1 |
280 |
jeremybenn |
/* Support routines for Value Range Propagation (VRP).
|
2 |
|
|
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "ggc.h"
|
27 |
|
|
#include "flags.h"
|
28 |
|
|
#include "tree.h"
|
29 |
|
|
#include "basic-block.h"
|
30 |
|
|
#include "tree-flow.h"
|
31 |
|
|
#include "tree-pass.h"
|
32 |
|
|
#include "tree-dump.h"
|
33 |
|
|
#include "timevar.h"
|
34 |
|
|
#include "diagnostic.h"
|
35 |
|
|
#include "toplev.h"
|
36 |
|
|
#include "intl.h"
|
37 |
|
|
#include "cfgloop.h"
|
38 |
|
|
#include "tree-scalar-evolution.h"
|
39 |
|
|
#include "tree-ssa-propagate.h"
|
40 |
|
|
#include "tree-chrec.h"
|
41 |
|
|
|
42 |
|
|
|
43 |
|
|
/* Set of SSA names found live during the RPO traversal of the function
|
44 |
|
|
for still active basic-blocks. */
|
45 |
|
|
static sbitmap *live;
|
46 |
|
|
|
47 |
|
|
/* Return true if the SSA name NAME is live on the edge E. */
|
48 |
|
|
|
49 |
|
|
static bool
|
50 |
|
|
live_on_edge (edge e, tree name)
|
51 |
|
|
{
|
52 |
|
|
return (live[e->dest->index]
|
53 |
|
|
&& TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
|
54 |
|
|
}
|
55 |
|
|
|
56 |
|
|
/* Local functions. */
|
57 |
|
|
static int compare_values (tree val1, tree val2);
|
58 |
|
|
static int compare_values_warnv (tree val1, tree val2, bool *);
|
59 |
|
|
static void vrp_meet (value_range_t *, value_range_t *);
|
60 |
|
|
static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
|
61 |
|
|
tree, tree, bool, bool *,
|
62 |
|
|
bool *);
|
63 |
|
|
|
64 |
|
|
/* Location information for ASSERT_EXPRs. Each instance of this
|
65 |
|
|
structure describes an ASSERT_EXPR for an SSA name. Since a single
|
66 |
|
|
SSA name may have more than one assertion associated with it, these
|
67 |
|
|
locations are kept in a linked list attached to the corresponding
|
68 |
|
|
SSA name. */
|
69 |
|
|
struct assert_locus_d
|
70 |
|
|
{
|
71 |
|
|
/* Basic block where the assertion would be inserted. */
|
72 |
|
|
basic_block bb;
|
73 |
|
|
|
74 |
|
|
/* Some assertions need to be inserted on an edge (e.g., assertions
|
75 |
|
|
generated by COND_EXPRs). In those cases, BB will be NULL. */
|
76 |
|
|
edge e;
|
77 |
|
|
|
78 |
|
|
/* Pointer to the statement that generated this assertion. */
|
79 |
|
|
gimple_stmt_iterator si;
|
80 |
|
|
|
81 |
|
|
/* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
|
82 |
|
|
enum tree_code comp_code;
|
83 |
|
|
|
84 |
|
|
/* Value being compared against. */
|
85 |
|
|
tree val;
|
86 |
|
|
|
87 |
|
|
/* Expression to compare. */
|
88 |
|
|
tree expr;
|
89 |
|
|
|
90 |
|
|
/* Next node in the linked list. */
|
91 |
|
|
struct assert_locus_d *next;
|
92 |
|
|
};
|
93 |
|
|
|
94 |
|
|
typedef struct assert_locus_d *assert_locus_t;
|
95 |
|
|
|
96 |
|
|
/* If bit I is present, it means that SSA name N_i has a list of
|
97 |
|
|
assertions that should be inserted in the IL. */
|
98 |
|
|
static bitmap need_assert_for;
|
99 |
|
|
|
100 |
|
|
/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
|
101 |
|
|
holds a list of ASSERT_LOCUS_T nodes that describe where
|
102 |
|
|
ASSERT_EXPRs for SSA name N_I should be inserted. */
|
103 |
|
|
static assert_locus_t *asserts_for;
|
104 |
|
|
|
105 |
|
|
/* Value range array. After propagation, VR_VALUE[I] holds the range
|
106 |
|
|
of values that SSA name N_I may take. */
|
107 |
|
|
static value_range_t **vr_value;
|
108 |
|
|
|
109 |
|
|
/* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
|
110 |
|
|
number of executable edges we saw the last time we visited the
|
111 |
|
|
node. */
|
112 |
|
|
static int *vr_phi_edge_counts;
|
113 |
|
|
|
114 |
|
|
typedef struct {
|
115 |
|
|
gimple stmt;
|
116 |
|
|
tree vec;
|
117 |
|
|
} switch_update;
|
118 |
|
|
|
119 |
|
|
static VEC (edge, heap) *to_remove_edges;
|
120 |
|
|
DEF_VEC_O(switch_update);
|
121 |
|
|
DEF_VEC_ALLOC_O(switch_update, heap);
|
122 |
|
|
static VEC (switch_update, heap) *to_update_switch_stmts;
|
123 |
|
|
|
124 |
|
|
|
125 |
|
|
/* Return the maximum value for TYPE. */
|
126 |
|
|
|
127 |
|
|
static inline tree
|
128 |
|
|
vrp_val_max (const_tree type)
|
129 |
|
|
{
|
130 |
|
|
if (!INTEGRAL_TYPE_P (type))
|
131 |
|
|
return NULL_TREE;
|
132 |
|
|
|
133 |
|
|
return TYPE_MAX_VALUE (type);
|
134 |
|
|
}
|
135 |
|
|
|
136 |
|
|
/* Return the minimum value for TYPE. */
|
137 |
|
|
|
138 |
|
|
static inline tree
|
139 |
|
|
vrp_val_min (const_tree type)
|
140 |
|
|
{
|
141 |
|
|
if (!INTEGRAL_TYPE_P (type))
|
142 |
|
|
return NULL_TREE;
|
143 |
|
|
|
144 |
|
|
return TYPE_MIN_VALUE (type);
|
145 |
|
|
}
|
146 |
|
|
|
147 |
|
|
/* Return whether VAL is equal to the maximum value of its type. This
|
148 |
|
|
will be true for a positive overflow infinity. We can't do a
|
149 |
|
|
simple equality comparison with TYPE_MAX_VALUE because C typedefs
|
150 |
|
|
and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
|
151 |
|
|
to the integer constant with the same value in the type. */
|
152 |
|
|
|
153 |
|
|
static inline bool
|
154 |
|
|
vrp_val_is_max (const_tree val)
|
155 |
|
|
{
|
156 |
|
|
tree type_max = vrp_val_max (TREE_TYPE (val));
|
157 |
|
|
return (val == type_max
|
158 |
|
|
|| (type_max != NULL_TREE
|
159 |
|
|
&& operand_equal_p (val, type_max, 0)));
|
160 |
|
|
}
|
161 |
|
|
|
162 |
|
|
/* Return whether VAL is equal to the minimum value of its type. This
|
163 |
|
|
will be true for a negative overflow infinity. */
|
164 |
|
|
|
165 |
|
|
static inline bool
|
166 |
|
|
vrp_val_is_min (const_tree val)
|
167 |
|
|
{
|
168 |
|
|
tree type_min = vrp_val_min (TREE_TYPE (val));
|
169 |
|
|
return (val == type_min
|
170 |
|
|
|| (type_min != NULL_TREE
|
171 |
|
|
&& operand_equal_p (val, type_min, 0)));
|
172 |
|
|
}
|
173 |
|
|
|
174 |
|
|
|
175 |
|
|
/* Return whether TYPE should use an overflow infinity distinct from
|
176 |
|
|
TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
|
177 |
|
|
represent a signed overflow during VRP computations. An infinity
|
178 |
|
|
is distinct from a half-range, which will go from some number to
|
179 |
|
|
TYPE_{MIN,MAX}_VALUE. */
|
180 |
|
|
|
181 |
|
|
static inline bool
|
182 |
|
|
needs_overflow_infinity (const_tree type)
|
183 |
|
|
{
|
184 |
|
|
return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
|
185 |
|
|
}
|
186 |
|
|
|
187 |
|
|
/* Return whether TYPE can support our overflow infinity
|
188 |
|
|
representation: we use the TREE_OVERFLOW flag, which only exists
|
189 |
|
|
for constants. If TYPE doesn't support this, we don't optimize
|
190 |
|
|
cases which would require signed overflow--we drop them to
|
191 |
|
|
VARYING. */
|
192 |
|
|
|
193 |
|
|
static inline bool
|
194 |
|
|
supports_overflow_infinity (const_tree type)
|
195 |
|
|
{
|
196 |
|
|
tree min = vrp_val_min (type), max = vrp_val_max (type);
|
197 |
|
|
#ifdef ENABLE_CHECKING
|
198 |
|
|
gcc_assert (needs_overflow_infinity (type));
|
199 |
|
|
#endif
|
200 |
|
|
return (min != NULL_TREE
|
201 |
|
|
&& CONSTANT_CLASS_P (min)
|
202 |
|
|
&& max != NULL_TREE
|
203 |
|
|
&& CONSTANT_CLASS_P (max));
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
/* VAL is the maximum or minimum value of a type. Return a
|
207 |
|
|
corresponding overflow infinity. */
|
208 |
|
|
|
209 |
|
|
static inline tree
|
210 |
|
|
make_overflow_infinity (tree val)
|
211 |
|
|
{
|
212 |
|
|
#ifdef ENABLE_CHECKING
|
213 |
|
|
gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
|
214 |
|
|
#endif
|
215 |
|
|
val = copy_node (val);
|
216 |
|
|
TREE_OVERFLOW (val) = 1;
|
217 |
|
|
return val;
|
218 |
|
|
}
|
219 |
|
|
|
220 |
|
|
/* Return a negative overflow infinity for TYPE. */
|
221 |
|
|
|
222 |
|
|
static inline tree
|
223 |
|
|
negative_overflow_infinity (tree type)
|
224 |
|
|
{
|
225 |
|
|
#ifdef ENABLE_CHECKING
|
226 |
|
|
gcc_assert (supports_overflow_infinity (type));
|
227 |
|
|
#endif
|
228 |
|
|
return make_overflow_infinity (vrp_val_min (type));
|
229 |
|
|
}
|
230 |
|
|
|
231 |
|
|
/* Return a positive overflow infinity for TYPE. */
|
232 |
|
|
|
233 |
|
|
static inline tree
|
234 |
|
|
positive_overflow_infinity (tree type)
|
235 |
|
|
{
|
236 |
|
|
#ifdef ENABLE_CHECKING
|
237 |
|
|
gcc_assert (supports_overflow_infinity (type));
|
238 |
|
|
#endif
|
239 |
|
|
return make_overflow_infinity (vrp_val_max (type));
|
240 |
|
|
}
|
241 |
|
|
|
242 |
|
|
/* Return whether VAL is a negative overflow infinity. */
|
243 |
|
|
|
244 |
|
|
static inline bool
|
245 |
|
|
is_negative_overflow_infinity (const_tree val)
|
246 |
|
|
{
|
247 |
|
|
return (needs_overflow_infinity (TREE_TYPE (val))
|
248 |
|
|
&& CONSTANT_CLASS_P (val)
|
249 |
|
|
&& TREE_OVERFLOW (val)
|
250 |
|
|
&& vrp_val_is_min (val));
|
251 |
|
|
}
|
252 |
|
|
|
253 |
|
|
/* Return whether VAL is a positive overflow infinity. */
|
254 |
|
|
|
255 |
|
|
static inline bool
|
256 |
|
|
is_positive_overflow_infinity (const_tree val)
|
257 |
|
|
{
|
258 |
|
|
return (needs_overflow_infinity (TREE_TYPE (val))
|
259 |
|
|
&& CONSTANT_CLASS_P (val)
|
260 |
|
|
&& TREE_OVERFLOW (val)
|
261 |
|
|
&& vrp_val_is_max (val));
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
/* Return whether VAL is a positive or negative overflow infinity. */
|
265 |
|
|
|
266 |
|
|
static inline bool
|
267 |
|
|
is_overflow_infinity (const_tree val)
|
268 |
|
|
{
|
269 |
|
|
return (needs_overflow_infinity (TREE_TYPE (val))
|
270 |
|
|
&& CONSTANT_CLASS_P (val)
|
271 |
|
|
&& TREE_OVERFLOW (val)
|
272 |
|
|
&& (vrp_val_is_min (val) || vrp_val_is_max (val)));
|
273 |
|
|
}
|
274 |
|
|
|
275 |
|
|
/* Return whether STMT has a constant rhs that is_overflow_infinity. */
|
276 |
|
|
|
277 |
|
|
static inline bool
|
278 |
|
|
stmt_overflow_infinity (gimple stmt)
|
279 |
|
|
{
|
280 |
|
|
if (is_gimple_assign (stmt)
|
281 |
|
|
&& get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
|
282 |
|
|
GIMPLE_SINGLE_RHS)
|
283 |
|
|
return is_overflow_infinity (gimple_assign_rhs1 (stmt));
|
284 |
|
|
return false;
|
285 |
|
|
}
|
286 |
|
|
|
287 |
|
|
/* If VAL is now an overflow infinity, return VAL. Otherwise, return
|
288 |
|
|
the same value with TREE_OVERFLOW clear. This can be used to avoid
|
289 |
|
|
confusing a regular value with an overflow value. */
|
290 |
|
|
|
291 |
|
|
static inline tree
|
292 |
|
|
avoid_overflow_infinity (tree val)
|
293 |
|
|
{
|
294 |
|
|
if (!is_overflow_infinity (val))
|
295 |
|
|
return val;
|
296 |
|
|
|
297 |
|
|
if (vrp_val_is_max (val))
|
298 |
|
|
return vrp_val_max (TREE_TYPE (val));
|
299 |
|
|
else
|
300 |
|
|
{
|
301 |
|
|
#ifdef ENABLE_CHECKING
|
302 |
|
|
gcc_assert (vrp_val_is_min (val));
|
303 |
|
|
#endif
|
304 |
|
|
return vrp_val_min (TREE_TYPE (val));
|
305 |
|
|
}
|
306 |
|
|
}
|
307 |
|
|
|
308 |
|
|
|
309 |
|
|
/* Return true if ARG is marked with the nonnull attribute in the
|
310 |
|
|
current function signature. */
|
311 |
|
|
|
312 |
|
|
static bool
|
313 |
|
|
nonnull_arg_p (const_tree arg)
|
314 |
|
|
{
|
315 |
|
|
tree t, attrs, fntype;
|
316 |
|
|
unsigned HOST_WIDE_INT arg_num;
|
317 |
|
|
|
318 |
|
|
gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
|
319 |
|
|
|
320 |
|
|
/* The static chain decl is always non null. */
|
321 |
|
|
if (arg == cfun->static_chain_decl)
|
322 |
|
|
return true;
|
323 |
|
|
|
324 |
|
|
fntype = TREE_TYPE (current_function_decl);
|
325 |
|
|
attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
|
326 |
|
|
|
327 |
|
|
/* If "nonnull" wasn't specified, we know nothing about the argument. */
|
328 |
|
|
if (attrs == NULL_TREE)
|
329 |
|
|
return false;
|
330 |
|
|
|
331 |
|
|
/* If "nonnull" applies to all the arguments, then ARG is non-null. */
|
332 |
|
|
if (TREE_VALUE (attrs) == NULL_TREE)
|
333 |
|
|
return true;
|
334 |
|
|
|
335 |
|
|
/* Get the position number for ARG in the function signature. */
|
336 |
|
|
for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
|
337 |
|
|
t;
|
338 |
|
|
t = TREE_CHAIN (t), arg_num++)
|
339 |
|
|
{
|
340 |
|
|
if (t == arg)
|
341 |
|
|
break;
|
342 |
|
|
}
|
343 |
|
|
|
344 |
|
|
gcc_assert (t == arg);
|
345 |
|
|
|
346 |
|
|
/* Now see if ARG_NUM is mentioned in the nonnull list. */
|
347 |
|
|
for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
|
348 |
|
|
{
|
349 |
|
|
if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
|
350 |
|
|
return true;
|
351 |
|
|
}
|
352 |
|
|
|
353 |
|
|
return false;
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
|
357 |
|
|
/* Set value range VR to VR_VARYING. */
|
358 |
|
|
|
359 |
|
|
static inline void
|
360 |
|
|
set_value_range_to_varying (value_range_t *vr)
|
361 |
|
|
{
|
362 |
|
|
vr->type = VR_VARYING;
|
363 |
|
|
vr->min = vr->max = NULL_TREE;
|
364 |
|
|
if (vr->equiv)
|
365 |
|
|
bitmap_clear (vr->equiv);
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
|
369 |
|
|
/* Set value range VR to {T, MIN, MAX, EQUIV}. */
|
370 |
|
|
|
371 |
|
|
static void
|
372 |
|
|
set_value_range (value_range_t *vr, enum value_range_type t, tree min,
|
373 |
|
|
tree max, bitmap equiv)
|
374 |
|
|
{
|
375 |
|
|
#if defined ENABLE_CHECKING
|
376 |
|
|
/* Check the validity of the range. */
|
377 |
|
|
if (t == VR_RANGE || t == VR_ANTI_RANGE)
|
378 |
|
|
{
|
379 |
|
|
int cmp;
|
380 |
|
|
|
381 |
|
|
gcc_assert (min && max);
|
382 |
|
|
|
383 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
|
384 |
|
|
gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
|
385 |
|
|
|
386 |
|
|
cmp = compare_values (min, max);
|
387 |
|
|
gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
|
388 |
|
|
|
389 |
|
|
if (needs_overflow_infinity (TREE_TYPE (min)))
|
390 |
|
|
gcc_assert (!is_overflow_infinity (min)
|
391 |
|
|
|| !is_overflow_infinity (max));
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
if (t == VR_UNDEFINED || t == VR_VARYING)
|
395 |
|
|
gcc_assert (min == NULL_TREE && max == NULL_TREE);
|
396 |
|
|
|
397 |
|
|
if (t == VR_UNDEFINED || t == VR_VARYING)
|
398 |
|
|
gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
|
399 |
|
|
#endif
|
400 |
|
|
|
401 |
|
|
vr->type = t;
|
402 |
|
|
vr->min = min;
|
403 |
|
|
vr->max = max;
|
404 |
|
|
|
405 |
|
|
/* Since updating the equivalence set involves deep copying the
|
406 |
|
|
bitmaps, only do it if absolutely necessary. */
|
407 |
|
|
if (vr->equiv == NULL
|
408 |
|
|
&& equiv != NULL)
|
409 |
|
|
vr->equiv = BITMAP_ALLOC (NULL);
|
410 |
|
|
|
411 |
|
|
if (equiv != vr->equiv)
|
412 |
|
|
{
|
413 |
|
|
if (equiv && !bitmap_empty_p (equiv))
|
414 |
|
|
bitmap_copy (vr->equiv, equiv);
|
415 |
|
|
else
|
416 |
|
|
bitmap_clear (vr->equiv);
|
417 |
|
|
}
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
|
421 |
|
|
/* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
|
422 |
|
|
This means adjusting T, MIN and MAX representing the case of a
|
423 |
|
|
wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
|
424 |
|
|
as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
|
425 |
|
|
In corner cases where MAX+1 or MIN-1 wraps this will fall back
|
426 |
|
|
to varying.
|
427 |
|
|
This routine exists to ease canonicalization in the case where we
|
428 |
|
|
extract ranges from var + CST op limit. */
|
429 |
|
|
|
430 |
|
|
static void
|
431 |
|
|
set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
|
432 |
|
|
tree min, tree max, bitmap equiv)
|
433 |
|
|
{
|
434 |
|
|
/* Nothing to canonicalize for symbolic or unknown or varying ranges. */
|
435 |
|
|
if ((t != VR_RANGE
|
436 |
|
|
&& t != VR_ANTI_RANGE)
|
437 |
|
|
|| TREE_CODE (min) != INTEGER_CST
|
438 |
|
|
|| TREE_CODE (max) != INTEGER_CST)
|
439 |
|
|
{
|
440 |
|
|
set_value_range (vr, t, min, max, equiv);
|
441 |
|
|
return;
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
/* Wrong order for min and max, to swap them and the VR type we need
|
445 |
|
|
to adjust them. */
|
446 |
|
|
if (tree_int_cst_lt (max, min))
|
447 |
|
|
{
|
448 |
|
|
tree one = build_int_cst (TREE_TYPE (min), 1);
|
449 |
|
|
tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
|
450 |
|
|
max = int_const_binop (MINUS_EXPR, min, one, 0);
|
451 |
|
|
min = tmp;
|
452 |
|
|
|
453 |
|
|
/* There's one corner case, if we had [C+1, C] before we now have
|
454 |
|
|
that again. But this represents an empty value range, so drop
|
455 |
|
|
to varying in this case. */
|
456 |
|
|
if (tree_int_cst_lt (max, min))
|
457 |
|
|
{
|
458 |
|
|
set_value_range_to_varying (vr);
|
459 |
|
|
return;
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
/* Anti-ranges that can be represented as ranges should be so. */
|
466 |
|
|
if (t == VR_ANTI_RANGE)
|
467 |
|
|
{
|
468 |
|
|
bool is_min = vrp_val_is_min (min);
|
469 |
|
|
bool is_max = vrp_val_is_max (max);
|
470 |
|
|
|
471 |
|
|
if (is_min && is_max)
|
472 |
|
|
{
|
473 |
|
|
/* We cannot deal with empty ranges, drop to varying. */
|
474 |
|
|
set_value_range_to_varying (vr);
|
475 |
|
|
return;
|
476 |
|
|
}
|
477 |
|
|
else if (is_min
|
478 |
|
|
/* As a special exception preserve non-null ranges. */
|
479 |
|
|
&& !(TYPE_UNSIGNED (TREE_TYPE (min))
|
480 |
|
|
&& integer_zerop (max)))
|
481 |
|
|
{
|
482 |
|
|
tree one = build_int_cst (TREE_TYPE (max), 1);
|
483 |
|
|
min = int_const_binop (PLUS_EXPR, max, one, 0);
|
484 |
|
|
max = vrp_val_max (TREE_TYPE (max));
|
485 |
|
|
t = VR_RANGE;
|
486 |
|
|
}
|
487 |
|
|
else if (is_max)
|
488 |
|
|
{
|
489 |
|
|
tree one = build_int_cst (TREE_TYPE (min), 1);
|
490 |
|
|
max = int_const_binop (MINUS_EXPR, min, one, 0);
|
491 |
|
|
min = vrp_val_min (TREE_TYPE (min));
|
492 |
|
|
t = VR_RANGE;
|
493 |
|
|
}
|
494 |
|
|
}
|
495 |
|
|
|
496 |
|
|
set_value_range (vr, t, min, max, equiv);
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
/* Copy value range FROM into value range TO. */
|
500 |
|
|
|
501 |
|
|
static inline void
|
502 |
|
|
copy_value_range (value_range_t *to, value_range_t *from)
|
503 |
|
|
{
|
504 |
|
|
set_value_range (to, from->type, from->min, from->max, from->equiv);
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
/* Set value range VR to a single value. This function is only called
|
508 |
|
|
with values we get from statements, and exists to clear the
|
509 |
|
|
TREE_OVERFLOW flag so that we don't think we have an overflow
|
510 |
|
|
infinity when we shouldn't. */
|
511 |
|
|
|
512 |
|
|
static inline void
|
513 |
|
|
set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
|
514 |
|
|
{
|
515 |
|
|
gcc_assert (is_gimple_min_invariant (val));
|
516 |
|
|
val = avoid_overflow_infinity (val);
|
517 |
|
|
set_value_range (vr, VR_RANGE, val, val, equiv);
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
/* Set value range VR to a non-negative range of type TYPE.
|
521 |
|
|
OVERFLOW_INFINITY indicates whether to use an overflow infinity
|
522 |
|
|
rather than TYPE_MAX_VALUE; this should be true if we determine
|
523 |
|
|
that the range is nonnegative based on the assumption that signed
|
524 |
|
|
overflow does not occur. */
|
525 |
|
|
|
526 |
|
|
static inline void
|
527 |
|
|
set_value_range_to_nonnegative (value_range_t *vr, tree type,
|
528 |
|
|
bool overflow_infinity)
|
529 |
|
|
{
|
530 |
|
|
tree zero;
|
531 |
|
|
|
532 |
|
|
if (overflow_infinity && !supports_overflow_infinity (type))
|
533 |
|
|
{
|
534 |
|
|
set_value_range_to_varying (vr);
|
535 |
|
|
return;
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
zero = build_int_cst (type, 0);
|
539 |
|
|
set_value_range (vr, VR_RANGE, zero,
|
540 |
|
|
(overflow_infinity
|
541 |
|
|
? positive_overflow_infinity (type)
|
542 |
|
|
: TYPE_MAX_VALUE (type)),
|
543 |
|
|
vr->equiv);
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
/* Set value range VR to a non-NULL range of type TYPE. */
|
547 |
|
|
|
548 |
|
|
static inline void
|
549 |
|
|
set_value_range_to_nonnull (value_range_t *vr, tree type)
|
550 |
|
|
{
|
551 |
|
|
tree zero = build_int_cst (type, 0);
|
552 |
|
|
set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
|
553 |
|
|
}
|
554 |
|
|
|
555 |
|
|
|
556 |
|
|
/* Set value range VR to a NULL range of type TYPE. */
|
557 |
|
|
|
558 |
|
|
static inline void
|
559 |
|
|
set_value_range_to_null (value_range_t *vr, tree type)
|
560 |
|
|
{
|
561 |
|
|
set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
|
565 |
|
|
/* Set value range VR to a range of a truthvalue of type TYPE. */
|
566 |
|
|
|
567 |
|
|
static inline void
|
568 |
|
|
set_value_range_to_truthvalue (value_range_t *vr, tree type)
|
569 |
|
|
{
|
570 |
|
|
if (TYPE_PRECISION (type) == 1)
|
571 |
|
|
set_value_range_to_varying (vr);
|
572 |
|
|
else
|
573 |
|
|
set_value_range (vr, VR_RANGE,
|
574 |
|
|
build_int_cst (type, 0), build_int_cst (type, 1),
|
575 |
|
|
vr->equiv);
|
576 |
|
|
}
|
577 |
|
|
|
578 |
|
|
|
579 |
|
|
/* Set value range VR to VR_UNDEFINED. */
|
580 |
|
|
|
581 |
|
|
static inline void
|
582 |
|
|
set_value_range_to_undefined (value_range_t *vr)
|
583 |
|
|
{
|
584 |
|
|
vr->type = VR_UNDEFINED;
|
585 |
|
|
vr->min = vr->max = NULL_TREE;
|
586 |
|
|
if (vr->equiv)
|
587 |
|
|
bitmap_clear (vr->equiv);
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
|
591 |
|
|
/* If abs (min) < abs (max), set VR to [-max, max], if
|
592 |
|
|
abs (min) >= abs (max), set VR to [-min, min]. */
|
593 |
|
|
|
594 |
|
|
static void
|
595 |
|
|
abs_extent_range (value_range_t *vr, tree min, tree max)
|
596 |
|
|
{
|
597 |
|
|
int cmp;
|
598 |
|
|
|
599 |
|
|
gcc_assert (TREE_CODE (min) == INTEGER_CST);
|
600 |
|
|
gcc_assert (TREE_CODE (max) == INTEGER_CST);
|
601 |
|
|
gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
|
602 |
|
|
gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
|
603 |
|
|
min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
|
604 |
|
|
max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
|
605 |
|
|
if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
|
606 |
|
|
{
|
607 |
|
|
set_value_range_to_varying (vr);
|
608 |
|
|
return;
|
609 |
|
|
}
|
610 |
|
|
cmp = compare_values (min, max);
|
611 |
|
|
if (cmp == -1)
|
612 |
|
|
min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
|
613 |
|
|
else if (cmp == 0 || cmp == 1)
|
614 |
|
|
{
|
615 |
|
|
max = min;
|
616 |
|
|
min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
|
617 |
|
|
}
|
618 |
|
|
else
|
619 |
|
|
{
|
620 |
|
|
set_value_range_to_varying (vr);
|
621 |
|
|
return;
|
622 |
|
|
}
|
623 |
|
|
set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
|
624 |
|
|
}
|
625 |
|
|
|
626 |
|
|
|
627 |
|
|
/* Return value range information for VAR.
