| 1 |
280 |
jeremybenn |
/* Support routines for Value Range Propagation (VRP).
|
| 2 |
|
|
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 9 |
|
|
it under the terms of the GNU General Public License as published by
|
| 10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 11 |
|
|
any later version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
|
|
GNU General Public License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "config.h"
|
| 23 |
|
|
#include "system.h"
|
| 24 |
|
|
#include "coretypes.h"
|
| 25 |
|
|
#include "tm.h"
|
| 26 |
|
|
#include "ggc.h"
|
| 27 |
|
|
#include "flags.h"
|
| 28 |
|
|
#include "tree.h"
|
| 29 |
|
|
#include "basic-block.h"
|
| 30 |
|
|
#include "tree-flow.h"
|
| 31 |
|
|
#include "tree-pass.h"
|
| 32 |
|
|
#include "tree-dump.h"
|
| 33 |
|
|
#include "timevar.h"
|
| 34 |
|
|
#include "diagnostic.h"
|
| 35 |
|
|
#include "toplev.h"
|
| 36 |
|
|
#include "intl.h"
|
| 37 |
|
|
#include "cfgloop.h"
|
| 38 |
|
|
#include "tree-scalar-evolution.h"
|
| 39 |
|
|
#include "tree-ssa-propagate.h"
|
| 40 |
|
|
#include "tree-chrec.h"
|
| 41 |
|
|
|
| 42 |
|
|
|
| 43 |
|
|
/* Set of SSA names found live during the RPO traversal of the function
|
| 44 |
|
|
for still active basic-blocks. */
|
| 45 |
|
|
static sbitmap *live;
|
| 46 |
|
|
|
| 47 |
|
|
/* Return true if the SSA name NAME is live on the edge E. */
|
| 48 |
|
|
|
| 49 |
|
|
static bool
|
| 50 |
|
|
live_on_edge (edge e, tree name)
|
| 51 |
|
|
{
|
| 52 |
|
|
return (live[e->dest->index]
|
| 53 |
|
|
&& TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
|
| 54 |
|
|
}
|
| 55 |
|
|
|
| 56 |
|
|
/* Local functions. */
|
| 57 |
|
|
static int compare_values (tree val1, tree val2);
|
| 58 |
|
|
static int compare_values_warnv (tree val1, tree val2, bool *);
|
| 59 |
|
|
static void vrp_meet (value_range_t *, value_range_t *);
|
| 60 |
|
|
static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
|
| 61 |
|
|
tree, tree, bool, bool *,
|
| 62 |
|
|
bool *);
|
| 63 |
|
|
|
| 64 |
|
|
/* Location information for ASSERT_EXPRs. Each instance of this
|
| 65 |
|
|
structure describes an ASSERT_EXPR for an SSA name. Since a single
|
| 66 |
|
|
SSA name may have more than one assertion associated with it, these
|
| 67 |
|
|
locations are kept in a linked list attached to the corresponding
|
| 68 |
|
|
SSA name. */
|
| 69 |
|
|
struct assert_locus_d
|
| 70 |
|
|
{
|
| 71 |
|
|
/* Basic block where the assertion would be inserted. */
|
| 72 |
|
|
basic_block bb;
|
| 73 |
|
|
|
| 74 |
|
|
/* Some assertions need to be inserted on an edge (e.g., assertions
|
| 75 |
|
|
generated by COND_EXPRs). In those cases, BB will be NULL. */
|
| 76 |
|
|
edge e;
|
| 77 |
|
|
|
| 78 |
|
|
/* Pointer to the statement that generated this assertion. */
|
| 79 |
|
|
gimple_stmt_iterator si;
|
| 80 |
|
|
|
| 81 |
|
|
/* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
|
| 82 |
|
|
enum tree_code comp_code;
|
| 83 |
|
|
|
| 84 |
|
|
/* Value being compared against. */
|
| 85 |
|
|
tree val;
|
| 86 |
|
|
|
| 87 |
|
|
/* Expression to compare. */
|
| 88 |
|
|
tree expr;
|
| 89 |
|
|
|
| 90 |
|
|
/* Next node in the linked list. */
|
| 91 |
|
|
struct assert_locus_d *next;
|
| 92 |
|
|
};
|
| 93 |
|
|
|
| 94 |
|
|
typedef struct assert_locus_d *assert_locus_t;
|
| 95 |
|
|
|
| 96 |
|
|
/* If bit I is present, it means that SSA name N_i has a list of
|
| 97 |
|
|
assertions that should be inserted in the IL. */
|
| 98 |
|
|
static bitmap need_assert_for;
|
| 99 |
|
|
|
| 100 |
|
|
/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
|
| 101 |
|
|
holds a list of ASSERT_LOCUS_T nodes that describe where
|
| 102 |
|
|
ASSERT_EXPRs for SSA name N_I should be inserted. */
|
| 103 |
|
|
static assert_locus_t *asserts_for;
|
| 104 |
|
|
|
| 105 |
|
|
/* Value range array. After propagation, VR_VALUE[I] holds the range
|
| 106 |
|
|
of values that SSA name N_I may take. */
|
| 107 |
|
|
static value_range_t **vr_value;
|
| 108 |
|
|
|
| 109 |
|
|
/* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
|
| 110 |
|
|
number of executable edges we saw the last time we visited the
|
| 111 |
|
|
node. */
|
| 112 |
|
|
static int *vr_phi_edge_counts;
|
| 113 |
|
|
|
| 114 |
|
|
typedef struct {
|
| 115 |
|
|
gimple stmt;
|
| 116 |
|
|
tree vec;
|
| 117 |
|
|
} switch_update;
|
| 118 |
|
|
|
| 119 |
|
|
static VEC (edge, heap) *to_remove_edges;
|
| 120 |
|
|
DEF_VEC_O(switch_update);
|
| 121 |
|
|
DEF_VEC_ALLOC_O(switch_update, heap);
|
| 122 |
|
|
static VEC (switch_update, heap) *to_update_switch_stmts;
|
| 123 |
|
|
|
| 124 |
|
|
|
| 125 |
|
|
/* Return the maximum value for TYPE. */
|
| 126 |
|
|
|
| 127 |
|
|
static inline tree
|
| 128 |
|
|
vrp_val_max (const_tree type)
|
| 129 |
|
|
{
|
| 130 |
|
|
if (!INTEGRAL_TYPE_P (type))
|
| 131 |
|
|
return NULL_TREE;
|
| 132 |
|
|
|
| 133 |
|
|
return TYPE_MAX_VALUE (type);
|
| 134 |
|
|
}
|
| 135 |
|
|
|
| 136 |
|
|
/* Return the minimum value for TYPE. */
|
| 137 |
|
|
|
| 138 |
|
|
static inline tree
|
| 139 |
|
|
vrp_val_min (const_tree type)
|
| 140 |
|
|
{
|
| 141 |
|
|
if (!INTEGRAL_TYPE_P (type))
|
| 142 |
|
|
return NULL_TREE;
|
| 143 |
|
|
|
| 144 |
|
|
return TYPE_MIN_VALUE (type);
|
| 145 |
|
|
}
|
| 146 |
|
|
|
| 147 |
|
|
/* Return whether VAL is equal to the maximum value of its type. This
|
| 148 |
|
|
will be true for a positive overflow infinity. We can't do a
|
| 149 |
|
|
simple equality comparison with TYPE_MAX_VALUE because C typedefs
|
| 150 |
|
|
and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
|
| 151 |
|
|
to the integer constant with the same value in the type. */
|
| 152 |
|
|
|
| 153 |
|
|
static inline bool
|
| 154 |
|
|
vrp_val_is_max (const_tree val)
|
| 155 |
|
|
{
|
| 156 |
|
|
tree type_max = vrp_val_max (TREE_TYPE (val));
|
| 157 |
|
|
return (val == type_max
|
| 158 |
|
|
|| (type_max != NULL_TREE
|
| 159 |
|
|
&& operand_equal_p (val, type_max, 0)));
|
| 160 |
|
|
}
|
| 161 |
|
|
|
| 162 |
|
|
/* Return whether VAL is equal to the minimum value of its type. This
|
| 163 |
|
|
will be true for a negative overflow infinity. */
|
| 164 |
|
|
|
| 165 |
|
|
static inline bool
|
| 166 |
|
|
vrp_val_is_min (const_tree val)
|
| 167 |
|
|
{
|
| 168 |
|
|
tree type_min = vrp_val_min (TREE_TYPE (val));
|
| 169 |
|
|
return (val == type_min
|
| 170 |
|
|
|| (type_min != NULL_TREE
|
| 171 |
|
|
&& operand_equal_p (val, type_min, 0)));
|
| 172 |
|
|
}
|
| 173 |
|
|
|
| 174 |
|
|
|
| 175 |
|
|
/* Return whether TYPE should use an overflow infinity distinct from
|
| 176 |
|
|
TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
|
| 177 |
|
|
represent a signed overflow during VRP computations. An infinity
|
| 178 |
|
|
is distinct from a half-range, which will go from some number to
|
| 179 |
|
|
TYPE_{MIN,MAX}_VALUE. */
|
| 180 |
|
|
|
| 181 |
|
|
static inline bool
|
| 182 |
|
|
needs_overflow_infinity (const_tree type)
|
| 183 |
|
|
{
|
| 184 |
|
|
return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
|
| 185 |
|
|
}
|
| 186 |
|
|
|
| 187 |
|
|
/* Return whether TYPE can support our overflow infinity
|
| 188 |
|
|
representation: we use the TREE_OVERFLOW flag, which only exists
|
| 189 |
|
|
for constants. If TYPE doesn't support this, we don't optimize
|
| 190 |
|
|
cases which would require signed overflow--we drop them to
|
| 191 |
|
|
VARYING. */
|
| 192 |
|
|
|
| 193 |
|
|
static inline bool
|
| 194 |
|
|
supports_overflow_infinity (const_tree type)
|
| 195 |
|
|
{
|
| 196 |
|
|
tree min = vrp_val_min (type), max = vrp_val_max (type);
|
| 197 |
|
|
#ifdef ENABLE_CHECKING
|
| 198 |
|
|
gcc_assert (needs_overflow_infinity (type));
|
| 199 |
|
|
#endif
|
| 200 |
|
|
return (min != NULL_TREE
|
| 201 |
|
|
&& CONSTANT_CLASS_P (min)
|
| 202 |
|
|
&& max != NULL_TREE
|
| 203 |
|
|
&& CONSTANT_CLASS_P (max));
|
| 204 |
|
|
}
|
| 205 |
|
|
|
| 206 |
|
|
/* VAL is the maximum or minimum value of a type. Return a
|
| 207 |
|
|
corresponding overflow infinity. */
|
| 208 |
|
|
|
| 209 |
|
|
static inline tree
|
| 210 |
|
|
make_overflow_infinity (tree val)
|
| 211 |
|
|
{
|
| 212 |
|
|
#ifdef ENABLE_CHECKING
|
| 213 |
|
|
gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
|
| 214 |
|
|
#endif
|
| 215 |
|
|
val = copy_node (val);
|
| 216 |
|
|
TREE_OVERFLOW (val) = 1;
|
| 217 |
|
|
return val;
|
| 218 |
|
|
}
|
| 219 |
|
|
|
| 220 |
|
|
/* Return a negative overflow infinity for TYPE. */
|
| 221 |
|
|
|
| 222 |
|
|
static inline tree
|
| 223 |
|
|
negative_overflow_infinity (tree type)
|
| 224 |
|
|
{
|
| 225 |
|
|
#ifdef ENABLE_CHECKING
|
| 226 |
|
|
gcc_assert (supports_overflow_infinity (type));
|
| 227 |
|
|
#endif
|
| 228 |
|
|
return make_overflow_infinity (vrp_val_min (type));
|
| 229 |
|
|
}
|
| 230 |
|
|
|
| 231 |
|
|
/* Return a positive overflow infinity for TYPE. */
|
| 232 |
|
|
|
| 233 |
|
|
static inline tree
|
| 234 |
|
|
positive_overflow_infinity (tree type)
|
| 235 |
|
|
{
|
| 236 |
|
|
#ifdef ENABLE_CHECKING
|
| 237 |
|
|
gcc_assert (supports_overflow_infinity (type));
|
| 238 |
|
|
#endif
|
| 239 |
|
|
return make_overflow_infinity (vrp_val_max (type));
|
| 240 |
|
|
}
|
| 241 |
|
|
|
| 242 |
|
|
/* Return whether VAL is a negative overflow infinity. */
|
| 243 |
|
|
|
| 244 |
|
|
static inline bool
|
| 245 |
|
|
is_negative_overflow_infinity (const_tree val)
|
| 246 |
|
|
{
|
| 247 |
|
|
return (needs_overflow_infinity (TREE_TYPE (val))
|
| 248 |
|
|
&& CONSTANT_CLASS_P (val)
|
| 249 |
|
|
&& TREE_OVERFLOW (val)
|
| 250 |
|
|
&& vrp_val_is_min (val));
|
| 251 |
|
|
}
|
| 252 |
|
|
|
| 253 |
|
|
/* Return whether VAL is a positive overflow infinity. */
|
| 254 |
|
|
|
| 255 |
|
|
static inline bool
|
| 256 |
|
|
is_positive_overflow_infinity (const_tree val)
|
| 257 |
|
|
{
|
| 258 |
|
|
return (needs_overflow_infinity (TREE_TYPE (val))
|
| 259 |
|
|
&& CONSTANT_CLASS_P (val)
|
| 260 |
|
|
&& TREE_OVERFLOW (val)
|
| 261 |
|
|
&& vrp_val_is_max (val));
|
| 262 |
|
|
}
|
| 263 |
|
|
|
| 264 |
|
|
/* Return whether VAL is a positive or negative overflow infinity. */
|
| 265 |
|
|
|
| 266 |
|
|
static inline bool
|
| 267 |
|
|
is_overflow_infinity (const_tree val)
|
| 268 |
|
|
{
|
| 269 |
|
|
return (needs_overflow_infinity (TREE_TYPE (val))
|
| 270 |
|
|
&& CONSTANT_CLASS_P (val)
|
| 271 |
|
|
&& TREE_OVERFLOW (val)
|
| 272 |
|
|
&& (vrp_val_is_min (val) || vrp_val_is_max (val)));
|
| 273 |
|
|
}
|
| 274 |
|
|
|
| 275 |
|
|
/* Return whether STMT has a constant rhs that is_overflow_infinity. */
|
| 276 |
|
|
|
| 277 |
|
|
static inline bool
|
| 278 |
|
|
stmt_overflow_infinity (gimple stmt)
|
| 279 |
|
|
{
|
| 280 |
|
|
if (is_gimple_assign (stmt)
|
| 281 |
|
|
&& get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
|
| 282 |
|
|
GIMPLE_SINGLE_RHS)
|
| 283 |
|
|
return is_overflow_infinity (gimple_assign_rhs1 (stmt));
|
| 284 |
|
|
return false;
|
| 285 |
|
|
}
|
| 286 |
|
|
|
| 287 |
|
|
/* If VAL is now an overflow infinity, return VAL. Otherwise, return
|
| 288 |
|
|
the same value with TREE_OVERFLOW clear. This can be used to avoid
|
| 289 |
|
|
confusing a regular value with an overflow value. */
|
| 290 |
|
|
|
| 291 |
|
|
static inline tree
|
| 292 |
|
|
avoid_overflow_infinity (tree val)
|
| 293 |
|
|
{
|
| 294 |
|
|
if (!is_overflow_infinity (val))
|
| 295 |
|
|
return val;
|
| 296 |
|
|
|
| 297 |
|
|
if (vrp_val_is_max (val))
|
| 298 |
|
|
return vrp_val_max (TREE_TYPE (val));
|
| 299 |
|
|
else
|
| 300 |
|
|
{
|
| 301 |
|
|
#ifdef ENABLE_CHECKING
|
| 302 |
|
|
gcc_assert (vrp_val_is_min (val));
|
| 303 |
|
|
#endif
|
| 304 |
|
|
return vrp_val_min (TREE_TYPE (val));
|
| 305 |
|
|
}
|
| 306 |
|
|
}
|
| 307 |
|
|
|
| 308 |
|
|
|
| 309 |
|
|
/* Return true if ARG is marked with the nonnull attribute in the
|
| 310 |
|
|
current function signature. */
|
| 311 |
|
|
|
| 312 |
|
|
static bool
|
| 313 |
|
|
nonnull_arg_p (const_tree arg)
|
| 314 |
|
|
{
|
| 315 |
|
|
tree t, attrs, fntype;
|
| 316 |
|
|
unsigned HOST_WIDE_INT arg_num;
|
| 317 |
|
|
|
| 318 |
|
|
gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
|
| 319 |
|
|
|
| 320 |
|
|
/* The static chain decl is always non null. */
|
| 321 |
|
|
if (arg == cfun->static_chain_decl)
|
| 322 |
|
|
return true;
|
| 323 |
|
|
|
| 324 |
|
|
fntype = TREE_TYPE (current_function_decl);
|
| 325 |
|
|
attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
|
| 326 |
|
|
|
| 327 |
|
|
/* If "nonnull" wasn't specified, we know nothing about the argument. */
|
| 328 |
|
|
if (attrs == NULL_TREE)
|
| 329 |
|
|
return false;
|
| 330 |
|
|
|
| 331 |
|
|
/* If "nonnull" applies to all the arguments, then ARG is non-null. */
|
| 332 |
|
|
if (TREE_VALUE (attrs) == NULL_TREE)
|
| 333 |
|
|
return true;
|
| 334 |
|
|
|
| 335 |
|
|
/* Get the position number for ARG in the function signature. */
|
| 336 |
|
|
for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
|
| 337 |
|
|
t;
|
| 338 |
|
|
t = TREE_CHAIN (t), arg_num++)
|
| 339 |
|
|
{
|
| 340 |
|
|
if (t == arg)
|
| 341 |
|
|
break;
|
| 342 |
|
|
}
|
| 343 |
|
|
|
| 344 |
|
|
gcc_assert (t == arg);
|
| 345 |
|
|
|
| 346 |
|
|
/* Now see if ARG_NUM is mentioned in the nonnull list. */
|
| 347 |
|
|
for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
|
| 348 |
|
|
{
|
| 349 |
|
|
if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
|
| 350 |
|
|
return true;
|
| 351 |
|
|
}
|
| 352 |
|
|
|
| 353 |
|
|
return false;
|
| 354 |
|
|
}
|
| 355 |
|
|
|
| 356 |
|
|
|
| 357 |
|
|
/* Set value range VR to VR_VARYING. */
|
| 358 |
|
|
|
| 359 |
|
|
static inline void
|
| 360 |
|
|
set_value_range_to_varying (value_range_t *vr)
|
| 361 |
|
|
{
|
| 362 |
|
|
vr->type = VR_VARYING;
|
| 363 |
|
|
vr->min = vr->max = NULL_TREE;
|
| 364 |
|
|
if (vr->equiv)
|
| 365 |
|
|
bitmap_clear (vr->equiv);
|
| 366 |
|
|
}
|
| 367 |
|
|
|
| 368 |
|
|
|
| 369 |
|
|
/* Set value range VR to {T, MIN, MAX, EQUIV}. */
|
| 370 |
|
|
|
| 371 |
|
|
static void
|
| 372 |
|
|
set_value_range (value_range_t *vr, enum value_range_type t, tree min,
|
| 373 |
|
|
tree max, bitmap equiv)
|
| 374 |
|
|
{
|
| 375 |
|
|
#if defined ENABLE_CHECKING
|
| 376 |
|
|
/* Check the validity of the range. */
|
| 377 |
|
|
if (t == VR_RANGE || t == VR_ANTI_RANGE)
|
| 378 |
|
|
{
|
| 379 |
|
|
int cmp;
|
| 380 |
|
|
|
| 381 |
|
|
gcc_assert (min && max);
|
| 382 |
|
|
|
| 383 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
|
| 384 |
|
|
gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
|
| 385 |
|
|
|
| 386 |
|
|
cmp = compare_values (min, max);
|
| 387 |
|
|
gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
|
| 388 |
|
|
|
| 389 |
|
|
if (needs_overflow_infinity (TREE_TYPE (min)))
|
| 390 |
|
|
gcc_assert (!is_overflow_infinity (min)
|
| 391 |
|
|
|| !is_overflow_infinity (max));
|
| 392 |
|
|
}
|
| 393 |
|
|
|
| 394 |
|
|
if (t == VR_UNDEFINED || t == VR_VARYING)
|
| 395 |
|
|
gcc_assert (min == NULL_TREE && max == NULL_TREE);
|
| 396 |
|
|
|
| 397 |
|
|
if (t == VR_UNDEFINED || t == VR_VARYING)
|
| 398 |
|
|
gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
|
| 399 |
|
|
#endif
|
| 400 |
|
|
|
| 401 |
|
|
vr->type = t;
|
| 402 |
|
|
vr->min = min;
|
| 403 |
|
|
vr->max = max;
|
| 404 |
|
|
|
| 405 |
|
|
/* Since updating the equivalence set involves deep copying the
|
| 406 |
|
|
bitmaps, only do it if absolutely necessary. */
|
| 407 |
|
|
if (vr->equiv == NULL
|
| 408 |
|
|
&& equiv != NULL)
|
| 409 |
|
|
vr->equiv = BITMAP_ALLOC (NULL);
|
| 410 |
|
|
|
| 411 |
|
|
if (equiv != vr->equiv)
|
| 412 |
|
|
{
|
| 413 |
|
|
if (equiv && !bitmap_empty_p (equiv))
|
| 414 |
|
|
bitmap_copy (vr->equiv, equiv);
|
| 415 |
|
|
else
|
| 416 |
|
|
bitmap_clear (vr->equiv);
|
| 417 |
|
|
}
|
| 418 |
|
|
}
|
| 419 |
|
|
|
| 420 |
|
|
|
| 421 |
|
|
/* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
|
| 422 |
|
|
This means adjusting T, MIN and MAX representing the case of a
|
| 423 |
|
|
wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
|
| 424 |
|
|
as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
|
| 425 |
|
|
In corner cases where MAX+1 or MIN-1 wraps this will fall back
|
| 426 |
|
|
to varying.
|
| 427 |
|
|
This routine exists to ease canonicalization in the case where we
|
| 428 |
|
|
extract ranges from var + CST op limit. */
|
| 429 |
|
|
|
| 430 |
|
|
static void
|
| 431 |
|
|
set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
|
| 432 |
|
|
tree min, tree max, bitmap equiv)
|
| 433 |
|
|
{
|
| 434 |
|
|
/* Nothing to canonicalize for symbolic or unknown or varying ranges. */
|
| 435 |
|
|
if ((t != VR_RANGE
|
| 436 |
|
|
&& t != VR_ANTI_RANGE)
|
| 437 |
|
|
|| TREE_CODE (min) != INTEGER_CST
|
| 438 |
|
|
|| TREE_CODE (max) != INTEGER_CST)
|
| 439 |
|
|
{
|
| 440 |
|
|
set_value_range (vr, t, min, max, equiv);
|
| 441 |
|
|
return;
|
| 442 |
|
|
}
|
| 443 |
|
|
|
| 444 |
|
|
/* Wrong order for min and max, to swap them and the VR type we need
|
| 445 |
|
|
to adjust them. */
|
| 446 |
|
|
if (tree_int_cst_lt (max, min))
|
| 447 |
|
|
{
|
| 448 |
|
|
tree one = build_int_cst (TREE_TYPE (min), 1);
|
| 449 |
|
|
tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
|
| 450 |
|
|
max = int_const_binop (MINUS_EXPR, min, one, 0);
|
| 451 |
|
|
min = tmp;
|
| 452 |
|
|
|
| 453 |
|
|
/* There's one corner case, if we had [C+1, C] before we now have
|
| 454 |
|
|
that again. But this represents an empty value range, so drop
|
| 455 |
|
|
to varying in this case. */
|
| 456 |
|
|
if (tree_int_cst_lt (max, min))
|
| 457 |
|
|
{
|
| 458 |
|
|
set_value_range_to_varying (vr);
|
| 459 |
|
|
return;
|
| 460 |
|
|
}
|
| 461 |
|
|
|
| 462 |
|
|
t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
|
| 463 |
|
|
}
|
| 464 |
|
|
|
| 465 |
|
|
/* Anti-ranges that can be represented as ranges should be so. */
|
| 466 |
|
|
if (t == VR_ANTI_RANGE)
|
| 467 |
|
|
{
|
| 468 |
|
|
bool is_min = vrp_val_is_min (min);
|
| 469 |
|
|
bool is_max = vrp_val_is_max (max);
|
| 470 |
|
|
|
| 471 |
|
|
if (is_min && is_max)
|
| 472 |
|
|
{
|
| 473 |
|
|
/* We cannot deal with empty ranges, drop to varying. */
|
| 474 |
|
|
set_value_range_to_varying (vr);
|
| 475 |
|
|
return;
|
| 476 |
|
|
}
|
| 477 |
|
|
else if (is_min
|
| 478 |
|
|
/* As a special exception preserve non-null ranges. */
|
| 479 |
|
|
&& !(TYPE_UNSIGNED (TREE_TYPE (min))
|
| 480 |
|
|
&& integer_zerop (max)))
|
| 481 |
|
|
{
|
| 482 |
|
|
tree one = build_int_cst (TREE_TYPE (max), 1);
|
| 483 |
|
|
min = int_const_binop (PLUS_EXPR, max, one, 0);
|
| 484 |
|
|
max = vrp_val_max (TREE_TYPE (max));
|
| 485 |
|
|
t = VR_RANGE;
|
| 486 |
|
|
}
|
| 487 |
|
|
else if (is_max)
|
| 488 |
|
|
{
|
| 489 |
|
|
tree one = build_int_cst (TREE_TYPE (min), 1);
|
| 490 |
|
|
max = int_const_binop (MINUS_EXPR, min, one, 0);
|
| 491 |
|
|
min = vrp_val_min (TREE_TYPE (min));
|
| 492 |
|
|
t = VR_RANGE;
|
| 493 |
|
|
}
|
| 494 |
|
|
}
|
| 495 |
|
|
|
| 496 |
|
|
set_value_range (vr, t, min, max, equiv);
|
| 497 |
|
|
}
|
| 498 |
|
|
|
| 499 |
|
|
/* Copy value range FROM into value range TO. */
|
| 500 |
|
|
|
| 501 |
|
|
static inline void
|
| 502 |
|
|
copy_value_range (value_range_t *to, value_range_t *from)
|
| 503 |
|
|
{
|
| 504 |
|
|
set_value_range (to, from->type, from->min, from->max, from->equiv);
|
| 505 |
|
|
}
|
| 506 |
|
|
|
| 507 |
|
|
/* Set value range VR to a single value. This function is only called
|
| 508 |
|
|
with values we get from statements, and exists to clear the
|
| 509 |
|
|
TREE_OVERFLOW flag so that we don't think we have an overflow
|
| 510 |
|
|
infinity when we shouldn't. */
|
| 511 |
|
|
|
| 512 |
|
|
static inline void
|
| 513 |
|
|
set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
|
| 514 |
|
|
{
|
| 515 |
|
|
gcc_assert (is_gimple_min_invariant (val));
|
| 516 |
|
|
val = avoid_overflow_infinity (val);
|
| 517 |
|
|
set_value_range (vr, VR_RANGE, val, val, equiv);
|
| 518 |
|
|
}
|
| 519 |
|
|
|
| 520 |
|
|
/* Set value range VR to a non-negative range of type TYPE.
|
| 521 |
|
|
OVERFLOW_INFINITY indicates whether to use an overflow infinity
|
| 522 |
|
|
rather than TYPE_MAX_VALUE; this should be true if we determine
|
| 523 |
|
|
that the range is nonnegative based on the assumption that signed
|
| 524 |
|
|
overflow does not occur. */
|
| 525 |
|
|
|
| 526 |
|
|
static inline void
|
| 527 |
|
|
set_value_range_to_nonnegative (value_range_t *vr, tree type,
|
| 528 |
|
|
bool overflow_infinity)
|
| 529 |
|
|
{
|
| 530 |
|
|
tree zero;
|
| 531 |
|
|
|
| 532 |
|
|
if (overflow_infinity && !supports_overflow_infinity (type))
|
| 533 |
|
|
{
|
| 534 |
|
|
set_value_range_to_varying (vr);
|
| 535 |
|
|
return;
|
| 536 |
|
|
}
|
| 537 |
|
|
|
| 538 |
|
|
zero = build_int_cst (type, 0);
|
| 539 |
|
|
set_value_range (vr, VR_RANGE, zero,
|
| 540 |
|
|
(overflow_infinity
|
| 541 |
|
|
? positive_overflow_infinity (type)
|
| 542 |
|
|
: TYPE_MAX_VALUE (type)),
|
| 543 |
|
|
vr->equiv);
|
| 544 |
|
|
}
|
| 545 |
|
|
|
| 546 |
|
|
/* Set value range VR to a non-NULL range of type TYPE. */
|
| 547 |
|
|
|
| 548 |
|
|
static inline void
|
| 549 |
|
|
set_value_range_to_nonnull (value_range_t *vr, tree type)
|
| 550 |
|
|
{
|
| 551 |
|
|
tree zero = build_int_cst (type, 0);
|
| 552 |
|
|
set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
|
| 553 |
|
|
}
|
| 554 |
|
|
|
| 555 |
|
|
|
| 556 |
|
|
/* Set value range VR to a NULL range of type TYPE. */
|
| 557 |
|
|
|
| 558 |
|
|
static inline void
|
| 559 |
|
|
set_value_range_to_null (value_range_t *vr, tree type)
|
| 560 |
|
|
{
|
| 561 |
|
|
set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
|
| 562 |
|
|
}
|
| 563 |
|
|
|
| 564 |
|
|
|
| 565 |
|
|
/* Set value range VR to a range of a truthvalue of type TYPE. */
|
| 566 |
|
|
|
| 567 |
|
|
static inline void
|
| 568 |
|
|
set_value_range_to_truthvalue (value_range_t *vr, tree type)
|
| 569 |
|
|
{
|
| 570 |
|
|
if (TYPE_PRECISION (type) == 1)
|
| 571 |
|
|
set_value_range_to_varying (vr);
|
| 572 |
|
|
else
|
| 573 |
|
|
set_value_range (vr, VR_RANGE,
|
| 574 |
|
|
build_int_cst (type, 0), build_int_cst (type, 1),
|
| 575 |
|
|
vr->equiv);
|
| 576 |
|
|
}
|
| 577 |
|
|
|
| 578 |
|
|
|
| 579 |
|
|
/* Set value range VR to VR_UNDEFINED. */
|
| 580 |
|
|
|
| 581 |
|
|
static inline void
|
| 582 |
|
|
set_value_range_to_undefined (value_range_t *vr)
|
| 583 |
|
|
{
|
| 584 |
|
|
vr->type = VR_UNDEFINED;
|
| 585 |
|
|
vr->min = vr->max = NULL_TREE;
|
| 586 |
|
|
if (vr->equiv)
|
| 587 |
|
|
bitmap_clear (vr->equiv);
|
| 588 |
|
|
}
|
| 589 |
|
|
|
| 590 |
|
|
|
| 591 |
|
|
/* If abs (min) < abs (max), set VR to [-max, max], if
|
| 592 |
|
|
abs (min) >= abs (max), set VR to [-min, min]. */
|
| 593 |
|
|
|
| 594 |
|
|
static void
|
| 595 |
|
|
abs_extent_range (value_range_t *vr, tree min, tree max)
|
| 596 |
|
|
{
|
| 597 |
|
|
int cmp;
|
| 598 |
|
|
|
| 599 |
|
|
gcc_assert (TREE_CODE (min) == INTEGER_CST);
|
| 600 |
|
|
gcc_assert (TREE_CODE (max) == INTEGER_CST);
|
| 601 |
|
|
gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
|
| 602 |
|
|
gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
|
| 603 |
|
|
min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
|
| 604 |
|
|
max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
|
| 605 |
|
|
if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
|
| 606 |
|
|
{
|
| 607 |
|
|
set_value_range_to_varying (vr);
|
| 608 |
|
|
return;
|
| 609 |
|
|
}
|
| 610 |
|
|
cmp = compare_values (min, max);
|
| 611 |
|
|
if (cmp == -1)
|
| 612 |
|
|
min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
|
| 613 |
|
|
else if (cmp == 0 || cmp == 1)
|
| 614 |
|
|
{
|
| 615 |
|
|
max = min;
|
| 616 |
|
|
min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
|
| 617 |
|
|
}
|
| 618 |
|
|
else
|
| 619 |
|
|
{
|
| 620 |
|
|
set_value_range_to_varying (vr);
|
| 621 |
|
|
return;
|
| 622 |
|
|
}
|
| 623 |
|
|
set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
|
| 624 |
|
|
}
|
| 625 |
|
|
|
| 626 |
|
|
|
| 627 |
|
|
/* Return value range information for VAR.
|
| 628 |
|
|
|
| 629 |
|
|
If we have no values ranges recorded (ie, VRP is not running), then
|
| 630 |
|
|
return NULL. Otherwise create an empty range if none existed for VAR. */
|
| 631 |
|
|
|
| 632 |
|
|
static value_range_t *
|
| 633 |
|
|
get_value_range (const_tree var)
|
| 634 |
|
|
{
|
| 635 |
|
|
value_range_t *vr;
|
| 636 |
|
|
tree sym;
|
| 637 |
|
|
unsigned ver = SSA_NAME_VERSION (var);
|
| 638 |
|
|
|
| 639 |
|
|
/* If we have no recorded ranges, then return NULL. */
|
| 640 |
|
|
if (! vr_value)
|
| 641 |
|
|
return NULL;
|
| 642 |
|
|
|
| 643 |
|
|
vr = vr_value[ver];
|
| 644 |
|
|
if (vr)
|
| 645 |
|
|
return vr;
|
| 646 |
|
|
|
| 647 |
|
|
/* Create a default value range. */
|
| 648 |
|
|
vr_value[ver] = vr = XCNEW (value_range_t);
|
| 649 |
|
|
|
| 650 |
|
|
/* Defer allocating the equivalence set. */
|
| 651 |
|
|
vr->equiv = NULL;
|
| 652 |
|
|
|
| 653 |
|
|
/* If VAR is a default definition, the variable can take any value
|
| 654 |
|
|
in VAR's type. */
|
| 655 |
|
|
sym = SSA_NAME_VAR (var);
|
| 656 |
|
|
if (SSA_NAME_IS_DEFAULT_DEF (var))
|
| 657 |
|
|
{
|
| 658 |
|
|
/* Try to use the "nonnull" attribute to create ~[0, 0]
|
| 659 |
|
|
anti-ranges for pointers. Note that this is only valid with
|
| 660 |
|
|
default definitions of PARM_DECLs. */
|
| 661 |
|
|
if (TREE_CODE (sym) == PARM_DECL
|
| 662 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (sym))
|
| 663 |
|
|
&& nonnull_arg_p (sym))
|
| 664 |
|
|
set_value_range_to_nonnull (vr, TREE_TYPE (sym));
|
| 665 |
|
|
else
|
| 666 |
|
|
set_value_range_to_varying (vr);
|
| 667 |
|
|
}
|
| 668 |
|
|
|
| 669 |
|
|
return vr;
|
| 670 |
|
|
}
|
| 671 |
|
|
|
| 672 |
|
|
/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
|
| 673 |
|
|
|
| 674 |
|
|
static inline bool
|
| 675 |
|
|
vrp_operand_equal_p (const_tree val1, const_tree val2)
|
| 676 |
|
|
{
|
| 677 |
|
|
if (val1 == val2)
|
| 678 |
|
|
return true;
|
| 679 |
|
|
if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
|
| 680 |
|
|
return false;
|
| 681 |
|
|
if (is_overflow_infinity (val1))
|
| 682 |
|
|
return is_overflow_infinity (val2);
|
| 683 |
|
|
return true;
|
| 684 |
|
|
}
|
| 685 |
|
|
|
| 686 |
|
|
/* Return true, if the bitmaps B1 and B2 are equal. */
|
| 687 |
|
|
|
| 688 |
|
|
static inline bool
|
| 689 |
|
|
vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
|
| 690 |
|
|
{
|
| 691 |
|
|
return (b1 == b2
|
| 692 |
|
|
|| (b1 && b2
|
| 693 |
|
|
&& bitmap_equal_p (b1, b2)));
|
| 694 |
|
|
}
|
| 695 |
|
|
|
| 696 |
|
|
/* Update the value range and equivalence set for variable VAR to
|
| 697 |
|
|
NEW_VR. Return true if NEW_VR is different from VAR's previous
|
| 698 |
|
|
value.
|
| 699 |
|
|
|
| 700 |
|
|
NOTE: This function assumes that NEW_VR is a temporary value range
|
| 701 |
|
|
object created for the sole purpose of updating VAR's range. The
|
| 702 |
|
|
storage used by the equivalence set from NEW_VR will be freed by
|
| 703 |
|
|
this function. Do not call update_value_range when NEW_VR
|
| 704 |
|
|
is the range object associated with another SSA name. */
|
| 705 |
|
|
|
| 706 |
|
|
static inline bool
|
| 707 |
|
|
update_value_range (const_tree var, value_range_t *new_vr)
|
| 708 |
|
|
{
|
| 709 |
|
|
value_range_t *old_vr;
|
| 710 |
|
|
bool is_new;
|
| 711 |
|
|
|
| 712 |
|
|
/* Update the value range, if necessary. */
|
| 713 |
|
|
old_vr = get_value_range (var);
|
| 714 |
|
|
is_new = old_vr->type != new_vr->type
|
| 715 |
|
|
|| !vrp_operand_equal_p (old_vr->min, new_vr->min)
|
| 716 |
|
|
|| !vrp_operand_equal_p (old_vr->max, new_vr->max)
|
| 717 |
|
|
|| !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
|
| 718 |
|
|
|
| 719 |
|
|
if (is_new)
|
| 720 |
|
|
set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
|
| 721 |
|
|
new_vr->equiv);
|
| 722 |
|
|
|
| 723 |
|
|
BITMAP_FREE (new_vr->equiv);
|
| 724 |
|
|
|
| 725 |
|
|
return is_new;
|
| 726 |
|
|
}
|
| 727 |
|
|
|
| 728 |
|
|
|
| 729 |
|
|
/* Add VAR and VAR's equivalence set to EQUIV. This is the central
|
| 730 |
|
|
point where equivalence processing can be turned on/off. */
|
| 731 |
|
|
|
| 732 |
|
|
static void
|
| 733 |
|
|
add_equivalence (bitmap *equiv, const_tree var)
|
| 734 |
|
|
{
|
| 735 |
|
|
unsigned ver = SSA_NAME_VERSION (var);
|
| 736 |
|
|
value_range_t *vr = vr_value[ver];
|
| 737 |
|
|
|
| 738 |
|
|
if (*equiv == NULL)
|
| 739 |
|
|
*equiv = BITMAP_ALLOC (NULL);
|
| 740 |
|
|
bitmap_set_bit (*equiv, ver);
|
| 741 |
|
|
if (vr && vr->equiv)
|
| 742 |
|
|
bitmap_ior_into (*equiv, vr->equiv);
|
| 743 |
|
|
}
|
| 744 |
|
|
|
| 745 |
|
|
|
| 746 |
|
|
/* Return true if VR is ~[0, 0]. */
|
| 747 |
|
|
|
| 748 |
|
|
static inline bool
|
| 749 |
|
|
range_is_nonnull (value_range_t *vr)
|
| 750 |
|
|
{
|
| 751 |
|
|
return vr->type == VR_ANTI_RANGE
|
| 752 |
|
|
&& integer_zerop (vr->min)
|
| 753 |
|
|
&& integer_zerop (vr->max);
|
| 754 |
|
|
}
|
| 755 |
|
|
|
| 756 |
|
|
|
| 757 |
|
|
/* Return true if VR is [0, 0]. */
|
| 758 |
|
|
|
| 759 |
|
|
static inline bool
|
| 760 |
|
|
range_is_null (value_range_t *vr)
|
| 761 |
|
|
{
|
| 762 |
|
|
return vr->type == VR_RANGE
|
| 763 |
|
|
&& integer_zerop (vr->min)
|
| 764 |
|
|
&& integer_zerop (vr->max);
|
| 765 |
|
|
}
|
| 766 |
|
|
|
| 767 |
|
|
/* Return true if max and min of VR are INTEGER_CST. It's not necessary
|
| 768 |
|
|
a singleton. */
|
| 769 |
|
|
|
| 770 |
|
|
static inline bool
|
| 771 |
|
|
range_int_cst_p (value_range_t *vr)
|
| 772 |
|
|
{
|
| 773 |
|
|
return (vr->type == VR_RANGE
|
| 774 |
|
|
&& TREE_CODE (vr->max) == INTEGER_CST
|
| 775 |
|
|
&& TREE_CODE (vr->min) == INTEGER_CST
|
| 776 |
|
|
&& !TREE_OVERFLOW (vr->max)
|
| 777 |
|
|
&& !TREE_OVERFLOW (vr->min));
|
| 778 |
|
|
}
|
| 779 |
|
|
|
| 780 |
|
|
/* Return true if VR is a INTEGER_CST singleton. */
|
| 781 |
|
|
|
| 782 |
|
|
static inline bool
|
| 783 |
|
|
range_int_cst_singleton_p (value_range_t *vr)
|
| 784 |
|
|
{
|
| 785 |
|
|
return (range_int_cst_p (vr)
|
| 786 |
|
|
&& tree_int_cst_equal (vr->min, vr->max));
|
| 787 |
|
|
}
|
| 788 |
|
|
|
| 789 |
|
|
/* Return true if value range VR involves at least one symbol. */
|
| 790 |
|
|
|
| 791 |
|
|
static inline bool
|
| 792 |
|
|
symbolic_range_p (value_range_t *vr)
|
| 793 |
|
|
{
|
| 794 |
|
|
return (!is_gimple_min_invariant (vr->min)
|
| 795 |
|
|
|| !is_gimple_min_invariant (vr->max));
|
| 796 |
|
|
}
|
| 797 |
|
|
|
| 798 |
|
|
/* Return true if value range VR uses an overflow infinity. */
|
| 799 |
|
|
|
| 800 |
|
|
static inline bool
|
| 801 |
|
|
overflow_infinity_range_p (value_range_t *vr)
|
| 802 |
|
|
{
|
| 803 |
|
|
return (vr->type == VR_RANGE
|
| 804 |
|
|
&& (is_overflow_infinity (vr->min)
|
| 805 |
|
|
|| is_overflow_infinity (vr->max)));
|
| 806 |
|
|
}
|
| 807 |
|
|
|
| 808 |
|
|
/* Return false if we can not make a valid comparison based on VR;
|
| 809 |
|
|
this will be the case if it uses an overflow infinity and overflow
|
| 810 |
|
|
is not undefined (i.e., -fno-strict-overflow is in effect).
|
| 811 |
|
|
Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
|
| 812 |
|
|
uses an overflow infinity. */
|
| 813 |
|
|
|
| 814 |
|
|
static bool
|
| 815 |
|
|
usable_range_p (value_range_t *vr, bool *strict_overflow_p)
|
| 816 |
|
|
{
|
| 817 |
|
|
gcc_assert (vr->type == VR_RANGE);
|
| 818 |
|
|
if (is_overflow_infinity (vr->min))
|
| 819 |
|
|
{
|
| 820 |
|
|
*strict_overflow_p = true;
|
| 821 |
|
|
if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
|
| 822 |
|
|
return false;
|
| 823 |
|
|
}
|
| 824 |
|
|
if (is_overflow_infinity (vr->max))
|
| 825 |
|
|
{
|
| 826 |
|
|
*strict_overflow_p = true;
|
| 827 |
|
|
if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
|
| 828 |
|
|
return false;
|
| 829 |
|
|
}
|
| 830 |
|
|
return true;
|
| 831 |
|
|
}
|
| 832 |
|
|
|
| 833 |
|
|
|
| 834 |
|
|
/* Like tree_expr_nonnegative_warnv_p, but this function uses value
|
| 835 |
|
|
ranges obtained so far. */
|
| 836 |
|
|
|
| 837 |
|
|
static bool
|
| 838 |
|
|
vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
|
| 839 |
|
|
{
|
| 840 |
|
|
return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
|
| 841 |
|
|
|| (TREE_CODE (expr) == SSA_NAME
|
| 842 |
|
|
&& ssa_name_nonnegative_p (expr)));
|
| 843 |
|
|
}
|
| 844 |
|
|
|
| 845 |
|
|
/* Return true if the result of assignment STMT is know to be non-negative.
|
| 846 |
|
|
If the return value is based on the assumption that signed overflow is
|
| 847 |
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
| 848 |
|
|
*STRICT_OVERFLOW_P.*/
|
| 849 |
|
|
|
| 850 |
|
|
static bool
|
| 851 |
|
|
gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
|
| 852 |
|
|
{
|
| 853 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
| 854 |
|
|
switch (get_gimple_rhs_class (code))
|
| 855 |
|
|
{
|
| 856 |
|
|
case GIMPLE_UNARY_RHS:
|
| 857 |
|
|
return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
|
| 858 |
|
|
gimple_expr_type (stmt),
|
| 859 |
|
|
gimple_assign_rhs1 (stmt),
|
| 860 |
|
|
strict_overflow_p);
|
| 861 |
|
|
case GIMPLE_BINARY_RHS:
|
| 862 |
|
|
return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
|
| 863 |
|
|
gimple_expr_type (stmt),
|
| 864 |
|
|
gimple_assign_rhs1 (stmt),
|
| 865 |
|
|
gimple_assign_rhs2 (stmt),
|
| 866 |
|
|
strict_overflow_p);
|
| 867 |
|
|
case GIMPLE_SINGLE_RHS:
|
| 868 |
|
|
return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
|
| 869 |
|
|
strict_overflow_p);
|
| 870 |
|
|
case GIMPLE_INVALID_RHS:
|
| 871 |
|
|
gcc_unreachable ();
|
| 872 |
|
|
default:
|
| 873 |
|
|
gcc_unreachable ();
|
| 874 |
|
|
}
|
| 875 |
|
|
}
|
| 876 |
|
|
|
| 877 |
|
|
/* Return true if return value of call STMT is know to be non-negative.
|
| 878 |
|
|
If the return value is based on the assumption that signed overflow is
|
| 879 |
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
| 880 |
|
|
*STRICT_OVERFLOW_P.*/
|
| 881 |
|
|
|
| 882 |
|
|
static bool
|
| 883 |
|
|
gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
|
| 884 |
|
|
{
|
| 885 |
|
|
tree arg0 = gimple_call_num_args (stmt) > 0 ?
|
| 886 |
|
|
gimple_call_arg (stmt, 0) : NULL_TREE;
|
| 887 |
|
|
tree arg1 = gimple_call_num_args (stmt) > 1 ?
|
| 888 |
|
|
gimple_call_arg (stmt, 1) : NULL_TREE;
|
| 889 |
|
|
|
| 890 |
|
|
return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
|
| 891 |
|
|
gimple_call_fndecl (stmt),
|
| 892 |
|
|
arg0,
|
| 893 |
|
|
arg1,
|
| 894 |
|
|
strict_overflow_p);
|
| 895 |
|
|
}
|
| 896 |
|
|
|
| 897 |
|
|
/* Return true if STMT is know to to compute a non-negative value.
|
| 898 |
|
|
If the return value is based on the assumption that signed overflow is
|
| 899 |
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
| 900 |
|
|
*STRICT_OVERFLOW_P.*/
|
| 901 |
|
|
|
| 902 |
|
|
static bool
|
| 903 |
|
|
gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
|
| 904 |
|
|
{
|
| 905 |
|
|
switch (gimple_code (stmt))
|
| 906 |
|
|
{
|
| 907 |
|
|
case GIMPLE_ASSIGN:
|
| 908 |
|
|
return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
|
| 909 |
|
|
case GIMPLE_CALL:
|
| 910 |
|
|
return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
|
| 911 |
|
|
default:
|
| 912 |
|
|
gcc_unreachable ();
|
| 913 |
|
|
}
|
| 914 |
|
|
}
|
| 915 |
|
|
|
| 916 |
|
|
/* Return true if the result of assignment STMT is know to be non-zero.
|
| 917 |
|
|
If the return value is based on the assumption that signed overflow is
|
| 918 |
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
| 919 |
|
|
*STRICT_OVERFLOW_P.*/
|
| 920 |
|
|
|
| 921 |
|
|
static bool
|
| 922 |
|
|
gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
|
| 923 |
|
|
{
|
| 924 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
| 925 |
|
|
switch (get_gimple_rhs_class (code))
|
| 926 |
|
|
{
|
| 927 |
|
|
case GIMPLE_UNARY_RHS:
|
| 928 |
|
|
return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
|
| 929 |
|
|
gimple_expr_type (stmt),
|
| 930 |
|
|
gimple_assign_rhs1 (stmt),
|
| 931 |
|
|
strict_overflow_p);
|
| 932 |
|
|
case GIMPLE_BINARY_RHS:
|
| 933 |
|
|
return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
|
| 934 |
|
|
gimple_expr_type (stmt),
|
| 935 |
|
|
gimple_assign_rhs1 (stmt),
|
| 936 |
|
|
gimple_assign_rhs2 (stmt),
|
| 937 |
|
|
strict_overflow_p);
|
| 938 |
|
|
case GIMPLE_SINGLE_RHS:
|
| 939 |
|
|
return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
|
| 940 |
|
|
strict_overflow_p);
|
| 941 |
|
|
case GIMPLE_INVALID_RHS:
|
| 942 |
|
|
gcc_unreachable ();
|
| 943 |
|
|
default:
|
| 944 |
|
|
gcc_unreachable ();
|
| 945 |
|
|
}
|
| 946 |
|
|
}
|
| 947 |
|
|
|
| 948 |
|
|
/* Return true if STMT is know to to compute a non-zero value.
