1 |
280 |
jeremybenn |
/* SLP - Basic Block Vectorization
|
2 |
|
|
Copyright (C) 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com>
|
5 |
|
|
and Ira Rosen <irar@il.ibm.com>
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
10 |
|
|
the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
12 |
|
|
version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "ggc.h"
|
28 |
|
|
#include "tree.h"
|
29 |
|
|
#include "target.h"
|
30 |
|
|
#include "basic-block.h"
|
31 |
|
|
#include "diagnostic.h"
|
32 |
|
|
#include "tree-flow.h"
|
33 |
|
|
#include "tree-dump.h"
|
34 |
|
|
#include "cfgloop.h"
|
35 |
|
|
#include "cfglayout.h"
|
36 |
|
|
#include "expr.h"
|
37 |
|
|
#include "recog.h"
|
38 |
|
|
#include "optabs.h"
|
39 |
|
|
#include "tree-vectorizer.h"
|
40 |
|
|
|
41 |
|
|
/* Extract the location of the basic block in the source code.
|
42 |
|
|
Return the basic block location if succeed and NULL if not. */
|
43 |
|
|
|
44 |
|
|
LOC
|
45 |
|
|
find_bb_location (basic_block bb)
|
46 |
|
|
{
|
47 |
|
|
gimple stmt = NULL;
|
48 |
|
|
gimple_stmt_iterator si;
|
49 |
|
|
|
50 |
|
|
if (!bb)
|
51 |
|
|
return UNKNOWN_LOC;
|
52 |
|
|
|
53 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
54 |
|
|
{
|
55 |
|
|
stmt = gsi_stmt (si);
|
56 |
|
|
if (gimple_location (stmt) != UNKNOWN_LOC)
|
57 |
|
|
return gimple_location (stmt);
|
58 |
|
|
}
|
59 |
|
|
|
60 |
|
|
return UNKNOWN_LOC;
|
61 |
|
|
}
|
62 |
|
|
|
63 |
|
|
|
64 |
|
|
/* Recursively free the memory allocated for the SLP tree rooted at NODE. */
|
65 |
|
|
|
66 |
|
|
static void
|
67 |
|
|
vect_free_slp_tree (slp_tree node)
|
68 |
|
|
{
|
69 |
|
|
if (!node)
|
70 |
|
|
return;
|
71 |
|
|
|
72 |
|
|
if (SLP_TREE_LEFT (node))
|
73 |
|
|
vect_free_slp_tree (SLP_TREE_LEFT (node));
|
74 |
|
|
|
75 |
|
|
if (SLP_TREE_RIGHT (node))
|
76 |
|
|
vect_free_slp_tree (SLP_TREE_RIGHT (node));
|
77 |
|
|
|
78 |
|
|
VEC_free (gimple, heap, SLP_TREE_SCALAR_STMTS (node));
|
79 |
|
|
|
80 |
|
|
if (SLP_TREE_VEC_STMTS (node))
|
81 |
|
|
VEC_free (gimple, heap, SLP_TREE_VEC_STMTS (node));
|
82 |
|
|
|
83 |
|
|
free (node);
|
84 |
|
|
}
|
85 |
|
|
|
86 |
|
|
|
87 |
|
|
/* Free the memory allocated for the SLP instance. */
|
88 |
|
|
|
89 |
|
|
void
|
90 |
|
|
vect_free_slp_instance (slp_instance instance)
|
91 |
|
|
{
|
92 |
|
|
vect_free_slp_tree (SLP_INSTANCE_TREE (instance));
|
93 |
|
|
VEC_free (int, heap, SLP_INSTANCE_LOAD_PERMUTATION (instance));
|
94 |
|
|
VEC_free (slp_tree, heap, SLP_INSTANCE_LOADS (instance));
|
95 |
|
|
}
|
96 |
|
|
|
97 |
|
|
|
98 |
|
|
/* Get the defs for the rhs of STMT (collect them in DEF_STMTS0/1), check that
|
99 |
|
|
they are of a legal type and that they match the defs of the first stmt of
|
100 |
|
|
the SLP group (stored in FIRST_STMT_...). */
|
101 |
|
|
|
102 |
|
|
static bool
|
103 |
|
|
vect_get_and_check_slp_defs (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
|
104 |
|
|
slp_tree slp_node, gimple stmt,
|
105 |
|
|
VEC (gimple, heap) **def_stmts0,
|
106 |
|
|
VEC (gimple, heap) **def_stmts1,
|
107 |
|
|
enum vect_def_type *first_stmt_dt0,
|
108 |
|
|
enum vect_def_type *first_stmt_dt1,
|
109 |
|
|
tree *first_stmt_def0_type,
|
110 |
|
|
tree *first_stmt_def1_type,
|
111 |
|
|
tree *first_stmt_const_oprnd,
|
112 |
|
|
int ncopies_for_cost,
|
113 |
|
|
bool *pattern0, bool *pattern1)
|
114 |
|
|
{
|
115 |
|
|
tree oprnd;
|
116 |
|
|
unsigned int i, number_of_oprnds;
|
117 |
|
|
tree def;
|
118 |
|
|
gimple def_stmt;
|
119 |
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
120 |
|
|
stmt_vec_info stmt_info =
|
121 |
|
|
vinfo_for_stmt (VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0));
|
122 |
|
|
enum gimple_rhs_class rhs_class;
|
123 |
|
|
struct loop *loop = NULL;
|
124 |
|
|
|
125 |
|
|
if (loop_vinfo)
|
126 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
127 |
|
|
|
128 |
|
|
rhs_class = get_gimple_rhs_class (gimple_assign_rhs_code (stmt));
|
129 |
|
|
number_of_oprnds = gimple_num_ops (stmt) - 1; /* RHS only */
|
130 |
|
|
|
131 |
|
|
for (i = 0; i < number_of_oprnds; i++)
|
132 |
|
|
{
|
133 |
|
|
oprnd = gimple_op (stmt, i + 1);
|
134 |
|
|
|
135 |
|
|
if (!vect_is_simple_use (oprnd, loop_vinfo, bb_vinfo, &def_stmt, &def,
|
136 |
|
|
&dt[i])
|
137 |
|
|
|| (!def_stmt && dt[i] != vect_constant_def))
|
138 |
|
|
{
|
139 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
140 |
|
|
{
|
141 |
|
|
fprintf (vect_dump, "Build SLP failed: can't find def for ");
|
142 |
|
|
print_generic_expr (vect_dump, oprnd, TDF_SLIM);
|
143 |
|
|
}
|
144 |
|
|
|
145 |
|
|
return false;
|
146 |
|
|
}
|
147 |
|
|
|
148 |
|
|
/* Check if DEF_STMT is a part of a pattern in LOOP and get the def stmt
|
149 |
|
|
from the pattern. Check that all the stmts of the node are in the
|
150 |
|
|
pattern. */
|
151 |
|
|
if (loop && def_stmt && gimple_bb (def_stmt)
|
152 |
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
153 |
|
|
&& vinfo_for_stmt (def_stmt)
|
154 |
|
|
&& STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (def_stmt)))
|
155 |
|
|
{
|
156 |
|
|
if (!*first_stmt_dt0)
|
157 |
|
|
*pattern0 = true;
|
158 |
|
|
else
|
159 |
|
|
{
|
160 |
|
|
if (i == 1 && !*first_stmt_dt1)
|
161 |
|
|
*pattern1 = true;
|
162 |
|
|
else if ((i == 0 && !*pattern0) || (i == 1 && !*pattern1))
|
163 |
|
|
{
|
164 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
165 |
|
|
{
|
166 |
|
|
fprintf (vect_dump, "Build SLP failed: some of the stmts"
|
167 |
|
|
" are in a pattern, and others are not ");
|
168 |
|
|
print_generic_expr (vect_dump, oprnd, TDF_SLIM);
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
return false;
|
172 |
|
|
}
|
173 |
|
|
}
|
174 |
|
|
|
175 |
|
|
def_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
|
176 |
|
|
dt[i] = STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt));
|
177 |
|
|
|
178 |
|
|
if (*dt == vect_unknown_def_type)
|
179 |
|
|
{
|
180 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
181 |
|
|
fprintf (vect_dump, "Unsupported pattern.");
|
182 |
|
|
return false;
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
switch (gimple_code (def_stmt))
|
186 |
|
|
{
|
187 |
|
|
case GIMPLE_PHI:
|
188 |
|
|
def = gimple_phi_result (def_stmt);
|
189 |
|
|
break;
|
190 |
|
|
|
191 |
|
|
case GIMPLE_ASSIGN:
|
192 |
|
|
def = gimple_assign_lhs (def_stmt);
|
193 |
|
|
break;
|
194 |
|
|
|
195 |
|
|
default:
|
196 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
197 |
|
|
fprintf (vect_dump, "unsupported defining stmt: ");
|
198 |
|
|
return false;
|
199 |
|
|
}
|
200 |
|
|
}
|
201 |
|
|
|
202 |
|
|
if (!*first_stmt_dt0)
|
203 |
|
|
{
|
204 |
|
|
/* op0 of the first stmt of the group - store its info. */
|
205 |
|
|
*first_stmt_dt0 = dt[i];
|
206 |
|
|
if (def)
|
207 |
|
|
*first_stmt_def0_type = TREE_TYPE (def);
|
208 |
|
|
else
|
209 |
|
|
*first_stmt_const_oprnd = oprnd;
|
210 |
|
|
|
211 |
|
|
/* Analyze costs (for the first stmt of the group only). */
|
212 |
|
|
if (rhs_class != GIMPLE_SINGLE_RHS)
|
213 |
|
|
/* Not memory operation (we don't call this functions for loads). */
|
214 |
|
|
vect_model_simple_cost (stmt_info, ncopies_for_cost, dt, slp_node);
|
215 |
|
|
else
|
216 |
|
|
/* Store. */
|
217 |
|
|
vect_model_store_cost (stmt_info, ncopies_for_cost, dt[0], slp_node);
|
218 |
|
|
}
|
219 |
|
|
|
220 |
|
|
else
|
221 |
|
|
{
|
222 |
|
|
if (!*first_stmt_dt1 && i == 1)
|
223 |
|
|
{
|
224 |
|
|
/* op1 of the first stmt of the group - store its info. */
|
225 |
|
|
*first_stmt_dt1 = dt[i];
|
226 |
|
|
if (def)
|
227 |
|
|
*first_stmt_def1_type = TREE_TYPE (def);
|
228 |
|
|
else
|
229 |
|
|
{
|
230 |
|
|
/* We assume that the stmt contains only one constant
|
231 |
|
|
operand. We fail otherwise, to be on the safe side. */
|
232 |
|
|
if (*first_stmt_const_oprnd)
|
233 |
|
|
{
|
234 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
235 |
|
|
fprintf (vect_dump, "Build SLP failed: two constant "
|
236 |
|
|
"oprnds in stmt");
|
237 |
|
|
return false;
|
238 |
|
|
}
|
239 |
|
|
*first_stmt_const_oprnd = oprnd;
|
240 |
|
|
}
|
241 |
|
|
}
|
242 |
|
|
else
|
243 |
|
|
{
|
244 |
|
|
/* Not first stmt of the group, check that the def-stmt/s match
|
245 |
|
|
the def-stmt/s of the first stmt. */
|
246 |
|
|
if ((i == 0
|
247 |
|
|
&& (*first_stmt_dt0 != dt[i]
|
248 |
|
|
|| (*first_stmt_def0_type && def
|
249 |
|
|
&& !types_compatible_p (*first_stmt_def0_type,
|
250 |
|
|
TREE_TYPE (def)))))
|
251 |
|
|
|| (i == 1
|
252 |
|
|
&& (*first_stmt_dt1 != dt[i]
|
253 |
|
|
|| (*first_stmt_def1_type && def
|
254 |
|
|
&& !types_compatible_p (*first_stmt_def1_type,
|
255 |
|
|
TREE_TYPE (def)))))
|
256 |
|
|
|| (!def
|
257 |
|
|
&& !types_compatible_p (TREE_TYPE (*first_stmt_const_oprnd),
|
258 |
|
|
TREE_TYPE (oprnd))))
|
259 |
|
|
{
|
260 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
261 |
|
|
fprintf (vect_dump, "Build SLP failed: different types ");
|
262 |
|
|
|
263 |
|
|
return false;
|
264 |
|
|
}
|
265 |
|
|
}
|
266 |
|
|
}
|
267 |
|
|
|
268 |
|
|
/* Check the types of the definitions. */
|
269 |
|
|
switch (dt[i])
|
270 |
|
|
{
|
271 |
|
|
case vect_constant_def:
|
272 |
|
|
case vect_external_def:
|
273 |
|
|
break;
|
274 |
|
|
|
275 |
|
|
case vect_internal_def:
|
276 |
|
|
if (i == 0)
|
277 |
|
|
VEC_safe_push (gimple, heap, *def_stmts0, def_stmt);
|
278 |
|
|
else
|
279 |
|
|
VEC_safe_push (gimple, heap, *def_stmts1, def_stmt);
|
280 |
|
|
break;
|
281 |
|
|
|
282 |
|
|
default:
|
283 |
|
|
/* FORNOW: Not supported. */
|
284 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
285 |
|
|
{
|
286 |
|
|
fprintf (vect_dump, "Build SLP failed: illegal type of def ");
|
287 |
|
|
print_generic_expr (vect_dump, def, TDF_SLIM);
|
288 |
|
|
}
|
289 |
|
|
|
290 |
|
|
return false;
|
291 |
|
|
}
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
return true;
|
295 |
|
|
}
|
296 |
|
|
|
297 |
|
|
|
298 |
|
|
/* Recursively build an SLP tree starting from NODE.
