continue;
|
730 |
|
|
arg = guard_arg;
|
731 |
|
|
|
732 |
|
|
/* 3.2. Generate new phi node in GUARD_BB: */
|
733 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
734 |
|
|
guard_edge->src);
|
735 |
|
|
|
736 |
|
|
/* 3.3. GUARD_BB has one incoming edge: */
|
737 |
|
|
gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
|
738 |
|
|
add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
|
739 |
|
|
UNKNOWN_LOCATION);
|
740 |
|
|
|
741 |
|
|
/* 3.4. Update phi in successor of GUARD_BB: */
|
742 |
|
|
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
|
743 |
|
|
== guard_arg);
|
744 |
|
|
adjust_phi_and_debug_stmts (update_phi2, guard_edge,
|
745 |
|
|
PHI_RESULT (new_phi));
|
746 |
|
|
}
|
747 |
|
|
}
|
748 |
|
|
|
749 |
|
|
|
750 |
|
|
/* Make the LOOP iterate NITERS times. This is done by adding a new IV
|
751 |
|
|
that starts at zero, increases by one and its limit is NITERS.
|
752 |
|
|
|
753 |
|
|
Assumption: the exit-condition of LOOP is the last stmt in the loop. */
|
754 |
|
|
|
755 |
|
|
void
|
756 |
|
|
slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
|
757 |
|
|
{
|
758 |
|
|
tree indx_before_incr, indx_after_incr;
|
759 |
|
|
gimple cond_stmt;
|
760 |
|
|
gimple orig_cond;
|
761 |
|
|
edge exit_edge = single_exit (loop);
|
762 |
|
|
gimple_stmt_iterator loop_cond_gsi;
|
763 |
|
|
gimple_stmt_iterator incr_gsi;
|
764 |
|
|
bool insert_after;
|
765 |
|
|
tree init = build_int_cst (TREE_TYPE (niters), 0);
|
766 |
|
|
tree step = build_int_cst (TREE_TYPE (niters), 1);
|
767 |
|
|
LOC loop_loc;
|
768 |
|
|
enum tree_code code;
|
769 |
|
|
|
770 |
|
|
orig_cond = get_loop_exit_condition (loop);
|
771 |
|
|
gcc_assert (orig_cond);
|
772 |
|
|
loop_cond_gsi = gsi_for_stmt (orig_cond);
|
773 |
|
|
|
774 |
|
|
standard_iv_increment_position (loop, &incr_gsi, &insert_after);
|
775 |
|
|
create_iv (init, step, NULL_TREE, loop,
|
776 |
|
|
&incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
|
777 |
|
|
|
778 |
|
|
indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
|
779 |
|
|
true, NULL_TREE, true,
|
780 |
|
|
GSI_SAME_STMT);
|
781 |
|
|
niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
|
782 |
|
|
true, GSI_SAME_STMT);
|
783 |
|
|
|
784 |
|
|
code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
|
785 |
|
|
cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
|
786 |
|
|
NULL_TREE);
|
787 |
|
|
|
788 |
|
|
gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
|
789 |
|
|
|
790 |
|
|
/* Remove old loop exit test: */
|
791 |
|
|
gsi_remove (&loop_cond_gsi, true);
|
792 |
|
|
|
793 |
|
|
loop_loc = find_loop_location (loop);
|
794 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
795 |
|
|
{
|
796 |
|
|
if (loop_loc != UNKNOWN_LOC)
|
797 |
|
|
fprintf (dump_file, "\nloop at %s:%d: ",
|
798 |
|
|
LOC_FILE (loop_loc), LOC_LINE (loop_loc));
|
799 |
|
|
print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
|
800 |
|
|
}
|
801 |
|
|
|
802 |
|
|
loop->nb_iterations = niters;
|
803 |
|
|
}
|
804 |
|
|
|
805 |
|
|
|
806 |
|
|
/* Given LOOP this function generates a new copy of it and puts it
|
807 |
|
|
on E which is either the entry or exit of LOOP. */
|
808 |
|
|
|
809 |
|
|
struct loop *
|
810 |
|
|
slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
|
811 |
|
|
{
|
812 |
|
|
struct loop *new_loop;
|
813 |
|
|
basic_block *new_bbs, *bbs;
|
814 |
|
|
bool at_exit;
|
815 |
|
|
bool was_imm_dom;
|
816 |
|
|
basic_block exit_dest;
|
817 |
|
|
gimple phi;
|
818 |
|
|
tree phi_arg;
|
819 |
|
|
edge exit, new_exit;
|
820 |
|
|
gimple_stmt_iterator gsi;
|
821 |
|
|
|
822 |
|
|
at_exit = (e == single_exit (loop));
|
823 |
|
|
if (!at_exit && e != loop_preheader_edge (loop))
|
824 |
|
|
return NULL;
|
825 |
|
|
|
826 |
|
|
bbs = get_loop_body (loop);
|
827 |
|
|
|
828 |
|
|
/* Check whether duplication is possible. */
|
829 |
|
|
if (!can_copy_bbs_p (bbs, loop->num_nodes))
|
830 |
|
|
{
|
831 |
|
|
free (bbs);
|
832 |
|
|
return NULL;
|
833 |
|
|
}
|
834 |
|
|
|
835 |
|
|
/* Generate new loop structure. */
|
836 |
|
|
new_loop = duplicate_loop (loop, loop_outer (loop));
|
837 |
|
|
if (!new_loop)
|
838 |
|
|
{
|
839 |
|
|
free (bbs);
|
840 |
|
|
return NULL;
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
exit_dest = single_exit (loop)->dest;
|
844 |
|
|
was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
|
845 |
|
|
exit_dest) == loop->header ?
|
846 |
|
|
true : false);
|
847 |
|
|
|
848 |
|
|
new_bbs = XNEWVEC (basic_block, loop->num_nodes);
|
849 |
|
|
|
850 |
|
|
exit = single_exit (loop);
|
851 |
|
|
copy_bbs (bbs, loop->num_nodes, new_bbs,
|
852 |
|
|
&exit, 1, &new_exit, NULL,
|
853 |
|
|
e->src);
|
854 |
|
|
|
855 |
|
|
/* Duplicating phi args at exit bbs as coming
|
856 |
|
|
also from exit of duplicated loop. */
|
857 |
|
|
for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
858 |
|
|
{
|
859 |
|
|
phi = gsi_stmt (gsi);
|
860 |
|
|
phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
|
861 |
|
|
if (phi_arg)
|
862 |
|
|
{
|
863 |
|
|
edge new_loop_exit_edge;
|
864 |
|
|
source_location locus;
|
865 |
|
|
|
866 |
|
|
locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
|
867 |
|
|
if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
|
868 |
|
|
new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
|
869 |
|
|
else
|
870 |
|
|
new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
|
871 |
|
|
|
872 |
|
|
add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
|
873 |
|
|
}
|
874 |
|
|
}
|
875 |
|
|
|
876 |
|
|
if (at_exit) /* Add the loop copy at exit. */
|
877 |
|
|
{
|
878 |
|
|
redirect_edge_and_branch_force (e, new_loop->header);
|
879 |
|
|
PENDING_STMT (e) = NULL;
|
880 |
|
|
set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
|
881 |
|
|
if (was_imm_dom)
|
882 |
|
|
set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
|
883 |
|
|
}
|
884 |
|
|
else /* Add the copy at entry. */
|
885 |
|
|
{
|
886 |
|
|
edge new_exit_e;
|
887 |
|
|
edge entry_e = loop_preheader_edge (loop);
|
888 |
|
|
basic_block preheader = entry_e->src;
|
889 |
|
|
|
890 |
|
|
if (!flow_bb_inside_loop_p (new_loop,
|
891 |
|
|
EDGE_SUCC (new_loop->header, 0)->dest))
|
892 |
|
|
new_exit_e = EDGE_SUCC (new_loop->header, 0);
|
893 |
|
|
else
|
894 |
|
|
new_exit_e = EDGE_SUCC (new_loop->header, 1);
|
895 |
|
|
|
896 |
|
|
redirect_edge_and_branch_force (new_exit_e, loop->header);
|
897 |
|
|
PENDING_STMT (new_exit_e) = NULL;
|
898 |
|
|
set_immediate_dominator (CDI_DOMINATORS, loop->header,
|
899 |
|
|
new_exit_e->src);
|
900 |
|
|
|
901 |
|
|
/* We have to add phi args to the loop->header here as coming
|
902 |
|
|
from new_exit_e edge. */
|
903 |
|
|
for (gsi = gsi_start_phis (loop->header);
|
904 |
|
|
!gsi_end_p (gsi);
|
905 |
|
|
gsi_next (&gsi))
|
906 |
|
|
{
|
907 |
|
|
phi = gsi_stmt (gsi);
|
908 |
|
|
phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
|
909 |
|
|
if (phi_arg)
|
910 |
|
|
add_phi_arg (phi, phi_arg, new_exit_e,
|
911 |
|
|
gimple_phi_arg_location_from_edge (phi, entry_e));
|
912 |
|
|
}
|
913 |
|
|
|
914 |
|
|
redirect_edge_and_branch_force (entry_e, new_loop->header);
|
915 |
|
|
PENDING_STMT (entry_e) = NULL;
|
916 |
|
|
set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
free (new_bbs);
|
920 |
|
|
free (bbs);
|
921 |
|
|
|
922 |
|
|
return new_loop;
|
923 |
|
|
}
|
924 |
|
|
|
925 |
|
|
|
926 |
|
|
/* Given the condition statement COND, put it as the last statement
|
927 |
|
|
of GUARD_BB; EXIT_BB is the basic block to skip the loop;
|
928 |
|
|
Assumes that this is the single exit of the guarded loop.
|
929 |
|
|
Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
|
930 |
|
|
|
931 |
|
|
static edge
|
932 |
|
|
slpeel_add_loop_guard (basic_block guard_bb, tree cond,
|
933 |
|
|
gimple_seq cond_expr_stmt_list,
|
934 |
|
|
basic_block exit_bb, basic_block dom_bb)
|
935 |
|
|
{
|
936 |
|
|
gimple_stmt_iterator gsi;
|
937 |
|
|
edge new_e, enter_e;
|
938 |
|
|
gimple cond_stmt;
|
939 |
|
|
gimple_seq gimplify_stmt_list = NULL;
|
940 |
|
|
|
941 |
|
|
enter_e = EDGE_SUCC (guard_bb, 0);
|
942 |
|
|
enter_e->flags &= ~EDGE_FALLTHRU;
|
943 |
|
|
enter_e->flags |= EDGE_FALSE_VALUE;
|
944 |
|
|
gsi = gsi_last_bb (guard_bb);
|
945 |
|
|
|
946 |
|
|
cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
|
947 |
|
|
if (gimplify_stmt_list)
|
948 |
|
|
gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
|
949 |
|
|
cond_stmt = gimple_build_cond (NE_EXPR,
|
950 |
|
|
cond, build_int_cst (TREE_TYPE (cond), 0),
|
951 |
|
|
NULL_TREE, NULL_TREE);
|
952 |
|
|
if (cond_expr_stmt_list)
|
953 |
|
|
gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
|
954 |
|
|
|
955 |
|
|
gsi = gsi_last_bb (guard_bb);
|
956 |
|
|
gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
|
957 |
|
|
|
958 |
|
|
/* Add new edge to connect guard block to the merge/loop-exit block. */
|
959 |
|
|
new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
|
960 |
|
|
set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
|
961 |
|
|
return new_e;
|
962 |
|
|
}
|
963 |
|
|
|
964 |
|
|
|
965 |
|
|
/* This function verifies that the following restrictions apply to LOOP:
|
966 |
|
|
(1) it is innermost
|
967 |
|
|
(2) it consists of exactly 2 basic blocks - header, and an empty latch.