|
| 949 |
|
|
If the return value is based on the assumption that signed overflow is
|
| 950 |
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
| 951 |
|
|
*STRICT_OVERFLOW_P.*/
|
| 952 |
|
|
|
| 953 |
|
|
static bool
|
| 954 |
|
|
gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
|
| 955 |
|
|
{
|
| 956 |
|
|
switch (gimple_code (stmt))
|
| 957 |
|
|
{
|
| 958 |
|
|
case GIMPLE_ASSIGN:
|
| 959 |
|
|
return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
|
| 960 |
|
|
case GIMPLE_CALL:
|
| 961 |
|
|
return gimple_alloca_call_p (stmt);
|
| 962 |
|
|
default:
|
| 963 |
|
|
gcc_unreachable ();
|
| 964 |
|
|
}
|
| 965 |
|
|
}
|
| 966 |
|
|
|
| 967 |
|
|
/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
|
| 968 |
|
|
obtained so far. */
|
| 969 |
|
|
|
| 970 |
|
|
static bool
|
| 971 |
|
|
vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
|
| 972 |
|
|
{
|
| 973 |
|
|
if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
|
| 974 |
|
|
return true;
|
| 975 |
|
|
|
| 976 |
|
|
/* If we have an expression of the form &X->a, then the expression
|
| 977 |
|
|
is nonnull if X is nonnull. */
|
| 978 |
|
|
if (is_gimple_assign (stmt)
|
| 979 |
|
|
&& gimple_assign_rhs_code (stmt) == ADDR_EXPR)
|
| 980 |
|
|
{
|
| 981 |
|
|
tree expr = gimple_assign_rhs1 (stmt);
|
| 982 |
|
|
tree base = get_base_address (TREE_OPERAND (expr, 0));
|
| 983 |
|
|
|
| 984 |
|
|
if (base != NULL_TREE
|
| 985 |
|
|
&& TREE_CODE (base) == INDIRECT_REF
|
| 986 |
|
|
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
|
| 987 |
|
|
{
|
| 988 |
|
|
value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
|
| 989 |
|
|
if (range_is_nonnull (vr))
|
| 990 |
|
|
return true;
|
| 991 |
|
|
}
|
| 992 |
|
|
}
|
| 993 |
|
|
|
| 994 |
|
|
return false;
|
| 995 |
|
|
}
|
| 996 |
|
|
|
| 997 |
|
|
/* Returns true if EXPR is a valid value (as expected by compare_values) --
|
| 998 |
|
|
a gimple invariant, or SSA_NAME +- CST. */
|
| 999 |
|
|
|
| 1000 |
|
|
static bool
|
| 1001 |
|
|
valid_value_p (tree expr)
|
| 1002 |
|
|
{
|
| 1003 |
|
|
if (TREE_CODE (expr) == SSA_NAME)
|
| 1004 |
|
|
return true;
|
| 1005 |
|
|
|
| 1006 |
|
|
if (TREE_CODE (expr) == PLUS_EXPR
|
| 1007 |
|
|
|| TREE_CODE (expr) == MINUS_EXPR)
|
| 1008 |
|
|
return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
|
| 1009 |
|
|
&& TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
|
| 1010 |
|
|
|
| 1011 |
|
|
return is_gimple_min_invariant (expr);
|
| 1012 |
|
|
}
|
| 1013 |
|
|
|
| 1014 |
|
|
/* Return
|
| 1015 |
|
|
1 if VAL < VAL2
|
| 1016 |
|
|
|
| 1017 |
|
|
-2 if those are incomparable. */
|
| 1018 |
|
|
static inline int
|
| 1019 |
|
|
operand_less_p (tree val, tree val2)
|
| 1020 |
|
|
{
|
| 1021 |
|
|
/* LT is folded faster than GE and others. Inline the common case. */
|
| 1022 |
|
|
if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
|
| 1023 |
|
|
{
|
| 1024 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (val)))
|
| 1025 |
|
|
return INT_CST_LT_UNSIGNED (val, val2);
|
| 1026 |
|
|
else
|
| 1027 |
|
|
{
|
| 1028 |
|
|
if (INT_CST_LT (val, val2))
|
| 1029 |
|
|
return 1;
|
| 1030 |
|
|
}
|
| 1031 |
|
|
}
|
| 1032 |
|
|
else
|
| 1033 |
|
|
{
|
| 1034 |
|
|
tree tcmp;
|
| 1035 |
|
|
|
| 1036 |
|
|
fold_defer_overflow_warnings ();
|
| 1037 |
|
|
|
| 1038 |
|
|
tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
|
| 1039 |
|
|
|
| 1040 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
| 1041 |
|
|
|
| 1042 |
|
|
if (!tcmp
|
| 1043 |
|
|
|| TREE_CODE (tcmp) != INTEGER_CST)
|
| 1044 |
|
|
return -2;
|
| 1045 |
|
|
|
| 1046 |
|
|
if (!integer_zerop (tcmp))
|
| 1047 |
|
|
return 1;
|
| 1048 |
|
|
}
|
| 1049 |
|
|
|
| 1050 |
|
|
/* val >= val2, not considering overflow infinity. */
|
| 1051 |
|
|
if (is_negative_overflow_infinity (val))
|
| 1052 |
|
|
return is_negative_overflow_infinity (val2) ? 0 : 1;
|
| 1053 |
|
|
else if (is_positive_overflow_infinity (val2))
|
| 1054 |
|
|
return is_positive_overflow_infinity (val) ? 0 : 1;
|
| 1055 |
|
|
|
| 1056 |
|
|
return 0;
|
| 1057 |
|
|
}
|
| 1058 |
|
|
|
| 1059 |
|
|
/* Compare two values VAL1 and VAL2. Return
|
| 1060 |
|
|
|
| 1061 |
|
|
-2 if VAL1 and VAL2 cannot be compared at compile-time,
|
| 1062 |
|
|
-1 if VAL1 < VAL2,
|
| 1063 |
|
|
|
| 1064 |
|
|
+1 if VAL1 > VAL2, and
|
| 1065 |
|
|
+2 if VAL1 != VAL2
|
| 1066 |
|
|
|
| 1067 |
|
|
This is similar to tree_int_cst_compare but supports pointer values
|
| 1068 |
|
|
and values that cannot be compared at compile time.
|
| 1069 |
|
|
|
| 1070 |
|
|
If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
|
| 1071 |
|
|
true if the return value is only valid if we assume that signed
|
| 1072 |
|
|
overflow is undefined. */
|
| 1073 |
|
|
|
| 1074 |
|
|
static int
|
| 1075 |
|
|
compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
|
| 1076 |
|
|
{
|
| 1077 |
|
|
if (val1 == val2)
|
| 1078 |
|
|
return 0;
|
| 1079 |
|
|
|
| 1080 |
|
|
/* Below we rely on the fact that VAL1 and VAL2 are both pointers or
|
| 1081 |
|
|
both integers. */
|
| 1082 |
|
|
gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
|
| 1083 |
|
|
== POINTER_TYPE_P (TREE_TYPE (val2)));
|
| 1084 |
|
|
/* Convert the two values into the same type. This is needed because
|
| 1085 |
|
|
sizetype causes sign extension even for unsigned types. */
|
| 1086 |
|
|
val2 = fold_convert (TREE_TYPE (val1), val2);
|
| 1087 |
|
|
STRIP_USELESS_TYPE_CONVERSION (val2);
|
| 1088 |
|
|
|
| 1089 |
|
|
if ((TREE_CODE (val1) == SSA_NAME
|
| 1090 |
|
|
|| TREE_CODE (val1) == PLUS_EXPR
|
| 1091 |
|
|
|| TREE_CODE (val1) == MINUS_EXPR)
|
| 1092 |
|
|
&& (TREE_CODE (val2) == SSA_NAME
|
| 1093 |
|
|
|| TREE_CODE (val2) == PLUS_EXPR
|
| 1094 |
|
|
|| TREE_CODE (val2) == MINUS_EXPR))
|
| 1095 |
|
|
{
|
| 1096 |
|
|
tree n1, c1, n2, c2;
|
| 1097 |
|
|
enum tree_code code1, code2;
|
| 1098 |
|
|
|
| 1099 |
|
|
/* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
|
| 1100 |
|
|
return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
|
| 1101 |
|
|
same name, return -2. */
|
| 1102 |
|
|
if (TREE_CODE (val1) == SSA_NAME)
|
| 1103 |
|
|
{
|
| 1104 |
|
|
code1 = SSA_NAME;
|
| 1105 |
|
|
n1 = val1;
|
| 1106 |
|
|
c1 = NULL_TREE;
|
| 1107 |
|
|
}
|
| 1108 |
|
|
else
|
| 1109 |
|
|
{
|
| 1110 |
|
|
code1 = TREE_CODE (val1);
|
| 1111 |
|
|
n1 = TREE_OPERAND (val1, 0);
|
| 1112 |
|
|
c1 = TREE_OPERAND (val1, 1);
|
| 1113 |
|
|
if (tree_int_cst_sgn (c1) == -1)
|
| 1114 |
|
|
{
|
| 1115 |
|
|
if (is_negative_overflow_infinity (c1))
|
| 1116 |
|
|
return -2;
|
| 1117 |
|
|
c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
|
| 1118 |
|
|
if (!c1)
|
| 1119 |
|
|
return -2;
|
| 1120 |
|
|
code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
|
| 1121 |
|
|
}
|
| 1122 |
|
|
}
|
| 1123 |
|
|
|
| 1124 |
|
|
if (TREE_CODE (val2) == SSA_NAME)
|
| 1125 |
|
|
{
|
| 1126 |
|
|
code2 = SSA_NAME;
|
| 1127 |
|
|
n2 = val2;
|
| 1128 |
|
|
c2 = NULL_TREE;
|
| 1129 |
|
|
}
|
| 1130 |
|
|
else
|
| 1131 |
|
|
{
|
| 1132 |
|
|
code2 = TREE_CODE (val2);
|
| 1133 |
|
|
n2 = TREE_OPERAND (val2, 0);
|
| 1134 |
|
|
c2 = TREE_OPERAND (val2, 1);
|
| 1135 |
|
|
if (tree_int_cst_sgn (c2) == -1)
|
| 1136 |
|
|
{
|
| 1137 |
|
|
if (is_negative_overflow_infinity (c2))
|
| 1138 |
|
|
return -2;
|
| 1139 |
|
|
c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
|
| 1140 |
|
|
if (!c2)
|
| 1141 |
|
|
return -2;
|
| 1142 |
|
|
code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
|
| 1143 |
|
|
}
|
| 1144 |
|
|
}
|
| 1145 |
|
|
|
| 1146 |
|
|
/* Both values must use the same name. */
|
| 1147 |
|
|
if (n1 != n2)
|
| 1148 |
|
|
return -2;
|
| 1149 |
|
|
|
| 1150 |
|
|
if (code1 == SSA_NAME
|
| 1151 |
|
|
&& code2 == SSA_NAME)
|
| 1152 |
|
|
/* NAME == NAME */
|
| 1153 |
|
|
return 0;
|
| 1154 |
|
|
|
| 1155 |
|
|
/* If overflow is defined we cannot simplify more. */
|
| 1156 |
|
|
if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
|
| 1157 |
|
|
return -2;
|
| 1158 |
|
|
|
| 1159 |
|
|
if (strict_overflow_p != NULL
|
| 1160 |
|
|
&& (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
|
| 1161 |
|
|
&& (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
|
| 1162 |
|
|
*strict_overflow_p = true;
|
| 1163 |
|
|
|
| 1164 |
|
|
if (code1 == SSA_NAME)
|
| 1165 |
|
|
{
|
| 1166 |
|
|
if (code2 == PLUS_EXPR)
|
| 1167 |
|
|
/* NAME < NAME + CST */
|
| 1168 |
|
|
return -1;
|
| 1169 |
|
|
else if (code2 == MINUS_EXPR)
|
| 1170 |
|
|
/* NAME > NAME - CST */
|
| 1171 |
|
|
return 1;
|
| 1172 |
|
|
}
|
| 1173 |
|
|
else if (code1 == PLUS_EXPR)
|
| 1174 |
|
|
{
|
| 1175 |
|
|
if (code2 == SSA_NAME)
|
| 1176 |
|
|
/* NAME + CST > NAME */
|
| 1177 |
|
|
return 1;
|
| 1178 |
|
|
else if (code2 == PLUS_EXPR)
|
| 1179 |
|
|
/* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
|
| 1180 |
|
|
return compare_values_warnv (c1, c2, strict_overflow_p);
|
| 1181 |
|
|
else if (code2 == MINUS_EXPR)
|
| 1182 |
|
|
/* NAME + CST1 > NAME - CST2 */
|
| 1183 |
|
|
return 1;
|
| 1184 |
|
|
}
|
| 1185 |
|
|
else if (code1 == MINUS_EXPR)
|
| 1186 |
|
|
{
|
| 1187 |
|
|
if (code2 == SSA_NAME)
|
| 1188 |
|
|
/* NAME - CST < NAME */
|
| 1189 |
|
|
return -1;
|
| 1190 |
|
|
else if (code2 == PLUS_EXPR)
|
| 1191 |
|
|
/* NAME - CST1 < NAME + CST2 */
|
| 1192 |
|
|
return -1;
|
| 1193 |
|
|
else if (code2 == MINUS_EXPR)
|
| 1194 |
|
|
/* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
|
| 1195 |
|
|
C1 and C2 are swapped in the call to compare_values. */
|
| 1196 |
|
|
return compare_values_warnv (c2, c1, strict_overflow_p);
|
| 1197 |
|
|
}
|
| 1198 |
|
|
|
| 1199 |
|
|
gcc_unreachable ();
|
| 1200 |
|
|
}
|
| 1201 |
|
|
|
| 1202 |
|
|
/* We cannot compare non-constants. */
|
| 1203 |
|
|
if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
|
| 1204 |
|
|
return -2;
|
| 1205 |
|
|
|
| 1206 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (val1)))
|
| 1207 |
|
|
{
|
| 1208 |
|
|
/* We cannot compare overflowed values, except for overflow
|
| 1209 |
|
|
infinities. */
|
| 1210 |
|
|
if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
|
| 1211 |
|
|
{
|
| 1212 |
|
|
if (strict_overflow_p != NULL)
|
| 1213 |
|
|
*strict_overflow_p = true;
|
| 1214 |
|
|
if (is_negative_overflow_infinity (val1))
|
| 1215 |
|
|
return is_negative_overflow_infinity (val2) ? 0 : -1;
|
| 1216 |
|
|
else if (is_negative_overflow_infinity (val2))
|
| 1217 |
|
|
return 1;
|
| 1218 |
|
|
else if (is_positive_overflow_infinity (val1))
|
| 1219 |
|
|
return is_positive_overflow_infinity (val2) ? 0 : 1;
|
| 1220 |
|
|
else if (is_positive_overflow_infinity (val2))
|
| 1221 |
|
|
return -1;
|
| 1222 |
|
|
return -2;
|
| 1223 |
|
|
}
|
| 1224 |
|
|
|
| 1225 |
|
|
return tree_int_cst_compare (val1, val2);
|
| 1226 |
|
|
}
|
| 1227 |
|
|
else
|
| 1228 |
|
|
{
|
| 1229 |
|
|
tree t;
|
| 1230 |
|
|
|
| 1231 |
|
|
/* First see if VAL1 and VAL2 are not the same. */
|
| 1232 |
|
|
if (val1 == val2 || operand_equal_p (val1, val2, 0))
|
| 1233 |
|
|
return 0;
|
| 1234 |
|
|
|
| 1235 |
|
|
/* If VAL1 is a lower address than VAL2, return -1. */
|
| 1236 |
|
|
if (operand_less_p (val1, val2) == 1)
|
| 1237 |
|
|
return -1;
|
| 1238 |
|
|
|
| 1239 |
|
|
/* If VAL1 is a higher address than VAL2, return +1. */
|
| 1240 |
|
|
if (operand_less_p (val2, val1) == 1)
|
| 1241 |
|
|
return 1;
|
| 1242 |
|
|
|
| 1243 |
|
|
/* If VAL1 is different than VAL2, return +2.
|
| 1244 |
|
|
For integer constants we either have already returned -1 or 1
|
| 1245 |
|
|
or they are equivalent. We still might succeed in proving
|
| 1246 |
|
|
something about non-trivial operands. */
|
| 1247 |
|
|
if (TREE_CODE (val1) != INTEGER_CST
|
| 1248 |
|
|
|| TREE_CODE (val2) != INTEGER_CST)
|
| 1249 |
|
|
{
|
| 1250 |
|
|
t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
|
| 1251 |
|
|
if (t && integer_onep (t))
|
| 1252 |
|
|
return 2;
|
| 1253 |
|
|
}
|
| 1254 |
|
|
|
| 1255 |
|
|
return -2;
|
| 1256 |
|
|
}
|
| 1257 |
|
|
}
|
| 1258 |
|
|
|
| 1259 |
|
|
/* Compare values like compare_values_warnv, but treat comparisons of
|
| 1260 |
|
|
nonconstants which rely on undefined overflow as incomparable. */
|
| 1261 |
|
|
|
| 1262 |
|
|
static int
|
| 1263 |
|
|
compare_values (tree val1, tree val2)
|
| 1264 |
|
|
{
|
| 1265 |
|
|
bool sop;
|
| 1266 |
|
|
int ret;
|
| 1267 |
|
|
|
| 1268 |
|
|
sop = false;
|
| 1269 |
|
|
ret = compare_values_warnv (val1, val2, &sop);
|
| 1270 |
|
|
if (sop
|
| 1271 |
|
|
&& (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
|
| 1272 |
|
|
ret = -2;
|
| 1273 |
|
|
return ret;
|
| 1274 |
|
|
}
|
| 1275 |
|
|
|
| 1276 |
|
|
|
| 1277 |
|
|
/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
|
| 1278 |
|
|
|
| 1279 |
|
|
-2 if we cannot tell either way.
|
| 1280 |
|
|
|
| 1281 |
|
|
FIXME, the current semantics of this functions are a bit quirky
|
| 1282 |
|
|
when taken in the context of VRP. In here we do not care
|
| 1283 |
|
|
about VR's type. If VR is the anti-range ~[3, 5] the call
|
| 1284 |
|
|
value_inside_range (4, VR) will return 1.
|
| 1285 |
|
|
|
| 1286 |
|
|
This is counter-intuitive in a strict sense, but the callers
|
| 1287 |
|
|
currently expect this. They are calling the function
|
| 1288 |
|
|
merely to determine whether VR->MIN <= VAL <= VR->MAX. The
|
| 1289 |
|
|
callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
|
| 1290 |
|
|
themselves.
|
| 1291 |
|
|
|
| 1292 |
|
|
This also applies to value_ranges_intersect_p and
|
| 1293 |
|
|
range_includes_zero_p. The semantics of VR_RANGE and
|
| 1294 |
|
|
VR_ANTI_RANGE should be encoded here, but that also means
|
| 1295 |
|
|
adapting the users of these functions to the new semantics.
|
| 1296 |
|
|
|
| 1297 |
|
|
Benchmark compile/20001226-1.c compilation time after changing this
|
| 1298 |
|
|
function. */
|
| 1299 |
|
|
|
| 1300 |
|
|
static inline int
|
| 1301 |
|
|
value_inside_range (tree val, value_range_t * vr)
|
| 1302 |
|
|
{
|
| 1303 |
|
|
int cmp1, cmp2;
|
| 1304 |
|
|
|
| 1305 |
|
|
cmp1 = operand_less_p (val, vr->min);
|
| 1306 |
|
|
if (cmp1 == -2)
|
| 1307 |
|
|
return -2;
|
| 1308 |
|
|
if (cmp1 == 1)
|
| 1309 |
|
|
return 0;
|
| 1310 |
|
|
|
| 1311 |
|
|
cmp2 = operand_less_p (vr->max, val);
|
| 1312 |
|
|
if (cmp2 == -2)
|
| 1313 |
|
|
return -2;
|
| 1314 |
|
|
|
| 1315 |
|
|
return !cmp2;
|
| 1316 |
|
|
}
|
| 1317 |
|
|
|
| 1318 |
|
|
|
| 1319 |
|
|
/* Return true if value ranges VR0 and VR1 have a non-empty
|
| 1320 |
|
|
intersection.
|
| 1321 |
|
|
|
| 1322 |
|
|
Benchmark compile/20001226-1.c compilation time after changing this
|
| 1323 |
|
|
function.
|
| 1324 |
|
|
*/
|
| 1325 |
|
|
|
| 1326 |
|
|
static inline bool
|
| 1327 |
|
|
value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
|
| 1328 |
|
|
{
|
| 1329 |
|
|
/* The value ranges do not intersect if the maximum of the first range is
|
| 1330 |
|
|
less than the minimum of the second range or vice versa.
|
| 1331 |
|
|
When those relations are unknown, we can't do any better. */
|
| 1332 |
|
|
if (operand_less_p (vr0->max, vr1->min) != 0)
|
| 1333 |
|
|
return false;
|
| 1334 |
|
|
if (operand_less_p (vr1->max, vr0->min) != 0)
|
| 1335 |
|
|
return false;
|
| 1336 |
|
|
return true;
|
| 1337 |
|
|
}
|
| 1338 |
|
|
|
| 1339 |
|
|
|
| 1340 |
|
|
/* Return true if VR includes the value zero, false otherwise. FIXME,
|
| 1341 |
|
|
currently this will return false for an anti-range like ~[-4, 3].
|
| 1342 |
|
|
This will be wrong when the semantics of value_inside_range are
|
| 1343 |
|
|
modified (currently the users of this function expect these
|
| 1344 |
|
|
semantics). */
|
| 1345 |
|
|
|
| 1346 |
|
|
static inline bool
|
| 1347 |
|
|
range_includes_zero_p (value_range_t *vr)
|
| 1348 |
|
|
{
|
| 1349 |
|
|
tree zero;
|
| 1350 |
|
|
|
| 1351 |
|
|
gcc_assert (vr->type != VR_UNDEFINED
|
| 1352 |
|
|
&& vr->type != VR_VARYING
|
| 1353 |
|
|
&& !symbolic_range_p (vr));
|
| 1354 |
|
|
|
| 1355 |
|
|
zero = build_int_cst (TREE_TYPE (vr->min), 0);
|
| 1356 |
|
|
return (value_inside_range (zero, vr) == 1);
|
| 1357 |
|
|
}
|
| 1358 |
|
|
|
| 1359 |
|
|
/* Return true if T, an SSA_NAME, is known to be nonnegative. Return
|
| 1360 |
|
|
false otherwise or if no value range information is available. */
|
| 1361 |
|
|
|
| 1362 |
|
|
bool
|
| 1363 |
|
|
ssa_name_nonnegative_p (const_tree t)
|
| 1364 |
|
|
{
|
| 1365 |
|
|
value_range_t *vr = get_value_range (t);
|
| 1366 |
|
|
|
| 1367 |
|
|
if (INTEGRAL_TYPE_P (t)
|
| 1368 |
|
|
&& TYPE_UNSIGNED (t))
|
| 1369 |
|
|
return true;
|
| 1370 |
|
|
|
| 1371 |
|
|
if (!vr)
|
| 1372 |
|
|
return false;
|
| 1373 |
|
|
|
| 1374 |
|
|
/* Testing for VR_ANTI_RANGE is not useful here as any anti-range
|
| 1375 |
|
|
which would return a useful value should be encoded as a VR_RANGE. */
|
| 1376 |
|
|
if (vr->type == VR_RANGE)
|
| 1377 |
|
|
{
|
| 1378 |
|
|
int result = compare_values (vr->min, integer_zero_node);
|
| 1379 |
|
|
|
| 1380 |
|
|
return (result == 0 || result == 1);
|
| 1381 |
|
|
}
|
| 1382 |
|
|
return false;
|
| 1383 |
|
|
}
|
| 1384 |
|
|
|
| 1385 |
|
|
/* If OP has a value range with a single constant value return that,
|
| 1386 |
|
|
otherwise return NULL_TREE. This returns OP itself if OP is a
|
| 1387 |
|
|
constant. */
|
| 1388 |
|
|
|
| 1389 |
|
|
static tree
|
| 1390 |
|
|
op_with_constant_singleton_value_range (tree op)
|
| 1391 |
|
|
{
|
| 1392 |
|
|
value_range_t *vr;
|
| 1393 |
|
|
|
| 1394 |
|
|
if (is_gimple_min_invariant (op))
|
| 1395 |
|
|
return op;
|
| 1396 |
|
|
|
| 1397 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
| 1398 |
|
|
return NULL_TREE;
|
| 1399 |
|
|
|
| 1400 |
|
|
vr = get_value_range (op);
|
| 1401 |
|
|
if (vr->type == VR_RANGE
|
| 1402 |
|
|
&& operand_equal_p (vr->min, vr->max, 0)
|
| 1403 |
|
|
&& is_gimple_min_invariant (vr->min))
|
| 1404 |
|
|
return vr->min;
|
| 1405 |
|
|
|
| 1406 |
|
|
return NULL_TREE;
|
| 1407 |
|
|
}
|
| 1408 |
|
|
|
| 1409 |
|
|
|
| 1410 |
|
|
/* Extract value range information from an ASSERT_EXPR EXPR and store
|
| 1411 |
|
|
it in *VR_P. */
|
| 1412 |
|
|
|
| 1413 |
|
|
static void
|
| 1414 |
|
|
extract_range_from_assert (value_range_t *vr_p, tree expr)
|
| 1415 |
|
|
{
|
| 1416 |
|
|
tree var, cond, limit, min, max, type;
|
| 1417 |
|
|
value_range_t *var_vr, *limit_vr;
|
| 1418 |
|
|
enum tree_code cond_code;
|
| 1419 |
|
|
|
| 1420 |
|
|
var = ASSERT_EXPR_VAR (expr);
|
| 1421 |
|
|
cond = ASSERT_EXPR_COND (expr);
|
| 1422 |
|
|
|
| 1423 |
|
|
gcc_assert (COMPARISON_CLASS_P (cond));
|
| 1424 |
|
|
|
| 1425 |
|
|
/* Find VAR in the ASSERT_EXPR conditional. */
|
| 1426 |
|
|
if (var == TREE_OPERAND (cond, 0)
|
| 1427 |
|
|
|| TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
|
| 1428 |
|
|
|| TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
|
| 1429 |
|
|
{
|
| 1430 |
|
|
/* If the predicate is of the form VAR COMP LIMIT, then we just
|
| 1431 |
|
|
take LIMIT from the RHS and use the same comparison code. */
|
| 1432 |
|
|
cond_code = TREE_CODE (cond);
|
| 1433 |
|
|
limit = TREE_OPERAND (cond, 1);
|
| 1434 |
|
|
cond = TREE_OPERAND (cond, 0);
|
| 1435 |
|
|
}
|
| 1436 |
|
|
else
|
| 1437 |
|
|
{
|
| 1438 |
|
|
/* If the predicate is of the form LIMIT COMP VAR, then we need
|
| 1439 |
|
|
to flip around the comparison code to create the proper range
|
| 1440 |
|
|
for VAR. */
|
| 1441 |
|
|
cond_code = swap_tree_comparison (TREE_CODE (cond));
|
| 1442 |
|
|
limit = TREE_OPERAND (cond, 0);
|
| 1443 |
|
|
cond = TREE_OPERAND (cond, 1);
|
| 1444 |
|
|
}
|
| 1445 |
|
|
|
| 1446 |
|
|
limit = avoid_overflow_infinity (limit);
|
| 1447 |
|
|
|
| 1448 |
|
|
type = TREE_TYPE (limit);
|
| 1449 |
|
|
gcc_assert (limit != var);
|
| 1450 |
|
|
|
| 1451 |
|
|
/* For pointer arithmetic, we only keep track of pointer equality
|
| 1452 |
|
|
and inequality. */
|
| 1453 |
|
|
if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
|
| 1454 |
|
|
{
|
| 1455 |
|
|
set_value_range_to_varying (vr_p);
|
| 1456 |
|
|
return;
|
| 1457 |
|
|
}
|
| 1458 |
|
|
|
| 1459 |
|
|
/* If LIMIT is another SSA name and LIMIT has a range of its own,
|
| 1460 |
|
|
try to use LIMIT's range to avoid creating symbolic ranges
|
| 1461 |
|
|
unnecessarily. */
|
| 1462 |
|
|
limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
|
| 1463 |
|
|
|
| 1464 |
|
|
/* LIMIT's range is only interesting if it has any useful information. */
|
| 1465 |
|
|
if (limit_vr
|
| 1466 |
|
|
&& (limit_vr->type == VR_UNDEFINED
|
| 1467 |
|
|
|| limit_vr->type == VR_VARYING
|
| 1468 |
|
|
|| symbolic_range_p (limit_vr)))
|
| 1469 |
|
|
limit_vr = NULL;
|
| 1470 |
|
|
|
| 1471 |
|
|
/* Initially, the new range has the same set of equivalences of
|
| 1472 |
|
|
VAR's range. This will be revised before returning the final
|
| 1473 |
|
|
value. Since assertions may be chained via mutually exclusive
|
| 1474 |
|
|
predicates, we will need to trim the set of equivalences before
|
| 1475 |
|
|
we are done. */
|
| 1476 |
|
|
gcc_assert (vr_p->equiv == NULL);
|
| 1477 |
|
|
add_equivalence (&vr_p->equiv, var);
|
| 1478 |
|
|
|
| 1479 |
|
|
/* Extract a new range based on the asserted comparison for VAR and
|
| 1480 |
|
|
LIMIT's value range. Notice that if LIMIT has an anti-range, we
|
| 1481 |
|
|
will only use it for equality comparisons (EQ_EXPR). For any
|
| 1482 |
|
|
other kind of assertion, we cannot derive a range from LIMIT's
|
| 1483 |
|
|
anti-range that can be used to describe the new range. For
|
| 1484 |
|
|
instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
|
| 1485 |
|
|
then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
|
| 1486 |
|
|
no single range for x_2 that could describe LE_EXPR, so we might
|
| 1487 |
|
|
as well build the range [b_4, +INF] for it.
|
| 1488 |
|
|
One special case we handle is extracting a range from a
|
| 1489 |
|
|
range test encoded as (unsigned)var + CST <= limit. */
|
| 1490 |
|
|
if (TREE_CODE (cond) == NOP_EXPR
|
| 1491 |
|
|
|| TREE_CODE (cond) == PLUS_EXPR)
|
| 1492 |
|
|
{
|
| 1493 |
|
|
if (TREE_CODE (cond) == PLUS_EXPR)
|
| 1494 |
|
|
{
|
| 1495 |
|
|
min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
|
| 1496 |
|
|
TREE_OPERAND (cond, 1));
|
| 1497 |
|
|
max = int_const_binop (PLUS_EXPR, limit, min, 0);
|
| 1498 |
|
|
cond = TREE_OPERAND (cond, 0);
|
| 1499 |
|
|
}
|
| 1500 |
|
|
else
|
| 1501 |
|
|
{
|
| 1502 |
|
|
min = build_int_cst (TREE_TYPE (var), 0);
|
| 1503 |
|
|
max = limit;
|
| 1504 |
|
|
}
|
| 1505 |
|
|
|
| 1506 |
|
|
/* Make sure to not set TREE_OVERFLOW on the final type
|
| 1507 |
|
|
conversion. We are willingly interpreting large positive
|
| 1508 |
|
|
unsigned values as negative singed values here. */
|
| 1509 |
|
|
min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
|
| 1510 |
|
|
TREE_INT_CST_HIGH (min), 0, false);
|
| 1511 |
|
|
max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
|
| 1512 |
|
|
TREE_INT_CST_HIGH (max), 0, false);
|
| 1513 |
|
|
|
| 1514 |
|
|
/* We can transform a max, min range to an anti-range or
|
| 1515 |
|
|
vice-versa. Use set_and_canonicalize_value_range which does
|
| 1516 |
|
|
this for us. */
|
| 1517 |
|
|
if (cond_code == LE_EXPR)
|
| 1518 |
|
|
set_and_canonicalize_value_range (vr_p, VR_RANGE,
|
| 1519 |
|
|
min, max, vr_p->equiv);
|
| 1520 |
|
|
else if (cond_code == GT_EXPR)
|
| 1521 |
|
|
set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
|
| 1522 |
|
|
min, max, vr_p->equiv);
|
| 1523 |
|
|
else
|
| 1524 |
|
|
gcc_unreachable ();
|
| 1525 |
|
|
}
|
| 1526 |
|
|
else if (cond_code == EQ_EXPR)
|
| 1527 |
|
|
{
|
| 1528 |
|
|
enum value_range_type range_type;
|
| 1529 |
|
|
|
| 1530 |
|
|
if (limit_vr)
|
| 1531 |
|
|
{
|
| 1532 |
|
|
range_type = limit_vr->type;
|
| 1533 |
|
|
min = limit_vr->min;
|
| 1534 |
|
|
max = limit_vr->max;
|
| 1535 |
|
|
}
|
| 1536 |
|
|
else
|
| 1537 |
|
|
{
|
| 1538 |
|
|
range_type = VR_RANGE;
|
| 1539 |
|
|
min = limit;
|
| 1540 |
|
|
max = limit;
|
| 1541 |
|
|
}
|
| 1542 |
|
|
|
| 1543 |
|
|
set_value_range (vr_p, range_type, min, max, vr_p->equiv);
|
| 1544 |
|
|
|
| 1545 |
|
|
/* When asserting the equality VAR == LIMIT and LIMIT is another
|
| 1546 |
|
|
SSA name, the new range will also inherit the equivalence set
|
| 1547 |
|
|
from LIMIT. */
|
| 1548 |
|
|
if (TREE_CODE (limit) == SSA_NAME)
|
| 1549 |
|
|
add_equivalence (&vr_p->equiv, limit);
|
| 1550 |
|
|
}
|
| 1551 |
|
|
else if (cond_code == NE_EXPR)
|
| 1552 |
|
|
{
|
| 1553 |
|
|
/* As described above, when LIMIT's range is an anti-range and
|
| 1554 |
|
|
this assertion is an inequality (NE_EXPR), then we cannot
|
| 1555 |
|
|
derive anything from the anti-range. For instance, if
|
| 1556 |
|
|
LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
|
| 1557 |
|
|
not imply that VAR's range is [0, 0]. So, in the case of
|
| 1558 |
|
|
anti-ranges, we just assert the inequality using LIMIT and
|
| 1559 |
|
|
not its anti-range.
|
| 1560 |
|
|
|
| 1561 |
|
|
If LIMIT_VR is a range, we can only use it to build a new
|
| 1562 |
|
|
anti-range if LIMIT_VR is a single-valued range. For
|
| 1563 |
|
|
instance, if LIMIT_VR is [0, 1], the predicate
|
| 1564 |
|
|
VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
|
| 1565 |
|
|
Rather, it means that for value 0 VAR should be ~[0, 0]
|
| 1566 |
|
|
and for value 1, VAR should be ~[1, 1]. We cannot
|
| 1567 |
|
|
represent these ranges.
|
| 1568 |
|
|
|
| 1569 |
|
|
The only situation in which we can build a valid
|
| 1570 |
|
|
anti-range is when LIMIT_VR is a single-valued range
|
| 1571 |
|
|
(i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
|
| 1572 |
|
|
build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
|
| 1573 |
|
|
if (limit_vr
|
| 1574 |
|
|
&& limit_vr->type == VR_RANGE
|
| 1575 |
|
|
&& compare_values (limit_vr->min, limit_vr->max) == 0)
|
| 1576 |
|
|
{
|
| 1577 |
|
|
min = limit_vr->min;
|
| 1578 |
|
|
max = limit_vr->max;
|
| 1579 |
|
|
}
|
| 1580 |
|
|
else
|
| 1581 |
|
|
{
|
| 1582 |
|
|
/* In any other case, we cannot use LIMIT's range to build a
|
| 1583 |
|
|
valid anti-range. */
|
| 1584 |
|
|
min = max = limit;
|
| 1585 |
|
|
}
|
| 1586 |
|
|
|
| 1587 |
|
|
/* If MIN and MAX cover the whole range for their type, then
|
| 1588 |
|
|
just use the original LIMIT. */
|
| 1589 |
|
|
if (INTEGRAL_TYPE_P (type)
|
| 1590 |
|
|
&& vrp_val_is_min (min)
|
| 1591 |
|
|
&& vrp_val_is_max (max))
|
| 1592 |
|
|
min = max = limit;
|
| 1593 |
|
|
|
| 1594 |
|
|
set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
|
| 1595 |
|
|
}
|
| 1596 |
|
|
else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
|
| 1597 |
|
|
{
|
| 1598 |
|
|
min = TYPE_MIN_VALUE (type);
|
| 1599 |
|
|
|
| 1600 |
|
|
if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
|
| 1601 |
|
|
max = limit;
|
| 1602 |
|
|
else
|
| 1603 |
|
|
{
|
| 1604 |
|
|
/* If LIMIT_VR is of the form [N1, N2], we need to build the
|
| 1605 |
|
|
range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
|
| 1606 |
|
|
LT_EXPR. */
|
| 1607 |
|
|
max = limit_vr->max;
|
| 1608 |
|
|
}
|
| 1609 |
|
|
|
| 1610 |
|
|
/* If the maximum value forces us to be out of bounds, simply punt.
|
| 1611 |
|
|
It would be pointless to try and do anything more since this
|
| 1612 |
|
|
all should be optimized away above us. */
|
| 1613 |
|
|
if ((cond_code == LT_EXPR
|
| 1614 |
|
|
&& compare_values (max, min) == 0)
|
| 1615 |
|
|
|| (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
|
| 1616 |
|
|
set_value_range_to_varying (vr_p);
|
| 1617 |
|
|
else
|
| 1618 |
|
|
{
|
| 1619 |
|
|
/* For LT_EXPR, we create the range [MIN, MAX - 1]. */
|
| 1620 |
|
|
if (cond_code == LT_EXPR)
|
| 1621 |
|
|
{
|
| 1622 |
|
|
tree one = build_int_cst (type, 1);
|
| 1623 |
|
|
max = fold_build2 (MINUS_EXPR, type, max, one);
|
| 1624 |
|
|
if (EXPR_P (max))
|
| 1625 |
|
|
TREE_NO_WARNING (max) = 1;
|
| 1626 |
|
|
}
|
| 1627 |
|
|
|
| 1628 |
|
|
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
|
| 1629 |
|
|
}
|
| 1630 |
|
|
}
|
| 1631 |
|
|
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
|
| 1632 |
|
|
{
|
| 1633 |
|
|
max = TYPE_MAX_VALUE (type);
|
| 1634 |
|
|
|
| 1635 |
|
|
if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
|
| 1636 |
|
|
min = limit;
|
| 1637 |
|
|
else
|
| 1638 |
|
|
{
|
| 1639 |
|
|
/* If LIMIT_VR is of the form [N1, N2], we need to build the
|
| 1640 |
|
|
range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
|
| 1641 |
|
|
GT_EXPR. */
|
| 1642 |
|
|
min = limit_vr->min;
|
| 1643 |
|
|
}
|
| 1644 |
|
|
|
| 1645 |
|
|
/* If the minimum value forces us to be out of bounds, simply punt.
|
| 1646 |
|
|
It would be pointless to try and do anything more since this
|
| 1647 |
|
|
all should be optimized away above us. */
|
| 1648 |
|
|
if ((cond_code == GT_EXPR
|
| 1649 |
|
|
&& compare_values (min, max) == 0)
|
| 1650 |
|
|
|| (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
|
| 1651 |
|
|
set_value_range_to_varying (vr_p);
|
| 1652 |
|
|
else
|
| 1653 |
|
|
{
|
| 1654 |
|
|
/* For GT_EXPR, we create the range [MIN + 1, MAX]. */
|
| 1655 |
|
|
if (cond_code == GT_EXPR)
|
| 1656 |
|
|
{
|
| 1657 |
|
|
tree one = build_int_cst (type, 1);
|
| 1658 |
|
|
min = fold_build2 (PLUS_EXPR, type, min, one);
|
| 1659 |
|
|
if (EXPR_P (min))
|
| 1660 |
|
|
TREE_NO_WARNING (min) = 1;
|
| 1661 |
|
|
}
|
| 1662 |
|
|
|
| 1663 |
|
|
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
|
| 1664 |
|
|
}
|
| 1665 |
|
|
}
|
| 1666 |
|
|
else
|
| 1667 |
|
|
gcc_unreachable ();
|
| 1668 |
|
|
|
| 1669 |
|
|
/* If VAR already had a known range, it may happen that the new
|
| 1670 |
|
|
range we have computed and VAR's range are not compatible. For
|
| 1671 |
|
|
instance,
|
| 1672 |
|
|
|
| 1673 |
|
|
if (p_5 == NULL)
|
| 1674 |
|
|
p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
|
| 1675 |
|
|
x_7 = p_6->fld;
|
| 1676 |
|
|
p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
|
| 1677 |
|
|
|
| 1678 |
|
|
While the above comes from a faulty program, it will cause an ICE
|
| 1679 |
|
|
later because p_8 and p_6 will have incompatible ranges and at
|
| 1680 |
|
|
the same time will be considered equivalent. A similar situation
|
| 1681 |
|
|
would arise from
|
| 1682 |
|
|
|
| 1683 |
|
|
if (i_5 > 10)
|
| 1684 |
|
|
i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
|
| 1685 |
|
|
if (i_5 < 5)
|
| 1686 |
|
|
i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
|
| 1687 |
|
|
|
| 1688 |
|
|
Again i_6 and i_7 will have incompatible ranges. It would be
|
| 1689 |
|
|
pointless to try and do anything with i_7's range because
|
| 1690 |
|
|
anything dominated by 'if (i_5 < 5)' will be optimized away.
|
| 1691 |
|
|
Note, due to the wa in which simulation proceeds, the statement
|
| 1692 |
|
|
i_7 = ASSERT_EXPR <...> we would never be visited because the
|
| 1693 |
|
|
conditional 'if (i_5 < 5)' always evaluates to false. However,
|
| 1694 |
|
|
this extra check does not hurt and may protect against future
|
| 1695 |
|
|
changes to VRP that may get into a situation similar to the
|
| 1696 |
|
|
NULL pointer dereference example.
|
| 1697 |
|
|
|
| 1698 |
|
|
Note that these compatibility tests are only needed when dealing
|
| 1699 |
|
|
with ranges or a mix of range and anti-range. If VAR_VR and VR_P
|
| 1700 |
|
|
are both anti-ranges, they will always be compatible, because two
|
| 1701 |
|
|
anti-ranges will always have a non-empty intersection. */
|
| 1702 |
|
|
|
| 1703 |
|
|
var_vr = get_value_range (var);
|
| 1704 |
|
|
|
| 1705 |
|
|
/* We may need to make adjustments when VR_P and VAR_VR are numeric
|
| 1706 |
|
|
ranges or anti-ranges. */
|
| 1707 |
|
|
if (vr_p->type == VR_VARYING
|
| 1708 |
|
|
|| vr_p->type == VR_UNDEFINED
|
| 1709 |
|
|
|| var_vr->type == VR_VARYING
|
| 1710 |
|
|
|| var_vr->type == VR_UNDEFINED
|
| 1711 |
|
|
|| symbolic_range_p (vr_p)
|
| 1712 |
|
|
|| symbolic_range_p (var_vr))
|
| 1713 |
|
|
return;
|
| 1714 |
|
|
|
| 1715 |
|
|
if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
|
| 1716 |
|
|
{
|
| 1717 |
|
|
/* If the two ranges have a non-empty intersection, we can
|
| 1718 |
|
|
refine the resulting range. Since the assert expression
|
| 1719 |
|
|
creates an equivalency and at the same time it asserts a
|
| 1720 |
|
|
predicate, we can take the intersection of the two ranges to
|
| 1721 |
|
|
get better precision. */
|
| 1722 |
|
|
if (value_ranges_intersect_p (var_vr, vr_p))
|
| 1723 |
|
|
{
|
| 1724 |
|
|
/* Use the larger of the two minimums. */
|
| 1725 |
|
|
if (compare_values (vr_p->min, var_vr->min) == -1)
|
| 1726 |
|
|
min = var_vr->min;
|
| 1727 |
|
|
else
|
| 1728 |
|
|
min = vr_p->min;
|
| 1729 |
|
|
|
| 1730 |
|
|
/* Use the smaller of the two maximums. */
|
| 1731 |
|
|
if (compare_values (vr_p->max, var_vr->max) == 1)
|
| 1732 |
|
|
max = var_vr->max;
|
| 1733 |
|
|
else
|
| 1734 |
|
|
max = vr_p->max;
|
| 1735 |
|
|
|
| 1736 |
|
|
set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
|
| 1737 |
|
|
}
|
| 1738 |
|
|
else
|
| 1739 |
|
|
{
|
| 1740 |
|
|
/* The two ranges do not intersect, set the new range to
|
| 1741 |
|
|
VARYING, because we will not be able to do anything
|
| 1742 |
|
|
meaningful with it. */
|
| 1743 |
|
|
set_value_range_to_varying (vr_p);
|
| 1744 |
|
|
}
|
| 1745 |
|
|
}
|
| 1746 |
|
|
else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
|
| 1747 |
|
|
|| (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
|
| 1748 |
|
|
{
|
| 1749 |
|
|
/* A range and an anti-range will cancel each other only if
|
| 1750 |
|
|
their ends are the same. For instance, in the example above,
|
| 1751 |
|
|
p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
|
| 1752 |
|
|
so VR_P should be set to VR_VARYING. */
|
| 1753 |
|
|
if (compare_values (var_vr->min, vr_p->min) == 0
|
| 1754 |
|
|
&& compare_values (var_vr->max, vr_p->max) == 0)
|
| 1755 |
|
|
set_value_range_to_varying (vr_p);
|
| 1756 |
|
|
else
|
| 1757 |
|
|
{
|
| 1758 |
|
|
tree min, max, anti_min, anti_max, real_min, real_max;
|
| 1759 |
|
|
int cmp;
|
| 1760 |
|
|
|
| 1761 |
|
|
/* We want to compute the logical AND of the two ranges;
|
| 1762 |
|
|
there are three cases to consider.
|
| 1763 |
|
|
|
| 1764 |
|
|
|
| 1765 |
|
|
1. The VR_ANTI_RANGE range is completely within the
|
| 1766 |
|
|
VR_RANGE and the endpoints of the ranges are
|
| 1767 |
|
|
different. In that case the resulting range
|
| 1768 |
|
|
should be whichever range is more precise.
|
| 1769 |
|
|
Typically that will be the VR_RANGE.
|
| 1770 |
|
|
|
| 1771 |
|
|
2. The VR_ANTI_RANGE is completely disjoint from
|
| 1772 |
|
|
the VR_RANGE. In this case the resulting range
|
| 1773 |
|
|
should be the VR_RANGE.
|
| 1774 |
|
|
|
| 1775 |
|
|
3. There is some overlap between the VR_ANTI_RANGE
|
| 1776 |
|
|
and the VR_RANGE.
|
| 1777 |
|
|
|
| 1778 |
|
|
3a. If the high limit of the VR_ANTI_RANGE resides
|
| 1779 |
|
|
within the VR_RANGE, then the result is a new
|
| 1780 |
|
|
VR_RANGE starting at the high limit of the
|
| 1781 |
|
|
VR_ANTI_RANGE + 1 and extending to the
|
| 1782 |
|
|
high limit of the original VR_RANGE.
|
| 1783 |
|
|
|
| 1784 |
|
|
3b. If the low limit of the VR_ANTI_RANGE resides
|
| 1785 |
|
|
within the VR_RANGE, then the result is a new
|
| 1786 |
|
|
VR_RANGE starting at the low limit of the original
|
| 1787 |
|
|
VR_RANGE and extending to the low limit of the
|
| 1788 |
|
|
VR_ANTI_RANGE - 1. */
|
| 1789 |
|
|
if (vr_p->type == VR_ANTI_RANGE)
|
| 1790 |
|
|
{
|
| 1791 |
|
|
anti_min = vr_p->min;
|
| 1792 |
|
|
anti_max = vr_p->max;
|
| 1793 |
|
|
real_min = var_vr->min;
|
| 1794 |
|
|
real_max = var_vr->max;
|
| 1795 |
|
|
}
|
| 1796 |
|
|
else
|
| 1797 |
|
|
{
|
| 1798 |
|
|
anti_min = var_vr->min;
|
| 1799 |
|
|
anti_max = var_vr->max;
|
| 1800 |
|
|
real_min = vr_p->min;
|
| 1801 |
|
|
real_max = vr_p->max;
|
| 1802 |
|
|
}
|
| 1803 |
|
|
|
| 1804 |
|
|
|
| 1805 |
|
|
/* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
|
| 1806 |
|
|
not including any endpoints. */
|
| 1807 |
|
|
if (compare_values (anti_max, real_max) == -1
|
| 1808 |
|
|
&& compare_values (anti_min, real_min) == 1)
|
| 1809 |
|
|
{
|
| 1810 |
|
|
/* If the range is covering the whole valid range of
|
| 1811 |
|
|
the type keep the anti-range. */
|
| 1812 |
|
|
if (!vrp_val_is_min (real_min)
|
| 1813 |
|
|
|| !vrp_val_is_max (real_max))
|
| 1814 |
|
|
set_value_range (vr_p, VR_RANGE, real_min,
|
| 1815 |
|
|
real_max, vr_p->equiv);
|
| 1816 |
|
|
}
|
| 1817 |
|
|
/* Case 2, VR_ANTI_RANGE completely disjoint from
|
| 1818 |
|
|
VR_RANGE. */
|
| 1819 |
|
|
else if (compare_values (anti_min, real_max) == 1
|
| 1820 |
|
|
|| compare_values (anti_max, real_min) == -1)
|
| 1821 |
|
|
{
|
| 1822 |
|
|
set_value_range (vr_p, VR_RANGE, real_min,
|
| 1823 |
|
|
real_max, vr_p->equiv);
|
| 1824 |
|
|
}
|
| 1825 |
|
|
/* Case 3a, the anti-range extends into the low
|
| 1826 |
|
|
part of the real range. Thus creating a new
|
| 1827 |
|
|
low for the real range. */
|
| 1828 |
|
|
else if (((cmp = compare_values (anti_max, real_min)) == 1
|
| 1829 |
|
|
|| cmp == 0)
|
| 1830 |
|
|
&& compare_values (anti_max, real_max) == -1)
|
| 1831 |
|
|
{
|
| 1832 |
|
|
gcc_assert (!is_positive_overflow_infinity (anti_max));
|
| 1833 |
|
|
if (needs_overflow_infinity (TREE_TYPE (anti_max))
|
| 1834 |
|
|
&& vrp_val_is_max (anti_max))
|
| 1835 |
|
|
{
|
| 1836 |
|
|
if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
|
| 1837 |
|
|
{
|
| 1838 |
|
|
set_value_range_to_varying (vr_p);
|
| 1839 |
|
|
return;
|
| 1840 |
|
|
}
|
| 1841 |
|
|
min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
|
| 1842 |
|
|
}
|
| 1843 |
|
|
else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
|
| 1844 |
|
|
min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
|
| 1845 |
|
|
anti_max,
|
| 1846 |
|
|
build_int_cst (TREE_TYPE (var_vr->min), 1));
|
| 1847 |
|
|
else
|
| 1848 |
|
|
min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
|
| 1849 |
|
|
anti_max, size_int (1));
|
| 1850 |
|
|
max = real_max;
|
| 1851 |
|
|
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
|
| 1852 |
|
|
}
|
| 1853 |
|
|
/* Case 3b, the anti-range extends into the high
|
| 1854 |
|
|
part of the real range. Thus creating a new
|
| 1855 |
|
|
higher for the real range. */
|
| 1856 |
|
|
else if (compare_values (anti_min, real_min) == 1
|
| 1857 |
|
|
&& ((cmp = compare_values (anti_min, real_max)) == -1
|
| 1858 |
|
|
|| cmp == 0))
|
| 1859 |
|
|
{
|
| 1860 |
|
|
gcc_assert (!is_negative_overflow_infinity (anti_min));
|
| 1861 |
|
|
if (needs_overflow_infinity (TREE_TYPE (anti_min))
|
| 1862 |
|
|
&& vrp_val_is_min (anti_min))
|
| 1863 |
|
|
{
|
| 1864 |
|
|
if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
|
| 1865 |
|
|
{
|
| 1866 |
|
|
set_value_range_to_varying (vr_p);
|
| 1867 |
|
|
return;
|
| 1868 |
|
|
}
|
| 1869 |
|
|
max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
|
| 1870 |
|
|
}
|
| 1871 |
|
|
else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
|
| 1872 |
|
|
max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
|
| 1873 |
|
|
anti_min,
|
| 1874 |
|
|
build_int_cst (TREE_TYPE (var_vr->min), 1));
|
| 1875 |
|
|
else
|
| 1876 |
|
|
max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
|
| 1877 |
|
|
anti_min,
|
| 1878 |
|
|
size_int (-1));
|
| 1879 |
|
|
min = real_min;
|
| 1880 |
|
|
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
|
| 1881 |
|
|
}
|
| 1882 |
|
|
}
|
| 1883 |
|
|
}
|
| 1884 |
|
|
}
|
| 1885 |
|
|
|
| 1886 |
|
|
|
| 1887 |
|
|
/* Extract range information from SSA name VAR and store it in VR. If
|
| 1888 |
|
|
VAR has an interesting range, use it. Otherwise, create the
|
| 1889 |
|
|
range [VAR, VAR] and return it. This is useful in situations where
|
| 1890 |
|
|
we may have conditionals testing values of VARYING names. For
|
| 1891 |
|
|
instance,
|
| 1892 |
|
|
|
| 1893 |
|
|
x_3 = y_5;
|
| 1894 |
|
|
if (x_3 > y_5)
|
| 1895 |
|
|
...