|
299 |
|
|
Fail (and return FALSE) if def-stmts are not isomorphic, require data
|
300 |
|
|
permutation or are of unsupported types of operation. Otherwise, return
|
301 |
|
|
TRUE. */
|
302 |
|
|
|
303 |
|
|
static bool
|
304 |
|
|
vect_build_slp_tree (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
|
305 |
|
|
slp_tree *node, unsigned int group_size,
|
306 |
|
|
int *inside_cost, int *outside_cost,
|
307 |
|
|
int ncopies_for_cost, unsigned int *max_nunits,
|
308 |
|
|
VEC (int, heap) **load_permutation,
|
309 |
|
|
VEC (slp_tree, heap) **loads,
|
310 |
|
|
unsigned int vectorization_factor)
|
311 |
|
|
{
|
312 |
|
|
VEC (gimple, heap) *def_stmts0 = VEC_alloc (gimple, heap, group_size);
|
313 |
|
|
VEC (gimple, heap) *def_stmts1 = VEC_alloc (gimple, heap, group_size);
|
314 |
|
|
unsigned int i;
|
315 |
|
|
VEC (gimple, heap) *stmts = SLP_TREE_SCALAR_STMTS (*node);
|
316 |
|
|
gimple stmt = VEC_index (gimple, stmts, 0);
|
317 |
|
|
enum vect_def_type first_stmt_dt0 = vect_uninitialized_def;
|
318 |
|
|
enum vect_def_type first_stmt_dt1 = vect_uninitialized_def;
|
319 |
|
|
enum tree_code first_stmt_code = ERROR_MARK, rhs_code;
|
320 |
|
|
tree first_stmt_def1_type = NULL_TREE, first_stmt_def0_type = NULL_TREE;
|
321 |
|
|
tree lhs;
|
322 |
|
|
bool stop_recursion = false, need_same_oprnds = false;
|
323 |
|
|
tree vectype, scalar_type, first_op1 = NULL_TREE;
|
324 |
|
|
unsigned int ncopies;
|
325 |
|
|
optab optab;
|
326 |
|
|
int icode;
|
327 |
|
|
enum machine_mode optab_op2_mode;
|
328 |
|
|
enum machine_mode vec_mode;
|
329 |
|
|
tree first_stmt_const_oprnd = NULL_TREE;
|
330 |
|
|
struct data_reference *first_dr;
|
331 |
|
|
bool pattern0 = false, pattern1 = false;
|
332 |
|
|
HOST_WIDE_INT dummy;
|
333 |
|
|
bool permutation = false;
|
334 |
|
|
unsigned int load_place;
|
335 |
|
|
gimple first_load;
|
336 |
|
|
|
337 |
|
|
/* For every stmt in NODE find its def stmt/s. */
|
338 |
|
|
for (i = 0; VEC_iterate (gimple, stmts, i, stmt); i++)
|
339 |
|
|
{
|
340 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
341 |
|
|
{
|
342 |
|
|
fprintf (vect_dump, "Build SLP for ");
|
343 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
lhs = gimple_get_lhs (stmt);
|
347 |
|
|
if (lhs == NULL_TREE)
|
348 |
|
|
{
|
349 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
350 |
|
|
{
|
351 |
|
|
fprintf (vect_dump,
|
352 |
|
|
"Build SLP failed: not GIMPLE_ASSIGN nor GIMPLE_CALL");
|
353 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
return false;
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
scalar_type = vect_get_smallest_scalar_type (stmt, &dummy, &dummy);
|
360 |
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
361 |
|
|
if (!vectype)
|
362 |
|
|
{
|
363 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
364 |
|
|
{
|
365 |
|
|
fprintf (vect_dump, "Build SLP failed: unsupported data-type ");
|
366 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
367 |
|
|
}
|
368 |
|
|
return false;
|
369 |
|
|
}
|
370 |
|
|
|
371 |
|
|
ncopies = vectorization_factor / TYPE_VECTOR_SUBPARTS (vectype);
|
372 |
|
|
if (ncopies != 1)
|
373 |
|
|
{
|
374 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
375 |
|
|
fprintf (vect_dump, "SLP with multiple types ");
|
376 |
|
|
|
377 |
|
|
/* FORNOW: multiple types are unsupported in BB SLP. */
|
378 |
|
|
if (bb_vinfo)
|
379 |
|
|
return false;
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
/* In case of multiple types we need to detect the smallest type. */
|
383 |
|
|
if (*max_nunits < TYPE_VECTOR_SUBPARTS (vectype))
|
384 |
|
|
*max_nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
385 |
|
|
|
386 |
|
|
if (is_gimple_call (stmt))
|
387 |
|
|
rhs_code = CALL_EXPR;
|
388 |
|
|
else
|
389 |
|
|
rhs_code = gimple_assign_rhs_code (stmt);
|
390 |
|
|
|
391 |
|
|
/* Check the operation. */
|
392 |
|
|
if (i == 0)
|
393 |
|
|
{
|
394 |
|
|
first_stmt_code = rhs_code;
|
395 |
|
|
|
396 |
|
|
/* Shift arguments should be equal in all the packed stmts for a
|
397 |
|
|
vector shift with scalar shift operand. */
|
398 |
|
|
if (rhs_code == LSHIFT_EXPR || rhs_code == RSHIFT_EXPR
|
399 |
|
|
|| rhs_code == LROTATE_EXPR
|
400 |
|
|
|| rhs_code == RROTATE_EXPR)
|
401 |
|
|
{
|
402 |
|
|
vec_mode = TYPE_MODE (vectype);
|
403 |
|
|
|
404 |
|
|
/* First see if we have a vector/vector shift. */
|
405 |
|
|
optab = optab_for_tree_code (rhs_code, vectype,
|
406 |
|
|
optab_vector);
|
407 |
|
|
|
408 |
|
|
if (!optab
|
409 |
|
|
|| (optab->handlers[(int) vec_mode].insn_code
|
410 |
|
|
== CODE_FOR_nothing))
|
411 |
|
|
{
|
412 |
|
|
/* No vector/vector shift, try for a vector/scalar shift. */
|
413 |
|
|
optab = optab_for_tree_code (rhs_code, vectype,
|
414 |
|
|
optab_scalar);
|
415 |
|
|
|
416 |
|
|
if (!optab)
|
417 |
|
|
{
|
418 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
419 |
|
|
fprintf (vect_dump, "Build SLP failed: no optab.");
|
420 |
|
|
return false;
|
421 |
|
|
}
|
422 |
|
|
icode = (int) optab->handlers[(int) vec_mode].insn_code;
|
423 |
|
|
if (icode == CODE_FOR_nothing)
|
424 |
|
|
{
|
425 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
426 |
|
|
fprintf (vect_dump, "Build SLP failed: "
|
427 |
|
|
"op not supported by target.");
|
428 |
|
|
return false;
|
429 |
|
|
}
|
430 |
|
|
optab_op2_mode = insn_data[icode].operand[2].mode;
|
431 |
|
|
if (!VECTOR_MODE_P (optab_op2_mode))
|
432 |
|
|
{
|
433 |
|
|
need_same_oprnds = true;
|
434 |
|
|
first_op1 = gimple_assign_rhs2 (stmt);
|
435 |
|
|
}
|
436 |
|
|
}
|
437 |
|
|
}
|
438 |
|
|
}
|
439 |
|
|
else
|
440 |
|
|
{
|
441 |
|
|
if (first_stmt_code != rhs_code
|
442 |
|
|
&& (first_stmt_code != IMAGPART_EXPR
|
443 |
|
|
|| rhs_code != REALPART_EXPR)
|
444 |
|
|
&& (first_stmt_code != REALPART_EXPR
|
445 |
|
|
|| rhs_code != IMAGPART_EXPR))
|
446 |
|
|
{
|
447 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
448 |
|
|
{
|
449 |
|
|
fprintf (vect_dump,
|
450 |
|
|
"Build SLP failed: different operation in stmt ");
|
451 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
return false;
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
if (need_same_oprnds
|
458 |
|
|
&& !operand_equal_p (first_op1, gimple_assign_rhs2 (stmt), 0))
|
459 |
|
|
{
|
460 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
461 |
|
|
{
|
462 |
|
|
fprintf (vect_dump,
|
463 |
|
|
"Build SLP failed: different shift arguments in ");
|
464 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
465 |
|
|
}
|
466 |
|
|
|
467 |
|
|
return false;
|
468 |
|
|
}
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
/* Strided store or load. */
|
472 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (vinfo_for_stmt (stmt)))
|
473 |
|
|
{
|
474 |
|
|
if (REFERENCE_CLASS_P (lhs))
|
475 |
|
|
{
|
476 |
|
|
/* Store. */
|
477 |
|
|
if (!vect_get_and_check_slp_defs (loop_vinfo, bb_vinfo, *node,
|
478 |
|
|
stmt, &def_stmts0, &def_stmts1,
|
479 |
|
|
&first_stmt_dt0,
|
480 |
|
|
&first_stmt_dt1,
|
481 |
|
|
&first_stmt_def0_type,
|
482 |
|
|
&first_stmt_def1_type,
|
483 |
|
|
&first_stmt_const_oprnd,
|
484 |
|
|
ncopies_for_cost,
|
485 |
|
|
&pattern0, &pattern1))
|
486 |
|
|
return false;
|
487 |
|
|
}
|
488 |
|
|
else
|
489 |
|
|
{
|
490 |
|
|
/* Load. */
|
491 |
|
|
/* FORNOW: Check that there is no gap between the loads. */
|
492 |
|
|
if ((DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) == stmt
|
493 |
|
|
&& DR_GROUP_GAP (vinfo_for_stmt (stmt)) != 0)
|
494 |
|
|
|| (DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) != stmt
|
495 |
|
|
&& DR_GROUP_GAP (vinfo_for_stmt (stmt)) != 1))
|
496 |
|
|
{
|
497 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
498 |
|
|
{
|
499 |
|
|
fprintf (vect_dump, "Build SLP failed: strided "
|
500 |
|
|
"loads have gaps ");
|
501 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
502 |
|
|
}
|
503 |
|
|
|
504 |
|
|
return false;
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
/* Check that the size of interleaved loads group is not
|
508 |
|
|
greater than the SLP group size. */
|
509 |
|
|
if (DR_GROUP_SIZE (vinfo_for_stmt (stmt))
|
510 |
|
|
> ncopies * group_size)
|
511 |
|
|
{
|
512 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
513 |
|
|
{
|
514 |
|
|
fprintf (vect_dump, "Build SLP failed: the number of "
|
515 |
|
|
"interleaved loads is greater than"
|
516 |
|
|
" the SLP group size ");
|
517 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
return false;
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
first_load = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt));
|
524 |
|
|
|
525 |
|
|
if (first_load == stmt)
|
526 |
|
|
{
|
527 |
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt));
|
528 |
|
|
if (vect_supportable_dr_alignment (first_dr)
|
529 |
|
|
== dr_unaligned_unsupported)
|
530 |
|
|
{
|
531 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
532 |
|
|
{
|
533 |
|
|
fprintf (vect_dump, "Build SLP failed: unsupported "
|
534 |
|
|
"unaligned load ");
|
535 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
return false;
|
539 |
|
|
}
|
540 |
|
|
|
541 |
|
|
/* Analyze costs (for the first stmt in the group). */
|
542 |
|
|
vect_model_load_cost (vinfo_for_stmt (stmt),
|
543 |
|
|
ncopies_for_cost, *node);
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
/* Store the place of this load in the interleaving chain. In
|
547 |
|
|
case that permutation is needed we later decide if a specific
|
548 |
|
|
permutation is supported. */
|
549 |
|
|
load_place = vect_get_place_in_interleaving_chain (stmt,
|
550 |
|
|
first_load);
|
551 |
|
|
if (load_place != i)
|
552 |
|
|
permutation = true;
|
553 |
|
|
|
554 |
|
|
VEC_safe_push (int, heap, *load_permutation, load_place);
|
555 |
|
|
|
556 |
|
|
/* We stop the tree when we reach a group of loads. */
|
557 |
|
|
stop_recursion = true;
|
558 |
|
|
continue;
|
559 |
|
|
}
|
560 |
|
|
} /* Strided access. */
|
561 |
|
|
else
|
562 |
|
|
{
|
563 |
|
|
if (TREE_CODE_CLASS (rhs_code) == tcc_reference)
|
564 |
|
|
{
|
565 |
|
|
/* Not strided load. */
|
566 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
567 |
|
|
{
|
568 |
|
|
fprintf (vect_dump, "Build SLP failed: not strided load ");
|
569 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
570 |
|
|
}
|
571 |
|
|
|
572 |
|
|
/* FORNOW: Not strided loads are not supported. */
|
573 |
|
|
return false;
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
/* Not memory operation. */
|
577 |
|
|
if (TREE_CODE_CLASS (rhs_code) != tcc_binary
|
578 |
|
|
&& TREE_CODE_CLASS (rhs_code) != tcc_unary)
|
579 |
|
|
{
|
580 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
581 |
|
|
{
|
582 |
|
|
fprintf (vect_dump, "Build SLP failed: operation");
|
583 |
|
|