|
968 |
|
|
(3) it is single entry, single exit
|
969 |
|
|
(4) its exit condition is the last stmt in the header
|
970 |
|
|
(5) E is the entry/exit edge of LOOP.
|
971 |
|
|
*/
|
972 |
|
|
|
973 |
|
|
bool
|
974 |
|
|
slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
|
975 |
|
|
{
|
976 |
|
|
edge exit_e = single_exit (loop);
|
977 |
|
|
edge entry_e = loop_preheader_edge (loop);
|
978 |
|
|
gimple orig_cond = get_loop_exit_condition (loop);
|
979 |
|
|
gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
|
980 |
|
|
|
981 |
|
|
if (need_ssa_update_p (cfun))
|
982 |
|
|
return false;
|
983 |
|
|
|
984 |
|
|
if (loop->inner
|
985 |
|
|
/* All loops have an outer scope; the only case loop->outer is NULL is for
|
986 |
|
|
the function itself. */
|
987 |
|
|
|| !loop_outer (loop)
|
988 |
|
|
|| loop->num_nodes != 2
|
989 |
|
|
|| !empty_block_p (loop->latch)
|
990 |
|
|
|| !single_exit (loop)
|
991 |
|
|
/* Verify that new loop exit condition can be trivially modified. */
|
992 |
|
|
|| (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
|
993 |
|
|
|| (e != exit_e && e != entry_e))
|
994 |
|
|
return false;
|
995 |
|
|
|
996 |
|
|
return true;
|
997 |
|
|
}
|
998 |
|
|
|
999 |
|
|
#ifdef ENABLE_CHECKING
|
1000 |
|
|
static void
|
1001 |
|
|
slpeel_verify_cfg_after_peeling (struct loop *first_loop,
|
1002 |
|
|
struct loop *second_loop)
|
1003 |
|
|
{
|
1004 |
|
|
basic_block loop1_exit_bb = single_exit (first_loop)->dest;
|
1005 |
|
|
basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
|
1006 |
|
|
basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
|
1007 |
|
|
|
1008 |
|
|
/* A guard that controls whether the second_loop is to be executed or skipped
|
1009 |
|
|
is placed in first_loop->exit. first_loop->exit therefore has two
|
1010 |
|
|
successors - one is the preheader of second_loop, and the other is a bb
|
1011 |
|
|
after second_loop.
|
1012 |
|
|
*/
|
1013 |
|
|
gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
|
1014 |
|
|
|
1015 |
|
|
/* 1. Verify that one of the successors of first_loop->exit is the preheader
|
1016 |
|
|
of second_loop. */
|
1017 |
|
|
|
1018 |
|
|
/* The preheader of new_loop is expected to have two predecessors:
|
1019 |
|
|
first_loop->exit and the block that precedes first_loop. */
|
1020 |
|
|
|
1021 |
|
|
gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
|
1022 |
|
|
&& ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
|
1023 |
|
|
&& EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
|
1024 |
|
|
|| (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
|
1025 |
|
|
&& EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
|
1026 |
|
|
|
1027 |
|
|
/* Verify that the other successor of first_loop->exit is after the
|
1028 |
|
|
second_loop. */
|
1029 |
|
|
/* TODO */
|
1030 |
|
|
}
|
1031 |
|
|
#endif
|
1032 |
|
|
|
1033 |
|
|
/* If the run time cost model check determines that vectorization is
|
1034 |
|
|
not profitable and hence scalar loop should be generated then set
|
1035 |
|
|
FIRST_NITERS to prologue peeled iterations. This will allow all the
|
1036 |
|
|
iterations to be executed in the prologue peeled scalar loop. */
|
1037 |
|
|
|
1038 |
|
|
static void
|
1039 |
|
|
set_prologue_iterations (basic_block bb_before_first_loop,
|
1040 |
|
|
tree first_niters,
|
1041 |
|
|
struct loop *loop,
|
1042 |
|
|
unsigned int th)
|
1043 |
|
|
{
|
1044 |
|
|
edge e;
|
1045 |
|
|
basic_block cond_bb, then_bb;
|
1046 |
|
|
tree var, prologue_after_cost_adjust_name;
|
1047 |
|
|
gimple_stmt_iterator gsi;
|
1048 |
|
|
gimple newphi;
|
1049 |
|
|
edge e_true, e_false, e_fallthru;
|
1050 |
|
|
gimple cond_stmt;
|
1051 |
|
|
gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
|
1052 |
|
|
tree cost_pre_condition = NULL_TREE;
|
1053 |
|
|
tree scalar_loop_iters =
|
1054 |
|
|
unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
|
1055 |
|
|
|
1056 |
|
|
e = single_pred_edge (bb_before_first_loop);
|
1057 |
|
|
cond_bb = split_edge(e);
|
1058 |
|
|
|
1059 |
|
|
e = single_pred_edge (bb_before_first_loop);
|
1060 |
|
|
then_bb = split_edge(e);
|
1061 |
|
|
set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
|
1062 |
|
|
|
1063 |
|
|
e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
|
1064 |
|
|
EDGE_FALSE_VALUE);
|
1065 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
|
1066 |
|
|
|
1067 |
|
|
e_true = EDGE_PRED (then_bb, 0);
|
1068 |
|
|
e_true->flags &= ~EDGE_FALLTHRU;
|
1069 |
|
|
e_true->flags |= EDGE_TRUE_VALUE;
|
1070 |
|
|
|
1071 |
|
|
e_fallthru = EDGE_SUCC (then_bb, 0);
|
1072 |
|
|
|
1073 |
|
|
cost_pre_condition =
|
1074 |
|
|
fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
|
1075 |
|
|
build_int_cst (TREE_TYPE (scalar_loop_iters), th));
|
1076 |
|
|
cost_pre_condition =
|
1077 |
|
|
force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
|
1078 |
|
|
true, NULL_TREE);
|
1079 |
|
|
cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
|
1080 |
|
|
build_int_cst (TREE_TYPE (cost_pre_condition),
|
1081 |
|
|
0), NULL_TREE, NULL_TREE);
|
1082 |
|
|
|
1083 |
|
|
gsi = gsi_last_bb (cond_bb);
|
1084 |
|
|
if (gimplify_stmt_list)
|
1085 |
|
|
gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
|
1086 |
|
|
|
1087 |
|
|
gsi = gsi_last_bb (cond_bb);
|
1088 |
|
|
gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
|
1089 |
|
|
|
1090 |
|
|
var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
|
1091 |
|
|
"prologue_after_cost_adjust");
|
1092 |
|
|
add_referenced_var (var);
|
1093 |
|
|
prologue_after_cost_adjust_name =
|
1094 |
|
|
force_gimple_operand (scalar_loop_iters, &stmts, false, var);
|
1095 |
|
|
|
1096 |
|
|
gsi = gsi_last_bb (then_bb);
|
1097 |
|
|
if (stmts)
|
1098 |
|
|
gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
|
1099 |
|
|
|
1100 |
|
|
newphi = create_phi_node (var, bb_before_first_loop);
|
1101 |
|
|
add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
|
1102 |
|
|
UNKNOWN_LOCATION);
|
1103 |
|
|
add_phi_arg (newphi, first_niters, e_false, UNKNOWN_LOCATION);
|
1104 |
|
|
|
1105 |
|
|
first_niters = PHI_RESULT (newphi);
|
1106 |
|
|
}
|
1107 |
|
|
|
1108 |
|
|
|
1109 |
|
|
/* Function slpeel_tree_peel_loop_to_edge.
|
1110 |
|
|
|
1111 |
|
|
Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
|
1112 |
|
|
that is placed on the entry (exit) edge E of LOOP. After this transformation
|
1113 |
|
|
we have two loops one after the other - first-loop iterates FIRST_NITERS
|
1114 |
|
|
times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
|
1115 |
|
|
If the cost model indicates that it is profitable to emit a scalar
|
1116 |
|
|
loop instead of the vector one, then the prolog (epilog) loop will iterate
|
1117 |
|
|
for the entire unchanged scalar iterations of the loop.
|
1118 |
|
|
|
1119 |
|
|
Input:
|
1120 |
|
|
- LOOP: the loop to be peeled.
|
1121 |
|
|
- E: the exit or entry edge of LOOP.
|
1122 |
|
|
If it is the entry edge, we peel the first iterations of LOOP. In this
|
1123 |
|
|
case first-loop is LOOP, and second-loop is the newly created loop.
|
1124 |
|
|
If it is the exit edge, we peel the last iterations of LOOP. In this
|
1125 |
|
|
case, first-loop is the newly created loop, and second-loop is LOOP.
|
1126 |
|
|
- NITERS: the number of iterations that LOOP iterates.
|
1127 |
|
|
- FIRST_NITERS: the number of iterations that the first-loop should iterate.
|
1128 |
|
|
- UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
|
1129 |
|
|
for updating the loop bound of the first-loop to FIRST_NITERS. If it
|
1130 |
|
|
is false, the caller of this function may want to take care of this
|
1131 |
|
|
(this can be useful if we don't want new stmts added to first-loop).
|
1132 |
|
|
- TH: cost model profitability threshold of iterations for vectorization.
|
1133 |
|
|
- CHECK_PROFITABILITY: specify whether cost model check has not occurred
|
1134 |
|
|
during versioning and hence needs to occur during
|
1135 |
|
|
prologue generation or whether cost model check
|
1136 |
|
|
has not occurred during prologue generation and hence
|
1137 |
|
|
needs to occur during epilogue generation.
|
1138 |
|
|
|
1139 |
|
|
|
1140 |
|
|
Output:
|
1141 |
|
|
The function returns a pointer to the new loop-copy, or NULL if it failed
|
1142 |
|
|
to perform the transformation.
|
1143 |
|
|
|
1144 |
|
|
The function generates two if-then-else guards: one before the first loop,
|
1145 |
|
|
and the other before the second loop:
|
1146 |
|
|
The first guard is:
|
1147 |
|
|
if (FIRST_NITERS == 0) then skip the first loop,
|
1148 |
|
|
and go directly to the second loop.
|
1149 |
|
|
The second guard is:
|
1150 |
|
|
if (FIRST_NITERS == NITERS) then skip the second loop.
|
1151 |
|
|
|
1152 |
|
|
If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
|
1153 |
|
|
then the generated condition is combined with COND_EXPR and the
|
1154 |
|
|
statements in COND_EXPR_STMT_LIST are emitted together with it.
|
1155 |
|
|
|
1156 |
|
|
FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
|
1157 |
|
|
FORNOW the resulting code will not be in loop-closed-ssa form.
|
1158 |
|
|
*/
|
1159 |
|
|
|
1160 |
|
|
static struct loop*
|
1161 |
|
|
slpeel_tree_peel_loop_to_edge (struct loop *loop,
|
1162 |
|
|
edge e, tree first_niters,
|
1163 |
|
|
tree niters, bool update_first_loop_count,
|
1164 |
|
|
unsigned int th, bool check_profitability,
|
1165 |
|
|
tree cond_expr, gimple_seq cond_expr_stmt_list)
|
1166 |
|
|
{
|
1167 |
|
|
struct loop *new_loop = NULL, *first_loop, *second_loop;
|
1168 |
|
|
edge skip_e;
|
1169 |
|
|
tree pre_condition = NULL_TREE;
|
1170 |
|
|
bitmap definitions;
|
1171 |
|
|
basic_block bb_before_second_loop, bb_after_second_loop;
|
1172 |
|
|
basic_block bb_before_first_loop;
|
1173 |
|
|
basic_block bb_between_loops;
|
1174 |
|
|
basic_block new_exit_bb;
|
1175 |
|
|
edge exit_e = single_exit (loop);
|
1176 |
|
|
LOC loop_loc;
|
1177 |
|
|
tree cost_pre_condition = NULL_TREE;
|
1178 |
|
|
|
1179 |
|
|
if (!slpeel_can_duplicate_loop_p (loop, e))
|
1180 |
|
|
return NULL;
|
1181 |
|
|
|
1182 |
|
|
/* We have to initialize cfg_hooks. Then, when calling
|
1183 |
|
|
cfg_hooks->split_edge, the function tree_split_edge
|
1184 |
|
|
is actually called and, when calling cfg_hooks->duplicate_block,
|
1185 |
|
|
the function tree_duplicate_bb is called. */
|
1186 |
|
|
gimple_register_cfg_hooks ();
|
1187 |
|
|
|
1188 |
|
|
|
1189 |
|
|
/* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
|
1190 |
|
|
Resulting CFG would be:
|
1191 |
|
|
|
1192 |
|
|
first_loop:
|
1193 |
|
|
do {
|
1194 |
|
|
} while ...