|
| 1896 |
|
|
|
| 1897 |
|
|
Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
|
| 1898 |
|
|
always false. */
|
| 1899 |
|
|
|
| 1900 |
|
|
static void
|
| 1901 |
|
|
extract_range_from_ssa_name (value_range_t *vr, tree var)
|
| 1902 |
|
|
{
|
| 1903 |
|
|
value_range_t *var_vr = get_value_range (var);
|
| 1904 |
|
|
|
| 1905 |
|
|
if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
|
| 1906 |
|
|
copy_value_range (vr, var_vr);
|
| 1907 |
|
|
else
|
| 1908 |
|
|
set_value_range (vr, VR_RANGE, var, var, NULL);
|
| 1909 |
|
|
|
| 1910 |
|
|
add_equivalence (&vr->equiv, var);
|
| 1911 |
|
|
}
|
| 1912 |
|
|
|
| 1913 |
|
|
|
| 1914 |
|
|
/* Wrapper around int_const_binop. If the operation overflows and we
|
| 1915 |
|
|
are not using wrapping arithmetic, then adjust the result to be
|
| 1916 |
|
|
-INF or +INF depending on CODE, VAL1 and VAL2. This can return
|
| 1917 |
|
|
NULL_TREE if we need to use an overflow infinity representation but
|
| 1918 |
|
|
the type does not support it. */
|
| 1919 |
|
|
|
| 1920 |
|
|
static tree
|
| 1921 |
|
|
vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
|
| 1922 |
|
|
{
|
| 1923 |
|
|
tree res;
|
| 1924 |
|
|
|
| 1925 |
|
|
res = int_const_binop (code, val1, val2, 0);
|
| 1926 |
|
|
|
| 1927 |
|
|
/* If we are using unsigned arithmetic, operate symbolically
|
| 1928 |
|
|
on -INF and +INF as int_const_binop only handles signed overflow. */
|
| 1929 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (val1)))
|
| 1930 |
|
|
{
|
| 1931 |
|
|
int checkz = compare_values (res, val1);
|
| 1932 |
|
|
bool overflow = false;
|
| 1933 |
|
|
|
| 1934 |
|
|
/* Ensure that res = val1 [+*] val2 >= val1
|
| 1935 |
|
|
or that res = val1 - val2 <= val1. */
|
| 1936 |
|
|
if ((code == PLUS_EXPR
|
| 1937 |
|
|
&& !(checkz == 1 || checkz == 0))
|
| 1938 |
|
|
|| (code == MINUS_EXPR
|
| 1939 |
|
|
&& !(checkz == 0 || checkz == -1)))
|
| 1940 |
|
|
{
|
| 1941 |
|
|
overflow = true;
|
| 1942 |
|
|
}
|
| 1943 |
|
|
/* Checking for multiplication overflow is done by dividing the
|
| 1944 |
|
|
output of the multiplication by the first input of the
|
| 1945 |
|
|
multiplication. If the result of that division operation is
|
| 1946 |
|
|
not equal to the second input of the multiplication, then the
|
| 1947 |
|
|
multiplication overflowed. */
|
| 1948 |
|
|
else if (code == MULT_EXPR && !integer_zerop (val1))
|
| 1949 |
|
|
{
|
| 1950 |
|
|
tree tmp = int_const_binop (TRUNC_DIV_EXPR,
|
| 1951 |
|
|
res,
|
| 1952 |
|
|
val1, 0);
|
| 1953 |
|
|
int check = compare_values (tmp, val2);
|
| 1954 |
|
|
|
| 1955 |
|
|
if (check != 0)
|
| 1956 |
|
|
overflow = true;
|
| 1957 |
|
|
}
|
| 1958 |
|
|
|
| 1959 |
|
|
if (overflow)
|
| 1960 |
|
|
{
|
| 1961 |
|
|
res = copy_node (res);
|
| 1962 |
|
|
TREE_OVERFLOW (res) = 1;
|
| 1963 |
|
|
}
|
| 1964 |
|
|
|
| 1965 |
|
|
}
|
| 1966 |
|
|
else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
|
| 1967 |
|
|
/* If the singed operation wraps then int_const_binop has done
|
| 1968 |
|
|
everything we want. */
|
| 1969 |
|
|
;
|
| 1970 |
|
|
else if ((TREE_OVERFLOW (res)
|
| 1971 |
|
|
&& !TREE_OVERFLOW (val1)
|
| 1972 |
|
|
&& !TREE_OVERFLOW (val2))
|
| 1973 |
|
|
|| is_overflow_infinity (val1)
|
| 1974 |
|
|
|| is_overflow_infinity (val2))
|
| 1975 |
|
|
{
|
| 1976 |
|
|
/* If the operation overflowed but neither VAL1 nor VAL2 are
|
| 1977 |
|
|
overflown, return -INF or +INF depending on the operation
|
| 1978 |
|
|
and the combination of signs of the operands. */
|
| 1979 |
|
|
int sgn1 = tree_int_cst_sgn (val1);
|
| 1980 |
|
|
int sgn2 = tree_int_cst_sgn (val2);
|
| 1981 |
|
|
|
| 1982 |
|
|
if (needs_overflow_infinity (TREE_TYPE (res))
|
| 1983 |
|
|
&& !supports_overflow_infinity (TREE_TYPE (res)))
|
| 1984 |
|
|
return NULL_TREE;
|
| 1985 |
|
|
|
| 1986 |
|
|
/* We have to punt on adding infinities of different signs,
|
| 1987 |
|
|
since we can't tell what the sign of the result should be.
|
| 1988 |
|
|
Likewise for subtracting infinities of the same sign. */
|
| 1989 |
|
|
if (((code == PLUS_EXPR && sgn1 != sgn2)
|
| 1990 |
|
|
|| (code == MINUS_EXPR && sgn1 == sgn2))
|
| 1991 |
|
|
&& is_overflow_infinity (val1)
|
| 1992 |
|
|
&& is_overflow_infinity (val2))
|
| 1993 |
|
|
return NULL_TREE;
|
| 1994 |
|
|
|
| 1995 |
|
|
/* Don't try to handle division or shifting of infinities. */
|
| 1996 |
|
|
if ((code == TRUNC_DIV_EXPR
|
| 1997 |
|
|
|| code == FLOOR_DIV_EXPR
|
| 1998 |
|
|
|| code == CEIL_DIV_EXPR
|
| 1999 |
|
|
|| code == EXACT_DIV_EXPR
|
| 2000 |
|
|
|| code == ROUND_DIV_EXPR
|
| 2001 |
|
|
|| code == RSHIFT_EXPR)
|
| 2002 |
|
|
&& (is_overflow_infinity (val1)
|
| 2003 |
|
|
|| is_overflow_infinity (val2)))
|
| 2004 |
|
|
return NULL_TREE;
|
| 2005 |
|
|
|
| 2006 |
|
|
/* Notice that we only need to handle the restricted set of
|
| 2007 |
|
|
operations handled by extract_range_from_binary_expr.
|
| 2008 |
|
|
Among them, only multiplication, addition and subtraction
|
| 2009 |
|
|
can yield overflow without overflown operands because we
|
| 2010 |
|
|
are working with integral types only... except in the
|
| 2011 |
|
|
case VAL1 = -INF and VAL2 = -1 which overflows to +INF
|
| 2012 |
|
|
for division too. */
|
| 2013 |
|
|
|
| 2014 |
|
|
/* For multiplication, the sign of the overflow is given
|
| 2015 |
|
|
by the comparison of the signs of the operands. */
|
| 2016 |
|
|
if ((code == MULT_EXPR && sgn1 == sgn2)
|
| 2017 |
|
|
/* For addition, the operands must be of the same sign
|
| 2018 |
|
|
to yield an overflow. Its sign is therefore that
|
| 2019 |
|
|
of one of the operands, for example the first. For
|
| 2020 |
|
|
infinite operands X + -INF is negative, not positive. */
|
| 2021 |
|
|
|| (code == PLUS_EXPR
|
| 2022 |
|
|
&& (sgn1 >= 0
|
| 2023 |
|
|
? !is_negative_overflow_infinity (val2)
|
| 2024 |
|
|
: is_positive_overflow_infinity (val2)))
|
| 2025 |
|
|
/* For subtraction, non-infinite operands must be of
|
| 2026 |
|
|
different signs to yield an overflow. Its sign is
|
| 2027 |
|
|
therefore that of the first operand or the opposite of
|
| 2028 |
|
|
that of the second operand. A first operand of 0 counts
|
| 2029 |
|
|
as positive here, for the corner case 0 - (-INF), which
|
| 2030 |
|
|
overflows, but must yield +INF. For infinite operands 0
|
| 2031 |
|
|
- INF is negative, not positive. */
|
| 2032 |
|
|
|| (code == MINUS_EXPR
|
| 2033 |
|
|
&& (sgn1 >= 0
|
| 2034 |
|
|
? !is_positive_overflow_infinity (val2)
|
| 2035 |
|
|
: is_negative_overflow_infinity (val2)))
|
| 2036 |
|
|
/* We only get in here with positive shift count, so the
|
| 2037 |
|
|
overflow direction is the same as the sign of val1.
|
| 2038 |
|
|
Actually rshift does not overflow at all, but we only
|
| 2039 |
|
|
handle the case of shifting overflowed -INF and +INF. */
|
| 2040 |
|
|
|| (code == RSHIFT_EXPR
|
| 2041 |
|
|
&& sgn1 >= 0)
|
| 2042 |
|
|
/* For division, the only case is -INF / -1 = +INF. */
|
| 2043 |
|
|
|| code == TRUNC_DIV_EXPR
|
| 2044 |
|
|
|| code == FLOOR_DIV_EXPR
|
| 2045 |
|
|
|| code == CEIL_DIV_EXPR
|
| 2046 |
|
|
|| code == EXACT_DIV_EXPR
|
| 2047 |
|
|
|| code == ROUND_DIV_EXPR)
|
| 2048 |
|
|
return (needs_overflow_infinity (TREE_TYPE (res))
|
| 2049 |
|
|
? positive_overflow_infinity (TREE_TYPE (res))
|
| 2050 |
|
|
: TYPE_MAX_VALUE (TREE_TYPE (res)));
|
| 2051 |
|
|
else
|
| 2052 |
|
|
return (needs_overflow_infinity (TREE_TYPE (res))
|
| 2053 |
|
|
? negative_overflow_infinity (TREE_TYPE (res))
|
| 2054 |
|
|
: TYPE_MIN_VALUE (TREE_TYPE (res)));
|
| 2055 |
|
|
}
|
| 2056 |
|
|
|
| 2057 |
|
|
return res;
|
| 2058 |
|
|
}
|
| 2059 |
|
|
|
| 2060 |
|
|
|
| 2061 |
|
|
/* Extract range information from a binary expression EXPR based on
|
| 2062 |
|
|
the ranges of each of its operands and the expression code. */
|
| 2063 |
|
|
|
| 2064 |
|
|
static void
|
| 2065 |
|
|
extract_range_from_binary_expr (value_range_t *vr,
|
| 2066 |
|
|
enum tree_code code,
|
| 2067 |
|
|
tree expr_type, tree op0, tree op1)
|
| 2068 |
|
|
{
|
| 2069 |
|
|
enum value_range_type type;
|
| 2070 |
|
|
tree min, max;
|
| 2071 |
|
|
int cmp;
|
| 2072 |
|
|
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
| 2073 |
|
|
value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
| 2074 |
|
|
|
| 2075 |
|
|
/* Not all binary expressions can be applied to ranges in a
|
| 2076 |
|
|
meaningful way. Handle only arithmetic operations. */
|
| 2077 |
|
|
if (code != PLUS_EXPR
|
| 2078 |
|
|
&& code != MINUS_EXPR
|
| 2079 |
|
|
&& code != POINTER_PLUS_EXPR
|
| 2080 |
|
|
&& code != MULT_EXPR
|
| 2081 |
|
|
&& code != TRUNC_DIV_EXPR
|
| 2082 |
|
|
&& code != FLOOR_DIV_EXPR
|
| 2083 |
|
|
&& code != CEIL_DIV_EXPR
|
| 2084 |
|
|
&& code != EXACT_DIV_EXPR
|
| 2085 |
|
|
&& code != ROUND_DIV_EXPR
|
| 2086 |
|
|
&& code != TRUNC_MOD_EXPR
|
| 2087 |
|
|
&& code != RSHIFT_EXPR
|
| 2088 |
|
|
&& code != MIN_EXPR
|
| 2089 |
|
|
&& code != MAX_EXPR
|
| 2090 |
|
|
&& code != BIT_AND_EXPR
|
| 2091 |
|
|
&& code != BIT_IOR_EXPR
|
| 2092 |
|
|
&& code != TRUTH_AND_EXPR
|
| 2093 |
|
|
&& code != TRUTH_OR_EXPR)
|
| 2094 |
|
|
{
|
| 2095 |
|
|
/* We can still do constant propagation here. */
|
| 2096 |
|
|
tree const_op0 = op_with_constant_singleton_value_range (op0);
|
| 2097 |
|
|
tree const_op1 = op_with_constant_singleton_value_range (op1);
|
| 2098 |
|
|
if (const_op0 || const_op1)
|
| 2099 |
|
|
{
|
| 2100 |
|
|
tree tem = fold_binary (code, expr_type,
|
| 2101 |
|
|
const_op0 ? const_op0 : op0,
|
| 2102 |
|
|
const_op1 ? const_op1 : op1);
|
| 2103 |
|
|
if (tem
|
| 2104 |
|
|
&& is_gimple_min_invariant (tem)
|
| 2105 |
|
|
&& !is_overflow_infinity (tem))
|
| 2106 |
|
|
{
|
| 2107 |
|
|
set_value_range (vr, VR_RANGE, tem, tem, NULL);
|
| 2108 |
|
|
return;
|
| 2109 |
|
|
}
|
| 2110 |
|
|
}
|
| 2111 |
|
|
set_value_range_to_varying (vr);
|
| 2112 |
|
|
return;
|
| 2113 |
|
|
}
|
| 2114 |
|
|
|
| 2115 |
|
|
/* Get value ranges for each operand. For constant operands, create
|
| 2116 |
|
|
a new value range with the operand to simplify processing. */
|
| 2117 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
| 2118 |
|
|
vr0 = *(get_value_range (op0));
|
| 2119 |
|
|
else if (is_gimple_min_invariant (op0))
|
| 2120 |
|
|
set_value_range_to_value (&vr0, op0, NULL);
|
| 2121 |
|
|
else
|
| 2122 |
|
|
set_value_range_to_varying (&vr0);
|
| 2123 |
|
|
|
| 2124 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
| 2125 |
|
|
vr1 = *(get_value_range (op1));
|
| 2126 |
|
|
else if (is_gimple_min_invariant (op1))
|
| 2127 |
|
|
set_value_range_to_value (&vr1, op1, NULL);
|
| 2128 |
|
|
else
|
| 2129 |
|
|
set_value_range_to_varying (&vr1);
|
| 2130 |
|
|
|
| 2131 |
|
|
/* If either range is UNDEFINED, so is the result. */
|
| 2132 |
|
|
if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
|
| 2133 |
|
|
{
|
| 2134 |
|
|
set_value_range_to_undefined (vr);
|
| 2135 |
|
|
return;
|
| 2136 |
|
|
}
|
| 2137 |
|
|
|
| 2138 |
|
|
/* The type of the resulting value range defaults to VR0.TYPE. */
|
| 2139 |
|
|
type = vr0.type;
|
| 2140 |
|
|
|
| 2141 |
|
|
/* Refuse to operate on VARYING ranges, ranges of different kinds
|
| 2142 |
|
|
and symbolic ranges. As an exception, we allow BIT_AND_EXPR
|
| 2143 |
|
|
because we may be able to derive a useful range even if one of
|
| 2144 |
|
|
the operands is VR_VARYING or symbolic range. Similarly for
|
| 2145 |
|
|
divisions. TODO, we may be able to derive anti-ranges in
|
| 2146 |
|
|
some cases. */
|
| 2147 |
|
|
if (code != BIT_AND_EXPR
|
| 2148 |
|
|
&& code != TRUTH_AND_EXPR
|
| 2149 |
|
|
&& code != TRUTH_OR_EXPR
|
| 2150 |
|
|
&& code != TRUNC_DIV_EXPR
|
| 2151 |
|
|
&& code != FLOOR_DIV_EXPR
|
| 2152 |
|
|
&& code != CEIL_DIV_EXPR
|
| 2153 |
|
|
&& code != EXACT_DIV_EXPR
|
| 2154 |
|
|
&& code != ROUND_DIV_EXPR
|
| 2155 |
|
|
&& code != TRUNC_MOD_EXPR
|
| 2156 |
|
|
&& (vr0.type == VR_VARYING
|
| 2157 |
|
|
|| vr1.type == VR_VARYING
|
| 2158 |
|
|
|| vr0.type != vr1.type
|
| 2159 |
|
|
|| symbolic_range_p (&vr0)
|
| 2160 |
|
|
|| symbolic_range_p (&vr1)))
|
| 2161 |
|
|
{
|
| 2162 |
|
|
set_value_range_to_varying (vr);
|
| 2163 |
|
|
return;
|
| 2164 |
|
|
}
|
| 2165 |
|
|
|
| 2166 |
|
|
/* Now evaluate the expression to determine the new range. */
|
| 2167 |
|
|
if (POINTER_TYPE_P (expr_type)
|
| 2168 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (op0))
|
| 2169 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (op1)))
|
| 2170 |
|
|
{
|
| 2171 |
|
|
if (code == MIN_EXPR || code == MAX_EXPR)
|
| 2172 |
|
|
{
|
| 2173 |
|
|
/* For MIN/MAX expressions with pointers, we only care about
|
| 2174 |
|
|
nullness, if both are non null, then the result is nonnull.
|
| 2175 |
|
|
If both are null, then the result is null. Otherwise they
|
| 2176 |
|
|
are varying. */
|
| 2177 |
|
|
if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
|
| 2178 |
|
|
set_value_range_to_nonnull (vr, expr_type);
|
| 2179 |
|
|
else if (range_is_null (&vr0) && range_is_null (&vr1))
|
| 2180 |
|
|
set_value_range_to_null (vr, expr_type);
|
| 2181 |
|
|
else
|
| 2182 |
|
|
set_value_range_to_varying (vr);
|
| 2183 |
|
|
|
| 2184 |
|
|
return;
|
| 2185 |
|
|
}
|
| 2186 |
|
|
gcc_assert (code == POINTER_PLUS_EXPR);
|
| 2187 |
|
|
/* For pointer types, we are really only interested in asserting
|
| 2188 |
|
|
whether the expression evaluates to non-NULL. */
|
| 2189 |
|
|
if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
|
| 2190 |
|
|
set_value_range_to_nonnull (vr, expr_type);
|
| 2191 |
|
|
else if (range_is_null (&vr0) && range_is_null (&vr1))
|
| 2192 |
|
|
set_value_range_to_null (vr, expr_type);
|
| 2193 |
|
|
else
|
| 2194 |
|
|
set_value_range_to_varying (vr);
|
| 2195 |
|
|
|
| 2196 |
|
|
return;
|
| 2197 |
|
|
}
|
| 2198 |
|
|
|
| 2199 |
|
|
/* For integer ranges, apply the operation to each end of the
|
| 2200 |
|
|
range and see what we end up with. */
|
| 2201 |
|
|
if (code == TRUTH_AND_EXPR
|
| 2202 |
|
|
|| code == TRUTH_OR_EXPR)
|
| 2203 |
|
|
{
|
| 2204 |
|
|
/* If one of the operands is zero, we know that the whole
|
| 2205 |
|
|
expression evaluates zero. */
|
| 2206 |
|
|
if (code == TRUTH_AND_EXPR
|
| 2207 |
|
|
&& ((vr0.type == VR_RANGE
|
| 2208 |
|
|
&& integer_zerop (vr0.min)
|
| 2209 |
|
|
&& integer_zerop (vr0.max))
|
| 2210 |
|
|
|| (vr1.type == VR_RANGE
|
| 2211 |
|
|
&& integer_zerop (vr1.min)
|
| 2212 |
|
|
&& integer_zerop (vr1.max))))
|
| 2213 |
|
|
{
|
| 2214 |
|
|
type = VR_RANGE;
|
| 2215 |
|
|
min = max = build_int_cst (expr_type, 0);
|
| 2216 |
|
|
}
|
| 2217 |
|
|
/* If one of the operands is one, we know that the whole
|
| 2218 |
|
|
expression evaluates one. */
|
| 2219 |
|
|
else if (code == TRUTH_OR_EXPR
|
| 2220 |
|
|
&& ((vr0.type == VR_RANGE
|
| 2221 |
|
|
&& integer_onep (vr0.min)
|
| 2222 |
|
|
&& integer_onep (vr0.max))
|
| 2223 |
|
|
|| (vr1.type == VR_RANGE
|
| 2224 |
|
|
&& integer_onep (vr1.min)
|
| 2225 |
|
|
&& integer_onep (vr1.max))))
|
| 2226 |
|
|
{
|
| 2227 |
|
|
type = VR_RANGE;
|
| 2228 |
|
|
min = max = build_int_cst (expr_type, 1);
|
| 2229 |
|
|
}
|
| 2230 |
|
|
else if (vr0.type != VR_VARYING
|
| 2231 |
|
|
&& vr1.type != VR_VARYING
|
| 2232 |
|
|
&& vr0.type == vr1.type
|
| 2233 |
|
|
&& !symbolic_range_p (&vr0)
|
| 2234 |
|
|
&& !overflow_infinity_range_p (&vr0)
|
| 2235 |
|
|
&& !symbolic_range_p (&vr1)
|
| 2236 |
|
|
&& !overflow_infinity_range_p (&vr1))
|
| 2237 |
|
|
{
|
| 2238 |
|
|
/* Boolean expressions cannot be folded with int_const_binop. */
|
| 2239 |
|
|
min = fold_binary (code, expr_type, vr0.min, vr1.min);
|
| 2240 |
|
|
max = fold_binary (code, expr_type, vr0.max, vr1.max);
|
| 2241 |
|
|
}
|
| 2242 |
|
|
else
|
| 2243 |
|
|
{
|
| 2244 |
|
|
/* The result of a TRUTH_*_EXPR is always true or false. */
|
| 2245 |
|
|
set_value_range_to_truthvalue (vr, expr_type);
|
| 2246 |
|
|
return;
|
| 2247 |
|
|
}
|
| 2248 |
|
|
}
|
| 2249 |
|
|
else if (code == PLUS_EXPR
|
| 2250 |
|
|
|| code == MIN_EXPR
|
| 2251 |
|
|
|| code == MAX_EXPR)
|
| 2252 |
|
|
{
|
| 2253 |
|
|
/* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
|
| 2254 |
|
|
VR_VARYING. It would take more effort to compute a precise
|
| 2255 |
|
|
range for such a case. For example, if we have op0 == 1 and
|
| 2256 |
|
|
op1 == -1 with their ranges both being ~[0,0], we would have
|
| 2257 |
|
|
op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
|
| 2258 |
|
|
Note that we are guaranteed to have vr0.type == vr1.type at
|
| 2259 |
|
|
this point. */
|
| 2260 |
|
|
if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
|
| 2261 |
|
|
{
|
| 2262 |
|
|
set_value_range_to_varying (vr);
|
| 2263 |
|
|
return;
|
| 2264 |
|
|
}
|
| 2265 |
|
|
|
| 2266 |
|
|
/* For operations that make the resulting range directly
|
| 2267 |
|
|
proportional to the original ranges, apply the operation to
|
| 2268 |
|
|
the same end of each range. */
|
| 2269 |
|
|
min = vrp_int_const_binop (code, vr0.min, vr1.min);
|
| 2270 |
|
|
max = vrp_int_const_binop (code, vr0.max, vr1.max);
|
| 2271 |
|
|
|
| 2272 |
|
|
/* If both additions overflowed the range kind is still correct.
|
| 2273 |
|
|
This happens regularly with subtracting something in unsigned
|
| 2274 |
|
|
arithmetic.
|
| 2275 |
|
|
??? See PR30318 for all the cases we do not handle. */
|
| 2276 |
|
|
if (code == PLUS_EXPR
|
| 2277 |
|
|
&& (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
|
| 2278 |
|
|
&& (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
|
| 2279 |
|
|
{
|
| 2280 |
|
|
min = build_int_cst_wide (TREE_TYPE (min),
|
| 2281 |
|
|
TREE_INT_CST_LOW (min),
|
| 2282 |
|
|
TREE_INT_CST_HIGH (min));
|
| 2283 |
|
|
max = build_int_cst_wide (TREE_TYPE (max),
|
| 2284 |
|
|
TREE_INT_CST_LOW (max),
|
| 2285 |
|
|
TREE_INT_CST_HIGH (max));
|
| 2286 |
|
|
}
|
| 2287 |
|
|
}
|
| 2288 |
|
|
else if (code == MULT_EXPR
|
| 2289 |
|
|
|| code == TRUNC_DIV_EXPR
|
| 2290 |
|
|
|| code == FLOOR_DIV_EXPR
|
| 2291 |
|
|
|| code == CEIL_DIV_EXPR
|
| 2292 |
|
|
|| code == EXACT_DIV_EXPR
|
| 2293 |
|
|
|| code == ROUND_DIV_EXPR
|
| 2294 |
|
|
|| code == RSHIFT_EXPR)
|
| 2295 |
|
|
{
|
| 2296 |
|
|
tree val[4];
|
| 2297 |
|
|
size_t i;
|
| 2298 |
|
|
bool sop;
|
| 2299 |
|
|
|
| 2300 |
|
|
/* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
|
| 2301 |
|
|
drop to VR_VARYING. It would take more effort to compute a
|
| 2302 |
|
|
precise range for such a case. For example, if we have
|
| 2303 |
|
|
op0 == 65536 and op1 == 65536 with their ranges both being
|
| 2304 |
|
|
~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
|
| 2305 |
|
|
we cannot claim that the product is in ~[0,0]. Note that we
|
| 2306 |
|
|
are guaranteed to have vr0.type == vr1.type at this
|
| 2307 |
|
|
point. */
|
| 2308 |
|
|
if (code == MULT_EXPR
|
| 2309 |
|
|
&& vr0.type == VR_ANTI_RANGE
|
| 2310 |
|
|
&& !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
|
| 2311 |
|
|
{
|
| 2312 |
|
|
set_value_range_to_varying (vr);
|
| 2313 |
|
|
return;
|
| 2314 |
|
|
}
|
| 2315 |
|
|
|
| 2316 |
|
|
/* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
|
| 2317 |
|
|
then drop to VR_VARYING. Outside of this range we get undefined
|
| 2318 |
|
|
behavior from the shift operation. We cannot even trust
|
| 2319 |
|
|
SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
|
| 2320 |
|
|
shifts, and the operation at the tree level may be widened. */
|
| 2321 |
|
|
if (code == RSHIFT_EXPR)
|
| 2322 |
|
|
{
|
| 2323 |
|
|
if (vr1.type == VR_ANTI_RANGE
|
| 2324 |
|
|
|| !vrp_expr_computes_nonnegative (op1, &sop)
|
| 2325 |
|
|
|| (operand_less_p
|
| 2326 |
|
|
(build_int_cst (TREE_TYPE (vr1.max),
|
| 2327 |
|
|
TYPE_PRECISION (expr_type) - 1),
|
| 2328 |
|
|
vr1.max) != 0))
|
| 2329 |
|
|
{
|
| 2330 |
|
|
set_value_range_to_varying (vr);
|
| 2331 |
|
|
return;
|
| 2332 |
|
|
}
|
| 2333 |
|
|
}
|
| 2334 |
|
|
|
| 2335 |
|
|
else if ((code == TRUNC_DIV_EXPR
|
| 2336 |
|
|
|| code == FLOOR_DIV_EXPR
|
| 2337 |
|
|
|| code == CEIL_DIV_EXPR
|
| 2338 |
|
|
|| code == EXACT_DIV_EXPR
|
| 2339 |
|
|
|| code == ROUND_DIV_EXPR)
|
| 2340 |
|
|
&& (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
|
| 2341 |
|
|
{
|
| 2342 |
|
|
/* For division, if op1 has VR_RANGE but op0 does not, something
|
| 2343 |
|
|
can be deduced just from that range. Say [min, max] / [4, max]
|
| 2344 |
|
|
gives [min / 4, max / 4] range. */
|
| 2345 |
|
|
if (vr1.type == VR_RANGE
|
| 2346 |
|
|
&& !symbolic_range_p (&vr1)
|
| 2347 |
|
|
&& !range_includes_zero_p (&vr1))
|
| 2348 |
|
|
{
|
| 2349 |
|
|
vr0.type = type = VR_RANGE;
|
| 2350 |
|
|
vr0.min = vrp_val_min (TREE_TYPE (op0));
|
| 2351 |
|
|
vr0.max = vrp_val_max (TREE_TYPE (op1));
|
| 2352 |
|
|
}
|
| 2353 |
|
|
else
|
| 2354 |
|
|
{
|
| 2355 |
|
|
set_value_range_to_varying (vr);
|
| 2356 |
|
|
return;
|
| 2357 |
|
|
}
|
| 2358 |
|
|
}
|
| 2359 |
|
|
|
| 2360 |
|
|
/* For divisions, if op0 is VR_RANGE, we can deduce a range
|
| 2361 |
|
|
even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
|
| 2362 |
|
|
include 0. */
|
| 2363 |
|
|
if ((code == TRUNC_DIV_EXPR
|
| 2364 |
|
|
|| code == FLOOR_DIV_EXPR
|
| 2365 |
|
|
|| code == CEIL_DIV_EXPR
|
| 2366 |
|
|
|| code == EXACT_DIV_EXPR
|
| 2367 |
|
|
|| code == ROUND_DIV_EXPR)
|
| 2368 |
|
|
&& vr0.type == VR_RANGE
|
| 2369 |
|
|
&& (vr1.type != VR_RANGE
|
| 2370 |
|
|
|| symbolic_range_p (&vr1)
|
| 2371 |
|
|
|| range_includes_zero_p (&vr1)))
|
| 2372 |
|
|
{
|
| 2373 |
|
|
tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
|
| 2374 |
|
|
int cmp;
|
| 2375 |
|
|
|
| 2376 |
|
|
sop = false;
|
| 2377 |
|
|
min = NULL_TREE;
|
| 2378 |
|
|
max = NULL_TREE;
|
| 2379 |
|
|
if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
|
| 2380 |
|
|
{
|
| 2381 |
|
|
/* For unsigned division or when divisor is known
|
| 2382 |
|
|
to be non-negative, the range has to cover
|
| 2383 |
|
|
all numbers from 0 to max for positive max
|
| 2384 |
|
|
and all numbers from min to 0 for negative min. */
|
| 2385 |
|
|
cmp = compare_values (vr0.max, zero);
|
| 2386 |
|
|
if (cmp == -1)
|
| 2387 |
|
|
max = zero;
|
| 2388 |
|
|
else if (cmp == 0 || cmp == 1)
|
| 2389 |
|
|
max = vr0.max;
|
| 2390 |
|
|
else
|
| 2391 |
|
|
type = VR_VARYING;
|
| 2392 |
|
|
cmp = compare_values (vr0.min, zero);
|
| 2393 |
|
|
if (cmp == 1)
|
| 2394 |
|
|
min = zero;
|
| 2395 |
|
|
else if (cmp == 0 || cmp == -1)
|
| 2396 |
|
|
min = vr0.min;
|
| 2397 |
|
|
else
|
| 2398 |
|
|
type = VR_VARYING;
|
| 2399 |
|
|
}
|
| 2400 |
|
|
else
|
| 2401 |
|
|
{
|
| 2402 |
|
|
/* Otherwise the range is -max .. max or min .. -min
|
| 2403 |
|
|
depending on which bound is bigger in absolute value,
|
| 2404 |
|
|
as the division can change the sign. */
|
| 2405 |
|
|
abs_extent_range (vr, vr0.min, vr0.max);
|
| 2406 |
|
|
return;
|
| 2407 |
|
|
}
|
| 2408 |
|
|
if (type == VR_VARYING)
|
| 2409 |
|
|
{
|
| 2410 |
|
|
set_value_range_to_varying (vr);
|
| 2411 |
|
|
return;
|
| 2412 |
|
|
}
|
| 2413 |
|
|
}
|
| 2414 |
|
|
|
| 2415 |
|
|
/* Multiplications and divisions are a bit tricky to handle,
|
| 2416 |
|
|
depending on the mix of signs we have in the two ranges, we
|
| 2417 |
|
|
need to operate on different values to get the minimum and
|
| 2418 |
|
|
maximum values for the new range. One approach is to figure
|
| 2419 |
|
|
out all the variations of range combinations and do the
|
| 2420 |
|
|
operations.
|
| 2421 |
|
|
|
| 2422 |
|
|
However, this involves several calls to compare_values and it
|
| 2423 |
|
|
is pretty convoluted. It's simpler to do the 4 operations
|
| 2424 |
|
|
(MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
|
| 2425 |
|
|
MAX1) and then figure the smallest and largest values to form
|
| 2426 |
|
|
the new range. */
|
| 2427 |
|
|
else
|
| 2428 |
|
|
{
|
| 2429 |
|
|
gcc_assert ((vr0.type == VR_RANGE
|
| 2430 |
|
|
|| (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
|
| 2431 |
|
|
&& vr0.type == vr1.type);
|
| 2432 |
|
|
|
| 2433 |
|
|
/* Compute the 4 cross operations. */
|
| 2434 |
|
|
sop = false;
|
| 2435 |
|
|
val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
|
| 2436 |
|
|
if (val[0] == NULL_TREE)
|
| 2437 |
|
|
sop = true;
|
| 2438 |
|
|
|
| 2439 |
|
|
if (vr1.max == vr1.min)
|
| 2440 |
|
|
val[1] = NULL_TREE;
|
| 2441 |
|
|
else
|
| 2442 |
|
|
{
|
| 2443 |
|
|
val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
|
| 2444 |
|
|
if (val[1] == NULL_TREE)
|
| 2445 |
|
|
sop = true;
|
| 2446 |
|
|
}
|
| 2447 |
|
|
|
| 2448 |
|
|
if (vr0.max == vr0.min)
|
| 2449 |
|
|
val[2] = NULL_TREE;
|
| 2450 |
|
|
else
|
| 2451 |
|
|
{
|
| 2452 |
|
|
val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
|
| 2453 |
|
|
if (val[2] == NULL_TREE)
|
| 2454 |
|
|
sop = true;
|
| 2455 |
|
|
}
|
| 2456 |
|
|
|
| 2457 |
|
|
if (vr0.min == vr0.max || vr1.min == vr1.max)
|
| 2458 |
|
|
val[3] = NULL_TREE;
|
| 2459 |
|
|
else
|
| 2460 |
|
|
{
|
| 2461 |
|
|
val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
|
| 2462 |
|
|
if (val[3] == NULL_TREE)
|
| 2463 |
|
|
sop = true;
|
| 2464 |
|
|
}
|
| 2465 |
|
|
|
| 2466 |
|
|
if (sop)
|
| 2467 |
|
|
{
|
| 2468 |
|
|
set_value_range_to_varying (vr);
|
| 2469 |
|
|
return;
|
| 2470 |
|
|
}
|
| 2471 |
|
|
|
| 2472 |
|
|
/* Set MIN to the minimum of VAL[i] and MAX to the maximum
|
| 2473 |
|
|
of VAL[i]. */
|
| 2474 |
|
|
min = val[0];
|
| 2475 |
|
|
max = val[0];
|
| 2476 |
|
|
for (i = 1; i < 4; i++)
|
| 2477 |
|
|
{
|
| 2478 |
|
|
if (!is_gimple_min_invariant (min)
|
| 2479 |
|
|
|| (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
|
| 2480 |
|
|
|| !is_gimple_min_invariant (max)
|
| 2481 |
|
|
|| (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
|
| 2482 |
|
|
break;
|
| 2483 |
|
|
|
| 2484 |
|
|
if (val[i])
|
| 2485 |
|
|
{
|
| 2486 |
|
|
if (!is_gimple_min_invariant (val[i])
|
| 2487 |
|
|
|| (TREE_OVERFLOW (val[i])
|
| 2488 |
|
|
&& !is_overflow_infinity (val[i])))
|
| 2489 |
|
|
{
|
| 2490 |
|
|
/* If we found an overflowed value, set MIN and MAX
|
| 2491 |
|
|
to it so that we set the resulting range to
|
| 2492 |
|
|
VARYING. */
|
| 2493 |
|
|
min = max = val[i];
|
| 2494 |
|
|
break;
|
| 2495 |
|
|
}
|
| 2496 |
|
|
|
| 2497 |
|
|
if (compare_values (val[i], min) == -1)
|
| 2498 |
|
|
min = val[i];
|
| 2499 |
|
|
|
| 2500 |
|
|
if (compare_values (val[i], max) == 1)
|
| 2501 |
|
|
max = val[i];
|
| 2502 |
|
|
}
|
| 2503 |
|
|
}
|
| 2504 |
|
|
}
|
| 2505 |
|
|
}
|
| 2506 |
|
|
else if (code == TRUNC_MOD_EXPR)
|
| 2507 |
|
|
{
|
| 2508 |
|
|
bool sop = false;
|
| 2509 |
|
|
if (vr1.type != VR_RANGE
|
| 2510 |
|
|
|| symbolic_range_p (&vr1)
|
| 2511 |
|
|
|| range_includes_zero_p (&vr1)
|
| 2512 |
|
|
|| vrp_val_is_min (vr1.min))
|
| 2513 |
|
|
{
|
| 2514 |
|
|
set_value_range_to_varying (vr);
|
| 2515 |
|
|
return;
|
| 2516 |
|
|
}
|
| 2517 |
|
|
type = VR_RANGE;
|
| 2518 |
|
|
/* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
|
| 2519 |
|
|
max = fold_unary_to_constant (ABS_EXPR, TREE_TYPE (vr1.min), vr1.min);
|
| 2520 |
|
|
if (tree_int_cst_lt (max, vr1.max))
|
| 2521 |
|
|
max = vr1.max;
|
| 2522 |
|
|
max = int_const_binop (MINUS_EXPR, max, integer_one_node, 0);
|
| 2523 |
|
|
/* If the dividend is non-negative the modulus will be
|
| 2524 |
|
|
non-negative as well. */
|
| 2525 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (max))
|
| 2526 |
|
|
|| (vrp_expr_computes_nonnegative (op0, &sop) && !sop))
|
| 2527 |
|
|
min = build_int_cst (TREE_TYPE (max), 0);
|
| 2528 |
|
|
else
|
| 2529 |
|
|
min = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (max), max);
|
| 2530 |
|
|
}
|
| 2531 |
|
|
else if (code == MINUS_EXPR)
|
| 2532 |
|
|
{
|
| 2533 |
|
|
/* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
|
| 2534 |
|
|
VR_VARYING. It would take more effort to compute a precise
|
| 2535 |
|
|
range for such a case. For example, if we have op0 == 1 and
|
| 2536 |
|
|
op1 == 1 with their ranges both being ~[0,0], we would have
|
| 2537 |
|
|
op0 - op1 == 0, so we cannot claim that the difference is in
|
| 2538 |
|
|
~[0,0]. Note that we are guaranteed to have
|
| 2539 |
|
|
vr0.type == vr1.type at this point. */
|
| 2540 |
|
|
if (vr0.type == VR_ANTI_RANGE)
|
| 2541 |
|
|
{
|
| 2542 |
|
|
set_value_range_to_varying (vr);
|
| 2543 |
|
|
return;
|
| 2544 |
|
|
}
|
| 2545 |
|
|
|
| 2546 |
|
|
/* For MINUS_EXPR, apply the operation to the opposite ends of
|
| 2547 |
|
|
each range. */
|
| 2548 |
|
|
min = vrp_int_const_binop (code, vr0.min, vr1.max);
|
| 2549 |
|
|
max = vrp_int_const_binop (code, vr0.max, vr1.min);
|
| 2550 |
|
|
}
|
| 2551 |
|
|
else if (code == BIT_AND_EXPR)
|
| 2552 |
|
|
{
|
| 2553 |
|
|
bool vr0_int_cst_singleton_p, vr1_int_cst_singleton_p;
|
| 2554 |
|
|
|
| 2555 |
|
|
vr0_int_cst_singleton_p = range_int_cst_singleton_p (&vr0);
|
| 2556 |
|
|
vr1_int_cst_singleton_p = range_int_cst_singleton_p (&vr1);
|
| 2557 |
|
|
|
| 2558 |
|
|
if (vr0_int_cst_singleton_p && vr1_int_cst_singleton_p)
|
| 2559 |
|
|
min = max = int_const_binop (code, vr0.max, vr1.max, 0);
|
| 2560 |
|
|
else if (vr0_int_cst_singleton_p
|
| 2561 |
|
|
&& tree_int_cst_sgn (vr0.max) >= 0)
|
| 2562 |
|
|
{
|
| 2563 |
|
|
min = build_int_cst (expr_type, 0);
|
| 2564 |
|
|
max = vr0.max;
|
| 2565 |
|
|
}
|
| 2566 |
|
|
else if (vr1_int_cst_singleton_p
|
| 2567 |
|
|
&& tree_int_cst_sgn (vr1.max) >= 0)
|
| 2568 |
|
|
{
|
| 2569 |
|
|
type = VR_RANGE;
|
| 2570 |
|
|
min = build_int_cst (expr_type, 0);
|
| 2571 |
|
|
max = vr1.max;
|
| 2572 |
|
|
}
|
| 2573 |
|
|
else
|
| 2574 |
|
|
{
|
| 2575 |
|
|
set_value_range_to_varying (vr);
|
| 2576 |
|
|
return;
|
| 2577 |
|
|
}
|
| 2578 |
|
|
}
|
| 2579 |
|
|
else if (code == BIT_IOR_EXPR)
|
| 2580 |
|
|
{
|
| 2581 |
|
|
if (range_int_cst_p (&vr0)
|
| 2582 |
|
|
&& range_int_cst_p (&vr1)
|
| 2583 |
|
|
&& tree_int_cst_sgn (vr0.min) >= 0
|
| 2584 |
|
|
&& tree_int_cst_sgn (vr1.min) >= 0)
|
| 2585 |
|
|
{
|
| 2586 |
|
|
double_int vr0_max = tree_to_double_int (vr0.max);
|
| 2587 |
|
|
double_int vr1_max = tree_to_double_int (vr1.max);
|
| 2588 |
|
|
double_int ior_max;
|
| 2589 |
|
|
|
| 2590 |
|
|
/* Set all bits to the right of the most significant one to 1.
|
| 2591 |
|
|
For example, [0, 4] | [4, 4] = [4, 7]. */
|
| 2592 |
|
|
ior_max.low = vr0_max.low | vr1_max.low;
|
| 2593 |
|
|
ior_max.high = vr0_max.high | vr1_max.high;
|
| 2594 |
|
|
if (ior_max.high != 0)
|
| 2595 |
|
|
{
|
| 2596 |
|
|
ior_max.low = ~(unsigned HOST_WIDE_INT)0u;
|
| 2597 |
|
|
ior_max.high |= ((HOST_WIDE_INT) 1
|
| 2598 |
|
|
<< floor_log2 (ior_max.high)) - 1;
|
| 2599 |
|
|
}
|
| 2600 |
|
|
else if (ior_max.low != 0)
|
| 2601 |
|
|
ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
|
| 2602 |
|
|
<< floor_log2 (ior_max.low)) - 1;
|
| 2603 |
|
|
|
| 2604 |
|
|
/* Both of these endpoints are conservative. */
|
| 2605 |
|
|
min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
|
| 2606 |
|
|
max = double_int_to_tree (expr_type, ior_max);
|
| 2607 |
|
|
}
|
| 2608 |
|
|
else
|
| 2609 |
|
|
{
|
| 2610 |
|
|
set_value_range_to_varying (vr);
|
| 2611 |
|
|
return;
|
| 2612 |
|
|
}
|
| 2613 |
|
|
}
|
| 2614 |
|
|
else
|
| 2615 |
|
|
gcc_unreachable ();
|
| 2616 |
|
|
|
| 2617 |
|
|
/* If either MIN or MAX overflowed, then set the resulting range to
|
| 2618 |
|
|
VARYING. But we do accept an overflow infinity
|
| 2619 |
|
|
representation. */
|
| 2620 |
|
|
if (min == NULL_TREE
|
| 2621 |
|
|
|| !is_gimple_min_invariant (min)
|
| 2622 |
|
|
|| (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
|
| 2623 |
|
|
|| max == NULL_TREE
|
| 2624 |
|
|
|| !is_gimple_min_invariant (max)
|
| 2625 |
|
|
|| (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
|
| 2626 |
|
|
{
|
| 2627 |
|
|
set_value_range_to_varying (vr);
|
| 2628 |
|
|
return;
|
| 2629 |
|
|
}
|
| 2630 |
|
|
|
| 2631 |
|
|
/* We punt if:
|
| 2632 |
|
|
1) [-INF, +INF]
|
| 2633 |
|
|
2) [-INF, +-INF(OVF)]
|
| 2634 |
|
|
3) [+-INF(OVF), +INF]
|
| 2635 |
|
|
4) [+-INF(OVF), +-INF(OVF)]
|
| 2636 |
|
|
We learn nothing when we have INF and INF(OVF) on both sides.