fprintf (vect_dump, " unsupported ");
|
584 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
585 |
|
|
}
|
586 |
|
|
|
587 |
|
|
return false;
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
/* Find the def-stmts. */
|
591 |
|
|
if (!vect_get_and_check_slp_defs (loop_vinfo, bb_vinfo, *node, stmt,
|
592 |
|
|
&def_stmts0, &def_stmts1,
|
593 |
|
|
&first_stmt_dt0, &first_stmt_dt1,
|
594 |
|
|
&first_stmt_def0_type,
|
595 |
|
|
&first_stmt_def1_type,
|
596 |
|
|
&first_stmt_const_oprnd,
|
597 |
|
|
ncopies_for_cost,
|
598 |
|
|
&pattern0, &pattern1))
|
599 |
|
|
return false;
|
600 |
|
|
}
|
601 |
|
|
}
|
602 |
|
|
|
603 |
|
|
/* Add the costs of the node to the overall instance costs. */
|
604 |
|
|
*inside_cost += SLP_TREE_INSIDE_OF_LOOP_COST (*node);
|
605 |
|
|
*outside_cost += SLP_TREE_OUTSIDE_OF_LOOP_COST (*node);
|
606 |
|
|
|
607 |
|
|
/* Strided loads were reached - stop the recursion. */
|
608 |
|
|
if (stop_recursion)
|
609 |
|
|
{
|
610 |
|
|
if (permutation)
|
611 |
|
|
{
|
612 |
|
|
VEC_safe_push (slp_tree, heap, *loads, *node);
|
613 |
|
|
*inside_cost += TARG_VEC_PERMUTE_COST * group_size;
|
614 |
|
|
}
|
615 |
|
|
|
616 |
|
|
return true;
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
/* Create SLP_TREE nodes for the definition node/s. */
|
620 |
|
|
if (first_stmt_dt0 == vect_internal_def)
|
621 |
|
|
{
|
622 |
|
|
slp_tree left_node = XNEW (struct _slp_tree);
|
623 |
|
|
SLP_TREE_SCALAR_STMTS (left_node) = def_stmts0;
|
624 |
|
|
SLP_TREE_VEC_STMTS (left_node) = NULL;
|
625 |
|
|
SLP_TREE_LEFT (left_node) = NULL;
|
626 |
|
|
SLP_TREE_RIGHT (left_node) = NULL;
|
627 |
|
|
SLP_TREE_OUTSIDE_OF_LOOP_COST (left_node) = 0;
|
628 |
|
|
SLP_TREE_INSIDE_OF_LOOP_COST (left_node) = 0;
|
629 |
|
|
if (!vect_build_slp_tree (loop_vinfo, bb_vinfo, &left_node, group_size,
|
630 |
|
|
inside_cost, outside_cost, ncopies_for_cost,
|
631 |
|
|
max_nunits, load_permutation, loads,
|
632 |
|
|
vectorization_factor))
|
633 |
|
|
return false;
|
634 |
|
|
|
635 |
|
|
SLP_TREE_LEFT (*node) = left_node;
|
636 |
|
|
}
|
637 |
|
|
|
638 |
|
|
if (first_stmt_dt1 == vect_internal_def)
|
639 |
|
|
{
|
640 |
|
|
slp_tree right_node = XNEW (struct _slp_tree);
|
641 |
|
|
SLP_TREE_SCALAR_STMTS (right_node) = def_stmts1;
|
642 |
|
|
SLP_TREE_VEC_STMTS (right_node) = NULL;
|
643 |
|
|
SLP_TREE_LEFT (right_node) = NULL;
|
644 |
|
|
SLP_TREE_RIGHT (right_node) = NULL;
|
645 |
|
|
SLP_TREE_OUTSIDE_OF_LOOP_COST (right_node) = 0;
|
646 |
|
|
SLP_TREE_INSIDE_OF_LOOP_COST (right_node) = 0;
|
647 |
|
|
if (!vect_build_slp_tree (loop_vinfo, bb_vinfo, &right_node, group_size,
|
648 |
|
|
inside_cost, outside_cost, ncopies_for_cost,
|
649 |
|
|
max_nunits, load_permutation, loads,
|
650 |
|
|
vectorization_factor))
|
651 |
|
|
return false;
|
652 |
|
|
|
653 |
|
|
SLP_TREE_RIGHT (*node) = right_node;
|
654 |
|
|
}
|
655 |
|
|
|
656 |
|
|
return true;
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
|
660 |
|
|
static void
|
661 |
|
|
vect_print_slp_tree (slp_tree node)
|
662 |
|
|
{
|
663 |
|
|
int i;
|
664 |
|
|
gimple stmt;
|
665 |
|
|
|
666 |
|
|
if (!node)
|
667 |
|
|
return;
|
668 |
|
|
|
669 |
|
|
fprintf (vect_dump, "node ");
|
670 |
|
|
for (i = 0; VEC_iterate (gimple, SLP_TREE_SCALAR_STMTS (node), i, stmt); i++)
|
671 |
|
|
{
|
672 |
|
|
fprintf (vect_dump, "\n\tstmt %d ", i);
|
673 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
674 |
|
|
}
|
675 |
|
|
fprintf (vect_dump, "\n");
|
676 |
|
|
|
677 |
|
|
vect_print_slp_tree (SLP_TREE_LEFT (node));
|
678 |
|
|
vect_print_slp_tree (SLP_TREE_RIGHT (node));
|
679 |
|
|
}
|
680 |
|
|
|
681 |
|
|
|
682 |
|
|
/* Mark the tree rooted at NODE with MARK (PURE_SLP or HYBRID).
|
683 |
|
|
If MARK is HYBRID, it refers to a specific stmt in NODE (the stmt at index
|
684 |
|
|
J). Otherwise, MARK is PURE_SLP and J is -1, which indicates that all the
|
685 |
|
|
stmts in NODE are to be marked. */
|
686 |
|
|
|
687 |
|
|
static void
|
688 |
|
|
vect_mark_slp_stmts (slp_tree node, enum slp_vect_type mark, int j)
|
689 |
|
|
{
|
690 |
|
|
int i;
|
691 |
|
|
gimple stmt;
|
692 |
|
|
|
693 |
|
|
if (!node)
|
694 |
|
|
return;
|
695 |
|
|
|
696 |
|
|
for (i = 0; VEC_iterate (gimple, SLP_TREE_SCALAR_STMTS (node), i, stmt); i++)
|
697 |
|
|
if (j < 0 || i == j)
|
698 |
|
|
STMT_SLP_TYPE (vinfo_for_stmt (stmt)) = mark;
|
699 |
|
|
|
700 |
|
|
vect_mark_slp_stmts (SLP_TREE_LEFT (node), mark, j);
|
701 |
|
|
vect_mark_slp_stmts (SLP_TREE_RIGHT (node), mark, j);
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
|
705 |
|
|
/* Mark the statements of the tree rooted at NODE as relevant (vect_used). */
|
706 |
|
|
|
707 |
|
|
static void
|
708 |
|
|
vect_mark_slp_stmts_relevant (slp_tree node)
|
709 |
|
|
{
|
710 |
|
|
int i;
|
711 |
|
|
gimple stmt;
|
712 |
|
|
stmt_vec_info stmt_info;
|
713 |
|
|
|
714 |
|
|
if (!node)
|
715 |
|
|
return;
|
716 |
|
|
|
717 |
|
|
for (i = 0; VEC_iterate (gimple, SLP_TREE_SCALAR_STMTS (node), i, stmt); i++)
|
718 |
|
|
{
|
719 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
720 |
|
|
gcc_assert (!STMT_VINFO_RELEVANT (stmt_info)
|
721 |
|
|
|| STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope);
|
722 |
|
|
STMT_VINFO_RELEVANT (stmt_info) = vect_used_in_scope;
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
vect_mark_slp_stmts_relevant (SLP_TREE_LEFT (node));
|
726 |
|
|
vect_mark_slp_stmts_relevant (SLP_TREE_RIGHT (node));
|
727 |
|
|
}
|
728 |
|
|
|
729 |
|
|
|
730 |
|
|
/* Check if the permutation required by the SLP INSTANCE is supported.
|
731 |
|
|
Reorganize the SLP nodes stored in SLP_INSTANCE_LOADS if needed. */
|
732 |
|
|
|
733 |
|
|
static bool
|
734 |
|
|
vect_supported_slp_permutation_p (slp_instance instance)
|
735 |
|
|
{
|
736 |
|
|
slp_tree node = VEC_index (slp_tree, SLP_INSTANCE_LOADS (instance), 0);
|
737 |
|
|
gimple stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (node), 0);
|
738 |
|
|
gimple first_load = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt));
|
739 |
|
|
VEC (slp_tree, heap) *sorted_loads = NULL;
|
740 |
|
|
int index;
|
741 |
|
|
slp_tree *tmp_loads = NULL;
|
742 |
|
|
int group_size = SLP_INSTANCE_GROUP_SIZE (instance), i, j;
|
743 |
|
|
slp_tree load;
|
744 |
|
|
|
745 |
|
|
/* FORNOW: The only supported loads permutation is loads from the same
|
746 |
|
|
location in all the loads in the node, when the data-refs in
|
747 |
|
|
nodes of LOADS constitute an interleaving chain.
|
748 |
|
|
Sort the nodes according to the order of accesses in the chain. */
|
749 |
|
|
tmp_loads = (slp_tree *) xmalloc (sizeof (slp_tree) * group_size);
|
750 |
|
|
for (i = 0, j = 0;
|
751 |
|
|
VEC_iterate (int, SLP_INSTANCE_LOAD_PERMUTATION (instance), i, index)
|
752 |
|
|
&& VEC_iterate (slp_tree, SLP_INSTANCE_LOADS (instance), j, load);
|
753 |
|
|
i += group_size, j++)
|
754 |
|
|
{
|
755 |
|
|
gimple scalar_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (load), 0);
|
756 |
|
|
/* Check that the loads are all in the same interleaving chain. */
|
757 |
|
|
if (DR_GROUP_FIRST_DR (vinfo_for_stmt (scalar_stmt)) != first_load)
|
758 |
|
|
{
|
759 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
760 |
|
|
{
|
761 |
|
|
fprintf (vect_dump, "Build SLP failed: unsupported data "
|
762 |
|
|
"permutation ");
|
763 |
|
|
print_gimple_stmt (vect_dump, scalar_stmt, 0, TDF_SLIM);
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
free (tmp_loads);
|
767 |
|
|
return false;
|
768 |
|
|
}
|
769 |
|
|
|
770 |
|
|
tmp_loads[index] = load;
|
771 |
|
|
}
|
772 |
|
|
|
773 |
|
|
sorted_loads = VEC_alloc (slp_tree, heap, group_size);
|
774 |
|
|
for (i = 0; i < group_size; i++)
|
775 |
|
|
VEC_safe_push (slp_tree, heap, sorted_loads, tmp_loads[i]);
|
776 |
|
|
|
777 |
|
|
VEC_free (slp_tree, heap, SLP_INSTANCE_LOADS (instance));
|
778 |
|
|
SLP_INSTANCE_LOADS (instance) = sorted_loads;
|
779 |
|
|
free (tmp_loads);
|
780 |
|
|
|
781 |
|
|
if (!vect_transform_slp_perm_load (stmt, NULL, NULL,
|
782 |
|
|
SLP_INSTANCE_UNROLLING_FACTOR (instance),
|
783 |
|
|
instance, true))
|
784 |
|
|
return false;
|
785 |
|
|
|
786 |
|
|
return true;
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
|
790 |
|
|
/* Check if the required load permutation is supported.
|
791 |
|
|
LOAD_PERMUTATION contains a list of indices of the loads.
|
792 |
|
|
In SLP this permutation is relative to the order of strided stores that are
|
793 |
|
|
the base of the SLP instance. */
|
794 |
|
|
|
795 |
|
|
static bool
|
796 |
|
|
vect_supported_load_permutation_p (slp_instance slp_instn, int group_size,
|
797 |
|
|
VEC (int, heap) *load_permutation)
|
798 |
|
|
{
|
799 |
|
|
int i = 0, j, prev = -1, next, k;
|
800 |
|
|
bool supported;
|
801 |
|
|
sbitmap load_index;
|
802 |
|
|
|
803 |
|
|
/* FORNOW: permutations are only supported in SLP. */
|
804 |
|
|
if (!slp_instn)
|
805 |
|
|
return false;
|
806 |
|
|
|
807 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
808 |
|
|
{
|
809 |
|
|
fprintf (vect_dump, "Load permutation ");
|
810 |
|
|
for (i = 0; VEC_iterate (int, load_permutation, i, next); i++)
|
811 |
|
|
fprintf (vect_dump, "%d ", next);
|
812 |
|
|
}
|
813 |
|
|
|
814 |
|
|
/* FORNOW: the only supported permutation is 0..01..1.. of length equal to
|
815 |
|
|
GROUP_SIZE and where each sequence of same drs is of GROUP_SIZE length as
|
816 |
|
|
well. */
|
817 |
|
|
if (VEC_length (int, load_permutation)
|
818 |
|
|
!= (unsigned int) (group_size * group_size))
|
819 |
|
|
return false;
|
820 |
|
|
|
821 |
|
|
supported = true;
|
822 |
|
|
load_index = sbitmap_alloc (group_size);
|
823 |
|
|
sbitmap_zero (load_index);
|
824 |
|
|
for (j = 0; j < group_size; j++)
|
825 |
|
|
{
|
826 |
|
|
for (i = j * group_size, k = 0;
|
827 |
|
|
VEC_iterate (int, load_permutation, i, next) && k < group_size;
|
828 |
|
|
i++, k++)
|
829 |
|
|
{
|
830 |
|
|
if (i != j * group_size && next != prev)
|
831 |
|
|
{
|
832 |
|
|
supported = false;
|
833 |
|
|
break;
|
834 |
|
|
}
|
835 |
|
|
|
836 |
|
|
prev = next;
|
837 |
|
|
}
|
838 |
|
|
|
839 |
|
|
if (TEST_BIT (load_index, prev))
|
840 |
|
|
{
|
841 |
|
|
supported = false;
|
842 |
|
|
break;
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
SET_BIT (load_index, prev);
|
846 |
|
|
}
|
847 |
|
|
|
848 |
|
|
for (j = 0; j < group_size; j++)
|
849 |
|
|
if (!TEST_BIT (load_index, j))
|
850 |
|
|
return false;
|
851 |
|
|
|
852 |
|
|
sbitmap_free (load_index);
|
853 |
|
|
|
854 |
|
|
if (supported && i == group_size * group_size
|
855 |
|
|
&& vect_supported_slp_permutation_p (slp_instn))
|
856 |
|
|
return true;
|
857 |
|
|
|
858 |
|
|
return false;
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
|
862 |
|
|
/* Find the first load in the loop that belongs to INSTANCE.