|
628 |
|
|
|
629 |
|
|
If we have no values ranges recorded (ie, VRP is not running), then
|
630 |
|
|
return NULL. Otherwise create an empty range if none existed for VAR. */
|
631 |
|
|
|
632 |
|
|
static value_range_t *
|
633 |
|
|
get_value_range (const_tree var)
|
634 |
|
|
{
|
635 |
|
|
value_range_t *vr;
|
636 |
|
|
tree sym;
|
637 |
|
|
unsigned ver = SSA_NAME_VERSION (var);
|
638 |
|
|
|
639 |
|
|
/* If we have no recorded ranges, then return NULL. */
|
640 |
|
|
if (! vr_value)
|
641 |
|
|
return NULL;
|
642 |
|
|
|
643 |
|
|
vr = vr_value[ver];
|
644 |
|
|
if (vr)
|
645 |
|
|
return vr;
|
646 |
|
|
|
647 |
|
|
/* Create a default value range. */
|
648 |
|
|
vr_value[ver] = vr = XCNEW (value_range_t);
|
649 |
|
|
|
650 |
|
|
/* Defer allocating the equivalence set. */
|
651 |
|
|
vr->equiv = NULL;
|
652 |
|
|
|
653 |
|
|
/* If VAR is a default definition, the variable can take any value
|
654 |
|
|
in VAR's type. */
|
655 |
|
|
sym = SSA_NAME_VAR (var);
|
656 |
|
|
if (SSA_NAME_IS_DEFAULT_DEF (var))
|
657 |
|
|
{
|
658 |
|
|
/* Try to use the "nonnull" attribute to create ~[0, 0]
|
659 |
|
|
anti-ranges for pointers. Note that this is only valid with
|
660 |
|
|
default definitions of PARM_DECLs. */
|
661 |
|
|
if (TREE_CODE (sym) == PARM_DECL
|
662 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (sym))
|
663 |
|
|
&& nonnull_arg_p (sym))
|
664 |
|
|
set_value_range_to_nonnull (vr, TREE_TYPE (sym));
|
665 |
|
|
else
|
666 |
|
|
set_value_range_to_varying (vr);
|
667 |
|
|
}
|
668 |
|
|
|
669 |
|
|
return vr;
|
670 |
|
|
}
|
671 |
|
|
|
672 |
|
|
/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
|
673 |
|
|
|
674 |
|
|
static inline bool
|
675 |
|
|
vrp_operand_equal_p (const_tree val1, const_tree val2)
|
676 |
|
|
{
|
677 |
|
|
if (val1 == val2)
|
678 |
|
|
return true;
|
679 |
|
|
if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
|
680 |
|
|
return false;
|
681 |
|
|
if (is_overflow_infinity (val1))
|
682 |
|
|
return is_overflow_infinity (val2);
|
683 |
|
|
return true;
|
684 |
|
|
}
|
685 |
|
|
|
686 |
|
|
/* Return true, if the bitmaps B1 and B2 are equal. */
|
687 |
|
|
|
688 |
|
|
static inline bool
|
689 |
|
|
vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
|
690 |
|
|
{
|
691 |
|
|
return (b1 == b2
|
692 |
|
|
|| (b1 && b2
|
693 |
|
|
&& bitmap_equal_p (b1, b2)));
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
/* Update the value range and equivalence set for variable VAR to
|
697 |
|
|
NEW_VR. Return true if NEW_VR is different from VAR's previous
|
698 |
|
|
value.
|
699 |
|
|
|
700 |
|
|
NOTE: This function assumes that NEW_VR is a temporary value range
|
701 |
|
|
object created for the sole purpose of updating VAR's range. The
|
702 |
|
|
storage used by the equivalence set from NEW_VR will be freed by
|
703 |
|
|
this function. Do not call update_value_range when NEW_VR
|
704 |
|
|
is the range object associated with another SSA name. */
|
705 |
|
|
|
706 |
|
|
static inline bool
|
707 |
|
|
update_value_range (const_tree var, value_range_t *new_vr)
|
708 |
|
|
{
|
709 |
|
|
value_range_t *old_vr;
|
710 |
|
|
bool is_new;
|
711 |
|
|
|
712 |
|
|
/* Update the value range, if necessary. */
|
713 |
|
|
old_vr = get_value_range (var);
|
714 |
|
|
is_new = old_vr->type != new_vr->type
|
715 |
|
|
|| !vrp_operand_equal_p (old_vr->min, new_vr->min)
|
716 |
|
|
|| !vrp_operand_equal_p (old_vr->max, new_vr->max)
|
717 |
|
|
|| !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
|
718 |
|
|
|
719 |
|
|
if (is_new)
|
720 |
|
|
set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
|
721 |
|
|
new_vr->equiv);
|
722 |
|
|
|
723 |
|
|
BITMAP_FREE (new_vr->equiv);
|
724 |
|
|
|
725 |
|
|
return is_new;
|
726 |
|
|
}
|
727 |
|
|
|
728 |
|
|
|
729 |
|
|
/* Add VAR and VAR's equivalence set to EQUIV. This is the central
|
730 |
|
|
point where equivalence processing can be turned on/off. */
|
731 |
|
|
|
732 |
|
|
static void
|
733 |
|
|
add_equivalence (bitmap *equiv, const_tree var)
|
734 |
|
|
{
|
735 |
|
|
unsigned ver = SSA_NAME_VERSION (var);
|
736 |
|
|
value_range_t *vr = vr_value[ver];
|
737 |
|
|
|
738 |
|
|
if (*equiv == NULL)
|
739 |
|
|
*equiv = BITMAP_ALLOC (NULL);
|
740 |
|
|
bitmap_set_bit (*equiv, ver);
|
741 |
|
|
if (vr && vr->equiv)
|
742 |
|
|
bitmap_ior_into (*equiv, vr->equiv);
|
743 |
|
|
}
|
744 |
|
|
|
745 |
|
|
|
746 |
|
|
/* Return true if VR is ~[0, 0]. */
|
747 |
|
|
|
748 |
|
|
static inline bool
|
749 |
|
|
range_is_nonnull (value_range_t *vr)
|
750 |
|
|
{
|
751 |
|
|
return vr->type == VR_ANTI_RANGE
|
752 |
|
|
&& integer_zerop (vr->min)
|
753 |
|
|
&& integer_zerop (vr->max);
|
754 |
|
|
}
|
755 |
|
|
|
756 |
|
|
|
757 |
|
|
/* Return true if VR is [0, 0]. */
|
758 |
|
|
|
759 |
|
|
static inline bool
|
760 |
|
|
range_is_null (value_range_t *vr)
|
761 |
|
|
{
|
762 |
|
|
return vr->type == VR_RANGE
|
763 |
|
|
&& integer_zerop (vr->min)
|
764 |
|
|
&& integer_zerop (vr->max);
|
765 |
|
|
}
|
766 |
|
|
|
767 |
|
|
/* Return true if max and min of VR are INTEGER_CST. It's not necessary
|
768 |
|
|
a singleton. */
|
769 |
|
|
|
770 |
|
|
static inline bool
|
771 |
|
|
range_int_cst_p (value_range_t *vr)
|
772 |
|
|
{
|
773 |
|
|
return (vr->type == VR_RANGE
|
774 |
|
|
&& TREE_CODE (vr->max) == INTEGER_CST
|
775 |
|
|
&& TREE_CODE (vr->min) == INTEGER_CST
|
776 |
|
|
&& !TREE_OVERFLOW (vr->max)
|
777 |
|
|
&& !TREE_OVERFLOW (vr->min));
|
778 |
|
|
}
|
779 |
|
|
|
780 |
|
|
/* Return true if VR is a INTEGER_CST singleton. */
|
781 |
|
|
|
782 |
|
|
static inline bool
|
783 |
|
|
range_int_cst_singleton_p (value_range_t *vr)
|
784 |
|
|
{
|
785 |
|
|
return (range_int_cst_p (vr)
|
786 |
|
|
&& tree_int_cst_equal (vr->min, vr->max));
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
/* Return true if value range VR involves at least one symbol. */
|
790 |
|
|
|
791 |
|
|
static inline bool
|
792 |
|
|
symbolic_range_p (value_range_t *vr)
|
793 |
|
|
{
|
794 |
|
|
return (!is_gimple_min_invariant (vr->min)
|
795 |
|
|
|| !is_gimple_min_invariant (vr->max));
|
796 |
|
|
}
|
797 |
|
|
|
798 |
|
|
/* Return true if value range VR uses an overflow infinity. */
|
799 |
|
|
|
800 |
|
|
static inline bool
|
801 |
|
|
overflow_infinity_range_p (value_range_t *vr)
|
802 |
|
|
{
|
803 |
|
|
return (vr->type == VR_RANGE
|
804 |
|
|
&& (is_overflow_infinity (vr->min)
|
805 |
|
|
|| is_overflow_infinity (vr->max)));
|
806 |
|
|
}
|
807 |
|
|
|
808 |
|
|
/* Return false if we can not make a valid comparison based on VR;
|
809 |
|
|
this will be the case if it uses an overflow infinity and overflow
|
810 |
|
|
is not undefined (i.e., -fno-strict-overflow is in effect).
|
811 |
|
|
Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
|
812 |
|
|
uses an overflow infinity. */
|
813 |
|
|
|
814 |
|
|
static bool
|
815 |
|
|
usable_range_p (value_range_t *vr, bool *strict_overflow_p)
|
816 |
|
|
{
|
817 |
|
|
gcc_assert (vr->type == VR_RANGE);
|
818 |
|
|
if (is_overflow_infinity (vr->min))
|
819 |
|
|
{
|
820 |
|
|
*strict_overflow_p = true;
|
821 |
|
|
if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
|
822 |
|
|
return false;
|
823 |
|
|
}
|
824 |
|
|
if (is_overflow_infinity (vr->max))
|
825 |
|
|
{
|
826 |
|
|
*strict_overflow_p = true;
|
827 |
|
|
if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
|
828 |
|
|
return false;
|
829 |
|
|
}
|
830 |
|
|
return true;
|
831 |
|
|
}
|
832 |
|
|
|
833 |
|
|
|
834 |
|
|
/* Like tree_expr_nonnegative_warnv_p, but this function uses value
|
835 |
|
|
ranges obtained so far. */
|
836 |
|
|
|
837 |
|
|
static bool
|
838 |
|
|
vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
|
839 |
|
|
{
|
840 |
|
|
return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
|
841 |
|
|
|| (TREE_CODE (expr) == SSA_NAME
|
842 |
|
|
&& ssa_name_nonnegative_p (expr)));
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
/* Return true if the result of assignment STMT is know to be non-negative.
|
846 |
|
|
If the return value is based on the assumption that signed overflow is
|
847 |
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
848 |
|
|
*STRICT_OVERFLOW_P.*/
|
849 |
|
|
|
850 |
|
|
static bool
|
851 |
|
|
gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
|
852 |
|
|
{
|
853 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
854 |
|
|
switch (get_gimple_rhs_class (code))
|
855 |
|
|
{
|
856 |
|
|
case GIMPLE_UNARY_RHS:
|
857 |
|
|
return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
|
858 |
|
|
gimple_expr_type (stmt),
|
859 |
|
|
gimple_assign_rhs1 (stmt),
|
860 |
|
|
strict_overflow_p);
|
861 |
|
|
case GIMPLE_BINARY_RHS:
|
862 |
|
|
return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
|
863 |
|
|
gimple_expr_type (stmt),
|
864 |
|
|
gimple_assign_rhs1 (stmt),
|
865 |
|
|
gimple_assign_rhs2 (stmt),
|
866 |
|
|
strict_overflow_p);
|
867 |
|
|
case GIMPLE_SINGLE_RHS:
|
868 |
|
|
return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
|
869 |
|
|
strict_overflow_p);
|
870 |
|
|
case GIMPLE_INVALID_RHS:
|
871 |
|
|
gcc_unreachable ();
|
872 |
|
|
default:
|
873 |
|
|
gcc_unreachable ();
|
874 |
|
|
}
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
/* Return true if return value of call STMT is know to be non-negative.
|
878 |
|
|
If the return value is based on the assumption that signed overflow is
|
879 |
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
880 |
|
|
*STRICT_OVERFLOW_P.*/
|
881 |
|
|
|
882 |
|
|
static bool
|
883 |
|
|
gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
|
884 |
|
|
{
|
885 |
|
|
tree arg0 = gimple_call_num_args (stmt) > 0 ?
|
886 |
|
|
gimple_call_arg (stmt, 0) : NULL_TREE;
|
887 |
|
|
tree arg1 = gimple_call_num_args (stmt) > 1 ?
|
888 |
|
|
gimple_call_arg (stmt, 1) : NULL_TREE;
|
889 |
|
|
|
890 |
|
|
return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
|
891 |
|
|
gimple_call_fndecl (stmt),
|
892 |
|
|
arg0,
|
893 |
|
|
arg1,
|
894 |
|
|
strict_overflow_p);
|
895 |
|
|
}
|
896 |
|
|
|
897 |
|
|
/* Return true if STMT is know to to compute a non-negative value.
|
898 |
|
|
If the return value is based on the assumption that signed overflow is
|
899 |
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
900 |
|
|
*STRICT_OVERFLOW_P.*/
|
901 |
|
|
|
902 |
|
|
static bool
|
903 |
|
|
gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
|
904 |
|
|
{
|
905 |
|
|
switch (gimple_code (stmt))
|
906 |
|
|
{
|
907 |
|
|
case GIMPLE_ASSIGN:
|
908 |
|
|
return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
|
909 |
|
|
case GIMPLE_CALL:
|
910 |
|
|
return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
|
911 |
|
|
default:
|
912 |
|
|
gcc_unreachable ();
|
913 |
|
|
}
|
914 |
|
|
}
|
915 |
|
|
|
916 |
|
|
/* Return true if the result of assignment STMT is know to be non-zero.
|
917 |
|
|
If the return value is based on the assumption that signed overflow is
|
918 |
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
919 |
|
|
*STRICT_OVERFLOW_P.*/
|
920 |
|
|
|
921 |
|
|
static bool
|
922 |
|
|
gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
|
923 |
|
|
{
|
924 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
925 |
|
|
switch (get_gimple_rhs_class (code))
|
926 |
|
|
{
|
927 |
|
|
case GIMPLE_UNARY_RHS:
|
928 |
|
|
return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
|
929 |
|
|
gimple_expr_type (stmt),
|
930 |
|
|
gimple_assign_rhs1 (stmt),
|
931 |
|
|
strict_overflow_p);
|
932 |
|
|
case GIMPLE_BINARY_RHS:
|
933 |
|
|
return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
|
934 |
|
|
gimple_expr_type (stmt),
|
935 |
|
|
gimple_assign_rhs1 (stmt),
|
936 |
|
|
gimple_assign_rhs2 (stmt),
|
937 |
|
|
strict_overflow_p);
|
938 |
|
|
case GIMPLE_SINGLE_RHS:
|
939 |
|
|
return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
|
940 |
|
|
strict_overflow_p);
|
941 |
|
|
case GIMPLE_INVALID_RHS:
|
942 |
|
|
gcc_unreachable ();
|
943 |
|
|
default:
|
944 |
|
|
gcc_unreachable ();
|
945 |
|
|
}
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
/* Return true if STMT is know to to compute a non-zero value.
|
949 |
|
|
If the return value is based on the assumption that signed overflow is
|
950 |
|
|
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
|
951 |
|
|
*STRICT_OVERFLOW_P.*/
|
952 |
|
|
|
953 |
|
|
static bool
|
954 |
|
|
gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
|
955 |
|
|
{
|
956 |
|
|
switch (gimple_code (stmt))
|
957 |
|
|
{
|
958 |
|
|
case GIMPLE_ASSIGN:
|
959 |
|
|
return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
|
960 |
|
|
case GIMPLE_CALL:
|
961 |
|
|
return gimple_alloca_call_p (stmt);
|
962 |
|
|
default:
|
963 |
|
|
gcc_unreachable ();
|
964 |
|
|
}
|
965 |
|
|
}
|
966 |
|
|
|
967 |
|
|
/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
|
968 |
|
|
obtained so far. */
|
969 |
|
|
|
970 |
|
|
static bool
|
971 |
|
|
vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
|
972 |
|
|
{
|
973 |
|
|
if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
|
974 |
|
|
return true;
|
975 |
|
|
|
976 |
|
|
/* If we have an expression of the form &X->a, then the expression
|
977 |
|
|
is nonnull if X is nonnull. */
|
978 |
|
|
if (is_gimple_assign (stmt)
|
979 |
|
|
&& gimple_assign_rhs_code (stmt) == ADDR_EXPR)
|
980 |
|
|
{
|
981 |
|
|
tree expr = gimple_assign_rhs1 (stmt);
|
982 |
|
|
tree base = get_base_address (TREE_OPERAND (expr, 0));
|
983 |
|
|
|
984 |
|
|
if (base != NULL_TREE
|
985 |
|
|
&& TREE_CODE (base) == INDIRECT_REF
|
986 |
|
|
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
|
987 |
|
|
{
|
988 |
|
|
value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
|
989 |
|
|
if (range_is_nonnull (vr))
|
990 |
|
|
return true;
|
991 |
|
|
}
|
992 |
|
|
}
|
993 |
|
|
|
994 |
|
|
return false;
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
/* Returns true if EXPR is a valid value (as expected by compare_values) --
|
998 |
|
|
a gimple invariant, or SSA_NAME +- CST. */
|
999 |
|
|
|
1000 |
|
|
static bool
|
1001 |
|
|
valid_value_p (tree expr)
|
1002 |
|
|
{
|
1003 |
|
|
if (TREE_CODE (expr) == SSA_NAME)
|
1004 |
|
|
return true;
|
1005 |
|
|
|
1006 |
|
|
if (TREE_CODE (expr) == PLUS_EXPR
|
1007 |
|
|
|| TREE_CODE (expr) == MINUS_EXPR)
|
1008 |
|
|
return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
|
1009 |
|
|
&& TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
|
1010 |
|
|
|
1011 |
|
|
return is_gimple_min_invariant (expr);
|
1012 |
|
|
}
|
1013 |
|
|
|
1014 |
|
|
/* Return
|
1015 |
|
|
1 if VAL < VAL2
|
1016 |
|
|
|
1017 |
|
|
-2 if those are incomparable. */
|
1018 |
|
|
static inline int
|
1019 |
|
|
operand_less_p (tree val, tree val2)
|
1020 |
|
|
{
|
1021 |
|
|
/* LT is folded faster than GE and others. Inline the common case. */
|
1022 |
|
|
if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
|
1023 |
|
|
{
|
1024 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (val)))
|
1025 |
|
|
return INT_CST_LT_UNSIGNED (val, val2);
|
1026 |
|
|
else
|
1027 |
|
|
{
|
1028 |
|
|
if (INT_CST_LT (val, val2))
|
1029 |
|
|
return 1;
|
1030 |
|
|
}
|
1031 |
|
|
}
|
1032 |
|
|
else
|
1033 |
|
|
{
|
1034 |
|
|
tree tcmp;
|
1035 |
|
|
|
1036 |
|
|
fold_defer_overflow_warnings ();
|
1037 |
|
|
|
1038 |
|
|
tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
|
1039 |
|
|
|
1040 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
1041 |
|
|
|
1042 |
|
|
if (!tcmp
|
1043 |
|
|
|| TREE_CODE (tcmp) != INTEGER_CST)
|
1044 |
|
|
return -2;
|
1045 |
|
|
|
1046 |
|
|
if (!integer_zerop (tcmp))
|
1047 |
|
|
return 1;
|
1048 |
|
|
}
|
1049 |
|
|
|
1050 |
|
|
/* val >= val2, not considering overflow infinity. */
|
1051 |
|
|
if (is_negative_overflow_infinity (val))
|
1052 |
|
|
return is_negative_overflow_infinity (val2) ? 0 : 1;
|
1053 |
|
|
else if (is_positive_overflow_infinity (val2))
|
1054 |
|
|
return is_positive_overflow_infinity (val) ? 0 : 1;
|
1055 |
|
|
|
1056 |
|
|
return 0;
|
1057 |
|
|
}
|
1058 |
|
|
|
1059 |
|
|
/* Compare two values VAL1 and VAL2. Return
|
1060 |
|
|
|
1061 |
|
|
-2 if VAL1 and VAL2 cannot be compared at compile-time,
|
1062 |
|
|
-1 if VAL1 < VAL2,
|
1063 |
|
|
|
1064 |
|
|
+1 if VAL1 > VAL2, and
|
1065 |
|
|
+2 if VAL1 != VAL2
|
1066 |
|
|
|
1067 |
|
|
This is similar to tree_int_cst_compare but supports pointer values
|
1068 |
|
|
and values that cannot be compared at compile time.
|
1069 |
|
|
|
1070 |
|
|
If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
|
1071 |
|
|
true if the return value is only valid if we assume that signed
|
1072 |
|
|
overflow is undefined. */
|
1073 |
|
|
|
1074 |
|
|
static int
|
1075 |
|
|
compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
|
1076 |
|
|
{
|
1077 |
|
|
if (val1 == val2)
|
1078 |
|
|
return 0;
|
1079 |
|
|
|
1080 |
|
|
/* Below we rely on the fact that VAL1 and VAL2 are both pointers or
|
1081 |
|
|
both integers. */
|
1082 |
|
|
gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
|
1083 |
|
|
== POINTER_TYPE_P (TREE_TYPE (val2)));
|
1084 |
|
|
/* Convert the two values into the same type. This is needed because
|
1085 |
|
|
sizetype causes sign extension even for unsigned types. */
|
1086 |
|
|
val2 = fold_convert (TREE_TYPE (val1), val2);
|
1087 |
|
|
STRIP_USELESS_TYPE_CONVERSION (val2);
|
1088 |
|
|
|
1089 |
|
|
if ((TREE_CODE (val1) == SSA_NAME
|
1090 |
|
|
|| TREE_CODE (val1) == PLUS_EXPR
|
1091 |
|
|
|| TREE_CODE (val1) == MINUS_EXPR)
|
1092 |
|
|
&& (TREE_CODE (val2) == SSA_NAME
|
1093 |
|
|
|| TREE_CODE (val2) == PLUS_EXPR
|
1094 |
|
|
|| TREE_CODE (val2) == MINUS_EXPR))
|
1095 |
|
|
{
|
1096 |
|
|
tree n1, c1, n2, c2;
|
1097 |
|
|
enum tree_code code1, code2;
|
1098 |
|
|
|
1099 |
|
|
/* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
|
1100 |
|
|
return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
|
1101 |
|
|
same name, return -2. */
|
1102 |
|
|
if (TREE_CODE (val1) == SSA_NAME)
|
1103 |
|
|
{
|
1104 |
|
|
code1 = SSA_NAME;
|
1105 |
|
|
n1 = val1;
|
1106 |
|
|
c1 = NULL_TREE;
|
1107 |
|
|
}
|
1108 |
|
|
else
|
1109 |
|
|
{
|
1110 |
|
|
code1 = TREE_CODE (val1);
|
1111 |
|
|
n1 = TREE_OPERAND (val1, 0);
|
1112 |
|
|
c1 = TREE_OPERAND (val1, 1);
|
1113 |
|
|
if (tree_int_cst_sgn (c1) == -1)
|
1114 |
|
|
{
|
1115 |
|
|
if (is_negative_overflow_infinity (c1))
|
1116 |
|
|
return -2;
|
1117 |
|
|
c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
|
1118 |
|
|
if (!c1)
|
1119 |
|
|
return -2;
|
1120 |
|
|
code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
|
1121 |
|
|
}
|
1122 |
|
|
}
|
1123 |
|
|
|
1124 |
|
|
if (TREE_CODE (val2) == SSA_NAME)
|
1125 |
|
|
{
|
1126 |
|
|
code2 = SSA_NAME;
|
1127 |
|
|
n2 = val2;
|
1128 |
|
|
c2 = NULL_TREE;
|
1129 |
|
|
}
|
1130 |
|
|
else
|
1131 |
|
|
{
|
1132 |
|
|
code2 = TREE_CODE (val2);
|
1133 |
|
|
n2 = TREE_OPERAND (val2, 0);
|
1134 |
|
|
c2 = TREE_OPERAND (val2, 1);
|
1135 |
|
|
if (tree_int_cst_sgn (c2) == -1)
|
1136 |
|
|
{
|
1137 |
|
|
if (is_negative_overflow_infinity (c2))
|
1138 |
|
|
return -2;
|
1139 |
|
|
c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
|
1140 |
|
|
if (!c2)
|
1141 |
|
|
return -2;
|
1142 |
|
|
code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
|
1143 |
|
|
}
|
1144 |
|
|
}
|
1145 |
|
|
|
1146 |
|
|
/* Both values must use the same name. */
|
1147 |
|
|
if (n1 != n2)
|
1148 |
|
|
return -2;
|
1149 |
|
|
|
1150 |
|
|
if (code1 == SSA_NAME
|
1151 |
|
|
&& code2 == SSA_NAME)
|
1152 |
|
|
/* NAME == NAME */
|
1153 |
|
|
return 0;
|
1154 |
|
|
|
1155 |
|
|
/* If overflow is defined we cannot simplify more. */
|
1156 |
|
|
if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
|
1157 |
|
|
return -2;
|
1158 |
|
|
|
1159 |
|
|
if (strict_overflow_p != NULL
|
1160 |
|
|
&& (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
|
1161 |
|
|
&& (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
|
1162 |
|
|
*strict_overflow_p = true;
|
1163 |
|
|
|
1164 |
|
|
if (code1 == SSA_NAME)
|
1165 |
|
|
{
|
1166 |
|
|
if (code2 == PLUS_EXPR)
|
1167 |
|
|
/* NAME < NAME + CST */
|
1168 |
|
|
return -1;
|
1169 |
|
|
else if (code2 == MINUS_EXPR)
|
1170 |
|
|
/* NAME > NAME - CST */
|
1171 |
|
|
return 1;
|
1172 |
|
|
}
|
1173 |
|
|
else if (code1 == PLUS_EXPR)
|
1174 |
|
|
{
|
1175 |
|
|
if (code2 == SSA_NAME)
|
1176 |
|
|
/* NAME + CST > NAME */
|
1177 |
|
|
return 1;
|
1178 |
|
|
else if (code2 == PLUS_EXPR)
|
1179 |
|
|
/* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
|
1180 |
|
|
return compare_values_warnv (c1, c2, strict_overflow_p);
|
1181 |
|
|
else if (code2 == MINUS_EXPR)
|
1182 |
|
|
/* NAME + CST1 > NAME - CST2 */
|
1183 |
|
|
return 1;
|
1184 |
|
|
}
|
1185 |
|
|
else if (code1 == MINUS_EXPR)
|
1186 |
|
|
{
|
1187 |
|
|
if (code2 == SSA_NAME)
|
1188 |
|
|
/* NAME - CST < NAME */
|
1189 |
|
|
return -1;
|
1190 |
|
|
else if (code2 == PLUS_EXPR)
|
1191 |
|
|
/* NAME - CST1 < NAME + CST2 */
|
1192 |
|
|
return -1;
|
1193 |
|
|
else if (code2 == MINUS_EXPR)
|
1194 |
|
|
/* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
|
1195 |
|
|
C1 and C2 are swapped in the call to compare_values. */
|
1196 |
|
|
return compare_values_warnv (c2, c1, strict_overflow_p);
|
1197 |
|
|
}
|
1198 |
|
|
|
1199 |
|
|
gcc_unreachable ();
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
/* We cannot compare non-constants. */
|
1203 |
|
|
if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
|
1204 |
|
|
return -2;
|
1205 |
|
|
|
1206 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (val1)))
|
1207 |
|
|
{
|
1208 |
|
|
/* We cannot compare overflowed values, except for overflow
|
1209 |
|
|
infinities. */
|
1210 |
|
|
if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
|
1211 |
|
|
{
|
1212 |
|
|
if (strict_overflow_p != NULL)
|
1213 |
|
|
*strict_overflow_p = true;
|
1214 |
|
|
if (is_negative_overflow_infinity (val1))
|
1215 |
|
|
return is_negative_overflow_infinity (val2) ? 0 : -1;
|
1216 |
|
|
else if (is_negative_overflow_infinity (val2))
|
1217 |
|
|
return 1;
|
1218 |
|
|
else if (is_positive_overflow_infinity (val1))
|
1219 |
|
|
return is_positive_overflow_infinity (val2) ? 0 : 1;
|
1220 |
|
|
else if (is_positive_overflow_infinity (val2))
|
1221 |
|
|
return -1;
|
1222 |
|
|
return -2;
|
1223 |
|
|
}
|
1224 |
|
|
|
1225 |
|
|
return tree_int_cst_compare (val1, val2);
|
1226 |
|
|
}
|
1227 |
|
|
else
|
1228 |
|
|
{
|
1229 |
|
|
tree t;
|
1230 |
|
|
|
1231 |
|
|
/* First see if VAL1 and VAL2 are not the same. */
|
1232 |
|
|
if (val1 == val2 || operand_equal_p (val1, val2, 0))
|
1233 |
|
|
return 0;
|
1234 |
|
|
|
1235 |
|
|
/* If VAL1 is a lower address than VAL2, return -1. */
|
1236 |
|
|
if (operand_less_p (val1, val2) == 1)
|
1237 |
|
|
return -1;
|
1238 |
|
|
|
1239 |
|
|
/* If VAL1 is a higher address than VAL2, return +1. */
|
1240 |
|
|
if (operand_less_p (val2, val1) == 1)
|
1241 |
|
|
return 1;
|
1242 |
|
|
|
1243 |
|
|
/* If VAL1 is different than VAL2, return +2.