|
| 2637 |
|
|
Note that we do accept [-INF, -INF] and [+INF, +INF] without
|
| 2638 |
|
|
overflow. */
|
| 2639 |
|
|
if ((vrp_val_is_min (min) || is_overflow_infinity (min))
|
| 2640 |
|
|
&& (vrp_val_is_max (max) || is_overflow_infinity (max)))
|
| 2641 |
|
|
{
|
| 2642 |
|
|
set_value_range_to_varying (vr);
|
| 2643 |
|
|
return;
|
| 2644 |
|
|
}
|
| 2645 |
|
|
|
| 2646 |
|
|
cmp = compare_values (min, max);
|
| 2647 |
|
|
if (cmp == -2 || cmp == 1)
|
| 2648 |
|
|
{
|
| 2649 |
|
|
/* If the new range has its limits swapped around (MIN > MAX),
|
| 2650 |
|
|
then the operation caused one of them to wrap around, mark
|
| 2651 |
|
|
the new range VARYING. */
|
| 2652 |
|
|
set_value_range_to_varying (vr);
|
| 2653 |
|
|
}
|
| 2654 |
|
|
else
|
| 2655 |
|
|
set_value_range (vr, type, min, max, NULL);
|
| 2656 |
|
|
}
|
| 2657 |
|
|
|
| 2658 |
|
|
|
| 2659 |
|
|
/* Extract range information from a unary expression EXPR based on
|
| 2660 |
|
|
the range of its operand and the expression code. */
|
| 2661 |
|
|
|
| 2662 |
|
|
static void
|
| 2663 |
|
|
extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
|
| 2664 |
|
|
tree type, tree op0)
|
| 2665 |
|
|
{
|
| 2666 |
|
|
tree min, max;
|
| 2667 |
|
|
int cmp;
|
| 2668 |
|
|
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
| 2669 |
|
|
|
| 2670 |
|
|
/* Refuse to operate on certain unary expressions for which we
|
| 2671 |
|
|
cannot easily determine a resulting range. */
|
| 2672 |
|
|
if (code == FIX_TRUNC_EXPR
|
| 2673 |
|
|
|| code == FLOAT_EXPR
|
| 2674 |
|
|
|| code == BIT_NOT_EXPR
|
| 2675 |
|
|
|| code == CONJ_EXPR)
|
| 2676 |
|
|
{
|
| 2677 |
|
|
/* We can still do constant propagation here. */
|
| 2678 |
|
|
if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
|
| 2679 |
|
|
{
|
| 2680 |
|
|
tree tem = fold_unary (code, type, op0);
|
| 2681 |
|
|
if (tem
|
| 2682 |
|
|
&& is_gimple_min_invariant (tem)
|
| 2683 |
|
|
&& !is_overflow_infinity (tem))
|
| 2684 |
|
|
{
|
| 2685 |
|
|
set_value_range (vr, VR_RANGE, tem, tem, NULL);
|
| 2686 |
|
|
return;
|
| 2687 |
|
|
}
|
| 2688 |
|
|
}
|
| 2689 |
|
|
set_value_range_to_varying (vr);
|
| 2690 |
|
|
return;
|
| 2691 |
|
|
}
|
| 2692 |
|
|
|
| 2693 |
|
|
/* Get value ranges for the operand. For constant operands, create
|
| 2694 |
|
|
a new value range with the operand to simplify processing. */
|
| 2695 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
| 2696 |
|
|
vr0 = *(get_value_range (op0));
|
| 2697 |
|
|
else if (is_gimple_min_invariant (op0))
|
| 2698 |
|
|
set_value_range_to_value (&vr0, op0, NULL);
|
| 2699 |
|
|
else
|
| 2700 |
|
|
set_value_range_to_varying (&vr0);
|
| 2701 |
|
|
|
| 2702 |
|
|
/* If VR0 is UNDEFINED, so is the result. */
|
| 2703 |
|
|
if (vr0.type == VR_UNDEFINED)
|
| 2704 |
|
|
{
|
| 2705 |
|
|
set_value_range_to_undefined (vr);
|
| 2706 |
|
|
return;
|
| 2707 |
|
|
}
|
| 2708 |
|
|
|
| 2709 |
|
|
/* Refuse to operate on symbolic ranges, or if neither operand is
|
| 2710 |
|
|
a pointer or integral type. */
|
| 2711 |
|
|
if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
|
| 2712 |
|
|
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
|
| 2713 |
|
|
|| (vr0.type != VR_VARYING
|
| 2714 |
|
|
&& symbolic_range_p (&vr0)))
|
| 2715 |
|
|
{
|
| 2716 |
|
|
set_value_range_to_varying (vr);
|
| 2717 |
|
|
return;
|
| 2718 |
|
|
}
|
| 2719 |
|
|
|
| 2720 |
|
|
/* If the expression involves pointers, we are only interested in
|
| 2721 |
|
|
determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
|
| 2722 |
|
|
if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
|
| 2723 |
|
|
{
|
| 2724 |
|
|
bool sop;
|
| 2725 |
|
|
|
| 2726 |
|
|
sop = false;
|
| 2727 |
|
|
if (range_is_nonnull (&vr0)
|
| 2728 |
|
|
|| (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
|
| 2729 |
|
|
&& !sop))
|
| 2730 |
|
|
set_value_range_to_nonnull (vr, type);
|
| 2731 |
|
|
else if (range_is_null (&vr0))
|
| 2732 |
|
|
set_value_range_to_null (vr, type);
|
| 2733 |
|
|
else
|
| 2734 |
|
|
set_value_range_to_varying (vr);
|
| 2735 |
|
|
|
| 2736 |
|
|
return;
|
| 2737 |
|
|
}
|
| 2738 |
|
|
|
| 2739 |
|
|
/* Handle unary expressions on integer ranges. */
|
| 2740 |
|
|
if (CONVERT_EXPR_CODE_P (code)
|
| 2741 |
|
|
&& INTEGRAL_TYPE_P (type)
|
| 2742 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (op0)))
|
| 2743 |
|
|
{
|
| 2744 |
|
|
tree inner_type = TREE_TYPE (op0);
|
| 2745 |
|
|
tree outer_type = type;
|
| 2746 |
|
|
|
| 2747 |
|
|
/* If VR0 is varying and we increase the type precision, assume
|
| 2748 |
|
|
a full range for the following transformation. */
|
| 2749 |
|
|
if (vr0.type == VR_VARYING
|
| 2750 |
|
|
&& TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
|
| 2751 |
|
|
{
|
| 2752 |
|
|
vr0.type = VR_RANGE;
|
| 2753 |
|
|
vr0.min = TYPE_MIN_VALUE (inner_type);
|
| 2754 |
|
|
vr0.max = TYPE_MAX_VALUE (inner_type);
|
| 2755 |
|
|
}
|
| 2756 |
|
|
|
| 2757 |
|
|
/* If VR0 is a constant range or anti-range and the conversion is
|
| 2758 |
|
|
not truncating we can convert the min and max values and
|
| 2759 |
|
|
canonicalize the resulting range. Otherwise we can do the
|
| 2760 |
|
|
conversion if the size of the range is less than what the
|
| 2761 |
|
|
precision of the target type can represent and the range is
|
| 2762 |
|
|
not an anti-range. */
|
| 2763 |
|
|
if ((vr0.type == VR_RANGE
|
| 2764 |
|
|
|| vr0.type == VR_ANTI_RANGE)
|
| 2765 |
|
|
&& TREE_CODE (vr0.min) == INTEGER_CST
|
| 2766 |
|
|
&& TREE_CODE (vr0.max) == INTEGER_CST
|
| 2767 |
|
|
&& (!is_overflow_infinity (vr0.min)
|
| 2768 |
|
|
|| (vr0.type == VR_RANGE
|
| 2769 |
|
|
&& TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
|
| 2770 |
|
|
&& needs_overflow_infinity (outer_type)
|
| 2771 |
|
|
&& supports_overflow_infinity (outer_type)))
|
| 2772 |
|
|
&& (!is_overflow_infinity (vr0.max)
|
| 2773 |
|
|
|| (vr0.type == VR_RANGE
|
| 2774 |
|
|
&& TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
|
| 2775 |
|
|
&& needs_overflow_infinity (outer_type)
|
| 2776 |
|
|
&& supports_overflow_infinity (outer_type)))
|
| 2777 |
|
|
&& (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
|
| 2778 |
|
|
|| (vr0.type == VR_RANGE
|
| 2779 |
|
|
&& integer_zerop (int_const_binop (RSHIFT_EXPR,
|
| 2780 |
|
|
int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
|
| 2781 |
|
|
size_int (TYPE_PRECISION (outer_type)), 0)))))
|
| 2782 |
|
|
{
|
| 2783 |
|
|
tree new_min, new_max;
|
| 2784 |
|
|
new_min = force_fit_type_double (outer_type,
|
| 2785 |
|
|
TREE_INT_CST_LOW (vr0.min),
|
| 2786 |
|
|
TREE_INT_CST_HIGH (vr0.min), 0, 0);
|
| 2787 |
|
|
new_max = force_fit_type_double (outer_type,
|
| 2788 |
|
|
TREE_INT_CST_LOW (vr0.max),
|
| 2789 |
|
|
TREE_INT_CST_HIGH (vr0.max), 0, 0);
|
| 2790 |
|
|
if (is_overflow_infinity (vr0.min))
|
| 2791 |
|
|
new_min = negative_overflow_infinity (outer_type);
|
| 2792 |
|
|
if (is_overflow_infinity (vr0.max))
|
| 2793 |
|
|
new_max = positive_overflow_infinity (outer_type);
|
| 2794 |
|
|
set_and_canonicalize_value_range (vr, vr0.type,
|
| 2795 |
|
|
new_min, new_max, NULL);
|
| 2796 |
|
|
return;
|
| 2797 |
|
|
}
|
| 2798 |
|
|
|
| 2799 |
|
|
set_value_range_to_varying (vr);
|
| 2800 |
|
|
return;
|
| 2801 |
|
|
}
|
| 2802 |
|
|
|
| 2803 |
|
|
/* Conversion of a VR_VARYING value to a wider type can result
|
| 2804 |
|
|
in a usable range. So wait until after we've handled conversions
|
| 2805 |
|
|
before dropping the result to VR_VARYING if we had a source
|
| 2806 |
|
|
operand that is VR_VARYING. */
|
| 2807 |
|
|
if (vr0.type == VR_VARYING)
|
| 2808 |
|
|
{
|
| 2809 |
|
|
set_value_range_to_varying (vr);
|
| 2810 |
|
|
return;
|
| 2811 |
|
|
}
|
| 2812 |
|
|
|
| 2813 |
|
|
/* Apply the operation to each end of the range and see what we end
|
| 2814 |
|
|
up with. */
|
| 2815 |
|
|
if (code == NEGATE_EXPR
|
| 2816 |
|
|
&& !TYPE_UNSIGNED (type))
|
| 2817 |
|
|
{
|
| 2818 |
|
|
/* NEGATE_EXPR flips the range around. We need to treat
|
| 2819 |
|
|
TYPE_MIN_VALUE specially. */
|
| 2820 |
|
|
if (is_positive_overflow_infinity (vr0.max))
|
| 2821 |
|
|
min = negative_overflow_infinity (type);
|
| 2822 |
|
|
else if (is_negative_overflow_infinity (vr0.max))
|
| 2823 |
|
|
min = positive_overflow_infinity (type);
|
| 2824 |
|
|
else if (!vrp_val_is_min (vr0.max))
|
| 2825 |
|
|
min = fold_unary_to_constant (code, type, vr0.max);
|
| 2826 |
|
|
else if (needs_overflow_infinity (type))
|
| 2827 |
|
|
{
|
| 2828 |
|
|
if (supports_overflow_infinity (type)
|
| 2829 |
|
|
&& !is_overflow_infinity (vr0.min)
|
| 2830 |
|
|
&& !vrp_val_is_min (vr0.min))
|
| 2831 |
|
|
min = positive_overflow_infinity (type);
|
| 2832 |
|
|
else
|
| 2833 |
|
|
{
|
| 2834 |
|
|
set_value_range_to_varying (vr);
|
| 2835 |
|
|
return;
|
| 2836 |
|
|
}
|
| 2837 |
|
|
}
|
| 2838 |
|
|
else
|
| 2839 |
|
|
min = TYPE_MIN_VALUE (type);
|
| 2840 |
|
|
|
| 2841 |
|
|
if (is_positive_overflow_infinity (vr0.min))
|
| 2842 |
|
|
max = negative_overflow_infinity (type);
|
| 2843 |
|
|
else if (is_negative_overflow_infinity (vr0.min))
|
| 2844 |
|
|
max = positive_overflow_infinity (type);
|
| 2845 |
|
|
else if (!vrp_val_is_min (vr0.min))
|
| 2846 |
|
|
max = fold_unary_to_constant (code, type, vr0.min);
|
| 2847 |
|
|
else if (needs_overflow_infinity (type))
|
| 2848 |
|
|
{
|
| 2849 |
|
|
if (supports_overflow_infinity (type))
|
| 2850 |
|
|
max = positive_overflow_infinity (type);
|
| 2851 |
|
|
else
|
| 2852 |
|
|
{
|
| 2853 |
|
|
set_value_range_to_varying (vr);
|
| 2854 |
|
|
return;
|
| 2855 |
|
|
}
|
| 2856 |
|
|
}
|
| 2857 |
|
|
else
|
| 2858 |
|
|
max = TYPE_MIN_VALUE (type);
|
| 2859 |
|
|
}
|
| 2860 |
|
|
else if (code == NEGATE_EXPR
|
| 2861 |
|
|
&& TYPE_UNSIGNED (type))
|
| 2862 |
|
|
{
|
| 2863 |
|
|
if (!range_includes_zero_p (&vr0))
|
| 2864 |
|
|
{
|
| 2865 |
|
|
max = fold_unary_to_constant (code, type, vr0.min);
|
| 2866 |
|
|
min = fold_unary_to_constant (code, type, vr0.max);
|
| 2867 |
|
|
}
|
| 2868 |
|
|
else
|
| 2869 |
|
|
{
|
| 2870 |
|
|
if (range_is_null (&vr0))
|
| 2871 |
|
|
set_value_range_to_null (vr, type);
|
| 2872 |
|
|
else
|
| 2873 |
|
|
set_value_range_to_varying (vr);
|
| 2874 |
|
|
return;
|
| 2875 |
|
|
}
|
| 2876 |
|
|
}
|
| 2877 |
|
|
else if (code == ABS_EXPR
|
| 2878 |
|
|
&& !TYPE_UNSIGNED (type))
|
| 2879 |
|
|
{
|
| 2880 |
|
|
/* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
|
| 2881 |
|
|
useful range. */
|
| 2882 |
|
|
if (!TYPE_OVERFLOW_UNDEFINED (type)
|
| 2883 |
|
|
&& ((vr0.type == VR_RANGE
|
| 2884 |
|
|
&& vrp_val_is_min (vr0.min))
|
| 2885 |
|
|
|| (vr0.type == VR_ANTI_RANGE
|
| 2886 |
|
|
&& !vrp_val_is_min (vr0.min)
|
| 2887 |
|
|
&& !range_includes_zero_p (&vr0))))
|
| 2888 |
|
|
{
|
| 2889 |
|
|
set_value_range_to_varying (vr);
|
| 2890 |
|
|
return;
|
| 2891 |
|
|
}
|
| 2892 |
|
|
|
| 2893 |
|
|
/* ABS_EXPR may flip the range around, if the original range
|
| 2894 |
|
|
included negative values. */
|
| 2895 |
|
|
if (is_overflow_infinity (vr0.min))
|
| 2896 |
|
|
min = positive_overflow_infinity (type);
|
| 2897 |
|
|
else if (!vrp_val_is_min (vr0.min))
|
| 2898 |
|
|
min = fold_unary_to_constant (code, type, vr0.min);
|
| 2899 |
|
|
else if (!needs_overflow_infinity (type))
|
| 2900 |
|
|
min = TYPE_MAX_VALUE (type);
|
| 2901 |
|
|
else if (supports_overflow_infinity (type))
|
| 2902 |
|
|
min = positive_overflow_infinity (type);
|
| 2903 |
|
|
else
|
| 2904 |
|
|
{
|
| 2905 |
|
|
set_value_range_to_varying (vr);
|
| 2906 |
|
|
return;
|
| 2907 |
|
|
}
|
| 2908 |
|
|
|
| 2909 |
|
|
if (is_overflow_infinity (vr0.max))
|
| 2910 |
|
|
max = positive_overflow_infinity (type);
|
| 2911 |
|
|
else if (!vrp_val_is_min (vr0.max))
|
| 2912 |
|
|
max = fold_unary_to_constant (code, type, vr0.max);
|
| 2913 |
|
|
else if (!needs_overflow_infinity (type))
|
| 2914 |
|
|
max = TYPE_MAX_VALUE (type);
|
| 2915 |
|
|
else if (supports_overflow_infinity (type)
|
| 2916 |
|
|
/* We shouldn't generate [+INF, +INF] as set_value_range
|
| 2917 |
|
|
doesn't like this and ICEs. */
|
| 2918 |
|
|
&& !is_positive_overflow_infinity (min))
|
| 2919 |
|
|
max = positive_overflow_infinity (type);
|
| 2920 |
|
|
else
|
| 2921 |
|
|
{
|
| 2922 |
|
|
set_value_range_to_varying (vr);
|
| 2923 |
|
|
return;
|
| 2924 |
|
|
}
|
| 2925 |
|
|
|
| 2926 |
|
|
cmp = compare_values (min, max);
|
| 2927 |
|
|
|
| 2928 |
|
|
/* If a VR_ANTI_RANGEs contains zero, then we have
|
| 2929 |
|
|
~[-INF, min(MIN, MAX)]. */
|
| 2930 |
|
|
if (vr0.type == VR_ANTI_RANGE)
|
| 2931 |
|
|
{
|
| 2932 |
|
|
if (range_includes_zero_p (&vr0))
|
| 2933 |
|
|
{
|
| 2934 |
|
|
/* Take the lower of the two values. */
|
| 2935 |
|
|
if (cmp != 1)
|
| 2936 |
|
|
max = min;
|
| 2937 |
|
|
|
| 2938 |
|
|
/* Create ~[-INF, min (abs(MIN), abs(MAX))]
|
| 2939 |
|
|
or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
|
| 2940 |
|
|
flag_wrapv is set and the original anti-range doesn't include
|
| 2941 |
|
|
TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
|
| 2942 |
|
|
if (TYPE_OVERFLOW_WRAPS (type))
|
| 2943 |
|
|
{
|
| 2944 |
|
|
tree type_min_value = TYPE_MIN_VALUE (type);
|
| 2945 |
|
|
|
| 2946 |
|
|
min = (vr0.min != type_min_value
|
| 2947 |
|
|
? int_const_binop (PLUS_EXPR, type_min_value,
|
| 2948 |
|
|
integer_one_node, 0)
|
| 2949 |
|
|
: type_min_value);
|
| 2950 |
|
|
}
|
| 2951 |
|
|
else
|
| 2952 |
|
|
{
|
| 2953 |
|
|
if (overflow_infinity_range_p (&vr0))
|
| 2954 |
|
|
min = negative_overflow_infinity (type);
|
| 2955 |
|
|
else
|
| 2956 |
|
|
min = TYPE_MIN_VALUE (type);
|
| 2957 |
|
|
}
|
| 2958 |
|
|
}
|
| 2959 |
|
|
else
|
| 2960 |
|
|
{
|
| 2961 |
|
|
/* All else has failed, so create the range [0, INF], even for
|
| 2962 |
|
|
flag_wrapv since TYPE_MIN_VALUE is in the original
|
| 2963 |
|
|
anti-range. */
|
| 2964 |
|
|
vr0.type = VR_RANGE;
|
| 2965 |
|
|
min = build_int_cst (type, 0);
|
| 2966 |
|
|
if (needs_overflow_infinity (type))
|
| 2967 |
|
|
{
|
| 2968 |
|
|
if (supports_overflow_infinity (type))
|
| 2969 |
|
|
max = positive_overflow_infinity (type);
|
| 2970 |
|
|
else
|
| 2971 |
|
|
{
|
| 2972 |
|
|
set_value_range_to_varying (vr);
|
| 2973 |
|
|
return;
|
| 2974 |
|
|
}
|
| 2975 |
|
|
}
|
| 2976 |
|
|
else
|
| 2977 |
|
|
max = TYPE_MAX_VALUE (type);
|
| 2978 |
|
|
}
|
| 2979 |
|
|
}
|
| 2980 |
|
|
|
| 2981 |
|
|
/* If the range contains zero then we know that the minimum value in the
|
| 2982 |
|
|
range will be zero. */
|
| 2983 |
|
|
else if (range_includes_zero_p (&vr0))
|
| 2984 |
|
|
{
|
| 2985 |
|
|
if (cmp == 1)
|
| 2986 |
|
|
max = min;
|
| 2987 |
|
|
min = build_int_cst (type, 0);
|
| 2988 |
|
|
}
|
| 2989 |
|
|
else
|
| 2990 |
|
|
{
|
| 2991 |
|
|
/* If the range was reversed, swap MIN and MAX. */
|
| 2992 |
|
|
if (cmp == 1)
|
| 2993 |
|
|
{
|
| 2994 |
|
|
tree t = min;
|
| 2995 |
|
|
min = max;
|
| 2996 |
|
|
max = t;
|
| 2997 |
|
|
}
|
| 2998 |
|
|
}
|
| 2999 |
|
|
}
|
| 3000 |
|
|
else
|
| 3001 |
|
|
{
|
| 3002 |
|
|
/* Otherwise, operate on each end of the range. */
|
| 3003 |
|
|
min = fold_unary_to_constant (code, type, vr0.min);
|
| 3004 |
|
|
max = fold_unary_to_constant (code, type, vr0.max);
|
| 3005 |
|
|
|
| 3006 |
|
|
if (needs_overflow_infinity (type))
|
| 3007 |
|
|
{
|
| 3008 |
|
|
gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
|
| 3009 |
|
|
|
| 3010 |
|
|
/* If both sides have overflowed, we don't know
|
| 3011 |
|
|
anything. */
|
| 3012 |
|
|
if ((is_overflow_infinity (vr0.min)
|
| 3013 |
|
|
|| TREE_OVERFLOW (min))
|
| 3014 |
|
|
&& (is_overflow_infinity (vr0.max)
|
| 3015 |
|
|
|| TREE_OVERFLOW (max)))
|
| 3016 |
|
|
{
|
| 3017 |
|
|
set_value_range_to_varying (vr);
|
| 3018 |
|
|
return;
|
| 3019 |
|
|
}
|
| 3020 |
|
|
|
| 3021 |
|
|
if (is_overflow_infinity (vr0.min))
|
| 3022 |
|
|
min = vr0.min;
|
| 3023 |
|
|
else if (TREE_OVERFLOW (min))
|
| 3024 |
|
|
{
|
| 3025 |
|
|
if (supports_overflow_infinity (type))
|
| 3026 |
|
|
min = (tree_int_cst_sgn (min) >= 0
|
| 3027 |
|
|
? positive_overflow_infinity (TREE_TYPE (min))
|
| 3028 |
|
|
: negative_overflow_infinity (TREE_TYPE (min)));
|
| 3029 |
|
|
else
|
| 3030 |
|
|
{
|
| 3031 |
|
|
set_value_range_to_varying (vr);
|
| 3032 |
|
|
return;
|
| 3033 |
|
|
}
|
| 3034 |
|
|
}
|
| 3035 |
|
|
|
| 3036 |
|
|
if (is_overflow_infinity (vr0.max))
|
| 3037 |
|
|
max = vr0.max;
|
| 3038 |
|
|
else if (TREE_OVERFLOW (max))
|
| 3039 |
|
|
{
|
| 3040 |
|
|
if (supports_overflow_infinity (type))
|
| 3041 |
|
|
max = (tree_int_cst_sgn (max) >= 0
|
| 3042 |
|
|
? positive_overflow_infinity (TREE_TYPE (max))
|
| 3043 |
|
|
: negative_overflow_infinity (TREE_TYPE (max)));
|
| 3044 |
|
|
else
|
| 3045 |
|
|
{
|
| 3046 |
|
|
set_value_range_to_varying (vr);
|
| 3047 |
|
|
return;
|
| 3048 |
|
|
}
|
| 3049 |
|
|
}
|
| 3050 |
|
|
}
|
| 3051 |
|
|
}
|
| 3052 |
|
|
|
| 3053 |
|
|
cmp = compare_values (min, max);
|
| 3054 |
|
|
if (cmp == -2 || cmp == 1)
|
| 3055 |
|
|
{
|
| 3056 |
|
|
/* If the new range has its limits swapped around (MIN > MAX),
|
| 3057 |
|
|
then the operation caused one of them to wrap around, mark
|
| 3058 |
|
|
the new range VARYING. */
|
| 3059 |
|
|
set_value_range_to_varying (vr);
|
| 3060 |
|
|
}
|
| 3061 |
|
|
else
|
| 3062 |
|
|
set_value_range (vr, vr0.type, min, max, NULL);
|
| 3063 |
|
|
}
|
| 3064 |
|
|
|
| 3065 |
|
|
|
| 3066 |
|
|
/* Extract range information from a conditional expression EXPR based on
|
| 3067 |
|
|
the ranges of each of its operands and the expression code. */
|
| 3068 |
|
|
|
| 3069 |
|
|
static void
|
| 3070 |
|
|
extract_range_from_cond_expr (value_range_t *vr, tree expr)
|
| 3071 |
|
|
{
|
| 3072 |
|
|
tree op0, op1;
|
| 3073 |
|
|
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
| 3074 |
|
|
value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
| 3075 |
|
|
|
| 3076 |
|
|
/* Get value ranges for each operand. For constant operands, create
|
| 3077 |
|
|
a new value range with the operand to simplify processing. */
|
| 3078 |
|
|
op0 = COND_EXPR_THEN (expr);
|
| 3079 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
| 3080 |
|
|
vr0 = *(get_value_range (op0));
|
| 3081 |
|
|
else if (is_gimple_min_invariant (op0))
|
| 3082 |
|
|
set_value_range_to_value (&vr0, op0, NULL);
|
| 3083 |
|
|
else
|
| 3084 |
|
|
set_value_range_to_varying (&vr0);
|
| 3085 |
|
|
|
| 3086 |
|
|
op1 = COND_EXPR_ELSE (expr);
|
| 3087 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
| 3088 |
|
|
vr1 = *(get_value_range (op1));
|
| 3089 |
|
|
else if (is_gimple_min_invariant (op1))
|
| 3090 |
|
|
set_value_range_to_value (&vr1, op1, NULL);
|
| 3091 |
|
|
else
|
| 3092 |
|
|
set_value_range_to_varying (&vr1);
|
| 3093 |
|
|
|
| 3094 |
|
|
/* The resulting value range is the union of the operand ranges */
|
| 3095 |
|
|
vrp_meet (&vr0, &vr1);
|
| 3096 |
|
|
copy_value_range (vr, &vr0);
|
| 3097 |
|
|
}
|
| 3098 |
|
|
|
| 3099 |
|
|
|
| 3100 |
|
|
/* Extract range information from a comparison expression EXPR based
|
| 3101 |
|
|
on the range of its operand and the expression code. */
|
| 3102 |
|
|
|
| 3103 |
|
|
static void
|
| 3104 |
|
|
extract_range_from_comparison (value_range_t *vr, enum tree_code code,
|
| 3105 |
|
|
tree type, tree op0, tree op1)
|
| 3106 |
|
|
{
|
| 3107 |
|
|
bool sop = false;
|
| 3108 |
|
|
tree val;
|
| 3109 |
|
|
|
| 3110 |
|
|
val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
|
| 3111 |
|
|
NULL);
|
| 3112 |
|
|
|
| 3113 |
|
|
/* A disadvantage of using a special infinity as an overflow
|
| 3114 |
|
|
representation is that we lose the ability to record overflow
|
| 3115 |
|
|
when we don't have an infinity. So we have to ignore a result
|
| 3116 |
|
|
which relies on overflow. */
|
| 3117 |
|
|
|
| 3118 |
|
|
if (val && !is_overflow_infinity (val) && !sop)
|
| 3119 |
|
|
{
|
| 3120 |
|
|
/* Since this expression was found on the RHS of an assignment,
|
| 3121 |
|
|
its type may be different from _Bool. Convert VAL to EXPR's
|
| 3122 |
|
|
type. */
|
| 3123 |
|
|
val = fold_convert (type, val);
|
| 3124 |
|
|
if (is_gimple_min_invariant (val))
|
| 3125 |
|
|
set_value_range_to_value (vr, val, vr->equiv);
|
| 3126 |
|
|
else
|
| 3127 |
|
|
set_value_range (vr, VR_RANGE, val, val, vr->equiv);
|
| 3128 |
|
|
}
|
| 3129 |
|
|
else
|
| 3130 |
|
|
/* The result of a comparison is always true or false. */
|
| 3131 |
|
|
set_value_range_to_truthvalue (vr, type);
|
| 3132 |
|
|
}
|
| 3133 |
|
|
|
| 3134 |
|
|
/* Try to derive a nonnegative or nonzero range out of STMT relying
|
| 3135 |
|
|
primarily on generic routines in fold in conjunction with range data.
|
| 3136 |
|
|
Store the result in *VR */
|
| 3137 |
|
|
|
| 3138 |
|
|
static void
|
| 3139 |
|
|
extract_range_basic (value_range_t *vr, gimple stmt)
|
| 3140 |
|
|
{
|
| 3141 |
|
|
bool sop = false;
|
| 3142 |
|
|
tree type = gimple_expr_type (stmt);
|
| 3143 |
|
|
|
| 3144 |
|
|
if (INTEGRAL_TYPE_P (type)
|
| 3145 |
|
|
&& gimple_stmt_nonnegative_warnv_p (stmt, &sop))
|
| 3146 |
|
|
set_value_range_to_nonnegative (vr, type,
|
| 3147 |
|
|
sop || stmt_overflow_infinity (stmt));
|
| 3148 |
|
|
else if (vrp_stmt_computes_nonzero (stmt, &sop)
|
| 3149 |
|
|
&& !sop)
|
| 3150 |
|
|
set_value_range_to_nonnull (vr, type);
|
| 3151 |
|
|
else
|
| 3152 |
|
|
set_value_range_to_varying (vr);
|
| 3153 |
|
|
}
|
| 3154 |
|
|
|
| 3155 |
|
|
|
| 3156 |
|
|
/* Try to compute a useful range out of assignment STMT and store it
|
| 3157 |
|
|
in *VR. */
|
| 3158 |
|
|
|
| 3159 |
|
|
static void
|
| 3160 |
|
|
extract_range_from_assignment (value_range_t *vr, gimple stmt)
|
| 3161 |
|
|
{
|
| 3162 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
| 3163 |
|
|
|
| 3164 |
|
|
if (code == ASSERT_EXPR)
|
| 3165 |
|
|
extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
|
| 3166 |
|
|
else if (code == SSA_NAME)
|
| 3167 |
|
|
extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
|
| 3168 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_binary
|
| 3169 |
|
|
|| code == TRUTH_AND_EXPR
|
| 3170 |
|
|
|| code == TRUTH_OR_EXPR
|
| 3171 |
|
|
|| code == TRUTH_XOR_EXPR)
|
| 3172 |
|
|
extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
|
| 3173 |
|
|
gimple_expr_type (stmt),
|
| 3174 |
|
|
gimple_assign_rhs1 (stmt),
|
| 3175 |
|
|
gimple_assign_rhs2 (stmt));
|
| 3176 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_unary)
|
| 3177 |
|
|
extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
|
| 3178 |
|
|
gimple_expr_type (stmt),
|
| 3179 |
|
|
gimple_assign_rhs1 (stmt));
|
| 3180 |
|
|
else if (code == COND_EXPR)
|
| 3181 |
|
|
extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
|
| 3182 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_comparison)
|
| 3183 |
|
|
extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
|
| 3184 |
|
|
gimple_expr_type (stmt),
|
| 3185 |
|
|
gimple_assign_rhs1 (stmt),
|
| 3186 |
|
|
gimple_assign_rhs2 (stmt));
|
| 3187 |
|
|
else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
|
| 3188 |
|
|
&& is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
|
| 3189 |
|
|
set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
|
| 3190 |
|
|
else
|
| 3191 |
|
|
set_value_range_to_varying (vr);
|
| 3192 |
|
|
|
| 3193 |
|
|
if (vr->type == VR_VARYING)
|
| 3194 |
|
|
extract_range_basic (vr, stmt);
|
| 3195 |
|
|
}
|
| 3196 |
|
|
|
| 3197 |
|
|
/* Given a range VR, a LOOP and a variable VAR, determine whether it
|
| 3198 |
|
|
would be profitable to adjust VR using scalar evolution information
|
| 3199 |
|
|
for VAR. If so, update VR with the new limits. */
|
| 3200 |
|
|
|
| 3201 |
|
|
static void
|
| 3202 |
|
|
adjust_range_with_scev (value_range_t *vr, struct loop *loop,
|
| 3203 |
|
|
gimple stmt, tree var)
|
| 3204 |
|
|
{
|
| 3205 |
|
|
tree init, step, chrec, tmin, tmax, min, max, type, tem;
|
| 3206 |
|
|
enum ev_direction dir;
|
| 3207 |
|
|
|
| 3208 |
|
|
/* TODO. Don't adjust anti-ranges. An anti-range may provide
|
| 3209 |
|
|
better opportunities than a regular range, but I'm not sure. */
|
| 3210 |
|
|
if (vr->type == VR_ANTI_RANGE)
|
| 3211 |
|
|
return;
|
| 3212 |
|
|
|
| 3213 |
|
|
chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
|
| 3214 |
|
|
|
| 3215 |
|
|
/* Like in PR19590, scev can return a constant function. */
|
| 3216 |
|
|
if (is_gimple_min_invariant (chrec))
|
| 3217 |
|
|
{
|
| 3218 |
|
|
set_value_range_to_value (vr, chrec, vr->equiv);
|
| 3219 |
|
|
return;
|
| 3220 |
|
|
}
|
| 3221 |
|
|
|
| 3222 |
|
|
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
|
| 3223 |
|
|
return;
|
| 3224 |
|
|
|
| 3225 |
|
|
init = initial_condition_in_loop_num (chrec, loop->num);
|
| 3226 |
|
|
tem = op_with_constant_singleton_value_range (init);
|
| 3227 |
|
|
if (tem)
|
| 3228 |
|
|
init = tem;
|
| 3229 |
|
|
step = evolution_part_in_loop_num (chrec, loop->num);
|
| 3230 |
|
|
tem = op_with_constant_singleton_value_range (step);
|
| 3231 |
|
|
if (tem)
|
| 3232 |
|
|
step = tem;
|
| 3233 |
|
|
|
| 3234 |
|
|
/* If STEP is symbolic, we can't know whether INIT will be the
|
| 3235 |
|
|
minimum or maximum value in the range. Also, unless INIT is
|
| 3236 |
|
|
a simple expression, compare_values and possibly other functions
|
| 3237 |
|
|
in tree-vrp won't be able to handle it. */
|
| 3238 |
|
|
if (step == NULL_TREE
|
| 3239 |
|
|
|| !is_gimple_min_invariant (step)
|
| 3240 |
|
|
|| !valid_value_p (init))
|
| 3241 |
|
|
return;
|
| 3242 |
|
|
|
| 3243 |
|
|
dir = scev_direction (chrec);
|
| 3244 |
|
|
if (/* Do not adjust ranges if we do not know whether the iv increases
|
| 3245 |
|
|
or decreases, ... */
|
| 3246 |
|
|
dir == EV_DIR_UNKNOWN
|
| 3247 |
|
|
/* ... or if it may wrap. */
|
| 3248 |
|
|
|| scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
|
| 3249 |
|
|
true))
|
| 3250 |
|
|
return;
|
| 3251 |
|
|
|
| 3252 |
|
|
/* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
|
| 3253 |
|
|
negative_overflow_infinity and positive_overflow_infinity,
|
| 3254 |
|
|
because we have concluded that the loop probably does not
|
| 3255 |
|
|
wrap. */
|
| 3256 |
|
|
|
| 3257 |
|
|
type = TREE_TYPE (var);
|
| 3258 |
|
|
if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
|
| 3259 |
|
|
tmin = lower_bound_in_type (type, type);
|
| 3260 |
|
|
else
|
| 3261 |
|
|
tmin = TYPE_MIN_VALUE (type);
|
| 3262 |
|
|
if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
|
| 3263 |
|
|
tmax = upper_bound_in_type (type, type);
|
| 3264 |
|
|
else
|
| 3265 |
|
|
tmax = TYPE_MAX_VALUE (type);
|
| 3266 |
|
|
|
| 3267 |
|
|
if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
|
| 3268 |
|
|
{
|
| 3269 |
|
|
min = tmin;
|
| 3270 |
|
|
max = tmax;
|
| 3271 |
|
|
|
| 3272 |
|
|
/* For VARYING or UNDEFINED ranges, just about anything we get
|
| 3273 |
|
|
from scalar evolutions should be better. */
|
| 3274 |
|
|
|
| 3275 |
|
|
if (dir == EV_DIR_DECREASES)
|
| 3276 |
|
|
max = init;
|
| 3277 |
|
|
else
|
| 3278 |
|
|
min = init;
|
| 3279 |
|
|
|
| 3280 |
|
|
/* If we would create an invalid range, then just assume we
|
| 3281 |
|
|
know absolutely nothing. This may be over-conservative,
|
| 3282 |
|
|
but it's clearly safe, and should happen only in unreachable
|
| 3283 |
|
|
parts of code, or for invalid programs. */
|
| 3284 |
|
|
if (compare_values (min, max) == 1)
|
| 3285 |
|
|
return;
|
| 3286 |
|
|
|
| 3287 |
|
|
set_value_range (vr, VR_RANGE, min, max, vr->equiv);
|
| 3288 |
|
|
}
|
| 3289 |
|
|
else if (vr->type == VR_RANGE)
|
| 3290 |
|
|
{
|
| 3291 |
|
|
min = vr->min;
|
| 3292 |
|
|
max = vr->max;
|
| 3293 |
|
|
|
| 3294 |
|
|
if (dir == EV_DIR_DECREASES)
|
| 3295 |
|
|
{
|
| 3296 |
|
|
/* INIT is the maximum value. If INIT is lower than VR->MAX
|
| 3297 |
|
|
but no smaller than VR->MIN, set VR->MAX to INIT. */
|
| 3298 |
|
|
if (compare_values (init, max) == -1)
|
| 3299 |
|
|
{
|
| 3300 |
|
|
max = init;
|
| 3301 |
|
|
|
| 3302 |
|
|
/* If we just created an invalid range with the minimum
|
| 3303 |
|
|
greater than the maximum, we fail conservatively.
|
| 3304 |
|
|
This should happen only in unreachable
|
| 3305 |
|
|
parts of code, or for invalid programs. */
|
| 3306 |
|
|
if (compare_values (min, max) == 1)
|
| 3307 |
|
|
return;
|
| 3308 |
|
|
}
|
| 3309 |
|
|
|
| 3310 |
|
|
/* According to the loop information, the variable does not
|
| 3311 |
|
|
overflow. If we think it does, probably because of an
|
| 3312 |
|
|
overflow due to arithmetic on a different INF value,
|
| 3313 |
|
|
reset now. */
|
| 3314 |
|
|
if (is_negative_overflow_infinity (min))
|
| 3315 |
|
|
min = tmin;
|
| 3316 |
|
|
}
|
| 3317 |
|
|
else
|
| 3318 |
|
|
{
|
| 3319 |
|
|
/* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
|
| 3320 |
|
|
if (compare_values (init, min) == 1)
|
| 3321 |
|
|
{
|
| 3322 |
|
|
min = init;
|
| 3323 |
|
|
|
| 3324 |
|
|
/* Again, avoid creating invalid range by failing. */
|
| 3325 |
|
|
if (compare_values (min, max) == 1)
|
| 3326 |
|
|
return;
|
| 3327 |
|
|
}
|
| 3328 |
|
|
|
| 3329 |
|
|
if (is_positive_overflow_infinity (max))
|
| 3330 |
|
|
max = tmax;
|
| 3331 |
|
|
}
|
| 3332 |
|
|
|
| 3333 |
|
|
set_value_range (vr, VR_RANGE, min, max, vr->equiv);
|
| 3334 |
|
|
}
|
| 3335 |
|
|
}
|
| 3336 |
|
|
|
| 3337 |
|
|
/* Return true if VAR may overflow at STMT. This checks any available
|
| 3338 |
|
|
loop information to see if we can determine that VAR does not
|
| 3339 |
|
|
overflow. */
|
| 3340 |
|
|
|
| 3341 |
|
|
static bool
|
| 3342 |
|
|
vrp_var_may_overflow (tree var, gimple stmt)
|
| 3343 |
|
|
{
|
| 3344 |
|
|
struct loop *l;
|
| 3345 |
|
|
tree chrec, init, step;
|
| 3346 |
|
|
|
| 3347 |
|
|
if (current_loops == NULL)
|
| 3348 |
|
|
return true;
|
| 3349 |
|
|
|
| 3350 |
|
|
l = loop_containing_stmt (stmt);
|
| 3351 |
|
|
if (l == NULL
|
| 3352 |
|
|
|| !loop_outer (l))
|
| 3353 |
|
|
return true;
|
| 3354 |
|
|
|
| 3355 |
|
|
chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
|
| 3356 |
|
|
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
|
| 3357 |
|
|
return true;
|
| 3358 |
|
|
|
| 3359 |
|
|
init = initial_condition_in_loop_num (chrec, l->num);
|
| 3360 |
|
|
step = evolution_part_in_loop_num (chrec, l->num);
|
| 3361 |
|
|
|
| 3362 |
|
|
if (step == NULL_TREE
|
| 3363 |
|
|
|| !is_gimple_min_invariant (step)
|
| 3364 |
|
|
|| !valid_value_p (init))
|
| 3365 |
|
|
return true;
|
| 3366 |
|
|
|
| 3367 |
|
|
/* If we get here, we know something useful about VAR based on the
|
| 3368 |
|
|
loop information. If it wraps, it may overflow. */
|
| 3369 |
|
|
|
| 3370 |
|
|
if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
|
| 3371 |
|
|
true))
|
| 3372 |
|
|
return true;
|
| 3373 |
|
|
|
| 3374 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS) != 0)
|
| 3375 |
|
|
{
|
| 3376 |
|
|
print_generic_expr (dump_file, var, 0);
|
| 3377 |
|
|
fprintf (dump_file, ": loop information indicates does not overflow\n");
|
| 3378 |
|
|
}
|
| 3379 |
|
|
|
| 3380 |
|
|
return false;
|
| 3381 |
|
|
}
|
| 3382 |
|
|
|
| 3383 |
|
|
|
| 3384 |
|
|
/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
|
| 3385 |
|
|
|
| 3386 |
|
|
- Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
|
| 3387 |
|
|
all the values in the ranges.
|
| 3388 |
|
|
|
| 3389 |
|
|
- Return BOOLEAN_FALSE_NODE if the comparison always returns false.
|
| 3390 |
|
|
|
| 3391 |
|
|
- Return NULL_TREE if it is not always possible to determine the
|
| 3392 |
|
|
value of the comparison.
|
| 3393 |
|
|
|
| 3394 |
|
|
Also set *STRICT_OVERFLOW_P to indicate whether a range with an
|
| 3395 |
|
|
overflow infinity was used in the test. */
|
| 3396 |
|
|
|
| 3397 |
|
|
|
| 3398 |
|
|
static tree
|
| 3399 |
|
|
compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
|
| 3400 |
|
|
bool *strict_overflow_p)
|
| 3401 |
|
|
{
|
| 3402 |
|
|
/* VARYING or UNDEFINED ranges cannot be compared. */
|
| 3403 |
|
|
if (vr0->type == VR_VARYING
|
| 3404 |
|
|
|| vr0->type == VR_UNDEFINED
|
| 3405 |
|
|
|| vr1->type == VR_VARYING
|
| 3406 |
|
|
|| vr1->type == VR_UNDEFINED)
|
| 3407 |
|
|
return NULL_TREE;
|
| 3408 |
|
|
|
| 3409 |
|
|
/* Anti-ranges need to be handled separately. */
|
| 3410 |
|
|
if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
|
| 3411 |
|
|
{
|
| 3412 |
|
|
/* If both are anti-ranges, then we cannot compute any
|
| 3413 |
|
|
comparison. */
|
| 3414 |
|
|
if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
|
| 3415 |
|
|
return NULL_TREE;
|
| 3416 |
|
|
|
| 3417 |
|
|
/* These comparisons are never statically computable. */
|
| 3418 |
|
|
if (comp == GT_EXPR
|
| 3419 |
|
|
|| comp == GE_EXPR
|
| 3420 |
|
|
|| comp == LT_EXPR
|
| 3421 |
|
|
|| comp == LE_EXPR)
|
| 3422 |
|
|
return NULL_TREE;
|
| 3423 |
|
|
|
| 3424 |
|
|
/* Equality can be computed only between a range and an
|
| 3425 |
|
|
anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
|
| 3426 |
|
|
if (vr0->type == VR_RANGE)
|
| 3427 |
|
|
{
|
| 3428 |
|
|
/* To simplify processing, make VR0 the anti-range. */
|
| 3429 |
|
|
value_range_t *tmp = vr0;
|
| 3430 |
|
|
vr0 = vr1;
|
| 3431 |
|
|
vr1 = tmp;
|
| 3432 |
|
|
}
|
| 3433 |
|
|
|
| 3434 |
|
|
gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
|
| 3435 |
|
|
|
| 3436 |
|
|
if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
|
| 3437 |
|
|
&& compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
|
| 3438 |
|
|
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
|
| 3439 |
|
|
|
| 3440 |
|
|
return NULL_TREE;
|
| 3441 |
|
|
}
|
| 3442 |
|
|
|
| 3443 |
|
|
if (!usable_range_p (vr0, strict_overflow_p)
|
| 3444 |
|
|
|| !usable_range_p (vr1, strict_overflow_p))
|
| 3445 |
|
|
return NULL_TREE;
|
| 3446 |
|
|
|
| 3447 |
|
|
/* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
|
| 3448 |
|
|
operands around and change the comparison code. */
|
| 3449 |
|
|
if (comp == GT_EXPR || comp == GE_EXPR)
|
| 3450 |
|
|
{
|
| 3451 |
|
|
value_range_t *tmp;
|
| 3452 |
|
|
comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
|
| 3453 |
|
|
tmp = vr0;
|
| 3454 |
|
|
vr0 = vr1;
|
| 3455 |
|
|
vr1 = tmp;
|
| 3456 |
|
|
}
|
| 3457 |
|
|
|
| 3458 |
|
|
if (comp == EQ_EXPR)
|
| 3459 |
|
|
{
|
| 3460 |
|
|
/* Equality may only be computed if both ranges represent
|
| 3461 |
|
|
exactly one value. */
|
| 3462 |
|
|
if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
|
| 3463 |
|
|
&& compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
|
| 3464 |
|
|
{
|
| 3465 |
|
|
int cmp_min = compare_values_warnv (vr0->min, vr1->min,
|
| 3466 |
|
|
strict_overflow_p);
|
| 3467 |
|
|
int cmp_max = compare_values_warnv (vr0->max, vr1->max,
|
| 3468 |
|
|
strict_overflow_p);
|
| 3469 |
|
|
if (cmp_min == 0 && cmp_max == 0)
|
| 3470 |
|
|
return boolean_true_node;
|
| 3471 |
|
|
else if (cmp_min != -2 && cmp_max != -2)
|
| 3472 |
|
|
return boolean_false_node;
|
| 3473 |
|
|
}
|
| 3474 |
|
|
/* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
|
| 3475 |
|
|
else if (compare_values_warnv (vr0->min, vr1->max,
|
| 3476 |
|
|
strict_overflow_p) == 1
|
| 3477 |
|
|
|| compare_values_warnv (vr1->min, vr0->max,
|
| 3478 |
|
|
strict_overflow_p) == 1)
|
| 3479 |
|
|
return boolean_false_node;
|
| 3480 |
|
|
|
| 3481 |
|
|
return NULL_TREE;
|
| 3482 |
|
|
}
|
| 3483 |
|
|
else if (comp == NE_EXPR)
|
| 3484 |
|
|
{
|
| 3485 |
|
|
int cmp1, cmp2;
|
| 3486 |
|
|
|
| 3487 |
|
|
/* If VR0 is completely to the left or completely to the right
|
| 3488 |
|
|
of VR1, they are always different. Notice that we need to
|
| 3489 |
|
|
make sure that both comparisons yield similar results to
|
| 3490 |
|
|
avoid comparing values that cannot be compared at
|
| 3491 |
|
|
compile-time. */
|
| 3492 |
|
|
cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
|
| 3493 |
|
|
cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
|
| 3494 |
|
|
if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
|
| 3495 |
|
|
return boolean_true_node;
|
| 3496 |
|
|
|
| 3497 |
|
|
/* If VR0 and VR1 represent a single value and are identical,
|
| 3498 |
|
|
return false. */
|
| 3499 |
|
|
else if (compare_values_warnv (vr0->min, vr0->max,
|
| 3500 |
|
|
strict_overflow_p) == 0
|
| 3501 |
|
|
&& compare_values_warnv (vr1->min, vr1->max,
|
| 3502 |
|
|
strict_overflow_p) == 0
|
| 3503 |
|
|
&& compare_values_warnv (vr0->min, vr1->min,
|
| 3504 |
|
|
strict_overflow_p) == 0
|
| 3505 |
|
|
&& compare_values_warnv (vr0->max, vr1->max,
|
| 3506 |
|
|
strict_overflow_p) == 0)
|
| 3507 |
|
|
return boolean_false_node;
|
| 3508 |
|
|
|
| 3509 |
|
|
/* Otherwise, they may or may not be different. */
|
| 3510 |
|
|
else
|
| 3511 |
|
|
return NULL_TREE;
|
| 3512 |
|
|
}
|
| 3513 |
|
|
else if (comp == LT_EXPR || comp == LE_EXPR)
|
| 3514 |
|
|
{
|
| 3515 |
|
|
int tst;
|
| 3516 |
|
|
|
| 3517 |
|
|
/* If VR0 is to the left of VR1, return true. */
|
| 3518 |
|
|
tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
|
| 3519 |
|
|
if ((comp == LT_EXPR && tst == -1)
|
| 3520 |
|
|
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
|
| 3521 |
|
|
{
|
| 3522 |
|
|
if (overflow_infinity_range_p (vr0)
|
| 3523 |
|
|
|| overflow_infinity_range_p (vr1))
|
| 3524 |
|
|
*strict_overflow_p = true;
|
| 3525 |
|
|
return boolean_true_node;
|
| 3526 |
|
|
}
|
| 3527 |
|
|
|
| 3528 |
|
|
/* If VR0 is to the right of VR1, return false. */
|
| 3529 |
|
|
tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
|
| 3530 |
|
|
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|
| 3531 |
|
|
|| (comp == LE_EXPR && tst == 1))
|
| 3532 |
|
|
{
|
| 3533 |
|
|
if (overflow_infinity_range_p (vr0)
|
| 3534 |
|
|
|| overflow_infinity_range_p (vr1))
|
| 3535 |
|
|
*strict_overflow_p = true;
|
| 3536 |
|
|
return boolean_false_node;
|
| 3537 |
|
|
}
|
| 3538 |
|
|
|
| 3539 |
|
|
/* Otherwise, we don't know. */
|
| 3540 |
|
|
return NULL_TREE;
|
| 3541 |
|
|
}
|
| 3542 |
|
|
|
| 3543 |
|
|
gcc_unreachable ();
|
| 3544 |
|
|
}
|
| 3545 |
|
|
|
| 3546 |
|
|
|
| 3547 |
|
|
/* Given a value range VR, a value VAL and a comparison code COMP, return
|
| 3548 |
|
|
BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
|
| 3549 |
|
|
values in VR. Return BOOLEAN_FALSE_NODE if the comparison
|
| 3550 |
|
|
always returns false. Return NULL_TREE if it is not always
|
| 3551 |
|
|
possible to determine the value of the comparison. Also set
|
| 3552 |
|
|
*STRICT_OVERFLOW_P to indicate whether a range with an overflow
|
| 3553 |
|
|
infinity was used in the test. */
|
| 3554 |
|
|
|
| 3555 |
|
|
static tree
|
| 3556 |
|
|
compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
|
| 3557 |
|
|
bool *strict_overflow_p)
|
| 3558 |
|
|
{
|
| 3559 |
|
|
if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
|
| 3560 |
|
|
return NULL_TREE;
|
| 3561 |
|
|
|
| 3562 |
|
|
/* Anti-ranges need to be handled separately. */
|
| 3563 |
|
|
if (vr->type == VR_ANTI_RANGE)
|
| 3564 |
|
|
{
|
| 3565 |
|
|
/* For anti-ranges, the only predicates that we can compute at
|
| 3566 |
|
|
compile time are equality and inequality. */
|
| 3567 |
|
|
if (comp == GT_EXPR
|
| 3568 |
|
|
|| comp == GE_EXPR
|
| 3569 |
|
|
|| comp == LT_EXPR
|
| 3570 |
|
|
|| comp == LE_EXPR)
|
| 3571 |
|
|
return NULL_TREE;
|
| 3572 |
|
|
|
| 3573 |
|
|
/* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
|
| 3574 |
|
|
if (value_inside_range (val, vr) == 1)
|
| 3575 |
|
|
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
|
| 3576 |
|
|
|
| 3577 |
|
|
return NULL_TREE;
|
| 3578 |
|
|
}
|
| 3579 |
|
|
|
| 3580 |
|
|
if (!usable_range_p (vr, strict_overflow_p))
|
| 3581 |
|
|
return NULL_TREE;
|
| 3582 |
|
|
|
| 3583 |
|
|
if (comp == EQ_EXPR)
|
| 3584 |
|
|
{
|
| 3585 |
|
|
/* EQ_EXPR may only be computed if VR represents exactly
|
| 3586 |
|
|
one value. */
|
| 3587 |
|
|
if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
|
| 3588 |
|
|
{
|
| 3589 |
|
|
int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
|
| 3590 |
|
|
if (cmp == 0)
|
| 3591 |
|
|
return boolean_true_node;
|
| 3592 |
|
|
else if (cmp == -1 || cmp == 1 || cmp == 2)
|
| 3593 |
|
|
return boolean_false_node;
|
| 3594 |
|
|
}
|
| 3595 |
|
|
else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
|
| 3596 |
|
|
|| compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
|
| 3597 |
|
|
return boolean_false_node;
|
| 3598 |
|
|
|
| 3599 |
|
|
return NULL_TREE;
|
| 3600 |
|
|
}
|
| 3601 |
|
|
else if (comp == NE_EXPR)
|
| 3602 |
|
|
{
|
| 3603 |
|
|
/* If VAL is not inside VR, then they are always different. */
|
| 3604 |
|
|
if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
|
| 3605 |
|
|
|| compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
|
| 3606 |
|
|
return boolean_true_node;
|
| 3607 |
|
|
|
| 3608 |
|
|
/* If VR represents exactly one value equal to VAL, then return
|
| 3609 |
|
|
false. */
|
| 3610 |
|
|
if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
|
| 3611 |
|
|
&& compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
|
| 3612 |
|
|
return boolean_false_node;
|
| 3613 |
|
|
|
| 3614 |
|
|
/* Otherwise, they may or may not be different. */
|
| 3615 |
|
|
return NULL_TREE;
|
| 3616 |
|
|
}
|
| 3617 |
|
|
else if (comp == LT_EXPR || comp == LE_EXPR)
|
| 3618 |
|
|
{
|
| 3619 |
|
|
int tst;
|
| 3620 |
|
|
|
| 3621 |
|
|
/* If VR is to the left of VAL, return true. */
|
| 3622 |
|
|
tst = compare_values_warnv (vr->max, val, strict_overflow_p);
|
| 3623 |
|
|
if ((comp == LT_EXPR && tst == -1)
|
| 3624 |
|
|
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
|
| 3625 |
|
|
{
|
| 3626 |
|
|
if (overflow_infinity_range_p (vr))
|
| 3627 |
|
|
*strict_overflow_p = true;
|
| 3628 |
|
|
return boolean_true_node;
|
| 3629 |
|
|
}
|
| 3630 |
|
|
|
| 3631 |
|
|
/* If VR is to the right of VAL, return false. */
|
| 3632 |
|
|
tst = compare_values_warnv (vr->min, val, strict_overflow_p);
|
| 3633 |
|
|