|
863 |
|
|
When loads are in several SLP nodes, there can be a case in which the first
|
864 |
|
|
load does not appear in the first SLP node to be transformed, causing
|
865 |
|
|
incorrect order of statements. Since we generate all the loads together,
|
866 |
|
|
they must be inserted before the first load of the SLP instance and not
|
867 |
|
|
before the first load of the first node of the instance. */
|
868 |
|
|
static gimple
|
869 |
|
|
vect_find_first_load_in_slp_instance (slp_instance instance)
|
870 |
|
|
{
|
871 |
|
|
int i, j;
|
872 |
|
|
slp_tree load_node;
|
873 |
|
|
gimple first_load = NULL, load;
|
874 |
|
|
|
875 |
|
|
for (i = 0;
|
876 |
|
|
VEC_iterate (slp_tree, SLP_INSTANCE_LOADS (instance), i, load_node);
|
877 |
|
|
i++)
|
878 |
|
|
for (j = 0;
|
879 |
|
|
VEC_iterate (gimple, SLP_TREE_SCALAR_STMTS (load_node), j, load);
|
880 |
|
|
j++)
|
881 |
|
|
first_load = get_earlier_stmt (load, first_load);
|
882 |
|
|
|
883 |
|
|
return first_load;
|
884 |
|
|
}
|
885 |
|
|
|
886 |
|
|
|
887 |
|
|
/* Analyze an SLP instance starting from a group of strided stores. Call
|
888 |
|
|
vect_build_slp_tree to build a tree of packed stmts if possible.
|
889 |
|
|
Return FALSE if it's impossible to SLP any stmt in the loop. */
|
890 |
|
|
|
891 |
|
|
static bool
|
892 |
|
|
vect_analyze_slp_instance (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
|
893 |
|
|
gimple stmt)
|
894 |
|
|
{
|
895 |
|
|
slp_instance new_instance;
|
896 |
|
|
slp_tree node = XNEW (struct _slp_tree);
|
897 |
|
|
unsigned int group_size = DR_GROUP_SIZE (vinfo_for_stmt (stmt));
|
898 |
|
|
unsigned int unrolling_factor = 1, nunits;
|
899 |
|
|
tree vectype, scalar_type;
|
900 |
|
|
gimple next;
|
901 |
|
|
unsigned int vectorization_factor = 0;
|
902 |
|
|
int inside_cost = 0, outside_cost = 0, ncopies_for_cost;
|
903 |
|
|
unsigned int max_nunits = 0;
|
904 |
|
|
VEC (int, heap) *load_permutation;
|
905 |
|
|
VEC (slp_tree, heap) *loads;
|
906 |
|
|
|
907 |
|
|
scalar_type = TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (
|
908 |
|
|
vinfo_for_stmt (stmt))));
|
909 |
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
910 |
|
|
if (!vectype)
|
911 |
|
|
{
|
912 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
913 |
|
|
{
|
914 |
|
|
fprintf (vect_dump, "Build SLP failed: unsupported data-type ");
|
915 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
916 |
|
|
}
|
917 |
|
|
return false;
|
918 |
|
|
}
|
919 |
|
|
|
920 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
921 |
|
|
if (loop_vinfo)
|
922 |
|
|
vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
923 |
|
|
else
|
924 |
|
|
/* No multitypes in BB SLP. */
|
925 |
|
|
vectorization_factor = nunits;
|
926 |
|
|
|
927 |
|
|
/* Calculate the unrolling factor. */
|
928 |
|
|
unrolling_factor = least_common_multiple (nunits, group_size) / group_size;
|
929 |
|
|
if (unrolling_factor != 1 && !loop_vinfo)
|
930 |
|
|
{
|
931 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
932 |
|
|
fprintf (vect_dump, "Build SLP failed: unrolling required in basic"
|
933 |
|
|
" block SLP");
|
934 |
|
|
|
935 |
|
|
return false;
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
/* Create a node (a root of the SLP tree) for the packed strided stores. */
|
939 |
|
|
SLP_TREE_SCALAR_STMTS (node) = VEC_alloc (gimple, heap, group_size);
|
940 |
|
|
next = stmt;
|
941 |
|
|
/* Collect the stores and store them in SLP_TREE_SCALAR_STMTS. */
|
942 |
|
|
while (next)
|
943 |
|
|
{
|
944 |
|
|
VEC_safe_push (gimple, heap, SLP_TREE_SCALAR_STMTS (node), next);
|
945 |
|
|
next = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
SLP_TREE_VEC_STMTS (node) = NULL;
|
949 |
|
|
SLP_TREE_NUMBER_OF_VEC_STMTS (node) = 0;
|
950 |
|
|
SLP_TREE_LEFT (node) = NULL;
|
951 |
|
|
SLP_TREE_RIGHT (node) = NULL;
|
952 |
|
|
SLP_TREE_OUTSIDE_OF_LOOP_COST (node) = 0;
|
953 |
|
|
SLP_TREE_INSIDE_OF_LOOP_COST (node) = 0;
|
954 |
|
|
|
955 |
|
|
/* Calculate the number of vector stmts to create based on the unrolling
|
956 |
|
|
factor (number of vectors is 1 if NUNITS >= GROUP_SIZE, and is
|
957 |
|
|
GROUP_SIZE / NUNITS otherwise. */
|
958 |
|
|
ncopies_for_cost = unrolling_factor * group_size / nunits;
|
959 |
|
|
|
960 |
|
|
load_permutation = VEC_alloc (int, heap, group_size * group_size);
|
961 |
|
|
loads = VEC_alloc (slp_tree, heap, group_size);
|
962 |
|
|
|
963 |
|
|
/* Build the tree for the SLP instance. */
|
964 |
|
|
if (vect_build_slp_tree (loop_vinfo, bb_vinfo, &node, group_size,
|
965 |
|
|
&inside_cost, &outside_cost, ncopies_for_cost,
|
966 |
|
|
&max_nunits, &load_permutation, &loads,
|
967 |
|
|
vectorization_factor))
|
968 |
|
|
{
|
969 |
|
|
/* Create a new SLP instance. */
|
970 |
|
|
new_instance = XNEW (struct _slp_instance);
|
971 |
|
|
SLP_INSTANCE_TREE (new_instance) = node;
|
972 |
|
|
SLP_INSTANCE_GROUP_SIZE (new_instance) = group_size;
|
973 |
|
|
/* Calculate the unrolling factor based on the smallest type in the
|
974 |
|
|
loop. */
|
975 |
|
|
if (max_nunits > nunits)
|
976 |
|
|
unrolling_factor = least_common_multiple (max_nunits, group_size)
|
977 |
|
|
/ group_size;
|
978 |
|
|
|
979 |
|
|
SLP_INSTANCE_UNROLLING_FACTOR (new_instance) = unrolling_factor;
|
980 |
|
|
SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (new_instance) = outside_cost;
|
981 |
|
|
SLP_INSTANCE_INSIDE_OF_LOOP_COST (new_instance) = inside_cost;
|
982 |
|
|
SLP_INSTANCE_LOADS (new_instance) = loads;
|
983 |
|
|
SLP_INSTANCE_FIRST_LOAD_STMT (new_instance) = NULL;
|
984 |
|
|
SLP_INSTANCE_LOAD_PERMUTATION (new_instance) = load_permutation;
|
985 |
|
|
if (VEC_length (slp_tree, loads))
|
986 |
|
|
{
|
987 |
|
|
if (!vect_supported_load_permutation_p (new_instance, group_size,
|
988 |
|
|
load_permutation))
|
989 |
|
|
{
|
990 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
991 |
|
|
{
|
992 |
|
|
fprintf (vect_dump, "Build SLP failed: unsupported load "
|
993 |
|
|
"permutation ");
|
994 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
vect_free_slp_instance (new_instance);
|
998 |
|
|
return false;
|
999 |
|
|
}
|
1000 |
|
|
|
1001 |
|
|
SLP_INSTANCE_FIRST_LOAD_STMT (new_instance)
|
1002 |
|
|
= vect_find_first_load_in_slp_instance (new_instance);
|
1003 |
|
|
}
|
1004 |
|
|
else
|
1005 |
|
|
VEC_free (int, heap, SLP_INSTANCE_LOAD_PERMUTATION (new_instance));
|
1006 |
|
|
|
1007 |
|
|
if (loop_vinfo)
|
1008 |
|
|
VEC_safe_push (slp_instance, heap,
|
1009 |
|
|
LOOP_VINFO_SLP_INSTANCES (loop_vinfo),
|
1010 |
|
|
new_instance);
|
1011 |
|
|
else
|
1012 |
|
|
VEC_safe_push (slp_instance, heap, BB_VINFO_SLP_INSTANCES (bb_vinfo),
|
1013 |
|
|
new_instance);
|
1014 |
|
|
|
1015 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
1016 |
|
|
vect_print_slp_tree (node);
|
1017 |
|
|
|
1018 |
|
|
return true;
|
1019 |
|
|
}
|
1020 |
|
|
|
1021 |
|
|
/* Failed to SLP. */
|
1022 |
|
|
/* Free the allocated memory. */
|
1023 |
|
|
vect_free_slp_tree (node);
|
1024 |
|
|
VEC_free (int, heap, load_permutation);
|
1025 |
|
|
VEC_free (slp_tree, heap, loads);
|
1026 |
|
|
|
1027 |
|
|
return false;
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
|
1031 |
|
|
/* Check if there are stmts in the loop can be vectorized using SLP. Build SLP
|
1032 |
|
|
trees of packed scalar stmts if SLP is possible. */
|
1033 |
|
|
|
1034 |
|
|
bool
|
1035 |
|
|
vect_analyze_slp (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
|
1036 |
|
|
{
|
1037 |
|
|
unsigned int i;
|
1038 |
|
|
VEC (gimple, heap) *strided_stores;
|
1039 |
|
|
gimple store;
|
1040 |
|
|
bool ok = false;
|
1041 |
|
|
|
1042 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
1043 |
|
|
fprintf (vect_dump, "=== vect_analyze_slp ===");
|
1044 |
|
|
|
1045 |
|
|
if (loop_vinfo)
|
1046 |
|
|
strided_stores = LOOP_VINFO_STRIDED_STORES (loop_vinfo);
|
1047 |
|
|
else
|
1048 |
|
|
strided_stores = BB_VINFO_STRIDED_STORES (bb_vinfo);
|
1049 |
|
|
|
1050 |
|
|
for (i = 0; VEC_iterate (gimple, strided_stores, i, store); i++)
|
1051 |
|
|
if (vect_analyze_slp_instance (loop_vinfo, bb_vinfo, store))
|
1052 |
|
|
ok = true;
|
1053 |
|
|
|
1054 |
|
|
if (bb_vinfo && !ok)
|
1055 |
|
|
{
|
1056 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
1057 |
|
|
fprintf (vect_dump, "Failed to SLP the basic block.");
|
1058 |
|
|
|
1059 |
|
|
return false;
|
1060 |
|
|
}
|
1061 |
|
|
|
1062 |
|
|
return true;
|
1063 |
|
|
}
|
1064 |
|
|
|
1065 |
|
|
|
1066 |
|
|
/* For each possible SLP instance decide whether to SLP it and calculate overall
|
1067 |
|
|
unrolling factor needed to SLP the loop. */
|
1068 |
|
|
|
1069 |
|
|
void
|
1070 |
|
|
vect_make_slp_decision (loop_vec_info loop_vinfo)
|
1071 |
|
|
{
|
1072 |
|
|
unsigned int i, unrolling_factor = 1;
|
1073 |
|
|
VEC (slp_instance, heap) *slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
|
1074 |
|
|
slp_instance instance;
|
1075 |
|
|
int decided_to_slp = 0;
|
1076 |
|
|
|
1077 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
1078 |
|
|
fprintf (vect_dump, "=== vect_make_slp_decision ===");
|
1079 |
|
|
|
1080 |
|
|
for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
|
1081 |
|
|
{
|
1082 |
|
|
/* FORNOW: SLP if you can. */
|
1083 |
|
|
if (unrolling_factor < SLP_INSTANCE_UNROLLING_FACTOR (instance))
|
1084 |
|
|
unrolling_factor = SLP_INSTANCE_UNROLLING_FACTOR (instance);
|
1085 |
|
|
|
1086 |
|
|
/* Mark all the stmts that belong to INSTANCE as PURE_SLP stmts. Later we
|
1087 |
|
|
call vect_detect_hybrid_slp () to find stmts that need hybrid SLP and
|
1088 |
|
|
loop-based vectorization. Such stmts will be marked as HYBRID. */
|
1089 |
|
|
vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance), pure_slp, -1);
|
1090 |
|
|
decided_to_slp++;
|
1091 |
|
|
}
|
1092 |
|
|
|
1093 |
|
|
LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo) = unrolling_factor;
|
1094 |
|
|
|
1095 |
|
|
if (decided_to_slp && vect_print_dump_info (REPORT_SLP))
|
1096 |
|
|
fprintf (vect_dump, "Decided to SLP %d instances. Unrolling factor %d",
|
1097 |
|
|
decided_to_slp, unrolling_factor);
|
1098 |
|
|
}
|
1099 |
|
|
|
1100 |
|
|
|
1101 |
|
|
/* Find stmts that must be both vectorized and SLPed (since they feed stmts that
|
1102 |
|
|
can't be SLPed) in the tree rooted at NODE. Mark such stmts as HYBRID. */
|
1103 |
|
|
|
1104 |
|
|
static void
|
1105 |
|
|
vect_detect_hybrid_slp_stmts (slp_tree node)
|
1106 |
|
|
{
|
1107 |
|
|
int i;
|
1108 |
|
|
gimple stmt;
|
1109 |
|
|
imm_use_iterator imm_iter;
|
1110 |
|
|
gimple use_stmt;
|
1111 |
|
|
stmt_vec_info stmt_vinfo;
|
1112 |
|
|
|
1113 |
|
|
if (!node)
|
1114 |
|
|
return;
|
1115 |
|
|
|
1116 |
|
|
for (i = 0; VEC_iterate (gimple, SLP_TREE_SCALAR_STMTS (node), i, stmt); i++)
|
1117 |
|
|
if (PURE_SLP_STMT (vinfo_for_stmt (stmt))
|