|
1244 |
|
|
For integer constants we either have already returned -1 or 1
|
1245 |
|
|
or they are equivalent. We still might succeed in proving
|
1246 |
|
|
something about non-trivial operands. */
|
1247 |
|
|
if (TREE_CODE (val1) != INTEGER_CST
|
1248 |
|
|
|| TREE_CODE (val2) != INTEGER_CST)
|
1249 |
|
|
{
|
1250 |
|
|
t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
|
1251 |
|
|
if (t && integer_onep (t))
|
1252 |
|
|
return 2;
|
1253 |
|
|
}
|
1254 |
|
|
|
1255 |
|
|
return -2;
|
1256 |
|
|
}
|
1257 |
|
|
}
|
1258 |
|
|
|
1259 |
|
|
/* Compare values like compare_values_warnv, but treat comparisons of
|
1260 |
|
|
nonconstants which rely on undefined overflow as incomparable. */
|
1261 |
|
|
|
1262 |
|
|
static int
|
1263 |
|
|
compare_values (tree val1, tree val2)
|
1264 |
|
|
{
|
1265 |
|
|
bool sop;
|
1266 |
|
|
int ret;
|
1267 |
|
|
|
1268 |
|
|
sop = false;
|
1269 |
|
|
ret = compare_values_warnv (val1, val2, &sop);
|
1270 |
|
|
if (sop
|
1271 |
|
|
&& (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
|
1272 |
|
|
ret = -2;
|
1273 |
|
|
return ret;
|
1274 |
|
|
}
|
1275 |
|
|
|
1276 |
|
|
|
1277 |
|
|
/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
|
1278 |
|
|
|
1279 |
|
|
-2 if we cannot tell either way.
|
1280 |
|
|
|
1281 |
|
|
FIXME, the current semantics of this functions are a bit quirky
|
1282 |
|
|
when taken in the context of VRP. In here we do not care
|
1283 |
|
|
about VR's type. If VR is the anti-range ~[3, 5] the call
|
1284 |
|
|
value_inside_range (4, VR) will return 1.
|
1285 |
|
|
|
1286 |
|
|
This is counter-intuitive in a strict sense, but the callers
|
1287 |
|
|
currently expect this. They are calling the function
|
1288 |
|
|
merely to determine whether VR->MIN <= VAL <= VR->MAX. The
|
1289 |
|
|
callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
|
1290 |
|
|
themselves.
|
1291 |
|
|
|
1292 |
|
|
This also applies to value_ranges_intersect_p and
|
1293 |
|
|
range_includes_zero_p. The semantics of VR_RANGE and
|
1294 |
|
|
VR_ANTI_RANGE should be encoded here, but that also means
|
1295 |
|
|
adapting the users of these functions to the new semantics.
|
1296 |
|
|
|
1297 |
|
|
Benchmark compile/20001226-1.c compilation time after changing this
|
1298 |
|
|
function. */
|
1299 |
|
|
|
1300 |
|
|
static inline int
|
1301 |
|
|
value_inside_range (tree val, value_range_t * vr)
|
1302 |
|
|
{
|
1303 |
|
|
int cmp1, cmp2;
|
1304 |
|
|
|
1305 |
|
|
cmp1 = operand_less_p (val, vr->min);
|
1306 |
|
|
if (cmp1 == -2)
|
1307 |
|
|
return -2;
|
1308 |
|
|
if (cmp1 == 1)
|
1309 |
|
|
return 0;
|
1310 |
|
|
|
1311 |
|
|
cmp2 = operand_less_p (vr->max, val);
|
1312 |
|
|
if (cmp2 == -2)
|
1313 |
|
|
return -2;
|
1314 |
|
|
|
1315 |
|
|
return !cmp2;
|
1316 |
|
|
}
|
1317 |
|
|
|
1318 |
|
|
|
1319 |
|
|
/* Return true if value ranges VR0 and VR1 have a non-empty
|
1320 |
|
|
intersection.
|
1321 |
|
|
|
1322 |
|
|
Benchmark compile/20001226-1.c compilation time after changing this
|
1323 |
|
|
function.
|
1324 |
|
|
*/
|
1325 |
|
|
|
1326 |
|
|
static inline bool
|
1327 |
|
|
value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
|
1328 |
|
|
{
|
1329 |
|
|
/* The value ranges do not intersect if the maximum of the first range is
|
1330 |
|
|
less than the minimum of the second range or vice versa.
|
1331 |
|
|
When those relations are unknown, we can't do any better. */
|
1332 |
|
|
if (operand_less_p (vr0->max, vr1->min) != 0)
|
1333 |
|
|
return false;
|
1334 |
|
|
if (operand_less_p (vr1->max, vr0->min) != 0)
|
1335 |
|
|
return false;
|
1336 |
|
|
return true;
|
1337 |
|
|
}
|
1338 |
|
|
|
1339 |
|
|
|
1340 |
|
|
/* Return true if VR includes the value zero, false otherwise. FIXME,
|
1341 |
|
|
currently this will return false for an anti-range like ~[-4, 3].
|
1342 |
|
|
This will be wrong when the semantics of value_inside_range are
|
1343 |
|
|
modified (currently the users of this function expect these
|
1344 |
|
|
semantics). */
|
1345 |
|
|
|
1346 |
|
|
static inline bool
|
1347 |
|
|
range_includes_zero_p (value_range_t *vr)
|
1348 |
|
|
{
|
1349 |
|
|
tree zero;
|
1350 |
|
|
|
1351 |
|
|
gcc_assert (vr->type != VR_UNDEFINED
|
1352 |
|
|
&& vr->type != VR_VARYING
|
1353 |
|
|
&& !symbolic_range_p (vr));
|
1354 |
|
|
|
1355 |
|
|
zero = build_int_cst (TREE_TYPE (vr->min), 0);
|
1356 |
|
|
return (value_inside_range (zero, vr) == 1);
|
1357 |
|
|
}
|
1358 |
|
|
|
1359 |
|
|
/* Return true if T, an SSA_NAME, is known to be nonnegative. Return
|
1360 |
|
|
false otherwise or if no value range information is available. */
|
1361 |
|
|
|
1362 |
|
|
bool
|
1363 |
|
|
ssa_name_nonnegative_p (const_tree t)
|
1364 |
|
|
{
|
1365 |
|
|
value_range_t *vr = get_value_range (t);
|
1366 |
|
|
|
1367 |
|
|
if (INTEGRAL_TYPE_P (t)
|
1368 |
|
|
&& TYPE_UNSIGNED (t))
|
1369 |
|
|
return true;
|
1370 |
|
|
|
1371 |
|
|
if (!vr)
|
1372 |
|
|
return false;
|
1373 |
|
|
|
1374 |
|
|
/* Testing for VR_ANTI_RANGE is not useful here as any anti-range
|
1375 |
|
|
which would return a useful value should be encoded as a VR_RANGE. */
|
1376 |
|
|
if (vr->type == VR_RANGE)
|
1377 |
|
|
{
|
1378 |
|
|
int result = compare_values (vr->min, integer_zero_node);
|
1379 |
|
|
|
1380 |
|
|
return (result == 0 || result == 1);
|
1381 |
|
|
}
|
1382 |
|
|
return false;
|
1383 |
|
|
}
|
1384 |
|
|
|
1385 |
|
|
/* If OP has a value range with a single constant value return that,
|
1386 |
|
|
otherwise return NULL_TREE. This returns OP itself if OP is a
|
1387 |
|
|
constant. */
|
1388 |
|
|
|
1389 |
|
|
static tree
|
1390 |
|
|
op_with_constant_singleton_value_range (tree op)
|
1391 |
|
|
{
|
1392 |
|
|
value_range_t *vr;
|
1393 |
|
|
|
1394 |
|
|
if (is_gimple_min_invariant (op))
|
1395 |
|
|
return op;
|
1396 |
|
|
|
1397 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
1398 |
|
|
return NULL_TREE;
|
1399 |
|
|
|
1400 |
|
|
vr = get_value_range (op);
|
1401 |
|
|
if (vr->type == VR_RANGE
|
1402 |
|
|
&& operand_equal_p (vr->min, vr->max, 0)
|
1403 |
|
|
&& is_gimple_min_invariant (vr->min))
|
1404 |
|
|
return vr->min;
|
1405 |
|
|
|
1406 |
|
|
return NULL_TREE;
|
1407 |
|
|
}
|
1408 |
|
|
|
1409 |
|
|
|
1410 |
|
|
/* Extract value range information from an ASSERT_EXPR EXPR and store
|
1411 |
|
|
it in *VR_P. */
|
1412 |
|
|
|
1413 |
|
|
static void
|
1414 |
|
|
extract_range_from_assert (value_range_t *vr_p, tree expr)
|
1415 |
|
|
{
|
1416 |
|
|
tree var, cond, limit, min, max, type;
|
1417 |
|
|
value_range_t *var_vr, *limit_vr;
|
1418 |
|
|
enum tree_code cond_code;
|
1419 |
|
|
|
1420 |
|
|
var = ASSERT_EXPR_VAR (expr);
|
1421 |
|
|
cond = ASSERT_EXPR_COND (expr);
|
1422 |
|
|
|
1423 |
|
|
gcc_assert (COMPARISON_CLASS_P (cond));
|
1424 |
|
|
|
1425 |
|
|
/* Find VAR in the ASSERT_EXPR conditional. */
|
1426 |
|
|
if (var == TREE_OPERAND (cond, 0)
|
1427 |
|
|
|| TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
|
1428 |
|
|
|| TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
|
1429 |
|
|
{
|
1430 |
|
|
/* If the predicate is of the form VAR COMP LIMIT, then we just
|
1431 |
|
|
take LIMIT from the RHS and use the same comparison code. */
|
1432 |
|
|
cond_code = TREE_CODE (cond);
|
1433 |
|
|
limit = TREE_OPERAND (cond, 1);
|
1434 |
|
|
cond = TREE_OPERAND (cond, 0);
|
1435 |
|
|
}
|
1436 |
|
|
else
|
1437 |
|
|
{
|
1438 |
|
|
/* If the predicate is of the form LIMIT COMP VAR, then we need
|
1439 |
|
|
to flip around the comparison code to create the proper range
|
1440 |
|
|
for VAR. */
|
1441 |
|
|
cond_code = swap_tree_comparison (TREE_CODE (cond));
|
1442 |
|
|
limit = TREE_OPERAND (cond, 0);
|
1443 |
|
|
cond = TREE_OPERAND (cond, 1);
|
1444 |
|
|
}
|
1445 |
|
|
|
1446 |
|
|
limit = avoid_overflow_infinity (limit);
|
1447 |
|
|
|
1448 |
|
|
type = TREE_TYPE (limit);
|
1449 |
|
|
gcc_assert (limit != var);
|
1450 |
|
|
|
1451 |
|
|
/* For pointer arithmetic, we only keep track of pointer equality
|
1452 |
|
|
and inequality. */
|
1453 |
|
|
if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
|
1454 |
|
|
{
|
1455 |
|
|
set_value_range_to_varying (vr_p);
|
1456 |
|
|
return;
|
1457 |
|
|
}
|
1458 |
|
|
|
1459 |
|
|
/* If LIMIT is another SSA name and LIMIT has a range of its own,
|
1460 |
|
|
try to use LIMIT's range to avoid creating symbolic ranges
|
1461 |
|
|
unnecessarily. */
|
1462 |
|
|
limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
|
1463 |
|
|
|
1464 |
|
|
/* LIMIT's range is only interesting if it has any useful information. */
|
1465 |
|
|
if (limit_vr
|
1466 |
|
|
&& (limit_vr->type == VR_UNDEFINED
|
1467 |
|
|
|| limit_vr->type == VR_VARYING
|
1468 |
|
|
|| symbolic_range_p (limit_vr)))
|
1469 |
|
|
limit_vr = NULL;
|
1470 |
|
|
|
1471 |
|
|
/* Initially, the new range has the same set of equivalences of
|
1472 |
|
|
VAR's range. This will be revised before returning the final
|
1473 |
|
|
value. Since assertions may be chained via mutually exclusive
|
1474 |
|
|
predicates, we will need to trim the set of equivalences before
|
1475 |
|
|
we are done. */
|
1476 |
|
|
gcc_assert (vr_p->equiv == NULL);
|
1477 |
|
|
add_equivalence (&vr_p->equiv, var);
|
1478 |
|
|
|
1479 |
|
|
/* Extract a new range based on the asserted comparison for VAR and
|
1480 |
|
|
LIMIT's value range. Notice that if LIMIT has an anti-range, we
|
1481 |
|
|
will only use it for equality comparisons (EQ_EXPR). For any
|
1482 |
|
|
other kind of assertion, we cannot derive a range from LIMIT's
|
1483 |
|
|
anti-range that can be used to describe the new range. For
|
1484 |
|
|
instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
|
1485 |
|
|
then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
|
1486 |
|
|
no single range for x_2 that could describe LE_EXPR, so we might
|
1487 |
|
|
as well build the range [b_4, +INF] for it.
|
1488 |
|
|
One special case we handle is extracting a range from a
|
1489 |
|
|
range test encoded as (unsigned)var + CST <= limit. */
|
1490 |
|
|
if (TREE_CODE (cond) == NOP_EXPR
|
1491 |
|
|
|| TREE_CODE (cond) == PLUS_EXPR)
|
1492 |
|
|
{
|
1493 |
|
|
if (TREE_CODE (cond) == PLUS_EXPR)
|
1494 |
|
|
{
|
1495 |
|
|
min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
|
1496 |
|
|
TREE_OPERAND (cond, 1));
|
1497 |
|
|
max = int_const_binop (PLUS_EXPR, limit, min, 0);
|
1498 |
|
|
cond = TREE_OPERAND (cond, 0);
|
1499 |
|
|
}
|
1500 |
|
|
else
|
1501 |
|
|
{
|
1502 |
|
|
min = build_int_cst (TREE_TYPE (var), 0);
|
1503 |
|
|
max = limit;
|
1504 |
|
|
}
|
1505 |
|
|
|
1506 |
|
|
/* Make sure to not set TREE_OVERFLOW on the final type
|
1507 |
|
|
conversion. We are willingly interpreting large positive
|
1508 |
|
|
unsigned values as negative singed values here. */
|
1509 |
|
|
min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
|
1510 |
|
|
TREE_INT_CST_HIGH (min), 0, false);
|
1511 |
|
|
max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
|
1512 |
|
|
TREE_INT_CST_HIGH (max), 0, false);
|
1513 |
|
|
|
1514 |
|
|
/* We can transform a max, min range to an anti-range or
|
1515 |
|
|
vice-versa. Use set_and_canonicalize_value_range which does
|
1516 |
|
|
this for us. */
|
1517 |
|
|
if (cond_code == LE_EXPR)
|
1518 |
|
|
set_and_canonicalize_value_range (vr_p, VR_RANGE,
|
1519 |
|
|
min, max, vr_p->equiv);
|
1520 |
|
|
else if (cond_code == GT_EXPR)
|
1521 |
|
|
set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
|
1522 |
|
|
min, max, vr_p->equiv);
|
1523 |
|
|
else
|
1524 |
|
|
gcc_unreachable ();
|
1525 |
|
|
}
|
1526 |
|
|
else if (cond_code == EQ_EXPR)
|
1527 |
|
|
{
|
1528 |
|
|
enum value_range_type range_type;
|
1529 |
|
|
|
1530 |
|
|
if (limit_vr)
|
1531 |
|
|
{
|
1532 |
|
|
range_type = limit_vr->type;
|
1533 |
|
|
min = limit_vr->min;
|
1534 |
|
|
max = limit_vr->max;
|
1535 |
|
|
}
|
1536 |
|
|
else
|
1537 |
|
|
{
|
1538 |
|
|
range_type = VR_RANGE;
|
1539 |
|
|
min = limit;
|
1540 |
|
|
max = limit;
|
1541 |
|
|
}
|
1542 |
|
|
|
1543 |
|
|
set_value_range (vr_p, range_type, min, max, vr_p->equiv);
|
1544 |
|
|
|
1545 |
|
|
/* When asserting the equality VAR == LIMIT and LIMIT is another
|
1546 |
|
|
SSA name, the new range will also inherit the equivalence set
|
1547 |
|
|
from LIMIT. */
|
1548 |
|
|
if (TREE_CODE (limit) == SSA_NAME)
|
1549 |
|
|
add_equivalence (&vr_p->equiv, limit);
|
1550 |
|
|
}
|
1551 |
|
|
else if (cond_code == NE_EXPR)
|
1552 |
|
|
{
|
1553 |
|
|
/* As described above, when LIMIT's range is an anti-range and
|
1554 |
|
|
this assertion is an inequality (NE_EXPR), then we cannot
|
1555 |
|
|
derive anything from the anti-range. For instance, if
|
1556 |
|
|
LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
|
1557 |
|
|
not imply that VAR's range is [0, 0]. So, in the case of
|
1558 |
|
|
anti-ranges, we just assert the inequality using LIMIT and
|
1559 |
|
|
not its anti-range.
|
1560 |
|
|
|
1561 |
|
|
If LIMIT_VR is a range, we can only use it to build a new
|
1562 |
|
|
anti-range if LIMIT_VR is a single-valued range. For
|
1563 |
|
|
instance, if LIMIT_VR is [0, 1], the predicate
|
1564 |
|
|
VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
|
1565 |
|
|
Rather, it means that for value 0 VAR should be ~[0, 0]
|
1566 |
|
|
and for value 1, VAR should be ~[1, 1]. We cannot
|
1567 |
|
|
represent these ranges.
|
1568 |
|
|
|
1569 |
|
|
The only situation in which we can build a valid
|
1570 |
|
|
anti-range is when LIMIT_VR is a single-valued range
|
1571 |
|
|
(i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
|
1572 |
|
|
build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
|
1573 |
|
|
if (limit_vr
|
1574 |
|
|
&& limit_vr->type == VR_RANGE
|
1575 |
|
|
&& compare_values (limit_vr->min, limit_vr->max) == 0)
|
1576 |
|
|
{
|
1577 |
|
|
min = limit_vr->min;
|
1578 |
|
|
max = limit_vr->max;
|
1579 |
|
|
}
|
1580 |
|
|
else
|
1581 |
|
|
{
|
1582 |
|
|
/* In any other case, we cannot use LIMIT's range to build a
|
1583 |
|
|
valid anti-range. */
|
1584 |
|
|
min = max = limit;
|
1585 |
|
|
}
|
1586 |
|
|
|
1587 |
|
|
/* If MIN and MAX cover the whole range for their type, then
|
1588 |
|
|
just use the original LIMIT. */
|
1589 |
|
|
if (INTEGRAL_TYPE_P (type)
|
1590 |
|
|
&& vrp_val_is_min (min)
|
1591 |
|
|
&& vrp_val_is_max (max))
|
1592 |
|
|
min = max = limit;
|
1593 |
|
|
|
1594 |
|
|
set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
|
1595 |
|
|
}
|
1596 |
|
|
else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
|
1597 |
|
|
{
|
1598 |
|
|
min = TYPE_MIN_VALUE (type);
|
1599 |
|
|
|
1600 |
|
|
if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
|
1601 |
|
|
max = limit;
|
1602 |
|
|
else
|
1603 |
|
|
{
|
1604 |
|
|
/* If LIMIT_VR is of the form [N1, N2], we need to build the
|
1605 |
|
|
range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
|
1606 |
|
|
LT_EXPR. */
|
1607 |
|
|
max = limit_vr->max;
|
1608 |
|
|
}
|
1609 |
|
|
|
1610 |
|
|
/* If the maximum value forces us to be out of bounds, simply punt.
|
1611 |
|
|
It would be pointless to try and do anything more since this
|
1612 |
|
|
all should be optimized away above us. */
|
1613 |
|
|
if ((cond_code == LT_EXPR
|
1614 |
|
|
&& compare_values (max, min) == 0)
|
1615 |
|
|
|| (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
|
1616 |
|
|
set_value_range_to_varying (vr_p);
|
1617 |
|
|
else
|
1618 |
|
|
{
|
1619 |
|
|
/* For LT_EXPR, we create the range [MIN, MAX - 1]. */
|
1620 |
|
|
if (cond_code == LT_EXPR)
|
1621 |
|
|
{
|
1622 |
|
|
tree one = build_int_cst (type, 1);
|
1623 |
|
|
max = fold_build2 (MINUS_EXPR, type, max, one);
|
1624 |
|
|
if (EXPR_P (max))
|
1625 |
|
|
TREE_NO_WARNING (max) = 1;
|
1626 |
|
|
}
|
1627 |
|
|
|
1628 |
|
|
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
|
1629 |
|
|
}
|
1630 |
|
|
}
|
1631 |
|
|
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
|
1632 |
|
|
{
|
1633 |
|
|
max = TYPE_MAX_VALUE (type);
|
1634 |
|
|
|
1635 |
|
|
if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
|
1636 |
|
|
min = limit;
|
1637 |
|
|
else
|
1638 |
|
|
{
|
1639 |
|
|
/* If LIMIT_VR is of the form [N1, N2], we need to build the
|
1640 |
|
|
range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
|
1641 |
|
|
GT_EXPR. */
|
1642 |
|
|
min = limit_vr->min;
|
1643 |
|
|
}
|
1644 |
|
|
|
1645 |
|
|
/* If the minimum value forces us to be out of bounds, simply punt.
|
1646 |
|
|
It would be pointless to try and do anything more since this
|
1647 |
|
|
all should be optimized away above us. */
|
1648 |
|
|
if ((cond_code == GT_EXPR
|
1649 |
|
|
&& compare_values (min, max) == 0)
|
1650 |
|
|
|| (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
|
1651 |
|
|
set_value_range_to_varying (vr_p);
|
1652 |
|
|
else
|
1653 |
|
|
{
|
1654 |
|
|
/* For GT_EXPR, we create the range [MIN + 1, MAX]. */
|
1655 |
|
|
if (cond_code == GT_EXPR)
|
1656 |
|
|
{
|
1657 |
|
|
tree one = build_int_cst (type, 1);
|
1658 |
|
|
min = fold_build2 (PLUS_EXPR, type, min, one);
|
1659 |
|
|
if (EXPR_P (min))
|
1660 |
|
|
TREE_NO_WARNING (min) = 1;
|
1661 |
|
|
}
|
1662 |
|
|
|
1663 |
|
|
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
|
1664 |
|
|
}
|
1665 |
|
|
}
|
1666 |
|
|
else
|
1667 |
|
|
gcc_unreachable ();
|
1668 |
|
|
|
1669 |
|
|
/* If VAR already had a known range, it may happen that the new
|
1670 |
|
|
range we have computed and VAR's range are not compatible. For
|
1671 |
|
|
instance,
|
1672 |
|
|
|
1673 |
|
|
if (p_5 == NULL)
|
1674 |
|
|
p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
|
1675 |
|
|
x_7 = p_6->fld;
|
1676 |
|
|
p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
|
1677 |
|
|
|
1678 |
|
|
While the above comes from a faulty program, it will cause an ICE
|
1679 |
|
|
later because p_8 and p_6 will have incompatible ranges and at
|
1680 |
|
|
the same time will be considered equivalent. A similar situation
|
1681 |
|
|
would arise from
|
1682 |
|
|
|
1683 |
|
|
if (i_5 > 10)
|
1684 |
|
|
i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
|
1685 |
|
|
if (i_5 < 5)
|
1686 |
|
|
i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
|
1687 |
|
|
|
1688 |
|
|
Again i_6 and i_7 will have incompatible ranges. It would be
|
1689 |
|
|
pointless to try and do anything with i_7's range because
|
1690 |
|
|
anything dominated by 'if (i_5 < 5)' will be optimized away.
|
1691 |
|
|
Note, due to the wa in which simulation proceeds, the statement
|
1692 |
|
|
i_7 = ASSERT_EXPR <...> we would never be visited because the
|
1693 |
|
|
conditional 'if (i_5 < 5)' always evaluates to false. However,
|
1694 |
|
|
this extra check does not hurt and may protect against future
|
1695 |
|
|
changes to VRP that may get into a situation similar to the
|
1696 |
|
|
NULL pointer dereference example.
|
1697 |
|
|
|
1698 |
|
|
Note that these compatibility tests are only needed when dealing
|
1699 |
|
|
with ranges or a mix of range and anti-range. If VAR_VR and VR_P
|
1700 |
|
|
are both anti-ranges, they will always be compatible, because two
|
1701 |
|
|
anti-ranges will always have a non-empty intersection. */
|
1702 |
|
|
|
1703 |
|
|
var_vr = get_value_range (var);
|
1704 |
|
|
|
1705 |
|
|
/* We may need to make adjustments when VR_P and VAR_VR are numeric
|
1706 |
|
|
ranges or anti-ranges. */
|
1707 |
|
|
if (vr_p->type == VR_VARYING
|
1708 |
|
|
|| vr_p->type == VR_UNDEFINED
|
1709 |
|
|
|| var_vr->type == VR_VARYING
|
1710 |
|
|
|| var_vr->type == VR_UNDEFINED
|
1711 |
|
|
|| symbolic_range_p (vr_p)
|
1712 |
|
|
|| symbolic_range_p (var_vr))
|
1713 |
|
|
return;
|
1714 |
|
|
|
1715 |
|
|
if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
|
1716 |
|
|
{
|
1717 |
|
|
/* If the two ranges have a non-empty intersection, we can
|
1718 |
|
|
refine the resulting range. Since the assert expression
|
1719 |
|
|
creates an equivalency and at the same time it asserts a
|
1720 |
|
|
predicate, we can take the intersection of the two ranges to
|
1721 |
|
|
get better precision. */
|
1722 |
|
|
if (value_ranges_intersect_p (var_vr, vr_p))
|
1723 |
|
|
{
|
1724 |
|
|
/* Use the larger of the two minimums. */
|
1725 |
|
|
if (compare_values (vr_p->min, var_vr->min) == -1)
|
1726 |
|
|
min = var_vr->min;
|
1727 |
|
|
else
|
1728 |
|
|
min = vr_p->min;
|
1729 |
|
|
|
1730 |
|
|
/* Use the smaller of the two maximums. */
|
1731 |
|
|
if (compare_values (vr_p->max, var_vr->max) == 1)
|
1732 |
|
|
max = var_vr->max;
|
1733 |
|
|
else
|
1734 |
|
|
max = vr_p->max;
|
1735 |
|
|
|
1736 |
|
|
set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
|
1737 |
|
|
}
|
1738 |
|
|
else
|
1739 |
|
|
{
|
1740 |
|
|
/* The two ranges do not intersect, set the new range to
|
1741 |
|
|
VARYING, because we will not be able to do anything
|
1742 |
|
|
meaningful with it. */
|
1743 |
|
|
set_value_range_to_varying (vr_p);
|
1744 |
|
|
}
|
1745 |
|
|
}
|
1746 |
|
|
else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
|
1747 |
|
|
|| (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
|
1748 |
|
|
{
|
1749 |
|
|
/* A range and an anti-range will cancel each other only if
|
1750 |
|
|
their ends are the same. For instance, in the example above,
|
1751 |
|
|
p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
|
1752 |
|
|
so VR_P should be set to VR_VARYING. */
|
1753 |
|
|
if (compare_values (var_vr->min, vr_p->min) == 0
|
1754 |
|
|
&& compare_values (var_vr->max, vr_p->max) == 0)
|
1755 |
|
|
set_value_range_to_varying (vr_p);
|
1756 |
|
|
else
|
1757 |
|
|
{
|
1758 |
|
|
tree min, max, anti_min, anti_max, real_min, real_max;
|
1759 |
|
|
int cmp;
|
1760 |
|
|
|
1761 |
|
|
/* We want to compute the logical AND of the two ranges;
|
1762 |
|
|
there are three cases to consider.
|
1763 |
|
|
|
1764 |
|
|
|
1765 |
|
|
1. The VR_ANTI_RANGE range is completely within the
|
1766 |
|
|
VR_RANGE and the endpoints of the ranges are
|
1767 |
|
|
different. In that case the resulting range
|
1768 |
|
|
should be whichever range is more precise.
|
1769 |
|
|
Typically that will be the VR_RANGE.
|
1770 |
|
|
|
1771 |
|
|
2. The VR_ANTI_RANGE is completely disjoint from
|
1772 |
|
|
the VR_RANGE. In this case the resulting range
|
1773 |
|
|
should be the VR_RANGE.
|
1774 |
|
|
|
1775 |
|
|
3. There is some overlap between the VR_ANTI_RANGE
|
1776 |
|
|
and the VR_RANGE.
|
1777 |
|
|
|
1778 |
|
|
3a. If the high limit of the VR_ANTI_RANGE resides
|
1779 |
|
|
within the VR_RANGE, then the result is a new
|
1780 |
|
|
VR_RANGE starting at the high limit of the
|
1781 |
|
|
VR_ANTI_RANGE + 1 and extending to the
|
1782 |
|
|
high limit of the original VR_RANGE.