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|
| 3634 |
|
|
|| (comp == LE_EXPR && tst == 1))
|
| 3635 |
|
|
{
|
| 3636 |
|
|
if (overflow_infinity_range_p (vr))
|
| 3637 |
|
|
*strict_overflow_p = true;
|
| 3638 |
|
|
return boolean_false_node;
|
| 3639 |
|
|
}
|
| 3640 |
|
|
|
| 3641 |
|
|
/* Otherwise, we don't know. */
|
| 3642 |
|
|
return NULL_TREE;
|
| 3643 |
|
|
}
|
| 3644 |
|
|
else if (comp == GT_EXPR || comp == GE_EXPR)
|
| 3645 |
|
|
{
|
| 3646 |
|
|
int tst;
|
| 3647 |
|
|
|
| 3648 |
|
|
/* If VR is to the right of VAL, return true. */
|
| 3649 |
|
|
tst = compare_values_warnv (vr->min, val, strict_overflow_p);
|
| 3650 |
|
|
if ((comp == GT_EXPR && tst == 1)
|
| 3651 |
|
|
|| (comp == GE_EXPR && (tst == 0 || tst == 1)))
|
| 3652 |
|
|
{
|
| 3653 |
|
|
if (overflow_infinity_range_p (vr))
|
| 3654 |
|
|
*strict_overflow_p = true;
|
| 3655 |
|
|
return boolean_true_node;
|
| 3656 |
|
|
}
|
| 3657 |
|
|
|
| 3658 |
|
|
/* If VR is to the left of VAL, return false. */
|
| 3659 |
|
|
tst = compare_values_warnv (vr->max, val, strict_overflow_p);
|
| 3660 |
|
|
if ((comp == GT_EXPR && (tst == -1 || tst == 0))
|
| 3661 |
|
|
|| (comp == GE_EXPR && tst == -1))
|
| 3662 |
|
|
{
|
| 3663 |
|
|
if (overflow_infinity_range_p (vr))
|
| 3664 |
|
|
*strict_overflow_p = true;
|
| 3665 |
|
|
return boolean_false_node;
|
| 3666 |
|
|
}
|
| 3667 |
|
|
|
| 3668 |
|
|
/* Otherwise, we don't know. */
|
| 3669 |
|
|
return NULL_TREE;
|
| 3670 |
|
|
}
|
| 3671 |
|
|
|
| 3672 |
|
|
gcc_unreachable ();
|
| 3673 |
|
|
}
|
| 3674 |
|
|
|
| 3675 |
|
|
|
| 3676 |
|
|
/* Debugging dumps. */
|
| 3677 |
|
|
|
| 3678 |
|
|
void dump_value_range (FILE *, value_range_t *);
|
| 3679 |
|
|
void debug_value_range (value_range_t *);
|
| 3680 |
|
|
void dump_all_value_ranges (FILE *);
|
| 3681 |
|
|
void debug_all_value_ranges (void);
|
| 3682 |
|
|
void dump_vr_equiv (FILE *, bitmap);
|
| 3683 |
|
|
void debug_vr_equiv (bitmap);
|
| 3684 |
|
|
|
| 3685 |
|
|
|
| 3686 |
|
|
/* Dump value range VR to FILE. */
|
| 3687 |
|
|
|
| 3688 |
|
|
void
|
| 3689 |
|
|
dump_value_range (FILE *file, value_range_t *vr)
|
| 3690 |
|
|
{
|
| 3691 |
|
|
if (vr == NULL)
|
| 3692 |
|
|
fprintf (file, "[]");
|
| 3693 |
|
|
else if (vr->type == VR_UNDEFINED)
|
| 3694 |
|
|
fprintf (file, "UNDEFINED");
|
| 3695 |
|
|
else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
|
| 3696 |
|
|
{
|
| 3697 |
|
|
tree type = TREE_TYPE (vr->min);
|
| 3698 |
|
|
|
| 3699 |
|
|
fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
|
| 3700 |
|
|
|
| 3701 |
|
|
if (is_negative_overflow_infinity (vr->min))
|
| 3702 |
|
|
fprintf (file, "-INF(OVF)");
|
| 3703 |
|
|
else if (INTEGRAL_TYPE_P (type)
|
| 3704 |
|
|
&& !TYPE_UNSIGNED (type)
|
| 3705 |
|
|
&& vrp_val_is_min (vr->min))
|
| 3706 |
|
|
fprintf (file, "-INF");
|
| 3707 |
|
|
else
|
| 3708 |
|
|
print_generic_expr (file, vr->min, 0);
|
| 3709 |
|
|
|
| 3710 |
|
|
fprintf (file, ", ");
|
| 3711 |
|
|
|
| 3712 |
|
|
if (is_positive_overflow_infinity (vr->max))
|
| 3713 |
|
|
fprintf (file, "+INF(OVF)");
|
| 3714 |
|
|
else if (INTEGRAL_TYPE_P (type)
|
| 3715 |
|
|
&& vrp_val_is_max (vr->max))
|
| 3716 |
|
|
fprintf (file, "+INF");
|
| 3717 |
|
|
else
|
| 3718 |
|
|
print_generic_expr (file, vr->max, 0);
|
| 3719 |
|
|
|
| 3720 |
|
|
fprintf (file, "]");
|
| 3721 |
|
|
|
| 3722 |
|
|
if (vr->equiv)
|
| 3723 |
|
|
{
|
| 3724 |
|
|
bitmap_iterator bi;
|
| 3725 |
|
|
unsigned i, c = 0;
|
| 3726 |
|
|
|
| 3727 |
|
|
fprintf (file, " EQUIVALENCES: { ");
|
| 3728 |
|
|
|
| 3729 |
|
|
EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
|
| 3730 |
|
|
{
|
| 3731 |
|
|
print_generic_expr (file, ssa_name (i), 0);
|
| 3732 |
|
|
fprintf (file, " ");
|
| 3733 |
|
|
c++;
|
| 3734 |
|
|
}
|
| 3735 |
|
|
|
| 3736 |
|
|
fprintf (file, "} (%u elements)", c);
|
| 3737 |
|
|
}
|
| 3738 |
|
|
}
|
| 3739 |
|
|
else if (vr->type == VR_VARYING)
|
| 3740 |
|
|
fprintf (file, "VARYING");
|
| 3741 |
|
|
else
|
| 3742 |
|
|
fprintf (file, "INVALID RANGE");
|
| 3743 |
|
|
}
|
| 3744 |
|
|
|
| 3745 |
|
|
|
| 3746 |
|
|
/* Dump value range VR to stderr. */
|
| 3747 |
|
|
|
| 3748 |
|
|
void
|
| 3749 |
|
|
debug_value_range (value_range_t *vr)
|
| 3750 |
|
|
{
|
| 3751 |
|
|
dump_value_range (stderr, vr);
|
| 3752 |
|
|
fprintf (stderr, "\n");
|
| 3753 |
|
|
}
|
| 3754 |
|
|
|
| 3755 |
|
|
|
| 3756 |
|
|
/* Dump value ranges of all SSA_NAMEs to FILE. */
|
| 3757 |
|
|
|
| 3758 |
|
|
void
|
| 3759 |
|
|
dump_all_value_ranges (FILE *file)
|
| 3760 |
|
|
{
|
| 3761 |
|
|
size_t i;
|
| 3762 |
|
|
|
| 3763 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
| 3764 |
|
|
{
|
| 3765 |
|
|
if (vr_value[i])
|
| 3766 |
|
|
{
|
| 3767 |
|
|
print_generic_expr (file, ssa_name (i), 0);
|
| 3768 |
|
|
fprintf (file, ": ");
|
| 3769 |
|
|
dump_value_range (file, vr_value[i]);
|
| 3770 |
|
|
fprintf (file, "\n");
|
| 3771 |
|
|
}
|
| 3772 |
|
|
}
|
| 3773 |
|
|
|
| 3774 |
|
|
fprintf (file, "\n");
|
| 3775 |
|
|
}
|
| 3776 |
|
|
|
| 3777 |
|
|
|
| 3778 |
|
|
/* Dump all value ranges to stderr. */
|
| 3779 |
|
|
|
| 3780 |
|
|
void
|
| 3781 |
|
|
debug_all_value_ranges (void)
|
| 3782 |
|
|
{
|
| 3783 |
|
|
dump_all_value_ranges (stderr);
|
| 3784 |
|
|
}
|
| 3785 |
|
|
|
| 3786 |
|
|
|
| 3787 |
|
|
/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
|
| 3788 |
|
|
create a new SSA name N and return the assertion assignment
|
| 3789 |
|
|
'V = ASSERT_EXPR <V, V OP W>'. */
|
| 3790 |
|
|
|
| 3791 |
|
|
static gimple
|
| 3792 |
|
|
build_assert_expr_for (tree cond, tree v)
|
| 3793 |
|
|
{
|
| 3794 |
|
|
tree n;
|
| 3795 |
|
|
gimple assertion;
|
| 3796 |
|
|
|
| 3797 |
|
|
gcc_assert (TREE_CODE (v) == SSA_NAME);
|
| 3798 |
|
|
n = duplicate_ssa_name (v, NULL);
|
| 3799 |
|
|
|
| 3800 |
|
|
if (COMPARISON_CLASS_P (cond))
|
| 3801 |
|
|
{
|
| 3802 |
|
|
tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
|
| 3803 |
|
|
assertion = gimple_build_assign (n, a);
|
| 3804 |
|
|
}
|
| 3805 |
|
|
else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
|
| 3806 |
|
|
{
|
| 3807 |
|
|
/* Given !V, build the assignment N = false. */
|
| 3808 |
|
|
tree op0 = TREE_OPERAND (cond, 0);
|
| 3809 |
|
|
gcc_assert (op0 == v);
|
| 3810 |
|
|
assertion = gimple_build_assign (n, boolean_false_node);
|
| 3811 |
|
|
}
|
| 3812 |
|
|
else if (TREE_CODE (cond) == SSA_NAME)
|
| 3813 |
|
|
{
|
| 3814 |
|
|
/* Given V, build the assignment N = true. */
|
| 3815 |
|
|
gcc_assert (v == cond);
|
| 3816 |
|
|
assertion = gimple_build_assign (n, boolean_true_node);
|
| 3817 |
|
|
}
|
| 3818 |
|
|
else
|
| 3819 |
|
|
gcc_unreachable ();
|
| 3820 |
|
|
|
| 3821 |
|
|
SSA_NAME_DEF_STMT (n) = assertion;
|
| 3822 |
|
|
|
| 3823 |
|
|
/* The new ASSERT_EXPR, creates a new SSA name that replaces the
|
| 3824 |
|
|
operand of the ASSERT_EXPR. Register the new name and the old one
|
| 3825 |
|
|
in the replacement table so that we can fix the SSA web after
|
| 3826 |
|
|
adding all the ASSERT_EXPRs. */
|
| 3827 |
|
|
register_new_name_mapping (n, v);
|
| 3828 |
|
|
|
| 3829 |
|
|
return assertion;
|
| 3830 |
|
|
}
|
| 3831 |
|
|
|
| 3832 |
|
|
|
| 3833 |
|
|
/* Return false if EXPR is a predicate expression involving floating
|
| 3834 |
|
|
point values. */
|
| 3835 |
|
|
|
| 3836 |
|
|
static inline bool
|
| 3837 |
|
|
fp_predicate (gimple stmt)
|
| 3838 |
|
|
{
|
| 3839 |
|
|
GIMPLE_CHECK (stmt, GIMPLE_COND);
|
| 3840 |
|
|
|
| 3841 |
|
|
return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
|
| 3842 |
|
|
}
|
| 3843 |
|
|
|
| 3844 |
|
|
|
| 3845 |
|
|
/* If the range of values taken by OP can be inferred after STMT executes,
|
| 3846 |
|
|
return the comparison code (COMP_CODE_P) and value (VAL_P) that
|
| 3847 |
|
|
describes the inferred range. Return true if a range could be
|
| 3848 |
|
|
inferred. */
|
| 3849 |
|
|
|
| 3850 |
|
|
static bool
|
| 3851 |
|
|
infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
|
| 3852 |
|
|
{
|
| 3853 |
|
|
*val_p = NULL_TREE;
|
| 3854 |
|
|
*comp_code_p = ERROR_MARK;
|
| 3855 |
|
|
|
| 3856 |
|
|
/* Do not attempt to infer anything in names that flow through
|
| 3857 |
|
|
abnormal edges. */
|
| 3858 |
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
|
| 3859 |
|
|
return false;
|
| 3860 |
|
|
|
| 3861 |
|
|
/* Similarly, don't infer anything from statements that may throw
|
| 3862 |
|
|
exceptions. */
|
| 3863 |
|
|
if (stmt_could_throw_p (stmt))
|
| 3864 |
|
|
return false;
|
| 3865 |
|
|
|
| 3866 |
|
|
/* If STMT is the last statement of a basic block with no
|
| 3867 |
|
|
successors, there is no point inferring anything about any of its
|
| 3868 |
|
|
operands. We would not be able to find a proper insertion point
|
| 3869 |
|
|
for the assertion, anyway. */
|
| 3870 |
|
|
if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
|
| 3871 |
|
|
return false;
|
| 3872 |
|
|
|
| 3873 |
|
|
/* We can only assume that a pointer dereference will yield
|
| 3874 |
|
|
non-NULL if -fdelete-null-pointer-checks is enabled. */
|
| 3875 |
|
|
if (flag_delete_null_pointer_checks
|
| 3876 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (op))
|
| 3877 |
|
|
&& gimple_code (stmt) != GIMPLE_ASM)
|
| 3878 |
|
|
{
|
| 3879 |
|
|
unsigned num_uses, num_loads, num_stores;
|
| 3880 |
|
|
|
| 3881 |
|
|
count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
|
| 3882 |
|
|
if (num_loads + num_stores > 0)
|
| 3883 |
|
|
{
|
| 3884 |
|
|
*val_p = build_int_cst (TREE_TYPE (op), 0);
|
| 3885 |
|
|
*comp_code_p = NE_EXPR;
|
| 3886 |
|
|
return true;
|
| 3887 |
|
|
}
|
| 3888 |
|
|
}
|
| 3889 |
|
|
|
| 3890 |
|
|
return false;
|
| 3891 |
|
|
}
|
| 3892 |
|
|
|
| 3893 |
|
|
|
| 3894 |
|
|
void dump_asserts_for (FILE *, tree);
|
| 3895 |
|
|
void debug_asserts_for (tree);
|
| 3896 |
|
|
void dump_all_asserts (FILE *);
|
| 3897 |
|
|
void debug_all_asserts (void);
|
| 3898 |
|
|
|
| 3899 |
|
|
/* Dump all the registered assertions for NAME to FILE. */
|
| 3900 |
|
|
|
| 3901 |
|
|
void
|
| 3902 |
|
|
dump_asserts_for (FILE *file, tree name)
|
| 3903 |
|
|
{
|
| 3904 |
|
|
assert_locus_t loc;
|
| 3905 |
|
|
|
| 3906 |
|
|
fprintf (file, "Assertions to be inserted for ");
|
| 3907 |
|
|
print_generic_expr (file, name, 0);
|
| 3908 |
|
|
fprintf (file, "\n");
|
| 3909 |
|
|
|
| 3910 |
|
|
loc = asserts_for[SSA_NAME_VERSION (name)];
|
| 3911 |
|
|
while (loc)
|
| 3912 |
|
|
{
|
| 3913 |
|
|
fprintf (file, "\t");
|
| 3914 |
|
|
print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
|
| 3915 |
|
|
fprintf (file, "\n\tBB #%d", loc->bb->index);
|
| 3916 |
|
|
if (loc->e)
|
| 3917 |
|
|
{
|
| 3918 |
|
|
fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
|
| 3919 |
|
|
loc->e->dest->index);
|
| 3920 |
|
|
dump_edge_info (file, loc->e, 0);
|
| 3921 |
|
|
}
|
| 3922 |
|
|
fprintf (file, "\n\tPREDICATE: ");
|
| 3923 |
|
|
print_generic_expr (file, name, 0);
|
| 3924 |
|
|
fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
|
| 3925 |
|
|
print_generic_expr (file, loc->val, 0);
|
| 3926 |
|
|
fprintf (file, "\n\n");
|
| 3927 |
|
|
loc = loc->next;
|
| 3928 |
|
|
}
|
| 3929 |
|
|
|
| 3930 |
|
|
fprintf (file, "\n");
|
| 3931 |
|
|
}
|
| 3932 |
|
|
|
| 3933 |
|
|
|
| 3934 |
|
|
/* Dump all the registered assertions for NAME to stderr. */
|
| 3935 |
|
|
|
| 3936 |
|
|
void
|
| 3937 |
|
|
debug_asserts_for (tree name)
|
| 3938 |
|
|
{
|
| 3939 |
|
|
dump_asserts_for (stderr, name);
|
| 3940 |
|
|
}
|
| 3941 |
|
|
|
| 3942 |
|
|
|
| 3943 |
|
|
/* Dump all the registered assertions for all the names to FILE. */
|
| 3944 |
|
|
|
| 3945 |
|
|
void
|
| 3946 |
|
|
dump_all_asserts (FILE *file)
|
| 3947 |
|
|
{
|
| 3948 |
|
|
unsigned i;
|
| 3949 |
|
|
bitmap_iterator bi;
|
| 3950 |
|
|
|
| 3951 |
|
|
fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
|
| 3952 |
|
|
EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
|
| 3953 |
|
|
dump_asserts_for (file, ssa_name (i));
|
| 3954 |
|
|
fprintf (file, "\n");
|
| 3955 |
|
|
}
|
| 3956 |
|
|
|
| 3957 |
|
|
|
| 3958 |
|
|
/* Dump all the registered assertions for all the names to stderr. */
|
| 3959 |
|
|
|
| 3960 |
|
|
void
|
| 3961 |
|
|
debug_all_asserts (void)
|
| 3962 |
|
|
{
|
| 3963 |
|
|
dump_all_asserts (stderr);
|
| 3964 |
|
|
}
|
| 3965 |
|
|
|
| 3966 |
|
|
|
| 3967 |
|
|
/* If NAME doesn't have an ASSERT_EXPR registered for asserting
|
| 3968 |
|
|
'EXPR COMP_CODE VAL' at a location that dominates block BB or
|
| 3969 |
|
|
E->DEST, then register this location as a possible insertion point
|
| 3970 |
|
|
for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
|
| 3971 |
|
|
|
| 3972 |
|
|
BB, E and SI provide the exact insertion point for the new
|
| 3973 |
|
|
ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
|
| 3974 |
|
|
on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
|
| 3975 |
|
|
BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
|
| 3976 |
|
|
must not be NULL. */
|
| 3977 |
|
|
|
| 3978 |
|
|
static void
|
| 3979 |
|
|
register_new_assert_for (tree name, tree expr,
|
| 3980 |
|
|
enum tree_code comp_code,
|
| 3981 |
|
|
tree val,
|
| 3982 |
|
|
basic_block bb,
|
| 3983 |
|
|
edge e,
|
| 3984 |
|
|
gimple_stmt_iterator si)
|
| 3985 |
|
|
{
|
| 3986 |
|
|
assert_locus_t n, loc, last_loc;
|
| 3987 |
|
|
basic_block dest_bb;
|
| 3988 |
|
|
|
| 3989 |
|
|
#if defined ENABLE_CHECKING
|
| 3990 |
|
|
gcc_assert (bb == NULL || e == NULL);
|
| 3991 |
|
|
|
| 3992 |
|
|
if (e == NULL)
|
| 3993 |
|
|
gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
|
| 3994 |
|
|
&& gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
|
| 3995 |
|
|
#endif
|
| 3996 |
|
|
|
| 3997 |
|
|
/* Never build an assert comparing against an integer constant with
|
| 3998 |
|
|
TREE_OVERFLOW set. This confuses our undefined overflow warning
|
| 3999 |
|
|
machinery. */
|
| 4000 |
|
|
if (TREE_CODE (val) == INTEGER_CST
|
| 4001 |
|
|
&& TREE_OVERFLOW (val))
|
| 4002 |
|
|
val = build_int_cst_wide (TREE_TYPE (val),
|
| 4003 |
|
|
TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
|
| 4004 |
|
|
|
| 4005 |
|
|
/* The new assertion A will be inserted at BB or E. We need to
|
| 4006 |
|
|
determine if the new location is dominated by a previously
|
| 4007 |
|
|
registered location for A. If we are doing an edge insertion,
|
| 4008 |
|
|
assume that A will be inserted at E->DEST. Note that this is not
|
| 4009 |
|
|
necessarily true.
|
| 4010 |
|
|
|
| 4011 |
|
|
If E is a critical edge, it will be split. But even if E is
|
| 4012 |
|
|
split, the new block will dominate the same set of blocks that
|
| 4013 |
|
|
E->DEST dominates.
|
| 4014 |
|
|
|
| 4015 |
|
|
The reverse, however, is not true, blocks dominated by E->DEST
|
| 4016 |
|
|
will not be dominated by the new block created to split E. So,
|
| 4017 |
|
|
if the insertion location is on a critical edge, we will not use
|
| 4018 |
|
|
the new location to move another assertion previously registered
|
| 4019 |
|
|
at a block dominated by E->DEST. */
|
| 4020 |
|
|
dest_bb = (bb) ? bb : e->dest;
|
| 4021 |
|
|
|
| 4022 |
|
|
/* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
|
| 4023 |
|
|
VAL at a block dominating DEST_BB, then we don't need to insert a new
|
| 4024 |
|
|
one. Similarly, if the same assertion already exists at a block
|
| 4025 |
|
|
dominated by DEST_BB and the new location is not on a critical
|
| 4026 |
|
|
edge, then update the existing location for the assertion (i.e.,
|
| 4027 |
|
|
move the assertion up in the dominance tree).
|
| 4028 |
|
|
|
| 4029 |
|
|
Note, this is implemented as a simple linked list because there
|
| 4030 |
|
|
should not be more than a handful of assertions registered per
|
| 4031 |
|
|
name. If this becomes a performance problem, a table hashed by
|
| 4032 |
|
|
COMP_CODE and VAL could be implemented. */
|
| 4033 |
|
|
loc = asserts_for[SSA_NAME_VERSION (name)];
|
| 4034 |
|
|
last_loc = loc;
|
| 4035 |
|
|
while (loc)
|
| 4036 |
|
|
{
|
| 4037 |
|
|
if (loc->comp_code == comp_code
|
| 4038 |
|
|
&& (loc->val == val
|
| 4039 |
|
|
|| operand_equal_p (loc->val, val, 0))
|
| 4040 |
|
|
&& (loc->expr == expr
|
| 4041 |
|
|
|| operand_equal_p (loc->expr, expr, 0)))
|
| 4042 |
|
|
{
|
| 4043 |
|
|
/* If the assertion NAME COMP_CODE VAL has already been
|
| 4044 |
|
|
registered at a basic block that dominates DEST_BB, then
|
| 4045 |
|
|
we don't need to insert the same assertion again. Note
|
| 4046 |
|
|
that we don't check strict dominance here to avoid
|
| 4047 |
|
|
replicating the same assertion inside the same basic
|
| 4048 |
|
|
block more than once (e.g., when a pointer is
|
| 4049 |
|
|
dereferenced several times inside a block).
|
| 4050 |
|
|
|
| 4051 |
|
|
An exception to this rule are edge insertions. If the
|
| 4052 |
|
|
new assertion is to be inserted on edge E, then it will
|
| 4053 |
|
|
dominate all the other insertions that we may want to
|
| 4054 |
|
|
insert in DEST_BB. So, if we are doing an edge
|
| 4055 |
|
|
insertion, don't do this dominance check. */
|
| 4056 |
|
|
if (e == NULL
|
| 4057 |
|
|
&& dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
|
| 4058 |
|
|
return;
|
| 4059 |
|
|
|
| 4060 |
|
|
/* Otherwise, if E is not a critical edge and DEST_BB
|
| 4061 |
|
|
dominates the existing location for the assertion, move
|
| 4062 |
|
|
the assertion up in the dominance tree by updating its
|
| 4063 |
|
|
location information. */
|
| 4064 |
|
|
if ((e == NULL || !EDGE_CRITICAL_P (e))
|
| 4065 |
|
|
&& dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
|
| 4066 |
|
|
{
|
| 4067 |
|
|
loc->bb = dest_bb;
|
| 4068 |
|
|
loc->e = e;
|
| 4069 |
|
|
loc->si = si;
|
| 4070 |
|
|
return;
|
| 4071 |
|
|
}
|
| 4072 |
|
|
}
|
| 4073 |
|
|
|
| 4074 |
|
|
/* Update the last node of the list and move to the next one. */
|
| 4075 |
|
|
last_loc = loc;
|
| 4076 |
|
|
loc = loc->next;
|
| 4077 |
|
|
}
|
| 4078 |
|
|
|
| 4079 |
|
|
/* If we didn't find an assertion already registered for
|
| 4080 |
|
|
NAME COMP_CODE VAL, add a new one at the end of the list of
|
| 4081 |
|
|
assertions associated with NAME. */
|
| 4082 |
|
|
n = XNEW (struct assert_locus_d);
|
| 4083 |
|
|
n->bb = dest_bb;
|
| 4084 |
|
|
n->e = e;
|
| 4085 |
|
|
n->si = si;
|
| 4086 |
|
|
n->comp_code = comp_code;
|
| 4087 |
|
|
n->val = val;
|
| 4088 |
|
|
n->expr = expr;
|
| 4089 |
|
|
n->next = NULL;
|
| 4090 |
|
|
|
| 4091 |
|
|
if (last_loc)
|
| 4092 |
|
|
last_loc->next = n;
|
| 4093 |
|
|
else
|
| 4094 |
|
|
asserts_for[SSA_NAME_VERSION (name)] = n;
|
| 4095 |
|
|
|
| 4096 |
|
|
bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
|
| 4097 |
|
|
}
|
| 4098 |
|
|
|
| 4099 |
|
|
/* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
|
| 4100 |
|
|
Extract a suitable test code and value and store them into *CODE_P and
|
| 4101 |
|
|
*VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
|
| 4102 |
|
|
|
| 4103 |
|
|
If no extraction was possible, return FALSE, otherwise return TRUE.
|
| 4104 |
|
|
|
| 4105 |
|
|
If INVERT is true, then we invert the result stored into *CODE_P. */
|
| 4106 |
|
|
|
| 4107 |
|
|
static bool
|
| 4108 |
|
|
extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
|
| 4109 |
|
|
tree cond_op0, tree cond_op1,
|
| 4110 |
|
|
bool invert, enum tree_code *code_p,
|
| 4111 |
|
|
tree *val_p)
|
| 4112 |
|
|
{
|
| 4113 |
|
|
enum tree_code comp_code;
|
| 4114 |
|
|
tree val;
|
| 4115 |
|
|
|
| 4116 |
|
|
/* Otherwise, we have a comparison of the form NAME COMP VAL
|
| 4117 |
|
|
or VAL COMP NAME. */
|
| 4118 |
|
|
if (name == cond_op1)
|
| 4119 |
|
|
{
|
| 4120 |
|
|
/* If the predicate is of the form VAL COMP NAME, flip
|
| 4121 |
|
|
COMP around because we need to register NAME as the
|
| 4122 |
|
|
first operand in the predicate. */
|
| 4123 |
|
|
comp_code = swap_tree_comparison (cond_code);
|
| 4124 |
|
|
val = cond_op0;
|
| 4125 |
|
|
}
|
| 4126 |
|
|
else
|
| 4127 |
|
|
{
|
| 4128 |
|
|
/* The comparison is of the form NAME COMP VAL, so the
|
| 4129 |
|
|
comparison code remains unchanged. */
|
| 4130 |
|
|
comp_code = cond_code;
|
| 4131 |
|
|
val = cond_op1;
|
| 4132 |
|
|
}
|
| 4133 |
|
|
|
| 4134 |
|
|
/* Invert the comparison code as necessary. */
|
| 4135 |
|
|
if (invert)
|
| 4136 |
|
|
comp_code = invert_tree_comparison (comp_code, 0);
|
| 4137 |
|
|
|
| 4138 |
|
|
/* VRP does not handle float types. */
|
| 4139 |
|
|
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
|
| 4140 |
|
|
return false;
|
| 4141 |
|
|
|
| 4142 |
|
|
/* Do not register always-false predicates.
|
| 4143 |
|
|
FIXME: this works around a limitation in fold() when dealing with
|
| 4144 |
|
|
enumerations. Given 'enum { N1, N2 } x;', fold will not
|
| 4145 |
|
|
fold 'if (x > N2)' to 'if (0)'. */
|
| 4146 |
|
|
if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
|
| 4147 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (val)))
|
| 4148 |
|
|
{
|
| 4149 |
|
|
tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
|
| 4150 |
|
|
tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
|
| 4151 |
|
|
|
| 4152 |
|
|
if (comp_code == GT_EXPR
|
| 4153 |
|
|
&& (!max
|
| 4154 |
|
|
|| compare_values (val, max) == 0))
|
| 4155 |
|
|
return false;
|
| 4156 |
|
|
|
| 4157 |
|
|
if (comp_code == LT_EXPR
|
| 4158 |
|
|
&& (!min
|
| 4159 |
|
|
|| compare_values (val, min) == 0))
|
| 4160 |
|
|
return false;
|
| 4161 |
|
|
}
|
| 4162 |
|
|
*code_p = comp_code;
|
| 4163 |
|
|
*val_p = val;
|
| 4164 |
|
|
return true;
|
| 4165 |
|
|
}
|
| 4166 |
|
|
|
| 4167 |
|
|
/* Try to register an edge assertion for SSA name NAME on edge E for
|
| 4168 |
|
|
the condition COND contributing to the conditional jump pointed to by BSI.
|
| 4169 |
|
|
Invert the condition COND if INVERT is true.
|
| 4170 |
|
|
Return true if an assertion for NAME could be registered. */
|
| 4171 |
|
|
|
| 4172 |
|
|
static bool
|
| 4173 |
|
|
register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
|
| 4174 |
|
|
enum tree_code cond_code,
|
| 4175 |
|
|
tree cond_op0, tree cond_op1, bool invert)
|
| 4176 |
|
|
{
|
| 4177 |
|
|
tree val;
|
| 4178 |
|
|
enum tree_code comp_code;
|
| 4179 |
|
|
bool retval = false;
|
| 4180 |
|
|
|
| 4181 |
|
|
if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
|
| 4182 |
|
|
cond_op0,
|
| 4183 |
|
|
cond_op1,
|
| 4184 |
|
|
invert, &comp_code, &val))
|
| 4185 |
|
|
return false;
|
| 4186 |
|
|
|
| 4187 |
|
|
/* Only register an ASSERT_EXPR if NAME was found in the sub-graph
|
| 4188 |
|
|
reachable from E. */
|
| 4189 |
|
|
if (live_on_edge (e, name)
|
| 4190 |
|
|
&& !has_single_use (name))
|
| 4191 |
|
|
{
|
| 4192 |
|
|
register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
|
| 4193 |
|
|
retval = true;
|
| 4194 |
|
|
}
|
| 4195 |
|
|
|
| 4196 |
|
|
/* In the case of NAME <= CST and NAME being defined as
|
| 4197 |
|
|
NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
|
| 4198 |
|
|
and NAME2 <= CST - CST2. We can do the same for NAME > CST.
|
| 4199 |
|
|
This catches range and anti-range tests. */
|
| 4200 |
|
|
if ((comp_code == LE_EXPR
|
| 4201 |
|
|
|| comp_code == GT_EXPR)
|
| 4202 |
|
|
&& TREE_CODE (val) == INTEGER_CST
|
| 4203 |
|
|
&& TYPE_UNSIGNED (TREE_TYPE (val)))
|
| 4204 |
|
|
{
|
| 4205 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (name);
|
| 4206 |
|
|
tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
|
| 4207 |
|
|
|
| 4208 |
|
|
/* Extract CST2 from the (optional) addition. */
|
| 4209 |
|
|
if (is_gimple_assign (def_stmt)
|
| 4210 |
|
|
&& gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
|
| 4211 |
|
|
{
|
| 4212 |
|
|
name2 = gimple_assign_rhs1 (def_stmt);
|
| 4213 |
|
|
cst2 = gimple_assign_rhs2 (def_stmt);
|
| 4214 |
|
|
if (TREE_CODE (name2) == SSA_NAME
|
| 4215 |
|
|
&& TREE_CODE (cst2) == INTEGER_CST)
|
| 4216 |
|
|
def_stmt = SSA_NAME_DEF_STMT (name2);
|
| 4217 |
|
|
}
|
| 4218 |
|
|
|
| 4219 |
|
|
/* Extract NAME2 from the (optional) sign-changing cast. */
|
| 4220 |
|
|
if (gimple_assign_cast_p (def_stmt))
|
| 4221 |
|
|
{
|
| 4222 |
|
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
|
| 4223 |
|
|
&& ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
|
| 4224 |
|
|
&& (TYPE_PRECISION (gimple_expr_type (def_stmt))
|
| 4225 |
|
|
== TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
|
| 4226 |
|
|
name3 = gimple_assign_rhs1 (def_stmt);
|
| 4227 |
|
|
}
|
| 4228 |
|
|
|
| 4229 |
|
|
/* If name3 is used later, create an ASSERT_EXPR for it. */
|
| 4230 |
|
|
if (name3 != NULL_TREE
|
| 4231 |
|
|
&& TREE_CODE (name3) == SSA_NAME
|
| 4232 |
|
|
&& (cst2 == NULL_TREE
|
| 4233 |
|
|
|| TREE_CODE (cst2) == INTEGER_CST)
|
| 4234 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (name3))
|
| 4235 |
|
|
&& live_on_edge (e, name3)
|
| 4236 |
|
|
&& !has_single_use (name3))
|
| 4237 |
|
|
{
|
| 4238 |
|
|
tree tmp;
|
| 4239 |
|
|
|
| 4240 |
|
|
/* Build an expression for the range test. */
|
| 4241 |
|
|
tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
|
| 4242 |
|
|
if (cst2 != NULL_TREE)
|
| 4243 |
|
|
tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
|
| 4244 |
|
|
|
| 4245 |
|
|
if (dump_file)
|
| 4246 |
|
|
{
|
| 4247 |
|
|
fprintf (dump_file, "Adding assert for ");
|
| 4248 |
|
|
print_generic_expr (dump_file, name3, 0);
|
| 4249 |
|
|
fprintf (dump_file, " from ");
|
| 4250 |
|
|
print_generic_expr (dump_file, tmp, 0);
|
| 4251 |
|
|
fprintf (dump_file, "\n");
|
| 4252 |
|
|
}
|
| 4253 |
|
|
|
| 4254 |
|
|
register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
|
| 4255 |
|
|
|
| 4256 |
|
|
retval = true;
|
| 4257 |
|
|
}
|
| 4258 |
|
|
|
| 4259 |
|
|
/* If name2 is used later, create an ASSERT_EXPR for it. */
|
| 4260 |
|
|
if (name2 != NULL_TREE
|
| 4261 |
|
|
&& TREE_CODE (name2) == SSA_NAME
|
| 4262 |
|
|
&& TREE_CODE (cst2) == INTEGER_CST
|
| 4263 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (name2))
|
| 4264 |
|
|
&& live_on_edge (e, name2)
|
| 4265 |
|
|
&& !has_single_use (name2))
|
| 4266 |
|
|
{
|
| 4267 |
|
|
tree tmp;
|
| 4268 |
|
|
|
| 4269 |
|
|
/* Build an expression for the range test. */
|
| 4270 |
|
|
tmp = name2;
|
| 4271 |
|
|
if (TREE_TYPE (name) != TREE_TYPE (name2))
|
| 4272 |
|
|
tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
|
| 4273 |
|
|
if (cst2 != NULL_TREE)
|
| 4274 |
|
|
tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
|
| 4275 |
|
|
|
| 4276 |
|
|
if (dump_file)
|
| 4277 |
|
|
{
|
| 4278 |
|
|
fprintf (dump_file, "Adding assert for ");
|
| 4279 |
|
|
print_generic_expr (dump_file, name2, 0);
|
| 4280 |
|
|
fprintf (dump_file, " from ");
|
| 4281 |
|
|
print_generic_expr (dump_file, tmp, 0);
|
| 4282 |
|
|
fprintf (dump_file, "\n");
|
| 4283 |
|
|
}
|
| 4284 |
|
|
|
| 4285 |
|
|
register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
|
| 4286 |
|
|
|
| 4287 |
|
|
retval = true;
|
| 4288 |
|
|
}
|
| 4289 |
|
|
}
|
| 4290 |
|
|
|
| 4291 |
|
|
return retval;
|
| 4292 |
|
|
}
|
| 4293 |
|
|
|
| 4294 |
|
|
/* OP is an operand of a truth value expression which is known to have
|
| 4295 |
|
|
a particular value. Register any asserts for OP and for any
|
| 4296 |
|
|
operands in OP's defining statement.
|
| 4297 |
|
|
|
| 4298 |
|
|
If CODE is EQ_EXPR, then we want to register OP is zero (false),
|
| 4299 |
|
|
if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
|
| 4300 |
|
|
|
| 4301 |
|
|
static bool
|
| 4302 |
|
|
register_edge_assert_for_1 (tree op, enum tree_code code,
|
| 4303 |
|
|
edge e, gimple_stmt_iterator bsi)
|
| 4304 |
|
|
{
|
| 4305 |
|
|
bool retval = false;
|
| 4306 |
|
|
gimple op_def;
|
| 4307 |
|
|
tree val;
|
| 4308 |
|
|
enum tree_code rhs_code;
|
| 4309 |
|
|
|
| 4310 |
|
|
/* We only care about SSA_NAMEs. */
|
| 4311 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
| 4312 |
|
|
return false;
|
| 4313 |
|
|
|
| 4314 |
|
|
/* We know that OP will have a zero or nonzero value. If OP is used
|
| 4315 |
|
|
more than once go ahead and register an assert for OP.
|
| 4316 |
|
|
|
| 4317 |
|
|
The FOUND_IN_SUBGRAPH support is not helpful in this situation as
|
| 4318 |
|
|
it will always be set for OP (because OP is used in a COND_EXPR in
|
| 4319 |
|
|
the subgraph). */
|
| 4320 |
|
|
if (!has_single_use (op))
|
| 4321 |
|
|
{
|
| 4322 |
|
|
val = build_int_cst (TREE_TYPE (op), 0);
|
| 4323 |
|
|
register_new_assert_for (op, op, code, val, NULL, e, bsi);
|
| 4324 |
|
|
retval = true;
|
| 4325 |
|
|
}
|
| 4326 |
|
|
|
| 4327 |
|
|
/* Now look at how OP is set. If it's set from a comparison,
|
| 4328 |
|
|
a truth operation or some bit operations, then we may be able
|
| 4329 |
|
|
to register information about the operands of that assignment. */
|
| 4330 |
|
|
op_def = SSA_NAME_DEF_STMT (op);
|
| 4331 |
|
|
if (gimple_code (op_def) != GIMPLE_ASSIGN)
|
| 4332 |
|
|
return retval;
|
| 4333 |
|
|
|
| 4334 |
|
|
rhs_code = gimple_assign_rhs_code (op_def);
|
| 4335 |
|
|
|
| 4336 |
|
|
if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
|
| 4337 |
|
|
{
|
| 4338 |
|
|
bool invert = (code == EQ_EXPR ? true : false);
|
| 4339 |
|
|
tree op0 = gimple_assign_rhs1 (op_def);
|
| 4340 |
|
|
tree op1 = gimple_assign_rhs2 (op_def);
|
| 4341 |
|
|
|
| 4342 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
| 4343 |
|
|
retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
|
| 4344 |
|
|
invert);
|
| 4345 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
| 4346 |
|
|
retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
|
| 4347 |
|
|
invert);
|
| 4348 |
|
|
}
|
| 4349 |
|
|
else if ((code == NE_EXPR
|
| 4350 |
|
|
&& (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
|
| 4351 |
|
|
|| gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
|
| 4352 |
|
|
|| (code == EQ_EXPR
|
| 4353 |
|
|
&& (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
|
| 4354 |
|
|
|| gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
|
| 4355 |
|
|
{
|
| 4356 |
|
|
/* Recurse on each operand. */
|
| 4357 |
|
|
retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
|
| 4358 |
|
|
code, e, bsi);
|
| 4359 |
|
|
retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
|
| 4360 |
|
|
code, e, bsi);
|
| 4361 |
|
|
}
|
| 4362 |
|
|
else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
|
| 4363 |
|
|
{
|
| 4364 |
|
|
/* Recurse, flipping CODE. */
|
| 4365 |
|
|
code = invert_tree_comparison (code, false);
|
| 4366 |
|
|
retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
|
| 4367 |
|
|
code, e, bsi);
|
| 4368 |
|
|
}
|
| 4369 |
|
|
else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
|
| 4370 |
|
|
{
|
| 4371 |
|
|
/* Recurse through the copy. */
|
| 4372 |
|
|
retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
|
| 4373 |
|
|
code, e, bsi);
|
| 4374 |
|
|
}
|
| 4375 |
|
|
else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
|
| 4376 |
|
|
{
|
| 4377 |
|
|
/* Recurse through the type conversion. */
|
| 4378 |
|
|
retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
|
| 4379 |
|
|
code, e, bsi);
|
| 4380 |
|
|
}
|
| 4381 |
|
|
|
| 4382 |
|
|
return retval;
|
| 4383 |
|
|
}
|
| 4384 |
|
|
|
| 4385 |
|
|
/* Try to register an edge assertion for SSA name NAME on edge E for
|
| 4386 |
|
|
the condition COND contributing to the conditional jump pointed to by SI.
|
| 4387 |
|
|
Return true if an assertion for NAME could be registered. */
|
| 4388 |
|
|
|
| 4389 |
|
|
static bool
|
| 4390 |
|
|
register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
|
| 4391 |
|
|
enum tree_code cond_code, tree cond_op0,
|
| 4392 |
|
|
tree cond_op1)
|
| 4393 |
|
|
{
|
| 4394 |
|
|
tree val;
|
| 4395 |
|
|
enum tree_code comp_code;
|
| 4396 |
|
|
bool retval = false;
|
| 4397 |
|
|
bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
|
| 4398 |
|
|
|
| 4399 |
|
|
/* Do not attempt to infer anything in names that flow through
|
| 4400 |
|
|
abnormal edges. */
|
| 4401 |
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
|
| 4402 |
|
|
return false;
|
| 4403 |
|
|
|
| 4404 |
|
|
if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
|
| 4405 |
|
|
cond_op0, cond_op1,
|
| 4406 |
|
|
is_else_edge,
|
| 4407 |
|
|
&comp_code, &val))
|
| 4408 |
|
|
return false;
|
| 4409 |
|
|
|
| 4410 |
|
|
/* Register ASSERT_EXPRs for name. */
|
| 4411 |
|
|
retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
|
| 4412 |
|
|
cond_op1, is_else_edge);
|
| 4413 |
|
|
|
| 4414 |
|
|
|
| 4415 |
|
|
/* If COND is effectively an equality test of an SSA_NAME against
|
| 4416 |
|
|
the value zero or one, then we may be able to assert values
|
| 4417 |
|
|
for SSA_NAMEs which flow into COND. */
|
| 4418 |
|
|
|
| 4419 |
|
|
/* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
|
| 4420 |
|
|
statement of NAME we can assert both operands of the TRUTH_AND_EXPR
|
| 4421 |
|
|
have nonzero value. */
|
| 4422 |
|
|
if (((comp_code == EQ_EXPR && integer_onep (val))
|
| 4423 |
|
|
|| (comp_code == NE_EXPR && integer_zerop (val))))
|
| 4424 |
|
|
{
|
| 4425 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (name);
|
| 4426 |
|
|
|
| 4427 |
|
|
if (is_gimple_assign (def_stmt)
|
| 4428 |
|
|
&& (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
|
| 4429 |
|
|
|| gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
|
| 4430 |
|
|
{
|
| 4431 |
|
|
tree op0 = gimple_assign_rhs1 (def_stmt);
|
| 4432 |
|
|
tree op1 = gimple_assign_rhs2 (def_stmt);
|
| 4433 |
|
|
retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
|
| 4434 |
|
|
retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
|
| 4435 |
|
|
}
|
| 4436 |
|
|
}
|
| 4437 |
|
|
|
| 4438 |
|
|
/* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
|
| 4439 |
|
|
statement of NAME we can assert both operands of the TRUTH_OR_EXPR
|
| 4440 |
|
|
have zero value. */
|
| 4441 |
|
|
if (((comp_code == EQ_EXPR && integer_zerop (val))
|
| 4442 |
|
|
|| (comp_code == NE_EXPR && integer_onep (val))))
|
| 4443 |
|
|
{
|
| 4444 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (name);
|
| 4445 |
|
|
|
| 4446 |
|
|
if (is_gimple_assign (def_stmt)
|
| 4447 |
|
|
&& (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
|
| 4448 |
|
|
/* For BIT_IOR_EXPR only if NAME == 0 both operands have
|
| 4449 |
|
|
necessarily zero value. */
|
| 4450 |
|
|
|| (comp_code == EQ_EXPR
|
| 4451 |
|
|
&& (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
|
| 4452 |
|
|
{
|
| 4453 |
|
|
tree op0 = gimple_assign_rhs1 (def_stmt);
|
| 4454 |
|
|
tree op1 = gimple_assign_rhs2 (def_stmt);
|
| 4455 |
|
|
retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
|
| 4456 |
|
|
retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
|
| 4457 |
|
|
}
|
| 4458 |
|
|
}
|
| 4459 |
|
|
|
| 4460 |
|
|
return retval;
|
| 4461 |
|
|
}
|
| 4462 |
|
|
|
| 4463 |
|
|
|
| 4464 |
|
|
/* Determine whether the outgoing edges of BB should receive an
|
| 4465 |
|
|
ASSERT_EXPR for each of the operands of BB's LAST statement.
|
| 4466 |
|
|
The last statement of BB must be a COND_EXPR.
|
| 4467 |
|
|
|
| 4468 |
|
|
If any of the sub-graphs rooted at BB have an interesting use of
|
| 4469 |
|
|
the predicate operands, an assert location node is added to the
|
| 4470 |
|
|
list of assertions for the corresponding operands. */
|
| 4471 |
|
|
|
| 4472 |
|
|
static bool
|
| 4473 |
|
|
find_conditional_asserts (basic_block bb, gimple last)
|
| 4474 |
|
|
{
|
| 4475 |
|
|
bool need_assert;
|
| 4476 |
|
|
gimple_stmt_iterator bsi;
|
| 4477 |
|
|
tree op;
|
| 4478 |
|
|
edge_iterator ei;
|
| 4479 |
|
|
edge e;
|
| 4480 |
|
|
ssa_op_iter iter;
|
| 4481 |
|
|
|
| 4482 |
|
|
need_assert = false;
|
| 4483 |
|
|
bsi = gsi_for_stmt (last);
|
| 4484 |
|
|
|
| 4485 |
|
|
/* Look for uses of the operands in each of the sub-graphs
|
| 4486 |
|
|
rooted at BB. We need to check each of the outgoing edges
|
| 4487 |
|
|
separately, so that we know what kind of ASSERT_EXPR to
|
| 4488 |
|
|
insert. */
|
| 4489 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 4490 |
|
|
{
|
| 4491 |
|
|
if (e->dest == bb)
|
| 4492 |
|
|
continue;
|
| 4493 |
|
|
|
| 4494 |
|
|
/* Register the necessary assertions for each operand in the
|
| 4495 |
|
|
conditional predicate. */
|
| 4496 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
|
| 4497 |
|
|
{
|
| 4498 |
|
|
need_assert |= register_edge_assert_for (op, e, bsi,
|
| 4499 |
|
|
gimple_cond_code (last),
|
| 4500 |
|
|
gimple_cond_lhs (last),
|
| 4501 |
|
|
gimple_cond_rhs (last));
|
| 4502 |
|
|
}
|
| 4503 |
|
|
}
|
| 4504 |
|
|
|
| 4505 |
|
|
return need_assert;
|
| 4506 |
|
|
}
|
| 4507 |
|
|
|
| 4508 |
|
|
/* Compare two case labels sorting first by the destination label uid
|
| 4509 |
|
|
and then by the case value. */
|
| 4510 |
|
|
|
| 4511 |
|
|
static int
|
| 4512 |
|
|
compare_case_labels (const void *p1, const void *p2)
|
| 4513 |
|
|
{
|
| 4514 |
|
|
const_tree const case1 = *(const_tree const*)p1;
|
| 4515 |
|
|
const_tree const case2 = *(const_tree const*)p2;
|
| 4516 |
|
|
unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
|
| 4517 |
|
|
unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
|
| 4518 |
|
|
|
| 4519 |
|
|
if (uid1 < uid2)
|
| 4520 |
|
|
return -1;
|
| 4521 |
|
|
else if (uid1 == uid2)
|
| 4522 |
|
|
{
|
| 4523 |
|
|
/* Make sure the default label is first in a group. */
|
| 4524 |
|
|
if (!CASE_LOW (case1))
|
| 4525 |
|
|
return -1;
|
| 4526 |
|
|
else if (!CASE_LOW (case2))
|
| 4527 |
|
|
return 1;
|
| 4528 |
|
|
else
|
| 4529 |
|
|
return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
|
| 4530 |
|
|
}
|
| 4531 |
|
|
else
|
| 4532 |
|
|
return 1;
|
| 4533 |
|
|
}
|
| 4534 |
|
|
|
| 4535 |
|
|
/* Determine whether the outgoing edges of BB should receive an
|
| 4536 |
|
|
ASSERT_EXPR for each of the operands of BB's LAST statement.
|
| 4537 |
|
|
The last statement of BB must be a SWITCH_EXPR.
|
| 4538 |
|
|
|
| 4539 |
|
|
If any of the sub-graphs rooted at BB have an interesting use of
|
| 4540 |
|
|
the predicate operands, an assert location node is added to the
|
| 4541 |
|
|
list of assertions for the corresponding operands. */
|
| 4542 |
|
|
|
| 4543 |
|
|
static bool
|
| 4544 |
|
|
find_switch_asserts (basic_block bb, gimple last)
|
| 4545 |
|
|
{
|
| 4546 |
|
|
bool need_assert;
|
| 4547 |
|
|
gimple_stmt_iterator bsi;
|
| 4548 |
|
|
tree op;
|
| 4549 |
|
|
edge e;
|
| 4550 |
|
|
tree vec2;
|
| 4551 |
|
|
size_t n = gimple_switch_num_labels(last);
|
| 4552 |
|
|
#if GCC_VERSION >= 4000
|
| 4553 |
|
|
unsigned int idx;
|
| 4554 |
|
|
#else
|
| 4555 |
|
|
/* Work around GCC 3.4 bug (PR 37086). */
|
| 4556 |
|
|
volatile unsigned int idx;
|
| 4557 |
|
|
#endif
|
| 4558 |
|
|
|
| 4559 |
|
|
need_assert = false;
|
| 4560 |
|
|
bsi = gsi_for_stmt (last);
|
| 4561 |
|
|
op = gimple_switch_index (last);
|
| 4562 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
| 4563 |
|
|
return false;
|
| 4564 |
|
|
|
| 4565 |
|
|
/* Build a vector of case labels sorted by destination label. */
|
| 4566 |
|
|
vec2 = make_tree_vec (n);
|
| 4567 |
|
|
for (idx = 0; idx < n; ++idx)
|
| 4568 |
|
|
TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
|
| 4569 |
|
|
qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
|
| 4570 |
|
|
|
| 4571 |
|
|
for (idx = 0; idx < n; ++idx)
|
| 4572 |
|
|
{
|
| 4573 |
|
|
tree min, max;
|
| 4574 |
|
|
tree cl = TREE_VEC_ELT (vec2, idx);
|
| 4575 |
|
|
|
| 4576 |
|
|
min = CASE_LOW (cl);
|
| 4577 |
|
|
max = CASE_HIGH (cl);
|
| 4578 |
|
|
|
| 4579 |
|
|
/* If there are multiple case labels with the same destination
|
| 4580 |
|
|
we need to combine them to a single value range for the edge. */
|
| 4581 |
|
|
if (idx + 1 < n
|
| 4582 |
|
|
&& CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
|
| 4583 |
|
|
{
|
| 4584 |
|
|
/* Skip labels until the last of the group. */
|
| 4585 |
|
|
do {
|
| 4586 |
|
|
++idx;
|
| 4587 |
|
|
} while (idx < n
|
| 4588 |
|
|
&& CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
|
| 4589 |
|
|
--idx;
|
| 4590 |
|
|
|
| 4591 |
|
|
/* Pick up the maximum of the case label range. */
|
| 4592 |
|
|
if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
|
| 4593 |
|
|
max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
|
| 4594 |
|
|
else
|
| 4595 |
|
|
max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
|
| 4596 |
|
|
}
|
| 4597 |
|
|
|
| 4598 |
|
|
/* Nothing to do if the range includes the default label until we
|
| 4599 |
|
|
can register anti-ranges. */
|
| 4600 |
|
|
if (min == NULL_TREE)
|
| 4601 |
|
|
continue;
|
| 4602 |
|
|
|
| 4603 |
|
|
/* Find the edge to register the assert expr on. */
|
| 4604 |
|
|
e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
|
| 4605 |
|
|
|
| 4606 |
|
|
/* Register the necessary assertions for the operand in the
|
| 4607 |
|
|
SWITCH_EXPR. */
|
| 4608 |
|
|
need_assert |= register_edge_assert_for (op, e, bsi,
|
| 4609 |
|
|
max ? GE_EXPR : EQ_EXPR,
|
| 4610 |
|
|
op,
|
| 4611 |
|
|
fold_convert (TREE_TYPE (op),
|
| 4612 |
|
|
min));
|
| 4613 |
|
|
if (max)
|
| 4614 |
|
|
{
|
| 4615 |
|
|
need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
|
| 4616 |
|
|
op,
|
| 4617 |
|
|
fold_convert (TREE_TYPE (op),
|
| 4618 |
|
|
max));
|
| 4619 |
|
|
}
|
| 4620 |
|
|
}
|
| 4621 |
|
|
|
| 4622 |
|
|
return need_assert;
|
| 4623 |
|
|
}
|
| 4624 |
|
|
|
| 4625 |
|
|
|
| 4626 |
|
|
/* Traverse all the statements in block BB looking for statements that
|
| 4627 |
|
|
may generate useful assertions for the SSA names in their operand.
|
| 4628 |
|
|
If a statement produces a useful assertion A for name N_i, then the
|
| 4629 |
|
|
list of assertions already generated for N_i is scanned to
|
| 4630 |
|
|
determine if A is actually needed.
|
| 4631 |
|
|
|
| 4632 |
|
|
If N_i already had the assertion A at a location dominating the
|
| 4633 |
|
|
current location, then nothing needs to be done. Otherwise, the
|
| 4634 |
|
|
new location for A is recorded instead.