1118 |
|
|
&& TREE_CODE (gimple_op (stmt, 0)) == SSA_NAME)
|
1119 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, gimple_op (stmt, 0))
|
1120 |
|
|
if ((stmt_vinfo = vinfo_for_stmt (use_stmt))
|
1121 |
|
|
&& !STMT_SLP_TYPE (stmt_vinfo)
|
1122 |
|
|
&& (STMT_VINFO_RELEVANT (stmt_vinfo)
|
1123 |
|
|
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_vinfo))))
|
1124 |
|
|
vect_mark_slp_stmts (node, hybrid, i);
|
1125 |
|
|
|
1126 |
|
|
vect_detect_hybrid_slp_stmts (SLP_TREE_LEFT (node));
|
1127 |
|
|
vect_detect_hybrid_slp_stmts (SLP_TREE_RIGHT (node));
|
1128 |
|
|
}
|
1129 |
|
|
|
1130 |
|
|
|
1131 |
|
|
/* Find stmts that must be both vectorized and SLPed. */
|
1132 |
|
|
|
1133 |
|
|
void
|
1134 |
|
|
vect_detect_hybrid_slp (loop_vec_info loop_vinfo)
|
1135 |
|
|
{
|
1136 |
|
|
unsigned int i;
|
1137 |
|
|
VEC (slp_instance, heap) *slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
|
1138 |
|
|
slp_instance instance;
|
1139 |
|
|
|
1140 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
1141 |
|
|
fprintf (vect_dump, "=== vect_detect_hybrid_slp ===");
|
1142 |
|
|
|
1143 |
|
|
for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
|
1144 |
|
|
vect_detect_hybrid_slp_stmts (SLP_INSTANCE_TREE (instance));
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
|
1148 |
|
|
/* Create and initialize a new bb_vec_info struct for BB, as well as
|
1149 |
|
|
stmt_vec_info structs for all the stmts in it. */
|
1150 |
|
|
|
1151 |
|
|
static bb_vec_info
|
1152 |
|
|
new_bb_vec_info (basic_block bb)
|
1153 |
|
|
{
|
1154 |
|
|
bb_vec_info res = NULL;
|
1155 |
|
|
gimple_stmt_iterator gsi;
|
1156 |
|
|
|
1157 |
|
|
res = (bb_vec_info) xcalloc (1, sizeof (struct _bb_vec_info));
|
1158 |
|
|
BB_VINFO_BB (res) = bb;
|
1159 |
|
|
|
1160 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1161 |
|
|
{
|
1162 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1163 |
|
|
gimple_set_uid (stmt, 0);
|
1164 |
|
|
set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, NULL, res));
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
BB_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
|
1168 |
|
|
BB_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 2);
|
1169 |
|
|
|
1170 |
|
|
bb->aux = res;
|
1171 |
|
|
return res;
|
1172 |
|
|
}
|
1173 |
|
|
|
1174 |
|
|
|
1175 |
|
|
/* Free BB_VINFO struct, as well as all the stmt_vec_info structs of all the
|
1176 |
|
|
stmts in the basic block. */
|
1177 |
|
|
|
1178 |
|
|
static void
|
1179 |
|
|
destroy_bb_vec_info (bb_vec_info bb_vinfo)
|
1180 |
|
|
{
|
1181 |
|
|
basic_block bb;
|
1182 |
|
|
gimple_stmt_iterator si;
|
1183 |
|
|
|
1184 |
|
|
if (!bb_vinfo)
|
1185 |
|
|
return;
|
1186 |
|
|
|
1187 |
|
|
bb = BB_VINFO_BB (bb_vinfo);
|
1188 |
|
|
|
1189 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
1190 |
|
|
{
|
1191 |
|
|
gimple stmt = gsi_stmt (si);
|
1192 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1193 |
|
|
|
1194 |
|
|
if (stmt_info)
|
1195 |
|
|
/* Free stmt_vec_info. */
|
1196 |
|
|
free_stmt_vec_info (stmt);
|
1197 |
|
|
}
|
1198 |
|
|
|
1199 |
|
|
VEC_free (gimple, heap, BB_VINFO_STRIDED_STORES (bb_vinfo));
|
1200 |
|
|
VEC_free (slp_instance, heap, BB_VINFO_SLP_INSTANCES (bb_vinfo));
|
1201 |
|
|
free (bb_vinfo);
|
1202 |
|
|
bb->aux = NULL;
|
1203 |
|
|
}
|
1204 |
|
|
|
1205 |
|
|
|
1206 |
|
|
/* Analyze statements contained in SLP tree node after recursively analyzing
|
1207 |
|
|
the subtree. Return TRUE if the operations are supported. */
|
1208 |
|
|
|
1209 |
|
|
static bool
|
1210 |
|
|
vect_slp_analyze_node_operations (bb_vec_info bb_vinfo, slp_tree node)
|
1211 |
|
|
{
|
1212 |
|
|
bool dummy;
|
1213 |
|
|
int i;
|
1214 |
|
|
gimple stmt;
|
1215 |
|
|
|
1216 |
|
|
if (!node)
|
1217 |
|
|
return true;
|
1218 |
|
|
|
1219 |
|
|
if (!vect_slp_analyze_node_operations (bb_vinfo, SLP_TREE_LEFT (node))
|
1220 |
|
|
|| !vect_slp_analyze_node_operations (bb_vinfo, SLP_TREE_RIGHT (node)))
|
1221 |
|
|
return false;
|
1222 |
|
|
|
1223 |
|
|
for (i = 0; VEC_iterate (gimple, SLP_TREE_SCALAR_STMTS (node), i, stmt); i++)
|
1224 |
|
|
{
|
1225 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1226 |
|
|
gcc_assert (stmt_info);
|
1227 |
|
|
gcc_assert (PURE_SLP_STMT (stmt_info));
|
1228 |
|
|
|
1229 |
|
|
if (!vect_analyze_stmt (stmt, &dummy, node))
|
1230 |
|
|
return false;
|
1231 |
|
|
}
|
1232 |
|
|
|
1233 |
|
|
return true;
|
1234 |
|
|
}
|
1235 |
|
|
|
1236 |
|
|
|
1237 |
|
|
/* Analyze statements in SLP instances of the basic block. Return TRUE if the
|
1238 |
|
|
operations are supported. */
|
1239 |
|
|
|
1240 |
|
|
static bool
|
1241 |
|
|
vect_slp_analyze_operations (bb_vec_info bb_vinfo)
|
1242 |
|
|
{
|
1243 |
|
|
VEC (slp_instance, heap) *slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
|
1244 |
|
|
slp_instance instance;
|
1245 |
|
|
int i;
|
1246 |
|
|
|
1247 |
|
|
for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); )
|
1248 |
|
|
{
|
1249 |
|
|
if (!vect_slp_analyze_node_operations (bb_vinfo,
|
1250 |
|
|
SLP_INSTANCE_TREE (instance)))
|
1251 |
|
|
{
|
1252 |
|
|
vect_free_slp_instance (instance);
|
1253 |
|
|
VEC_ordered_remove (slp_instance, slp_instances, i);
|
1254 |
|
|
}
|
1255 |
|
|
else
|
1256 |
|
|
i++;
|
1257 |
|
|
}
|
1258 |
|
|
|
1259 |
|
|
if (!VEC_length (slp_instance, slp_instances))
|
1260 |
|
|
return false;
|
1261 |
|
|
|
1262 |
|
|
return true;
|
1263 |
|
|
}
|
1264 |
|
|
|
1265 |
|
|
|
1266 |
|
|
/* Cheick if the basic block can be vectorized. */
|
1267 |
|
|
|
1268 |
|
|
bb_vec_info
|
1269 |
|
|
vect_slp_analyze_bb (basic_block bb)
|
1270 |
|
|
{
|
1271 |
|
|
bb_vec_info bb_vinfo;
|
1272 |
|
|
VEC (ddr_p, heap) *ddrs;
|
1273 |
|
|
VEC (slp_instance, heap) *slp_instances;
|
1274 |
|
|
slp_instance instance;
|
1275 |
|
|
int i, insns = 0;
|
1276 |
|
|
gimple_stmt_iterator gsi;
|
1277 |
|
|
|
1278 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1279 |
|
|
fprintf (vect_dump, "===vect_slp_analyze_bb===\n");
|
1280 |
|
|
|
1281 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1282 |
|
|
{
|
1283 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1284 |
|
|
if (!is_gimple_debug (stmt)
|
1285 |
|
|
&& !gimple_nop_p (stmt)
|
1286 |
|
|
&& gimple_code (stmt) != GIMPLE_LABEL)
|
1287 |
|
|
insns++;
|
1288 |
|
|
}
|
1289 |
|
|
|
1290 |
|
|
if (insns > PARAM_VALUE (PARAM_SLP_MAX_INSNS_IN_BB))
|
1291 |
|
|
{
|
1292 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1293 |
|
|
fprintf (vect_dump, "not vectorized: too many instructions in basic "
|
1294 |
|
|
"block.\n");
|
1295 |
|
|
|
1296 |
|
|
return NULL;
|
1297 |
|
|
}
|
1298 |
|
|
|
1299 |
|
|
bb_vinfo = new_bb_vec_info (bb);
|
1300 |
|
|
if (!bb_vinfo)
|
1301 |
|
|
return NULL;
|
1302 |
|
|
|
1303 |
|
|
if (!vect_analyze_data_refs (NULL, bb_vinfo))
|
1304 |
|
|
{
|
1305 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1306 |
|
|
fprintf (vect_dump, "not vectorized: unhandled data-ref in basic "
|
1307 |
|
|
"block.\n");
|
1308 |
|
|
|
1309 |
|
|
destroy_bb_vec_info (bb_vinfo);
|
1310 |
|
|
return NULL;
|
1311 |
|
|
}
|
1312 |
|
|
|
1313 |
|
|
ddrs = BB_VINFO_DDRS (bb_vinfo);
|
1314 |
|
|
if (!VEC_length (ddr_p, ddrs))
|
1315 |
|
|
{
|
1316 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1317 |
|
|
fprintf (vect_dump, "not vectorized: not enough data-refs in basic "
|
1318 |
|
|
"block.\n");
|
1319 |
|
|
|
1320 |
|
|
destroy_bb_vec_info (bb_vinfo);
|
1321 |
|
|
return NULL;
|
1322 |
|
|
}
|
1323 |
|
|
|
1324 |
|
|
if (!vect_analyze_data_refs_alignment (NULL, bb_vinfo))
|
1325 |
|
|
{
|
1326 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1327 |
|
|
fprintf (vect_dump, "not vectorized: bad data alignment in basic "
|
1328 |
|
|
"block.\n");
|
1329 |
|
|
|
1330 |
|
|
destroy_bb_vec_info (bb_vinfo);
|
1331 |
|
|
return NULL;
|
1332 |
|
|
}
|
1333 |
|
|
|
1334 |
|
|
if (!vect_analyze_data_ref_dependences (NULL, bb_vinfo))
|
1335 |
|
|
{
|
1336 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1337 |
|
|
fprintf (vect_dump, "not vectorized: unhandled data dependence in basic"
|
1338 |
|
|
" block.\n");
|
1339 |
|
|
|
1340 |
|
|
destroy_bb_vec_info (bb_vinfo);
|
1341 |
|
|
return NULL;
|
1342 |
|
|
}
|
1343 |
|
|
|
1344 |
|
|
if (!vect_analyze_data_ref_accesses (NULL, bb_vinfo))
|
1345 |
|
|
{
|
1346 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1347 |
|
|
fprintf (vect_dump, "not vectorized: unhandled data access in basic "
|
1348 |
|
|
"block.\n");
|
1349 |
|
|
|
1350 |
|
|
destroy_bb_vec_info (bb_vinfo);
|
1351 |
|
|
return NULL;
|
1352 |
|
|
}
|
1353 |
|
|
|
1354 |
|
|
if (!vect_verify_datarefs_alignment (NULL, bb_vinfo))
|
1355 |
|
|
{
|
1356 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1357 |
|
|
fprintf (vect_dump, "not vectorized: unsupported alignment in basic "
|
1358 |
|
|
"block.\n");
|
1359 |
|
|
|
1360 |
|
|
destroy_bb_vec_info (bb_vinfo);
|
1361 |
|
|
return NULL;
|
1362 |
|
|
}
|
1363 |
|
|
|
1364 |
|
|
/* Check the SLP opportunities in the basic block, analyze and build SLP
|
1365 |
|
|
trees. */
|
1366 |
|
|
if (!vect_analyze_slp (NULL, bb_vinfo))
|
1367 |
|
|
{
|
1368 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1369 |
|
|
fprintf (vect_dump, "not vectorized: failed to find SLP opportunities "
|
1370 |
|
|
"in basic block.\n");
|
1371 |
|
|
|
1372 |
|
|
destroy_bb_vec_info (bb_vinfo);
|
1373 |
|
|
return NULL;
|
1374 |
|
|
}
|
1375 |
|
|
|
1376 |
|
|
slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
|
1377 |
|
|
|
1378 |
|
|
/* Mark all the statements that we want to vectorize as pure SLP and
|
1379 |
|
|
relevant. */
|
1380 |
|
|
for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
|
1381 |
|
|
{
|
1382 |
|
|
vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance), pure_slp, -1);
|
1383 |
|
|
vect_mark_slp_stmts_relevant (SLP_INSTANCE_TREE (instance));
|
1384 |
|
|
}
|
1385 |
|
|
|
1386 |
|
|
if (!vect_slp_analyze_operations (bb_vinfo))
|
1387 |
|
|
{
|
1388 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1389 |
|
|
fprintf (vect_dump, "not vectorized: bad operation in basic block.\n");
|
1390 |
|
|
|
1391 |
|
|
destroy_bb_vec_info (bb_vinfo);
|
1392 |
|
|
return NULL;
|
1393 |
|
|
}
|
1394 |
|
|
|
1395 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1396 |
|
|
fprintf (vect_dump, "Basic block will be vectorized using SLP\n");
|
1397 |
|
|
|
1398 |
|
|
return bb_vinfo;
|
1399 |
|
|
}
|
1400 |
|
|
|
1401 |
|
|
|
1402 |
|
|
/* SLP costs are calculated according to SLP instance unrolling factor (i.e.,
|
1403 |
|
|
the number of created vector stmts depends on the unrolling factor). However,
|
1404 |
|
|
the actual number of vector stmts for every SLP node depends on VF which is
|
1405 |
|
|
set later in vect_analyze_operations(). Hence, SLP costs should be updated.