|
1783 |
|
|
|
1784 |
|
|
3b. If the low limit of the VR_ANTI_RANGE resides
|
1785 |
|
|
within the VR_RANGE, then the result is a new
|
1786 |
|
|
VR_RANGE starting at the low limit of the original
|
1787 |
|
|
VR_RANGE and extending to the low limit of the
|
1788 |
|
|
VR_ANTI_RANGE - 1. */
|
1789 |
|
|
if (vr_p->type == VR_ANTI_RANGE)
|
1790 |
|
|
{
|
1791 |
|
|
anti_min = vr_p->min;
|
1792 |
|
|
anti_max = vr_p->max;
|
1793 |
|
|
real_min = var_vr->min;
|
1794 |
|
|
real_max = var_vr->max;
|
1795 |
|
|
}
|
1796 |
|
|
else
|
1797 |
|
|
{
|
1798 |
|
|
anti_min = var_vr->min;
|
1799 |
|
|
anti_max = var_vr->max;
|
1800 |
|
|
real_min = vr_p->min;
|
1801 |
|
|
real_max = vr_p->max;
|
1802 |
|
|
}
|
1803 |
|
|
|
1804 |
|
|
|
1805 |
|
|
/* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
|
1806 |
|
|
not including any endpoints. */
|
1807 |
|
|
if (compare_values (anti_max, real_max) == -1
|
1808 |
|
|
&& compare_values (anti_min, real_min) == 1)
|
1809 |
|
|
{
|
1810 |
|
|
/* If the range is covering the whole valid range of
|
1811 |
|
|
the type keep the anti-range. */
|
1812 |
|
|
if (!vrp_val_is_min (real_min)
|
1813 |
|
|
|| !vrp_val_is_max (real_max))
|
1814 |
|
|
set_value_range (vr_p, VR_RANGE, real_min,
|
1815 |
|
|
real_max, vr_p->equiv);
|
1816 |
|
|
}
|
1817 |
|
|
/* Case 2, VR_ANTI_RANGE completely disjoint from
|
1818 |
|
|
VR_RANGE. */
|
1819 |
|
|
else if (compare_values (anti_min, real_max) == 1
|
1820 |
|
|
|| compare_values (anti_max, real_min) == -1)
|
1821 |
|
|
{
|
1822 |
|
|
set_value_range (vr_p, VR_RANGE, real_min,
|
1823 |
|
|
real_max, vr_p->equiv);
|
1824 |
|
|
}
|
1825 |
|
|
/* Case 3a, the anti-range extends into the low
|
1826 |
|
|
part of the real range. Thus creating a new
|
1827 |
|
|
low for the real range. */
|
1828 |
|
|
else if (((cmp = compare_values (anti_max, real_min)) == 1
|
1829 |
|
|
|| cmp == 0)
|
1830 |
|
|
&& compare_values (anti_max, real_max) == -1)
|
1831 |
|
|
{
|
1832 |
|
|
gcc_assert (!is_positive_overflow_infinity (anti_max));
|
1833 |
|
|
if (needs_overflow_infinity (TREE_TYPE (anti_max))
|
1834 |
|
|
&& vrp_val_is_max (anti_max))
|
1835 |
|
|
{
|
1836 |
|
|
if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
|
1837 |
|
|
{
|
1838 |
|
|
set_value_range_to_varying (vr_p);
|
1839 |
|
|
return;
|
1840 |
|
|
}
|
1841 |
|
|
min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
|
1842 |
|
|
}
|
1843 |
|
|
else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
|
1844 |
|
|
min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
|
1845 |
|
|
anti_max,
|
1846 |
|
|
build_int_cst (TREE_TYPE (var_vr->min), 1));
|
1847 |
|
|
else
|
1848 |
|
|
min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
|
1849 |
|
|
anti_max, size_int (1));
|
1850 |
|
|
max = real_max;
|
1851 |
|
|
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
|
1852 |
|
|
}
|
1853 |
|
|
/* Case 3b, the anti-range extends into the high
|
1854 |
|
|
part of the real range. Thus creating a new
|
1855 |
|
|
higher for the real range. */
|
1856 |
|
|
else if (compare_values (anti_min, real_min) == 1
|
1857 |
|
|
&& ((cmp = compare_values (anti_min, real_max)) == -1
|
1858 |
|
|
|| cmp == 0))
|
1859 |
|
|
{
|
1860 |
|
|
gcc_assert (!is_negative_overflow_infinity (anti_min));
|
1861 |
|
|
if (needs_overflow_infinity (TREE_TYPE (anti_min))
|
1862 |
|
|
&& vrp_val_is_min (anti_min))
|
1863 |
|
|
{
|
1864 |
|
|
if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
|
1865 |
|
|
{
|
1866 |
|
|
set_value_range_to_varying (vr_p);
|
1867 |
|
|
return;
|
1868 |
|
|
}
|
1869 |
|
|
max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
|
1870 |
|
|
}
|
1871 |
|
|
else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
|
1872 |
|
|
max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
|
1873 |
|
|
anti_min,
|
1874 |
|
|
build_int_cst (TREE_TYPE (var_vr->min), 1));
|
1875 |
|
|
else
|
1876 |
|
|
max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
|
1877 |
|
|
anti_min,
|
1878 |
|
|
size_int (-1));
|
1879 |
|
|
min = real_min;
|
1880 |
|
|
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
|
1881 |
|
|
}
|
1882 |
|
|
}
|
1883 |
|
|
}
|
1884 |
|
|
}
|
1885 |
|
|
|
1886 |
|
|
|
1887 |
|
|
/* Extract range information from SSA name VAR and store it in VR. If
|
1888 |
|
|
VAR has an interesting range, use it. Otherwise, create the
|
1889 |
|
|
range [VAR, VAR] and return it. This is useful in situations where
|
1890 |
|
|
we may have conditionals testing values of VARYING names. For
|
1891 |
|
|
instance,
|
1892 |
|
|
|
1893 |
|
|
x_3 = y_5;
|
1894 |
|
|
if (x_3 > y_5)
|
1895 |
|
|
...
|
1896 |
|
|
|
1897 |
|
|
Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
|
1898 |
|
|
always false. */
|
1899 |
|
|
|
1900 |
|
|
static void
|
1901 |
|
|
extract_range_from_ssa_name (value_range_t *vr, tree var)
|
1902 |
|
|
{
|
1903 |
|
|
value_range_t *var_vr = get_value_range (var);
|
1904 |
|
|
|
1905 |
|
|
if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
|
1906 |
|
|
copy_value_range (vr, var_vr);
|
1907 |
|
|
else
|
1908 |
|
|
set_value_range (vr, VR_RANGE, var, var, NULL);
|
1909 |
|
|
|
1910 |
|
|
add_equivalence (&vr->equiv, var);
|
1911 |
|
|
}
|
1912 |
|
|
|
1913 |
|
|
|
1914 |
|
|
/* Wrapper around int_const_binop. If the operation overflows and we
|
1915 |
|
|
are not using wrapping arithmetic, then adjust the result to be
|
1916 |
|
|
-INF or +INF depending on CODE, VAL1 and VAL2. This can return
|
1917 |
|
|
NULL_TREE if we need to use an overflow infinity representation but
|
1918 |
|
|
the type does not support it. */
|
1919 |
|
|
|
1920 |
|
|
static tree
|
1921 |
|
|
vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
|
1922 |
|
|
{
|
1923 |
|
|
tree res;
|
1924 |
|
|
|
1925 |
|
|
res = int_const_binop (code, val1, val2, 0);
|
1926 |
|
|
|
1927 |
|
|
/* If we are using unsigned arithmetic, operate symbolically
|
1928 |
|
|
on -INF and +INF as int_const_binop only handles signed overflow. */
|
1929 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (val1)))
|
1930 |
|
|
{
|
1931 |
|
|
int checkz = compare_values (res, val1);
|
1932 |
|
|
bool overflow = false;
|
1933 |
|
|
|
1934 |
|
|
/* Ensure that res = val1 [+*] val2 >= val1
|
1935 |
|
|
or that res = val1 - val2 <= val1. */
|
1936 |
|
|
if ((code == PLUS_EXPR
|
1937 |
|
|
&& !(checkz == 1 || checkz == 0))
|
1938 |
|
|
|| (code == MINUS_EXPR
|
1939 |
|
|
&& !(checkz == 0 || checkz == -1)))
|
1940 |
|
|
{
|
1941 |
|
|
overflow = true;
|
1942 |
|
|
}
|
1943 |
|
|
/* Checking for multiplication overflow is done by dividing the
|
1944 |
|
|
output of the multiplication by the first input of the
|
1945 |
|
|
multiplication. If the result of that division operation is
|
1946 |
|
|
not equal to the second input of the multiplication, then the
|
1947 |
|
|
multiplication overflowed. */
|
1948 |
|
|
else if (code == MULT_EXPR && !integer_zerop (val1))
|
1949 |
|
|
{
|
1950 |
|
|
tree tmp = int_const_binop (TRUNC_DIV_EXPR,
|
1951 |
|
|
res,
|
1952 |
|
|
val1, 0);
|
1953 |
|
|
int check = compare_values (tmp, val2);
|
1954 |
|
|
|
1955 |
|
|
if (check != 0)
|
1956 |
|
|
overflow = true;
|
1957 |
|
|
}
|
1958 |
|
|
|
1959 |
|
|
if (overflow)
|
1960 |
|
|
{
|
1961 |
|
|
res = copy_node (res);
|
1962 |
|
|
TREE_OVERFLOW (res) = 1;
|
1963 |
|
|
}
|
1964 |
|
|
|
1965 |
|
|
}
|
1966 |
|
|
else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
|
1967 |
|
|
/* If the singed operation wraps then int_const_binop has done
|
1968 |
|
|
everything we want. */
|
1969 |
|
|
;
|
1970 |
|
|
else if ((TREE_OVERFLOW (res)
|
1971 |
|
|
&& !TREE_OVERFLOW (val1)
|
1972 |
|
|
&& !TREE_OVERFLOW (val2))
|
1973 |
|
|
|| is_overflow_infinity (val1)
|
1974 |
|
|
|| is_overflow_infinity (val2))
|
1975 |
|
|
{
|
1976 |
|
|
/* If the operation overflowed but neither VAL1 nor VAL2 are
|
1977 |
|
|
overflown, return -INF or +INF depending on the operation
|
1978 |
|
|
and the combination of signs of the operands. */
|
1979 |
|
|
int sgn1 = tree_int_cst_sgn (val1);
|
1980 |
|
|
int sgn2 = tree_int_cst_sgn (val2);
|
1981 |
|
|
|
1982 |
|
|
if (needs_overflow_infinity (TREE_TYPE (res))
|
1983 |
|
|
&& !supports_overflow_infinity (TREE_TYPE (res)))
|
1984 |
|
|
return NULL_TREE;
|
1985 |
|
|
|
1986 |
|
|
/* We have to punt on adding infinities of different signs,
|
1987 |
|
|
since we can't tell what the sign of the result should be.
|
1988 |
|
|
Likewise for subtracting infinities of the same sign. */
|
1989 |
|
|
if (((code == PLUS_EXPR && sgn1 != sgn2)
|
1990 |
|
|
|| (code == MINUS_EXPR && sgn1 == sgn2))
|
1991 |
|
|
&& is_overflow_infinity (val1)
|
1992 |
|
|
&& is_overflow_infinity (val2))
|
1993 |
|
|
return NULL_TREE;
|
1994 |
|
|
|
1995 |
|
|
/* Don't try to handle division or shifting of infinities. */
|
1996 |
|
|
if ((code == TRUNC_DIV_EXPR
|
1997 |
|
|
|| code == FLOOR_DIV_EXPR
|
1998 |
|
|
|| code == CEIL_DIV_EXPR
|
1999 |
|
|
|| code == EXACT_DIV_EXPR
|
2000 |
|
|
|| code == ROUND_DIV_EXPR
|
2001 |
|
|
|| code == RSHIFT_EXPR)
|
2002 |
|
|
&& (is_overflow_infinity (val1)
|
2003 |
|
|
|| is_overflow_infinity (val2)))
|
2004 |
|
|
return NULL_TREE;
|
2005 |
|
|
|
2006 |
|
|
/* Notice that we only need to handle the restricted set of
|
2007 |
|
|
operations handled by extract_range_from_binary_expr.
|
2008 |
|
|
Among them, only multiplication, addition and subtraction
|
2009 |
|
|
can yield overflow without overflown operands because we
|
2010 |
|
|
are working with integral types only... except in the
|
2011 |
|
|
case VAL1 = -INF and VAL2 = -1 which overflows to +INF
|
2012 |
|
|
for division too. */
|
2013 |
|
|
|
2014 |
|
|
/* For multiplication, the sign of the overflow is given
|
2015 |
|
|
by the comparison of the signs of the operands. */
|
2016 |
|
|
if ((code == MULT_EXPR && sgn1 == sgn2)
|
2017 |
|
|
/* For addition, the operands must be of the same sign
|
2018 |
|
|
to yield an overflow. Its sign is therefore that
|
2019 |
|
|
of one of the operands, for example the first. For
|
2020 |
|
|
infinite operands X + -INF is negative, not positive. */
|
2021 |
|
|
|| (code == PLUS_EXPR
|
2022 |
|
|
&& (sgn1 >= 0
|
2023 |
|
|
? !is_negative_overflow_infinity (val2)
|
2024 |
|
|
: is_positive_overflow_infinity (val2)))
|
2025 |
|
|
/* For subtraction, non-infinite operands must be of
|
2026 |
|
|
different signs to yield an overflow. Its sign is
|
2027 |
|
|
therefore that of the first operand or the opposite of
|
2028 |
|
|
that of the second operand. A first operand of 0 counts
|
2029 |
|
|
as positive here, for the corner case 0 - (-INF), which
|
2030 |
|
|
overflows, but must yield +INF. For infinite operands 0
|
2031 |
|
|
- INF is negative, not positive. */
|
2032 |
|
|
|| (code == MINUS_EXPR
|
2033 |
|
|
&& (sgn1 >= 0
|
2034 |
|
|
? !is_positive_overflow_infinity (val2)
|
2035 |
|
|
: is_negative_overflow_infinity (val2)))
|
2036 |
|
|
/* We only get in here with positive shift count, so the
|
2037 |
|
|
overflow direction is the same as the sign of val1.
|
2038 |
|
|
Actually rshift does not overflow at all, but we only
|
2039 |
|
|
handle the case of shifting overflowed -INF and +INF. */
|
2040 |
|
|
|| (code == RSHIFT_EXPR
|
2041 |
|
|
&& sgn1 >= 0)
|
2042 |
|
|
/* For division, the only case is -INF / -1 = +INF. */
|
2043 |
|
|
|| code == TRUNC_DIV_EXPR
|
2044 |
|
|
|| code == FLOOR_DIV_EXPR
|
2045 |
|
|
|| code == CEIL_DIV_EXPR
|
2046 |
|
|
|| code == EXACT_DIV_EXPR
|
2047 |
|
|
|| code == ROUND_DIV_EXPR)
|
2048 |
|
|
return (needs_overflow_infinity (TREE_TYPE (res))
|
2049 |
|
|
? positive_overflow_infinity (TREE_TYPE (res))
|
2050 |
|
|
: TYPE_MAX_VALUE (TREE_TYPE (res)));
|
2051 |
|
|
else
|
2052 |
|
|
return (needs_overflow_infinity (TREE_TYPE (res))
|
2053 |
|
|
? negative_overflow_infinity (TREE_TYPE (res))
|
2054 |
|
|
: TYPE_MIN_VALUE (TREE_TYPE (res)));
|
2055 |
|
|
}
|
2056 |
|
|
|
2057 |
|
|
return res;
|
2058 |
|
|
}
|
2059 |
|
|
|
2060 |
|
|
|
2061 |
|
|
/* Extract range information from a binary expression EXPR based on
|
2062 |
|
|
the ranges of each of its operands and the expression code. */
|
2063 |
|
|
|
2064 |
|
|
static void
|
2065 |
|
|
extract_range_from_binary_expr (value_range_t *vr,
|
2066 |
|
|
enum tree_code code,
|
2067 |
|
|
tree expr_type, tree op0, tree op1)
|
2068 |
|
|
{
|
2069 |
|
|
enum value_range_type type;
|
2070 |
|
|
tree min, max;
|
2071 |
|
|
int cmp;
|
2072 |
|
|
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
2073 |
|
|
value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
2074 |
|
|
|
2075 |
|
|
/* Not all binary expressions can be applied to ranges in a
|
2076 |
|
|
meaningful way. Handle only arithmetic operations. */
|
2077 |
|
|
if (code != PLUS_EXPR
|
2078 |
|
|
&& code != MINUS_EXPR
|
2079 |
|
|
&& code != POINTER_PLUS_EXPR
|
2080 |
|
|
&& code != MULT_EXPR
|
2081 |
|
|
&& code != TRUNC_DIV_EXPR
|
2082 |
|
|
&& code != FLOOR_DIV_EXPR
|
2083 |
|
|
&& code != CEIL_DIV_EXPR
|
2084 |
|
|
&& code != EXACT_DIV_EXPR
|
2085 |
|
|
&& code != ROUND_DIV_EXPR
|
2086 |
|
|
&& code != TRUNC_MOD_EXPR
|
2087 |
|
|
&& code != RSHIFT_EXPR
|
2088 |
|
|
&& code != MIN_EXPR
|
2089 |
|
|
&& code != MAX_EXPR
|
2090 |
|
|
&& code != BIT_AND_EXPR
|
2091 |
|
|
&& code != BIT_IOR_EXPR
|
2092 |
|
|
&& code != TRUTH_AND_EXPR
|
2093 |
|
|
&& code != TRUTH_OR_EXPR)
|
2094 |
|
|
{
|
2095 |
|
|
/* We can still do constant propagation here. */
|
2096 |
|
|
tree const_op0 = op_with_constant_singleton_value_range (op0);
|
2097 |
|
|
tree const_op1 = op_with_constant_singleton_value_range (op1);
|
2098 |
|
|
if (const_op0 || const_op1)
|
2099 |
|
|
{
|
2100 |
|
|
tree tem = fold_binary (code, expr_type,
|
2101 |
|
|
const_op0 ? const_op0 : op0,
|
2102 |
|
|
const_op1 ? const_op1 : op1);
|
2103 |
|
|
if (tem
|
2104 |
|
|
&& is_gimple_min_invariant (tem)
|
2105 |
|
|
&& !is_overflow_infinity (tem))
|
2106 |
|
|
{
|
2107 |
|
|
set_value_range (vr, VR_RANGE, tem, tem, NULL);
|
2108 |
|
|
return;
|
2109 |
|
|
}
|
2110 |
|
|
}
|
2111 |
|
|
set_value_range_to_varying (vr);
|
2112 |
|
|
return;
|
2113 |
|
|
}
|
2114 |
|
|
|
2115 |
|
|
/* Get value ranges for each operand. For constant operands, create
|
2116 |
|
|
a new value range with the operand to simplify processing. */
|
2117 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
2118 |
|
|
vr0 = *(get_value_range (op0));
|
2119 |
|
|
else if (is_gimple_min_invariant (op0))
|
2120 |
|
|
set_value_range_to_value (&vr0, op0, NULL);
|
2121 |
|
|
else
|
2122 |
|
|
set_value_range_to_varying (&vr0);
|
2123 |
|
|
|
2124 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
2125 |
|
|
vr1 = *(get_value_range (op1));
|
2126 |
|
|
else if (is_gimple_min_invariant (op1))
|
2127 |
|
|
set_value_range_to_value (&vr1, op1, NULL);
|
2128 |
|
|
else
|
2129 |
|
|
set_value_range_to_varying (&vr1);
|
2130 |
|
|
|
2131 |
|
|
/* If either range is UNDEFINED, so is the result. */
|
2132 |
|
|
if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
|
2133 |
|
|
{
|
2134 |
|
|
set_value_range_to_undefined (vr);
|
2135 |
|
|
return;
|
2136 |
|
|
}
|
2137 |
|
|
|
2138 |
|
|
/* The type of the resulting value range defaults to VR0.TYPE. */
|
2139 |
|
|
type = vr0.type;
|
2140 |
|
|
|
2141 |
|
|
/* Refuse to operate on VARYING ranges, ranges of different kinds
|
2142 |
|
|
and symbolic ranges. As an exception, we allow BIT_AND_EXPR
|
2143 |
|
|
because we may be able to derive a useful range even if one of
|
2144 |
|
|
the operands is VR_VARYING or symbolic range. Similarly for
|
2145 |
|
|
divisions. TODO, we may be able to derive anti-ranges in
|
2146 |
|
|
some cases. */
|
2147 |
|
|
if (code != BIT_AND_EXPR
|
2148 |
|
|
&& code != TRUTH_AND_EXPR
|
2149 |
|
|
&& code != TRUTH_OR_EXPR
|
2150 |
|
|
&& code != TRUNC_DIV_EXPR
|
2151 |
|
|
&& code != FLOOR_DIV_EXPR
|
2152 |
|
|
&& code != CEIL_DIV_EXPR
|
2153 |
|
|
&& code != EXACT_DIV_EXPR
|
2154 |
|
|
&& code != ROUND_DIV_EXPR
|
2155 |
|
|
&& code != TRUNC_MOD_EXPR
|
2156 |
|
|
&& (vr0.type == VR_VARYING
|
2157 |
|
|
|| vr1.type == VR_VARYING
|
2158 |
|
|
|| vr0.type != vr1.type
|
2159 |
|
|
|| symbolic_range_p (&vr0)
|
2160 |
|
|
|| symbolic_range_p (&vr1)))
|
2161 |
|
|
{
|
2162 |
|
|
set_value_range_to_varying (vr);
|
2163 |
|
|
return;
|
2164 |
|
|
}
|
2165 |
|
|
|
2166 |
|
|
/* Now evaluate the expression to determine the new range. */
|
2167 |
|
|
if (POINTER_TYPE_P (expr_type)
|
2168 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (op0))
|
2169 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (op1)))
|
2170 |
|
|
{
|
2171 |
|
|
if (code == MIN_EXPR || code == MAX_EXPR)
|
2172 |
|
|
{
|
2173 |
|
|
/* For MIN/MAX expressions with pointers, we only care about
|
2174 |
|
|
nullness, if both are non null, then the result is nonnull.
|
2175 |
|
|
If both are null, then the result is null. Otherwise they
|
2176 |
|
|
are varying. */
|
2177 |
|
|
if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
|
2178 |
|
|
set_value_range_to_nonnull (vr, expr_type);
|
2179 |
|
|
else if (range_is_null (&vr0) && range_is_null (&vr1))
|
2180 |
|
|
set_value_range_to_null (vr, expr_type);
|
2181 |
|
|
else
|
2182 |
|
|
set_value_range_to_varying (vr);
|
2183 |
|
|
|
2184 |
|
|
return;
|
2185 |
|
|
}
|
2186 |
|
|
gcc_assert (code == POINTER_PLUS_EXPR);
|
2187 |
|
|
/* For pointer types, we are really only interested in asserting
|
2188 |
|
|
whether the expression evaluates to non-NULL. */
|
2189 |
|
|
if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
|
2190 |
|
|
set_value_range_to_nonnull (vr, expr_type);
|
2191 |
|
|
else if (range_is_null (&vr0) && range_is_null (&vr1))
|
2192 |
|
|
set_value_range_to_null (vr, expr_type);
|
2193 |
|
|
else
|
2194 |
|
|
set_value_range_to_varying (vr);
|
2195 |
|
|
|
2196 |
|
|
return;
|
2197 |
|
|
}
|
2198 |
|
|
|
2199 |
|
|
/* For integer ranges, apply the operation to each end of the
|
2200 |
|
|
range and see what we end up with. */
|
2201 |
|
|
if (code == TRUTH_AND_EXPR
|
2202 |
|
|
|| code == TRUTH_OR_EXPR)
|
2203 |
|
|
{
|
2204 |
|
|
/* If one of the operands is zero, we know that the whole
|
2205 |
|
|
expression evaluates zero. */
|
2206 |
|
|
if (code == TRUTH_AND_EXPR
|
2207 |
|
|
&& ((vr0.type == VR_RANGE
|
2208 |
|
|
&& integer_zerop (vr0.min)
|
2209 |
|
|
&& integer_zerop (vr0.max))
|
2210 |
|
|
|| (vr1.type == VR_RANGE
|
2211 |
|
|
&& integer_zerop (vr1.min)
|
2212 |
|
|
&& integer_zerop (vr1.max))))
|
2213 |
|
|
{
|
2214 |
|
|
type = VR_RANGE;
|
2215 |
|
|
min = max = build_int_cst (expr_type, 0);
|
2216 |
|
|
}
|
2217 |
|
|
/* If one of the operands is one, we know that the whole
|
2218 |
|
|
expression evaluates one. */
|
2219 |
|
|
else if (code == TRUTH_OR_EXPR
|
2220 |
|
|
&& ((vr0.type == VR_RANGE
|
2221 |
|
|
&& integer_onep (vr0.min)
|
2222 |
|
|
&& integer_onep (vr0.max))
|
2223 |
|
|
|| (vr1.type == VR_RANGE
|
2224 |
|
|
&& integer_onep (vr1.min)
|
2225 |
|
|
&& integer_onep (vr1.max))))
|
2226 |
|
|
{
|
2227 |
|
|
type = VR_RANGE;
|
2228 |
|
|
min = max = build_int_cst (expr_type, 1);
|
2229 |
|
|
}
|
2230 |
|
|
else if (vr0.type != VR_VARYING
|
2231 |
|
|
&& vr1.type != VR_VARYING
|
2232 |
|
|
&& vr0.type == vr1.type
|
2233 |
|
|
&& !symbolic_range_p (&vr0)
|
2234 |
|
|
&& !overflow_infinity_range_p (&vr0)
|
2235 |
|
|
&& !symbolic_range_p (&vr1)
|
2236 |
|
|
&& !overflow_infinity_range_p (&vr1))
|
2237 |
|
|
{
|
2238 |
|
|
/* Boolean expressions cannot be folded with int_const_binop. */
|
2239 |
|
|
min = fold_binary (code, expr_type, vr0.min, vr1.min);
|
2240 |
|
|
max = fold_binary (code, expr_type, vr0.max, vr1.max);
|
2241 |
|
|
}
|
2242 |
|
|
else
|
2243 |
|
|
{
|
2244 |
|
|
/* The result of a TRUTH_*_EXPR is always true or false. */
|
2245 |
|
|
set_value_range_to_truthvalue (vr, expr_type);
|
2246 |
|
|
return;
|
2247 |
|
|
}
|
2248 |
|
|
}
|
2249 |
|
|
else if (code == PLUS_EXPR
|
2250 |
|
|
|| code == MIN_EXPR
|
2251 |
|
|
|| code == MAX_EXPR)
|
2252 |
|
|
{
|
2253 |
|
|
/* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
|
2254 |
|
|
VR_VARYING. It would take more effort to compute a precise
|
2255 |
|
|
range for such a case. For example, if we have op0 == 1 and
|
2256 |
|
|
op1 == -1 with their ranges both being ~[0,0], we would have
|
2257 |
|
|
op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
|
2258 |
|
|
Note that we are guaranteed to have vr0.type == vr1.type at
|
2259 |
|
|
this point. */
|
2260 |
|
|
if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
|
2261 |
|
|
{
|
2262 |
|
|
set_value_range_to_varying (vr);
|
2263 |
|
|
return;
|
2264 |
|
|
}
|
2265 |
|
|
|
2266 |
|
|
/* For operations that make the resulting range directly
|
2267 |
|
|
proportional to the original ranges, apply the operation to
|
2268 |
|
|
the same end of each range. */
|
2269 |
|
|
min = vrp_int_const_binop (code, vr0.min, vr1.min);
|
2270 |
|
|
max = vrp_int_const_binop (code, vr0.max, vr1.max);
|
2271 |
|
|
|
2272 |
|
|
/* If both additions overflowed the range kind is still correct.
|
2273 |
|
|
This happens regularly with subtracting something in unsigned
|
2274 |
|
|
arithmetic.