|
1195 |
|
|
|
1196 |
|
|
second_loop:
|
1197 |
|
|
do {
|
1198 |
|
|
} while ...
|
1199 |
|
|
|
1200 |
|
|
orig_exit_bb:
|
1201 |
|
|
*/
|
1202 |
|
|
|
1203 |
|
|
if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
|
1204 |
|
|
{
|
1205 |
|
|
loop_loc = find_loop_location (loop);
|
1206 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1207 |
|
|
{
|
1208 |
|
|
if (loop_loc != UNKNOWN_LOC)
|
1209 |
|
|
fprintf (dump_file, "\n%s:%d: note: ",
|
1210 |
|
|
LOC_FILE (loop_loc), LOC_LINE (loop_loc));
|
1211 |
|
|
fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
|
1212 |
|
|
}
|
1213 |
|
|
return NULL;
|
1214 |
|
|
}
|
1215 |
|
|
|
1216 |
|
|
if (MAY_HAVE_DEBUG_STMTS)
|
1217 |
|
|
{
|
1218 |
|
|
gcc_assert (!adjust_vec);
|
1219 |
|
|
adjust_vec = VEC_alloc (adjust_info, stack, 32);
|
1220 |
|
|
}
|
1221 |
|
|
|
1222 |
|
|
if (e == exit_e)
|
1223 |
|
|
{
|
1224 |
|
|
/* NEW_LOOP was placed after LOOP. */
|
1225 |
|
|
first_loop = loop;
|
1226 |
|
|
second_loop = new_loop;
|
1227 |
|
|
}
|
1228 |
|
|
else
|
1229 |
|
|
{
|
1230 |
|
|
/* NEW_LOOP was placed before LOOP. */
|
1231 |
|
|
first_loop = new_loop;
|
1232 |
|
|
second_loop = loop;
|
1233 |
|
|
}
|
1234 |
|
|
|
1235 |
|
|
definitions = ssa_names_to_replace ();
|
1236 |
|
|
slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
|
1237 |
|
|
rename_variables_in_loop (new_loop);
|
1238 |
|
|
|
1239 |
|
|
|
1240 |
|
|
/* 2. Add the guard code in one of the following ways:
|
1241 |
|
|
|
1242 |
|
|
2.a Add the guard that controls whether the first loop is executed.
|
1243 |
|
|
This occurs when this function is invoked for prologue or epilogue
|
1244 |
|
|
generation and when the cost model check can be done at compile time.
|
1245 |
|
|
|
1246 |
|
|
Resulting CFG would be:
|
1247 |
|
|
|
1248 |
|
|
bb_before_first_loop:
|
1249 |
|
|
if (FIRST_NITERS == 0) GOTO bb_before_second_loop
|
1250 |
|
|
GOTO first-loop
|
1251 |
|
|
|
1252 |
|
|
first_loop:
|
1253 |
|
|
do {
|
1254 |
|
|
} while ...
|
1255 |
|
|
|
1256 |
|
|
bb_before_second_loop:
|
1257 |
|
|
|
1258 |
|
|
second_loop:
|
1259 |
|
|
do {
|
1260 |
|
|
} while ...
|
1261 |
|
|
|
1262 |
|
|
orig_exit_bb:
|
1263 |
|
|
|
1264 |
|
|
2.b Add the cost model check that allows the prologue
|
1265 |
|
|
to iterate for the entire unchanged scalar
|
1266 |
|
|
iterations of the loop in the event that the cost
|
1267 |
|
|
model indicates that the scalar loop is more
|
1268 |
|
|
profitable than the vector one. This occurs when
|
1269 |
|
|
this function is invoked for prologue generation
|
1270 |
|
|
and the cost model check needs to be done at run
|
1271 |
|
|
time.
|
1272 |
|
|
|
1273 |
|
|
Resulting CFG after prologue peeling would be:
|
1274 |
|
|
|
1275 |
|
|
if (scalar_loop_iterations <= th)
|
1276 |
|
|
FIRST_NITERS = scalar_loop_iterations
|
1277 |
|
|
|
1278 |
|
|
bb_before_first_loop:
|
1279 |
|
|
if (FIRST_NITERS == 0) GOTO bb_before_second_loop
|
1280 |
|
|
GOTO first-loop
|
1281 |
|
|
|
1282 |
|
|
first_loop:
|
1283 |
|
|
do {
|
1284 |
|
|
} while ...
|
1285 |
|
|
|
1286 |
|
|
bb_before_second_loop:
|
1287 |
|
|
|
1288 |
|
|
second_loop:
|
1289 |
|
|
do {
|
1290 |
|
|
} while ...
|
1291 |
|
|
|
1292 |
|
|
orig_exit_bb:
|
1293 |
|
|
|
1294 |
|
|
2.c Add the cost model check that allows the epilogue
|
1295 |
|
|
to iterate for the entire unchanged scalar
|
1296 |
|
|
iterations of the loop in the event that the cost
|
1297 |
|
|
model indicates that the scalar loop is more
|
1298 |
|
|
profitable than the vector one. This occurs when
|
1299 |
|
|
this function is invoked for epilogue generation
|
1300 |
|
|
and the cost model check needs to be done at run
|
1301 |
|
|
time. This check is combined with any pre-existing
|
1302 |
|
|
check in COND_EXPR to avoid versioning.
|
1303 |
|
|
|
1304 |
|
|
Resulting CFG after prologue peeling would be:
|
1305 |
|
|
|
1306 |
|
|
bb_before_first_loop:
|
1307 |
|
|
if ((scalar_loop_iterations <= th)
|
1308 |
|
|
||
|
1309 |
|
|
FIRST_NITERS == 0) GOTO bb_before_second_loop
|
1310 |
|
|
GOTO first-loop
|
1311 |
|
|
|
1312 |
|
|
first_loop:
|
1313 |
|
|
do {
|
1314 |
|
|
} while ...
|
1315 |
|
|
|
1316 |
|
|
bb_before_second_loop:
|
1317 |
|
|
|
1318 |
|
|
second_loop:
|
1319 |
|
|
do {
|
1320 |
|
|
} while ...
|
1321 |
|
|
|
1322 |
|
|
orig_exit_bb:
|
1323 |
|
|
*/
|
1324 |
|
|
|
1325 |
|
|
bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
|
1326 |
|
|
bb_before_second_loop = split_edge (single_exit (first_loop));
|
1327 |
|
|
|
1328 |
|
|
/* Epilogue peeling. */
|
1329 |
|
|
if (!update_first_loop_count)
|
1330 |
|
|
{
|
1331 |
|
|
pre_condition =
|
1332 |
|
|
fold_build2 (LE_EXPR, boolean_type_node, first_niters,
|
1333 |
|
|
build_int_cst (TREE_TYPE (first_niters), 0));
|
1334 |
|
|
if (check_profitability)
|
1335 |
|
|
{
|
1336 |
|
|
tree scalar_loop_iters
|
1337 |
|
|
= unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
|
1338 |
|
|
(loop_vec_info_for_loop (loop)));
|
1339 |
|
|
cost_pre_condition =
|
1340 |
|
|
fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
|
1341 |
|
|
build_int_cst (TREE_TYPE (scalar_loop_iters), th));
|
1342 |
|
|
|
1343 |
|
|
pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
1344 |
|
|
cost_pre_condition, pre_condition);
|
1345 |
|
|
}
|
1346 |
|
|
if (cond_expr)
|
1347 |
|
|
{
|
1348 |
|
|
pre_condition =
|
1349 |
|
|
fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
1350 |
|
|
pre_condition,
|
1351 |
|
|
fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
|
1352 |
|
|
cond_expr));
|
1353 |
|
|
}
|
1354 |
|
|
}
|
1355 |
|
|
|
1356 |
|
|
/* Prologue peeling. */
|
1357 |
|
|
else
|
1358 |
|
|
{
|
1359 |
|
|
if (check_profitability)
|
1360 |
|
|
set_prologue_iterations (bb_before_first_loop, first_niters,
|
1361 |
|
|
loop, th);
|
1362 |
|
|
|
1363 |
|
|
pre_condition =
|
1364 |
|
|
fold_build2 (LE_EXPR, boolean_type_node, first_niters,
|
1365 |
|
|
build_int_cst (TREE_TYPE (first_niters), 0));
|
1366 |
|
|
}
|
1367 |
|
|
|
1368 |
|
|
skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
|
1369 |
|
|
cond_expr_stmt_list,
|
1370 |
|
|
bb_before_second_loop, bb_before_first_loop);
|
1371 |
|
|
slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
|
1372 |
|
|
first_loop == new_loop,
|
1373 |
|
|
&new_exit_bb, &definitions);
|
1374 |
|
|
|
1375 |
|
|
|
1376 |
|
|
/* 3. Add the guard that controls whether the second loop is executed.
|
1377 |
|
|
Resulting CFG would be:
|
1378 |
|
|
|
1379 |
|
|
bb_before_first_loop:
|
1380 |
|
|
if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
|
1381 |
|
|
GOTO first-loop
|
1382 |
|
|
|
1383 |
|
|
first_loop:
|
1384 |
|
|
do {
|
1385 |
|
|
} while ...
|
1386 |
|
|
|
1387 |
|
|
bb_between_loops:
|
1388 |
|
|
if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
|
1389 |
|
|
GOTO bb_before_second_loop
|
1390 |
|
|
|
1391 |
|
|
bb_before_second_loop:
|
1392 |
|
|
|
1393 |
|
|
second_loop:
|
1394 |
|
|
do {
|
1395 |
|
|
} while ...
|
1396 |
|
|
|
1397 |
|
|
bb_after_second_loop:
|
1398 |
|
|
|
1399 |
|
|
orig_exit_bb:
|
1400 |
|
|
*/
|
1401 |
|
|
|
1402 |
|
|
bb_between_loops = new_exit_bb;
|
1403 |
|
|
bb_after_second_loop = split_edge (single_exit (second_loop));
|
1404 |
|
|
|
1405 |
|
|
pre_condition =
|
1406 |
|
|
fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
|
1407 |
|
|
skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
|
1408 |
|
|
bb_after_second_loop, bb_before_first_loop);
|
1409 |
|
|
slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
|
1410 |
|
|
second_loop == new_loop, &new_exit_bb);
|
1411 |
|
|
|
1412 |
|
|
/* 4. Make first-loop iterate FIRST_NITERS times, if requested.
|
1413 |
|
|
*/
|
1414 |
|
|
if (update_first_loop_count)
|
1415 |
|
|
slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
|
1416 |
|
|
|
1417 |
|
|
adjust_vec_debug_stmts ();
|
1418 |
|
|
|
1419 |
|
|
BITMAP_FREE (definitions);
|
1420 |
|
|
delete_update_ssa ();
|
1421 |
|
|
|
1422 |
|
|
return new_loop;
|
1423 |
|
|
}
|
1424 |
|
|
|
1425 |
|
|
/* Function vect_get_loop_location.