|
1406 |
|
|
In this function we assume that the inside costs calculated in
|
1407 |
|
|
vect_model_xxx_cost are linear in ncopies. */
|
1408 |
|
|
|
1409 |
|
|
void
|
1410 |
|
|
vect_update_slp_costs_according_to_vf (loop_vec_info loop_vinfo)
|
1411 |
|
|
{
|
1412 |
|
|
unsigned int i, vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
1413 |
|
|
VEC (slp_instance, heap) *slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
|
1414 |
|
|
slp_instance instance;
|
1415 |
|
|
|
1416 |
|
|
if (vect_print_dump_info (REPORT_SLP))
|
1417 |
|
|
fprintf (vect_dump, "=== vect_update_slp_costs_according_to_vf ===");
|
1418 |
|
|
|
1419 |
|
|
for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
|
1420 |
|
|
/* We assume that costs are linear in ncopies. */
|
1421 |
|
|
SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance) *= vf
|
1422 |
|
|
/ SLP_INSTANCE_UNROLLING_FACTOR (instance);
|
1423 |
|
|
}
|
1424 |
|
|
|
1425 |
|
|
|
1426 |
|
|
/* For constant and loop invariant defs of SLP_NODE this function returns
|
1427 |
|
|
(vector) defs (VEC_OPRNDS) that will be used in the vectorized stmts.
|
1428 |
|
|
OP_NUM determines if we gather defs for operand 0 or operand 1 of the scalar
|
1429 |
|
|
stmts. NUMBER_OF_VECTORS is the number of vector defs to create. */
|
1430 |
|
|
|
1431 |
|
|
static void
|
1432 |
|
|
vect_get_constant_vectors (slp_tree slp_node, VEC(tree,heap) **vec_oprnds,
|
1433 |
|
|
unsigned int op_num, unsigned int number_of_vectors)
|
1434 |
|
|
{
|
1435 |
|
|
VEC (gimple, heap) *stmts = SLP_TREE_SCALAR_STMTS (slp_node);
|
1436 |
|
|
gimple stmt = VEC_index (gimple, stmts, 0);
|
1437 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
1438 |
|
|
int nunits;
|
1439 |
|
|
tree vec_cst;
|
1440 |
|
|
tree t = NULL_TREE;
|
1441 |
|
|
int j, number_of_places_left_in_vector;
|
1442 |
|
|
tree vector_type;
|
1443 |
|
|
tree op, vop;
|
1444 |
|
|
int group_size = VEC_length (gimple, stmts);
|
1445 |
|
|
unsigned int vec_num, i;
|
1446 |
|
|
int number_of_copies = 1;
|
1447 |
|
|
VEC (tree, heap) *voprnds = VEC_alloc (tree, heap, number_of_vectors);
|
1448 |
|
|
bool constant_p, is_store;
|
1449 |
|
|
|
1450 |
|
|
if (STMT_VINFO_DATA_REF (stmt_vinfo))
|
1451 |
|
|
{
|
1452 |
|
|
is_store = true;
|
1453 |
|
|
op = gimple_assign_rhs1 (stmt);
|
1454 |
|
|
}
|
1455 |
|
|
else
|
1456 |
|
|
{
|
1457 |
|
|
is_store = false;
|
1458 |
|
|
op = gimple_op (stmt, op_num + 1);
|
1459 |
|
|
}
|
1460 |
|
|
|
1461 |
|
|
if (CONSTANT_CLASS_P (op))
|
1462 |
|
|
constant_p = true;
|
1463 |
|
|
else
|
1464 |
|
|
constant_p = false;
|
1465 |
|
|
|
1466 |
|
|
vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
|
1467 |
|
|
gcc_assert (vector_type);
|
1468 |
|
|
|
1469 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vector_type);
|
1470 |
|
|
|
1471 |
|
|
/* NUMBER_OF_COPIES is the number of times we need to use the same values in
|
1472 |
|
|
created vectors. It is greater than 1 if unrolling is performed.
|
1473 |
|
|
|
1474 |
|
|
For example, we have two scalar operands, s1 and s2 (e.g., group of
|
1475 |
|
|
strided accesses of size two), while NUNITS is four (i.e., four scalars
|
1476 |
|
|
of this type can be packed in a vector). The output vector will contain
|
1477 |
|
|
two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
|
1478 |
|
|
will be 2).
|
1479 |
|
|
|
1480 |
|
|
If GROUP_SIZE > NUNITS, the scalars will be split into several vectors
|
1481 |
|
|
containing the operands.
|
1482 |
|
|
|
1483 |
|
|
For example, NUNITS is four as before, and the group size is 8
|
1484 |
|
|
(s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
|
1485 |
|
|
{s5, s6, s7, s8}. */
|
1486 |
|
|
|
1487 |
|
|
number_of_copies = least_common_multiple (nunits, group_size) / group_size;
|
1488 |
|
|
|
1489 |
|
|
number_of_places_left_in_vector = nunits;
|
1490 |
|
|
for (j = 0; j < number_of_copies; j++)
|
1491 |
|
|
{
|
1492 |
|
|
for (i = group_size - 1; VEC_iterate (gimple, stmts, i, stmt); i--)
|
1493 |
|
|
{
|
1494 |
|
|
if (is_store)
|
1495 |
|
|
op = gimple_assign_rhs1 (stmt);
|
1496 |
|
|
else
|
1497 |
|
|
op = gimple_op (stmt, op_num + 1);
|
1498 |
|
|
|
1499 |
|
|
/* Create 'vect_ = {op0,op1,...,opn}'. */
|
1500 |
|
|
t = tree_cons (NULL_TREE, op, t);
|
1501 |
|
|
|
1502 |
|
|
number_of_places_left_in_vector--;
|
1503 |
|
|
|
1504 |
|
|
if (number_of_places_left_in_vector == 0)
|
1505 |
|
|
{
|
1506 |
|
|
number_of_places_left_in_vector = nunits;
|
1507 |
|
|
|
1508 |
|
|
if (constant_p)
|
1509 |
|
|
vec_cst = build_vector (vector_type, t);
|
1510 |
|
|
else
|
1511 |
|
|
vec_cst = build_constructor_from_list (vector_type, t);
|
1512 |
|
|
VEC_quick_push (tree, voprnds,
|
1513 |
|
|
vect_init_vector (stmt, vec_cst, vector_type, NULL));
|
1514 |
|
|
t = NULL_TREE;
|
1515 |
|
|
}
|
1516 |
|
|
}
|
1517 |
|
|
}
|
1518 |
|
|
|
1519 |
|
|
/* Since the vectors are created in the reverse order, we should invert
|
1520 |
|
|
them. */
|
1521 |
|
|
vec_num = VEC_length (tree, voprnds);
|
1522 |
|
|
for (j = vec_num - 1; j >= 0; j--)
|
1523 |
|
|
{
|
1524 |
|
|
vop = VEC_index (tree, voprnds, j);
|
1525 |
|
|
VEC_quick_push (tree, *vec_oprnds, vop);
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
VEC_free (tree, heap, voprnds);
|
1529 |
|
|
|
1530 |
|
|
/* In case that VF is greater than the unrolling factor needed for the SLP
|
1531 |
|
|
group of stmts, NUMBER_OF_VECTORS to be created is greater than
|
1532 |
|
|
NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
|
1533 |
|
|
to replicate the vectors. */
|
1534 |
|
|
while (number_of_vectors > VEC_length (tree, *vec_oprnds))
|
1535 |
|
|
{
|
1536 |
|
|
for (i = 0; VEC_iterate (tree, *vec_oprnds, i, vop) && i < vec_num; i++)
|
1537 |
|
|
VEC_quick_push (tree, *vec_oprnds, vop);
|
1538 |
|
|
}
|
1539 |
|
|
}
|
1540 |
|
|
|
1541 |
|
|
|
1542 |
|
|
/* Get vectorized definitions from SLP_NODE that contains corresponding
|
1543 |
|
|
vectorized def-stmts. */
|
1544 |
|
|
|
1545 |
|
|
static void
|
1546 |
|
|
vect_get_slp_vect_defs (slp_tree slp_node, VEC (tree,heap) **vec_oprnds)
|
1547 |
|
|
{
|
1548 |
|
|
tree vec_oprnd;
|
1549 |
|
|
gimple vec_def_stmt;
|
1550 |
|
|
unsigned int i;
|
1551 |
|
|
|
1552 |
|
|
gcc_assert (SLP_TREE_VEC_STMTS (slp_node));
|
1553 |
|
|
|
1554 |
|
|
for (i = 0;
|
1555 |
|
|
VEC_iterate (gimple, SLP_TREE_VEC_STMTS (slp_node), i, vec_def_stmt);
|
1556 |
|
|
i++)
|
1557 |
|
|
{
|
1558 |
|
|
gcc_assert (vec_def_stmt);
|
1559 |
|
|
vec_oprnd = gimple_get_lhs (vec_def_stmt);
|
1560 |
|
|
VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
|
1561 |
|
|
}
|
1562 |
|
|
}
|
1563 |
|
|
|
1564 |
|
|
|
1565 |
|
|
/* Get vectorized definitions for SLP_NODE.
|
1566 |
|
|
If the scalar definitions are loop invariants or constants, collect them and
|
1567 |
|
|
call vect_get_constant_vectors() to create vector stmts.
|
1568 |
|
|
Otherwise, the def-stmts must be already vectorized and the vectorized stmts
|
1569 |
|
|
must be stored in the LEFT/RIGHT node of SLP_NODE, and we call
|
1570 |
|
|
vect_get_slp_vect_defs() to retrieve them.
|
1571 |
|
|
If VEC_OPRNDS1 is NULL, don't get vector defs for the second operand (from
|
1572 |
|
|
the right node. This is used when the second operand must remain scalar. */
|
1573 |
|
|
|
1574 |
|
|
void
|
1575 |
|
|
vect_get_slp_defs (slp_tree slp_node, VEC (tree,heap) **vec_oprnds0,
|
1576 |
|
|
VEC (tree,heap) **vec_oprnds1)
|
1577 |
|
|
{
|
1578 |
|
|
gimple first_stmt;
|
1579 |
|
|
enum tree_code code;
|
1580 |
|
|
int number_of_vects;
|
1581 |
|
|
HOST_WIDE_INT lhs_size_unit, rhs_size_unit;
|
1582 |
|
|
|
1583 |
|
|
first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0);
|
1584 |
|
|
/* The number of vector defs is determined by the number of vector statements
|
1585 |
|
|
in the node from which we get those statements. */
|
1586 |
|
|
if (SLP_TREE_LEFT (slp_node))
|
1587 |
|
|
number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (SLP_TREE_LEFT (slp_node));
|
1588 |
|
|
else
|
1589 |
|
|
{
|
1590 |
|
|
number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
1591 |
|
|
/* Number of vector stmts was calculated according to LHS in
|
1592 |
|
|
vect_schedule_slp_instance(), fix it by replacing LHS with RHS, if
|
1593 |
|
|
necessary. See vect_get_smallest_scalar_type() for details. */
|
1594 |
|
|
vect_get_smallest_scalar_type (first_stmt, &lhs_size_unit,
|
1595 |
|
|
&rhs_size_unit);
|
1596 |
|
|
if (rhs_size_unit != lhs_size_unit)
|
1597 |
|
|
{
|
1598 |
|
|
number_of_vects *= rhs_size_unit;
|
1599 |
|
|
number_of_vects /= lhs_size_unit;
|
1600 |
|
|
}
|
1601 |
|
|
}
|
1602 |
|
|
|
1603 |
|
|
/* Allocate memory for vectorized defs. */
|
1604 |
|
|
*vec_oprnds0 = VEC_alloc (tree, heap, number_of_vects);
|
1605 |
|
|
|
1606 |
|
|
/* SLP_NODE corresponds either to a group of stores or to a group of
|
1607 |
|
|
unary/binary operations. We don't call this function for loads. */
|
1608 |
|
|
if (SLP_TREE_LEFT (slp_node))
|
1609 |
|
|
/* The defs are already vectorized. */
|
1610 |
|
|
vect_get_slp_vect_defs (SLP_TREE_LEFT (slp_node), vec_oprnds0);
|
1611 |
|
|
else
|
1612 |
|
|
/* Build vectors from scalar defs. */
|
1613 |
|
|
vect_get_constant_vectors (slp_node, vec_oprnds0, 0, number_of_vects);
|
1614 |
|
|
|
1615 |
|
|
if (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt)))
|
1616 |
|
|
/* Since we don't call this function with loads, this is a group of
|
1617 |
|
|
stores. */
|
1618 |
|
|
return;
|
1619 |
|
|
|
1620 |
|
|
code = gimple_assign_rhs_code (first_stmt);
|
1621 |
|
|
if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS || !vec_oprnds1)
|
1622 |
|
|
return;
|
1623 |
|
|
|
1624 |
|
|
/* The number of vector defs is determined by the number of vector statements
|
1625 |
|
|
in the node from which we get those statements. */
|
1626 |
|
|
if (SLP_TREE_RIGHT (slp_node))
|
1627 |
|
|
number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (SLP_TREE_RIGHT (slp_node));
|
1628 |
|
|
else
|
1629 |
|
|
number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
1630 |
|
|
|
1631 |
|
|
*vec_oprnds1 = VEC_alloc (tree, heap, number_of_vects);
|
1632 |
|
|
|
1633 |
|
|
if (SLP_TREE_RIGHT (slp_node))
|
1634 |
|
|
/* The defs are already vectorized. */
|
1635 |
|
|
vect_get_slp_vect_defs (SLP_TREE_RIGHT (slp_node), vec_oprnds1);
|
1636 |
|
|
else
|
1637 |
|
|
/* Build vectors from scalar defs. */
|
1638 |
|
|
vect_get_constant_vectors (slp_node, vec_oprnds1, 1, number_of_vects);
|
1639 |
|
|
}
|
1640 |
|
|
|
1641 |
|
|
|
1642 |
|
|
/* Create NCOPIES permutation statements using the mask MASK_BYTES (by
|
1643 |
|
|
building a vector of type MASK_TYPE from it) and two input vectors placed in
|
1644 |
|
|
DR_CHAIN at FIRST_VEC_INDX and SECOND_VEC_INDX for the first copy and
|
1645 |
|
|
shifting by STRIDE elements of DR_CHAIN for every copy.