|
| 4635 |
|
|
|
| 4636 |
|
|
1- For every statement S in BB, all the variables used by S are
|
| 4637 |
|
|
added to bitmap FOUND_IN_SUBGRAPH.
|
| 4638 |
|
|
|
| 4639 |
|
|
2- If statement S uses an operand N in a way that exposes a known
|
| 4640 |
|
|
value range for N, then if N was not already generated by an
|
| 4641 |
|
|
ASSERT_EXPR, create a new assert location for N. For instance,
|
| 4642 |
|
|
if N is a pointer and the statement dereferences it, we can
|
| 4643 |
|
|
assume that N is not NULL.
|
| 4644 |
|
|
|
| 4645 |
|
|
3- COND_EXPRs are a special case of #2. We can derive range
|
| 4646 |
|
|
information from the predicate but need to insert different
|
| 4647 |
|
|
ASSERT_EXPRs for each of the sub-graphs rooted at the
|
| 4648 |
|
|
conditional block. If the last statement of BB is a conditional
|
| 4649 |
|
|
expression of the form 'X op Y', then
|
| 4650 |
|
|
|
| 4651 |
|
|
a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
|
| 4652 |
|
|
|
| 4653 |
|
|
b) If the conditional is the only entry point to the sub-graph
|
| 4654 |
|
|
corresponding to the THEN_CLAUSE, recurse into it. On
|
| 4655 |
|
|
return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
|
| 4656 |
|
|
an ASSERT_EXPR is added for the corresponding variable.
|
| 4657 |
|
|
|
| 4658 |
|
|
c) Repeat step (b) on the ELSE_CLAUSE.
|
| 4659 |
|
|
|
| 4660 |
|
|
d) Mark X and Y in FOUND_IN_SUBGRAPH.
|
| 4661 |
|
|
|
| 4662 |
|
|
For instance,
|
| 4663 |
|
|
|
| 4664 |
|
|
if (a == 9)
|
| 4665 |
|
|
b = a;
|
| 4666 |
|
|
else
|
| 4667 |
|
|
b = c + 1;
|
| 4668 |
|
|
|
| 4669 |
|
|
In this case, an assertion on the THEN clause is useful to
|
| 4670 |
|
|
determine that 'a' is always 9 on that edge. However, an assertion
|
| 4671 |
|
|
on the ELSE clause would be unnecessary.
|
| 4672 |
|
|
|
| 4673 |
|
|
4- If BB does not end in a conditional expression, then we recurse
|
| 4674 |
|
|
into BB's dominator children.
|
| 4675 |
|
|
|
| 4676 |
|
|
At the end of the recursive traversal, every SSA name will have a
|
| 4677 |
|
|
list of locations where ASSERT_EXPRs should be added. When a new
|
| 4678 |
|
|
location for name N is found, it is registered by calling
|
| 4679 |
|
|
register_new_assert_for. That function keeps track of all the
|
| 4680 |
|
|
registered assertions to prevent adding unnecessary assertions.
|
| 4681 |
|
|
For instance, if a pointer P_4 is dereferenced more than once in a
|
| 4682 |
|
|
dominator tree, only the location dominating all the dereference of
|
| 4683 |
|
|
P_4 will receive an ASSERT_EXPR.
|
| 4684 |
|
|
|
| 4685 |
|
|
If this function returns true, then it means that there are names
|
| 4686 |
|
|
for which we need to generate ASSERT_EXPRs. Those assertions are
|
| 4687 |
|
|
inserted by process_assert_insertions. */
|
| 4688 |
|
|
|
| 4689 |
|
|
static bool
|
| 4690 |
|
|
find_assert_locations_1 (basic_block bb, sbitmap live)
|
| 4691 |
|
|
{
|
| 4692 |
|
|
gimple_stmt_iterator si;
|
| 4693 |
|
|
gimple last;
|
| 4694 |
|
|
gimple phi;
|
| 4695 |
|
|
bool need_assert;
|
| 4696 |
|
|
|
| 4697 |
|
|
need_assert = false;
|
| 4698 |
|
|
last = last_stmt (bb);
|
| 4699 |
|
|
|
| 4700 |
|
|
/* If BB's last statement is a conditional statement involving integer
|
| 4701 |
|
|
operands, determine if we need to add ASSERT_EXPRs. */
|
| 4702 |
|
|
if (last
|
| 4703 |
|
|
&& gimple_code (last) == GIMPLE_COND
|
| 4704 |
|
|
&& !fp_predicate (last)
|
| 4705 |
|
|
&& !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
|
| 4706 |
|
|
need_assert |= find_conditional_asserts (bb, last);
|
| 4707 |
|
|
|
| 4708 |
|
|
/* If BB's last statement is a switch statement involving integer
|
| 4709 |
|
|
operands, determine if we need to add ASSERT_EXPRs. */
|
| 4710 |
|
|
if (last
|
| 4711 |
|
|
&& gimple_code (last) == GIMPLE_SWITCH
|
| 4712 |
|
|
&& !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
|
| 4713 |
|
|
need_assert |= find_switch_asserts (bb, last);
|
| 4714 |
|
|
|
| 4715 |
|
|
/* Traverse all the statements in BB marking used names and looking
|
| 4716 |
|
|
for statements that may infer assertions for their used operands. */
|
| 4717 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
| 4718 |
|
|
{
|
| 4719 |
|
|
gimple stmt;
|
| 4720 |
|
|
tree op;
|
| 4721 |
|
|
ssa_op_iter i;
|
| 4722 |
|
|
|
| 4723 |
|
|
stmt = gsi_stmt (si);
|
| 4724 |
|
|
|
| 4725 |
|
|
if (is_gimple_debug (stmt))
|
| 4726 |
|
|
continue;
|
| 4727 |
|
|
|
| 4728 |
|
|
/* See if we can derive an assertion for any of STMT's operands. */
|
| 4729 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
|
| 4730 |
|
|
{
|
| 4731 |
|
|
tree value;
|
| 4732 |
|
|
enum tree_code comp_code;
|
| 4733 |
|
|
|
| 4734 |
|
|
/* Mark OP in our live bitmap. */
|
| 4735 |
|
|
SET_BIT (live, SSA_NAME_VERSION (op));
|
| 4736 |
|
|
|
| 4737 |
|
|
/* If OP is used in such a way that we can infer a value
|
| 4738 |
|
|
range for it, and we don't find a previous assertion for
|
| 4739 |
|
|
it, create a new assertion location node for OP. */
|
| 4740 |
|
|
if (infer_value_range (stmt, op, &comp_code, &value))
|
| 4741 |
|
|
{
|
| 4742 |
|
|
/* If we are able to infer a nonzero value range for OP,
|
| 4743 |
|
|
then walk backwards through the use-def chain to see if OP
|
| 4744 |
|
|
was set via a typecast.
|
| 4745 |
|
|
|
| 4746 |
|
|
If so, then we can also infer a nonzero value range
|
| 4747 |
|
|
for the operand of the NOP_EXPR. */
|
| 4748 |
|
|
if (comp_code == NE_EXPR && integer_zerop (value))
|
| 4749 |
|
|
{
|
| 4750 |
|
|
tree t = op;
|
| 4751 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (t);
|
| 4752 |
|
|
|
| 4753 |
|
|
while (is_gimple_assign (def_stmt)
|
| 4754 |
|
|
&& gimple_assign_rhs_code (def_stmt) == NOP_EXPR
|
| 4755 |
|
|
&& TREE_CODE
|
| 4756 |
|
|
(gimple_assign_rhs1 (def_stmt)) == SSA_NAME
|
| 4757 |
|
|
&& POINTER_TYPE_P
|
| 4758 |
|
|
(TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
|
| 4759 |
|
|
{
|
| 4760 |
|
|
t = gimple_assign_rhs1 (def_stmt);
|
| 4761 |
|
|
def_stmt = SSA_NAME_DEF_STMT (t);
|
| 4762 |
|
|
|
| 4763 |
|
|
/* Note we want to register the assert for the
|
| 4764 |
|
|
operand of the NOP_EXPR after SI, not after the
|
| 4765 |
|
|
conversion. */
|
| 4766 |
|
|
if (! has_single_use (t))
|
| 4767 |
|
|
{
|
| 4768 |
|
|
register_new_assert_for (t, t, comp_code, value,
|
| 4769 |
|
|
bb, NULL, si);
|
| 4770 |
|
|
need_assert = true;
|
| 4771 |
|
|
}
|
| 4772 |
|
|
}
|
| 4773 |
|
|
}
|
| 4774 |
|
|
|
| 4775 |
|
|
/* If OP is used only once, namely in this STMT, don't
|
| 4776 |
|
|
bother creating an ASSERT_EXPR for it. Such an
|
| 4777 |
|
|
ASSERT_EXPR would do nothing but increase compile time. */
|
| 4778 |
|
|
if (!has_single_use (op))
|
| 4779 |
|
|
{
|
| 4780 |
|
|
register_new_assert_for (op, op, comp_code, value,
|
| 4781 |
|
|
bb, NULL, si);
|
| 4782 |
|
|
need_assert = true;
|
| 4783 |
|
|
}
|
| 4784 |
|
|
}
|
| 4785 |
|
|
}
|
| 4786 |
|
|
}
|
| 4787 |
|
|
|
| 4788 |
|
|
/* Traverse all PHI nodes in BB marking used operands. */
|
| 4789 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
|
| 4790 |
|
|
{
|
| 4791 |
|
|
use_operand_p arg_p;
|
| 4792 |
|
|
ssa_op_iter i;
|
| 4793 |
|
|
phi = gsi_stmt (si);
|
| 4794 |
|
|
|
| 4795 |
|
|
FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
|
| 4796 |
|
|
{
|
| 4797 |
|
|
tree arg = USE_FROM_PTR (arg_p);
|
| 4798 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
| 4799 |
|
|
SET_BIT (live, SSA_NAME_VERSION (arg));
|
| 4800 |
|
|
}
|
| 4801 |
|
|
}
|
| 4802 |
|
|
|
| 4803 |
|
|
return need_assert;
|
| 4804 |
|
|
}
|
| 4805 |
|
|
|
| 4806 |
|
|
/* Do an RPO walk over the function computing SSA name liveness
|
| 4807 |
|
|
on-the-fly and deciding on assert expressions to insert.
|
| 4808 |
|
|
Returns true if there are assert expressions to be inserted. */
|
| 4809 |
|
|
|
| 4810 |
|
|
static bool
|
| 4811 |
|
|
find_assert_locations (void)
|
| 4812 |
|
|
{
|
| 4813 |
|
|
int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
|
| 4814 |
|
|
int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
|
| 4815 |
|
|
int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
|
| 4816 |
|
|
int rpo_cnt, i;
|
| 4817 |
|
|
bool need_asserts;
|
| 4818 |
|
|
|
| 4819 |
|
|
live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
|
| 4820 |
|
|
rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
|
| 4821 |
|
|
for (i = 0; i < rpo_cnt; ++i)
|
| 4822 |
|
|
bb_rpo[rpo[i]] = i;
|
| 4823 |
|
|
|
| 4824 |
|
|
need_asserts = false;
|
| 4825 |
|
|
for (i = rpo_cnt-1; i >= 0; --i)
|
| 4826 |
|
|
{
|
| 4827 |
|
|
basic_block bb = BASIC_BLOCK (rpo[i]);
|
| 4828 |
|
|
edge e;
|
| 4829 |
|
|
edge_iterator ei;
|
| 4830 |
|
|
|
| 4831 |
|
|
if (!live[rpo[i]])
|
| 4832 |
|
|
{
|
| 4833 |
|
|
live[rpo[i]] = sbitmap_alloc (num_ssa_names);
|
| 4834 |
|
|
sbitmap_zero (live[rpo[i]]);
|
| 4835 |
|
|
}
|
| 4836 |
|
|
|
| 4837 |
|
|
/* Process BB and update the live information with uses in
|
| 4838 |
|
|
this block. */
|
| 4839 |
|
|
need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
|
| 4840 |
|
|
|
| 4841 |
|
|
/* Merge liveness into the predecessor blocks and free it. */
|
| 4842 |
|
|
if (!sbitmap_empty_p (live[rpo[i]]))
|
| 4843 |
|
|
{
|
| 4844 |
|
|
int pred_rpo = i;
|
| 4845 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 4846 |
|
|
{
|
| 4847 |
|
|
int pred = e->src->index;
|
| 4848 |
|
|
if (e->flags & EDGE_DFS_BACK)
|
| 4849 |
|
|
continue;
|
| 4850 |
|
|
|
| 4851 |
|
|
if (!live[pred])
|
| 4852 |
|
|
{
|
| 4853 |
|
|
live[pred] = sbitmap_alloc (num_ssa_names);
|
| 4854 |
|
|
sbitmap_zero (live[pred]);
|
| 4855 |
|
|
}
|
| 4856 |
|
|
sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
|
| 4857 |
|
|
|
| 4858 |
|
|
if (bb_rpo[pred] < pred_rpo)
|
| 4859 |
|
|
pred_rpo = bb_rpo[pred];
|
| 4860 |
|
|
}
|
| 4861 |
|
|
|
| 4862 |
|
|
/* Record the RPO number of the last visited block that needs
|
| 4863 |
|
|
live information from this block. */
|
| 4864 |
|
|
last_rpo[rpo[i]] = pred_rpo;
|
| 4865 |
|
|
}
|
| 4866 |
|
|
else
|
| 4867 |
|
|
{
|
| 4868 |
|
|
sbitmap_free (live[rpo[i]]);
|
| 4869 |
|
|
live[rpo[i]] = NULL;
|
| 4870 |
|
|
}
|
| 4871 |
|
|
|
| 4872 |
|
|
/* We can free all successors live bitmaps if all their
|
| 4873 |
|
|
predecessors have been visited already. */
|
| 4874 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 4875 |
|
|
if (last_rpo[e->dest->index] == i
|
| 4876 |
|
|
&& live[e->dest->index])
|
| 4877 |
|
|
{
|
| 4878 |
|
|
sbitmap_free (live[e->dest->index]);
|
| 4879 |
|
|
live[e->dest->index] = NULL;
|
| 4880 |
|
|
}
|
| 4881 |
|
|
}
|
| 4882 |
|
|
|
| 4883 |
|
|
XDELETEVEC (rpo);
|
| 4884 |
|
|
XDELETEVEC (bb_rpo);
|
| 4885 |
|
|
XDELETEVEC (last_rpo);
|
| 4886 |
|
|
for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
|
| 4887 |
|
|
if (live[i])
|
| 4888 |
|
|
sbitmap_free (live[i]);
|
| 4889 |
|
|
XDELETEVEC (live);
|
| 4890 |
|
|
|
| 4891 |
|
|
return need_asserts;
|
| 4892 |
|
|
}
|
| 4893 |
|
|
|
| 4894 |
|
|
/* Create an ASSERT_EXPR for NAME and insert it in the location
|
| 4895 |
|
|
indicated by LOC. Return true if we made any edge insertions. */
|
| 4896 |
|
|
|
| 4897 |
|
|
static bool
|
| 4898 |
|
|
process_assert_insertions_for (tree name, assert_locus_t loc)
|
| 4899 |
|
|
{
|
| 4900 |
|
|
/* Build the comparison expression NAME_i COMP_CODE VAL. */
|
| 4901 |
|
|
gimple stmt;
|
| 4902 |
|
|
tree cond;
|
| 4903 |
|
|
gimple assert_stmt;
|
| 4904 |
|
|
edge_iterator ei;
|
| 4905 |
|
|
edge e;
|
| 4906 |
|
|
|
| 4907 |
|
|
/* If we have X <=> X do not insert an assert expr for that. */
|
| 4908 |
|
|
if (loc->expr == loc->val)
|
| 4909 |
|
|
return false;
|
| 4910 |
|
|
|
| 4911 |
|
|
cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
|
| 4912 |
|
|
assert_stmt = build_assert_expr_for (cond, name);
|
| 4913 |
|
|
if (loc->e)
|
| 4914 |
|
|
{
|
| 4915 |
|
|
/* We have been asked to insert the assertion on an edge. This
|
| 4916 |
|
|
is used only by COND_EXPR and SWITCH_EXPR assertions. */
|
| 4917 |
|
|
#if defined ENABLE_CHECKING
|
| 4918 |
|
|
gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
|
| 4919 |
|
|
|| gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
|
| 4920 |
|
|
#endif
|
| 4921 |
|
|
|
| 4922 |
|
|
gsi_insert_on_edge (loc->e, assert_stmt);
|
| 4923 |
|
|
return true;
|
| 4924 |
|
|
}
|
| 4925 |
|
|
|
| 4926 |
|
|
/* Otherwise, we can insert right after LOC->SI iff the
|
| 4927 |
|
|
statement must not be the last statement in the block. */
|
| 4928 |
|
|
stmt = gsi_stmt (loc->si);
|
| 4929 |
|
|
if (!stmt_ends_bb_p (stmt))
|
| 4930 |
|
|
{
|
| 4931 |
|
|
gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
|
| 4932 |
|
|
return false;
|
| 4933 |
|
|
}
|
| 4934 |
|
|
|
| 4935 |
|
|
/* If STMT must be the last statement in BB, we can only insert new
|
| 4936 |
|
|
assertions on the non-abnormal edge out of BB. Note that since
|
| 4937 |
|
|
STMT is not control flow, there may only be one non-abnormal edge
|
| 4938 |
|
|
out of BB. */
|
| 4939 |
|
|
FOR_EACH_EDGE (e, ei, loc->bb->succs)
|
| 4940 |
|
|
if (!(e->flags & EDGE_ABNORMAL))
|
| 4941 |
|
|
{
|
| 4942 |
|
|
gsi_insert_on_edge (e, assert_stmt);
|
| 4943 |
|
|
return true;
|
| 4944 |
|
|
}
|
| 4945 |
|
|
|
| 4946 |
|
|
gcc_unreachable ();
|
| 4947 |
|
|
}
|
| 4948 |
|
|
|
| 4949 |
|
|
|
| 4950 |
|
|
/* Process all the insertions registered for every name N_i registered
|
| 4951 |
|
|
in NEED_ASSERT_FOR. The list of assertions to be inserted are
|
| 4952 |
|
|
found in ASSERTS_FOR[i]. */
|
| 4953 |
|
|
|
| 4954 |
|
|
static void
|
| 4955 |
|
|
process_assert_insertions (void)
|
| 4956 |
|
|
{
|
| 4957 |
|
|
unsigned i;
|
| 4958 |
|
|
bitmap_iterator bi;
|
| 4959 |
|
|
bool update_edges_p = false;
|
| 4960 |
|
|
int num_asserts = 0;
|
| 4961 |
|
|
|
| 4962 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 4963 |
|
|
dump_all_asserts (dump_file);
|
| 4964 |
|
|
|
| 4965 |
|
|
EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
|
| 4966 |
|
|
{
|
| 4967 |
|
|
assert_locus_t loc = asserts_for[i];
|
| 4968 |
|
|
gcc_assert (loc);
|
| 4969 |
|
|
|
| 4970 |
|
|
while (loc)
|
| 4971 |
|
|
{
|
| 4972 |
|
|
assert_locus_t next = loc->next;
|
| 4973 |
|
|
update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
|
| 4974 |
|
|
free (loc);
|
| 4975 |
|
|
loc = next;
|
| 4976 |
|
|
num_asserts++;
|
| 4977 |
|
|
}
|
| 4978 |
|
|
}
|
| 4979 |
|
|
|
| 4980 |
|
|
if (update_edges_p)
|
| 4981 |
|
|
gsi_commit_edge_inserts ();
|
| 4982 |
|
|
|
| 4983 |
|
|
statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
|
| 4984 |
|
|
num_asserts);
|
| 4985 |
|
|
}
|
| 4986 |
|
|
|
| 4987 |
|
|
|
| 4988 |
|
|
/* Traverse the flowgraph looking for conditional jumps to insert range
|
| 4989 |
|
|
expressions. These range expressions are meant to provide information
|
| 4990 |
|
|
to optimizations that need to reason in terms of value ranges. They
|
| 4991 |
|
|
will not be expanded into RTL. For instance, given:
|
| 4992 |
|
|
|
| 4993 |
|
|
x = ...
|
| 4994 |
|
|
y = ...
|
| 4995 |
|
|
if (x < y)
|
| 4996 |
|
|
y = x - 2;
|
| 4997 |
|
|
else
|
| 4998 |
|
|
x = y + 3;
|
| 4999 |
|
|
|
| 5000 |
|
|
this pass will transform the code into:
|
| 5001 |
|
|
|
| 5002 |
|
|
x = ...
|
| 5003 |
|
|
y = ...
|
| 5004 |
|
|
if (x < y)
|
| 5005 |
|
|
{
|
| 5006 |
|
|
x = ASSERT_EXPR <x, x < y>
|
| 5007 |
|
|
y = x - 2
|
| 5008 |
|
|
}
|
| 5009 |
|
|
else
|
| 5010 |
|
|
{
|
| 5011 |
|
|
y = ASSERT_EXPR <y, x <= y>
|
| 5012 |
|
|
x = y + 3
|
| 5013 |
|
|
}
|
| 5014 |
|
|
|
| 5015 |
|
|
The idea is that once copy and constant propagation have run, other
|
| 5016 |
|
|
optimizations will be able to determine what ranges of values can 'x'
|
| 5017 |
|
|
take in different paths of the code, simply by checking the reaching
|
| 5018 |
|
|
definition of 'x'. */
|
| 5019 |
|
|
|
| 5020 |
|
|
static void
|
| 5021 |
|
|
insert_range_assertions (void)
|
| 5022 |
|
|
{
|
| 5023 |
|
|
need_assert_for = BITMAP_ALLOC (NULL);
|
| 5024 |
|
|
asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
|
| 5025 |
|
|
|
| 5026 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
| 5027 |
|
|
|
| 5028 |
|
|
if (find_assert_locations ())
|
| 5029 |
|
|
{
|
| 5030 |
|
|
process_assert_insertions ();
|
| 5031 |
|
|
update_ssa (TODO_update_ssa_no_phi);
|
| 5032 |
|
|
}
|
| 5033 |
|
|
|
| 5034 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 5035 |
|
|
{
|
| 5036 |
|
|
fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
|
| 5037 |
|
|
dump_function_to_file (current_function_decl, dump_file, dump_flags);
|
| 5038 |
|
|
}
|
| 5039 |
|
|
|
| 5040 |
|
|
free (asserts_for);
|
| 5041 |
|
|
BITMAP_FREE (need_assert_for);
|
| 5042 |
|
|
}
|
| 5043 |
|
|
|
| 5044 |
|
|
/* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
|
| 5045 |
|
|
and "struct" hacks. If VRP can determine that the
|
| 5046 |
|
|
array subscript is a constant, check if it is outside valid
|
| 5047 |
|
|
range. If the array subscript is a RANGE, warn if it is
|
| 5048 |
|
|
non-overlapping with valid range.
|
| 5049 |
|
|
IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
|
| 5050 |
|
|
|
| 5051 |
|
|
static void
|
| 5052 |
|
|
check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
|
| 5053 |
|
|
{
|
| 5054 |
|
|
value_range_t* vr = NULL;
|
| 5055 |
|
|
tree low_sub, up_sub;
|
| 5056 |
|
|
tree low_bound, up_bound = array_ref_up_bound (ref);
|
| 5057 |
|
|
|
| 5058 |
|
|
low_sub = up_sub = TREE_OPERAND (ref, 1);
|
| 5059 |
|
|
|
| 5060 |
|
|
if (!up_bound || TREE_NO_WARNING (ref)
|
| 5061 |
|
|
|| TREE_CODE (up_bound) != INTEGER_CST
|
| 5062 |
|
|
/* Can not check flexible arrays. */
|
| 5063 |
|
|
|| (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
|
| 5064 |
|
|
&& TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
|
| 5065 |
|
|
&& TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
|
| 5066 |
|
|
/* Accesses after the end of arrays of size 0 (gcc
|
| 5067 |
|
|
extension) and 1 are likely intentional ("struct
|
| 5068 |
|
|
hack"). */
|
| 5069 |
|
|
|| compare_tree_int (up_bound, 1) <= 0)
|
| 5070 |
|
|
return;
|
| 5071 |
|
|
|
| 5072 |
|
|
low_bound = array_ref_low_bound (ref);
|
| 5073 |
|
|
|
| 5074 |
|
|
if (TREE_CODE (low_sub) == SSA_NAME)
|
| 5075 |
|
|
{
|
| 5076 |
|
|
vr = get_value_range (low_sub);
|
| 5077 |
|
|
if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
|
| 5078 |
|
|
{
|
| 5079 |
|
|
low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
|
| 5080 |
|
|
up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
|
| 5081 |
|
|
}
|
| 5082 |
|
|
}
|
| 5083 |
|
|
|
| 5084 |
|
|
if (vr && vr->type == VR_ANTI_RANGE)
|
| 5085 |
|
|
{
|
| 5086 |
|
|
if (TREE_CODE (up_sub) == INTEGER_CST
|
| 5087 |
|
|
&& tree_int_cst_lt (up_bound, up_sub)
|
| 5088 |
|
|
&& TREE_CODE (low_sub) == INTEGER_CST
|
| 5089 |
|
|
&& tree_int_cst_lt (low_sub, low_bound))
|
| 5090 |
|
|
{
|
| 5091 |
|
|
warning_at (location, OPT_Warray_bounds,
|
| 5092 |
|
|
"array subscript is outside array bounds");
|
| 5093 |
|
|
TREE_NO_WARNING (ref) = 1;
|
| 5094 |
|
|
}
|
| 5095 |
|
|
}
|
| 5096 |
|
|
else if (TREE_CODE (up_sub) == INTEGER_CST
|
| 5097 |
|
|
&& tree_int_cst_lt (up_bound, up_sub)
|
| 5098 |
|
|
&& !tree_int_cst_equal (up_bound, up_sub)
|
| 5099 |
|
|
&& (!ignore_off_by_one
|
| 5100 |
|
|
|| !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
|
| 5101 |
|
|
up_bound,
|
| 5102 |
|
|
integer_one_node,
|
| 5103 |
|
|
0),
|
| 5104 |
|
|
up_sub)))
|
| 5105 |
|
|
{
|
| 5106 |
|
|
warning_at (location, OPT_Warray_bounds,
|
| 5107 |
|
|
"array subscript is above array bounds");
|
| 5108 |
|
|
TREE_NO_WARNING (ref) = 1;
|
| 5109 |
|
|
}
|
| 5110 |
|
|
else if (TREE_CODE (low_sub) == INTEGER_CST
|
| 5111 |
|
|
&& tree_int_cst_lt (low_sub, low_bound))
|
| 5112 |
|
|
{
|
| 5113 |
|
|
warning_at (location, OPT_Warray_bounds,
|
| 5114 |
|
|
"array subscript is below array bounds");
|
| 5115 |
|
|
TREE_NO_WARNING (ref) = 1;
|
| 5116 |
|
|
}
|
| 5117 |
|
|
}
|
| 5118 |
|
|
|
| 5119 |
|
|
/* Searches if the expr T, located at LOCATION computes
|
| 5120 |
|
|
address of an ARRAY_REF, and call check_array_ref on it. */
|
| 5121 |
|
|
|
| 5122 |
|
|
static void
|
| 5123 |
|
|
search_for_addr_array (tree t, location_t location)
|
| 5124 |
|
|
{
|
| 5125 |
|
|
while (TREE_CODE (t) == SSA_NAME)
|
| 5126 |
|
|
{
|
| 5127 |
|
|
gimple g = SSA_NAME_DEF_STMT (t);
|
| 5128 |
|
|
|
| 5129 |
|
|
if (gimple_code (g) != GIMPLE_ASSIGN)
|
| 5130 |
|
|
return;
|
| 5131 |
|
|
|
| 5132 |
|
|
if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
|
| 5133 |
|
|
!= GIMPLE_SINGLE_RHS)
|
| 5134 |
|
|
return;
|
| 5135 |
|
|
|
| 5136 |
|
|
t = gimple_assign_rhs1 (g);
|
| 5137 |
|
|
}
|
| 5138 |
|
|
|
| 5139 |
|
|
|
| 5140 |
|
|
/* We are only interested in addresses of ARRAY_REF's. */
|
| 5141 |
|
|
if (TREE_CODE (t) != ADDR_EXPR)
|
| 5142 |
|
|
return;
|
| 5143 |
|
|
|
| 5144 |
|
|
/* Check each ARRAY_REFs in the reference chain. */
|
| 5145 |
|
|
do
|
| 5146 |
|
|
{
|
| 5147 |
|
|
if (TREE_CODE (t) == ARRAY_REF)
|
| 5148 |
|
|
check_array_ref (location, t, true /*ignore_off_by_one*/);
|
| 5149 |
|
|
|
| 5150 |
|
|
t = TREE_OPERAND (t, 0);
|
| 5151 |
|
|
}
|
| 5152 |
|
|
while (handled_component_p (t));
|
| 5153 |
|
|
}
|
| 5154 |
|
|
|
| 5155 |
|
|
/* walk_tree() callback that checks if *TP is
|
| 5156 |
|
|
an ARRAY_REF inside an ADDR_EXPR (in which an array
|
| 5157 |
|
|
subscript one outside the valid range is allowed). Call
|
| 5158 |
|
|
check_array_ref for each ARRAY_REF found. The location is
|
| 5159 |
|
|
passed in DATA. */
|
| 5160 |
|
|
|
| 5161 |
|
|
static tree
|
| 5162 |
|
|
check_array_bounds (tree *tp, int *walk_subtree, void *data)
|
| 5163 |
|
|
{
|
| 5164 |
|
|
tree t = *tp;
|
| 5165 |
|
|
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
|
| 5166 |
|
|
location_t location;
|
| 5167 |
|
|
|
| 5168 |
|
|
if (EXPR_HAS_LOCATION (t))
|
| 5169 |
|
|
location = EXPR_LOCATION (t);
|
| 5170 |
|
|
else
|
| 5171 |
|
|
{
|
| 5172 |
|
|
location_t *locp = (location_t *) wi->info;
|
| 5173 |
|
|
location = *locp;
|
| 5174 |
|
|
}
|
| 5175 |
|
|
|
| 5176 |
|
|
*walk_subtree = TRUE;
|
| 5177 |
|
|
|
| 5178 |
|
|
if (TREE_CODE (t) == ARRAY_REF)
|
| 5179 |
|
|
check_array_ref (location, t, false /*ignore_off_by_one*/);
|
| 5180 |
|
|
|
| 5181 |
|
|
if (TREE_CODE (t) == INDIRECT_REF
|
| 5182 |
|
|
|| (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
|
| 5183 |
|
|
search_for_addr_array (TREE_OPERAND (t, 0), location);
|
| 5184 |
|
|
|
| 5185 |
|
|
if (TREE_CODE (t) == ADDR_EXPR)
|
| 5186 |
|
|
*walk_subtree = FALSE;
|
| 5187 |
|
|
|
| 5188 |
|
|
return NULL_TREE;
|
| 5189 |
|
|
}
|
| 5190 |
|
|
|
| 5191 |
|
|
/* Walk over all statements of all reachable BBs and call check_array_bounds
|
| 5192 |
|
|
on them. */
|
| 5193 |
|
|
|
| 5194 |
|
|
static void
|
| 5195 |
|
|
check_all_array_refs (void)
|
| 5196 |
|
|
{
|
| 5197 |
|
|
basic_block bb;
|
| 5198 |
|
|
gimple_stmt_iterator si;
|
| 5199 |
|
|
|
| 5200 |
|
|
FOR_EACH_BB (bb)
|
| 5201 |
|
|
{
|
| 5202 |
|
|
edge_iterator ei;
|
| 5203 |
|
|
edge e;
|
| 5204 |
|
|
bool executable = false;
|
| 5205 |
|
|
|
| 5206 |
|
|
/* Skip blocks that were found to be unreachable. */
|
| 5207 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 5208 |
|
|
executable |= !!(e->flags & EDGE_EXECUTABLE);
|
| 5209 |
|
|
if (!executable)
|
| 5210 |
|
|
continue;
|
| 5211 |
|
|
|
| 5212 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
| 5213 |
|
|
{
|
| 5214 |
|
|
gimple stmt = gsi_stmt (si);
|
| 5215 |
|
|
struct walk_stmt_info wi;
|
| 5216 |
|
|
if (!gimple_has_location (stmt))
|
| 5217 |
|
|
continue;
|
| 5218 |
|
|
|
| 5219 |
|
|
if (is_gimple_call (stmt))
|
| 5220 |
|
|
{
|
| 5221 |
|
|
size_t i;
|
| 5222 |
|
|
size_t n = gimple_call_num_args (stmt);
|
| 5223 |
|
|
for (i = 0; i < n; i++)
|
| 5224 |
|
|
{
|
| 5225 |
|
|
tree arg = gimple_call_arg (stmt, i);
|
| 5226 |
|
|
search_for_addr_array (arg, gimple_location (stmt));
|
| 5227 |
|
|
}
|
| 5228 |
|
|
}
|
| 5229 |
|
|
else
|
| 5230 |
|
|
{
|
| 5231 |
|
|
memset (&wi, 0, sizeof (wi));
|
| 5232 |
|
|
wi.info = CONST_CAST (void *, (const void *)
|
| 5233 |
|
|
gimple_location_ptr (stmt));
|
| 5234 |
|
|
|
| 5235 |
|
|
walk_gimple_op (gsi_stmt (si),
|
| 5236 |
|
|
check_array_bounds,
|
| 5237 |
|
|
&wi);
|
| 5238 |
|
|
}
|
| 5239 |
|
|
}
|
| 5240 |
|
|
}
|
| 5241 |
|
|
}
|
| 5242 |
|
|
|
| 5243 |
|
|
/* Convert range assertion expressions into the implied copies and
|
| 5244 |
|
|
copy propagate away the copies. Doing the trivial copy propagation
|
| 5245 |
|
|
here avoids the need to run the full copy propagation pass after
|
| 5246 |
|
|
VRP.
|
| 5247 |
|
|
|
| 5248 |
|
|
FIXME, this will eventually lead to copy propagation removing the
|
| 5249 |
|
|
names that had useful range information attached to them. For
|
| 5250 |
|
|
instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
|
| 5251 |
|
|
then N_i will have the range [3, +INF].
|
| 5252 |
|
|
|
| 5253 |
|
|
However, by converting the assertion into the implied copy
|
| 5254 |
|
|
operation N_i = N_j, we will then copy-propagate N_j into the uses
|
| 5255 |
|
|
of N_i and lose the range information. We may want to hold on to
|
| 5256 |
|
|
ASSERT_EXPRs a little while longer as the ranges could be used in
|
| 5257 |
|
|
things like jump threading.
|
| 5258 |
|
|
|
| 5259 |
|
|
The problem with keeping ASSERT_EXPRs around is that passes after
|
| 5260 |
|
|
VRP need to handle them appropriately.
|
| 5261 |
|
|
|
| 5262 |
|
|
Another approach would be to make the range information a first
|
| 5263 |
|
|
class property of the SSA_NAME so that it can be queried from
|
| 5264 |
|
|
any pass. This is made somewhat more complex by the need for
|
| 5265 |
|
|
multiple ranges to be associated with one SSA_NAME. */
|
| 5266 |
|
|
|
| 5267 |
|
|
static void
|
| 5268 |
|
|
remove_range_assertions (void)
|
| 5269 |
|
|
{
|
| 5270 |
|
|
basic_block bb;
|
| 5271 |
|
|
gimple_stmt_iterator si;
|
| 5272 |
|
|
|
| 5273 |
|
|
/* Note that the BSI iterator bump happens at the bottom of the
|
| 5274 |
|
|
loop and no bump is necessary if we're removing the statement
|
| 5275 |
|
|
referenced by the current BSI. */
|
| 5276 |
|
|
FOR_EACH_BB (bb)
|
| 5277 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si);)
|
| 5278 |
|
|
{
|
| 5279 |
|
|
gimple stmt = gsi_stmt (si);
|
| 5280 |
|
|
gimple use_stmt;
|
| 5281 |
|
|
|
| 5282 |
|
|
if (is_gimple_assign (stmt)
|
| 5283 |
|
|
&& gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
|
| 5284 |
|
|
{
|
| 5285 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 5286 |
|
|
tree var;
|
| 5287 |
|
|
tree cond = fold (ASSERT_EXPR_COND (rhs));
|
| 5288 |
|
|
use_operand_p use_p;
|
| 5289 |
|
|
imm_use_iterator iter;
|
| 5290 |
|
|
|
| 5291 |
|
|
gcc_assert (cond != boolean_false_node);
|
| 5292 |
|
|
|
| 5293 |
|
|
/* Propagate the RHS into every use of the LHS. */
|
| 5294 |
|
|
var = ASSERT_EXPR_VAR (rhs);
|
| 5295 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter,
|
| 5296 |
|
|
gimple_assign_lhs (stmt))
|
| 5297 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
| 5298 |
|
|
{
|
| 5299 |
|
|
SET_USE (use_p, var);
|
| 5300 |
|
|
gcc_assert (TREE_CODE (var) == SSA_NAME);
|
| 5301 |
|
|
}
|
| 5302 |
|
|
|
| 5303 |
|
|
/* And finally, remove the copy, it is not needed. */
|
| 5304 |
|
|
gsi_remove (&si, true);
|
| 5305 |
|
|
release_defs (stmt);
|
| 5306 |
|
|
}
|
| 5307 |
|
|
else
|
| 5308 |
|
|
gsi_next (&si);
|
| 5309 |
|
|
}
|
| 5310 |
|
|
}
|
| 5311 |
|
|
|
| 5312 |
|
|
|
| 5313 |
|
|
/* Return true if STMT is interesting for VRP. */
|
| 5314 |
|
|
|
| 5315 |
|
|
static bool
|
| 5316 |
|
|
stmt_interesting_for_vrp (gimple stmt)
|
| 5317 |
|
|
{
|
| 5318 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
| 5319 |
|
|
&& is_gimple_reg (gimple_phi_result (stmt))
|
| 5320 |
|
|
&& (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
|
| 5321 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
|
| 5322 |
|
|
return true;
|
| 5323 |
|
|
else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
|
| 5324 |
|
|
{
|
| 5325 |
|
|
tree lhs = gimple_get_lhs (stmt);
|
| 5326 |
|
|
|
| 5327 |
|
|
/* In general, assignments with virtual operands are not useful
|
| 5328 |
|
|
for deriving ranges, with the obvious exception of calls to
|
| 5329 |
|
|
builtin functions. */
|
| 5330 |
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME
|
| 5331 |
|
|
&& (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
| 5332 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (lhs)))
|
| 5333 |
|
|
&& ((is_gimple_call (stmt)
|
| 5334 |
|
|
&& gimple_call_fndecl (stmt) != NULL_TREE
|
| 5335 |
|
|
&& DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
|
| 5336 |
|
|
|| !gimple_vuse (stmt)))
|
| 5337 |
|
|
return true;
|
| 5338 |
|
|
}
|
| 5339 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND
|
| 5340 |
|
|
|| gimple_code (stmt) == GIMPLE_SWITCH)
|
| 5341 |
|
|
return true;
|
| 5342 |
|
|
|
| 5343 |
|
|
return false;
|
| 5344 |
|
|
}
|
| 5345 |
|
|
|
| 5346 |
|
|
|
| 5347 |
|
|
/* Initialize local data structures for VRP. */
|
| 5348 |
|
|
|
| 5349 |
|
|
static void
|
| 5350 |
|
|
vrp_initialize (void)
|
| 5351 |
|
|
{
|
| 5352 |
|
|
basic_block bb;
|
| 5353 |
|
|
|
| 5354 |
|
|
vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
|
| 5355 |
|
|
vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
|
| 5356 |
|
|
|
| 5357 |
|
|
FOR_EACH_BB (bb)
|
| 5358 |
|
|
{
|
| 5359 |
|
|
gimple_stmt_iterator si;
|
| 5360 |
|
|
|
| 5361 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
| 5362 |
|
|
{
|
| 5363 |
|
|
gimple phi = gsi_stmt (si);
|
| 5364 |
|
|
if (!stmt_interesting_for_vrp (phi))
|
| 5365 |
|
|
{
|
| 5366 |
|
|
tree lhs = PHI_RESULT (phi);
|
| 5367 |
|
|
set_value_range_to_varying (get_value_range (lhs));
|
| 5368 |
|
|
prop_set_simulate_again (phi, false);
|
| 5369 |
|
|
}
|
| 5370 |
|
|
else
|
| 5371 |
|
|
prop_set_simulate_again (phi, true);
|
| 5372 |
|
|
}
|
| 5373 |
|
|
|
| 5374 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
| 5375 |
|
|
{
|
| 5376 |
|
|
gimple stmt = gsi_stmt (si);
|
| 5377 |
|
|
|
| 5378 |
|
|
/* If the statement is a control insn, then we do not
|
| 5379 |
|
|
want to avoid simulating the statement once. Failure
|
| 5380 |
|
|
to do so means that those edges will never get added. */
|
| 5381 |
|
|
if (stmt_ends_bb_p (stmt))
|
| 5382 |
|
|
prop_set_simulate_again (stmt, true);
|
| 5383 |
|
|
else if (!stmt_interesting_for_vrp (stmt))
|
| 5384 |
|
|
{
|
| 5385 |
|
|
ssa_op_iter i;
|
| 5386 |
|
|
tree def;
|
| 5387 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
|
| 5388 |
|
|
set_value_range_to_varying (get_value_range (def));
|
| 5389 |
|
|
prop_set_simulate_again (stmt, false);
|
| 5390 |
|
|
}
|
| 5391 |
|
|
else
|
| 5392 |
|
|
prop_set_simulate_again (stmt, true);
|
| 5393 |
|
|
}
|
| 5394 |
|
|
}
|
| 5395 |
|
|
}
|
| 5396 |
|
|
|
| 5397 |
|
|
|
| 5398 |
|
|
/* Visit assignment STMT. If it produces an interesting range, record
|
| 5399 |
|
|
the SSA name in *OUTPUT_P. */
|
| 5400 |
|
|
|
| 5401 |
|
|
static enum ssa_prop_result
|
| 5402 |
|
|
vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
|
| 5403 |
|
|
{
|
| 5404 |
|
|
tree def, lhs;
|
| 5405 |
|
|
ssa_op_iter iter;
|
| 5406 |
|
|
enum gimple_code code = gimple_code (stmt);
|
| 5407 |
|
|
lhs = gimple_get_lhs (stmt);
|
| 5408 |
|
|
|
| 5409 |
|
|
/* We only keep track of ranges in integral and pointer types. */
|
| 5410 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
| 5411 |
|
|
&& ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
| 5412 |
|
|
/* It is valid to have NULL MIN/MAX values on a type. See
|
| 5413 |
|
|
build_range_type. */
|
| 5414 |
|
|
&& TYPE_MIN_VALUE (TREE_TYPE (lhs))
|
| 5415 |
|
|
&& TYPE_MAX_VALUE (TREE_TYPE (lhs)))
|
| 5416 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (lhs))))
|
| 5417 |
|
|
{
|
| 5418 |
|
|
value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
| 5419 |
|
|
|
| 5420 |
|
|
if (code == GIMPLE_CALL)
|
| 5421 |
|
|
extract_range_basic (&new_vr, stmt);
|
| 5422 |
|
|
else
|
| 5423 |
|
|
extract_range_from_assignment (&new_vr, stmt);
|
| 5424 |
|
|
|
| 5425 |
|
|
if (update_value_range (lhs, &new_vr))
|
| 5426 |
|
|
{
|
| 5427 |
|
|
*output_p = lhs;
|
| 5428 |
|
|
|
| 5429 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 5430 |
|
|
{
|
| 5431 |
|
|
fprintf (dump_file, "Found new range for ");
|
| 5432 |
|
|
print_generic_expr (dump_file, lhs, 0);
|
| 5433 |
|
|
fprintf (dump_file, ": ");
|
| 5434 |
|
|
dump_value_range (dump_file, &new_vr);
|
| 5435 |
|
|
fprintf (dump_file, "\n\n");
|
| 5436 |
|
|
}
|
| 5437 |
|
|
|
| 5438 |
|
|
if (new_vr.type == VR_VARYING)
|
| 5439 |
|
|
return SSA_PROP_VARYING;
|
| 5440 |
|
|
|
| 5441 |
|
|
return SSA_PROP_INTERESTING;
|
| 5442 |
|
|
}
|
| 5443 |
|
|
|
| 5444 |
|
|
return SSA_PROP_NOT_INTERESTING;
|
| 5445 |
|
|
}
|
| 5446 |
|
|
|
| 5447 |
|
|
/* Every other statement produces no useful ranges. */
|
| 5448 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
|
| 5449 |
|
|
set_value_range_to_varying (get_value_range (def));
|
| 5450 |
|
|
|
| 5451 |
|
|
return SSA_PROP_VARYING;
|
| 5452 |
|
|
}
|
| 5453 |
|
|
|
| 5454 |
|
|
/* Helper that gets the value range of the SSA_NAME with version I
|
| 5455 |
|
|
or a symbolic range containing the SSA_NAME only if the value range
|
| 5456 |
|
|
is varying or undefined. */
|
| 5457 |
|
|
|
| 5458 |
|
|
static inline value_range_t
|
| 5459 |
|
|
get_vr_for_comparison (int i)
|
| 5460 |
|
|
{
|
| 5461 |
|
|
value_range_t vr = *(vr_value[i]);
|
| 5462 |
|
|
|
| 5463 |
|
|
/* If name N_i does not have a valid range, use N_i as its own
|
| 5464 |
|
|
range. This allows us to compare against names that may
|
| 5465 |
|
|
have N_i in their ranges. */
|
| 5466 |
|
|
if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
|
| 5467 |
|
|
{
|
| 5468 |
|
|
vr.type = VR_RANGE;
|
| 5469 |
|
|
vr.min = ssa_name (i);
|
| 5470 |
|
|
vr.max = ssa_name (i);
|
| 5471 |
|
|
}
|
| 5472 |
|
|
|
| 5473 |
|
|
return vr;
|
| 5474 |
|
|
}
|
| 5475 |
|
|
|
| 5476 |
|
|
/* Compare all the value ranges for names equivalent to VAR with VAL
|
| 5477 |
|
|
using comparison code COMP. Return the same value returned by
|
| 5478 |
|
|
compare_range_with_value, including the setting of
|
| 5479 |
|
|
*STRICT_OVERFLOW_P. */
|
| 5480 |
|
|
|
| 5481 |
|
|
static tree
|
| 5482 |
|
|
compare_name_with_value (enum tree_code comp, tree var, tree val,
|
| 5483 |
|
|
bool *strict_overflow_p)
|
| 5484 |
|
|
{
|
| 5485 |
|
|
bitmap_iterator bi;
|
| 5486 |
|
|
unsigned i;
|
| 5487 |
|
|
bitmap e;
|
| 5488 |
|
|
tree retval, t;
|
| 5489 |
|
|
int used_strict_overflow;
|
| 5490 |
|
|
bool sop;
|
| 5491 |
|
|
value_range_t equiv_vr;
|
| 5492 |
|
|
|
| 5493 |
|
|
/* Get the set of equivalences for VAR. */
|
| 5494 |
|
|
e = get_value_range (var)->equiv;
|
| 5495 |
|
|
|
| 5496 |
|
|
/* Start at -1. Set it to 0 if we do a comparison without relying
|
| 5497 |
|
|
on overflow, or 1 if all comparisons rely on overflow. */
|
| 5498 |
|
|
used_strict_overflow = -1;
|
| 5499 |
|
|
|
| 5500 |
|
|
/* Compare vars' value range with val. */
|
| 5501 |
|
|
equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
|
| 5502 |
|
|
sop = false;
|
| 5503 |
|
|
retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
|
| 5504 |
|
|
if (retval)
|
| 5505 |
|
|
used_strict_overflow = sop ? 1 : 0;
|
| 5506 |
|
|
|
| 5507 |
|
|
/* If the equiv set is empty we have done all work we need to do. */
|
| 5508 |
|
|
if (e == NULL)
|
| 5509 |
|
|
{
|
| 5510 |
|
|
if (retval
|
| 5511 |
|
|
&& used_strict_overflow > 0)
|
| 5512 |
|
|
*strict_overflow_p = true;
|
| 5513 |
|
|
return retval;
|
| 5514 |
|
|
}
|
| 5515 |
|
|
|
| 5516 |
|
|
EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
|
| 5517 |
|
|
{
|
| 5518 |
|
|
equiv_vr = get_vr_for_comparison (i);
|
| 5519 |
|
|
sop = false;
|
| 5520 |
|
|
t = compare_range_with_value (comp, &equiv_vr, val, &sop);
|
| 5521 |
|
|
if (t)
|
| 5522 |
|
|
{
|
| 5523 |
|
|
/* If we get different answers from different members
|
| 5524 |
|
|
of the equivalence set this check must be in a dead
|
| 5525 |
|
|
code region. Folding it to a trap representation
|
| 5526 |
|
|
would be correct here. For now just return don't-know. */
|
| 5527 |
|
|
if (retval != NULL
|
| 5528 |
|
|
&& t != retval)
|
| 5529 |
|
|
{
|
| 5530 |
|
|
retval = NULL_TREE;
|
| 5531 |
|
|
break;
|
| 5532 |
|
|
}
|
| 5533 |
|
|
retval = t;
|
| 5534 |
|
|
|
| 5535 |
|
|
if (!sop)
|
| 5536 |
|
|
used_strict_overflow = 0;
|
| 5537 |
|
|
else if (used_strict_overflow < 0)
|
| 5538 |
|
|
used_strict_overflow = 1;
|
| 5539 |
|
|
}
|
| 5540 |
|
|
}
|
| 5541 |
|
|
|
| 5542 |
|
|
if (retval
|
| 5543 |
|
|
&& used_strict_overflow > 0)
|
| 5544 |
|
|
*strict_overflow_p = true;
|
| 5545 |
|
|
|
| 5546 |
|
|
return retval;
|
| 5547 |
|
|
}
|
| 5548 |
|
|
|
| 5549 |
|
|
|
| 5550 |
|
|
/* Given a comparison code COMP and names N1 and N2, compare all the
|
| 5551 |
|
|
ranges equivalent to N1 against all the ranges equivalent to N2
|
| 5552 |
|
|
to determine the value of N1 COMP N2. Return the same value
|
| 5553 |
|
|
returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
|
| 5554 |
|
|
whether we relied on an overflow infinity in the comparison. */
|
| 5555 |
|
|
|
| 5556 |
|
|
|
| 5557 |
|
|
static tree
|
| 5558 |
|
|
compare_names (enum tree_code comp, tree n1, tree n2,
|
| 5559 |
|
|
bool *strict_overflow_p)
|
| 5560 |
|
|
{
|
| 5561 |
|
|
tree t, retval;
|
| 5562 |
|
|
bitmap e1, e2;
|
| 5563 |
|
|
bitmap_iterator bi1, bi2;
|
| 5564 |
|
|
unsigned i1, i2;
|
| 5565 |
|
|
int used_strict_overflow;
|
| 5566 |
|
|
static bitmap_obstack *s_obstack = NULL;
|
| 5567 |
|
|
static bitmap s_e1 = NULL, s_e2 = NULL;
|
| 5568 |
|
|
|
| 5569 |
|
|
/* Compare the ranges of every name equivalent to N1 against the
|
| 5570 |
|
|
ranges of every name equivalent to N2. */
|
| 5571 |
|
|
e1 = get_value_range (n1)->equiv;
|
| 5572 |
|
|
e2 = get_value_range (n2)->equiv;
|
| 5573 |
|
|
|
| 5574 |
|
|
/* Use the fake bitmaps if e1 or e2 are not available. */
|
| 5575 |
|
|
if (s_obstack == NULL)
|
| 5576 |
|
|
{
|
| 5577 |
|
|
s_obstack = XNEW (bitmap_obstack);
|
| 5578 |
|
|
bitmap_obstack_initialize (s_obstack);
|
| 5579 |
|
|
s_e1 = BITMAP_ALLOC (s_obstack);
|
| 5580 |
|
|
s_e2 = BITMAP_ALLOC (s_obstack);
|
| 5581 |
|
|
}
|
| 5582 |
|
|
if (e1 == NULL)
|
| 5583 |
|
|
e1 = s_e1;
|
| 5584 |
|
|
if (e2 == NULL)
|
| 5585 |
|
|
e2 = s_e2;
|
| 5586 |
|
|
|
| 5587 |
|
|
/* Add N1 and N2 to their own set of equivalences to avoid
|
| 5588 |
|
|
duplicating the body of the loop just to check N1 and N2
|
| 5589 |
|
|
ranges. */
|
| 5590 |
|
|
bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
|
| 5591 |
|
|
bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
|
| 5592 |
|
|
|
| 5593 |
|
|
/* If the equivalence sets have a common intersection, then the two
|
| 5594 |
|
|
names can be compared without checking their ranges. */
|
| 5595 |
|
|
if (bitmap_intersect_p (e1, e2))
|
| 5596 |
|
|
{
|
| 5597 |
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
| 5598 |
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
| 5599 |
|
|
|
| 5600 |
|
|
return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
|
| 5601 |
|
|
? boolean_true_node
|
| 5602 |
|
|
: boolean_false_node;
|
| 5603 |
|
|
}
|
| 5604 |
|
|
|
| 5605 |
|
|
/* Start at -1. Set it to 0 if we do a comparison without relying
|
| 5606 |
|
|
on overflow, or 1 if all comparisons rely on overflow. */
|
| 5607 |
|
|
used_strict_overflow = -1;
|
| 5608 |
|
|
|
| 5609 |
|
|
/* Otherwise, compare all the equivalent ranges. First, add N1 and
|
| 5610 |
|
|
N2 to their own set of equivalences to avoid duplicating the body
|
| 5611 |
|
|
of the loop just to check N1 and N2 ranges. */
|
| 5612 |
|
|
EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
|
| 5613 |
|
|
{
|
| 5614 |
|
|
value_range_t vr1 = get_vr_for_comparison (i1);
|
| 5615 |
|
|
|
| 5616 |
|
|
t = retval = NULL_TREE;
|
| 5617 |
|
|
EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
|
| 5618 |
|
|
{
|
| 5619 |
|
|
bool sop = false;
|
| 5620 |
|
|
|
| 5621 |
|
|
value_range_t vr2 = get_vr_for_comparison (i2);
|
| 5622 |
|
|
|
| 5623 |
|
|
t = compare_ranges (comp, &vr1, &vr2, &sop);
|
| 5624 |
|
|
if (t)
|
| 5625 |
|
|
{
|
| 5626 |
|
|
/* If we get different answers from different members
|
| 5627 |
|
|
of the equivalence set this check must be in a dead
|
| 5628 |
|
|
code region. Folding it to a trap representation
|
| 5629 |
|
|
would be correct here. For now just return don't-know. */
|
| 5630 |
|
|
if (retval != NULL
|
| 5631 |
|
|
&& t != retval)
|
| 5632 |
|
|
{
|
| 5633 |
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
| 5634 |
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
| 5635 |
|
|
return NULL_TREE;
|
| 5636 |
|
|
}
|
| 5637 |
|
|
retval = t;
|
| 5638 |
|
|
|
| 5639 |
|
|
if (!sop)
|
| 5640 |
|
|
used_strict_overflow = 0;
|
| 5641 |
|
|
else if (used_strict_overflow < 0)
|
| 5642 |
|
|
used_strict_overflow = 1;
|
| 5643 |
|
|
}
|
| 5644 |
|
|
}
|
| 5645 |
|
|
|
| 5646 |
|
|
if (retval)
|
| 5647 |
|
|
{
|
| 5648 |
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
| 5649 |
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
| 5650 |
|
|
if (used_strict_overflow > 0)
|
| 5651 |
|
|
*strict_overflow_p = true;
|
| 5652 |
|
|
return retval;
|
| 5653 |
|
|
}
|
| 5654 |
|
|
}
|
| 5655 |
|
|
|
| 5656 |
|
|
/* None of the equivalent ranges are useful in computing this
|
| 5657 |
|
|
comparison. */
|
| 5658 |
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
| 5659 |
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
| 5660 |
|
|
return NULL_TREE;
|
| 5661 |
|
|
}
|
| 5662 |
|
|
|
| 5663 |
|
|
/* Helper function for vrp_evaluate_conditional_warnv. */
|
| 5664 |
|
|
|
| 5665 |
|
|
static tree
|
| 5666 |
|
|
vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
|
| 5667 |
|
|
tree op0, tree op1,
|
| 5668 |
|
|
bool * strict_overflow_p)
|
| 5669 |
|
|
{
|
| 5670 |
|
|
value_range_t *vr0, *vr1;
|
| 5671 |
|
|
|
| 5672 |
|
|
vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
|
| 5673 |
|
|
vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
|
| 5674 |
|
|
|
| 5675 |
|
|
if (vr0 && vr1)
|
| 5676 |
|
|
return compare_ranges (code, vr0, vr1, strict_overflow_p);
|
| 5677 |
|
|
else if (vr0 && vr1 == NULL)
|
| 5678 |
|
|
return compare_range_with_value (code, vr0, op1, strict_overflow_p);
|
| 5679 |
|
|
else if (vr0 == NULL && vr1)
|
| 5680 |
|
|
return (compare_range_with_value
|
| 5681 |
|
|
(swap_tree_comparison (code), vr1, op0, strict_overflow_p));
|
| 5682 |
|
|
return NULL;
|
| 5683 |
|
|
}
|
| 5684 |
|
|
|
| 5685 |
|
|
/* Helper function for vrp_evaluate_conditional_warnv. */
|
| 5686 |
|
|
|
| 5687 |
|
|
static tree
|
| 5688 |
|
|
vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
|
| 5689 |
|
|
tree op1, bool use_equiv_p,
|
| 5690 |
|
|
bool *strict_overflow_p, bool *only_ranges)
|
| 5691 |
|
|
{
|
| 5692 |
|
|
tree ret;
|
| 5693 |
|
|
if (only_ranges)
|
| 5694 |
|
|
*only_ranges = true;
|
| 5695 |
|
|
|
| 5696 |
|
|
/* We only deal with integral and pointer types. */
|
| 5697 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
|
| 5698 |
|
|
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
|
| 5699 |
|
|
return NULL_TREE;
|
| 5700 |
|
|
|
| 5701 |
|
|
if (use_equiv_p)
|
| 5702 |
|
|
{
|
| 5703 |
|
|
if (only_ranges
|
| 5704 |
|
|
&& (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
|
| 5705 |
|
|
(code, op0, op1, strict_overflow_p)))
|
| 5706 |
|
|
return ret;
|
| 5707 |
|
|
*only_ranges = false;
|
| 5708 |
|
|
if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
|
| 5709 |
|
|
return compare_names (code, op0, op1, strict_overflow_p);
|
| 5710 |
|
|
else if (TREE_CODE (op0) == SSA_NAME)
|
| 5711 |
|
|
return compare_name_with_value (code, op0, op1, strict_overflow_p);
|
| 5712 |
|
|
else if (TREE_CODE (op1) == SSA_NAME)
|
| 5713 |
|
|
return (compare_name_with_value
|
| 5714 |
|
|
(swap_tree_comparison (code), op1, op0, strict_overflow_p));
|
| 5715 |
|
|
}
|
| 5716 |
|
|
else
|
| 5717 |
|
|
return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
|
| 5718 |
|
|
strict_overflow_p);
|
| 5719 |
|
|
return NULL_TREE;
|
| 5720 |
|
|
}
|
| 5721 |
|
|
|
| 5722 |
|
|
/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
|
| 5723 |
|
|
information. Return NULL if the conditional can not be evaluated.