|
1426 |
|
|
|
1427 |
|
|
Extract the location of the loop in the source code.
|
1428 |
|
|
If the loop is not well formed for vectorization, an estimated
|
1429 |
|
|
location is calculated.
|
1430 |
|
|
Return the loop location if succeed and NULL if not. */
|
1431 |
|
|
|
1432 |
|
|
LOC
|
1433 |
|
|
find_loop_location (struct loop *loop)
|
1434 |
|
|
{
|
1435 |
|
|
gimple stmt = NULL;
|
1436 |
|
|
basic_block bb;
|
1437 |
|
|
gimple_stmt_iterator si;
|
1438 |
|
|
|
1439 |
|
|
if (!loop)
|
1440 |
|
|
return UNKNOWN_LOC;
|
1441 |
|
|
|
1442 |
|
|
stmt = get_loop_exit_condition (loop);
|
1443 |
|
|
|
1444 |
|
|
if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
|
1445 |
|
|
return gimple_location (stmt);
|
1446 |
|
|
|
1447 |
|
|
/* If we got here the loop is probably not "well formed",
|
1448 |
|
|
try to estimate the loop location */
|
1449 |
|
|
|
1450 |
|
|
if (!loop->header)
|
1451 |
|
|
return UNKNOWN_LOC;
|
1452 |
|
|
|
1453 |
|
|
bb = loop->header;
|
1454 |
|
|
|
1455 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
1456 |
|
|
{
|
1457 |
|
|
stmt = gsi_stmt (si);
|
1458 |
|
|
if (gimple_location (stmt) != UNKNOWN_LOC)
|
1459 |
|
|
return gimple_location (stmt);
|
1460 |
|
|
}
|
1461 |
|
|
|
1462 |
|
|
return UNKNOWN_LOC;
|
1463 |
|
|
}
|
1464 |
|
|
|
1465 |
|
|
|
1466 |
|
|
/* This function builds ni_name = number of iterations loop executes
|
1467 |
|
|
on the loop preheader. If SEQ is given the stmt is instead emitted
|
1468 |
|
|
there. */
|
1469 |
|
|
|
1470 |
|
|
static tree
|
1471 |
|
|
vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
|
1472 |
|
|
{
|
1473 |
|
|
tree ni_name, var;
|
1474 |
|
|
gimple_seq stmts = NULL;
|
1475 |
|
|
edge pe;
|
1476 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
1477 |
|
|
tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
|
1478 |
|
|
|
1479 |
|
|
var = create_tmp_var (TREE_TYPE (ni), "niters");
|
1480 |
|
|
add_referenced_var (var);
|
1481 |
|
|
ni_name = force_gimple_operand (ni, &stmts, false, var);
|
1482 |
|
|
|
1483 |
|
|
pe = loop_preheader_edge (loop);
|
1484 |
|
|
if (stmts)
|
1485 |
|
|
{
|
1486 |
|
|
if (seq)
|
1487 |
|
|
gimple_seq_add_seq (&seq, stmts);
|
1488 |
|
|
else
|
1489 |
|
|
{
|
1490 |
|
|
basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
1491 |
|
|
gcc_assert (!new_bb);
|
1492 |
|
|
}
|
1493 |
|
|
}
|
1494 |
|
|
|
1495 |
|
|
return ni_name;
|
1496 |
|
|
}
|
1497 |
|
|
|
1498 |
|
|
|
1499 |
|
|
/* This function generates the following statements:
|
1500 |
|
|
|
1501 |
|
|
ni_name = number of iterations loop executes
|
1502 |
|
|
ratio = ni_name / vf
|
1503 |
|
|
ratio_mult_vf_name = ratio * vf
|
1504 |
|
|
|
1505 |
|
|
and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
|
1506 |
|
|
if that is non-NULL. */
|
1507 |
|
|
|
1508 |
|
|
static void
|
1509 |
|
|
vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
|
1510 |
|
|
tree *ni_name_ptr,
|
1511 |
|
|
tree *ratio_mult_vf_name_ptr,
|
1512 |
|
|
tree *ratio_name_ptr,
|
1513 |
|
|
gimple_seq cond_expr_stmt_list)
|
1514 |
|
|
{
|
1515 |
|
|
|
1516 |
|
|
edge pe;
|
1517 |
|
|
basic_block new_bb;
|
1518 |
|
|
gimple_seq stmts;
|
1519 |
|
|
tree ni_name;
|
1520 |
|
|
tree var;
|
1521 |
|
|
tree ratio_name;
|
1522 |
|
|
tree ratio_mult_vf_name;
|
1523 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
1524 |
|
|
tree ni = LOOP_VINFO_NITERS (loop_vinfo);
|
1525 |
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
1526 |
|
|
tree log_vf;
|
1527 |
|
|
|
1528 |
|
|
pe = loop_preheader_edge (loop);
|
1529 |
|
|
|
1530 |
|
|
/* Generate temporary variable that contains
|
1531 |
|
|
number of iterations loop executes. */
|
1532 |
|
|
|
1533 |
|
|
ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
|
1534 |
|
|
log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
|
1535 |
|
|
|
1536 |
|
|
/* Create: ratio = ni >> log2(vf) */
|
1537 |
|
|
|
1538 |
|
|
ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf);
|
1539 |
|
|
if (!is_gimple_val (ratio_name))
|
1540 |
|
|
{
|
1541 |
|
|
var = create_tmp_var (TREE_TYPE (ni), "bnd");
|
1542 |
|
|
add_referenced_var (var);
|
1543 |
|
|
|
1544 |
|
|
stmts = NULL;
|
1545 |
|
|
ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
|
1546 |
|
|
if (cond_expr_stmt_list)
|
1547 |
|
|
gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
|
1548 |
|
|
else
|
1549 |
|
|
{
|
1550 |
|
|
pe = loop_preheader_edge (loop);
|
1551 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
1552 |
|
|
gcc_assert (!new_bb);
|
1553 |
|
|
}
|
1554 |
|
|
}
|
1555 |
|
|
|
1556 |
|
|
/* Create: ratio_mult_vf = ratio << log2 (vf). */
|
1557 |
|
|
|
1558 |
|
|
ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
|
1559 |
|
|
ratio_name, log_vf);
|
1560 |
|
|
if (!is_gimple_val (ratio_mult_vf_name))
|
1561 |
|
|
{
|
1562 |
|
|
var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
|
1563 |
|
|
add_referenced_var (var);
|
1564 |
|
|
|
1565 |
|
|
stmts = NULL;
|
1566 |
|
|
ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
|
1567 |
|
|
true, var);
|
1568 |
|
|
if (cond_expr_stmt_list)
|
1569 |
|
|
gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
|
1570 |
|
|
else
|
1571 |
|
|
{
|
1572 |
|
|
pe = loop_preheader_edge (loop);
|
1573 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
1574 |
|
|
gcc_assert (!new_bb);
|
1575 |
|
|
}
|
1576 |
|
|
}
|
1577 |
|
|
|
1578 |
|
|
*ni_name_ptr = ni_name;
|
1579 |
|
|
*ratio_mult_vf_name_ptr = ratio_mult_vf_name;
|
1580 |
|
|
*ratio_name_ptr = ratio_name;
|
1581 |
|
|
|
1582 |
|
|
return;
|
1583 |
|
|
}
|
1584 |
|
|
|
1585 |
|
|
/* Function vect_can_advance_ivs_p
|
1586 |
|
|
|
1587 |
|
|
In case the number of iterations that LOOP iterates is unknown at compile
|
1588 |
|
|
time, an epilog loop will be generated, and the loop induction variables
|
1589 |
|
|
(IVs) will be "advanced" to the value they are supposed to take just before
|
1590 |
|
|
the epilog loop. Here we check that the access function of the loop IVs
|
1591 |
|
|
and the expression that represents the loop bound are simple enough.
|
1592 |
|
|
These restrictions will be relaxed in the future. */
|
1593 |
|
|
|
1594 |
|
|
bool
|
1595 |
|
|
vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
|
1596 |
|
|
{
|
1597 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
1598 |
|
|
basic_block bb = loop->header;
|
1599 |
|
|
gimple phi;
|
1600 |
|
|
gimple_stmt_iterator gsi;
|
1601 |
|
|
|
1602 |
|
|
/* Analyze phi functions of the loop header. */
|
1603 |
|
|
|
1604 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1605 |
|
|
fprintf (vect_dump, "vect_can_advance_ivs_p:");
|
1606 |
|
|
|
1607 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1608 |
|
|
{
|
1609 |
|
|
tree access_fn = NULL;
|
1610 |
|
|
tree evolution_part;
|
1611 |
|
|
|
1612 |
|
|
phi = gsi_stmt (gsi);
|
1613 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1614 |
|
|
{
|
1615 |
|
|
fprintf (vect_dump, "Analyze phi: ");
|
1616 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
1617 |
|
|
}
|
1618 |
|
|
|
1619 |
|
|
/* Skip virtual phi's. The data dependences that are associated with
|
1620 |
|
|
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
|
1621 |
|
|
|
1622 |
|
|
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
|
1623 |
|
|
{
|
1624 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1625 |
|
|
fprintf (vect_dump, "virtual phi. skip.");
|
1626 |
|
|
continue;
|
1627 |
|
|
}
|
1628 |
|
|
|
1629 |
|
|
/* Skip reduction phis. */
|
1630 |
|
|
|
1631 |
|
|
if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
|
1632 |
|
|
{
|
1633 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1634 |
|
|
fprintf (vect_dump, "reduc phi. skip.");
|
1635 |
|
|
continue;
|
1636 |
|
|
}
|
1637 |
|
|
|
1638 |
|
|
/* Analyze the evolution function. */
|
1639 |
|
|
|
1640 |
|
|
access_fn = instantiate_parameters
|
1641 |
|
|
(loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
|
1642 |
|
|
|
1643 |
|
|
if (!access_fn)
|
1644 |
|
|
{
|
1645 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1646 |
|
|
fprintf (vect_dump, "No Access function.");
|
1647 |
|
|
return false;
|
1648 |
|
|
}
|
1649 |
|
|
|
1650 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1651 |
|
|
{
|
1652 |
|
|
fprintf (vect_dump, "Access function of PHI: ");
|
1653 |
|
|
print_generic_expr (vect_dump, access_fn, TDF_SLIM);
|
1654 |
|
|
}
|
1655 |
|
|
|
1656 |
|
|
evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
|
1657 |
|
|
|
1658 |
|
|
if (evolution_part == NULL_TREE)
|
1659 |
|
|
{
|
1660 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1661 |
|
|
fprintf (vect_dump, "No evolution.");
|
1662 |
|
|
return false;
|
1663 |
|
|
}
|
1664 |
|
|
|
1665 |
|
|
/* FORNOW: We do not transform initial conditions of IVs
|
1666 |
|
|
which evolution functions are a polynomial of degree >= 2. */
|
1667 |
|
|
|
1668 |
|
|
if (tree_is_chrec (evolution_part))
|
1669 |
|
|
return false;
|
1670 |
|
|
}
|
1671 |
|
|
|
1672 |
|
|
return true;
|
1673 |
|
|
}
|
1674 |
|
|
|
1675 |
|
|
|
1676 |
|
|
/* Function vect_update_ivs_after_vectorizer.
|
1677 |
|
|
|
1678 |
|
|
"Advance" the induction variables of LOOP to the value they should take
|
1679 |
|
|
after the execution of LOOP. This is currently necessary because the
|
1680 |
|
|
vectorizer does not handle induction variables that are used after the
|
1681 |
|
|
loop. Such a situation occurs when the last iterations of LOOP are
|
1682 |
|
|
peeled, because:
|
1683 |
|
|
1. We introduced new uses after LOOP for IVs that were not originally used
|
1684 |
|
|
after LOOP: the IVs of LOOP are now used by an epilog loop.