|
1646 |
|
|
(STRIDE is the number of vectorized stmts for NODE divided by the number of
|
1647 |
|
|
copies).
|
1648 |
|
|
VECT_STMTS_COUNTER specifies the index in the vectorized stmts of NODE, where
|
1649 |
|
|
the created stmts must be inserted. */
|
1650 |
|
|
|
1651 |
|
|
static inline void
|
1652 |
|
|
vect_create_mask_and_perm (gimple stmt, gimple next_scalar_stmt,
|
1653 |
|
|
tree mask, int first_vec_indx, int second_vec_indx,
|
1654 |
|
|
gimple_stmt_iterator *gsi, slp_tree node,
|
1655 |
|
|
tree builtin_decl, tree vectype,
|
1656 |
|
|
VEC(tree,heap) *dr_chain,
|
1657 |
|
|
int ncopies, int vect_stmts_counter)
|
1658 |
|
|
{
|
1659 |
|
|
tree perm_dest;
|
1660 |
|
|
gimple perm_stmt = NULL;
|
1661 |
|
|
stmt_vec_info next_stmt_info;
|
1662 |
|
|
int i, stride;
|
1663 |
|
|
tree first_vec, second_vec, data_ref;
|
1664 |
|
|
VEC (tree, heap) *params = NULL;
|
1665 |
|
|
|
1666 |
|
|
stride = SLP_TREE_NUMBER_OF_VEC_STMTS (node) / ncopies;
|
1667 |
|
|
|
1668 |
|
|
/* Initialize the vect stmts of NODE to properly insert the generated
|
1669 |
|
|
stmts later. */
|
1670 |
|
|
for (i = VEC_length (gimple, SLP_TREE_VEC_STMTS (node));
|
1671 |
|
|
i < (int) SLP_TREE_NUMBER_OF_VEC_STMTS (node); i++)
|
1672 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (node), NULL);
|
1673 |
|
|
|
1674 |
|
|
perm_dest = vect_create_destination_var (gimple_assign_lhs (stmt), vectype);
|
1675 |
|
|
for (i = 0; i < ncopies; i++)
|
1676 |
|
|
{
|
1677 |
|
|
first_vec = VEC_index (tree, dr_chain, first_vec_indx);
|
1678 |
|
|
second_vec = VEC_index (tree, dr_chain, second_vec_indx);
|
1679 |
|
|
|
1680 |
|
|
/* Build argument list for the vectorized call. */
|
1681 |
|
|
VEC_free (tree, heap, params);
|
1682 |
|
|
params = VEC_alloc (tree, heap, 3);
|
1683 |
|
|
VEC_quick_push (tree, params, first_vec);
|
1684 |
|
|
VEC_quick_push (tree, params, second_vec);
|
1685 |
|
|
VEC_quick_push (tree, params, mask);
|
1686 |
|
|
|
1687 |
|
|
/* Generate the permute statement. */
|
1688 |
|
|
perm_stmt = gimple_build_call_vec (builtin_decl, params);
|
1689 |
|
|
data_ref = make_ssa_name (perm_dest, perm_stmt);
|
1690 |
|
|
gimple_call_set_lhs (perm_stmt, data_ref);
|
1691 |
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
1692 |
|
|
|
1693 |
|
|
/* Store the vector statement in NODE. */
|
1694 |
|
|
VEC_replace (gimple, SLP_TREE_VEC_STMTS (node),
|
1695 |
|
|
stride * i + vect_stmts_counter, perm_stmt);
|
1696 |
|
|
|
1697 |
|
|
first_vec_indx += stride;
|
1698 |
|
|
second_vec_indx += stride;
|
1699 |
|
|
}
|
1700 |
|
|
|
1701 |
|
|
/* Mark the scalar stmt as vectorized. */
|
1702 |
|
|
next_stmt_info = vinfo_for_stmt (next_scalar_stmt);
|
1703 |
|
|
STMT_VINFO_VEC_STMT (next_stmt_info) = perm_stmt;
|
1704 |
|
|
}
|
1705 |
|
|
|
1706 |
|
|
|
1707 |
|
|
/* Given FIRST_MASK_ELEMENT - the mask element in element representation,
|
1708 |
|
|
return in CURRENT_MASK_ELEMENT its equivalent in target specific
|
1709 |
|
|
representation. Check that the mask is valid and return FALSE if not.
|
1710 |
|
|
Return TRUE in NEED_NEXT_VECTOR if the permutation requires to move to
|
1711 |
|
|
the next vector, i.e., the current first vector is not needed. */
|
1712 |
|
|
|
1713 |
|
|
static bool
|
1714 |
|
|
vect_get_mask_element (gimple stmt, int first_mask_element, int m,
|
1715 |
|
|
int mask_nunits, bool only_one_vec, int index,
|
1716 |
|
|
int *mask, int *current_mask_element,
|
1717 |
|
|
bool *need_next_vector)
|
1718 |
|
|
{
|
1719 |
|
|
int i;
|
1720 |
|
|
static int number_of_mask_fixes = 1;
|
1721 |
|
|
static bool mask_fixed = false;
|
1722 |
|
|
static bool needs_first_vector = false;
|
1723 |
|
|
|
1724 |
|
|
/* Convert to target specific representation. */
|
1725 |
|
|
*current_mask_element = first_mask_element + m;
|
1726 |
|
|
/* Adjust the value in case it's a mask for second and third vectors. */
|
1727 |
|
|
*current_mask_element -= mask_nunits * (number_of_mask_fixes - 1);
|
1728 |
|
|
|
1729 |
|
|
if (*current_mask_element < mask_nunits)
|
1730 |
|
|
needs_first_vector = true;
|
1731 |
|
|
|
1732 |
|
|
/* We have only one input vector to permute but the mask accesses values in
|
1733 |
|
|
the next vector as well. */
|
1734 |
|
|
if (only_one_vec && *current_mask_element >= mask_nunits)
|
1735 |
|
|
{
|
1736 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1737 |
|
|
{
|
1738 |
|
|
fprintf (vect_dump, "permutation requires at least two vectors ");
|
1739 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
1740 |
|
|
}
|
1741 |
|
|
|
1742 |
|
|
return false;
|
1743 |
|
|
}
|
1744 |
|
|
|
1745 |
|
|
/* The mask requires the next vector. */
|
1746 |
|
|
if (*current_mask_element >= mask_nunits * 2)
|
1747 |
|
|
{
|
1748 |
|
|
if (needs_first_vector || mask_fixed)
|
1749 |
|
|
{
|
1750 |
|
|
/* We either need the first vector too or have already moved to the
|
1751 |
|
|
next vector. In both cases, this permutation needs three
|
1752 |
|
|
vectors. */
|
1753 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1754 |
|
|
{
|
1755 |
|
|
fprintf (vect_dump, "permutation requires at "
|
1756 |
|
|
"least three vectors ");
|
1757 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
1758 |
|
|
}
|
1759 |
|
|
|
1760 |
|
|
return false;
|
1761 |
|
|
}
|
1762 |
|
|
|
1763 |
|
|
/* We move to the next vector, dropping the first one and working with
|
1764 |
|
|
the second and the third - we need to adjust the values of the mask
|
1765 |
|
|
accordingly. */
|
1766 |
|
|
*current_mask_element -= mask_nunits * number_of_mask_fixes;
|
1767 |
|
|
|
1768 |
|
|
for (i = 0; i < index; i++)
|
1769 |
|
|
mask[i] -= mask_nunits * number_of_mask_fixes;
|
1770 |
|
|
|
1771 |
|
|
(number_of_mask_fixes)++;
|
1772 |
|
|
mask_fixed = true;
|
1773 |
|
|
}
|
1774 |
|
|
|
1775 |
|
|
*need_next_vector = mask_fixed;
|
1776 |
|
|
|
1777 |
|
|
/* This was the last element of this mask. Start a new one. */
|
1778 |
|
|
if (index == mask_nunits - 1)
|
1779 |
|
|
{
|
1780 |
|
|
number_of_mask_fixes = 1;
|
1781 |
|
|
mask_fixed = false;
|
1782 |
|
|
needs_first_vector = false;
|
1783 |
|
|
}
|
1784 |
|
|
|
1785 |
|
|
return true;
|
1786 |
|
|
}
|
1787 |
|
|
|
1788 |
|
|
|
1789 |
|
|
/* Generate vector permute statements from a list of loads in DR_CHAIN.
|
1790 |
|
|
If ANALYZE_ONLY is TRUE, only check that it is possible to create valid
|
1791 |
|
|
permute statements for SLP_NODE_INSTANCE. */
|
1792 |
|
|
bool
|
1793 |
|
|
vect_transform_slp_perm_load (gimple stmt, VEC (tree, heap) *dr_chain,
|
1794 |
|
|
gimple_stmt_iterator *gsi, int vf,
|
1795 |
|
|
slp_instance slp_node_instance, bool analyze_only)
|
1796 |
|
|
{
|
1797 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1798 |
|
|
tree mask_element_type = NULL_TREE, mask_type;
|
1799 |
|
|
int i, j, k, m, scale, mask_nunits, nunits, vec_index = 0, scalar_index;
|
1800 |
|
|
slp_tree node;
|
1801 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info), builtin_decl;
|
1802 |
|
|
gimple next_scalar_stmt;
|
1803 |
|
|
int group_size = SLP_INSTANCE_GROUP_SIZE (slp_node_instance);
|
1804 |
|
|
int first_mask_element;
|
1805 |
|
|
int index, unroll_factor, *mask, current_mask_element, ncopies;
|
1806 |
|
|
bool only_one_vec = false, need_next_vector = false;
|
1807 |
|
|
int first_vec_index, second_vec_index, orig_vec_stmts_num, vect_stmts_counter;
|
1808 |
|
|
|
1809 |
|
|
if (!targetm.vectorize.builtin_vec_perm)
|
1810 |
|
|
{
|
1811 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1812 |
|
|
{
|
1813 |
|
|
fprintf (vect_dump, "no builtin for vect permute for ");
|
1814 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
1815 |
|
|
}
|
1816 |
|
|
|
1817 |
|
|
return false;
|
1818 |
|
|
}
|
1819 |
|
|
|
1820 |
|
|
builtin_decl = targetm.vectorize.builtin_vec_perm (vectype,
|
1821 |
|
|
&mask_element_type);
|
1822 |
|
|
if (!builtin_decl || !mask_element_type)
|
1823 |
|
|
{
|
1824 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1825 |
|
|
{
|
1826 |
|
|
fprintf (vect_dump, "no builtin for vect permute for ");
|
1827 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
1828 |
|
|
}
|
1829 |
|
|
|
1830 |
|
|
return false;
|
1831 |
|
|
}
|
1832 |
|
|
|
1833 |
|
|
mask_type = get_vectype_for_scalar_type (mask_element_type);
|
1834 |
|
|
mask_nunits = TYPE_VECTOR_SUBPARTS (mask_type);
|
1835 |
|
|
mask = (int *) xmalloc (sizeof (int) * mask_nunits);
|
1836 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
1837 |
|
|
scale = mask_nunits / nunits;
|
1838 |
|
|
unroll_factor = SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance);
|
1839 |
|
|
|
1840 |
|
|
/* The number of vector stmts to generate based only on SLP_NODE_INSTANCE
|
1841 |
|
|
unrolling factor. */
|
1842 |
|
|
orig_vec_stmts_num = group_size *
|
1843 |
|
|
SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance) / nunits;
|
1844 |
|
|
if (orig_vec_stmts_num == 1)
|
1845 |
|
|
only_one_vec = true;
|
1846 |
|
|
|
1847 |
|
|
/* Number of copies is determined by the final vectorization factor
|
1848 |
|
|
relatively to SLP_NODE_INSTANCE unrolling factor. */
|
1849 |
|
|
ncopies = vf / SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance);
|
1850 |
|
|
|
1851 |
|
|
/* Generate permutation masks for every NODE. Number of masks for each NODE
|
1852 |
|
|
is equal to GROUP_SIZE.
|
1853 |
|
|
E.g., we have a group of three nodes with three loads from the same
|
1854 |
|
|
location in each node, and the vector size is 4. I.e., we have a
|
1855 |
|
|
a0b0c0a1b1c1... sequence and we need to create the following vectors:
|
1856 |
|
|
for a's: a0a0a0a1 a1a1a2a2 a2a3a3a3
|
1857 |
|
|
for b's: b0b0b0b1 b1b1b2b2 b2b3b3b3
|
1858 |
|
|
...
|
1859 |
|
|
|
1860 |
|
|
The masks for a's should be: {0,0,0,3} {3,3,6,6} {6,9,9,9} (in target
|
1861 |
|
|
scpecific type, e.g., in bytes for Altivec.