|
| 5724 |
|
|
The ranges of all the names equivalent with the operands in COND
|
| 5725 |
|
|
will be used when trying to compute the value. If the result is
|
| 5726 |
|
|
based on undefined signed overflow, issue a warning if
|
| 5727 |
|
|
appropriate. */
|
| 5728 |
|
|
|
| 5729 |
|
|
static tree
|
| 5730 |
|
|
vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
|
| 5731 |
|
|
{
|
| 5732 |
|
|
bool sop;
|
| 5733 |
|
|
tree ret;
|
| 5734 |
|
|
bool only_ranges;
|
| 5735 |
|
|
|
| 5736 |
|
|
/* Some passes and foldings leak constants with overflow flag set
|
| 5737 |
|
|
into the IL. Avoid doing wrong things with these and bail out. */
|
| 5738 |
|
|
if ((TREE_CODE (op0) == INTEGER_CST
|
| 5739 |
|
|
&& TREE_OVERFLOW (op0))
|
| 5740 |
|
|
|| (TREE_CODE (op1) == INTEGER_CST
|
| 5741 |
|
|
&& TREE_OVERFLOW (op1)))
|
| 5742 |
|
|
return NULL_TREE;
|
| 5743 |
|
|
|
| 5744 |
|
|
sop = false;
|
| 5745 |
|
|
ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
|
| 5746 |
|
|
&only_ranges);
|
| 5747 |
|
|
|
| 5748 |
|
|
if (ret && sop)
|
| 5749 |
|
|
{
|
| 5750 |
|
|
enum warn_strict_overflow_code wc;
|
| 5751 |
|
|
const char* warnmsg;
|
| 5752 |
|
|
|
| 5753 |
|
|
if (is_gimple_min_invariant (ret))
|
| 5754 |
|
|
{
|
| 5755 |
|
|
wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
|
| 5756 |
|
|
warnmsg = G_("assuming signed overflow does not occur when "
|
| 5757 |
|
|
"simplifying conditional to constant");
|
| 5758 |
|
|
}
|
| 5759 |
|
|
else
|
| 5760 |
|
|
{
|
| 5761 |
|
|
wc = WARN_STRICT_OVERFLOW_COMPARISON;
|
| 5762 |
|
|
warnmsg = G_("assuming signed overflow does not occur when "
|
| 5763 |
|
|
"simplifying conditional");
|
| 5764 |
|
|
}
|
| 5765 |
|
|
|
| 5766 |
|
|
if (issue_strict_overflow_warning (wc))
|
| 5767 |
|
|
{
|
| 5768 |
|
|
location_t location;
|
| 5769 |
|
|
|
| 5770 |
|
|
if (!gimple_has_location (stmt))
|
| 5771 |
|
|
location = input_location;
|
| 5772 |
|
|
else
|
| 5773 |
|
|
location = gimple_location (stmt);
|
| 5774 |
|
|
warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
|
| 5775 |
|
|
}
|
| 5776 |
|
|
}
|
| 5777 |
|
|
|
| 5778 |
|
|
if (warn_type_limits
|
| 5779 |
|
|
&& ret && only_ranges
|
| 5780 |
|
|
&& TREE_CODE_CLASS (code) == tcc_comparison
|
| 5781 |
|
|
&& TREE_CODE (op0) == SSA_NAME)
|
| 5782 |
|
|
{
|
| 5783 |
|
|
/* If the comparison is being folded and the operand on the LHS
|
| 5784 |
|
|
is being compared against a constant value that is outside of
|
| 5785 |
|
|
the natural range of OP0's type, then the predicate will
|
| 5786 |
|
|
always fold regardless of the value of OP0. If -Wtype-limits
|
| 5787 |
|
|
was specified, emit a warning. */
|
| 5788 |
|
|
tree type = TREE_TYPE (op0);
|
| 5789 |
|
|
value_range_t *vr0 = get_value_range (op0);
|
| 5790 |
|
|
|
| 5791 |
|
|
if (vr0->type != VR_VARYING
|
| 5792 |
|
|
&& INTEGRAL_TYPE_P (type)
|
| 5793 |
|
|
&& vrp_val_is_min (vr0->min)
|
| 5794 |
|
|
&& vrp_val_is_max (vr0->max)
|
| 5795 |
|
|
&& is_gimple_min_invariant (op1))
|
| 5796 |
|
|
{
|
| 5797 |
|
|
location_t location;
|
| 5798 |
|
|
|
| 5799 |
|
|
if (!gimple_has_location (stmt))
|
| 5800 |
|
|
location = input_location;
|
| 5801 |
|
|
else
|
| 5802 |
|
|
location = gimple_location (stmt);
|
| 5803 |
|
|
|
| 5804 |
|
|
warning_at (location, OPT_Wtype_limits,
|
| 5805 |
|
|
integer_zerop (ret)
|
| 5806 |
|
|
? G_("comparison always false "
|
| 5807 |
|
|
"due to limited range of data type")
|
| 5808 |
|
|
: G_("comparison always true "
|
| 5809 |
|
|
"due to limited range of data type"));
|
| 5810 |
|
|
}
|
| 5811 |
|
|
}
|
| 5812 |
|
|
|
| 5813 |
|
|
return ret;
|
| 5814 |
|
|
}
|
| 5815 |
|
|
|
| 5816 |
|
|
|
| 5817 |
|
|
/* Visit conditional statement STMT. If we can determine which edge
|
| 5818 |
|
|
will be taken out of STMT's basic block, record it in
|
| 5819 |
|
|
*TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
|
| 5820 |
|
|
SSA_PROP_VARYING. */
|
| 5821 |
|
|
|
| 5822 |
|
|
static enum ssa_prop_result
|
| 5823 |
|
|
vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
|
| 5824 |
|
|
{
|
| 5825 |
|
|
tree val;
|
| 5826 |
|
|
bool sop;
|
| 5827 |
|
|
|
| 5828 |
|
|
*taken_edge_p = NULL;
|
| 5829 |
|
|
|
| 5830 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 5831 |
|
|
{
|
| 5832 |
|
|
tree use;
|
| 5833 |
|
|
ssa_op_iter i;
|
| 5834 |
|
|
|
| 5835 |
|
|
fprintf (dump_file, "\nVisiting conditional with predicate: ");
|
| 5836 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 5837 |
|
|
fprintf (dump_file, "\nWith known ranges\n");
|
| 5838 |
|
|
|
| 5839 |
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
|
| 5840 |
|
|
{
|
| 5841 |
|
|
fprintf (dump_file, "\t");
|
| 5842 |
|
|
print_generic_expr (dump_file, use, 0);
|
| 5843 |
|
|
fprintf (dump_file, ": ");
|
| 5844 |
|
|
dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
|
| 5845 |
|
|
}
|
| 5846 |
|
|
|
| 5847 |
|
|
fprintf (dump_file, "\n");
|
| 5848 |
|
|
}
|
| 5849 |
|
|
|
| 5850 |
|
|
/* Compute the value of the predicate COND by checking the known
|
| 5851 |
|
|
ranges of each of its operands.
|
| 5852 |
|
|
|
| 5853 |
|
|
Note that we cannot evaluate all the equivalent ranges here
|
| 5854 |
|
|
because those ranges may not yet be final and with the current
|
| 5855 |
|
|
propagation strategy, we cannot determine when the value ranges
|
| 5856 |
|
|
of the names in the equivalence set have changed.
|
| 5857 |
|
|
|
| 5858 |
|
|
For instance, given the following code fragment
|
| 5859 |
|
|
|
| 5860 |
|
|
i_5 = PHI <8, i_13>
|
| 5861 |
|
|
...
|
| 5862 |
|
|
i_14 = ASSERT_EXPR <i_5, i_5 != 0>
|
| 5863 |
|
|
if (i_14 == 1)
|
| 5864 |
|
|
...
|
| 5865 |
|
|
|
| 5866 |
|
|
Assume that on the first visit to i_14, i_5 has the temporary
|
| 5867 |
|
|
range [8, 8] because the second argument to the PHI function is
|
| 5868 |
|
|
not yet executable. We derive the range ~[0, 0] for i_14 and the
|
| 5869 |
|
|
equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
|
| 5870 |
|
|
the first time, since i_14 is equivalent to the range [8, 8], we
|
| 5871 |
|
|
determine that the predicate is always false.
|
| 5872 |
|
|
|
| 5873 |
|
|
On the next round of propagation, i_13 is determined to be
|
| 5874 |
|
|
VARYING, which causes i_5 to drop down to VARYING. So, another
|
| 5875 |
|
|
visit to i_14 is scheduled. In this second visit, we compute the
|
| 5876 |
|
|
exact same range and equivalence set for i_14, namely ~[0, 0] and
|
| 5877 |
|
|
{ i_5 }. But we did not have the previous range for i_5
|
| 5878 |
|
|
registered, so vrp_visit_assignment thinks that the range for
|
| 5879 |
|
|
i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
|
| 5880 |
|
|
is not visited again, which stops propagation from visiting
|
| 5881 |
|
|
statements in the THEN clause of that if().
|
| 5882 |
|
|
|
| 5883 |
|
|
To properly fix this we would need to keep the previous range
|
| 5884 |
|
|
value for the names in the equivalence set. This way we would've
|
| 5885 |
|
|
discovered that from one visit to the other i_5 changed from
|
| 5886 |
|
|
range [8, 8] to VR_VARYING.
|
| 5887 |
|
|
|
| 5888 |
|
|
However, fixing this apparent limitation may not be worth the
|
| 5889 |
|
|
additional checking. Testing on several code bases (GCC, DLV,
|
| 5890 |
|
|
MICO, TRAMP3D and SPEC2000) showed that doing this results in
|
| 5891 |
|
|
4 more predicates folded in SPEC. */
|
| 5892 |
|
|
sop = false;
|
| 5893 |
|
|
|
| 5894 |
|
|
val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
|
| 5895 |
|
|
gimple_cond_lhs (stmt),
|
| 5896 |
|
|
gimple_cond_rhs (stmt),
|
| 5897 |
|
|
false, &sop, NULL);
|
| 5898 |
|
|
if (val)
|
| 5899 |
|
|
{
|
| 5900 |
|
|
if (!sop)
|
| 5901 |
|
|
*taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
|
| 5902 |
|
|
else
|
| 5903 |
|
|
{
|
| 5904 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 5905 |
|
|
fprintf (dump_file,
|
| 5906 |
|
|
"\nIgnoring predicate evaluation because "
|
| 5907 |
|
|
"it assumes that signed overflow is undefined");
|
| 5908 |
|
|
val = NULL_TREE;
|
| 5909 |
|
|
}
|
| 5910 |
|
|
}
|
| 5911 |
|
|
|
| 5912 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 5913 |
|
|
{
|
| 5914 |
|
|
fprintf (dump_file, "\nPredicate evaluates to: ");
|
| 5915 |
|
|
if (val == NULL_TREE)
|
| 5916 |
|
|
fprintf (dump_file, "DON'T KNOW\n");
|
| 5917 |
|
|
else
|
| 5918 |
|
|
print_generic_stmt (dump_file, val, 0);
|
| 5919 |
|
|
}
|
| 5920 |
|
|
|
| 5921 |
|
|
return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
|
| 5922 |
|
|
}
|
| 5923 |
|
|
|
| 5924 |
|
|
/* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
|
| 5925 |
|
|
that includes the value VAL. The search is restricted to the range
|
| 5926 |
|
|
[START_IDX, n - 1] where n is the size of VEC.
|
| 5927 |
|
|
|
| 5928 |
|
|
If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
|
| 5929 |
|
|
returned.
|
| 5930 |
|
|
|
| 5931 |
|
|
If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
|
| 5932 |
|
|
it is placed in IDX and false is returned.
|
| 5933 |
|
|
|
| 5934 |
|
|
If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
|
| 5935 |
|
|
returned. */
|
| 5936 |
|
|
|
| 5937 |
|
|
static bool
|
| 5938 |
|
|
find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
|
| 5939 |
|
|
{
|
| 5940 |
|
|
size_t n = gimple_switch_num_labels (stmt);
|
| 5941 |
|
|
size_t low, high;
|
| 5942 |
|
|
|
| 5943 |
|
|
/* Find case label for minimum of the value range or the next one.
|
| 5944 |
|
|
At each iteration we are searching in [low, high - 1]. */
|
| 5945 |
|
|
|
| 5946 |
|
|
for (low = start_idx, high = n; high != low; )
|
| 5947 |
|
|
{
|
| 5948 |
|
|
tree t;
|
| 5949 |
|
|
int cmp;
|
| 5950 |
|
|
/* Note that i != high, so we never ask for n. */
|
| 5951 |
|
|
size_t i = (high + low) / 2;
|
| 5952 |
|
|
t = gimple_switch_label (stmt, i);
|
| 5953 |
|
|
|
| 5954 |
|
|
/* Cache the result of comparing CASE_LOW and val. */
|
| 5955 |
|
|
cmp = tree_int_cst_compare (CASE_LOW (t), val);
|
| 5956 |
|
|
|
| 5957 |
|
|
if (cmp == 0)
|
| 5958 |
|
|
{
|
| 5959 |
|
|
/* Ranges cannot be empty. */
|
| 5960 |
|
|
*idx = i;
|
| 5961 |
|
|
return true;
|
| 5962 |
|
|
}
|
| 5963 |
|
|
else if (cmp > 0)
|
| 5964 |
|
|
high = i;
|
| 5965 |
|
|
else
|
| 5966 |
|
|
{
|
| 5967 |
|
|
low = i + 1;
|
| 5968 |
|
|
if (CASE_HIGH (t) != NULL
|
| 5969 |
|
|
&& tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
|
| 5970 |
|
|
{
|
| 5971 |
|
|
*idx = i;
|
| 5972 |
|
|
return true;
|
| 5973 |
|
|
}
|
| 5974 |
|
|
}
|
| 5975 |
|
|
}
|
| 5976 |
|
|
|
| 5977 |
|
|
*idx = high;
|
| 5978 |
|
|
return false;
|
| 5979 |
|
|
}
|
| 5980 |
|
|
|
| 5981 |
|
|
/* Searches the case label vector VEC for the range of CASE_LABELs that is used
|
| 5982 |
|
|
for values between MIN and MAX. The first index is placed in MIN_IDX. The
|
| 5983 |
|
|
last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
|
| 5984 |
|
|
then MAX_IDX < MIN_IDX.
|
| 5985 |
|
|
Returns true if the default label is not needed. */
|
| 5986 |
|
|
|
| 5987 |
|
|
static bool
|
| 5988 |
|
|
find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
|
| 5989 |
|
|
size_t *max_idx)
|
| 5990 |
|
|
{
|
| 5991 |
|
|
size_t i, j;
|
| 5992 |
|
|
bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
|
| 5993 |
|
|
bool max_take_default = !find_case_label_index (stmt, i, max, &j);
|
| 5994 |
|
|
|
| 5995 |
|
|
if (i == j
|
| 5996 |
|
|
&& min_take_default
|
| 5997 |
|
|
&& max_take_default)
|
| 5998 |
|
|
{
|
| 5999 |
|
|
/* Only the default case label reached.
|
| 6000 |
|
|
Return an empty range. */
|
| 6001 |
|
|
*min_idx = 1;
|
| 6002 |
|
|
*max_idx = 0;
|
| 6003 |
|
|
return false;
|
| 6004 |
|
|
}
|
| 6005 |
|
|
else
|
| 6006 |
|
|
{
|
| 6007 |
|
|
bool take_default = min_take_default || max_take_default;
|
| 6008 |
|
|
tree low, high;
|
| 6009 |
|
|
size_t k;
|
| 6010 |
|
|
|
| 6011 |
|
|
if (max_take_default)
|
| 6012 |
|
|
j--;
|
| 6013 |
|
|
|
| 6014 |
|
|
/* If the case label range is continuous, we do not need
|
| 6015 |
|
|
the default case label. Verify that. */
|
| 6016 |
|
|
high = CASE_LOW (gimple_switch_label (stmt, i));
|
| 6017 |
|
|
if (CASE_HIGH (gimple_switch_label (stmt, i)))
|
| 6018 |
|
|
high = CASE_HIGH (gimple_switch_label (stmt, i));
|
| 6019 |
|
|
for (k = i + 1; k <= j; ++k)
|
| 6020 |
|
|
{
|
| 6021 |
|
|
low = CASE_LOW (gimple_switch_label (stmt, k));
|
| 6022 |
|
|
if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
|
| 6023 |
|
|
{
|
| 6024 |
|
|
take_default = true;
|
| 6025 |
|
|
break;
|
| 6026 |
|
|
}
|
| 6027 |
|
|
high = low;
|
| 6028 |
|
|
if (CASE_HIGH (gimple_switch_label (stmt, k)))
|
| 6029 |
|
|
high = CASE_HIGH (gimple_switch_label (stmt, k));
|
| 6030 |
|
|
}
|
| 6031 |
|
|
|
| 6032 |
|
|
*min_idx = i;
|
| 6033 |
|
|
*max_idx = j;
|
| 6034 |
|
|
return !take_default;
|
| 6035 |
|
|
}
|
| 6036 |
|
|
}
|
| 6037 |
|
|
|
| 6038 |
|
|
/* Visit switch statement STMT. If we can determine which edge
|
| 6039 |
|
|
will be taken out of STMT's basic block, record it in
|
| 6040 |
|
|
*TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
|
| 6041 |
|
|
SSA_PROP_VARYING. */
|
| 6042 |
|
|
|
| 6043 |
|
|
static enum ssa_prop_result
|
| 6044 |
|
|
vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
|
| 6045 |
|
|
{
|
| 6046 |
|
|
tree op, val;
|
| 6047 |
|
|
value_range_t *vr;
|
| 6048 |
|
|
size_t i = 0, j = 0;
|
| 6049 |
|
|
bool take_default;
|
| 6050 |
|
|
|
| 6051 |
|
|
*taken_edge_p = NULL;
|
| 6052 |
|
|
op = gimple_switch_index (stmt);
|
| 6053 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
| 6054 |
|
|
return SSA_PROP_VARYING;
|
| 6055 |
|
|
|
| 6056 |
|
|
vr = get_value_range (op);
|
| 6057 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 6058 |
|
|
{
|
| 6059 |
|
|
fprintf (dump_file, "\nVisiting switch expression with operand ");
|
| 6060 |
|
|
print_generic_expr (dump_file, op, 0);
|
| 6061 |
|
|
fprintf (dump_file, " with known range ");
|
| 6062 |
|
|
dump_value_range (dump_file, vr);
|
| 6063 |
|
|
fprintf (dump_file, "\n");
|
| 6064 |
|
|
}
|
| 6065 |
|
|
|
| 6066 |
|
|
if (vr->type != VR_RANGE
|
| 6067 |
|
|
|| symbolic_range_p (vr))
|
| 6068 |
|
|
return SSA_PROP_VARYING;
|
| 6069 |
|
|
|
| 6070 |
|
|
/* Find the single edge that is taken from the switch expression. */
|
| 6071 |
|
|
take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
|
| 6072 |
|
|
|
| 6073 |
|
|
/* Check if the range spans no CASE_LABEL. If so, we only reach the default
|
| 6074 |
|
|
label */
|
| 6075 |
|
|
if (j < i)
|
| 6076 |
|
|
{
|
| 6077 |
|
|
gcc_assert (take_default);
|
| 6078 |
|
|
val = gimple_switch_default_label (stmt);
|
| 6079 |
|
|
}
|
| 6080 |
|
|
else
|
| 6081 |
|
|
{
|
| 6082 |
|
|
/* Check if labels with index i to j and maybe the default label
|
| 6083 |
|
|
are all reaching the same label. */
|
| 6084 |
|
|
|
| 6085 |
|
|
val = gimple_switch_label (stmt, i);
|
| 6086 |
|
|
if (take_default
|
| 6087 |
|
|
&& CASE_LABEL (gimple_switch_default_label (stmt))
|
| 6088 |
|
|
!= CASE_LABEL (val))
|
| 6089 |
|
|
{
|
| 6090 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 6091 |
|
|
fprintf (dump_file, " not a single destination for this "
|
| 6092 |
|
|
"range\n");
|
| 6093 |
|
|
return SSA_PROP_VARYING;
|
| 6094 |
|
|
}
|
| 6095 |
|
|
for (++i; i <= j; ++i)
|
| 6096 |
|
|
{
|
| 6097 |
|
|
if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
|
| 6098 |
|
|
{
|
| 6099 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 6100 |
|
|
fprintf (dump_file, " not a single destination for this "
|
| 6101 |
|
|
"range\n");
|
| 6102 |
|
|
return SSA_PROP_VARYING;
|
| 6103 |
|
|
}
|
| 6104 |
|
|
}
|
| 6105 |
|
|
}
|
| 6106 |
|
|
|
| 6107 |
|
|
*taken_edge_p = find_edge (gimple_bb (stmt),
|
| 6108 |
|
|
label_to_block (CASE_LABEL (val)));
|
| 6109 |
|
|
|
| 6110 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 6111 |
|
|
{
|
| 6112 |
|
|
fprintf (dump_file, " will take edge to ");
|
| 6113 |
|
|
print_generic_stmt (dump_file, CASE_LABEL (val), 0);
|
| 6114 |
|
|
}
|
| 6115 |
|
|
|
| 6116 |
|
|
return SSA_PROP_INTERESTING;
|
| 6117 |
|
|
}
|
| 6118 |
|
|
|
| 6119 |
|
|
|
| 6120 |
|
|
/* Evaluate statement STMT. If the statement produces a useful range,
|
| 6121 |
|
|
return SSA_PROP_INTERESTING and record the SSA name with the
|
| 6122 |
|
|
interesting range into *OUTPUT_P.
|
| 6123 |
|
|
|
| 6124 |
|
|
If STMT is a conditional branch and we can determine its truth
|
| 6125 |
|
|
value, the taken edge is recorded in *TAKEN_EDGE_P.
|
| 6126 |
|
|
|
| 6127 |
|
|
If STMT produces a varying value, return SSA_PROP_VARYING. */
|
| 6128 |
|
|
|
| 6129 |
|
|
static enum ssa_prop_result
|
| 6130 |
|
|
vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
|
| 6131 |
|
|
{
|
| 6132 |
|
|
tree def;
|
| 6133 |
|
|
ssa_op_iter iter;
|
| 6134 |
|
|
|
| 6135 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 6136 |
|
|
{
|
| 6137 |
|
|
fprintf (dump_file, "\nVisiting statement:\n");
|
| 6138 |
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
| 6139 |
|
|
fprintf (dump_file, "\n");
|
| 6140 |
|
|
}
|
| 6141 |
|
|
|
| 6142 |
|
|
if (!stmt_interesting_for_vrp (stmt))
|
| 6143 |
|
|
gcc_assert (stmt_ends_bb_p (stmt));
|
| 6144 |
|
|
else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
|
| 6145 |
|
|
{
|
| 6146 |
|
|
/* In general, assignments with virtual operands are not useful
|
| 6147 |
|
|
for deriving ranges, with the obvious exception of calls to
|
| 6148 |
|
|
builtin functions. */
|
| 6149 |
|
|
|
| 6150 |
|
|
if ((is_gimple_call (stmt)
|
| 6151 |
|
|
&& gimple_call_fndecl (stmt) != NULL_TREE
|
| 6152 |
|
|
&& DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
|
| 6153 |
|
|
|| !gimple_vuse (stmt))
|
| 6154 |
|
|
return vrp_visit_assignment_or_call (stmt, output_p);
|
| 6155 |
|
|
}
|
| 6156 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
| 6157 |
|
|
return vrp_visit_cond_stmt (stmt, taken_edge_p);
|
| 6158 |
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
| 6159 |
|
|
return vrp_visit_switch_stmt (stmt, taken_edge_p);
|
| 6160 |
|
|
|
| 6161 |
|
|
/* All other statements produce nothing of interest for VRP, so mark
|
| 6162 |
|
|
their outputs varying and prevent further simulation. */
|
| 6163 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
|
| 6164 |
|
|
set_value_range_to_varying (get_value_range (def));
|
| 6165 |
|
|
|
| 6166 |
|
|
return SSA_PROP_VARYING;
|
| 6167 |
|
|
}
|
| 6168 |
|
|
|
| 6169 |
|
|
|
| 6170 |
|
|
/* Meet operation for value ranges. Given two value ranges VR0 and
|
| 6171 |
|
|
VR1, store in VR0 a range that contains both VR0 and VR1. This
|
| 6172 |
|
|
may not be the smallest possible such range. */
|
| 6173 |
|
|
|
| 6174 |
|
|
static void
|
| 6175 |
|
|
vrp_meet (value_range_t *vr0, value_range_t *vr1)
|
| 6176 |
|
|
{
|
| 6177 |
|
|
if (vr0->type == VR_UNDEFINED)
|
| 6178 |
|
|
{
|
| 6179 |
|
|
copy_value_range (vr0, vr1);
|
| 6180 |
|
|
return;
|
| 6181 |
|
|
}
|
| 6182 |
|
|
|
| 6183 |
|
|
if (vr1->type == VR_UNDEFINED)
|
| 6184 |
|
|
{
|
| 6185 |
|
|
/* Nothing to do. VR0 already has the resulting range. */
|
| 6186 |
|
|
return;
|
| 6187 |
|
|
}
|
| 6188 |
|
|
|
| 6189 |
|
|
if (vr0->type == VR_VARYING)
|
| 6190 |
|
|
{
|
| 6191 |
|
|
/* Nothing to do. VR0 already has the resulting range. */
|
| 6192 |
|
|
return;
|
| 6193 |
|
|
}
|
| 6194 |
|
|
|
| 6195 |
|
|
if (vr1->type == VR_VARYING)
|
| 6196 |
|
|
{
|
| 6197 |
|
|
set_value_range_to_varying (vr0);
|
| 6198 |
|
|
return;
|
| 6199 |
|
|
}
|
| 6200 |
|
|
|
| 6201 |
|
|
if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
|
| 6202 |
|
|
{
|
| 6203 |
|
|
int cmp;
|
| 6204 |
|
|
tree min, max;
|
| 6205 |
|
|
|
| 6206 |
|
|
/* Compute the convex hull of the ranges. The lower limit of
|
| 6207 |
|
|
the new range is the minimum of the two ranges. If they
|
| 6208 |
|
|
cannot be compared, then give up. */
|
| 6209 |
|
|
cmp = compare_values (vr0->min, vr1->min);
|
| 6210 |
|
|
if (cmp == 0 || cmp == 1)
|
| 6211 |
|
|
min = vr1->min;
|
| 6212 |
|
|
else if (cmp == -1)
|
| 6213 |
|
|
min = vr0->min;
|
| 6214 |
|
|
else
|
| 6215 |
|
|
goto give_up;
|
| 6216 |
|
|
|
| 6217 |
|
|
/* Similarly, the upper limit of the new range is the maximum
|
| 6218 |
|
|
of the two ranges. If they cannot be compared, then
|
| 6219 |
|
|
give up. */
|
| 6220 |
|
|
cmp = compare_values (vr0->max, vr1->max);
|
| 6221 |
|
|
if (cmp == 0 || cmp == -1)
|
| 6222 |
|
|
max = vr1->max;
|
| 6223 |
|
|
else if (cmp == 1)
|
| 6224 |
|
|
max = vr0->max;
|
| 6225 |
|
|
else
|
| 6226 |
|
|
goto give_up;
|
| 6227 |
|
|
|
| 6228 |
|
|
/* Check for useless ranges. */
|
| 6229 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (min))
|
| 6230 |
|
|
&& ((vrp_val_is_min (min) || is_overflow_infinity (min))
|
| 6231 |
|
|
&& (vrp_val_is_max (max) || is_overflow_infinity (max))))
|
| 6232 |
|
|
goto give_up;
|
| 6233 |
|
|
|
| 6234 |
|
|
/* The resulting set of equivalences is the intersection of
|
| 6235 |
|
|
the two sets. */
|
| 6236 |
|
|
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
|
| 6237 |
|
|
bitmap_and_into (vr0->equiv, vr1->equiv);
|
| 6238 |
|
|
else if (vr0->equiv && !vr1->equiv)
|
| 6239 |
|
|
bitmap_clear (vr0->equiv);
|
| 6240 |
|
|
|
| 6241 |
|
|
set_value_range (vr0, vr0->type, min, max, vr0->equiv);
|
| 6242 |
|
|
}
|
| 6243 |
|
|
else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
|
| 6244 |
|
|
{
|
| 6245 |
|
|
/* Two anti-ranges meet only if their complements intersect.
|
| 6246 |
|
|
Only handle the case of identical ranges. */
|
| 6247 |
|
|
if (compare_values (vr0->min, vr1->min) == 0
|
| 6248 |
|
|
&& compare_values (vr0->max, vr1->max) == 0
|
| 6249 |
|
|
&& compare_values (vr0->min, vr0->max) == 0)
|
| 6250 |
|
|
{
|
| 6251 |
|
|
/* The resulting set of equivalences is the intersection of
|
| 6252 |
|
|
the two sets. */
|
| 6253 |
|
|
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
|
| 6254 |
|
|
bitmap_and_into (vr0->equiv, vr1->equiv);
|
| 6255 |
|
|
else if (vr0->equiv && !vr1->equiv)
|
| 6256 |
|
|
bitmap_clear (vr0->equiv);
|
| 6257 |
|
|
}
|
| 6258 |
|
|
else
|
| 6259 |
|
|
goto give_up;
|
| 6260 |
|
|
}
|
| 6261 |
|
|
else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
|
| 6262 |
|
|
{
|
| 6263 |
|
|
/* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
|
| 6264 |
|
|
only handle the case where the ranges have an empty intersection.
|
| 6265 |
|
|
The result of the meet operation is the anti-range. */
|
| 6266 |
|
|
if (!symbolic_range_p (vr0)
|
| 6267 |
|
|
&& !symbolic_range_p (vr1)
|
| 6268 |
|
|
&& !value_ranges_intersect_p (vr0, vr1))
|
| 6269 |
|
|
{
|
| 6270 |
|
|
/* Copy most of VR1 into VR0. Don't copy VR1's equivalence
|
| 6271 |
|
|
set. We need to compute the intersection of the two
|
| 6272 |
|
|
equivalence sets. */
|
| 6273 |
|
|
if (vr1->type == VR_ANTI_RANGE)
|
| 6274 |
|
|
set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
|
| 6275 |
|
|
|
| 6276 |
|
|
/* The resulting set of equivalences is the intersection of
|
| 6277 |
|
|
the two sets. */
|
| 6278 |
|
|
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
|
| 6279 |
|
|
bitmap_and_into (vr0->equiv, vr1->equiv);
|
| 6280 |
|
|
else if (vr0->equiv && !vr1->equiv)
|
| 6281 |
|
|
bitmap_clear (vr0->equiv);
|
| 6282 |
|
|
}
|
| 6283 |
|
|
else
|
| 6284 |
|
|
goto give_up;
|
| 6285 |
|
|
}
|
| 6286 |
|
|
else
|
| 6287 |
|
|
gcc_unreachable ();
|
| 6288 |
|
|
|
| 6289 |
|
|
return;
|
| 6290 |
|
|
|
| 6291 |
|
|
give_up:
|
| 6292 |
|
|
/* Failed to find an efficient meet. Before giving up and setting
|
| 6293 |
|
|
the result to VARYING, see if we can at least derive a useful
|
| 6294 |
|
|
anti-range. FIXME, all this nonsense about distinguishing
|
| 6295 |
|
|
anti-ranges from ranges is necessary because of the odd
|
| 6296 |
|
|
semantics of range_includes_zero_p and friends. */
|
| 6297 |
|
|
if (!symbolic_range_p (vr0)
|
| 6298 |
|
|
&& ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
|
| 6299 |
|
|
|| (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
|
| 6300 |
|
|
&& !symbolic_range_p (vr1)
|
| 6301 |
|
|
&& ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
|
| 6302 |
|
|
|| (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
|
| 6303 |
|
|
{
|
| 6304 |
|
|
set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
|
| 6305 |
|
|
|
| 6306 |
|
|
/* Since this meet operation did not result from the meeting of
|
| 6307 |
|
|
two equivalent names, VR0 cannot have any equivalences. */
|
| 6308 |
|
|
if (vr0->equiv)
|
| 6309 |
|
|
bitmap_clear (vr0->equiv);
|
| 6310 |
|
|
}
|
| 6311 |
|
|
else
|
| 6312 |
|
|
set_value_range_to_varying (vr0);
|
| 6313 |
|
|
}
|
| 6314 |
|
|
|
| 6315 |
|
|
|
| 6316 |
|
|
/* Visit all arguments for PHI node PHI that flow through executable
|
| 6317 |
|
|
edges. If a valid value range can be derived from all the incoming
|
| 6318 |
|
|
value ranges, set a new range for the LHS of PHI. */
|
| 6319 |
|
|
|
| 6320 |
|
|
static enum ssa_prop_result
|
| 6321 |
|
|
vrp_visit_phi_node (gimple phi)
|
| 6322 |
|
|
{
|
| 6323 |
|
|
size_t i;
|
| 6324 |
|
|
tree lhs = PHI_RESULT (phi);
|
| 6325 |
|
|
value_range_t *lhs_vr = get_value_range (lhs);
|
| 6326 |
|
|
value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
| 6327 |
|
|
int edges, old_edges;
|
| 6328 |
|
|
struct loop *l;
|
| 6329 |
|
|
|
| 6330 |
|
|
copy_value_range (&vr_result, lhs_vr);
|
| 6331 |
|
|
|
| 6332 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 6333 |
|
|
{
|
| 6334 |
|
|
fprintf (dump_file, "\nVisiting PHI node: ");
|
| 6335 |
|
|
print_gimple_stmt (dump_file, phi, 0, dump_flags);
|
| 6336 |
|
|
}
|
| 6337 |
|
|
|
| 6338 |
|
|
edges = 0;
|
| 6339 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 6340 |
|
|
{
|
| 6341 |
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
| 6342 |
|
|
|
| 6343 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 6344 |
|
|
{
|
| 6345 |
|
|
fprintf (dump_file,
|
| 6346 |
|
|
"\n Argument #%d (%d -> %d %sexecutable)\n",
|
| 6347 |
|
|
(int) i, e->src->index, e->dest->index,
|
| 6348 |
|
|
(e->flags & EDGE_EXECUTABLE) ? "" : "not ");
|
| 6349 |
|
|
}
|
| 6350 |
|
|
|
| 6351 |
|
|
if (e->flags & EDGE_EXECUTABLE)
|
| 6352 |
|
|
{
|
| 6353 |
|
|
tree arg = PHI_ARG_DEF (phi, i);
|
| 6354 |
|
|
value_range_t vr_arg;
|
| 6355 |
|
|
|
| 6356 |
|
|
++edges;
|
| 6357 |
|
|
|
| 6358 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
| 6359 |
|
|
{
|
| 6360 |
|
|
vr_arg = *(get_value_range (arg));
|
| 6361 |
|
|
}
|
| 6362 |
|
|
else
|
| 6363 |
|
|
{
|
| 6364 |
|
|
if (is_overflow_infinity (arg))
|
| 6365 |
|
|
{
|
| 6366 |
|
|
arg = copy_node (arg);
|
| 6367 |
|
|
TREE_OVERFLOW (arg) = 0;
|
| 6368 |
|
|
}
|
| 6369 |
|
|
|
| 6370 |
|
|
vr_arg.type = VR_RANGE;
|
| 6371 |
|
|
vr_arg.min = arg;
|
| 6372 |
|
|
vr_arg.max = arg;
|
| 6373 |
|
|
vr_arg.equiv = NULL;
|
| 6374 |
|
|
}
|
| 6375 |
|
|
|
| 6376 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 6377 |
|
|
{
|
| 6378 |
|
|
fprintf (dump_file, "\t");
|
| 6379 |
|
|
print_generic_expr (dump_file, arg, dump_flags);
|
| 6380 |
|
|
fprintf (dump_file, "\n\tValue: ");
|
| 6381 |
|
|
dump_value_range (dump_file, &vr_arg);
|
| 6382 |
|
|
fprintf (dump_file, "\n");
|
| 6383 |
|
|
}
|
| 6384 |
|
|
|
| 6385 |
|
|
vrp_meet (&vr_result, &vr_arg);
|
| 6386 |
|
|
|
| 6387 |
|
|
if (vr_result.type == VR_VARYING)
|
| 6388 |
|
|
break;
|
| 6389 |
|
|
}
|
| 6390 |
|
|
}
|
| 6391 |
|
|
|
| 6392 |
|
|
/* If this is a loop PHI node SCEV may known more about its
|
| 6393 |
|
|
value-range. */
|
| 6394 |
|
|
if (current_loops
|
| 6395 |
|
|
&& (l = loop_containing_stmt (phi))
|
| 6396 |
|
|
&& l->header == gimple_bb (phi))
|
| 6397 |
|
|
adjust_range_with_scev (&vr_result, l, phi, lhs);
|
| 6398 |
|
|
|
| 6399 |
|
|
if (vr_result.type == VR_VARYING)
|
| 6400 |
|
|
goto varying;
|
| 6401 |
|
|
|
| 6402 |
|
|
old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
|
| 6403 |
|
|
vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
|
| 6404 |
|
|
|
| 6405 |
|
|
/* To prevent infinite iterations in the algorithm, derive ranges
|
| 6406 |
|
|
when the new value is slightly bigger or smaller than the
|
| 6407 |
|
|
previous one. We don't do this if we have seen a new executable
|
| 6408 |
|
|
edge; this helps us avoid an overflow infinity for conditionals
|
| 6409 |
|
|
which are not in a loop. */
|
| 6410 |
|
|
if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
|
| 6411 |
|
|
&& edges <= old_edges)
|
| 6412 |
|
|
{
|
| 6413 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
|
| 6414 |
|
|
{
|
| 6415 |
|
|
int cmp_min = compare_values (lhs_vr->min, vr_result.min);
|
| 6416 |
|
|
int cmp_max = compare_values (lhs_vr->max, vr_result.max);
|
| 6417 |
|
|
|
| 6418 |
|
|
/* If the new minimum is smaller or larger than the previous
|
| 6419 |
|
|
one, go all the way to -INF. In the first case, to avoid
|
| 6420 |
|
|
iterating millions of times to reach -INF, and in the
|
| 6421 |
|
|
other case to avoid infinite bouncing between different
|
| 6422 |
|
|
minimums. */
|
| 6423 |
|
|
if (cmp_min > 0 || cmp_min < 0)
|
| 6424 |
|
|
{
|
| 6425 |
|
|
/* If we will end up with a (-INF, +INF) range, set it to
|
| 6426 |
|
|
VARYING. Same if the previous max value was invalid for
|
| 6427 |
|
|
the type and we'd end up with vr_result.min > vr_result.max. */
|
| 6428 |
|
|
if (vrp_val_is_max (vr_result.max)
|
| 6429 |
|
|
|| compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result.min)),
|
| 6430 |
|
|
vr_result.max) > 0)
|
| 6431 |
|
|
goto varying;
|
| 6432 |
|
|
|
| 6433 |
|
|
if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
|
| 6434 |
|
|
|| !vrp_var_may_overflow (lhs, phi))
|
| 6435 |
|
|
vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
|
| 6436 |
|
|
else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
|
| 6437 |
|
|
vr_result.min =
|
| 6438 |
|
|
negative_overflow_infinity (TREE_TYPE (vr_result.min));
|
| 6439 |
|
|
else
|
| 6440 |
|
|
goto varying;
|
| 6441 |
|
|
}
|
| 6442 |
|
|
|
| 6443 |
|
|
/* Similarly, if the new maximum is smaller or larger than
|
| 6444 |
|
|
the previous one, go all the way to +INF. */
|
| 6445 |
|
|
if (cmp_max < 0 || cmp_max > 0)
|
| 6446 |
|
|
{
|
| 6447 |
|
|
/* If we will end up with a (-INF, +INF) range, set it to
|
| 6448 |
|
|
VARYING. Same if the previous min value was invalid for
|
| 6449 |
|
|
the type and we'd end up with vr_result.max < vr_result.min. */
|
| 6450 |
|
|
if (vrp_val_is_min (vr_result.min)
|
| 6451 |
|
|
|| compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)),
|
| 6452 |
|
|
vr_result.min) < 0)
|
| 6453 |
|
|
goto varying;
|
| 6454 |
|
|
|
| 6455 |
|
|
if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
|
| 6456 |
|
|
|| !vrp_var_may_overflow (lhs, phi))
|
| 6457 |
|
|
vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
|
| 6458 |
|
|
else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
|
| 6459 |
|
|
vr_result.max =
|
| 6460 |
|
|
positive_overflow_infinity (TREE_TYPE (vr_result.max));
|
| 6461 |
|
|
else
|
| 6462 |
|
|
goto varying;
|
| 6463 |
|
|
}
|
| 6464 |
|
|
}
|
| 6465 |
|
|
}
|
| 6466 |
|
|
|
| 6467 |
|
|
/* If the new range is different than the previous value, keep
|
| 6468 |
|
|
iterating. */
|
| 6469 |
|
|
if (update_value_range (lhs, &vr_result))
|
| 6470 |
|
|
{
|
| 6471 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 6472 |
|
|
{
|
| 6473 |
|
|
fprintf (dump_file, "Found new range for ");
|
| 6474 |
|
|
print_generic_expr (dump_file, lhs, 0);
|
| 6475 |
|
|
fprintf (dump_file, ": ");
|
| 6476 |
|
|
dump_value_range (dump_file, &vr_result);
|
| 6477 |
|
|
fprintf (dump_file, "\n\n");
|
| 6478 |
|
|
}
|
| 6479 |
|
|
|
| 6480 |
|
|
return SSA_PROP_INTERESTING;
|
| 6481 |
|
|
}
|
| 6482 |
|
|
|
| 6483 |
|
|
/* Nothing changed, don't add outgoing edges. */
|
| 6484 |
|
|
return SSA_PROP_NOT_INTERESTING;
|
| 6485 |
|
|
|
| 6486 |
|
|
/* No match found. Set the LHS to VARYING. */
|
| 6487 |
|
|
varying:
|
| 6488 |
|
|
set_value_range_to_varying (lhs_vr);
|
| 6489 |
|
|
return SSA_PROP_VARYING;
|
| 6490 |
|
|
}
|
| 6491 |
|
|
|
| 6492 |
|
|
/* Simplify boolean operations if the source is known
|
| 6493 |
|
|
to be already a boolean. */
|
| 6494 |
|
|
static bool
|
| 6495 |
|
|
simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
|
| 6496 |
|
|
{
|
| 6497 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
| 6498 |
|
|
tree val = NULL;
|
| 6499 |
|
|
tree op0, op1;
|
| 6500 |
|
|
value_range_t *vr;
|
| 6501 |
|
|
bool sop = false;
|
| 6502 |
|
|
bool need_conversion;
|
| 6503 |
|
|
|
| 6504 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
| 6505 |
|
|
if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
|
| 6506 |
|
|
{
|
| 6507 |
|
|
if (TREE_CODE (op0) != SSA_NAME)
|
| 6508 |
|
|
return false;
|
| 6509 |
|
|
vr = get_value_range (op0);
|
| 6510 |
|
|
|
| 6511 |
|
|
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
|
| 6512 |
|
|
if (!val || !integer_onep (val))
|
| 6513 |
|
|
return false;
|
| 6514 |
|
|
|
| 6515 |
|
|
val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
|
| 6516 |
|
|
if (!val || !integer_onep (val))
|
| 6517 |
|
|
return false;
|
| 6518 |
|
|
}
|
| 6519 |
|
|
|
| 6520 |
|
|
if (rhs_code == TRUTH_NOT_EXPR)
|
| 6521 |
|
|
{
|
| 6522 |
|
|
rhs_code = NE_EXPR;
|
| 6523 |
|
|
op1 = build_int_cst (TREE_TYPE (op0), 1);
|
| 6524 |
|
|
}
|
| 6525 |
|
|
else
|
| 6526 |
|
|
{
|
| 6527 |
|
|
op1 = gimple_assign_rhs2 (stmt);
|
| 6528 |
|
|
|
| 6529 |
|
|
/* Reduce number of cases to handle. */
|
| 6530 |
|
|
if (is_gimple_min_invariant (op1))
|
| 6531 |
|
|
{
|
| 6532 |
|
|
/* Exclude anything that should have been already folded. */
|
| 6533 |
|
|
if (rhs_code != EQ_EXPR
|
| 6534 |
|
|
&& rhs_code != NE_EXPR
|
| 6535 |
|
|
&& rhs_code != TRUTH_XOR_EXPR)
|
| 6536 |
|
|
return false;
|
| 6537 |
|
|
|
| 6538 |
|
|
if (!integer_zerop (op1)
|
| 6539 |
|
|
&& !integer_onep (op1)
|
| 6540 |
|
|
&& !integer_all_onesp (op1))
|
| 6541 |
|
|
return false;
|
| 6542 |
|
|
|
| 6543 |
|
|
/* Limit the number of cases we have to consider. */
|
| 6544 |
|
|
if (rhs_code == EQ_EXPR)
|
| 6545 |
|
|
{
|
| 6546 |
|
|
rhs_code = NE_EXPR;
|
| 6547 |
|
|
op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
|
| 6548 |
|
|
}
|
| 6549 |
|
|
}
|
| 6550 |
|
|
else
|
| 6551 |
|
|
{
|
| 6552 |
|
|
/* Punt on A == B as there is no BIT_XNOR_EXPR. */
|
| 6553 |
|
|
if (rhs_code == EQ_EXPR)
|
| 6554 |
|
|
return false;
|
| 6555 |
|
|
|
| 6556 |
|
|
if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
|
| 6557 |
|
|
{
|
| 6558 |
|
|
vr = get_value_range (op1);
|
| 6559 |
|
|
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
|
| 6560 |
|
|
if (!val || !integer_onep (val))
|
| 6561 |
|
|
return false;
|
| 6562 |
|
|
|
| 6563 |
|
|
val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
|
| 6564 |
|
|
if (!val || !integer_onep (val))
|
| 6565 |
|
|
return false;
|
| 6566 |
|
|
}
|
| 6567 |
|
|
}
|
| 6568 |
|
|
}
|
| 6569 |
|
|
|
| 6570 |
|
|
if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
|
| 6571 |
|
|
{
|
| 6572 |
|
|
location_t location;
|
| 6573 |
|
|
|
| 6574 |
|
|
if (!gimple_has_location (stmt))
|
| 6575 |
|
|
location = input_location;
|
| 6576 |
|
|
else
|
| 6577 |
|
|
location = gimple_location (stmt);
|
| 6578 |
|
|
|
| 6579 |
|
|
if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
|
| 6580 |
|
|
warning_at (location, OPT_Wstrict_overflow,
|
| 6581 |
|
|
_("assuming signed overflow does not occur when "
|
| 6582 |
|
|
"simplifying && or || to & or |"));
|
| 6583 |
|
|
else
|
| 6584 |
|
|
warning_at (location, OPT_Wstrict_overflow,
|
| 6585 |
|
|
_("assuming signed overflow does not occur when "
|
| 6586 |
|
|
"simplifying ==, != or ! to identity or ^"));
|
| 6587 |
|
|
}
|
| 6588 |
|
|
|
| 6589 |
|
|
need_conversion =
|
| 6590 |
|
|
!useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
|
| 6591 |
|
|
TREE_TYPE (op0));
|
| 6592 |
|
|
|
| 6593 |
|
|
/* Make sure to not sign-extend -1 as a boolean value. */
|
| 6594 |
|
|
if (need_conversion
|
| 6595 |
|
|
&& !TYPE_UNSIGNED (TREE_TYPE (op0))
|
| 6596 |
|
|
&& TYPE_PRECISION (TREE_TYPE (op0)) == 1)
|
| 6597 |
|
|
return false;
|
| 6598 |
|
|
|
| 6599 |
|
|
switch (rhs_code)
|
| 6600 |
|
|
{
|
| 6601 |
|
|
case TRUTH_AND_EXPR:
|
| 6602 |
|
|
rhs_code = BIT_AND_EXPR;
|
| 6603 |
|
|
break;
|
| 6604 |
|
|
case TRUTH_OR_EXPR:
|
| 6605 |
|
|
rhs_code = BIT_IOR_EXPR;
|
| 6606 |
|
|
break;
|
| 6607 |
|
|
case TRUTH_XOR_EXPR:
|
| 6608 |
|
|
case NE_EXPR:
|
| 6609 |
|
|
if (integer_zerop (op1))
|
| 6610 |
|
|
{
|
| 6611 |
|
|
gimple_assign_set_rhs_with_ops (gsi,
|
| 6612 |
|
|
need_conversion ? NOP_EXPR : SSA_NAME,
|
| 6613 |
|
|
op0, NULL);
|
| 6614 |
|
|
update_stmt (gsi_stmt (*gsi));
|
| 6615 |
|
|
return true;
|
| 6616 |
|
|
}
|
| 6617 |
|
|
|
| 6618 |
|
|
rhs_code = BIT_XOR_EXPR;
|
| 6619 |
|
|
break;
|
| 6620 |
|
|
default:
|
| 6621 |
|
|
gcc_unreachable ();
|
| 6622 |
|
|
}
|
| 6623 |
|
|
|
| 6624 |
|
|
if (need_conversion)
|
| 6625 |
|
|
return false;
|
| 6626 |
|
|
|
| 6627 |
|
|
gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
|
| 6628 |
|
|
update_stmt (gsi_stmt (*gsi));
|
| 6629 |
|
|
return true;
|
| 6630 |
|
|
}
|
| 6631 |
|
|
|
| 6632 |
|
|
/* Simplify a division or modulo operator to a right shift or
|
| 6633 |
|
|
bitwise and if the first operand is unsigned or is greater
|
| 6634 |
|
|
than zero and the second operand is an exact power of two. */
|
| 6635 |
|
|
|
| 6636 |
|
|
static bool
|
| 6637 |
|
|
simplify_div_or_mod_using_ranges (gimple stmt)
|
| 6638 |
|
|
{
|
| 6639 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
| 6640 |
|
|
tree val = NULL;
|
| 6641 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
| 6642 |
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
| 6643 |
|
|
value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
|
| 6644 |
|
|
|
| 6645 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (op0)))
|
| 6646 |
|
|
{
|
| 6647 |
|
|
val = integer_one_node;
|
| 6648 |
|
|
}
|
| 6649 |
|
|
else
|
| 6650 |
|
|
{
|
| 6651 |
|
|
bool sop = false;
|
| 6652 |
|
|
|
| 6653 |
|
|
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
|
| 6654 |
|
|
|
| 6655 |
|
|
if (val
|
| 6656 |
|
|
&& sop
|
| 6657 |
|
|
&& integer_onep (val)
|
| 6658 |
|
|
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
|
| 6659 |
|
|
{
|
| 6660 |
|
|
location_t location;
|
| 6661 |
|
|
|
| 6662 |
|
|
if (!gimple_has_location (stmt))
|
| 6663 |
|
|
location = input_location;
|
| 6664 |
|
|
else
|
| 6665 |
|
|
location = gimple_location (stmt);
|
| 6666 |
|
|
warning_at (location, OPT_Wstrict_overflow,
|
| 6667 |
|
|
"assuming signed overflow does not occur when "
|
| 6668 |
|
|
"simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
|
| 6669 |
|
|
}
|
| 6670 |
|
|
}
|
| 6671 |
|
|
|
| 6672 |
|
|
if (val && integer_onep (val))
|
| 6673 |
|
|
{
|
| 6674 |
|
|
tree t;
|
| 6675 |
|
|
|
| 6676 |
|
|
if (rhs_code == TRUNC_DIV_EXPR)
|
| 6677 |
|
|
{
|
| 6678 |
|
|
t = build_int_cst (NULL_TREE, tree_log2 (op1));
|
| 6679 |
|
|
gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
|
| 6680 |
|
|
gimple_assign_set_rhs1 (stmt, op0);
|
| 6681 |
|
|
gimple_assign_set_rhs2 (stmt, t);
|
| 6682 |
|
|
}
|
| 6683 |
|
|
else
|
| 6684 |
|
|
{
|
| 6685 |
|
|
t = build_int_cst (TREE_TYPE (op1), 1);
|
| 6686 |
|
|
t = int_const_binop (MINUS_EXPR, op1, t, 0);
|
| 6687 |
|
|
t = fold_convert (TREE_TYPE (op0), t);
|
| 6688 |
|
|
|
| 6689 |
|
|
gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
|
| 6690 |
|
|
gimple_assign_set_rhs1 (stmt, op0);
|
| 6691 |
|
|
gimple_assign_set_rhs2 (stmt, t);
|
| 6692 |
|
|
}
|
| 6693 |
|
|
|
| 6694 |
|
|
update_stmt (stmt);
|
| 6695 |
|
|
return true;
|
| 6696 |
|
|
}
|
| 6697 |
|
|
|
| 6698 |
|
|
return false;
|
| 6699 |
|
|
}
|
| 6700 |
|
|
|
| 6701 |
|
|
/* If the operand to an ABS_EXPR is >= 0, then eliminate the
|
| 6702 |
|
|
ABS_EXPR. If the operand is <= 0, then simplify the
|
| 6703 |
|
|
ABS_EXPR into a NEGATE_EXPR. */
|
| 6704 |
|
|
|
| 6705 |
|
|
static bool
|
| 6706 |
|
|
simplify_abs_using_ranges (gimple stmt)
|
| 6707 |
|
|
{
|
| 6708 |
|
|
tree val = NULL;
|
| 6709 |
|
|
tree op = gimple_assign_rhs1 (stmt);
|
| 6710 |
|
|
tree type = TREE_TYPE (op);
|
| 6711 |
|
|
value_range_t *vr = get_value_range (op);
|
| 6712 |
|
|
|
| 6713 |
|
|
if (TYPE_UNSIGNED (type))
|
| 6714 |
|
|
{
|
| 6715 |
|
|
val = integer_zero_node;
|
| 6716 |
|
|
}
|
| 6717 |
|
|
else if (vr)
|
| 6718 |
|
|
{
|
| 6719 |
|
|
bool sop = false;
|
| 6720 |
|
|
|
| 6721 |
|
|
val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
|
| 6722 |
|
|
if (!val)
|
| 6723 |
|
|
{
|
| 6724 |
|
|
sop = false;
|
| 6725 |
|
|
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
|
| 6726 |
|
|
&sop);
|
| 6727 |
|
|
|
| 6728 |
|
|
if (val)
|
| 6729 |
|
|
{
|
| 6730 |
|
|
if (integer_zerop (val))
|
| 6731 |
|
|
val = integer_one_node;
|
| 6732 |
|
|
else if (integer_onep (val))
|
| 6733 |
|
|
val = integer_zero_node;
|
| 6734 |
|
|
}
|
| 6735 |
|
|
}
|
| 6736 |
|
|
|
| 6737 |
|
|
if (val
|
| 6738 |
|
|
&& (integer_onep (val) || integer_zerop (val)))
|
| 6739 |
|
|
{
|
| 6740 |
|
|
if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
|
| 6741 |
|
|
{
|
| 6742 |
|
|
location_t location;
|
| 6743 |
|
|
|
| 6744 |
|
|
if (!gimple_has_location (stmt))
|
| 6745 |
|
|
location = input_location;
|
| 6746 |
|
|
else
|
| 6747 |
|
|
location = gimple_location (stmt);
|
| 6748 |
|
|
warning_at (location, OPT_Wstrict_overflow,
|
| 6749 |
|
|
"assuming signed overflow does not occur when "
|
| 6750 |
|
|
"simplifying %<abs (X)%> to %<X%> or %<-X%>");
|
| 6751 |
|
|
}
|
| 6752 |
|
|
|
| 6753 |
|
|
gimple_assign_set_rhs1 (stmt, op);
|
| 6754 |
|
|
if (integer_onep (val))
|
| 6755 |
|
|
gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
|
| 6756 |
|
|
else
|
| 6757 |
|
|
gimple_assign_set_rhs_code (stmt, SSA_NAME);
|
| 6758 |
|
|
update_stmt (stmt);
|
| 6759 |
|
|
return true;
|
| 6760 |
|
|
}
|
| 6761 |
|
|
}
|
| 6762 |
|
|
|
| 6763 |
|
|
return false;
|
| 6764 |
|
|
}
|
| 6765 |
|
|
|
| 6766 |
|
|
/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
|
| 6767 |
|
|
a known value range VR.