|
2275 |
|
|
??? See PR30318 for all the cases we do not handle. */
|
2276 |
|
|
if (code == PLUS_EXPR
|
2277 |
|
|
&& (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
|
2278 |
|
|
&& (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
|
2279 |
|
|
{
|
2280 |
|
|
min = build_int_cst_wide (TREE_TYPE (min),
|
2281 |
|
|
TREE_INT_CST_LOW (min),
|
2282 |
|
|
TREE_INT_CST_HIGH (min));
|
2283 |
|
|
max = build_int_cst_wide (TREE_TYPE (max),
|
2284 |
|
|
TREE_INT_CST_LOW (max),
|
2285 |
|
|
TREE_INT_CST_HIGH (max));
|
2286 |
|
|
}
|
2287 |
|
|
}
|
2288 |
|
|
else if (code == MULT_EXPR
|
2289 |
|
|
|| code == TRUNC_DIV_EXPR
|
2290 |
|
|
|| code == FLOOR_DIV_EXPR
|
2291 |
|
|
|| code == CEIL_DIV_EXPR
|
2292 |
|
|
|| code == EXACT_DIV_EXPR
|
2293 |
|
|
|| code == ROUND_DIV_EXPR
|
2294 |
|
|
|| code == RSHIFT_EXPR)
|
2295 |
|
|
{
|
2296 |
|
|
tree val[4];
|
2297 |
|
|
size_t i;
|
2298 |
|
|
bool sop;
|
2299 |
|
|
|
2300 |
|
|
/* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
|
2301 |
|
|
drop to VR_VARYING. It would take more effort to compute a
|
2302 |
|
|
precise range for such a case. For example, if we have
|
2303 |
|
|
op0 == 65536 and op1 == 65536 with their ranges both being
|
2304 |
|
|
~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
|
2305 |
|
|
we cannot claim that the product is in ~[0,0]. Note that we
|
2306 |
|
|
are guaranteed to have vr0.type == vr1.type at this
|
2307 |
|
|
point. */
|
2308 |
|
|
if (code == MULT_EXPR
|
2309 |
|
|
&& vr0.type == VR_ANTI_RANGE
|
2310 |
|
|
&& !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
|
2311 |
|
|
{
|
2312 |
|
|
set_value_range_to_varying (vr);
|
2313 |
|
|
return;
|
2314 |
|
|
}
|
2315 |
|
|
|
2316 |
|
|
/* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
|
2317 |
|
|
then drop to VR_VARYING. Outside of this range we get undefined
|
2318 |
|
|
behavior from the shift operation. We cannot even trust
|
2319 |
|
|
SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
|
2320 |
|
|
shifts, and the operation at the tree level may be widened. */
|
2321 |
|
|
if (code == RSHIFT_EXPR)
|
2322 |
|
|
{
|
2323 |
|
|
if (vr1.type == VR_ANTI_RANGE
|
2324 |
|
|
|| !vrp_expr_computes_nonnegative (op1, &sop)
|
2325 |
|
|
|| (operand_less_p
|
2326 |
|
|
(build_int_cst (TREE_TYPE (vr1.max),
|
2327 |
|
|
TYPE_PRECISION (expr_type) - 1),
|
2328 |
|
|
vr1.max) != 0))
|
2329 |
|
|
{
|
2330 |
|
|
set_value_range_to_varying (vr);
|
2331 |
|
|
return;
|
2332 |
|
|
}
|
2333 |
|
|
}
|
2334 |
|
|
|
2335 |
|
|
else if ((code == TRUNC_DIV_EXPR
|
2336 |
|
|
|| code == FLOOR_DIV_EXPR
|
2337 |
|
|
|| code == CEIL_DIV_EXPR
|
2338 |
|
|
|| code == EXACT_DIV_EXPR
|
2339 |
|
|
|| code == ROUND_DIV_EXPR)
|
2340 |
|
|
&& (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
|
2341 |
|
|
{
|
2342 |
|
|
/* For division, if op1 has VR_RANGE but op0 does not, something
|
2343 |
|
|
can be deduced just from that range. Say [min, max] / [4, max]
|
2344 |
|
|
gives [min / 4, max / 4] range. */
|
2345 |
|
|
if (vr1.type == VR_RANGE
|
2346 |
|
|
&& !symbolic_range_p (&vr1)
|
2347 |
|
|
&& !range_includes_zero_p (&vr1))
|
2348 |
|
|
{
|
2349 |
|
|
vr0.type = type = VR_RANGE;
|
2350 |
|
|
vr0.min = vrp_val_min (TREE_TYPE (op0));
|
2351 |
|
|
vr0.max = vrp_val_max (TREE_TYPE (op1));
|
2352 |
|
|
}
|
2353 |
|
|
else
|
2354 |
|
|
{
|
2355 |
|
|
set_value_range_to_varying (vr);
|
2356 |
|
|
return;
|
2357 |
|
|
}
|
2358 |
|
|
}
|
2359 |
|
|
|
2360 |
|
|
/* For divisions, if op0 is VR_RANGE, we can deduce a range
|
2361 |
|
|
even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
|
2362 |
|
|
include 0. */
|
2363 |
|
|
if ((code == TRUNC_DIV_EXPR
|
2364 |
|
|
|| code == FLOOR_DIV_EXPR
|
2365 |
|
|
|| code == CEIL_DIV_EXPR
|
2366 |
|
|
|| code == EXACT_DIV_EXPR
|
2367 |
|
|
|| code == ROUND_DIV_EXPR)
|
2368 |
|
|
&& vr0.type == VR_RANGE
|
2369 |
|
|
&& (vr1.type != VR_RANGE
|
2370 |
|
|
|| symbolic_range_p (&vr1)
|
2371 |
|
|
|| range_includes_zero_p (&vr1)))
|
2372 |
|
|
{
|
2373 |
|
|
tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
|
2374 |
|
|
int cmp;
|
2375 |
|
|
|
2376 |
|
|
sop = false;
|
2377 |
|
|
min = NULL_TREE;
|
2378 |
|
|
max = NULL_TREE;
|
2379 |
|
|
if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
|
2380 |
|
|
{
|
2381 |
|
|
/* For unsigned division or when divisor is known
|
2382 |
|
|
to be non-negative, the range has to cover
|
2383 |
|
|
all numbers from 0 to max for positive max
|
2384 |
|
|
and all numbers from min to 0 for negative min. */
|
2385 |
|
|
cmp = compare_values (vr0.max, zero);
|
2386 |
|
|
if (cmp == -1)
|
2387 |
|
|
max = zero;
|
2388 |
|
|
else if (cmp == 0 || cmp == 1)
|
2389 |
|
|
max = vr0.max;
|
2390 |
|
|
else
|
2391 |
|
|
type = VR_VARYING;
|
2392 |
|
|
cmp = compare_values (vr0.min, zero);
|
2393 |
|
|
if (cmp == 1)
|
2394 |
|
|
min = zero;
|
2395 |
|
|
else if (cmp == 0 || cmp == -1)
|
2396 |
|
|
min = vr0.min;
|
2397 |
|
|
else
|
2398 |
|
|
type = VR_VARYING;
|
2399 |
|
|
}
|
2400 |
|
|
else
|
2401 |
|
|
{
|
2402 |
|
|
/* Otherwise the range is -max .. max or min .. -min
|
2403 |
|
|
depending on which bound is bigger in absolute value,
|
2404 |
|
|
as the division can change the sign. */
|
2405 |
|
|
abs_extent_range (vr, vr0.min, vr0.max);
|
2406 |
|
|
return;
|
2407 |
|
|
}
|
2408 |
|
|
if (type == VR_VARYING)
|
2409 |
|
|
{
|
2410 |
|
|
set_value_range_to_varying (vr);
|
2411 |
|
|
return;
|
2412 |
|
|
}
|
2413 |
|
|
}
|
2414 |
|
|
|
2415 |
|
|
/* Multiplications and divisions are a bit tricky to handle,
|
2416 |
|
|
depending on the mix of signs we have in the two ranges, we
|
2417 |
|
|
need to operate on different values to get the minimum and
|
2418 |
|
|
maximum values for the new range. One approach is to figure
|
2419 |
|
|
out all the variations of range combinations and do the
|
2420 |
|
|
operations.
|
2421 |
|
|
|
2422 |
|
|
However, this involves several calls to compare_values and it
|
2423 |
|
|
is pretty convoluted. It's simpler to do the 4 operations
|
2424 |
|
|
(MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
|
2425 |
|
|
MAX1) and then figure the smallest and largest values to form
|
2426 |
|
|
the new range. */
|
2427 |
|
|
else
|
2428 |
|
|
{
|
2429 |
|
|
gcc_assert ((vr0.type == VR_RANGE
|
2430 |
|
|
|| (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
|
2431 |
|
|
&& vr0.type == vr1.type);
|
2432 |
|
|
|
2433 |
|
|
/* Compute the 4 cross operations. */
|
2434 |
|
|
sop = false;
|
2435 |
|
|
val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
|
2436 |
|
|
if (val[0] == NULL_TREE)
|
2437 |
|
|
sop = true;
|
2438 |
|
|
|
2439 |
|
|
if (vr1.max == vr1.min)
|
2440 |
|
|
val[1] = NULL_TREE;
|
2441 |
|
|
else
|
2442 |
|
|
{
|
2443 |
|
|
val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
|
2444 |
|
|
if (val[1] == NULL_TREE)
|
2445 |
|
|
sop = true;
|
2446 |
|
|
}
|
2447 |
|
|
|
2448 |
|
|
if (vr0.max == vr0.min)
|
2449 |
|
|
val[2] = NULL_TREE;
|
2450 |
|
|
else
|
2451 |
|
|
{
|
2452 |
|
|
val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
|
2453 |
|
|
if (val[2] == NULL_TREE)
|
2454 |
|
|
sop = true;
|
2455 |
|
|
}
|
2456 |
|
|
|
2457 |
|
|
if (vr0.min == vr0.max || vr1.min == vr1.max)
|
2458 |
|
|
val[3] = NULL_TREE;
|
2459 |
|
|
else
|
2460 |
|
|
{
|
2461 |
|
|
val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
|
2462 |
|
|
if (val[3] == NULL_TREE)
|
2463 |
|
|
sop = true;
|
2464 |
|
|
}
|
2465 |
|
|
|
2466 |
|
|
if (sop)
|
2467 |
|
|
{
|
2468 |
|
|
set_value_range_to_varying (vr);
|
2469 |
|
|
return;
|
2470 |
|
|
}
|
2471 |
|
|
|
2472 |
|
|
/* Set MIN to the minimum of VAL[i] and MAX to the maximum
|
2473 |
|
|
of VAL[i]. */
|
2474 |
|
|
min = val[0];
|
2475 |
|
|
max = val[0];
|
2476 |
|
|
for (i = 1; i < 4; i++)
|
2477 |
|
|
{
|
2478 |
|
|
if (!is_gimple_min_invariant (min)
|
2479 |
|
|
|| (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
|
2480 |
|
|
|| !is_gimple_min_invariant (max)
|
2481 |
|
|
|| (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
|
2482 |
|
|
break;
|
2483 |
|
|
|
2484 |
|
|
if (val[i])
|
2485 |
|
|
{
|
2486 |
|
|
if (!is_gimple_min_invariant (val[i])
|
2487 |
|
|
|| (TREE_OVERFLOW (val[i])
|
2488 |
|
|
&& !is_overflow_infinity (val[i])))
|
2489 |
|
|
{
|
2490 |
|
|
/* If we found an overflowed value, set MIN and MAX
|
2491 |
|
|
to it so that we set the resulting range to
|
2492 |
|
|
VARYING. */
|
2493 |
|
|
min = max = val[i];
|
2494 |
|
|
break;
|
2495 |
|
|
}
|
2496 |
|
|
|
2497 |
|
|
if (compare_values (val[i], min) == -1)
|
2498 |
|
|
min = val[i];
|
2499 |
|
|
|
2500 |
|
|
if (compare_values (val[i], max) == 1)
|
2501 |
|
|
max = val[i];
|
2502 |
|
|
}
|
2503 |
|
|
}
|
2504 |
|
|
}
|
2505 |
|
|
}
|
2506 |
|
|
else if (code == TRUNC_MOD_EXPR)
|
2507 |
|
|
{
|
2508 |
|
|
bool sop = false;
|
2509 |
|
|
if (vr1.type != VR_RANGE
|
2510 |
|
|
|| symbolic_range_p (&vr1)
|
2511 |
|
|
|| range_includes_zero_p (&vr1)
|
2512 |
|
|
|| vrp_val_is_min (vr1.min))
|
2513 |
|
|
{
|
2514 |
|
|
set_value_range_to_varying (vr);
|
2515 |
|
|
return;
|
2516 |
|
|
}
|
2517 |
|
|
type = VR_RANGE;
|
2518 |
|
|
/* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
|
2519 |
|
|
max = fold_unary_to_constant (ABS_EXPR, TREE_TYPE (vr1.min), vr1.min);
|
2520 |
|
|
if (tree_int_cst_lt (max, vr1.max))
|
2521 |
|
|
max = vr1.max;
|
2522 |
|
|
max = int_const_binop (MINUS_EXPR, max, integer_one_node, 0);
|
2523 |
|
|
/* If the dividend is non-negative the modulus will be
|
2524 |
|
|
non-negative as well. */
|
2525 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (max))
|
2526 |
|
|
|| (vrp_expr_computes_nonnegative (op0, &sop) && !sop))
|
2527 |
|
|
min = build_int_cst (TREE_TYPE (max), 0);
|
2528 |
|
|
else
|
2529 |
|
|
min = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (max), max);
|
2530 |
|
|
}
|
2531 |
|
|
else if (code == MINUS_EXPR)
|
2532 |
|
|
{
|
2533 |
|
|
/* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
|
2534 |
|
|
VR_VARYING. It would take more effort to compute a precise
|
2535 |
|
|
range for such a case. For example, if we have op0 == 1 and
|
2536 |
|
|
op1 == 1 with their ranges both being ~[0,0], we would have
|
2537 |
|
|
op0 - op1 == 0, so we cannot claim that the difference is in
|
2538 |
|
|
~[0,0]. Note that we are guaranteed to have
|
2539 |
|
|
vr0.type == vr1.type at this point. */
|
2540 |
|
|
if (vr0.type == VR_ANTI_RANGE)
|
2541 |
|
|
{
|
2542 |
|
|
set_value_range_to_varying (vr);
|
2543 |
|
|
return;
|
2544 |
|
|
}
|
2545 |
|
|
|
2546 |
|
|
/* For MINUS_EXPR, apply the operation to the opposite ends of
|
2547 |
|
|
each range. */
|
2548 |
|
|
min = vrp_int_const_binop (code, vr0.min, vr1.max);
|
2549 |
|
|
max = vrp_int_const_binop (code, vr0.max, vr1.min);
|
2550 |
|
|
}
|
2551 |
|
|
else if (code == BIT_AND_EXPR)
|
2552 |
|
|
{
|
2553 |
|
|
bool vr0_int_cst_singleton_p, vr1_int_cst_singleton_p;
|
2554 |
|
|
|
2555 |
|
|
vr0_int_cst_singleton_p = range_int_cst_singleton_p (&vr0);
|
2556 |
|
|
vr1_int_cst_singleton_p = range_int_cst_singleton_p (&vr1);
|
2557 |
|
|
|
2558 |
|
|
if (vr0_int_cst_singleton_p && vr1_int_cst_singleton_p)
|
2559 |
|
|
min = max = int_const_binop (code, vr0.max, vr1.max, 0);
|
2560 |
|
|
else if (vr0_int_cst_singleton_p
|
2561 |
|
|
&& tree_int_cst_sgn (vr0.max) >= 0)
|
2562 |
|
|
{
|
2563 |
|
|
min = build_int_cst (expr_type, 0);
|
2564 |
|
|
max = vr0.max;
|
2565 |
|
|
}
|
2566 |
|
|
else if (vr1_int_cst_singleton_p
|
2567 |
|
|
&& tree_int_cst_sgn (vr1.max) >= 0)
|
2568 |
|
|
{
|
2569 |
|
|
type = VR_RANGE;
|
2570 |
|
|
min = build_int_cst (expr_type, 0);
|
2571 |
|
|
max = vr1.max;
|
2572 |
|
|
}
|
2573 |
|
|
else
|
2574 |
|
|
{
|
2575 |
|
|
set_value_range_to_varying (vr);
|
2576 |
|
|
return;
|
2577 |
|
|
}
|
2578 |
|
|
}
|
2579 |
|
|
else if (code == BIT_IOR_EXPR)
|
2580 |
|
|
{
|
2581 |
|
|
if (range_int_cst_p (&vr0)
|
2582 |
|
|
&& range_int_cst_p (&vr1)
|
2583 |
|
|
&& tree_int_cst_sgn (vr0.min) >= 0
|
2584 |
|
|
&& tree_int_cst_sgn (vr1.min) >= 0)
|
2585 |
|
|
{
|
2586 |
|
|
double_int vr0_max = tree_to_double_int (vr0.max);
|
2587 |
|
|
double_int vr1_max = tree_to_double_int (vr1.max);
|
2588 |
|
|
double_int ior_max;
|
2589 |
|
|
|
2590 |
|
|
/* Set all bits to the right of the most significant one to 1.
|
2591 |
|
|
For example, [0, 4] | [4, 4] = [4, 7]. */
|
2592 |
|
|
ior_max.low = vr0_max.low | vr1_max.low;
|
2593 |
|
|
ior_max.high = vr0_max.high | vr1_max.high;
|
2594 |
|
|
if (ior_max.high != 0)
|
2595 |
|
|
{
|
2596 |
|
|
ior_max.low = ~(unsigned HOST_WIDE_INT)0u;
|
2597 |
|
|
ior_max.high |= ((HOST_WIDE_INT) 1
|
2598 |
|
|
<< floor_log2 (ior_max.high)) - 1;
|
2599 |
|
|
}
|
2600 |
|
|
else if (ior_max.low != 0)
|
2601 |
|
|
ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
|
2602 |
|
|
<< floor_log2 (ior_max.low)) - 1;
|
2603 |
|
|
|
2604 |
|
|
/* Both of these endpoints are conservative. */
|
2605 |
|
|
min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
|
2606 |
|
|
max = double_int_to_tree (expr_type, ior_max);
|
2607 |
|
|
}
|
2608 |
|
|
else
|
2609 |
|
|
{
|
2610 |
|
|
set_value_range_to_varying (vr);
|
2611 |
|
|
return;
|
2612 |
|
|
}
|
2613 |
|
|
}
|
2614 |
|
|
else
|
2615 |
|
|
gcc_unreachable ();
|
2616 |
|
|
|
2617 |
|
|
/* If either MIN or MAX overflowed, then set the resulting range to
|
2618 |
|
|
VARYING. But we do accept an overflow infinity
|
2619 |
|
|
representation. */
|
2620 |
|
|
if (min == NULL_TREE
|
2621 |
|
|
|| !is_gimple_min_invariant (min)
|
2622 |
|
|
|| (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
|
2623 |
|
|
|| max == NULL_TREE
|
2624 |
|
|
|| !is_gimple_min_invariant (max)
|
2625 |
|
|
|| (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
|
2626 |
|
|
{
|
2627 |
|
|
set_value_range_to_varying (vr);
|
2628 |
|
|
return;
|
2629 |
|
|
}
|
2630 |
|
|
|
2631 |
|
|
/* We punt if:
|
2632 |
|
|
1) [-INF, +INF]
|
2633 |
|
|
2) [-INF, +-INF(OVF)]
|
2634 |
|
|
3) [+-INF(OVF), +INF]
|
2635 |
|
|
4) [+-INF(OVF), +-INF(OVF)]
|
2636 |
|
|
We learn nothing when we have INF and INF(OVF) on both sides.
|
2637 |
|
|
Note that we do accept [-INF, -INF] and [+INF, +INF] without
|
2638 |
|
|
overflow. */
|
2639 |
|
|
if ((vrp_val_is_min (min) || is_overflow_infinity (min))
|
2640 |
|
|
&& (vrp_val_is_max (max) || is_overflow_infinity (max)))
|
2641 |
|
|
{
|
2642 |
|
|
set_value_range_to_varying (vr);
|
2643 |
|
|
return;
|
2644 |
|
|
}
|
2645 |
|
|
|
2646 |
|
|
cmp = compare_values (min, max);
|
2647 |
|
|
if (cmp == -2 || cmp == 1)
|
2648 |
|
|
{
|
2649 |
|
|
/* If the new range has its limits swapped around (MIN > MAX),
|
2650 |
|
|
then the operation caused one of them to wrap around, mark
|
2651 |
|
|
the new range VARYING. */
|
2652 |
|
|
set_value_range_to_varying (vr);
|
2653 |
|
|
}
|
2654 |
|
|
else
|
2655 |
|
|
set_value_range (vr, type, min, max, NULL);
|
2656 |
|
|
}
|
2657 |
|
|
|
2658 |
|
|
|
2659 |
|
|
/* Extract range information from a unary expression EXPR based on
|
2660 |
|
|
the range of its operand and the expression code. */
|
2661 |
|
|
|
2662 |
|
|
static void
|
2663 |
|
|
extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
|
2664 |
|
|
tree type, tree op0)
|
2665 |
|
|
{
|
2666 |
|
|
tree min, max;
|
2667 |
|
|
int cmp;
|
2668 |
|
|
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
2669 |
|
|
|
2670 |
|
|
/* Refuse to operate on certain unary expressions for which we
|
2671 |
|
|
cannot easily determine a resulting range. */
|
2672 |
|
|
if (code == FIX_TRUNC_EXPR
|
2673 |
|
|
|| code == FLOAT_EXPR
|
2674 |
|
|
|| code == BIT_NOT_EXPR
|
2675 |
|
|
|| code == CONJ_EXPR)
|
2676 |
|
|
{
|
2677 |
|
|
/* We can still do constant propagation here. */
|
2678 |
|
|
if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
|
2679 |
|
|
{
|
2680 |
|
|
tree tem = fold_unary (code, type, op0);
|
2681 |
|
|
if (tem
|
2682 |
|
|
&& is_gimple_min_invariant (tem)
|
2683 |
|
|
&& !is_overflow_infinity (tem))
|
2684 |
|
|
{
|
2685 |
|
|
set_value_range (vr, VR_RANGE, tem, tem, NULL);
|
2686 |
|
|
return;
|
2687 |
|
|
}
|
2688 |
|
|
}
|
2689 |
|
|
set_value_range_to_varying (vr);
|
2690 |
|
|
return;
|
2691 |
|
|
}
|
2692 |
|
|
|
2693 |
|
|
/* Get value ranges for the operand. For constant operands, create
|
2694 |
|
|
a new value range with the operand to simplify processing. */
|
2695 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
2696 |
|
|
vr0 = *(get_value_range (op0));
|
2697 |
|
|
else if (is_gimple_min_invariant (op0))
|
2698 |
|
|
set_value_range_to_value (&vr0, op0, NULL);
|
2699 |
|
|
else
|
2700 |
|
|
set_value_range_to_varying (&vr0);
|
2701 |
|
|
|
2702 |
|
|
/* If VR0 is UNDEFINED, so is the result. */
|
2703 |
|
|
if (vr0.type == VR_UNDEFINED)
|
2704 |
|
|
{
|
2705 |
|
|
set_value_range_to_undefined (vr);
|
2706 |
|
|
return;
|
2707 |
|
|
}
|
2708 |
|
|
|
2709 |
|
|
/* Refuse to operate on symbolic ranges, or if neither operand is
|
2710 |
|
|
a pointer or integral type. */
|
2711 |
|
|
if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
|
2712 |
|
|
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
|
2713 |
|
|
|| (vr0.type != VR_VARYING
|
2714 |
|
|
&& symbolic_range_p (&vr0)))
|
2715 |
|
|
{
|
2716 |
|
|
set_value_range_to_varying (vr);
|
2717 |
|
|
return;
|
2718 |
|
|
}
|
2719 |
|
|
|
2720 |
|
|
/* If the expression involves pointers, we are only interested in
|
2721 |
|
|
determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
|
2722 |
|
|
if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
|
2723 |
|
|
{
|
2724 |
|
|
bool sop;
|
2725 |
|
|
|
2726 |
|
|
sop = false;
|
2727 |
|
|
if (range_is_nonnull (&vr0)
|
2728 |
|
|
|| (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
|
2729 |
|
|
&& !sop))
|
2730 |
|
|
set_value_range_to_nonnull (vr, type);
|
2731 |
|
|
else if (range_is_null (&vr0))
|
2732 |
|
|
set_value_range_to_null (vr, type);
|
2733 |
|
|
else
|
2734 |
|
|
set_value_range_to_varying (vr);
|
2735 |
|
|
|
2736 |
|
|
return;
|
2737 |
|
|
}
|
2738 |
|
|
|
2739 |
|
|
/* Handle unary expressions on integer ranges. */
|
2740 |
|
|
if (CONVERT_EXPR_CODE_P (code)
|
2741 |
|
|
&& INTEGRAL_TYPE_P (type)
|
2742 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (op0)))
|
2743 |
|
|
{
|
2744 |
|
|
tree inner_type = TREE_TYPE (op0);
|
2745 |
|
|
tree outer_type = type;
|
2746 |
|
|
|
2747 |
|
|
/* If VR0 is varying and we increase the type precision, assume
|
2748 |
|
|
a full range for the following transformation. */
|
2749 |
|
|
if (vr0.type == VR_VARYING
|
2750 |
|
|
&& TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
|
2751 |
|
|
{
|
2752 |
|
|
vr0.type = VR_RANGE;
|
2753 |
|
|
vr0.min = TYPE_MIN_VALUE (inner_type);
|
2754 |
|
|
vr0.max = TYPE_MAX_VALUE (inner_type);
|
2755 |
|
|
}
|
2756 |
|
|
|
2757 |
|
|
/* If VR0 is a constant range or anti-range and the conversion is
|
2758 |
|
|
not truncating we can convert the min and max values and
|
2759 |
|
|
canonicalize the resulting range. Otherwise we can do the
|
2760 |
|
|
conversion if the size of the range is less than what the
|
2761 |
|
|
precision of the target type can represent and the range is
|
2762 |
|
|
not an anti-range. */
|
2763 |
|
|
if ((vr0.type == VR_RANGE
|
2764 |
|
|
|| vr0.type == VR_ANTI_RANGE)
|
2765 |
|
|
&& TREE_CODE (vr0.min) == INTEGER_CST
|
2766 |
|
|
&& TREE_CODE (vr0.max) == INTEGER_CST
|
2767 |
|
|
&& (!is_overflow_infinity (vr0.min)
|
2768 |
|
|
|| (vr0.type == VR_RANGE
|
2769 |
|
|
&& TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
|
2770 |
|
|
&& needs_overflow_infinity (outer_type)
|
2771 |
|
|
&& supports_overflow_infinity (outer_type)))
|
2772 |
|
|
&& (!is_overflow_infinity (vr0.max)
|
2773 |
|
|
|| (vr0.type == VR_RANGE
|
2774 |
|
|
&& TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
|
2775 |
|
|
&& needs_overflow_infinity (outer_type)
|
2776 |
|
|
&& supports_overflow_infinity (outer_type)))
|
2777 |
|
|
&& (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
|
2778 |
|
|
|| (vr0.type == VR_RANGE
|
2779 |
|
|
&& integer_zerop (int_const_binop (RSHIFT_EXPR,
|
2780 |
|
|
int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
|
2781 |
|
|
size_int (TYPE_PRECISION (outer_type)), 0)))))
|
2782 |
|
|
{
|
2783 |
|
|
tree new_min, new_max;
|
2784 |
|
|
new_min = force_fit_type_double (outer_type,
|
2785 |
|
|
TREE_INT_CST_LOW (vr0.min),
|
2786 |
|
|
TREE_INT_CST_HIGH (vr0.min), 0, 0);
|
2787 |
|
|
new_max = force_fit_type_double (outer_type,
|
2788 |
|
|
TREE_INT_CST_LOW (vr0.max),
|
2789 |
|
|
TREE_INT_CST_HIGH (vr0.max), 0, 0);
|
2790 |
|
|
if (is_overflow_infinity (vr0.min))
|
2791 |
|
|
new_min = negative_overflow_infinity (outer_type);
|
2792 |
|
|
if (is_overflow_infinity (vr0.max))
|
2793 |
|
|
new_max = positive_overflow_infinity (outer_type);
|
2794 |
|
|
set_and_canonicalize_value_range (vr, vr0.type,
|
2795 |
|
|
new_min, new_max, NULL);
|
2796 |
|
|
return;
|
2797 |
|
|
}
|
2798 |
|
|
|
2799 |
|
|
set_value_range_to_varying (vr);
|
2800 |
|
|
return;
|
2801 |
|
|
}
|
2802 |
|
|
|
2803 |
|
|
/* Conversion of a VR_VARYING value to a wider type can result
|
2804 |
|
|
in a usable range. So wait until after we've handled conversions
|
2805 |
|
|
before dropping the result to VR_VARYING if we had a source
|
2806 |
|
|
operand that is VR_VARYING. */
|
2807 |
|
|
if (vr0.type == VR_VARYING)
|
2808 |
|
|
{
|
2809 |
|
|
set_value_range_to_varying (vr);
|
2810 |
|
|
return;
|
2811 |
|
|
}
|
2812 |
|
|
|
2813 |
|
|
/* Apply the operation to each end of the range and see what we end
|
2814 |
|
|
up with. */
|
2815 |
|
|
if (code == NEGATE_EXPR
|
2816 |
|
|
&& !TYPE_UNSIGNED (type))
|
2817 |
|
|
{
|
2818 |
|
|
/* NEGATE_EXPR flips the range around. We need to treat
|
2819 |
|
|
TYPE_MIN_VALUE specially. */
|
2820 |
|
|
if (is_positive_overflow_infinity (vr0.max))
|
2821 |
|
|
min = negative_overflow_infinity (type);
|
2822 |
|
|
else if (is_negative_overflow_infinity (vr0.max))
|
2823 |
|
|
min = positive_overflow_infinity (type);
|
2824 |
|
|