|
1685 |
|
|
2. LOOP is going to be vectorized; this means that it will iterate N/VF
|
1686 |
|
|
times, whereas the loop IVs should be bumped N times.
|
1687 |
|
|
|
1688 |
|
|
Input:
|
1689 |
|
|
- LOOP - a loop that is going to be vectorized. The last few iterations
|
1690 |
|
|
of LOOP were peeled.
|
1691 |
|
|
- NITERS - the number of iterations that LOOP executes (before it is
|
1692 |
|
|
vectorized). i.e, the number of times the ivs should be bumped.
|
1693 |
|
|
- UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
|
1694 |
|
|
coming out from LOOP on which there are uses of the LOOP ivs
|
1695 |
|
|
(this is the path from LOOP->exit to epilog_loop->preheader).
|
1696 |
|
|
|
1697 |
|
|
The new definitions of the ivs are placed in LOOP->exit.
|
1698 |
|
|
The phi args associated with the edge UPDATE_E in the bb
|
1699 |
|
|
UPDATE_E->dest are updated accordingly.
|
1700 |
|
|
|
1701 |
|
|
Assumption 1: Like the rest of the vectorizer, this function assumes
|
1702 |
|
|
a single loop exit that has a single predecessor.
|
1703 |
|
|
|
1704 |
|
|
Assumption 2: The phi nodes in the LOOP header and in update_bb are
|
1705 |
|
|
organized in the same order.
|
1706 |
|
|
|
1707 |
|
|
Assumption 3: The access function of the ivs is simple enough (see
|
1708 |
|
|
vect_can_advance_ivs_p). This assumption will be relaxed in the future.
|
1709 |
|
|
|
1710 |
|
|
Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
|
1711 |
|
|
coming out of LOOP on which the ivs of LOOP are used (this is the path
|
1712 |
|
|
that leads to the epilog loop; other paths skip the epilog loop). This
|
1713 |
|
|
path starts with the edge UPDATE_E, and its destination (denoted update_bb)
|
1714 |
|
|
needs to have its phis updated.
|
1715 |
|
|
*/
|
1716 |
|
|
|
1717 |
|
|
static void
|
1718 |
|
|
vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
|
1719 |
|
|
edge update_e)
|
1720 |
|
|
{
|
1721 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
1722 |
|
|
basic_block exit_bb = single_exit (loop)->dest;
|
1723 |
|
|
gimple phi, phi1;
|
1724 |
|
|
gimple_stmt_iterator gsi, gsi1;
|
1725 |
|
|
basic_block update_bb = update_e->dest;
|
1726 |
|
|
|
1727 |
|
|
/* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
|
1728 |
|
|
|
1729 |
|
|
/* Make sure there exists a single-predecessor exit bb: */
|
1730 |
|
|
gcc_assert (single_pred_p (exit_bb));
|
1731 |
|
|
|
1732 |
|
|
for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
|
1733 |
|
|
!gsi_end_p (gsi) && !gsi_end_p (gsi1);
|
1734 |
|
|
gsi_next (&gsi), gsi_next (&gsi1))
|
1735 |
|
|
{
|
1736 |
|
|
tree access_fn = NULL;
|
1737 |
|
|
tree evolution_part;
|
1738 |
|
|
tree init_expr;
|
1739 |
|
|
tree step_expr, off;
|
1740 |
|
|
tree type;
|
1741 |
|
|
tree var, ni, ni_name;
|
1742 |
|
|
gimple_stmt_iterator last_gsi;
|
1743 |
|
|
|
1744 |
|
|
phi = gsi_stmt (gsi);
|
1745 |
|
|
phi1 = gsi_stmt (gsi1);
|
1746 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1747 |
|
|
{
|
1748 |
|
|
fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
|
1749 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
1750 |
|
|
}
|
1751 |
|
|
|
1752 |
|
|
/* Skip virtual phi's. */
|
1753 |
|
|
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
|
1754 |
|
|
{
|
1755 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1756 |
|
|
fprintf (vect_dump, "virtual phi. skip.");
|
1757 |
|
|
continue;
|
1758 |
|
|
}
|
1759 |
|
|
|
1760 |
|
|
/* Skip reduction phis. */
|
1761 |
|
|
if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
|
1762 |
|
|
{
|
1763 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1764 |
|
|
fprintf (vect_dump, "reduc phi. skip.");
|
1765 |
|
|
continue;
|
1766 |
|
|
}
|
1767 |
|
|
|
1768 |
|
|
access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
|
1769 |
|
|
gcc_assert (access_fn);
|
1770 |
|
|
/* We can end up with an access_fn like
|
1771 |
|
|
(short int) {(short unsigned int) i_49, +, 1}_1
|
1772 |
|
|
for further analysis we need to strip the outer cast but we
|
1773 |
|
|
need to preserve the original type. */
|
1774 |
|
|
type = TREE_TYPE (access_fn);
|
1775 |
|
|
STRIP_NOPS (access_fn);
|
1776 |
|
|
evolution_part =
|
1777 |
|
|
unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
|
1778 |
|
|
gcc_assert (evolution_part != NULL_TREE);
|
1779 |
|
|
|
1780 |
|
|
/* FORNOW: We do not support IVs whose evolution function is a polynomial
|
1781 |
|
|
of degree >= 2 or exponential. */
|
1782 |
|
|
gcc_assert (!tree_is_chrec (evolution_part));
|
1783 |
|
|
|
1784 |
|
|
step_expr = evolution_part;
|
1785 |
|
|
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
|
1786 |
|
|
loop->num));
|
1787 |
|
|
init_expr = fold_convert (type, init_expr);
|
1788 |
|
|
|
1789 |
|
|
off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
|
1790 |
|
|
fold_convert (TREE_TYPE (step_expr), niters),
|
1791 |
|
|
step_expr);
|
1792 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (init_expr)))
|
1793 |
|
|
ni = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (init_expr),
|
1794 |
|
|
init_expr,
|
1795 |
|
|
fold_convert (sizetype, off));
|
1796 |
|
|
else
|
1797 |
|
|
ni = fold_build2 (PLUS_EXPR, TREE_TYPE (init_expr),
|
1798 |
|
|
init_expr,
|
1799 |
|
|
fold_convert (TREE_TYPE (init_expr), off));
|
1800 |
|
|
|
1801 |
|
|
var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
|
1802 |
|
|
add_referenced_var (var);
|
1803 |
|
|
|
1804 |
|
|
last_gsi = gsi_last_bb (exit_bb);
|
1805 |
|
|
ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
|
1806 |
|
|
true, GSI_SAME_STMT);
|
1807 |
|
|
|
1808 |
|
|
/* Fix phi expressions in the successor bb. */
|
1809 |
|
|
adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
|
1810 |
|
|
}
|
1811 |
|
|
}
|
1812 |
|
|
|
1813 |
|
|
/* Return the more conservative threshold between the
|
1814 |
|
|
min_profitable_iters returned by the cost model and the user
|
1815 |
|
|
specified threshold, if provided. */
|
1816 |
|
|
|
1817 |
|
|
static unsigned int
|
1818 |
|
|
conservative_cost_threshold (loop_vec_info loop_vinfo,
|
1819 |
|
|
int min_profitable_iters)
|
1820 |
|
|
{
|
1821 |
|
|
unsigned int th;
|
1822 |
|
|
int min_scalar_loop_bound;
|
1823 |
|
|
|
1824 |
|
|
min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
|
1825 |
|
|
* LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
|
1826 |
|
|
|
1827 |
|
|
/* Use the cost model only if it is more conservative than user specified
|
1828 |
|
|
threshold. */
|
1829 |
|
|
th = (unsigned) min_scalar_loop_bound;
|
1830 |
|
|
if (min_profitable_iters
|
1831 |
|
|
&& (!min_scalar_loop_bound
|
1832 |
|
|
|| min_profitable_iters > min_scalar_loop_bound))
|
1833 |
|
|
th = (unsigned) min_profitable_iters;
|
1834 |
|
|
|
1835 |
|
|
if (th && vect_print_dump_info (REPORT_COST))
|
1836 |
|
|
fprintf (vect_dump, "Profitability threshold is %u loop iterations.", th);
|
1837 |
|
|
|
1838 |
|
|
return th;
|
1839 |
|
|
}
|
1840 |
|
|
|
1841 |
|
|
/* Function vect_do_peeling_for_loop_bound
|
1842 |
|
|
|
1843 |
|
|
Peel the last iterations of the loop represented by LOOP_VINFO.
|
1844 |
|
|
The peeled iterations form a new epilog loop. Given that the loop now
|
1845 |
|
|
iterates NITERS times, the new epilog loop iterates
|
1846 |
|
|
NITERS % VECTORIZATION_FACTOR times.
|
1847 |
|
|
|
1848 |
|
|
The original loop will later be made to iterate
|
1849 |
|
|
NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
|
1850 |
|
|
|
1851 |
|
|
COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
|
1852 |
|
|
test. */
|
1853 |
|
|
|
1854 |
|
|
void
|
1855 |
|
|
vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
|
1856 |
|
|
tree cond_expr, gimple_seq cond_expr_stmt_list)
|
1857 |
|
|
{
|
1858 |
|
|
tree ni_name, ratio_mult_vf_name;
|
1859 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
1860 |
|
|
struct loop *new_loop;
|
1861 |
|
|
edge update_e;
|
1862 |
|
|
basic_block preheader;
|
1863 |
|
|
int loop_num;
|
1864 |
|
|
bool check_profitability = false;
|
1865 |
|
|
unsigned int th = 0;
|
1866 |
|
|
int min_profitable_iters;
|
1867 |
|
|
|
1868 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1869 |
|
|
fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
|
1870 |
|
|
|
1871 |
|
|
initialize_original_copy_tables ();
|
1872 |
|
|
|
1873 |
|
|
/* Generate the following variables on the preheader of original loop:
|
1874 |
|
|
|
1875 |
|
|
ni_name = number of iteration the original loop executes
|
1876 |
|
|
ratio = ni_name / vf
|
1877 |
|
|
ratio_mult_vf_name = ratio * vf */
|
1878 |
|
|
vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
|
1879 |
|
|
&ratio_mult_vf_name, ratio,
|
1880 |
|
|
cond_expr_stmt_list);
|
1881 |
|
|
|
1882 |
|
|
loop_num = loop->num;
|
1883 |
|
|
|
1884 |
|
|
/* If cost model check not done during versioning and
|
1885 |
|
|
peeling for alignment. */
|
1886 |
|
|
if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
1887 |
|
|
&& !LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
|
1888 |
|
|
&& !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo)
|
1889 |
|
|
&& !cond_expr)
|
1890 |
|
|
{
|
1891 |
|
|
check_profitability = true;
|
1892 |
|
|
|
1893 |
|
|
/* Get profitability threshold for vectorized loop. */
|
1894 |
|
|
min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
|
1895 |
|
|
|
1896 |
|
|
th = conservative_cost_threshold (loop_vinfo,
|
1897 |
|
|
min_profitable_iters);
|
1898 |
|
|
}
|
1899 |
|
|
|
1900 |
|
|
new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
|
1901 |
|
|
ratio_mult_vf_name, ni_name, false,
|
1902 |
|
|
th, check_profitability,
|
1903 |
|
|
cond_expr, cond_expr_stmt_list);
|
1904 |
|
|
gcc_assert (new_loop);
|
1905 |
|
|
gcc_assert (loop_num == loop->num);
|
1906 |
|
|
#ifdef ENABLE_CHECKING
|
1907 |
|
|
slpeel_verify_cfg_after_peeling (loop, new_loop);
|
1908 |
|
|
#endif
|
1909 |
|
|
|
1910 |
|
|
/* A guard that controls whether the new_loop is to be executed or skipped
|
1911 |
|
|
is placed in LOOP->exit. LOOP->exit therefore has two successors - one
|
1912 |
|
|
is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
|
1913 |
|
|
is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
|
1914 |
|
|
is on the path where the LOOP IVs are used and need to be updated. */
|
1915 |
|
|
|
1916 |
|
|
preheader = loop_preheader_edge (new_loop)->src;
|
1917 |
|
|
if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
|
1918 |
|
|
update_e = EDGE_PRED (preheader, 0);
|
1919 |
|
|
else
|
1920 |
|
|
update_e = EDGE_PRED (preheader, 1);
|
1921 |
|
|
|
1922 |
|
|
/* Update IVs of original loop as if they were advanced
|
1923 |
|
|
by ratio_mult_vf_name steps. */
|
1924 |
|
|
vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
|
1925 |
|
|
|
1926 |
|
|
/* After peeling we have to reset scalar evolution analyzer. */
|
1927 |
|
|
scev_reset ();
|
1928 |
|
|
|
1929 |
|
|
free_original_copy_tables ();
|
1930 |
|
|
}
|
1931 |
|
|
|
1932 |
|
|
|
1933 |
|
|
/* Function vect_gen_niters_for_prolog_loop
|
1934 |
|
|
|
1935 |
|
|
Set the number of iterations for the loop represented by LOOP_VINFO
|
1936 |
|
|
to the minimum between LOOP_NITERS (the original iteration count of the loop)
|
1937 |
|
|
and the misalignment of DR - the data reference recorded in
|
1938 |
|
|
LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
|
1939 |
|
|
this loop, the data reference DR will refer to an aligned location.