|
1862 |
|
|
The last mask is illegal since we assume two operands for permute
|
1863 |
|
|
operation, and the mask element values can't be outside that range. Hence,
|
1864 |
|
|
the last mask must be converted into {2,5,5,5}.
|
1865 |
|
|
For the first two permutations we need the first and the second input
|
1866 |
|
|
vectors: {a0,b0,c0,a1} and {b1,c1,a2,b2}, and for the last permutation
|
1867 |
|
|
we need the second and the third vectors: {b1,c1,a2,b2} and
|
1868 |
|
|
{c2,a3,b3,c3}. */
|
1869 |
|
|
|
1870 |
|
|
for (i = 0;
|
1871 |
|
|
VEC_iterate (slp_tree, SLP_INSTANCE_LOADS (slp_node_instance),
|
1872 |
|
|
i, node);
|
1873 |
|
|
i++)
|
1874 |
|
|
{
|
1875 |
|
|
scalar_index = 0;
|
1876 |
|
|
index = 0;
|
1877 |
|
|
vect_stmts_counter = 0;
|
1878 |
|
|
vec_index = 0;
|
1879 |
|
|
first_vec_index = vec_index++;
|
1880 |
|
|
if (only_one_vec)
|
1881 |
|
|
second_vec_index = first_vec_index;
|
1882 |
|
|
else
|
1883 |
|
|
second_vec_index = vec_index++;
|
1884 |
|
|
|
1885 |
|
|
for (j = 0; j < unroll_factor; j++)
|
1886 |
|
|
{
|
1887 |
|
|
for (k = 0; k < group_size; k++)
|
1888 |
|
|
{
|
1889 |
|
|
first_mask_element = (i + j * group_size) * scale;
|
1890 |
|
|
for (m = 0; m < scale; m++)
|
1891 |
|
|
{
|
1892 |
|
|
if (!vect_get_mask_element (stmt, first_mask_element, m,
|
1893 |
|
|
mask_nunits, only_one_vec, index, mask,
|
1894 |
|
|
¤t_mask_element, &need_next_vector))
|
1895 |
|
|
return false;
|
1896 |
|
|
|
1897 |
|
|
mask[index++] = current_mask_element;
|
1898 |
|
|
}
|
1899 |
|
|
|
1900 |
|
|
if (index == mask_nunits)
|
1901 |
|
|
{
|
1902 |
|
|
tree mask_vec = NULL;
|
1903 |
|
|
|
1904 |
|
|
while (--index >= 0)
|
1905 |
|
|
{
|
1906 |
|
|
tree t = build_int_cst (mask_element_type, mask[index]);
|
1907 |
|
|
mask_vec = tree_cons (NULL, t, mask_vec);
|
1908 |
|
|
}
|
1909 |
|
|
mask_vec = build_vector (mask_type, mask_vec);
|
1910 |
|
|
index = 0;
|
1911 |
|
|
|
1912 |
|
|
if (!targetm.vectorize.builtin_vec_perm_ok (vectype,
|
1913 |
|
|
mask_vec))
|
1914 |
|
|
{
|
1915 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1916 |
|
|
{
|
1917 |
|
|
fprintf (vect_dump, "unsupported vect permute ");
|
1918 |
|
|
print_generic_expr (vect_dump, mask_vec, 0);
|
1919 |
|
|
}
|
1920 |
|
|
free (mask);
|
1921 |
|
|
return false;
|
1922 |
|
|
}
|
1923 |
|
|
|
1924 |
|
|
if (!analyze_only)
|
1925 |
|
|
{
|
1926 |
|
|
if (need_next_vector)
|
1927 |
|
|
{
|
1928 |
|
|
first_vec_index = second_vec_index;
|
1929 |
|
|
second_vec_index = vec_index;
|
1930 |
|
|
}
|
1931 |
|
|
|
1932 |
|
|
next_scalar_stmt = VEC_index (gimple,
|
1933 |
|
|
SLP_TREE_SCALAR_STMTS (node), scalar_index++);
|
1934 |
|
|
|
1935 |
|
|
vect_create_mask_and_perm (stmt, next_scalar_stmt,
|
1936 |
|
|
mask_vec, first_vec_index, second_vec_index,
|
1937 |
|
|
gsi, node, builtin_decl, vectype, dr_chain,
|
1938 |
|
|
ncopies, vect_stmts_counter++);
|
1939 |
|
|
}
|
1940 |
|
|
}
|
1941 |
|
|
}
|
1942 |
|
|
}
|
1943 |
|
|
}
|
1944 |
|
|
|
1945 |
|
|
free (mask);
|
1946 |
|
|
return true;
|
1947 |
|
|
}
|
1948 |
|
|
|
1949 |
|
|
|
1950 |
|
|
|
1951 |
|
|
/* Vectorize SLP instance tree in postorder. */
|
1952 |
|
|
|
1953 |
|
|
static bool
|
1954 |
|
|
vect_schedule_slp_instance (slp_tree node, slp_instance instance,
|
1955 |
|
|
unsigned int vectorization_factor)
|
1956 |
|
|
{
|
1957 |
|
|
gimple stmt;
|
1958 |
|
|
bool strided_store, is_store;
|
1959 |
|
|
gimple_stmt_iterator si;
|
1960 |
|
|
stmt_vec_info stmt_info;
|
1961 |
|
|
unsigned int vec_stmts_size, nunits, group_size;
|
1962 |
|
|
tree vectype;
|
1963 |
|
|
int i;
|
1964 |
|
|
slp_tree loads_node;
|
1965 |
|
|
|
1966 |
|
|
if (!node)
|
1967 |
|
|
return false;
|
1968 |
|
|
|
1969 |
|
|
vect_schedule_slp_instance (SLP_TREE_LEFT (node), instance,
|
1970 |
|
|
vectorization_factor);
|
1971 |
|
|
vect_schedule_slp_instance (SLP_TREE_RIGHT (node), instance,
|
1972 |
|
|
vectorization_factor);
|
1973 |
|
|
|
1974 |
|
|
stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (node), 0);
|
1975 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
1976 |
|
|
|
1977 |
|
|
/* VECTYPE is the type of the destination. */
|
1978 |
|
|
vectype = get_vectype_for_scalar_type (TREE_TYPE (gimple_assign_lhs (stmt)));
|
1979 |
|
|
nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (vectype);
|
1980 |
|
|
group_size = SLP_INSTANCE_GROUP_SIZE (instance);
|
1981 |
|
|
|
1982 |
|
|
/* For each SLP instance calculate number of vector stmts to be created
|
1983 |
|
|
for the scalar stmts in each node of the SLP tree. Number of vector
|
1984 |
|
|
elements in one vector iteration is the number of scalar elements in
|
1985 |
|
|
one scalar iteration (GROUP_SIZE) multiplied by VF divided by vector
|
1986 |
|
|
size. */
|
1987 |
|
|
vec_stmts_size = (vectorization_factor * group_size) / nunits;
|
1988 |
|
|
|
1989 |
|
|
/* In case of load permutation we have to allocate vectorized statements for
|
1990 |
|
|
all the nodes that participate in that permutation. */
|
1991 |
|
|
if (SLP_INSTANCE_LOAD_PERMUTATION (instance))
|
1992 |
|
|
{
|
1993 |
|
|
for (i = 0;
|
1994 |
|
|
VEC_iterate (slp_tree, SLP_INSTANCE_LOADS (instance), i, loads_node);
|
1995 |
|
|
i++)
|
1996 |
|
|
{
|
1997 |
|
|
if (!SLP_TREE_VEC_STMTS (loads_node))
|
1998 |
|
|
{
|
1999 |
|
|
SLP_TREE_VEC_STMTS (loads_node) = VEC_alloc (gimple, heap,
|
2000 |
|
|
vec_stmts_size);
|
2001 |
|
|
SLP_TREE_NUMBER_OF_VEC_STMTS (loads_node) = vec_stmts_size;
|
2002 |
|
|
}
|
2003 |
|
|
}
|
2004 |
|
|
}
|
2005 |
|
|
|
2006 |
|
|
if (!SLP_TREE_VEC_STMTS (node))
|
2007 |
|
|
{
|
2008 |
|
|
SLP_TREE_VEC_STMTS (node) = VEC_alloc (gimple, heap, vec_stmts_size);
|
2009 |
|
|
SLP_TREE_NUMBER_OF_VEC_STMTS (node) = vec_stmts_size;
|
2010 |
|
|
}
|
2011 |
|
|
|
2012 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2013 |
|
|
{
|
2014 |
|
|
fprintf (vect_dump, "------>vectorizing SLP node starting from: ");
|
2015 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
2016 |
|
|
}
|
2017 |
|
|
|
2018 |
|
|
/* Loads should be inserted before the first load. */
|
2019 |
|
|
if (SLP_INSTANCE_FIRST_LOAD_STMT (instance)
|
2020 |
|
|
&& STMT_VINFO_STRIDED_ACCESS (stmt_info)
|
2021 |
|
|
&& !REFERENCE_CLASS_P (gimple_get_lhs (stmt)))
|
2022 |
|
|
si = gsi_for_stmt (SLP_INSTANCE_FIRST_LOAD_STMT (instance));
|
2023 |
|
|
else
|
2024 |
|
|
si = gsi_for_stmt (stmt);
|
2025 |
|
|
|
2026 |
|
|
is_store = vect_transform_stmt (stmt, &si, &strided_store, node, instance);
|
2027 |
|
|
if (is_store)
|
2028 |
|
|
{
|
2029 |
|
|
if (DR_GROUP_FIRST_DR (stmt_info))
|
2030 |
|
|
/* If IS_STORE is TRUE, the vectorization of the
|
2031 |
|
|
interleaving chain was completed - free all the stores in
|
2032 |
|
|
the chain. */
|
2033 |
|
|
vect_remove_stores (DR_GROUP_FIRST_DR (stmt_info));
|
2034 |
|
|
else
|
2035 |
|
|
/* FORNOW: SLP originates only from strided stores. */
|
2036 |
|
|
gcc_unreachable ();
|
2037 |
|
|
|
2038 |
|
|
return true;
|
2039 |
|
|
}
|
2040 |
|
|
|
2041 |
|
|
/* FORNOW: SLP originates only from strided stores. */
|
2042 |
|
|
return false;
|
2043 |
|
|
}
|
2044 |
|
|
|
2045 |
|
|
|
2046 |
|
|
bool
|
2047 |
|
|
vect_schedule_slp (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
|
2048 |
|
|
{
|
2049 |
|
|
VEC (slp_instance, heap) *slp_instances;
|
2050 |
|
|
slp_instance instance;
|
2051 |
|
|
unsigned int i, vf;
|
2052 |
|
|
bool is_store = false;
|
2053 |
|
|
|
2054 |
|
|
if (loop_vinfo)
|
2055 |
|
|
{
|
2056 |
|
|
slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
|
2057 |
|
|
vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
2058 |
|
|
}
|
2059 |
|
|
else
|
2060 |
|
|
{
|
2061 |
|
|
slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
|
2062 |
|
|
vf = 1;
|
2063 |
|
|
}
|
2064 |
|
|
|
2065 |
|
|
for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
|
2066 |
|
|
{
|
2067 |
|
|
/* Schedule the tree of INSTANCE. */
|
2068 |
|
|
is_store = vect_schedule_slp_instance (SLP_INSTANCE_TREE (instance),
|
2069 |
|
|
instance, vf);
|
2070 |
|
|
if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS)
|
2071 |
|
|
|| vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
2072 |
|
|
fprintf (vect_dump, "vectorizing stmts using SLP.");
|
2073 |
|
|
}
|
2074 |
|
|
|
2075 |
|
|
return is_store;
|
2076 |
|
|
}
|
2077 |
|
|
|
2078 |
|
|
|
2079 |
|
|
/* Vectorize the basic block. */
|
2080 |
|
|
|
2081 |
|
|
void
|
2082 |
|
|
vect_slp_transform_bb (basic_block bb)
|
2083 |
|
|
{
|
2084 |
|
|
bb_vec_info bb_vinfo = vec_info_for_bb (bb);
|
2085 |
|
|
gimple_stmt_iterator si;
|
2086 |
|
|
|
2087 |
|
|
gcc_assert (bb_vinfo);
|
2088 |
|
|
|
2089 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2090 |
|
|
fprintf (vect_dump, "SLPing BB\n");
|
2091 |
|
|
|
2092 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
2093 |
|
|
{
|
2094 |
|
|
gimple stmt = gsi_stmt (si);
|
2095 |
|
|
stmt_vec_info stmt_info;
|
2096 |
|
|
|
2097 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2098 |
|
|
{
|
2099 |
|
|
fprintf (vect_dump, "------>SLPing statement: ");
|
2100 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
2101 |
|
|
}
|
2102 |
|
|
|
2103 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
2104 |
|
|
gcc_assert (stmt_info);
|
2105 |
|
|
|
2106 |
|
|
/* Schedule all the SLP instances when the first SLP stmt is reached. */
|
2107 |
|
|
if (STMT_SLP_TYPE (stmt_info))
|
2108 |
|
|
{
|
2109 |
|
|
vect_schedule_slp (NULL, bb_vinfo);
|
2110 |
|
|
break;
|
2111 |
|
|
}
|
2112 |
|
|
}
|
2113 |
|
|
|
2114 |
|
|
mark_sym_for_renaming (gimple_vop (cfun));
|
2115 |
|
|
/* The memory tags and pointers in vectorized statements need to
|
2116 |
|
|
have their SSA forms updated. FIXME, why can't this be delayed
|
2117 |
|
|
until all the loops have been transformed? */
|
2118 |
|
|
update_ssa (TODO_update_ssa);
|
2119 |
|
|
|
2120 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2121 |
|
|
fprintf (vect_dump, "BASIC BLOCK VECTORIZED\n");
|
2122 |
|
|
|
2123 |
|
|
destroy_bb_vec_info (bb_vinfo);
|
2124 |
|
|
}
|
2125 |
|
|
|