else if (!vrp_val_is_min (vr0.max))
|
2825 |
|
|
min = fold_unary_to_constant (code, type, vr0.max);
|
2826 |
|
|
else if (needs_overflow_infinity (type))
|
2827 |
|
|
{
|
2828 |
|
|
if (supports_overflow_infinity (type)
|
2829 |
|
|
&& !is_overflow_infinity (vr0.min)
|
2830 |
|
|
&& !vrp_val_is_min (vr0.min))
|
2831 |
|
|
min = positive_overflow_infinity (type);
|
2832 |
|
|
else
|
2833 |
|
|
{
|
2834 |
|
|
set_value_range_to_varying (vr);
|
2835 |
|
|
return;
|
2836 |
|
|
}
|
2837 |
|
|
}
|
2838 |
|
|
else
|
2839 |
|
|
min = TYPE_MIN_VALUE (type);
|
2840 |
|
|
|
2841 |
|
|
if (is_positive_overflow_infinity (vr0.min))
|
2842 |
|
|
max = negative_overflow_infinity (type);
|
2843 |
|
|
else if (is_negative_overflow_infinity (vr0.min))
|
2844 |
|
|
max = positive_overflow_infinity (type);
|
2845 |
|
|
else if (!vrp_val_is_min (vr0.min))
|
2846 |
|
|
max = fold_unary_to_constant (code, type, vr0.min);
|
2847 |
|
|
else if (needs_overflow_infinity (type))
|
2848 |
|
|
{
|
2849 |
|
|
if (supports_overflow_infinity (type))
|
2850 |
|
|
max = positive_overflow_infinity (type);
|
2851 |
|
|
else
|
2852 |
|
|
{
|
2853 |
|
|
set_value_range_to_varying (vr);
|
2854 |
|
|
return;
|
2855 |
|
|
}
|
2856 |
|
|
}
|
2857 |
|
|
else
|
2858 |
|
|
max = TYPE_MIN_VALUE (type);
|
2859 |
|
|
}
|
2860 |
|
|
else if (code == NEGATE_EXPR
|
2861 |
|
|
&& TYPE_UNSIGNED (type))
|
2862 |
|
|
{
|
2863 |
|
|
if (!range_includes_zero_p (&vr0))
|
2864 |
|
|
{
|
2865 |
|
|
max = fold_unary_to_constant (code, type, vr0.min);
|
2866 |
|
|
min = fold_unary_to_constant (code, type, vr0.max);
|
2867 |
|
|
}
|
2868 |
|
|
else
|
2869 |
|
|
{
|
2870 |
|
|
if (range_is_null (&vr0))
|
2871 |
|
|
set_value_range_to_null (vr, type);
|
2872 |
|
|
else
|
2873 |
|
|
set_value_range_to_varying (vr);
|
2874 |
|
|
return;
|
2875 |
|
|
}
|
2876 |
|
|
}
|
2877 |
|
|
else if (code == ABS_EXPR
|
2878 |
|
|
&& !TYPE_UNSIGNED (type))
|
2879 |
|
|
{
|
2880 |
|
|
/* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
|
2881 |
|
|
useful range. */
|
2882 |
|
|
if (!TYPE_OVERFLOW_UNDEFINED (type)
|
2883 |
|
|
&& ((vr0.type == VR_RANGE
|
2884 |
|
|
&& vrp_val_is_min (vr0.min))
|
2885 |
|
|
|| (vr0.type == VR_ANTI_RANGE
|
2886 |
|
|
&& !vrp_val_is_min (vr0.min)
|
2887 |
|
|
&& !range_includes_zero_p (&vr0))))
|
2888 |
|
|
{
|
2889 |
|
|
set_value_range_to_varying (vr);
|
2890 |
|
|
return;
|
2891 |
|
|
}
|
2892 |
|
|
|
2893 |
|
|
/* ABS_EXPR may flip the range around, if the original range
|
2894 |
|
|
included negative values. */
|
2895 |
|
|
if (is_overflow_infinity (vr0.min))
|
2896 |
|
|
min = positive_overflow_infinity (type);
|
2897 |
|
|
else if (!vrp_val_is_min (vr0.min))
|
2898 |
|
|
min = fold_unary_to_constant (code, type, vr0.min);
|
2899 |
|
|
else if (!needs_overflow_infinity (type))
|
2900 |
|
|
min = TYPE_MAX_VALUE (type);
|
2901 |
|
|
else if (supports_overflow_infinity (type))
|
2902 |
|
|
min = positive_overflow_infinity (type);
|
2903 |
|
|
else
|
2904 |
|
|
{
|
2905 |
|
|
set_value_range_to_varying (vr);
|
2906 |
|
|
return;
|
2907 |
|
|
}
|
2908 |
|
|
|
2909 |
|
|
if (is_overflow_infinity (vr0.max))
|
2910 |
|
|
max = positive_overflow_infinity (type);
|
2911 |
|
|
else if (!vrp_val_is_min (vr0.max))
|
2912 |
|
|
max = fold_unary_to_constant (code, type, vr0.max);
|
2913 |
|
|
else if (!needs_overflow_infinity (type))
|
2914 |
|
|
max = TYPE_MAX_VALUE (type);
|
2915 |
|
|
else if (supports_overflow_infinity (type)
|
2916 |
|
|
/* We shouldn't generate [+INF, +INF] as set_value_range
|
2917 |
|
|
doesn't like this and ICEs. */
|
2918 |
|
|
&& !is_positive_overflow_infinity (min))
|
2919 |
|
|
max = positive_overflow_infinity (type);
|
2920 |
|
|
else
|
2921 |
|
|
{
|
2922 |
|
|
set_value_range_to_varying (vr);
|
2923 |
|
|
return;
|
2924 |
|
|
}
|
2925 |
|
|
|
2926 |
|
|
cmp = compare_values (min, max);
|
2927 |
|
|
|
2928 |
|
|
/* If a VR_ANTI_RANGEs contains zero, then we have
|
2929 |
|
|
~[-INF, min(MIN, MAX)]. */
|
2930 |
|
|
if (vr0.type == VR_ANTI_RANGE)
|
2931 |
|
|
{
|
2932 |
|
|
if (range_includes_zero_p (&vr0))
|
2933 |
|
|
{
|
2934 |
|
|
/* Take the lower of the two values. */
|
2935 |
|
|
if (cmp != 1)
|
2936 |
|
|
max = min;
|
2937 |
|
|
|
2938 |
|
|
/* Create ~[-INF, min (abs(MIN), abs(MAX))]
|
2939 |
|
|
or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
|
2940 |
|
|
flag_wrapv is set and the original anti-range doesn't include
|
2941 |
|
|
TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
|
2942 |
|
|
if (TYPE_OVERFLOW_WRAPS (type))
|
2943 |
|
|
{
|
2944 |
|
|
tree type_min_value = TYPE_MIN_VALUE (type);
|
2945 |
|
|
|
2946 |
|
|
min = (vr0.min != type_min_value
|
2947 |
|
|
? int_const_binop (PLUS_EXPR, type_min_value,
|
2948 |
|
|
integer_one_node, 0)
|
2949 |
|
|
: type_min_value);
|
2950 |
|
|
}
|
2951 |
|
|
else
|
2952 |
|
|
{
|
2953 |
|
|
if (overflow_infinity_range_p (&vr0))
|
2954 |
|
|
min = negative_overflow_infinity (type);
|
2955 |
|
|
else
|
2956 |
|
|
min = TYPE_MIN_VALUE (type);
|
2957 |
|
|
}
|
2958 |
|
|
}
|
2959 |
|
|
else
|
2960 |
|
|
{
|
2961 |
|
|
/* All else has failed, so create the range [0, INF], even for
|
2962 |
|
|
flag_wrapv since TYPE_MIN_VALUE is in the original
|
2963 |
|
|
anti-range. */
|
2964 |
|
|
vr0.type = VR_RANGE;
|
2965 |
|
|
min = build_int_cst (type, 0);
|
2966 |
|
|
if (needs_overflow_infinity (type))
|
2967 |
|
|
{
|
2968 |
|
|
if (supports_overflow_infinity (type))
|
2969 |
|
|
max = positive_overflow_infinity (type);
|
2970 |
|
|
else
|
2971 |
|
|
{
|
2972 |
|
|
set_value_range_to_varying (vr);
|
2973 |
|
|
return;
|
2974 |
|
|
}
|
2975 |
|
|
}
|
2976 |
|
|
else
|
2977 |
|
|
max = TYPE_MAX_VALUE (type);
|
2978 |
|
|
}
|
2979 |
|
|
}
|
2980 |
|
|
|
2981 |
|
|
/* If the range contains zero then we know that the minimum value in the
|
2982 |
|
|
range will be zero. */
|
2983 |
|
|
else if (range_includes_zero_p (&vr0))
|
2984 |
|
|
{
|
2985 |
|
|
if (cmp == 1)
|
2986 |
|
|
max = min;
|
2987 |
|
|
min = build_int_cst (type, 0);
|
2988 |
|
|
}
|
2989 |
|
|
else
|
2990 |
|
|
{
|
2991 |
|
|
/* If the range was reversed, swap MIN and MAX. */
|
2992 |
|
|
if (cmp == 1)
|
2993 |
|
|
{
|
2994 |
|
|
tree t = min;
|
2995 |
|
|
min = max;
|
2996 |
|
|
max = t;
|
2997 |
|
|
}
|
2998 |
|
|
}
|
2999 |
|
|
}
|
3000 |
|
|
else
|
3001 |
|
|
{
|
3002 |
|
|
/* Otherwise, operate on each end of the range. */
|
3003 |
|
|
min = fold_unary_to_constant (code, type, vr0.min);
|
3004 |
|
|
max = fold_unary_to_constant (code, type, vr0.max);
|
3005 |
|
|
|
3006 |
|
|
if (needs_overflow_infinity (type))
|
3007 |
|
|
{
|
3008 |
|
|
gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
|
3009 |
|
|
|
3010 |
|
|
/* If both sides have overflowed, we don't know
|
3011 |
|
|
anything. */
|
3012 |
|
|
if ((is_overflow_infinity (vr0.min)
|
3013 |
|
|
|| TREE_OVERFLOW (min))
|
3014 |
|
|
&& (is_overflow_infinity (vr0.max)
|
3015 |
|
|
|| TREE_OVERFLOW (max)))
|
3016 |
|
|
{
|
3017 |
|
|
set_value_range_to_varying (vr);
|
3018 |
|
|
return;
|
3019 |
|
|
}
|
3020 |
|
|
|
3021 |
|
|
if (is_overflow_infinity (vr0.min))
|
3022 |
|
|
min = vr0.min;
|
3023 |
|
|
else if (TREE_OVERFLOW (min))
|
3024 |
|
|
{
|
3025 |
|
|
if (supports_overflow_infinity (type))
|
3026 |
|
|
min = (tree_int_cst_sgn (min) >= 0
|
3027 |
|
|
? positive_overflow_infinity (TREE_TYPE (min))
|
3028 |
|
|
: negative_overflow_infinity (TREE_TYPE (min)));
|
3029 |
|
|
else
|
3030 |
|
|
{
|
3031 |
|
|
set_value_range_to_varying (vr);
|
3032 |
|
|
return;
|
3033 |
|
|
}
|
3034 |
|
|
}
|
3035 |
|
|
|
3036 |
|
|
if (is_overflow_infinity (vr0.max))
|
3037 |
|
|
max = vr0.max;
|
3038 |
|
|
else if (TREE_OVERFLOW (max))
|
3039 |
|
|
{
|
3040 |
|
|
if (supports_overflow_infinity (type))
|
3041 |
|
|
max = (tree_int_cst_sgn (max) >= 0
|
3042 |
|
|
? positive_overflow_infinity (TREE_TYPE (max))
|
3043 |
|
|
: negative_overflow_infinity (TREE_TYPE (max)));
|
3044 |
|
|
else
|
3045 |
|
|
{
|
3046 |
|
|
set_value_range_to_varying (vr);
|
3047 |
|
|
return;
|
3048 |
|
|
}
|
3049 |
|
|
}
|
3050 |
|
|
}
|
3051 |
|
|
}
|
3052 |
|
|
|
3053 |
|
|
cmp = compare_values (min, max);
|
3054 |
|
|
if (cmp == -2 || cmp == 1)
|
3055 |
|
|
{
|
3056 |
|
|
/* If the new range has its limits swapped around (MIN > MAX),
|
3057 |
|
|
then the operation caused one of them to wrap around, mark
|
3058 |
|
|
the new range VARYING. */
|
3059 |
|
|
set_value_range_to_varying (vr);
|
3060 |
|
|
}
|
3061 |
|
|
else
|
3062 |
|
|
set_value_range (vr, vr0.type, min, max, NULL);
|
3063 |
|
|
}
|
3064 |
|
|
|
3065 |
|
|
|
3066 |
|
|
/* Extract range information from a conditional expression EXPR based on
|
3067 |
|
|
the ranges of each of its operands and the expression code. */
|
3068 |
|
|
|
3069 |
|
|
static void
|
3070 |
|
|
extract_range_from_cond_expr (value_range_t *vr, tree expr)
|
3071 |
|
|
{
|
3072 |
|
|
tree op0, op1;
|
3073 |
|
|
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
3074 |
|
|
value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
3075 |
|
|
|
3076 |
|
|
/* Get value ranges for each operand. For constant operands, create
|
3077 |
|
|
a new value range with the operand to simplify processing. */
|
3078 |
|
|
op0 = COND_EXPR_THEN (expr);
|
3079 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
3080 |
|
|
vr0 = *(get_value_range (op0));
|
3081 |
|
|
else if (is_gimple_min_invariant (op0))
|
3082 |
|
|
set_value_range_to_value (&vr0, op0, NULL);
|
3083 |
|
|
else
|
3084 |
|
|
set_value_range_to_varying (&vr0);
|
3085 |
|
|
|
3086 |
|
|
op1 = COND_EXPR_ELSE (expr);
|
3087 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
3088 |
|
|
vr1 = *(get_value_range (op1));
|
3089 |
|
|
else if (is_gimple_min_invariant (op1))
|
3090 |
|
|
set_value_range_to_value (&vr1, op1, NULL);
|
3091 |
|
|
else
|
3092 |
|
|
set_value_range_to_varying (&vr1);
|
3093 |
|
|
|
3094 |
|
|
/* The resulting value range is the union of the operand ranges */
|
3095 |
|
|
vrp_meet (&vr0, &vr1);
|
3096 |
|
|
copy_value_range (vr, &vr0);
|
3097 |
|
|
}
|
3098 |
|
|
|
3099 |
|
|
|
3100 |
|
|
/* Extract range information from a comparison expression EXPR based
|
3101 |
|
|
on the range of its operand and the expression code. */
|
3102 |
|
|
|
3103 |
|
|
static void
|
3104 |
|
|
extract_range_from_comparison (value_range_t *vr, enum tree_code code,
|
3105 |
|
|
tree type, tree op0, tree op1)
|
3106 |
|
|
{
|
3107 |
|
|
bool sop = false;
|
3108 |
|
|
tree val;
|
3109 |
|
|
|
3110 |
|
|
val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
|
3111 |
|
|
NULL);
|
3112 |
|
|
|
3113 |
|
|
/* A disadvantage of using a special infinity as an overflow
|
3114 |
|
|
representation is that we lose the ability to record overflow
|
3115 |
|
|
when we don't have an infinity. So we have to ignore a result
|
3116 |
|
|
which relies on overflow. */
|
3117 |
|
|
|
3118 |
|
|
if (val && !is_overflow_infinity (val) && !sop)
|
3119 |
|
|
{
|
3120 |
|
|
/* Since this expression was found on the RHS of an assignment,
|
3121 |
|
|
its type may be different from _Bool. Convert VAL to EXPR's
|
3122 |
|
|
type. */
|
3123 |
|
|
val = fold_convert (type, val);
|
3124 |
|
|
if (is_gimple_min_invariant (val))
|
3125 |
|
|
set_value_range_to_value (vr, val, vr->equiv);
|
3126 |
|
|
else
|
3127 |
|
|
set_value_range (vr, VR_RANGE, val, val, vr->equiv);
|
3128 |
|
|
}
|
3129 |
|
|
else
|
3130 |
|
|
/* The result of a comparison is always true or false. */
|
3131 |
|
|
set_value_range_to_truthvalue (vr, type);
|
3132 |
|
|
}
|
3133 |
|
|
|
3134 |
|
|
/* Try to derive a nonnegative or nonzero range out of STMT relying
|
3135 |
|
|
primarily on generic routines in fold in conjunction with range data.
|
3136 |
|
|
Store the result in *VR */
|
3137 |
|
|
|
3138 |
|
|
static void
|
3139 |
|
|
extract_range_basic (value_range_t *vr, gimple stmt)
|
3140 |
|
|
{
|
3141 |
|
|
bool sop = false;
|
3142 |
|
|
tree type = gimple_expr_type (stmt);
|
3143 |
|
|
|
3144 |
|
|
if (INTEGRAL_TYPE_P (type)
|
3145 |
|
|
&& gimple_stmt_nonnegative_warnv_p (stmt, &sop))
|
3146 |
|
|
set_value_range_to_nonnegative (vr, type,
|
3147 |
|
|
sop || stmt_overflow_infinity (stmt));
|
3148 |
|
|
else if (vrp_stmt_computes_nonzero (stmt, &sop)
|
3149 |
|
|
&& !sop)
|
3150 |
|
|
set_value_range_to_nonnull (vr, type);
|
3151 |
|
|
else
|
3152 |
|
|
set_value_range_to_varying (vr);
|
3153 |
|
|
}
|
3154 |
|
|
|
3155 |
|
|
|
3156 |
|
|
/* Try to compute a useful range out of assignment STMT and store it
|
3157 |
|
|
in *VR. */
|
3158 |
|
|
|
3159 |
|
|
static void
|
3160 |
|
|
extract_range_from_assignment (value_range_t *vr, gimple stmt)
|
3161 |
|
|
{
|
3162 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
3163 |
|
|
|
3164 |
|
|
if (code == ASSERT_EXPR)
|
3165 |
|
|
extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
|
3166 |
|
|
else if (code == SSA_NAME)
|
3167 |
|
|
extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
|
3168 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_binary
|
3169 |
|
|
|| code == TRUTH_AND_EXPR
|
3170 |
|
|
|| code == TRUTH_OR_EXPR
|
3171 |
|
|
|| code == TRUTH_XOR_EXPR)
|
3172 |
|
|
extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
|
3173 |
|
|
gimple_expr_type (stmt),
|
3174 |
|
|
gimple_assign_rhs1 (stmt),
|
3175 |
|
|
gimple_assign_rhs2 (stmt));
|
3176 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_unary)
|
3177 |
|
|
extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
|
3178 |
|
|
gimple_expr_type (stmt),
|
3179 |
|
|
gimple_assign_rhs1 (stmt));
|
3180 |
|
|
else if (code == COND_EXPR)
|
3181 |
|
|
extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
|
3182 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_comparison)
|
3183 |
|
|
extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
|
3184 |
|
|
gimple_expr_type (stmt),
|
3185 |
|
|
gimple_assign_rhs1 (stmt),
|
3186 |
|
|
gimple_assign_rhs2 (stmt));
|
3187 |
|
|
else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
|
3188 |
|
|
&& is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
|
3189 |
|
|
set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
|
3190 |
|
|
else
|
3191 |
|
|
set_value_range_to_varying (vr);
|
3192 |
|
|
|
3193 |
|
|
if (vr->type == VR_VARYING)
|
3194 |
|
|
extract_range_basic (vr, stmt);
|
3195 |
|
|
}
|
3196 |
|
|
|
3197 |
|
|
/* Given a range VR, a LOOP and a variable VAR, determine whether it
|
3198 |
|
|
would be profitable to adjust VR using scalar evolution information
|
3199 |
|
|
for VAR. If so, update VR with the new limits. */
|
3200 |
|
|
|
3201 |
|
|
static void
|
3202 |
|
|
adjust_range_with_scev (value_range_t *vr, struct loop *loop,
|
3203 |
|
|
gimple stmt, tree var)
|
3204 |
|
|
{
|
3205 |
|
|
tree init, step, chrec, tmin, tmax, min, max, type, tem;
|
3206 |
|
|
enum ev_direction dir;
|
3207 |
|
|
|
3208 |
|
|
/* TODO. Don't adjust anti-ranges. An anti-range may provide
|
3209 |
|
|
better opportunities than a regular range, but I'm not sure. */
|
3210 |
|
|
if (vr->type == VR_ANTI_RANGE)
|
3211 |
|
|
return;
|
3212 |
|
|
|
3213 |
|
|
chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
|
3214 |
|
|
|
3215 |
|
|
/* Like in PR19590, scev can return a constant function. */
|
3216 |
|
|
if (is_gimple_min_invariant (chrec))
|
3217 |
|
|
{
|
3218 |
|
|
set_value_range_to_value (vr, chrec, vr->equiv);
|
3219 |
|
|
return;
|
3220 |
|
|
}
|
3221 |
|
|
|
3222 |
|
|
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
|
3223 |
|
|
return;
|
3224 |
|
|
|
3225 |
|
|
init = initial_condition_in_loop_num (chrec, loop->num);
|
3226 |
|
|
tem = op_with_constant_singleton_value_range (init);
|
3227 |
|
|
if (tem)
|
3228 |
|
|
init = tem;
|
3229 |
|
|
step = evolution_part_in_loop_num (chrec, loop->num);
|
3230 |
|
|
tem = op_with_constant_singleton_value_range (step);
|
3231 |
|
|
if (tem)
|
3232 |
|
|
step = tem;
|
3233 |
|
|
|
3234 |
|
|
/* If STEP is symbolic, we can't know whether INIT will be the
|
3235 |
|
|
minimum or maximum value in the range. Also, unless INIT is
|
3236 |
|
|
a simple expression, compare_values and possibly other functions
|
3237 |
|
|
in tree-vrp won't be able to handle it. */
|
3238 |
|
|
if (step == NULL_TREE
|
3239 |
|
|
|| !is_gimple_min_invariant (step)
|
3240 |
|
|
|| !valid_value_p (init))
|
3241 |
|
|
return;
|
3242 |
|
|
|
3243 |
|
|
dir = scev_direction (chrec);
|
3244 |
|
|
if (/* Do not adjust ranges if we do not know whether the iv increases
|
3245 |
|
|
or decreases, ... */
|
3246 |
|
|
dir == EV_DIR_UNKNOWN
|
3247 |
|
|
/* ... or if it may wrap. */
|
3248 |
|
|
|| scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
|
3249 |
|
|
true))
|
3250 |
|
|
return;
|
3251 |
|
|
|
3252 |
|
|
/* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
|
3253 |
|
|
negative_overflow_infinity and positive_overflow_infinity,
|
3254 |
|
|
because we have concluded that the loop probably does not
|
3255 |
|
|
wrap. */
|
3256 |
|
|
|
3257 |
|
|
type = TREE_TYPE (var);
|
3258 |
|
|
if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
|
3259 |
|
|
tmin = lower_bound_in_type (type, type);
|
3260 |
|
|
else
|
3261 |
|
|
tmin = TYPE_MIN_VALUE (type);
|
3262 |
|
|
if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
|
3263 |
|
|
tmax = upper_bound_in_type (type, type);
|
3264 |
|
|
else
|
3265 |
|
|
tmax = TYPE_MAX_VALUE (type);
|
3266 |
|
|
|
3267 |
|
|
if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
|
3268 |
|
|
{
|
3269 |
|
|
min = tmin;
|
3270 |
|
|
max = tmax;
|
3271 |
|
|
|
3272 |
|
|
/* For VARYING or UNDEFINED ranges, just about anything we get
|
3273 |
|
|
from scalar evolutions should be better. */
|
3274 |
|
|
|
3275 |
|
|
if (dir == EV_DIR_DECREASES)
|
3276 |
|
|
max = init;
|
3277 |
|
|
else
|
3278 |
|
|
min = init;
|
3279 |
|
|
|
3280 |
|
|
/* If we would create an invalid range, then just assume we
|
3281 |
|
|
know absolutely nothing. This may be over-conservative,
|
3282 |
|
|
but it's clearly safe, and should happen only in unreachable
|
3283 |
|
|
parts of code, or for invalid programs. */
|
3284 |
|
|
if (compare_values (min, max) == 1)
|
3285 |
|
|
return;
|
3286 |
|
|
|
3287 |
|
|
set_value_range (vr, VR_RANGE, min, max, vr->equiv);
|
3288 |
|
|
}
|
3289 |
|
|
else if (vr->type == VR_RANGE)
|
3290 |
|
|
{
|
3291 |
|
|
min = vr->min;
|
3292 |
|
|
max = vr->max;
|
3293 |
|
|
|
3294 |
|
|
if (dir == EV_DIR_DECREASES)
|
3295 |
|
|
{
|
3296 |
|
|
/* INIT is the maximum value. If INIT is lower than VR->MAX
|
3297 |
|
|
but no smaller than VR->MIN, set VR->MAX to INIT. */
|
3298 |
|
|
if (compare_values (init, max) == -1)
|
3299 |
|
|
{
|
3300 |
|
|
max = init;
|
3301 |
|
|
|
3302 |
|
|
/* If we just created an invalid range with the minimum
|
3303 |
|
|
greater than the maximum, we fail conservatively.
|
3304 |
|
|
This should happen only in unreachable
|
3305 |
|
|
parts of code, or for invalid programs. */
|
3306 |
|
|
if (compare_values (min, max) == 1)
|
3307 |
|
|
return;
|
3308 |
|
|
}
|
3309 |
|
|
|
3310 |
|
|
/* According to the loop information, the variable does not
|
3311 |
|
|
overflow. If we think it does, probably because of an
|
3312 |
|
|
overflow due to arithmetic on a different INF value,
|
3313 |
|
|
reset now. */
|
3314 |
|
|
if (is_negative_overflow_infinity (min))
|
3315 |
|
|
min = tmin;
|
3316 |
|
|
}
|
3317 |
|
|
else
|
3318 |
|
|
{
|
3319 |
|
|
/* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
|
3320 |
|
|
if (compare_values (init, min) == 1)
|
3321 |
|
|
{
|
3322 |
|
|
min = init;
|
3323 |
|
|
|
3324 |
|
|
/* Again, avoid creating invalid range by failing. */
|
3325 |
|
|
if (compare_values (min, max) == 1)
|
3326 |
|
|
return;
|
3327 |
|
|
}
|
3328 |
|
|
|
3329 |
|
|
if (is_positive_overflow_infinity (max))
|
3330 |
|
|
max = tmax;
|
3331 |
|
|
}
|
3332 |
|
|
|
3333 |
|
|
set_value_range (vr, VR_RANGE, min, max, vr->equiv);
|
3334 |
|
|
}
|
3335 |
|
|
}
|
3336 |
|
|
|
3337 |
|
|
/* Return true if VAR may overflow at STMT. This checks any available
|
3338 |
|
|
loop information to see if we can determine that VAR does not
|
3339 |
|
|
overflow. */
|
3340 |
|
|
|
3341 |
|
|
static bool
|
3342 |
|
|
vrp_var_may_overflow (tree var, gimple stmt)
|
3343 |
|
|
{
|
3344 |
|
|
struct loop *l;
|
3345 |
|
|
tree chrec, init, step;
|
3346 |
|
|
|
3347 |
|
|
if (current_loops == NULL)
|
3348 |
|
|
return true;
|
3349 |
|
|
|
3350 |
|
|
l = loop_containing_stmt (stmt);
|
3351 |
|
|
if (l == NULL
|
3352 |
|
|
|| !loop_outer (l))
|
3353 |
|
|
return true;
|
3354 |
|
|
|
3355 |
|
|
chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
|
3356 |
|
|
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
|
3357 |
|
|
return true;
|
3358 |
|
|
|
3359 |
|
|
init = initial_condition_in_loop_num (chrec, l->num);
|
3360 |
|
|
step = evolution_part_in_loop_num (chrec, l->num);
|
3361 |
|
|
|
3362 |
|
|
if (step == NULL_TREE
|
3363 |
|
|
|| !is_gimple_min_invariant (step)
|
3364 |
|
|
|| !valid_value_p (init))
|
3365 |
|
|
return true;
|
3366 |
|
|
|
3367 |
|
|
/* If we get here, we know something useful about VAR based on the
|
3368 |
|
|
loop information. If it wraps, it may overflow. */
|
3369 |
|
|
|
3370 |
|
|
if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
|
3371 |
|
|
true))
|
3372 |
|
|
return true;
|
3373 |
|
|
|
3374 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS) != 0)
|
3375 |
|
|
{
|
3376 |
|
|
print_generic_expr (dump_file, var, 0);
|
3377 |
|
|
fprintf (dump_file, ": loop information indicates does not overflow\n");
|
3378 |
|
|
}
|
3379 |
|
|
|
3380 |
|
|
return false;
|
3381 |
|
|
}
|
3382 |
|
|
|
3383 |
|
|
|
3384 |
|
|
/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
|
3385 |
|
|
|
3386 |
|
|
- Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
|
3387 |
|
|
all the values in the ranges.
|
3388 |
|
|
|
3389 |
|
|
- Return BOOLEAN_FALSE_NODE if the comparison always returns false.
|
3390 |
|
|
|
3391 |
|
|
- Return NULL_TREE if it is not always possible to determine the
|
3392 |
|
|
value of the comparison.