|
| 6768 |
|
|
|
| 6769 |
|
|
If there is one and only one value which will satisfy the
|
| 6770 |
|
|
conditional, then return that value. Else return NULL. */
|
| 6771 |
|
|
|
| 6772 |
|
|
static tree
|
| 6773 |
|
|
test_for_singularity (enum tree_code cond_code, tree op0,
|
| 6774 |
|
|
tree op1, value_range_t *vr)
|
| 6775 |
|
|
{
|
| 6776 |
|
|
tree min = NULL;
|
| 6777 |
|
|
tree max = NULL;
|
| 6778 |
|
|
|
| 6779 |
|
|
/* Extract minimum/maximum values which satisfy the
|
| 6780 |
|
|
the conditional as it was written. */
|
| 6781 |
|
|
if (cond_code == LE_EXPR || cond_code == LT_EXPR)
|
| 6782 |
|
|
{
|
| 6783 |
|
|
/* This should not be negative infinity; there is no overflow
|
| 6784 |
|
|
here. */
|
| 6785 |
|
|
min = TYPE_MIN_VALUE (TREE_TYPE (op0));
|
| 6786 |
|
|
|
| 6787 |
|
|
max = op1;
|
| 6788 |
|
|
if (cond_code == LT_EXPR && !is_overflow_infinity (max))
|
| 6789 |
|
|
{
|
| 6790 |
|
|
tree one = build_int_cst (TREE_TYPE (op0), 1);
|
| 6791 |
|
|
max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
|
| 6792 |
|
|
if (EXPR_P (max))
|
| 6793 |
|
|
TREE_NO_WARNING (max) = 1;
|
| 6794 |
|
|
}
|
| 6795 |
|
|
}
|
| 6796 |
|
|
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
|
| 6797 |
|
|
{
|
| 6798 |
|
|
/* This should not be positive infinity; there is no overflow
|
| 6799 |
|
|
here. */
|
| 6800 |
|
|
max = TYPE_MAX_VALUE (TREE_TYPE (op0));
|
| 6801 |
|
|
|
| 6802 |
|
|
min = op1;
|
| 6803 |
|
|
if (cond_code == GT_EXPR && !is_overflow_infinity (min))
|
| 6804 |
|
|
{
|
| 6805 |
|
|
tree one = build_int_cst (TREE_TYPE (op0), 1);
|
| 6806 |
|
|
min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
|
| 6807 |
|
|
if (EXPR_P (min))
|
| 6808 |
|
|
TREE_NO_WARNING (min) = 1;
|
| 6809 |
|
|
}
|
| 6810 |
|
|
}
|
| 6811 |
|
|
|
| 6812 |
|
|
/* Now refine the minimum and maximum values using any
|
| 6813 |
|
|
value range information we have for op0. */
|
| 6814 |
|
|
if (min && max)
|
| 6815 |
|
|
{
|
| 6816 |
|
|
if (compare_values (vr->min, min) == 1)
|
| 6817 |
|
|
min = vr->min;
|
| 6818 |
|
|
if (compare_values (vr->max, max) == -1)
|
| 6819 |
|
|
max = vr->max;
|
| 6820 |
|
|
|
| 6821 |
|
|
/* If the new min/max values have converged to a single value,
|
| 6822 |
|
|
then there is only one value which can satisfy the condition,
|
| 6823 |
|
|
return that value. */
|
| 6824 |
|
|
if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
|
| 6825 |
|
|
return min;
|
| 6826 |
|
|
}
|
| 6827 |
|
|
return NULL;
|
| 6828 |
|
|
}
|
| 6829 |
|
|
|
| 6830 |
|
|
/* Simplify a conditional using a relational operator to an equality
|
| 6831 |
|
|
test if the range information indicates only one value can satisfy
|
| 6832 |
|
|
the original conditional. */
|
| 6833 |
|
|
|
| 6834 |
|
|
static bool
|
| 6835 |
|
|
simplify_cond_using_ranges (gimple stmt)
|
| 6836 |
|
|
{
|
| 6837 |
|
|
tree op0 = gimple_cond_lhs (stmt);
|
| 6838 |
|
|
tree op1 = gimple_cond_rhs (stmt);
|
| 6839 |
|
|
enum tree_code cond_code = gimple_cond_code (stmt);
|
| 6840 |
|
|
|
| 6841 |
|
|
if (cond_code != NE_EXPR
|
| 6842 |
|
|
&& cond_code != EQ_EXPR
|
| 6843 |
|
|
&& TREE_CODE (op0) == SSA_NAME
|
| 6844 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (op0))
|
| 6845 |
|
|
&& is_gimple_min_invariant (op1))
|
| 6846 |
|
|
{
|
| 6847 |
|
|
value_range_t *vr = get_value_range (op0);
|
| 6848 |
|
|
|
| 6849 |
|
|
/* If we have range information for OP0, then we might be
|
| 6850 |
|
|
able to simplify this conditional. */
|
| 6851 |
|
|
if (vr->type == VR_RANGE)
|
| 6852 |
|
|
{
|
| 6853 |
|
|
tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
|
| 6854 |
|
|
|
| 6855 |
|
|
if (new_tree)
|
| 6856 |
|
|
{
|
| 6857 |
|
|
if (dump_file)
|
| 6858 |
|
|
{
|
| 6859 |
|
|
fprintf (dump_file, "Simplified relational ");
|
| 6860 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 6861 |
|
|
fprintf (dump_file, " into ");
|
| 6862 |
|
|
}
|
| 6863 |
|
|
|
| 6864 |
|
|
gimple_cond_set_code (stmt, EQ_EXPR);
|
| 6865 |
|
|
gimple_cond_set_lhs (stmt, op0);
|
| 6866 |
|
|
gimple_cond_set_rhs (stmt, new_tree);
|
| 6867 |
|
|
|
| 6868 |
|
|
update_stmt (stmt);
|
| 6869 |
|
|
|
| 6870 |
|
|
if (dump_file)
|
| 6871 |
|
|
{
|
| 6872 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 6873 |
|
|
fprintf (dump_file, "\n");
|
| 6874 |
|
|
}
|
| 6875 |
|
|
|
| 6876 |
|
|
return true;
|
| 6877 |
|
|
}
|
| 6878 |
|
|
|
| 6879 |
|
|
/* Try again after inverting the condition. We only deal
|
| 6880 |
|
|
with integral types here, so no need to worry about
|
| 6881 |
|
|
issues with inverting FP comparisons. */
|
| 6882 |
|
|
cond_code = invert_tree_comparison (cond_code, false);
|
| 6883 |
|
|
new_tree = test_for_singularity (cond_code, op0, op1, vr);
|
| 6884 |
|
|
|
| 6885 |
|
|
if (new_tree)
|
| 6886 |
|
|
{
|
| 6887 |
|
|
if (dump_file)
|
| 6888 |
|
|
{
|
| 6889 |
|
|
fprintf (dump_file, "Simplified relational ");
|
| 6890 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 6891 |
|
|
fprintf (dump_file, " into ");
|
| 6892 |
|
|
}
|
| 6893 |
|
|
|
| 6894 |
|
|
gimple_cond_set_code (stmt, NE_EXPR);
|
| 6895 |
|
|
gimple_cond_set_lhs (stmt, op0);
|
| 6896 |
|
|
gimple_cond_set_rhs (stmt, new_tree);
|
| 6897 |
|
|
|
| 6898 |
|
|
update_stmt (stmt);
|
| 6899 |
|
|
|
| 6900 |
|
|
if (dump_file)
|
| 6901 |
|
|
{
|
| 6902 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 6903 |
|
|
fprintf (dump_file, "\n");
|
| 6904 |
|
|
}
|
| 6905 |
|
|
|
| 6906 |
|
|
return true;
|
| 6907 |
|
|
}
|
| 6908 |
|
|
}
|
| 6909 |
|
|
}
|
| 6910 |
|
|
|
| 6911 |
|
|
return false;
|
| 6912 |
|
|
}
|
| 6913 |
|
|
|
| 6914 |
|
|
/* Simplify a switch statement using the value range of the switch
|
| 6915 |
|
|
argument. */
|
| 6916 |
|
|
|
| 6917 |
|
|
static bool
|
| 6918 |
|
|
simplify_switch_using_ranges (gimple stmt)
|
| 6919 |
|
|
{
|
| 6920 |
|
|
tree op = gimple_switch_index (stmt);
|
| 6921 |
|
|
value_range_t *vr;
|
| 6922 |
|
|
bool take_default;
|
| 6923 |
|
|
edge e;
|
| 6924 |
|
|
edge_iterator ei;
|
| 6925 |
|
|
size_t i = 0, j = 0, n, n2;
|
| 6926 |
|
|
tree vec2;
|
| 6927 |
|
|
switch_update su;
|
| 6928 |
|
|
|
| 6929 |
|
|
if (TREE_CODE (op) == SSA_NAME)
|
| 6930 |
|
|
{
|
| 6931 |
|
|
vr = get_value_range (op);
|
| 6932 |
|
|
|
| 6933 |
|
|
/* We can only handle integer ranges. */
|
| 6934 |
|
|
if (vr->type != VR_RANGE
|
| 6935 |
|
|
|| symbolic_range_p (vr))
|
| 6936 |
|
|
return false;
|
| 6937 |
|
|
|
| 6938 |
|
|
/* Find case label for min/max of the value range. */
|
| 6939 |
|
|
take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
|
| 6940 |
|
|
}
|
| 6941 |
|
|
else if (TREE_CODE (op) == INTEGER_CST)
|
| 6942 |
|
|
{
|
| 6943 |
|
|
take_default = !find_case_label_index (stmt, 1, op, &i);
|
| 6944 |
|
|
if (take_default)
|
| 6945 |
|
|
{
|
| 6946 |
|
|
i = 1;
|
| 6947 |
|
|
j = 0;
|
| 6948 |
|
|
}
|
| 6949 |
|
|
else
|
| 6950 |
|
|
{
|
| 6951 |
|
|
j = i;
|
| 6952 |
|
|
}
|
| 6953 |
|
|
}
|
| 6954 |
|
|
else
|
| 6955 |
|
|
return false;
|
| 6956 |
|
|
|
| 6957 |
|
|
n = gimple_switch_num_labels (stmt);
|
| 6958 |
|
|
|
| 6959 |
|
|
/* Bail out if this is just all edges taken. */
|
| 6960 |
|
|
if (i == 1
|
| 6961 |
|
|
&& j == n - 1
|
| 6962 |
|
|
&& take_default)
|
| 6963 |
|
|
return false;
|
| 6964 |
|
|
|
| 6965 |
|
|
/* Build a new vector of taken case labels. */
|
| 6966 |
|
|
vec2 = make_tree_vec (j - i + 1 + (int)take_default);
|
| 6967 |
|
|
n2 = 0;
|
| 6968 |
|
|
|
| 6969 |
|
|
/* Add the default edge, if necessary. */
|
| 6970 |
|
|
if (take_default)
|
| 6971 |
|
|
TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
|
| 6972 |
|
|
|
| 6973 |
|
|
for (; i <= j; ++i, ++n2)
|
| 6974 |
|
|
TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
|
| 6975 |
|
|
|
| 6976 |
|
|
/* Mark needed edges. */
|
| 6977 |
|
|
for (i = 0; i < n2; ++i)
|
| 6978 |
|
|
{
|
| 6979 |
|
|
e = find_edge (gimple_bb (stmt),
|
| 6980 |
|
|
label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
|
| 6981 |
|
|
e->aux = (void *)-1;
|
| 6982 |
|
|
}
|
| 6983 |
|
|
|
| 6984 |
|
|
/* Queue not needed edges for later removal. */
|
| 6985 |
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
|
| 6986 |
|
|
{
|
| 6987 |
|
|
if (e->aux == (void *)-1)
|
| 6988 |
|
|
{
|
| 6989 |
|
|
e->aux = NULL;
|
| 6990 |
|
|
continue;
|
| 6991 |
|
|
}
|
| 6992 |
|
|
|
| 6993 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 6994 |
|
|
{
|
| 6995 |
|
|
fprintf (dump_file, "removing unreachable case label\n");
|
| 6996 |
|
|
}
|
| 6997 |
|
|
VEC_safe_push (edge, heap, to_remove_edges, e);
|
| 6998 |
|
|
e->flags &= ~EDGE_EXECUTABLE;
|
| 6999 |
|
|
}
|
| 7000 |
|
|
|
| 7001 |
|
|
/* And queue an update for the stmt. */
|
| 7002 |
|
|
su.stmt = stmt;
|
| 7003 |
|
|
su.vec = vec2;
|
| 7004 |
|
|
VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
|
| 7005 |
|
|
return false;
|
| 7006 |
|
|
}
|
| 7007 |
|
|
|
| 7008 |
|
|
/* Simplify STMT using ranges if possible. */
|
| 7009 |
|
|
|
| 7010 |
|
|
static bool
|
| 7011 |
|
|
simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
|
| 7012 |
|
|
{
|
| 7013 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 7014 |
|
|
if (is_gimple_assign (stmt))
|
| 7015 |
|
|
{
|
| 7016 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
| 7017 |
|
|
|
| 7018 |
|
|
switch (rhs_code)
|
| 7019 |
|
|
{
|
| 7020 |
|
|
case EQ_EXPR:
|
| 7021 |
|
|
case NE_EXPR:
|
| 7022 |
|
|
case TRUTH_NOT_EXPR:
|
| 7023 |
|
|
case TRUTH_AND_EXPR:
|
| 7024 |
|
|
case TRUTH_OR_EXPR:
|
| 7025 |
|
|
case TRUTH_XOR_EXPR:
|
| 7026 |
|
|
/* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
|
| 7027 |
|
|
or identity if the RHS is zero or one, and the LHS are known
|
| 7028 |
|
|
to be boolean values. Transform all TRUTH_*_EXPR into
|
| 7029 |
|
|
BIT_*_EXPR if both arguments are known to be boolean values. */
|
| 7030 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
|
| 7031 |
|
|
return simplify_truth_ops_using_ranges (gsi, stmt);
|
| 7032 |
|
|
break;
|
| 7033 |
|
|
|
| 7034 |
|
|
/* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
|
| 7035 |
|
|
and BIT_AND_EXPR respectively if the first operand is greater
|
| 7036 |
|
|
than zero and the second operand is an exact power of two. */
|
| 7037 |
|
|
case TRUNC_DIV_EXPR:
|
| 7038 |
|
|
case TRUNC_MOD_EXPR:
|
| 7039 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
|
| 7040 |
|
|
&& integer_pow2p (gimple_assign_rhs2 (stmt)))
|
| 7041 |
|
|
return simplify_div_or_mod_using_ranges (stmt);
|
| 7042 |
|
|
break;
|
| 7043 |
|
|
|
| 7044 |
|
|
/* Transform ABS (X) into X or -X as appropriate. */
|
| 7045 |
|
|
case ABS_EXPR:
|
| 7046 |
|
|
if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
| 7047 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
|
| 7048 |
|
|
return simplify_abs_using_ranges (stmt);
|
| 7049 |
|
|
break;
|
| 7050 |
|
|
|
| 7051 |
|
|
default:
|
| 7052 |
|
|
break;
|
| 7053 |
|
|
}
|
| 7054 |
|
|
}
|
| 7055 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
| 7056 |
|
|
return simplify_cond_using_ranges (stmt);
|
| 7057 |
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
| 7058 |
|
|
return simplify_switch_using_ranges (stmt);
|
| 7059 |
|
|
|
| 7060 |
|
|
return false;
|
| 7061 |
|
|
}
|
| 7062 |
|
|
|
| 7063 |
|
|
/* If the statement pointed by SI has a predicate whose value can be
|
| 7064 |
|
|
computed using the value range information computed by VRP, compute
|
| 7065 |
|
|
its value and return true. Otherwise, return false. */
|
| 7066 |
|
|
|
| 7067 |
|
|
static bool
|
| 7068 |
|
|
fold_predicate_in (gimple_stmt_iterator *si)
|
| 7069 |
|
|
{
|
| 7070 |
|
|
bool assignment_p = false;
|
| 7071 |
|
|
tree val;
|
| 7072 |
|
|
gimple stmt = gsi_stmt (*si);
|
| 7073 |
|
|
|
| 7074 |
|
|
if (is_gimple_assign (stmt)
|
| 7075 |
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
|
| 7076 |
|
|
{
|
| 7077 |
|
|
assignment_p = true;
|
| 7078 |
|
|
val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
|
| 7079 |
|
|
gimple_assign_rhs1 (stmt),
|
| 7080 |
|
|
gimple_assign_rhs2 (stmt),
|
| 7081 |
|
|
stmt);
|
| 7082 |
|
|
}
|
| 7083 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
| 7084 |
|
|
val = vrp_evaluate_conditional (gimple_cond_code (stmt),
|
| 7085 |
|
|
gimple_cond_lhs (stmt),
|
| 7086 |
|
|
gimple_cond_rhs (stmt),
|
| 7087 |
|
|
stmt);
|
| 7088 |
|
|
else
|
| 7089 |
|
|
return false;
|
| 7090 |
|
|
|
| 7091 |
|
|
if (val)
|
| 7092 |
|
|
{
|
| 7093 |
|
|
if (assignment_p)
|
| 7094 |
|
|
val = fold_convert (gimple_expr_type (stmt), val);
|
| 7095 |
|
|
|
| 7096 |
|
|
if (dump_file)
|
| 7097 |
|
|
{
|
| 7098 |
|
|
fprintf (dump_file, "Folding predicate ");
|
| 7099 |
|
|
print_gimple_expr (dump_file, stmt, 0, 0);
|
| 7100 |
|
|
fprintf (dump_file, " to ");
|
| 7101 |
|
|
print_generic_expr (dump_file, val, 0);
|
| 7102 |
|
|
fprintf (dump_file, "\n");
|
| 7103 |
|
|
}
|
| 7104 |
|
|
|
| 7105 |
|
|
if (is_gimple_assign (stmt))
|
| 7106 |
|
|
gimple_assign_set_rhs_from_tree (si, val);
|
| 7107 |
|
|
else
|
| 7108 |
|
|
{
|
| 7109 |
|
|
gcc_assert (gimple_code (stmt) == GIMPLE_COND);
|
| 7110 |
|
|
if (integer_zerop (val))
|
| 7111 |
|
|
gimple_cond_make_false (stmt);
|
| 7112 |
|
|
else if (integer_onep (val))
|
| 7113 |
|
|
gimple_cond_make_true (stmt);
|
| 7114 |
|
|
else
|
| 7115 |
|
|
gcc_unreachable ();
|
| 7116 |
|
|
}
|
| 7117 |
|
|
|
| 7118 |
|
|
return true;
|
| 7119 |
|
|
}
|
| 7120 |
|
|
|
| 7121 |
|
|
return false;
|
| 7122 |
|
|
}
|
| 7123 |
|
|
|
| 7124 |
|
|
/* Callback for substitute_and_fold folding the stmt at *SI. */
|
| 7125 |
|
|
|
| 7126 |
|
|
static bool
|
| 7127 |
|
|
vrp_fold_stmt (gimple_stmt_iterator *si)
|
| 7128 |
|
|
{
|
| 7129 |
|
|
if (fold_predicate_in (si))
|
| 7130 |
|
|
return true;
|
| 7131 |
|
|
|
| 7132 |
|
|
return simplify_stmt_using_ranges (si);
|
| 7133 |
|
|
}
|
| 7134 |
|
|
|
| 7135 |
|
|
/* Stack of dest,src equivalency pairs that need to be restored after
|
| 7136 |
|
|
each attempt to thread a block's incoming edge to an outgoing edge.
|
| 7137 |
|
|
|
| 7138 |
|
|
A NULL entry is used to mark the end of pairs which need to be
|
| 7139 |
|
|
restored. */
|
| 7140 |
|
|
static VEC(tree,heap) *stack;
|
| 7141 |
|
|
|
| 7142 |
|
|
/* A trivial wrapper so that we can present the generic jump threading
|
| 7143 |
|
|
code with a simple API for simplifying statements. STMT is the
|
| 7144 |
|
|
statement we want to simplify, WITHIN_STMT provides the location
|
| 7145 |
|
|
for any overflow warnings. */
|
| 7146 |
|
|
|
| 7147 |
|
|
static tree
|
| 7148 |
|
|
simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
|
| 7149 |
|
|
{
|
| 7150 |
|
|
/* We only use VRP information to simplify conditionals. This is
|
| 7151 |
|
|
overly conservative, but it's unclear if doing more would be
|
| 7152 |
|
|
worth the compile time cost. */
|
| 7153 |
|
|
if (gimple_code (stmt) != GIMPLE_COND)
|
| 7154 |
|
|
return NULL;
|
| 7155 |
|
|
|
| 7156 |
|
|
return vrp_evaluate_conditional (gimple_cond_code (stmt),
|
| 7157 |
|
|
gimple_cond_lhs (stmt),
|
| 7158 |
|
|
gimple_cond_rhs (stmt), within_stmt);
|
| 7159 |
|
|
}
|
| 7160 |
|
|
|
| 7161 |
|
|
/* Blocks which have more than one predecessor and more than
|
| 7162 |
|
|
one successor present jump threading opportunities, i.e.,
|
| 7163 |
|
|
when the block is reached from a specific predecessor, we
|
| 7164 |
|
|
may be able to determine which of the outgoing edges will
|
| 7165 |
|
|
be traversed. When this optimization applies, we are able
|
| 7166 |
|
|
to avoid conditionals at runtime and we may expose secondary
|
| 7167 |
|
|
optimization opportunities.
|
| 7168 |
|
|
|
| 7169 |
|
|
This routine is effectively a driver for the generic jump
|
| 7170 |
|
|
threading code. It basically just presents the generic code
|
| 7171 |
|
|
with edges that may be suitable for jump threading.
|
| 7172 |
|
|
|
| 7173 |
|
|
Unlike DOM, we do not iterate VRP if jump threading was successful.
|
| 7174 |
|
|
While iterating may expose new opportunities for VRP, it is expected
|
| 7175 |
|
|
those opportunities would be very limited and the compile time cost
|
| 7176 |
|
|
to expose those opportunities would be significant.
|
| 7177 |
|
|
|
| 7178 |
|
|
As jump threading opportunities are discovered, they are registered
|
| 7179 |
|
|
for later realization. */
|
| 7180 |
|
|
|
| 7181 |
|
|
static void
|
| 7182 |
|
|
identify_jump_threads (void)
|
| 7183 |
|
|
{
|
| 7184 |
|
|
basic_block bb;
|
| 7185 |
|
|
gimple dummy;
|
| 7186 |
|
|
int i;
|
| 7187 |
|
|
edge e;
|
| 7188 |
|
|
|
| 7189 |
|
|
/* Ugh. When substituting values earlier in this pass we can
|
| 7190 |
|
|
wipe the dominance information. So rebuild the dominator
|
| 7191 |
|
|
information as we need it within the jump threading code. */
|
| 7192 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
| 7193 |
|
|
|
| 7194 |
|
|
/* We do not allow VRP information to be used for jump threading
|
| 7195 |
|
|
across a back edge in the CFG. Otherwise it becomes too
|
| 7196 |
|
|
difficult to avoid eliminating loop exit tests. Of course
|
| 7197 |
|
|
EDGE_DFS_BACK is not accurate at this time so we have to
|
| 7198 |
|
|
recompute it. */
|
| 7199 |
|
|
mark_dfs_back_edges ();
|
| 7200 |
|
|
|
| 7201 |
|
|
/* Do not thread across edges we are about to remove. Just marking
|
| 7202 |
|
|
them as EDGE_DFS_BACK will do. */
|
| 7203 |
|
|
for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
|
| 7204 |
|
|
e->flags |= EDGE_DFS_BACK;
|
| 7205 |
|
|
|
| 7206 |
|
|
/* Allocate our unwinder stack to unwind any temporary equivalences
|
| 7207 |
|
|
that might be recorded. */
|
| 7208 |
|
|
stack = VEC_alloc (tree, heap, 20);
|
| 7209 |
|
|
|
| 7210 |
|
|
/* To avoid lots of silly node creation, we create a single
|
| 7211 |
|
|
conditional and just modify it in-place when attempting to
|
| 7212 |
|
|
thread jumps. */
|
| 7213 |
|
|
dummy = gimple_build_cond (EQ_EXPR,
|
| 7214 |
|
|
integer_zero_node, integer_zero_node,
|
| 7215 |
|
|
NULL, NULL);
|
| 7216 |
|
|
|
| 7217 |
|
|
/* Walk through all the blocks finding those which present a
|
| 7218 |
|
|
potential jump threading opportunity. We could set this up
|
| 7219 |
|
|
as a dominator walker and record data during the walk, but
|
| 7220 |
|
|
I doubt it's worth the effort for the classes of jump
|
| 7221 |
|
|
threading opportunities we are trying to identify at this
|
| 7222 |
|
|
point in compilation. */
|
| 7223 |
|
|
FOR_EACH_BB (bb)
|
| 7224 |
|
|
{
|
| 7225 |
|
|
gimple last;
|
| 7226 |
|
|
|
| 7227 |
|
|
/* If the generic jump threading code does not find this block
|
| 7228 |
|
|
interesting, then there is nothing to do. */
|
| 7229 |
|
|
if (! potentially_threadable_block (bb))
|
| 7230 |
|
|
continue;
|
| 7231 |
|
|
|
| 7232 |
|
|
/* We only care about blocks ending in a COND_EXPR. While there
|
| 7233 |
|
|
may be some value in handling SWITCH_EXPR here, I doubt it's
|
| 7234 |
|
|
terribly important. */
|
| 7235 |
|
|
last = gsi_stmt (gsi_last_bb (bb));
|
| 7236 |
|
|
if (gimple_code (last) != GIMPLE_COND)
|
| 7237 |
|
|
continue;
|
| 7238 |
|
|
|
| 7239 |
|
|
/* We're basically looking for any kind of conditional with
|
| 7240 |
|
|
integral type arguments. */
|
| 7241 |
|
|
if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
|
| 7242 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
|
| 7243 |
|
|
&& (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
|
| 7244 |
|
|
|| is_gimple_min_invariant (gimple_cond_rhs (last)))
|
| 7245 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
|
| 7246 |
|
|
{
|
| 7247 |
|
|
edge_iterator ei;
|
| 7248 |
|
|
|
| 7249 |
|
|
/* We've got a block with multiple predecessors and multiple
|
| 7250 |
|
|
successors which also ends in a suitable conditional. For
|
| 7251 |
|
|
each predecessor, see if we can thread it to a specific
|
| 7252 |
|
|
successor. */
|
| 7253 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 7254 |
|
|
{
|
| 7255 |
|
|
/* Do not thread across back edges or abnormal edges
|
| 7256 |
|
|
in the CFG. */
|
| 7257 |
|
|
if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
|
| 7258 |
|
|
continue;
|
| 7259 |
|
|
|
| 7260 |
|
|
thread_across_edge (dummy, e, true, &stack,
|
| 7261 |
|
|
simplify_stmt_for_jump_threading);
|
| 7262 |
|
|
}
|
| 7263 |
|
|
}
|
| 7264 |
|
|
}
|
| 7265 |
|
|
|
| 7266 |
|
|
/* We do not actually update the CFG or SSA graphs at this point as
|
| 7267 |
|
|
ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
|
| 7268 |
|
|
handle ASSERT_EXPRs gracefully. */
|
| 7269 |
|
|
}
|
| 7270 |
|
|
|
| 7271 |
|
|
/* We identified all the jump threading opportunities earlier, but could
|
| 7272 |
|
|
not transform the CFG at that time. This routine transforms the
|
| 7273 |
|
|
CFG and arranges for the dominator tree to be rebuilt if necessary.
|
| 7274 |
|
|
|
| 7275 |
|
|
Note the SSA graph update will occur during the normal TODO
|
| 7276 |
|
|
processing by the pass manager. */
|
| 7277 |
|
|
static void
|
| 7278 |
|
|
finalize_jump_threads (void)
|
| 7279 |
|
|
{
|
| 7280 |
|
|
thread_through_all_blocks (false);
|
| 7281 |
|
|
VEC_free (tree, heap, stack);
|
| 7282 |
|
|
}
|
| 7283 |
|
|
|
| 7284 |
|
|
|
| 7285 |
|
|
/* Traverse all the blocks folding conditionals with known ranges. */
|
| 7286 |
|
|
|
| 7287 |
|
|
static void
|
| 7288 |
|
|
vrp_finalize (void)
|
| 7289 |
|
|
{
|
| 7290 |
|
|
size_t i;
|
| 7291 |
|
|
prop_value_t *single_val_range;
|
| 7292 |
|
|
bool do_value_subst_p;
|
| 7293 |
|
|
|
| 7294 |
|
|
if (dump_file)
|
| 7295 |
|
|
{
|
| 7296 |
|
|
fprintf (dump_file, "\nValue ranges after VRP:\n\n");
|
| 7297 |
|
|
dump_all_value_ranges (dump_file);
|
| 7298 |
|
|
fprintf (dump_file, "\n");
|
| 7299 |
|
|
}
|
| 7300 |
|
|
|
| 7301 |
|
|
/* We may have ended with ranges that have exactly one value. Those
|
| 7302 |
|
|
values can be substituted as any other const propagated
|
| 7303 |
|
|
value using substitute_and_fold. */
|
| 7304 |
|
|
single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
|
| 7305 |
|
|
|
| 7306 |
|
|
do_value_subst_p = false;
|
| 7307 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
| 7308 |
|
|
if (vr_value[i]
|
| 7309 |
|
|
&& vr_value[i]->type == VR_RANGE
|
| 7310 |
|
|
&& vr_value[i]->min == vr_value[i]->max
|
| 7311 |
|
|
&& is_gimple_min_invariant (vr_value[i]->min))
|
| 7312 |
|
|
{
|
| 7313 |
|
|
single_val_range[i].value = vr_value[i]->min;
|
| 7314 |
|
|
do_value_subst_p = true;
|
| 7315 |
|
|
}
|
| 7316 |
|
|
|
| 7317 |
|
|
if (!do_value_subst_p)
|
| 7318 |
|
|
{
|
| 7319 |
|
|
/* We found no single-valued ranges, don't waste time trying to
|
| 7320 |
|
|
do single value substitution in substitute_and_fold. */
|
| 7321 |
|
|
free (single_val_range);
|
| 7322 |
|
|
single_val_range = NULL;
|
| 7323 |
|
|
}
|
| 7324 |
|
|
|
| 7325 |
|
|
substitute_and_fold (single_val_range, vrp_fold_stmt, false);
|
| 7326 |
|
|
|
| 7327 |
|
|
if (warn_array_bounds)
|
| 7328 |
|
|
check_all_array_refs ();
|
| 7329 |
|
|
|
| 7330 |
|
|
/* We must identify jump threading opportunities before we release
|
| 7331 |
|
|
the datastructures built by VRP. */
|
| 7332 |
|
|
identify_jump_threads ();
|
| 7333 |
|
|
|
| 7334 |
|
|
/* Free allocated memory. */
|
| 7335 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
| 7336 |
|
|
if (vr_value[i])
|
| 7337 |
|
|
{
|
| 7338 |
|
|
BITMAP_FREE (vr_value[i]->equiv);
|
| 7339 |
|
|
free (vr_value[i]);
|
| 7340 |
|
|
}
|
| 7341 |
|
|
|
| 7342 |
|
|
free (single_val_range);
|
| 7343 |
|
|
free (vr_value);
|
| 7344 |
|
|
free (vr_phi_edge_counts);
|
| 7345 |
|
|
|
| 7346 |
|
|
/* So that we can distinguish between VRP data being available
|
| 7347 |
|
|
and not available. */
|
| 7348 |
|
|
vr_value = NULL;
|
| 7349 |
|
|
vr_phi_edge_counts = NULL;
|
| 7350 |
|
|
}
|
| 7351 |
|
|
|
| 7352 |
|
|
|
| 7353 |
|
|
/* Main entry point to VRP (Value Range Propagation). This pass is
|
| 7354 |
|
|
loosely based on J. R. C. Patterson, ``Accurate Static Branch
|
| 7355 |
|
|
Prediction by Value Range Propagation,'' in SIGPLAN Conference on
|
| 7356 |
|
|
Programming Language Design and Implementation, pp. 67-78, 1995.
|
| 7357 |
|
|
Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
|
| 7358 |
|
|
|
| 7359 |
|
|
This is essentially an SSA-CCP pass modified to deal with ranges
|
| 7360 |
|
|
instead of constants.
|
| 7361 |
|
|
|
| 7362 |
|
|
While propagating ranges, we may find that two or more SSA name
|
| 7363 |
|
|
have equivalent, though distinct ranges. For instance,
|
| 7364 |
|
|
|
| 7365 |
|
|
1 x_9 = p_3->a;
|
| 7366 |
|
|
2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
|
| 7367 |
|
|
3 if (p_4 == q_2)
|
| 7368 |
|
|
4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
|
| 7369 |
|
|
5 endif
|
| 7370 |
|
|
6 if (q_2)
|
| 7371 |
|
|
|
| 7372 |
|
|
In the code above, pointer p_5 has range [q_2, q_2], but from the
|
| 7373 |
|
|
code we can also determine that p_5 cannot be NULL and, if q_2 had
|
| 7374 |
|
|
a non-varying range, p_5's range should also be compatible with it.
|
| 7375 |
|
|
|
| 7376 |
|
|
These equivalences are created by two expressions: ASSERT_EXPR and
|
| 7377 |
|
|
copy operations. Since p_5 is an assertion on p_4, and p_4 was the
|
| 7378 |
|
|
result of another assertion, then we can use the fact that p_5 and
|
| 7379 |
|
|
p_4 are equivalent when evaluating p_5's range.
|
| 7380 |
|
|
|
| 7381 |
|
|
Together with value ranges, we also propagate these equivalences
|
| 7382 |
|
|
between names so that we can take advantage of information from
|
| 7383 |
|
|
multiple ranges when doing final replacement. Note that this
|
| 7384 |
|
|
equivalency relation is transitive but not symmetric.
|
| 7385 |
|
|
|
| 7386 |
|
|
In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
|
| 7387 |
|
|
cannot assert that q_2 is equivalent to p_5 because q_2 may be used
|
| 7388 |
|
|
in contexts where that assertion does not hold (e.g., in line 6).
|
| 7389 |
|
|
|
| 7390 |
|
|
TODO, the main difference between this pass and Patterson's is that
|
| 7391 |
|
|
we do not propagate edge probabilities. We only compute whether
|
| 7392 |
|
|
edges can be taken or not. That is, instead of having a spectrum
|
| 7393 |
|
|
of jump probabilities between 0 and 1, we only deal with 0, 1 and
|
| 7394 |
|
|
DON'T KNOW. In the future, it may be worthwhile to propagate
|
| 7395 |
|
|
probabilities to aid branch prediction. */
|
| 7396 |
|
|
|
| 7397 |
|
|
static unsigned int
|
| 7398 |
|
|
execute_vrp (void)
|
| 7399 |
|
|
{
|
| 7400 |
|
|
int i;
|
| 7401 |
|
|
edge e;
|
| 7402 |
|
|
switch_update *su;
|
| 7403 |
|
|
|
| 7404 |
|
|
loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
|
| 7405 |
|
|
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
|
| 7406 |
|
|
scev_initialize ();
|
| 7407 |
|
|
|
| 7408 |
|
|
insert_range_assertions ();
|
| 7409 |
|
|
|
| 7410 |
|
|
to_remove_edges = VEC_alloc (edge, heap, 10);
|
| 7411 |
|
|
to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
|
| 7412 |
|
|
threadedge_initialize_values ();
|
| 7413 |
|
|
|
| 7414 |
|
|
vrp_initialize ();
|
| 7415 |
|
|
ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
|
| 7416 |
|
|
vrp_finalize ();
|
| 7417 |
|
|
|
| 7418 |
|
|
/* ASSERT_EXPRs must be removed before finalizing jump threads
|
| 7419 |
|
|
as finalizing jump threads calls the CFG cleanup code which
|
| 7420 |
|
|
does not properly handle ASSERT_EXPRs. */
|
| 7421 |
|
|
remove_range_assertions ();
|
| 7422 |
|
|
|
| 7423 |
|
|
/* If we exposed any new variables, go ahead and put them into
|
| 7424 |
|
|
SSA form now, before we handle jump threading. This simplifies
|
| 7425 |
|
|
interactions between rewriting of _DECL nodes into SSA form
|
| 7426 |
|
|
and rewriting SSA_NAME nodes into SSA form after block
|
| 7427 |
|
|
duplication and CFG manipulation. */
|
| 7428 |
|
|
update_ssa (TODO_update_ssa);
|
| 7429 |
|
|
|
| 7430 |
|
|
finalize_jump_threads ();
|
| 7431 |
|
|
|
| 7432 |
|
|
/* Remove dead edges from SWITCH_EXPR optimization. This leaves the
|
| 7433 |
|
|
CFG in a broken state and requires a cfg_cleanup run. */
|
| 7434 |
|
|
for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
|
| 7435 |
|
|
remove_edge (e);
|
| 7436 |
|
|
/* Update SWITCH_EXPR case label vector. */
|
| 7437 |
|
|
for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
|
| 7438 |
|
|
{
|
| 7439 |
|
|
size_t j;
|
| 7440 |
|
|
size_t n = TREE_VEC_LENGTH (su->vec);
|
| 7441 |
|
|
tree label;
|
| 7442 |
|
|
gimple_switch_set_num_labels (su->stmt, n);
|
| 7443 |
|
|
for (j = 0; j < n; j++)
|
| 7444 |
|
|
gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
|
| 7445 |
|
|
/* As we may have replaced the default label with a regular one
|
| 7446 |
|
|
make sure to make it a real default label again. This ensures
|
| 7447 |
|
|
optimal expansion. */
|
| 7448 |
|
|
label = gimple_switch_default_label (su->stmt);
|
| 7449 |
|
|
CASE_LOW (label) = NULL_TREE;
|
| 7450 |
|
|
CASE_HIGH (label) = NULL_TREE;
|
| 7451 |
|
|
}
|
| 7452 |
|
|
|
| 7453 |
|
|
if (VEC_length (edge, to_remove_edges) > 0)
|
| 7454 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
| 7455 |
|
|
|
| 7456 |
|
|
VEC_free (edge, heap, to_remove_edges);
|
| 7457 |
|
|
VEC_free (switch_update, heap, to_update_switch_stmts);
|
| 7458 |
|
|
threadedge_finalize_values ();
|
| 7459 |
|
|
|
| 7460 |
|
|
scev_finalize ();
|
| 7461 |
|
|
loop_optimizer_finalize ();
|
| 7462 |
|
|
return 0;
|
| 7463 |
|
|
}
|
| 7464 |
|
|
|
| 7465 |
|
|
static bool
|
| 7466 |
|
|
gate_vrp (void)
|
| 7467 |
|
|
{
|
| 7468 |
|
|
return flag_tree_vrp != 0;
|
| 7469 |
|
|
}
|
| 7470 |
|
|
|
| 7471 |
|
|
struct gimple_opt_pass pass_vrp =
|
| 7472 |
|
|
{
|
| 7473 |
|
|
{
|
| 7474 |
|
|
GIMPLE_PASS,
|
| 7475 |
|
|
"vrp", /* name */
|
| 7476 |
|
|
gate_vrp, /* gate */
|
| 7477 |
|
|
execute_vrp, /* execute */
|
| 7478 |
|
|
NULL, /* sub */
|
| 7479 |
|
|
NULL, /* next */
|
| 7480 |
|
|
0, /* static_pass_number */
|
| 7481 |
|
|
TV_TREE_VRP, /* tv_id */
|
| 7482 |
|
|
PROP_ssa, /* properties_required */
|
| 7483 |
|
|
0, /* properties_provided */
|
| 7484 |
|
|
0, /* properties_destroyed */
|
| 7485 |
|
|
0, /* todo_flags_start */
|
| 7486 |
|
|
TODO_cleanup_cfg
|
| 7487 |
|
|
| TODO_ggc_collect
|
| 7488 |
|
|
| TODO_verify_ssa
|
| 7489 |
|
|
| TODO_dump_func
|
| 7490 |
|
|
| TODO_update_ssa /* todo_flags_finish */
|
| 7491 |
|
|
}
|
| 7492 |
|
|
};
|