|
1940 |
|
|
|
1941 |
|
|
The following computation is generated:
|
1942 |
|
|
|
1943 |
|
|
If the misalignment of DR is known at compile time:
|
1944 |
|
|
addr_mis = int mis = DR_MISALIGNMENT (dr);
|
1945 |
|
|
Else, compute address misalignment in bytes:
|
1946 |
|
|
addr_mis = addr & (vectype_size - 1)
|
1947 |
|
|
|
1948 |
|
|
prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
|
1949 |
|
|
|
1950 |
|
|
(elem_size = element type size; an element is the scalar element whose type
|
1951 |
|
|
is the inner type of the vectype)
|
1952 |
|
|
|
1953 |
|
|
When the step of the data-ref in the loop is not 1 (as in interleaved data
|
1954 |
|
|
and SLP), the number of iterations of the prolog must be divided by the step
|
1955 |
|
|
(which is equal to the size of interleaved group).
|
1956 |
|
|
|
1957 |
|
|
The above formulas assume that VF == number of elements in the vector. This
|
1958 |
|
|
may not hold when there are multiple-types in the loop.
|
1959 |
|
|
In this case, for some data-references in the loop the VF does not represent
|
1960 |
|
|
the number of elements that fit in the vector. Therefore, instead of VF we
|
1961 |
|
|
use TYPE_VECTOR_SUBPARTS. */
|
1962 |
|
|
|
1963 |
|
|
static tree
|
1964 |
|
|
vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters,
|
1965 |
|
|
tree *wide_prolog_niters)
|
1966 |
|
|
{
|
1967 |
|
|
struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
|
1968 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
1969 |
|
|
tree var;
|
1970 |
|
|
gimple_seq stmts;
|
1971 |
|
|
tree iters, iters_name;
|
1972 |
|
|
edge pe;
|
1973 |
|
|
basic_block new_bb;
|
1974 |
|
|
gimple dr_stmt = DR_STMT (dr);
|
1975 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
|
1976 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
1977 |
|
|
int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
|
1978 |
|
|
tree niters_type = TREE_TYPE (loop_niters);
|
1979 |
|
|
int step = 1;
|
1980 |
|
|
int element_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
|
1981 |
|
|
int nelements = TYPE_VECTOR_SUBPARTS (vectype);
|
1982 |
|
|
|
1983 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
1984 |
|
|
step = DR_GROUP_SIZE (vinfo_for_stmt (DR_GROUP_FIRST_DR (stmt_info)));
|
1985 |
|
|
|
1986 |
|
|
pe = loop_preheader_edge (loop);
|
1987 |
|
|
|
1988 |
|
|
if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
|
1989 |
|
|
{
|
1990 |
|
|
int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
1991 |
|
|
int elem_misalign = byte_misalign / element_size;
|
1992 |
|
|
|
1993 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1994 |
|
|
fprintf (vect_dump, "known alignment = %d.", byte_misalign);
|
1995 |
|
|
|
1996 |
|
|
iters = build_int_cst (niters_type,
|
1997 |
|
|
(((nelements - elem_misalign) & (nelements - 1)) / step));
|
1998 |
|
|
}
|
1999 |
|
|
else
|
2000 |
|
|
{
|
2001 |
|
|
gimple_seq new_stmts = NULL;
|
2002 |
|
|
tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
|
2003 |
|
|
&new_stmts, NULL_TREE, loop);
|
2004 |
|
|
tree ptr_type = TREE_TYPE (start_addr);
|
2005 |
|
|
tree size = TYPE_SIZE (ptr_type);
|
2006 |
|
|
tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
|
2007 |
|
|
tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
|
2008 |
|
|
tree elem_size_log =
|
2009 |
|
|
build_int_cst (type, exact_log2 (vectype_align/nelements));
|
2010 |
|
|
tree nelements_minus_1 = build_int_cst (type, nelements - 1);
|
2011 |
|
|
tree nelements_tree = build_int_cst (type, nelements);
|
2012 |
|
|
tree byte_misalign;
|
2013 |
|
|
tree elem_misalign;
|
2014 |
|
|
|
2015 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
|
2016 |
|
|
gcc_assert (!new_bb);
|
2017 |
|
|
|
2018 |
|
|
/* Create: byte_misalign = addr & (vectype_size - 1) */
|
2019 |
|
|
byte_misalign =
|
2020 |
|
|
fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr), vectype_size_minus_1);
|
2021 |
|
|
|
2022 |
|
|
/* Create: elem_misalign = byte_misalign / element_size */
|
2023 |
|
|
elem_misalign =
|
2024 |
|
|
fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
|
2025 |
|
|
|
2026 |
|
|
/* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
|
2027 |
|
|
iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
|
2028 |
|
|
iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
|
2029 |
|
|
iters = fold_convert (niters_type, iters);
|
2030 |
|
|
}
|
2031 |
|
|
|
2032 |
|
|
/* Create: prolog_loop_niters = min (iters, loop_niters) */
|
2033 |
|
|
/* If the loop bound is known at compile time we already verified that it is
|
2034 |
|
|
greater than vf; since the misalignment ('iters') is at most vf, there's
|
2035 |
|
|
no need to generate the MIN_EXPR in this case. */
|
2036 |
|
|
if (TREE_CODE (loop_niters) != INTEGER_CST)
|
2037 |
|
|
iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
|
2038 |
|
|
|
2039 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2040 |
|
|
{
|
2041 |
|
|
fprintf (vect_dump, "niters for prolog loop: ");
|
2042 |
|
|
print_generic_expr (vect_dump, iters, TDF_SLIM);
|
2043 |
|
|
}
|
2044 |
|
|
|
2045 |
|
|
var = create_tmp_var (niters_type, "prolog_loop_niters");
|
2046 |
|
|
add_referenced_var (var);
|
2047 |
|
|
stmts = NULL;
|
2048 |
|
|
iters_name = force_gimple_operand (iters, &stmts, false, var);
|
2049 |
|
|
if (types_compatible_p (sizetype, niters_type))
|
2050 |
|
|
*wide_prolog_niters = iters_name;
|
2051 |
|
|
else
|
2052 |
|
|
{
|
2053 |
|
|
gimple_seq seq = NULL;
|
2054 |
|
|
tree wide_iters = fold_convert (sizetype, iters);
|
2055 |
|
|
var = create_tmp_var (sizetype, "prolog_loop_niters");
|
2056 |
|
|
add_referenced_var (var);
|
2057 |
|
|
*wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
|
2058 |
|
|
var);
|
2059 |
|
|
if (seq)
|
2060 |
|
|
gimple_seq_add_seq (&stmts, seq);
|
2061 |
|
|
}
|
2062 |
|
|
|
2063 |
|
|
/* Insert stmt on loop preheader edge. */
|
2064 |
|
|
if (stmts)
|
2065 |
|
|
{
|
2066 |
|
|
basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
2067 |
|
|
gcc_assert (!new_bb);
|
2068 |
|
|
}
|
2069 |
|
|
|
2070 |
|
|
return iters_name;
|
2071 |
|
|
}
|
2072 |
|
|
|
2073 |
|
|
|
2074 |
|
|
/* Function vect_update_init_of_dr
|
2075 |
|
|
|
2076 |
|
|
NITERS iterations were peeled from LOOP. DR represents a data reference
|
2077 |
|
|
in LOOP. This function updates the information recorded in DR to
|
2078 |
|
|
account for the fact that the first NITERS iterations had already been
|
2079 |
|
|
executed. Specifically, it updates the OFFSET field of DR. */
|
2080 |
|
|
|
2081 |
|
|
static void
|
2082 |
|
|
vect_update_init_of_dr (struct data_reference *dr, tree niters)
|
2083 |
|
|
{
|
2084 |
|
|
tree offset = DR_OFFSET (dr);
|
2085 |
|
|
|
2086 |
|
|
niters = fold_build2 (MULT_EXPR, sizetype,
|
2087 |
|
|
fold_convert (sizetype, niters),
|
2088 |
|
|
fold_convert (sizetype, DR_STEP (dr)));
|
2089 |
|
|
offset = fold_build2 (PLUS_EXPR, sizetype,
|
2090 |
|
|
fold_convert (sizetype, offset), niters);
|
2091 |
|
|
DR_OFFSET (dr) = offset;
|
2092 |
|
|
}
|
2093 |
|
|
|
2094 |
|
|
|
2095 |
|
|
/* Function vect_update_inits_of_drs
|
2096 |
|
|
|
2097 |
|
|
NITERS iterations were peeled from the loop represented by LOOP_VINFO.