|
3393 |
|
|
|
3394 |
|
|
Also set *STRICT_OVERFLOW_P to indicate whether a range with an
|
3395 |
|
|
overflow infinity was used in the test. */
|
3396 |
|
|
|
3397 |
|
|
|
3398 |
|
|
static tree
|
3399 |
|
|
compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
|
3400 |
|
|
bool *strict_overflow_p)
|
3401 |
|
|
{
|
3402 |
|
|
/* VARYING or UNDEFINED ranges cannot be compared. */
|
3403 |
|
|
if (vr0->type == VR_VARYING
|
3404 |
|
|
|| vr0->type == VR_UNDEFINED
|
3405 |
|
|
|| vr1->type == VR_VARYING
|
3406 |
|
|
|| vr1->type == VR_UNDEFINED)
|
3407 |
|
|
return NULL_TREE;
|
3408 |
|
|
|
3409 |
|
|
/* Anti-ranges need to be handled separately. */
|
3410 |
|
|
if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
|
3411 |
|
|
{
|
3412 |
|
|
/* If both are anti-ranges, then we cannot compute any
|
3413 |
|
|
comparison. */
|
3414 |
|
|
if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
|
3415 |
|
|
return NULL_TREE;
|
3416 |
|
|
|
3417 |
|
|
/* These comparisons are never statically computable. */
|
3418 |
|
|
if (comp == GT_EXPR
|
3419 |
|
|
|| comp == GE_EXPR
|
3420 |
|
|
|| comp == LT_EXPR
|
3421 |
|
|
|| comp == LE_EXPR)
|
3422 |
|
|
return NULL_TREE;
|
3423 |
|
|
|
3424 |
|
|
/* Equality can be computed only between a range and an
|
3425 |
|
|
anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
|
3426 |
|
|
if (vr0->type == VR_RANGE)
|
3427 |
|
|
{
|
3428 |
|
|
/* To simplify processing, make VR0 the anti-range. */
|
3429 |
|
|
value_range_t *tmp = vr0;
|
3430 |
|
|
vr0 = vr1;
|
3431 |
|
|
vr1 = tmp;
|
3432 |
|
|
}
|
3433 |
|
|
|
3434 |
|
|
gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
|
3435 |
|
|
|
3436 |
|
|
if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
|
3437 |
|
|
&& compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
|
3438 |
|
|
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
|
3439 |
|
|
|
3440 |
|
|
return NULL_TREE;
|
3441 |
|
|
}
|
3442 |
|
|
|
3443 |
|
|
if (!usable_range_p (vr0, strict_overflow_p)
|
3444 |
|
|
|| !usable_range_p (vr1, strict_overflow_p))
|
3445 |
|
|
return NULL_TREE;
|
3446 |
|
|
|
3447 |
|
|
/* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
|
3448 |
|
|
operands around and change the comparison code. */
|
3449 |
|
|
if (comp == GT_EXPR || comp == GE_EXPR)
|
3450 |
|
|
{
|
3451 |
|
|
value_range_t *tmp;
|
3452 |
|
|
comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
|
3453 |
|
|
tmp = vr0;
|
3454 |
|
|
vr0 = vr1;
|
3455 |
|
|
vr1 = tmp;
|
3456 |
|
|
}
|
3457 |
|
|
|
3458 |
|
|
if (comp == EQ_EXPR)
|
3459 |
|
|
{
|
3460 |
|
|
/* Equality may only be computed if both ranges represent
|
3461 |
|
|
exactly one value. */
|
3462 |
|
|
if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
|
3463 |
|
|
&& compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
|
3464 |
|
|
{
|
3465 |
|
|
int cmp_min = compare_values_warnv (vr0->min, vr1->min,
|
3466 |
|
|
strict_overflow_p);
|
3467 |
|
|
int cmp_max = compare_values_warnv (vr0->max, vr1->max,
|
3468 |
|
|
strict_overflow_p);
|
3469 |
|
|
if (cmp_min == 0 && cmp_max == 0)
|
3470 |
|
|
return boolean_true_node;
|
3471 |
|
|
else if (cmp_min != -2 && cmp_max != -2)
|
3472 |
|
|
return boolean_false_node;
|
3473 |
|
|
}
|
3474 |
|
|
/* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
|
3475 |
|
|
else if (compare_values_warnv (vr0->min, vr1->max,
|
3476 |
|
|
strict_overflow_p) == 1
|
3477 |
|
|
|| compare_values_warnv (vr1->min, vr0->max,
|
3478 |
|
|
strict_overflow_p) == 1)
|
3479 |
|
|
return boolean_false_node;
|
3480 |
|
|
|
3481 |
|
|
return NULL_TREE;
|
3482 |
|
|
}
|
3483 |
|
|
else if (comp == NE_EXPR)
|
3484 |
|
|
{
|
3485 |
|
|
int cmp1, cmp2;
|
3486 |
|
|
|
3487 |
|
|
/* If VR0 is completely to the left or completely to the right
|
3488 |
|
|
of VR1, they are always different. Notice that we need to
|
3489 |
|
|
make sure that both comparisons yield similar results to
|
3490 |
|
|
avoid comparing values that cannot be compared at
|
3491 |
|
|
compile-time. */
|
3492 |
|
|
cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
|
3493 |
|
|
cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
|
3494 |
|
|
if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
|
3495 |
|
|
return boolean_true_node;
|
3496 |
|
|
|
3497 |
|
|
/* If VR0 and VR1 represent a single value and are identical,
|
3498 |
|
|
return false. */
|
3499 |
|
|
else if (compare_values_warnv (vr0->min, vr0->max,
|
3500 |
|
|
strict_overflow_p) == 0
|
3501 |
|
|
&& compare_values_warnv (vr1->min, vr1->max,
|
3502 |
|
|
strict_overflow_p) == 0
|
3503 |
|
|
&& compare_values_warnv (vr0->min, vr1->min,
|
3504 |
|
|
strict_overflow_p) == 0
|
3505 |
|
|
&& compare_values_warnv (vr0->max, vr1->max,
|
3506 |
|
|
strict_overflow_p) == 0)
|
3507 |
|
|
return boolean_false_node;
|
3508 |
|
|
|
3509 |
|
|
/* Otherwise, they may or may not be different. */
|
3510 |
|
|
else
|
3511 |
|
|
return NULL_TREE;
|
3512 |
|
|
}
|
3513 |
|
|
else if (comp == LT_EXPR || comp == LE_EXPR)
|
3514 |
|
|
{
|
3515 |
|
|
int tst;
|
3516 |
|
|
|
3517 |
|
|
/* If VR0 is to the left of VR1, return true. */
|
3518 |
|
|
tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
|
3519 |
|
|
if ((comp == LT_EXPR && tst == -1)
|
3520 |
|
|
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
|
3521 |
|
|
{
|
3522 |
|
|
if (overflow_infinity_range_p (vr0)
|
3523 |
|
|
|| overflow_infinity_range_p (vr1))
|
3524 |
|
|
*strict_overflow_p = true;
|
3525 |
|
|
return boolean_true_node;
|
3526 |
|
|
}
|
3527 |
|
|
|
3528 |
|
|
/* If VR0 is to the right of VR1, return false. */
|
3529 |
|
|
tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
|
3530 |
|
|
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|
3531 |
|
|
|| (comp == LE_EXPR && tst == 1))
|
3532 |
|
|
{
|
3533 |
|
|
if (overflow_infinity_range_p (vr0)
|
3534 |
|
|
|| overflow_infinity_range_p (vr1))
|
3535 |
|
|
*strict_overflow_p = true;
|
3536 |
|
|
return boolean_false_node;
|
3537 |
|
|
}
|
3538 |
|
|
|
3539 |
|
|
/* Otherwise, we don't know. */
|
3540 |
|
|
return NULL_TREE;
|
3541 |
|
|
}
|
3542 |
|
|
|
3543 |
|
|
gcc_unreachable ();
|
3544 |
|
|
}
|
3545 |
|
|
|
3546 |
|
|
|
3547 |
|
|
/* Given a value range VR, a value VAL and a comparison code COMP, return
|
3548 |
|
|
BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
|
3549 |
|
|
values in VR. Return BOOLEAN_FALSE_NODE if the comparison
|
3550 |
|
|
always returns false. Return NULL_TREE if it is not always
|
3551 |
|
|
possible to determine the value of the comparison. Also set
|
3552 |
|
|
*STRICT_OVERFLOW_P to indicate whether a range with an overflow
|
3553 |
|
|
infinity was used in the test. */
|
3554 |
|
|
|
3555 |
|
|
static tree
|
3556 |
|
|
compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
|
3557 |
|
|
bool *strict_overflow_p)
|
3558 |
|
|
{
|
3559 |
|
|
if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
|
3560 |
|
|
return NULL_TREE;
|
3561 |
|
|
|
3562 |
|
|
/* Anti-ranges need to be handled separately. */
|
3563 |
|
|
if (vr->type == VR_ANTI_RANGE)
|
3564 |
|
|
{
|
3565 |
|
|
/* For anti-ranges, the only predicates that we can compute at
|
3566 |
|
|
compile time are equality and inequality. */
|
3567 |
|
|
if (comp == GT_EXPR
|
3568 |
|
|
|| comp == GE_EXPR
|
3569 |
|
|
|| comp == LT_EXPR
|
3570 |
|
|
|| comp == LE_EXPR)
|
3571 |
|
|
return NULL_TREE;
|
3572 |
|
|
|
3573 |
|
|
/* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
|
3574 |
|
|
if (value_inside_range (val, vr) == 1)
|
3575 |
|
|
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
|
3576 |
|
|
|
3577 |
|
|
return NULL_TREE;
|
3578 |
|
|
}
|
3579 |
|
|
|
3580 |
|
|
if (!usable_range_p (vr, strict_overflow_p))
|
3581 |
|
|
return NULL_TREE;
|
3582 |
|
|
|
3583 |
|
|
if (comp == EQ_EXPR)
|
3584 |
|
|
{
|
3585 |
|
|
/* EQ_EXPR may only be computed if VR represents exactly
|
3586 |
|
|
one value. */
|
3587 |
|
|
if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
|
3588 |
|
|
{
|
3589 |
|
|
int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
|
3590 |
|
|
if (cmp == 0)
|
3591 |
|
|
return boolean_true_node;
|
3592 |
|
|
else if (cmp == -1 || cmp == 1 || cmp == 2)
|
3593 |
|
|
return boolean_false_node;
|
3594 |
|
|
}
|
3595 |
|
|
else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
|
3596 |
|
|
|| compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
|
3597 |
|
|
return boolean_false_node;
|
3598 |
|
|
|
3599 |
|
|
return NULL_TREE;
|
3600 |
|
|
}
|
3601 |
|
|
else if (comp == NE_EXPR)
|
3602 |
|
|
{
|
3603 |
|
|
/* If VAL is not inside VR, then they are always different. */
|
3604 |
|
|
if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
|
3605 |
|
|
|| compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
|
3606 |
|
|
return boolean_true_node;
|
3607 |
|
|
|
3608 |
|
|
/* If VR represents exactly one value equal to VAL, then return
|
3609 |
|
|
false. */
|
3610 |
|
|
if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
|
3611 |
|
|
&& compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
|
3612 |
|
|
return boolean_false_node;
|
3613 |
|
|
|
3614 |
|
|
/* Otherwise, they may or may not be different. */
|
3615 |
|
|
return NULL_TREE;
|
3616 |
|
|
}
|
3617 |
|
|
else if (comp == LT_EXPR || comp == LE_EXPR)
|
3618 |
|
|
{
|
3619 |
|
|
int tst;
|
3620 |
|
|
|
3621 |
|
|
/* If VR is to the left of VAL, return true. */
|
3622 |
|
|
tst = compare_values_warnv (vr->max, val, strict_overflow_p);
|
3623 |
|
|
if ((comp == LT_EXPR && tst == -1)
|
3624 |
|
|
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
|
3625 |
|
|
{
|
3626 |
|
|
if (overflow_infinity_range_p (vr))
|
3627 |
|
|
*strict_overflow_p = true;
|
3628 |
|
|
return boolean_true_node;
|
3629 |
|
|
}
|
3630 |
|
|
|
3631 |
|
|
/* If VR is to the right of VAL, return false. */
|
3632 |
|
|
tst = compare_values_warnv (vr->min, val, strict_overflow_p);
|
3633 |
|
|
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|
3634 |
|
|
|| (comp == LE_EXPR && tst == 1))
|
3635 |
|
|
{
|
3636 |
|
|
if (overflow_infinity_range_p (vr))
|
3637 |
|
|
*strict_overflow_p = true;
|
3638 |
|
|
return boolean_false_node;
|
3639 |
|
|
}
|
3640 |
|
|
|
3641 |
|
|
/* Otherwise, we don't know. */
|
3642 |
|
|
return NULL_TREE;
|
3643 |
|
|
}
|
3644 |
|
|
else if (comp == GT_EXPR || comp == GE_EXPR)
|
3645 |
|
|
{
|
3646 |
|
|
int tst;
|
3647 |
|
|
|
3648 |
|
|
/* If VR is to the right of VAL, return true. */
|
3649 |
|
|
tst = compare_values_warnv (vr->min, val, strict_overflow_p);
|
3650 |
|
|
if ((comp == GT_EXPR && tst == 1)
|
3651 |
|
|
|| (comp == GE_EXPR && (tst == 0 || tst == 1)))
|
3652 |
|
|
{
|
3653 |
|
|
if (overflow_infinity_range_p (vr))
|
3654 |
|
|
*strict_overflow_p = true;
|
3655 |
|
|
return boolean_true_node;
|
3656 |
|
|
}
|
3657 |
|
|
|
3658 |
|
|
/* If VR is to the left of VAL, return false. */
|
3659 |
|
|
tst = compare_values_warnv (vr->max, val, strict_overflow_p);
|
3660 |
|
|
if ((comp == GT_EXPR && (tst == -1 || tst == 0))
|
3661 |
|
|
|| (comp == GE_EXPR && tst == -1))
|
3662 |
|
|
{
|
3663 |
|
|
if (overflow_infinity_range_p (vr))
|
3664 |
|
|
*strict_overflow_p = true;
|
3665 |
|
|
return boolean_false_node;
|
3666 |
|
|
}
|
3667 |
|
|
|
3668 |
|
|
/* Otherwise, we don't know. */
|
3669 |
|
|
return NULL_TREE;
|
3670 |
|
|
}
|
3671 |
|
|
|
3672 |
|
|
gcc_unreachable ();
|
3673 |
|
|
}
|
3674 |
|
|
|
3675 |
|
|
|
3676 |
|
|
/* Debugging dumps. */
|
3677 |
|
|
|
3678 |
|
|
void dump_value_range (FILE *, value_range_t *);
|
3679 |
|
|
void debug_value_range (value_range_t *);
|
3680 |
|
|
void dump_all_value_ranges (FILE *);
|
3681 |
|
|
void debug_all_value_ranges (void);
|
3682 |
|
|
void dump_vr_equiv (FILE *, bitmap);
|
3683 |
|
|
void debug_vr_equiv (bitmap);
|
3684 |
|
|
|
3685 |
|
|
|
3686 |
|
|
/* Dump value range VR to FILE. */
|
3687 |
|
|
|
3688 |
|
|
void
|
3689 |
|
|
dump_value_range (FILE *file, value_range_t *vr)
|
3690 |
|
|
{
|
3691 |
|
|
if (vr == NULL)
|
3692 |
|
|
fprintf (file, "[]");
|
3693 |
|
|
else if (vr->type == VR_UNDEFINED)
|
3694 |
|
|
fprintf (file, "UNDEFINED");
|
3695 |
|
|
else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
|
3696 |
|
|
{
|
3697 |
|
|
tree type = TREE_TYPE (vr->min);
|
3698 |
|
|
|
3699 |
|
|
fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
|
3700 |
|
|
|
3701 |
|
|
if (is_negative_overflow_infinity (vr->min))
|
3702 |
|
|
fprintf (file, "-INF(OVF)");
|
3703 |
|
|
else if (INTEGRAL_TYPE_P (type)
|
3704 |
|
|
&& !TYPE_UNSIGNED (type)
|
3705 |
|
|
&& vrp_val_is_min (vr->min))
|
3706 |
|
|
fprintf (file, "-INF");
|
3707 |
|
|
else
|
3708 |
|
|
print_generic_expr (file, vr->min, 0);
|
3709 |
|
|
|
3710 |
|
|
fprintf (file, ", ");
|
3711 |
|
|
|
3712 |
|
|
if (is_positive_overflow_infinity (vr->max))
|
3713 |
|
|
fprintf (file, "+INF(OVF)");
|
3714 |
|
|
else if (INTEGRAL_TYPE_P (type)
|
3715 |
|
|
&& vrp_val_is_max (vr->max))
|
3716 |
|
|
fprintf (file, "+INF");
|
3717 |
|
|
else
|
3718 |
|
|
print_generic_expr (file, vr->max, 0);
|
3719 |
|
|
|
3720 |
|
|
fprintf (file, "]");
|
3721 |
|
|
|
3722 |
|
|
if (vr->equiv)
|
3723 |
|
|
{
|
3724 |
|
|
bitmap_iterator bi;
|
3725 |
|
|
unsigned i, c = 0;
|
3726 |
|
|
|
3727 |
|
|
fprintf (file, " EQUIVALENCES: { ");
|
3728 |
|
|
|
3729 |
|
|
EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
|
3730 |
|
|
{
|
3731 |
|
|
print_generic_expr (file, ssa_name (i), 0);
|
3732 |
|
|
fprintf (file, " ");
|
3733 |
|
|
c++;
|
3734 |
|
|
}
|
3735 |
|
|
|
3736 |
|
|
fprintf (file, "} (%u elements)", c);
|
3737 |
|
|
}
|
3738 |
|
|
}
|
3739 |
|
|
else if (vr->type == VR_VARYING)
|
3740 |
|
|
fprintf (file, "VARYING");
|
3741 |
|
|
else
|
3742 |
|
|
fprintf (file, "INVALID RANGE");
|
3743 |
|
|
}
|
3744 |
|
|
|
3745 |
|
|
|
3746 |
|
|
/* Dump value range VR to stderr. */
|
3747 |
|
|
|
3748 |
|
|
void
|
3749 |
|
|
debug_value_range (value_range_t *vr)
|
3750 |
|
|
{
|
3751 |
|
|
dump_value_range (stderr, vr);
|
3752 |
|
|
fprintf (stderr, "\n");
|
3753 |
|
|
}
|
3754 |
|
|
|
3755 |
|
|
|
3756 |
|
|
/* Dump value ranges of all SSA_NAMEs to FILE. */
|
3757 |
|
|
|
3758 |
|
|
void
|
3759 |
|
|
dump_all_value_ranges (FILE *file)
|
3760 |
|
|
{
|
3761 |
|
|
size_t i;
|
3762 |
|
|
|
3763 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
3764 |
|
|
{
|
3765 |
|
|
if (vr_value[i])
|
3766 |
|
|
{
|
3767 |
|
|
print_generic_expr (file, ssa_name (i), 0);
|
3768 |
|
|
fprintf (file, ": ");
|
3769 |
|
|
dump_value_range (file, vr_value[i]);
|
3770 |
|
|
fprintf (file, "\n");
|
3771 |
|
|
}
|
3772 |
|
|
}
|
3773 |
|
|
|
3774 |
|
|
fprintf (file, "\n");
|
3775 |
|
|
}
|
3776 |
|
|
|
3777 |
|
|
|
3778 |
|
|
/* Dump all value ranges to stderr. */
|
3779 |
|
|
|
3780 |
|
|
void
|
3781 |
|
|
debug_all_value_ranges (void)
|
3782 |
|
|
{
|
3783 |
|
|
dump_all_value_ranges (stderr);
|
3784 |
|
|
}
|
3785 |
|
|
|
3786 |
|
|
|
3787 |
|
|
/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
|
3788 |
|
|
create a new SSA name N and return the assertion assignment
|
3789 |
|
|
'V = ASSERT_EXPR <V, V OP W>'. */
|
3790 |
|
|
|
3791 |
|
|
static gimple
|
3792 |
|
|
build_assert_expr_for (tree cond, tree v)
|
3793 |
|
|
{
|
3794 |
|
|
tree n;
|
3795 |
|
|
gimple assertion;
|
3796 |
|
|
|
3797 |
|
|
gcc_assert (TREE_CODE (v) == SSA_NAME);
|
3798 |
|
|
n = duplicate_ssa_name (v, NULL);
|
3799 |
|
|
|
3800 |
|
|
if (COMPARISON_CLASS_P (cond))
|
3801 |
|
|
{
|
3802 |
|
|
tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
|
3803 |
|
|
assertion = gimple_build_assign (n, a);
|
3804 |
|
|
}
|
3805 |
|
|
else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
|
3806 |
|
|
{
|
3807 |
|
|
/* Given !V, build the assignment N = false. */
|
3808 |
|
|
tree op0 = TREE_OPERAND (cond, 0);
|
3809 |
|
|
gcc_assert (op0 == v);
|
3810 |
|
|
assertion = gimple_build_assign (n, boolean_false_node);
|
3811 |
|
|
}
|
3812 |
|
|
else if (TREE_CODE (cond) == SSA_NAME)
|
3813 |
|
|
{
|
3814 |
|
|
/* Given V, build the assignment N = true. */
|
3815 |
|
|
gcc_assert (v == cond);
|
3816 |
|
|
assertion = gimple_build_assign (n, boolean_true_node);
|
3817 |
|
|
}
|
3818 |
|
|
else
|
3819 |
|
|
gcc_unreachable ();
|
3820 |
|
|
|
3821 |
|
|
SSA_NAME_DEF_STMT (n) = assertion;
|
3822 |
|
|
|
3823 |
|
|
/* The new ASSERT_EXPR, creates a new SSA name that replaces the
|
3824 |
|
|
operand of the ASSERT_EXPR. Register the new name and the old one
|
3825 |
|
|
in the replacement table so that we can fix the SSA web after
|
3826 |
|
|
adding all the ASSERT_EXPRs. */
|
3827 |
|
|
register_new_name_mapping (n, v);
|
3828 |
|
|
|
3829 |
|
|
return assertion;
|
3830 |
|
|
}
|
3831 |
|
|
|
3832 |
|
|
|
3833 |
|
|
/* Return false if EXPR is a predicate expression involving floating
|
3834 |
|
|
point values. */
|
3835 |
|
|
|
3836 |
|
|
static inline bool
|
3837 |
|
|
fp_predicate (gimple stmt)
|
3838 |
|
|
{
|
3839 |
|
|
GIMPLE_CHECK (stmt, GIMPLE_COND);
|
3840 |
|
|
|
3841 |
|
|
return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
|
3842 |
|
|
}
|
3843 |
|
|
|
3844 |
|
|
|
3845 |
|
|
/* If the range of values taken by OP can be inferred after STMT executes,
|
3846 |
|
|
return the comparison code (COMP_CODE_P) and value (VAL_P) that
|
3847 |
|
|
describes the inferred range. Return true if a range could be
|
3848 |
|
|
inferred. */
|
3849 |
|
|
|
3850 |
|
|
static bool
|
3851 |
|
|
infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
|
3852 |
|
|
{
|
3853 |
|
|
*val_p = NULL_TREE;
|
3854 |
|
|
*comp_code_p = ERROR_MARK;
|
3855 |
|
|
|
3856 |
|
|
/* Do not attempt to infer anything in names that flow through
|
3857 |
|
|
abnormal edges. */
|
3858 |
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
|
3859 |
|
|
return false;
|
3860 |
|
|
|
3861 |
|
|
/* Similarly, don't infer anything from statements that may throw
|
3862 |
|
|
exceptions. */
|
3863 |
|
|
if (stmt_could_throw_p (stmt))
|
3864 |
|
|
return false;
|
3865 |
|
|
|
3866 |
|
|
/* If STMT is the last statement of a basic block with no
|
3867 |
|
|
successors, there is no point inferring anything about any of its
|
3868 |
|
|
operands. We would not be able to find a proper insertion point
|
3869 |
|
|
for the assertion, anyway. */
|
3870 |
|
|
if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
|
3871 |
|
|
return false;
|
3872 |
|
|
|
3873 |
|
|
/* We can only assume that a pointer dereference will yield
|
3874 |
|
|
non-NULL if -fdelete-null-pointer-checks is enabled. */
|
3875 |
|
|
if (flag_delete_null_pointer_checks
|
3876 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (op))
|
3877 |
|
|
&& gimple_code (stmt) != GIMPLE_ASM)
|
3878 |
|
|
{
|
3879 |
|
|
unsigned num_uses, num_loads, num_stores;
|
3880 |
|
|
|
3881 |
|
|
count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
|
3882 |
|
|
if (num_loads + num_stores > 0)
|
3883 |
|
|
{
|
3884 |
|
|
*val_p = build_int_cst (TREE_TYPE (op), 0);
|
3885 |
|
|
*comp_code_p = NE_EXPR;
|
3886 |
|
|
return true;
|
3887 |
|
|
}
|
3888 |
|
|
}
|
3889 |
|
|
|
3890 |
|
|
return false;
|
3891 |
|
|
}
|
3892 |
|
|
|
3893 |
|
|
|
3894 |
|
|
void dump_asserts_for (FILE *, tree);
|
3895 |
|
|
void debug_asserts_for (tree);
|
3896 |
|
|
void dump_all_asserts (FILE *);
|
3897 |
|
|
void debug_all_asserts (void);
|
3898 |
|
|
|
3899 |
|
|
/* Dump all the registered assertions for NAME to FILE. */
|
3900 |
|
|
|
3901 |
|
|
void
|
3902 |
|
|
dump_asserts_for (FILE *file, tree name)
|
3903 |
|
|
{
|
3904 |
|
|
assert_locus_t loc;
|
3905 |
|
|
|
3906 |
|
|
fprintf (file, "Assertions to be inserted for ");
|
3907 |
|
|
print_generic_expr (file, name, 0);
|
3908 |
|
|
fprintf (file, "\n");
|
3909 |
|
|
|
3910 |
|
|
loc = asserts_for[SSA_NAME_VERSION (name)];
|
3911 |
|
|
while (loc)
|
3912 |
|
|
{
|
3913 |
|
|
fprintf (file, "\t");
|
3914 |
|
|
print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
|
3915 |
|
|
fprintf (file, "\n\tBB #%d", loc->bb->index);
|
3916 |
|
|
if (loc->e)
|
3917 |
|
|
{
|
3918 |
|
|
fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
|
3919 |
|
|
loc->e->dest->index);
|
3920 |
|
|
dump_edge_info (file, loc->e, 0);
|
3921 |
|
|
}
|
3922 |
|
|
fprintf (file, "\n\tPREDICATE: ");
|
3923 |
|
|
print_generic_expr (file, name, 0);
|
3924 |
|
|
fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
|
3925 |
|
|
print_generic_expr (file, loc->val, 0);
|
3926 |
|
|
fprintf (file, "\n\n");
|
3927 |
|
|
loc = loc->next;
|
3928 |
|
|
}
|
3929 |
|
|
|
3930 |
|
|
fprintf (file, "\n");
|
3931 |
|
|
}
|
3932 |
|
|
|
3933 |
|
|
|
3934 |
|
|
/* Dump all the registered assertions for NAME to stderr. */
|
3935 |
|
|
|
3936 |
|
|
void
|
3937 |
|
|
debug_asserts_for (tree name)
|
3938 |
|
|
{
|
3939 |
|
|
dump_asserts_for (stderr, name);
|
3940 |
|
|
}
|
3941 |
|
|
|
3942 |
|
|
|
3943 |
|
|
/* Dump all the registered assertions for all the names to FILE. */
|
3944 |
|
|
|
3945 |
|
|
void
|
3946 |
|
|
dump_all_asserts (FILE *file)
|
3947 |
|
|
{
|
3948 |
|
|
unsigned i;
|
3949 |
|
|
bitmap_iterator bi;
|
3950 |
|
|
|
3951 |
|
|
fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
|
3952 |
|
|
EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
|
3953 |
|
|
dump_asserts_for (file, ssa_name (i));
|
3954 |
|
|
fprintf (file, "\n");
|
3955 |
|
|
}
|
3956 |
|
|
|
3957 |
|
|
|
3958 |
|
|
/* Dump all the registered assertions for all the names to stderr. */
|
3959 |
|
|
|
3960 |
|
|
void
|
3961 |
|
|
debug_all_asserts (void)
|
3962 |
|
|
{
|
3963 |
|
|
dump_all_asserts (stderr);
|
3964 |
|
|
}
|
3965 |
|
|
|
3966 |
|
|
|
3967 |
|
|
/* If NAME doesn't have an ASSERT_EXPR registered for asserting
|
3968 |
|
|
'EXPR COMP_CODE VAL' at a location that dominates block BB or
|
3969 |
|
|
E->DEST, then register this location as a possible insertion point
|
3970 |
|
|
for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
|
3971 |
|
|
|
3972 |
|
|
BB, E and SI provide the exact insertion point for the new
|
3973 |
|
|
ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
|
3974 |
|
|
on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
|
3975 |
|
|
BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
|
3976 |
|
|
must not be NULL. */
|
3977 |
|
|
|
3978 |
|
|
static void
|
3979 |
|
|
register_new_assert_for (tree name, tree expr,
|
3980 |
|
|
enum tree_code comp_code,
|
3981 |
|
|
tree val,
|
3982 |
|
|
basic_block bb,
|
3983 |
|
|
edge e,
|
3984 |
|
|
gimple_stmt_iterator si)
|
3985 |
|
|
{
|
3986 |
|
|
assert_locus_t n, loc, last_loc;
|
3987 |
|
|
basic_block dest_bb;
|
3988 |
|
|
|
3989 |
|
|
#if defined ENABLE_CHECKING
|
3990 |
|
|
gcc_assert (bb == NULL || e == NULL);
|
3991 |
|
|
|
3992 |
|
|
if (e == NULL)
|
3993 |
|
|
gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
|
3994 |
|
|
&& gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
|
3995 |
|
|
#endif
|
3996 |
|
|
|
3997 |
|
|
/* Never build an assert comparing against an integer constant with
|
3998 |
|
|
TREE_OVERFLOW set. This confuses our undefined overflow warning
|
3999 |
|
|
machinery. */
|
4000 |
|
|
if (TREE_CODE (val) == INTEGER_CST
|
4001 |
|
|
&& TREE_OVERFLOW (val))
|
4002 |
|
|
val = build_int_cst_wide (TREE_TYPE (val),
|
4003 |
|
|
TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
|
4004 |
|
|
|
4005 |
|
|
/* The new assertion A will be inserted at BB or E. We need to
|
4006 |
|
|
determine if the new location is dominated by a previously
|
4007 |
|
|
registered location for A. If we are doing an edge insertion,
|
4008 |
|
|
assume that A will be inserted at E->DEST. Note that this is not
|
4009 |
|
|
necessarily true.