|
2098 |
|
|
This function updates the information recorded for the data references in
|
2099 |
|
|
the loop to account for the fact that the first NITERS iterations had
|
2100 |
|
|
already been executed. Specifically, it updates the initial_condition of
|
2101 |
|
|
the access_function of all the data_references in the loop. */
|
2102 |
|
|
|
2103 |
|
|
static void
|
2104 |
|
|
vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
|
2105 |
|
|
{
|
2106 |
|
|
unsigned int i;
|
2107 |
|
|
VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
2108 |
|
|
struct data_reference *dr;
|
2109 |
|
|
|
2110 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2111 |
|
|
fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
|
2112 |
|
|
|
2113 |
|
|
for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
|
2114 |
|
|
vect_update_init_of_dr (dr, niters);
|
2115 |
|
|
}
|
2116 |
|
|
|
2117 |
|
|
|
2118 |
|
|
/* Function vect_do_peeling_for_alignment
|
2119 |
|
|
|
2120 |
|
|
Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
|
2121 |
|
|
'niters' is set to the misalignment of one of the data references in the
|
2122 |
|
|
loop, thereby forcing it to refer to an aligned location at the beginning
|
2123 |
|
|
of the execution of this loop. The data reference for which we are
|
2124 |
|
|
peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
|
2125 |
|
|
|
2126 |
|
|
void
|
2127 |
|
|
vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
|
2128 |
|
|
{
|
2129 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2130 |
|
|
tree niters_of_prolog_loop, ni_name;
|
2131 |
|
|
tree n_iters;
|
2132 |
|
|
tree wide_prolog_niters;
|
2133 |
|
|
struct loop *new_loop;
|
2134 |
|
|
unsigned int th = 0;
|
2135 |
|
|
int min_profitable_iters;
|
2136 |
|
|
|
2137 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2138 |
|
|
fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
|
2139 |
|
|
|
2140 |
|
|
initialize_original_copy_tables ();
|
2141 |
|
|
|
2142 |
|
|
ni_name = vect_build_loop_niters (loop_vinfo, NULL);
|
2143 |
|
|
niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name,
|
2144 |
|
|
&wide_prolog_niters);
|
2145 |
|
|
|
2146 |
|
|
|
2147 |
|
|
/* Get profitability threshold for vectorized loop. */
|
2148 |
|
|
min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
|
2149 |
|
|
th = conservative_cost_threshold (loop_vinfo,
|
2150 |
|
|
min_profitable_iters);
|
2151 |
|
|
|
2152 |
|
|
/* Peel the prolog loop and iterate it niters_of_prolog_loop. */
|
2153 |
|
|
new_loop =
|
2154 |
|
|
slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
|
2155 |
|
|
niters_of_prolog_loop, ni_name, true,
|
2156 |
|
|
th, true, NULL_TREE, NULL);
|
2157 |
|
|
|
2158 |
|
|
gcc_assert (new_loop);
|
2159 |
|
|
#ifdef ENABLE_CHECKING
|
2160 |
|
|
slpeel_verify_cfg_after_peeling (new_loop, loop);
|
2161 |
|
|
#endif
|
2162 |
|
|
|
2163 |
|
|
/* Update number of times loop executes. */
|
2164 |
|
|
n_iters = LOOP_VINFO_NITERS (loop_vinfo);
|
2165 |
|
|
LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
|
2166 |
|
|
TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
|
2167 |
|
|
|
2168 |
|
|
/* Update the init conditions of the access functions of all data refs. */
|
2169 |
|
|
vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
|
2170 |
|
|
|
2171 |
|
|
/* After peeling we have to reset scalar evolution analyzer. */
|
2172 |
|
|
scev_reset ();
|
2173 |
|
|
|
2174 |
|
|
free_original_copy_tables ();
|
2175 |
|
|
}
|
2176 |
|
|
|
2177 |
|
|
|
2178 |
|
|
/* Function vect_create_cond_for_align_checks.
|
2179 |
|
|
|
2180 |
|
|
Create a conditional expression that represents the alignment checks for
|
2181 |
|
|
all of data references (array element references) whose alignment must be
|
2182 |
|
|
checked at runtime.
|
2183 |
|
|
|
2184 |
|
|
Input:
|
2185 |
|
|
COND_EXPR - input conditional expression. New conditions will be chained
|
2186 |
|
|
with logical AND operation.
|
2187 |
|
|
LOOP_VINFO - two fields of the loop information are used.
|
2188 |
|
|
LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
|
2189 |
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
|
2190 |
|
|
|
2191 |
|
|
Output:
|
2192 |
|
|
COND_EXPR_STMT_LIST - statements needed to construct the conditional
|
2193 |
|
|
expression.
|
2194 |
|
|
The returned value is the conditional expression to be used in the if
|
2195 |
|
|
statement that controls which version of the loop gets executed at runtime.
|
2196 |
|
|
|
2197 |
|
|
The algorithm makes two assumptions:
|
2198 |
|
|
1) The number of bytes "n" in a vector is a power of 2.
|
2199 |
|
|
2) An address "a" is aligned if a%n is zero and that this
|
2200 |
|
|
test can be done as a&(n-1) == 0. For example, for 16
|
2201 |
|
|
byte vectors the test is a&0xf == 0. */
|
2202 |
|
|
|
2203 |
|
|
static void
|
2204 |
|
|
vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
|
2205 |
|
|
tree *cond_expr,
|
2206 |
|
|
gimple_seq *cond_expr_stmt_list)
|
2207 |
|
|
{
|
2208 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2209 |
|
|
VEC(gimple,heap) *may_misalign_stmts
|
2210 |
|
|
= LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
|
2211 |
|
|
gimple ref_stmt;
|
2212 |
|
|
int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
|
2213 |
|
|
tree mask_cst;
|
2214 |
|
|
unsigned int i;
|
2215 |
|
|
tree psize;
|
2216 |
|
|
tree int_ptrsize_type;
|
2217 |
|
|
char tmp_name[20];
|
2218 |
|
|
tree or_tmp_name = NULL_TREE;
|
2219 |
|
|
tree and_tmp, and_tmp_name;
|
2220 |
|
|
gimple and_stmt;
|
2221 |
|
|
tree ptrsize_zero;
|
2222 |
|
|
tree part_cond_expr;
|
2223 |
|
|
|
2224 |
|
|
/* Check that mask is one less than a power of 2, i.e., mask is
|
2225 |
|
|
all zeros followed by all ones. */
|
2226 |
|
|
gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
|
2227 |
|
|
|
2228 |
|
|
/* CHECKME: what is the best integer or unsigned type to use to hold a
|
2229 |
|
|
cast from a pointer value? */
|
2230 |
|
|
psize = TYPE_SIZE (ptr_type_node);
|
2231 |
|
|
int_ptrsize_type
|
2232 |
|
|
= lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
|
2233 |
|
|
|
2234 |
|
|
/* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
|
2235 |
|
|
of the first vector of the i'th data reference. */
|
2236 |
|
|
|
2237 |
|
|
for (i = 0; VEC_iterate (gimple, may_misalign_stmts, i, ref_stmt); i++)
|
2238 |
|
|
{
|
2239 |
|
|
gimple_seq new_stmt_list = NULL;
|
2240 |
|
|
tree addr_base;
|
2241 |
|
|
tree addr_tmp, addr_tmp_name;
|
2242 |
|
|
tree or_tmp, new_or_tmp_name;
|
2243 |
|
|
gimple addr_stmt, or_stmt;
|
2244 |
|
|
|
2245 |
|
|
/* create: addr_tmp = (int)(address_of_first_vector) */
|
2246 |
|
|
addr_base =
|
2247 |
|
|
vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
|
2248 |
|
|
NULL_TREE, loop);
|
2249 |
|
|
if (new_stmt_list != NULL)
|
2250 |
|
|
gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
|
2251 |
|
|
|
2252 |
|
|
sprintf (tmp_name, "%s%d", "addr2int", i);
|
2253 |
|
|
addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
|
2254 |
|
|
add_referenced_var (addr_tmp);
|
2255 |
|
|
addr_tmp_name = make_ssa_name (addr_tmp, NULL);
|
2256 |
|
|
addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
|
2257 |
|
|
addr_base, NULL_TREE);
|
2258 |
|
|
SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
|
2259 |
|
|
gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
|
2260 |
|
|
|
2261 |
|
|
/* The addresses are OR together. */
|
2262 |
|
|
|
2263 |
|
|
if (or_tmp_name != NULL_TREE)
|
2264 |
|
|
{
|
2265 |
|
|
/* create: or_tmp = or_tmp | addr_tmp */
|
2266 |
|
|
sprintf (tmp_name, "%s%d", "orptrs", i);
|
2267 |
|
|
or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
|
2268 |
|
|
add_referenced_var (or_tmp);
|
2269 |
|
|
new_or_tmp_name = make_ssa_name (or_tmp, NULL);
|
2270 |
|
|
or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
|
2271 |
|
|
new_or_tmp_name,
|
2272 |
|
|
or_tmp_name, addr_tmp_name);
|
2273 |
|
|
SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
|
2274 |
|
|
gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
|
2275 |
|
|
or_tmp_name = new_or_tmp_name;
|
2276 |
|
|
}
|
2277 |
|
|
else
|
2278 |
|
|
or_tmp_name = addr_tmp_name;
|
2279 |
|
|
|
2280 |
|
|
} /* end for i */
|
2281 |
|
|
|
2282 |
|
|
mask_cst = build_int_cst (int_ptrsize_type, mask);
|
2283 |
|
|
|
2284 |
|
|
/* create: and_tmp = or_tmp & mask */
|
2285 |
|
|
and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
|
2286 |
|
|
add_referenced_var (and_tmp);
|
2287 |
|
|
and_tmp_name = make_ssa_name (and_tmp, NULL);
|
2288 |
|
|
|
2289 |
|
|
and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
|
2290 |
|
|
or_tmp_name, mask_cst);
|
2291 |
|
|
SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
|
2292 |
|
|
gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
|
2293 |
|
|
|
2294 |
|
|
/* Make and_tmp the left operand of the conditional test against zero.
|
2295 |
|
|
if and_tmp has a nonzero bit then some address is unaligned. */
|
2296 |
|
|
ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
|
2297 |
|
|
part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
|
2298 |
|
|
and_tmp_name, ptrsize_zero);
|
2299 |
|
|
if (*cond_expr)
|
2300 |
|
|
*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
2301 |
|
|
*cond_expr, part_cond_expr);
|
2302 |
|
|
else
|
2303 |
|
|
*cond_expr = part_cond_expr;
|
2304 |
|
|
}
|
2305 |
|
|
|
2306 |
|
|
|
2307 |
|
|
/* Function vect_vfa_segment_size.
|
2308 |
|
|
|
2309 |
|
|
Create an expression that computes the size of segment
|
2310 |
|
|
that will be accessed for a data reference. The functions takes into
|
2311 |
|
|
account that realignment loads may access one more vector.
|
2312 |
|
|
|
2313 |
|
|
Input:
|
2314 |
|
|
DR: The data reference.
|
2315 |
|
|
VECT_FACTOR: vectorization factor.
|
2316 |
|
|
|
2317 |
|
|
Return an expression whose value is the size of segment which will be
|
2318 |
|
|
accessed by DR. */
|
2319 |
|
|
|
2320 |
|
|
static tree
|
2321 |
|
|
vect_vfa_segment_size (struct data_reference *dr, tree vect_factor)
|
2322 |
|
|
{
|
2323 |
|
|
tree segment_length = fold_build2 (MULT_EXPR, integer_type_node,
|
2324 |
|
|
DR_STEP (dr), vect_factor);
|
2325 |
|
|
|
2326 |
|
|
if (vect_supportable_dr_alignment (dr) == dr_explicit_realign_optimized)
|
2327 |
|
|
{
|
2328 |
|
|
tree vector_size = TYPE_SIZE_UNIT
|
2329 |
|
|
(STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
|
2330 |
|
|
|
2331 |
|
|
segment_length = fold_build2 (PLUS_EXPR, integer_type_node,
|
2332 |
|
|
segment_length, vector_size);
|
2333 |
|
|
}
|
2334 |
|
|
return fold_convert (sizetype, segment_length);
|
2335 |
|
|
}
|
2336 |
|
|
|
2337 |
|
|
|
2338 |
|
|
/* Function vect_create_cond_for_alias_checks.
|
2339 |
|
|
|
2340 |
|
|
Create a conditional expression that represents the run-time checks for
|
2341 |
|
|
overlapping of address ranges represented by a list of data references
|
2342 |
|
|
relations passed as input.
|
2343 |
|
|
|
2344 |
|
|
Input:
|
2345 |
|
|
COND_EXPR - input conditional expression. New conditions will be chained
|
2346 |
|
|
with logical AND operation.
|
2347 |
|
|
LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
|
2348 |
|
|
to be checked.
|
2349 |
|
|
|
2350 |
|
|
Output:
|
2351 |
|
|
COND_EXPR - conditional expression.
|
2352 |
|
|
COND_EXPR_STMT_LIST - statements needed to construct the conditional
|
2353 |
|
|
expression.
|
2354 |
|
|
|
2355 |
|
|
|
2356 |
|
|
The returned value is the conditional expression to be used in the if
|
2357 |
|
|
statement that controls which version of the loop gets executed at runtime.
|
2358 |
|
|
*/
|
2359 |
|
|
|
2360 |
|
|
static void
|
2361 |
|
|
vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
|
2362 |
|
|
tree * cond_expr,
|
2363 |
|
|
gimple_seq * cond_expr_stmt_list)
|
2364 |
|
|
{
|
2365 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2366 |
|
|
VEC (ddr_p, heap) * may_alias_ddrs =
|
2367 |
|
|
LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
|
2368 |
|
|
tree vect_factor =
|
2369 |
|
|
build_int_cst (integer_type_node, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
|
2370 |
|
|
|
2371 |
|
|
ddr_p ddr;
|
2372 |
|
|
unsigned int i;
|
2373 |
|
|
tree part_cond_expr;
|
2374 |
|
|
|
2375 |
|
|
/* Create expression
|
2376 |
|
|
((store_ptr_0 + store_segment_length_0) < load_ptr_0)
|
2377 |
|
|
|| (load_ptr_0 + load_segment_length_0) < store_ptr_0))
|
2378 |
|
|
&&
|
2379 |
|
|
...
|
2380 |
|
|
&&
|
2381 |
|
|
((store_ptr_n + store_segment_length_n) < load_ptr_n)
|
2382 |
|
|
|| (load_ptr_n + load_segment_length_n) < store_ptr_n)) */
|
2383 |
|
|
|
2384 |
|
|
if (VEC_empty (ddr_p, may_alias_ddrs))
|
2385 |
|
|
return;
|
2386 |
|
|
|
2387 |
|
|
for (i = 0; VEC_iterate (ddr_p, may_alias_ddrs, i, ddr); i++)
|
2388 |
|
|
{
|
2389 |
|
|
struct data_reference *dr_a, *dr_b;
|
2390 |
|
|
gimple dr_group_first_a, dr_group_first_b;
|
2391 |
|
|
tree addr_base_a, addr_base_b;
|
2392 |
|
|
tree segment_length_a, segment_length_b;
|
2393 |
|
|
gimple stmt_a, stmt_b;
|
2394 |
|
|
|
2395 |
|
|
dr_a = DDR_A (ddr);
|
2396 |
|
|
stmt_a = DR_STMT (DDR_A (ddr));
|
2397 |
|
|
dr_group_first_a = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_a));
|
2398 |
|
|
if (dr_group_first_a)
|
2399 |
|
|
{
|
2400 |
|
|
stmt_a = dr_group_first_a;
|
2401 |
|
|
dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
|
2402 |
|
|
}
|
2403 |
|
|
|
2404 |
|
|
dr_b = DDR_B (ddr);
|
2405 |
|
|
stmt_b = DR_STMT (DDR_B (ddr));
|
2406 |
|
|
dr_group_first_b = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_b));
|
2407 |
|
|
if (dr_group_first_b)
|
2408 |
|
|
{
|
2409 |
|
|
stmt_b = dr_group_first_b;
|
2410 |
|
|
dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
|
2411 |
|
|
}
|
2412 |
|
|
|
2413 |
|
|
addr_base_a =
|
2414 |
|
|
vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
|
2415 |
|
|
NULL_TREE, loop);
|
2416 |
|
|
addr_base_b =
|
2417 |
|
|
vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
|
2418 |
|
|
NULL_TREE, loop);
|
2419 |
|
|
|
2420 |
|
|
segment_length_a = vect_vfa_segment_size (dr_a, vect_factor);
|
2421 |
|
|
segment_length_b = vect_vfa_segment_size (dr_b, vect_factor);
|
2422 |
|
|
|
2423 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
2424 |
|
|
{
|
2425 |
|
|
fprintf (vect_dump,
|
2426 |
|
|
"create runtime check for data references ");
|
2427 |
|
|
print_generic_expr (vect_dump, DR_REF (dr_a), TDF_SLIM);
|
2428 |
|
|
fprintf (vect_dump, " and ");
|
2429 |
|
|
print_generic_expr (vect_dump, DR_REF (dr_b), TDF_SLIM);
|
2430 |
|
|
}
|
2431 |
|
|
|
2432 |
|
|
|
2433 |
|
|
part_cond_expr =
|
2434 |
|
|
fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
2435 |
|
|
fold_build2 (LT_EXPR, boolean_type_node,
|
2436 |
|
|
fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_a),
|
2437 |
|
|
addr_base_a,
|
2438 |
|
|
segment_length_a),
|
2439 |
|
|
addr_base_b),
|
2440 |
|
|
fold_build2 (LT_EXPR, boolean_type_node,
|
2441 |
|
|
fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_b),
|
2442 |
|
|
addr_base_b,
|
2443 |
|
|
segment_length_b),
|
2444 |
|
|
addr_base_a));
|
2445 |
|
|
|
2446 |
|
|
if (*cond_expr)
|
2447 |
|
|
*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
2448 |
|
|
*cond_expr, part_cond_expr);
|
2449 |
|
|
else
|
2450 |
|
|
*cond_expr = part_cond_expr;
|
2451 |
|
|
}
|
2452 |
|
|
|
2453 |
|
|
if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
|
2454 |
|
|
fprintf (vect_dump, "created %u versioning for alias checks.\n",
|
2455 |
|
|
VEC_length (ddr_p, may_alias_ddrs));
|
2456 |
|
|
}
|
2457 |
|
|
|
2458 |
|
|
|
2459 |
|
|
/* Function vect_loop_versioning.
|
2460 |
|
|
|
2461 |
|
|
If the loop has data references that may or may not be aligned or/and
|
2462 |
|
|
has data reference relations whose independence was not proven then
|
2463 |
|
|
two versions of the loop need to be generated, one which is vectorized
|
2464 |
|
|
and one which isn't. A test is then generated to control which of the
|
2465 |
|
|
loops is executed. The test checks for the alignment of all of the
|
2466 |
|
|
data references that may or may not be aligned. An additional
|
2467 |
|
|
sequence of runtime tests is generated for each pairs of DDRs whose
|
2468 |
|
|
independence was not proven. The vectorized version of loop is
|
2469 |
|
|
executed only if both alias and alignment tests are passed.
|
2470 |
|
|
|
2471 |
|
|
The test generated to check which version of loop is executed
|
2472 |
|
|
is modified to also check for profitability as indicated by the
|
2473 |
|
|
cost model initially.
|
2474 |
|
|
|
2475 |
|
|
The versioning precondition(s) are placed in *COND_EXPR and
|
2476 |
|
|
*COND_EXPR_STMT_LIST. If DO_VERSIONING is true versioning is
|
2477 |
|
|
also performed, otherwise only the conditions are generated. */
|
2478 |
|
|
|
2479 |
|
|
void
|
2480 |
|
|
vect_loop_versioning (loop_vec_info loop_vinfo, bool do_versioning,
|
2481 |
|
|
tree *cond_expr, gimple_seq *cond_expr_stmt_list)
|
2482 |
|
|
{
|
2483 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2484 |
|
|
basic_block condition_bb;
|
2485 |
|
|
gimple_stmt_iterator gsi, cond_exp_gsi;
|
2486 |
|
|
basic_block merge_bb;
|
2487 |
|
|
basic_block new_exit_bb;
|
2488 |
|
|
edge new_exit_e, e;
|
2489 |
|
|
gimple orig_phi, new_phi;
|
2490 |
|
|
tree arg;
|
2491 |
|
|
unsigned prob = 4 * REG_BR_PROB_BASE / 5;
|
2492 |
|
|
gimple_seq gimplify_stmt_list = NULL;
|
2493 |
|
|
tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
|
2494 |
|
|
int min_profitable_iters = 0;
|
2495 |
|
|
unsigned int th;
|
2496 |
|
|
|
2497 |
|
|
/* Get profitability threshold for vectorized loop. */
|
2498 |
|
|
min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
|
2499 |
|
|
|
2500 |
|
|
th = conservative_cost_threshold (loop_vinfo,
|
2501 |
|
|
min_profitable_iters);
|
2502 |
|
|
|
2503 |
|
|
*cond_expr =
|
2504 |
|
|
fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
|
2505 |
|
|
build_int_cst (TREE_TYPE (scalar_loop_iters), th));
|
2506 |
|
|
|
2507 |
|
|
*cond_expr = force_gimple_operand (*cond_expr, cond_expr_stmt_list,
|
2508 |
|
|
false, NULL_TREE);
|
2509 |
|
|
|
2510 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
|
2511 |
|
|
vect_create_cond_for_align_checks (loop_vinfo, cond_expr,
|
2512 |
|
|
cond_expr_stmt_list);
|
2513 |
|
|
|
2514 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
2515 |
|
|
vect_create_cond_for_alias_checks (loop_vinfo, cond_expr,
|
2516 |
|
|
cond_expr_stmt_list);
|
2517 |
|
|
|
2518 |
|
|
*cond_expr =
|
2519 |
|
|
fold_build2 (NE_EXPR, boolean_type_node, *cond_expr, integer_zero_node);
|
2520 |
|
|
*cond_expr =
|
2521 |
|
|
force_gimple_operand (*cond_expr, &gimplify_stmt_list, true, NULL_TREE);
|
2522 |
|
|
gimple_seq_add_seq (cond_expr_stmt_list, gimplify_stmt_list);
|
2523 |
|
|
|
2524 |
|
|
/* If we only needed the extra conditions and a new loop copy
|
2525 |
|
|
bail out here. */
|
2526 |
|
|
if (!do_versioning)
|
2527 |
|
|
return;
|
2528 |
|
|
|
2529 |
|
|
initialize_original_copy_tables ();
|
2530 |
|
|
loop_version (loop, *cond_expr, &condition_bb,
|
2531 |
|
|
prob, prob, REG_BR_PROB_BASE - prob, true);
|
2532 |
|
|
free_original_copy_tables();
|
2533 |
|
|
|
2534 |
|
|
/* Loop versioning violates an assumption we try to maintain during
|
2535 |
|
|
vectorization - that the loop exit block has a single predecessor.
|
2536 |
|
|
After versioning, the exit block of both loop versions is the same
|
2537 |
|
|
basic block (i.e. it has two predecessors). Just in order to simplify
|
2538 |
|
|
following transformations in the vectorizer, we fix this situation
|
2539 |
|
|
here by adding a new (empty) block on the exit-edge of the loop,
|
2540 |
|
|
with the proper loop-exit phis to maintain loop-closed-form. */
|
2541 |
|
|
|
2542 |
|
|
merge_bb = single_exit (loop)->dest;
|
2543 |
|
|
gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
|
2544 |
|
|
new_exit_bb = split_edge (single_exit (loop));
|
2545 |
|
|
new_exit_e = single_exit (loop);
|
2546 |
|
|
e = EDGE_SUCC (new_exit_bb, 0);
|
2547 |
|
|
|
2548 |
|
|
for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
2549 |
|
|
{
|
2550 |
|
|
orig_phi = gsi_stmt (gsi);
|
2551 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
2552 |
|
|
new_exit_bb);
|
2553 |
|
|
arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
|
2554 |
|
|
add_phi_arg (new_phi, arg, new_exit_e,
|
2555 |
|
|
gimple_phi_arg_location_from_edge (orig_phi, e));
|
2556 |
|
|
adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
|
2557 |
|
|
}
|
2558 |
|
|
|
2559 |
|
|
/* End loop-exit-fixes after versioning. */
|
2560 |
|
|
|
2561 |
|
|
update_ssa (TODO_update_ssa);
|
2562 |
|
|
if (*cond_expr_stmt_list)
|
2563 |
|
|
{
|
2564 |
|
|
cond_exp_gsi = gsi_last_bb (condition_bb);
|
2565 |
|
|
gsi_insert_seq_before (&cond_exp_gsi, *cond_expr_stmt_list,
|
2566 |
|
|
GSI_SAME_STMT);
|
2567 |
|
|
*cond_expr_stmt_list = NULL;
|
2568 |
|
|
}
|
2569 |
|
|
*cond_expr = NULL_TREE;
|
2570 |
|
|
}
|
2571 |
|
|
|