|
4010 |
|
|
|
4011 |
|
|
If E is a critical edge, it will be split. But even if E is
|
4012 |
|
|
split, the new block will dominate the same set of blocks that
|
4013 |
|
|
E->DEST dominates.
|
4014 |
|
|
|
4015 |
|
|
The reverse, however, is not true, blocks dominated by E->DEST
|
4016 |
|
|
will not be dominated by the new block created to split E. So,
|
4017 |
|
|
if the insertion location is on a critical edge, we will not use
|
4018 |
|
|
the new location to move another assertion previously registered
|
4019 |
|
|
at a block dominated by E->DEST. */
|
4020 |
|
|
dest_bb = (bb) ? bb : e->dest;
|
4021 |
|
|
|
4022 |
|
|
/* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
|
4023 |
|
|
VAL at a block dominating DEST_BB, then we don't need to insert a new
|
4024 |
|
|
one. Similarly, if the same assertion already exists at a block
|
4025 |
|
|
dominated by DEST_BB and the new location is not on a critical
|
4026 |
|
|
edge, then update the existing location for the assertion (i.e.,
|
4027 |
|
|
move the assertion up in the dominance tree).
|
4028 |
|
|
|
4029 |
|
|
Note, this is implemented as a simple linked list because there
|
4030 |
|
|
should not be more than a handful of assertions registered per
|
4031 |
|
|
name. If this becomes a performance problem, a table hashed by
|
4032 |
|
|
COMP_CODE and VAL could be implemented. */
|
4033 |
|
|
loc = asserts_for[SSA_NAME_VERSION (name)];
|
4034 |
|
|
last_loc = loc;
|
4035 |
|
|
while (loc)
|
4036 |
|
|
{
|
4037 |
|
|
if (loc->comp_code == comp_code
|
4038 |
|
|
&& (loc->val == val
|
4039 |
|
|
|| operand_equal_p (loc->val, val, 0))
|
4040 |
|
|
&& (loc->expr == expr
|
4041 |
|
|
|| operand_equal_p (loc->expr, expr, 0)))
|
4042 |
|
|
{
|
4043 |
|
|
/* If the assertion NAME COMP_CODE VAL has already been
|
4044 |
|
|
registered at a basic block that dominates DEST_BB, then
|
4045 |
|
|
we don't need to insert the same assertion again. Note
|
4046 |
|
|
that we don't check strict dominance here to avoid
|
4047 |
|
|
replicating the same assertion inside the same basic
|
4048 |
|
|
block more than once (e.g., when a pointer is
|
4049 |
|
|
dereferenced several times inside a block).
|
4050 |
|
|
|
4051 |
|
|
An exception to this rule are edge insertions. If the
|
4052 |
|
|
new assertion is to be inserted on edge E, then it will
|
4053 |
|
|
dominate all the other insertions that we may want to
|
4054 |
|
|
insert in DEST_BB. So, if we are doing an edge
|
4055 |
|
|
insertion, don't do this dominance check. */
|
4056 |
|
|
if (e == NULL
|
4057 |
|
|
&& dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
|
4058 |
|
|
return;
|
4059 |
|
|
|
4060 |
|
|
/* Otherwise, if E is not a critical edge and DEST_BB
|
4061 |
|
|
dominates the existing location for the assertion, move
|
4062 |
|
|
the assertion up in the dominance tree by updating its
|
4063 |
|
|
location information. */
|
4064 |
|
|
if ((e == NULL || !EDGE_CRITICAL_P (e))
|
4065 |
|
|
&& dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
|
4066 |
|
|
{
|
4067 |
|
|
loc->bb = dest_bb;
|
4068 |
|
|
loc->e = e;
|
4069 |
|
|
loc->si = si;
|
4070 |
|
|
return;
|
4071 |
|
|
}
|
4072 |
|
|
}
|
4073 |
|
|
|
4074 |
|
|
/* Update the last node of the list and move to the next one. */
|
4075 |
|
|
last_loc = loc;
|
4076 |
|
|
loc = loc->next;
|
4077 |
|
|
}
|
4078 |
|
|
|
4079 |
|
|
/* If we didn't find an assertion already registered for
|
4080 |
|
|
NAME COMP_CODE VAL, add a new one at the end of the list of
|
4081 |
|
|
assertions associated with NAME. */
|
4082 |
|
|
n = XNEW (struct assert_locus_d);
|
4083 |
|
|
n->bb = dest_bb;
|
4084 |
|
|
n->e = e;
|
4085 |
|
|
n->si = si;
|
4086 |
|
|
n->comp_code = comp_code;
|
4087 |
|
|
n->val = val;
|
4088 |
|
|
n->expr = expr;
|
4089 |
|
|
n->next = NULL;
|
4090 |
|
|
|
4091 |
|
|
if (last_loc)
|
4092 |
|
|
last_loc->next = n;
|
4093 |
|
|
else
|
4094 |
|
|
asserts_for[SSA_NAME_VERSION (name)] = n;
|
4095 |
|
|
|
4096 |
|
|
bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
|
4097 |
|
|
}
|
4098 |
|
|
|
4099 |
|
|
/* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
|
4100 |
|
|
Extract a suitable test code and value and store them into *CODE_P and
|
4101 |
|
|
*VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
|
4102 |
|
|
|
4103 |
|
|
If no extraction was possible, return FALSE, otherwise return TRUE.
|
4104 |
|
|
|
4105 |
|
|
If INVERT is true, then we invert the result stored into *CODE_P. */
|
4106 |
|
|
|
4107 |
|
|
static bool
|
4108 |
|
|
extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
|
4109 |
|
|
tree cond_op0, tree cond_op1,
|
4110 |
|
|
bool invert, enum tree_code *code_p,
|
4111 |
|
|
tree *val_p)
|
4112 |
|
|
{
|
4113 |
|
|
enum tree_code comp_code;
|
4114 |
|
|
tree val;
|
4115 |
|
|
|
4116 |
|
|
/* Otherwise, we have a comparison of the form NAME COMP VAL
|
4117 |
|
|
or VAL COMP NAME. */
|
4118 |
|
|
if (name == cond_op1)
|
4119 |
|
|
{
|
4120 |
|
|
/* If the predicate is of the form VAL COMP NAME, flip
|
4121 |
|
|
COMP around because we need to register NAME as the
|
4122 |
|
|
first operand in the predicate. */
|
4123 |
|
|
comp_code = swap_tree_comparison (cond_code);
|
4124 |
|
|
val = cond_op0;
|
4125 |
|
|
}
|
4126 |
|
|
else
|
4127 |
|
|
{
|
4128 |
|
|
/* The comparison is of the form NAME COMP VAL, so the
|
4129 |
|
|
comparison code remains unchanged. */
|
4130 |
|
|
comp_code = cond_code;
|
4131 |
|
|
val = cond_op1;
|
4132 |
|
|
}
|
4133 |
|
|
|
4134 |
|
|
/* Invert the comparison code as necessary. */
|
4135 |
|
|
if (invert)
|
4136 |
|
|
comp_code = invert_tree_comparison (comp_code, 0);
|
4137 |
|
|
|
4138 |
|
|
/* VRP does not handle float types. */
|
4139 |
|
|
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
|
4140 |
|
|
return false;
|
4141 |
|
|
|
4142 |
|
|
/* Do not register always-false predicates.
|
4143 |
|
|
FIXME: this works around a limitation in fold() when dealing with
|
4144 |
|
|
enumerations. Given 'enum { N1, N2 } x;', fold will not
|
4145 |
|
|
fold 'if (x > N2)' to 'if (0)'. */
|
4146 |
|
|
if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
|
4147 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (val)))
|
4148 |
|
|
{
|
4149 |
|
|
tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
|
4150 |
|
|
tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
|
4151 |
|
|
|
4152 |
|
|
if (comp_code == GT_EXPR
|
4153 |
|
|
&& (!max
|
4154 |
|
|
|| compare_values (val, max) == 0))
|
4155 |
|
|
return false;
|
4156 |
|
|
|
4157 |
|
|
if (comp_code == LT_EXPR
|
4158 |
|
|
&& (!min
|
4159 |
|
|
|| compare_values (val, min) == 0))
|
4160 |
|
|
return false;
|
4161 |
|
|
}
|
4162 |
|
|
*code_p = comp_code;
|
4163 |
|
|
*val_p = val;
|
4164 |
|
|
return true;
|
4165 |
|
|
}
|
4166 |
|
|
|
4167 |
|
|
/* Try to register an edge assertion for SSA name NAME on edge E for
|
4168 |
|
|
the condition COND contributing to the conditional jump pointed to by BSI.
|
4169 |
|
|
Invert the condition COND if INVERT is true.
|
4170 |
|
|
Return true if an assertion for NAME could be registered. */
|
4171 |
|
|
|
4172 |
|
|
static bool
|
4173 |
|
|
register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
|
4174 |
|
|
enum tree_code cond_code,
|
4175 |
|
|
tree cond_op0, tree cond_op1, bool invert)
|
4176 |
|
|
{
|
4177 |
|
|
tree val;
|
4178 |
|
|
enum tree_code comp_code;
|
4179 |
|
|
bool retval = false;
|
4180 |
|
|
|
4181 |
|
|
if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
|
4182 |
|
|
cond_op0,
|
4183 |
|
|
cond_op1,
|
4184 |
|
|
invert, &comp_code, &val))
|
4185 |
|
|
return false;
|
4186 |
|
|
|
4187 |
|
|
/* Only register an ASSERT_EXPR if NAME was found in the sub-graph
|
4188 |
|
|
reachable from E. */
|
4189 |
|
|
if (live_on_edge (e, name)
|
4190 |
|
|
&& !has_single_use (name))
|
4191 |
|
|
{
|
4192 |
|
|
register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
|
4193 |
|
|
retval = true;
|
4194 |
|
|
}
|
4195 |
|
|
|
4196 |
|
|
/* In the case of NAME <= CST and NAME being defined as
|
4197 |
|
|
NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
|
4198 |
|
|
and NAME2 <= CST - CST2. We can do the same for NAME > CST.
|
4199 |
|
|
This catches range and anti-range tests. */
|
4200 |
|
|
if ((comp_code == LE_EXPR
|
4201 |
|
|
|| comp_code == GT_EXPR)
|
4202 |
|
|
&& TREE_CODE (val) == INTEGER_CST
|
4203 |
|
|
&& TYPE_UNSIGNED (TREE_TYPE (val)))
|
4204 |
|
|
{
|
4205 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (name);
|
4206 |
|
|
tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
|
4207 |
|
|
|
4208 |
|
|
/* Extract CST2 from the (optional) addition. */
|
4209 |
|
|
if (is_gimple_assign (def_stmt)
|
4210 |
|
|
&& gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
|
4211 |
|
|
{
|
4212 |
|
|
name2 = gimple_assign_rhs1 (def_stmt);
|
4213 |
|
|
cst2 = gimple_assign_rhs2 (def_stmt);
|
4214 |
|
|
if (TREE_CODE (name2) == SSA_NAME
|
4215 |
|
|
&& TREE_CODE (cst2) == INTEGER_CST)
|
4216 |
|
|
def_stmt = SSA_NAME_DEF_STMT (name2);
|
4217 |
|
|
}
|
4218 |
|
|
|
4219 |
|
|
/* Extract NAME2 from the (optional) sign-changing cast. */
|
4220 |
|
|
if (gimple_assign_cast_p (def_stmt))
|
4221 |
|
|
{
|
4222 |
|
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
|
4223 |
|
|
&& ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
|
4224 |
|
|
&& (TYPE_PRECISION (gimple_expr_type (def_stmt))
|
4225 |
|
|
== TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
|
4226 |
|
|
name3 = gimple_assign_rhs1 (def_stmt);
|
4227 |
|
|
}
|
4228 |
|
|
|
4229 |
|
|
/* If name3 is used later, create an ASSERT_EXPR for it. */
|
4230 |
|
|
if (name3 != NULL_TREE
|
4231 |
|
|
&& TREE_CODE (name3) == SSA_NAME
|
4232 |
|
|
&& (cst2 == NULL_TREE
|
4233 |
|
|
|| TREE_CODE (cst2) == INTEGER_CST)
|
4234 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (name3))
|
4235 |
|
|
&& live_on_edge (e, name3)
|
4236 |
|
|
&& !has_single_use (name3))
|
4237 |
|
|
{
|
4238 |
|
|
tree tmp;
|
4239 |
|
|
|
4240 |
|
|
/* Build an expression for the range test. */
|
4241 |
|
|
tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
|
4242 |
|
|
if (cst2 != NULL_TREE)
|
4243 |
|
|
tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
|
4244 |
|
|
|
4245 |
|
|
if (dump_file)
|
4246 |
|
|
{
|
4247 |
|
|
fprintf (dump_file, "Adding assert for ");
|
4248 |
|
|
print_generic_expr (dump_file, name3, 0);
|
4249 |
|
|
fprintf (dump_file, " from ");
|
4250 |
|
|
print_generic_expr (dump_file, tmp, 0);
|
4251 |
|
|
fprintf (dump_file, "\n");
|
4252 |
|
|
}
|
4253 |
|
|
|
4254 |
|
|
register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
|
4255 |
|
|
|
4256 |
|
|
retval = true;
|
4257 |
|
|
}
|
4258 |
|
|
|
4259 |
|
|
/* If name2 is used later, create an ASSERT_EXPR for it. */
|
4260 |
|
|
if (name2 != NULL_TREE
|
4261 |
|
|
&& TREE_CODE (name2) == SSA_NAME
|
4262 |
|
|
&& TREE_CODE (cst2) == INTEGER_CST
|
4263 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (name2))
|
4264 |
|
|
&& live_on_edge (e, name2)
|
4265 |
|
|
&& !has_single_use (name2))
|
4266 |
|
|
{
|
4267 |
|
|
tree tmp;
|
4268 |
|
|
|
4269 |
|
|
/* Build an expression for the range test. */
|
4270 |
|
|
tmp = name2;
|
4271 |
|
|
if (TREE_TYPE (name) != TREE_TYPE (name2))
|
4272 |
|
|
tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
|
4273 |
|
|
if (cst2 != NULL_TREE)
|
4274 |
|
|
tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
|
4275 |
|
|
|
4276 |
|
|
if (dump_file)
|
4277 |
|
|
{
|
4278 |
|
|
fprintf (dump_file, "Adding assert for ");
|
4279 |
|
|
print_generic_expr (dump_file, name2, 0);
|
4280 |
|
|
fprintf (dump_file, " from ");
|
4281 |
|
|
print_generic_expr (dump_file, tmp, 0);
|
4282 |
|
|
fprintf (dump_file, "\n");
|
4283 |
|
|
}
|
4284 |
|
|
|
4285 |
|
|
register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
|
4286 |
|
|
|
4287 |
|
|
retval = true;
|
4288 |
|
|
}
|
4289 |
|
|
}
|
4290 |
|
|
|
4291 |
|
|
return retval;
|
4292 |
|
|
}
|
4293 |
|
|
|
4294 |
|
|
/* OP is an operand of a truth value expression which is known to have
|
4295 |
|
|
a particular value. Register any asserts for OP and for any
|
4296 |
|
|
operands in OP's defining statement.
|
4297 |
|
|
|
4298 |
|
|
If CODE is EQ_EXPR, then we want to register OP is zero (false),
|
4299 |
|
|
if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
|
4300 |
|
|
|
4301 |
|
|
static bool
|
4302 |
|
|
register_edge_assert_for_1 (tree op, enum tree_code code,
|
4303 |
|
|
edge e, gimple_stmt_iterator bsi)
|
4304 |
|
|
{
|
4305 |
|
|
bool retval = false;
|
4306 |
|
|
gimple op_def;
|
4307 |
|
|
tree val;
|
4308 |
|
|
enum tree_code rhs_code;
|
4309 |
|
|
|
4310 |
|
|
/* We only care about SSA_NAMEs. */
|
4311 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
4312 |
|
|
return false;
|
4313 |
|
|
|
4314 |
|
|
/* We know that OP will have a zero or nonzero value. If OP is used
|
4315 |
|
|
more than once go ahead and register an assert for OP.
|
4316 |
|
|
|
4317 |
|
|
The FOUND_IN_SUBGRAPH support is not helpful in this situation as
|
4318 |
|
|
it will always be set for OP (because OP is used in a COND_EXPR in
|
4319 |
|
|
the subgraph). */
|
4320 |
|
|
if (!has_single_use (op))
|
4321 |
|
|
{
|
4322 |
|
|
val = build_int_cst (TREE_TYPE (op), 0);
|
4323 |
|
|
register_new_assert_for (op, op, code, val, NULL, e, bsi);
|
4324 |
|
|
retval = true;
|
4325 |
|
|
}
|
4326 |
|
|
|
4327 |
|
|
/* Now look at how OP is set. If it's set from a comparison,
|
4328 |
|
|
a truth operation or some bit operations, then we may be able
|
4329 |
|
|
to register information about the operands of that assignment. */
|
4330 |
|
|
op_def = SSA_NAME_DEF_STMT (op);
|
4331 |
|
|
if (gimple_code (op_def) != GIMPLE_ASSIGN)
|
4332 |
|
|
return retval;
|
4333 |
|
|
|
4334 |
|
|
rhs_code = gimple_assign_rhs_code (op_def);
|
4335 |
|
|
|
4336 |
|
|
if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
|
4337 |
|
|
{
|
4338 |
|
|
bool invert = (code == EQ_EXPR ? true : false);
|
4339 |
|
|
tree op0 = gimple_assign_rhs1 (op_def);
|
4340 |
|
|
tree op1 = gimple_assign_rhs2 (op_def);
|
4341 |
|
|
|
4342 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
4343 |
|
|
retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
|
4344 |
|
|
invert);
|
4345 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
4346 |
|
|
retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
|
4347 |
|
|
invert);
|
4348 |
|
|
}
|
4349 |
|
|
else if ((code == NE_EXPR
|
4350 |
|
|
&& (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
|
4351 |
|
|
|| gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
|
4352 |
|
|
|| (code == EQ_EXPR
|
4353 |
|
|
&& (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
|
4354 |
|
|
|| gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
|
4355 |
|
|
{
|
4356 |
|
|
/* Recurse on each operand. */
|
4357 |
|
|
retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
|
4358 |
|
|
code, e, bsi);
|
4359 |
|
|
retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
|
4360 |
|
|
code, e, bsi);
|
4361 |
|
|
}
|
4362 |
|
|
else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
|
4363 |
|
|
{
|
4364 |
|
|
/* Recurse, flipping CODE. */
|
4365 |
|
|
code = invert_tree_comparison (code, false);
|
4366 |
|
|
retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
|
4367 |
|
|
code, e, bsi);
|
4368 |
|
|
}
|
4369 |
|
|
else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
|
4370 |
|
|
{
|
4371 |
|
|
/* Recurse through the copy. */
|
4372 |
|
|
retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
|
4373 |
|
|
code, e, bsi);
|
4374 |
|
|
}
|
4375 |
|
|
else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
|
4376 |
|
|
{
|
4377 |
|
|
/* Recurse through the type conversion. */
|
4378 |
|
|
retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
|
4379 |
|
|
code, e, bsi);
|
4380 |
|
|
}
|
4381 |
|
|
|
4382 |
|
|
return retval;
|
4383 |
|
|
}
|
4384 |
|
|
|
4385 |
|
|
/* Try to register an edge assertion for SSA name NAME on edge E for
|
4386 |
|
|
the condition COND contributing to the conditional jump pointed to by SI.
|
4387 |
|
|
Return true if an assertion for NAME could be registered. */
|
4388 |
|
|
|
4389 |
|
|
static bool
|
4390 |
|
|
register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
|
4391 |
|
|
enum tree_code cond_code, tree cond_op0,
|
4392 |
|
|
tree cond_op1)
|
4393 |
|
|
{
|
4394 |
|
|
tree val;
|
4395 |
|
|
enum tree_code comp_code;
|
4396 |
|
|
bool retval = false;
|
4397 |
|
|
bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
|
4398 |
|
|
|
4399 |
|
|
/* Do not attempt to infer anything in names that flow through
|
4400 |
|
|
abnormal edges. */
|
4401 |
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
|
4402 |
|
|
return false;
|
4403 |
|
|
|
4404 |
|
|
if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
|
4405 |
|
|
cond_op0, cond_op1,
|
4406 |
|
|
is_else_edge,
|
4407 |
|
|
&comp_code, &val))
|
4408 |
|
|
return false;
|
4409 |
|
|
|
4410 |
|
|
/* Register ASSERT_EXPRs for name. */
|
4411 |
|
|
retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
|
4412 |
|
|
cond_op1, is_else_edge);
|
4413 |
|
|
|
4414 |
|
|
|
4415 |
|
|
/* If COND is effectively an equality test of an SSA_NAME against
|
4416 |
|
|
the value zero or one, then we may be able to assert values
|
4417 |
|
|
for SSA_NAMEs which flow into COND. */
|
4418 |
|
|
|
4419 |
|
|
/* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
|
4420 |
|
|
statement of NAME we can assert both operands of the TRUTH_AND_EXPR
|
4421 |
|
|
have nonzero value. */
|
4422 |
|
|
if (((comp_code == EQ_EXPR && integer_onep (val))
|
4423 |
|
|
|| (comp_code == NE_EXPR && integer_zerop (val))))
|
4424 |
|
|
{
|
4425 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (name);
|
4426 |
|
|
|
4427 |
|
|
if (is_gimple_assign (def_stmt)
|
4428 |
|
|
&& (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
|
4429 |
|
|
|| gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
|
4430 |
|
|
{
|
4431 |
|
|
tree op0 = gimple_assign_rhs1 (def_stmt);
|
4432 |
|
|
tree op1 = gimple_assign_rhs2 (def_stmt);
|
4433 |
|
|
retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
|
4434 |
|
|
retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
|
4435 |
|
|
}
|
4436 |
|
|
}
|
4437 |
|
|
|
4438 |
|
|
/* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
|
4439 |
|
|
statement of NAME we can assert both operands of the TRUTH_OR_EXPR
|
4440 |
|
|
have zero value. */
|
4441 |
|
|
if (((comp_code == EQ_EXPR && integer_zerop (val))
|
4442 |
|
|
|| (comp_code == NE_EXPR && integer_onep (val))))
|
4443 |
|
|
{
|
4444 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (name);
|
4445 |
|
|
|
4446 |
|
|
if (is_gimple_assign (def_stmt)
|
4447 |
|
|
&& (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
|
4448 |
|
|
/* For BIT_IOR_EXPR only if NAME == 0 both operands have
|
4449 |
|
|
necessarily zero value. */
|
4450 |
|
|
|| (comp_code == EQ_EXPR
|
4451 |
|
|
&& (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
|
4452 |
|
|
{
|
4453 |
|
|
tree op0 = gimple_assign_rhs1 (def_stmt);
|
4454 |
|
|
tree op1 = gimple_assign_rhs2 (def_stmt);
|
4455 |
|
|
retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
|
4456 |
|
|
retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
|
4457 |
|
|
}
|
4458 |
|
|
}
|
4459 |
|
|
|
4460 |
|
|
return retval;
|
4461 |
|
|
}
|
4462 |
|
|
|
4463 |
|
|
|
4464 |
|
|
/* Determine whether the outgoing edges of BB should receive an
|
4465 |
|
|
ASSERT_EXPR for each of the operands of BB's LAST statement.
|
4466 |
|
|
The last statement of BB must be a COND_EXPR.
|
4467 |
|
|
|
4468 |
|
|
If any of the sub-graphs rooted at BB have an interesting use of
|
4469 |
|
|
the predicate operands, an assert location node is added to the
|
4470 |
|
|
list of assertions for the corresponding operands. */
|
4471 |
|
|
|
4472 |
|
|
static bool
|
4473 |
|
|
find_conditional_asserts (basic_block bb, gimple last)
|
4474 |
|
|
{
|
4475 |
|
|
bool need_assert;
|
4476 |
|
|
gimple_stmt_iterator bsi;
|
4477 |
|
|
tree op;
|
4478 |
|
|
edge_iterator ei;
|
4479 |
|
|
edge e;
|
4480 |
|
|
ssa_op_iter iter;
|
4481 |
|
|
|
4482 |
|
|
need_assert = false;
|
4483 |
|
|
bsi = gsi_for_stmt (last);
|
4484 |
|
|
|
4485 |
|
|
/* Look for uses of the operands in each of the sub-graphs
|
4486 |
|
|
rooted at BB. We need to check each of the outgoing edges
|
4487 |
|
|
separately, so that we know what kind of ASSERT_EXPR to
|
4488 |
|
|
insert. */
|
4489 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
4490 |
|
|
{
|
4491 |
|
|
if (e->dest == bb)
|
4492 |
|
|
continue;
|
4493 |
|
|
|
4494 |
|
|
/* Register the necessary assertions for each operand in the
|
4495 |
|
|
conditional predicate. */
|
4496 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
|
4497 |
|
|
{
|
4498 |
|
|
need_assert |= register_edge_assert_for (op, e, bsi,
|
4499 |
|
|
gimple_cond_code (last),
|
4500 |
|
|
gimple_cond_lhs (last),
|
4501 |
|
|
gimple_cond_rhs (last));
|
4502 |
|
|
}
|
4503 |
|
|
}
|
4504 |
|
|
|
4505 |
|
|
return need_assert;
|
4506 |
|
|
}
|
4507 |
|
|
|
4508 |
|
|
/* Compare two case labels sorting first by the destination label uid
|
4509 |
|
|
and then by the case value. */
|
4510 |
|
|
|
4511 |
|
|
static int
|
4512 |
|
|
compare_case_labels (const void *p1, const void *p2)
|
4513 |
|
|
{
|
4514 |
|
|
const_tree const case1 = *(const_tree const*)p1;
|
4515 |
|
|
const_tree const case2 = *(const_tree const*)p2;
|
4516 |
|
|
unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
|
4517 |
|
|
unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
|
4518 |
|
|
|
4519 |
|
|
if (uid1 < uid2)
|
4520 |
|
|
return -1;
|
4521 |
|
|
else if (uid1 == uid2)
|
4522 |
|
|
{
|
4523 |
|
|
/* Make sure the default label is first in a group. */
|
4524 |
|
|
if (!CASE_LOW (case1))
|
4525 |
|
|
return -1;
|
4526 |
|
|
else if (!CASE_LOW (case2))
|
4527 |
|
|
return 1;
|
4528 |
|
|
else
|
4529 |
|
|
return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
|
4530 |
|
|
}
|
4531 |
|
|
else
|
4532 |
|
|
return 1;
|
4533 |
|
|
}
|
4534 |
|
|
|
4535 |
|
|
/* Determine whether the outgoing edges of BB should receive an
|
4536 |
|
|
ASSERT_EXPR for each of the operands of BB's LAST statement.
|
4537 |
|
|
The last statement of BB must be a SWITCH_EXPR.
|
4538 |
|
|
|
4539 |
|
|
If any of the sub-graphs rooted at BB have an interesting use of
|
4540 |
|
|
the predicate operands, an assert location node is added to the
|
4541 |
|
|
list of assertions for the corresponding operands. */
|
4542 |
|
|
|
4543 |
|
|
static bool
|
4544 |
|
|
find_switch_asserts (basic_block bb, gimple last)
|
4545 |
|
|
{
|
4546 |
|
|
bool need_assert;
|
4547 |
|
|
gimple_stmt_iterator bsi;
|
4548 |
|
|
tree op;
|
4549 |
|
|
edge e;
|
4550 |
|
|
tree vec2;
|
4551 |
|
|
size_t n = gimple_switch_num_labels(last);
|
4552 |
|
|
#if GCC_VERSION >= 4000
|
4553 |
|
|
unsigned int idx;
|
4554 |
|
|
#else
|
4555 |
|
|
/* Work around GCC 3.4 bug (PR 37086). */
|
4556 |
|
|
volatile unsigned int idx;
|
4557 |
|
|
#endif
|
4558 |
|
|
|
4559 |
|
|
need_assert = false;
|
4560 |
|
|
bsi = gsi_for_stmt (last);
|
4561 |
|
|
op = gimple_switch_index (last);
|
4562 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
4563 |
|
|
return false;
|
4564 |
|
|
|
4565 |
|
|
/* Build a vector of case labels sorted by destination label. */
|
4566 |
|
|
vec2 = make_tree_vec (n);
|
4567 |
|
|
for (idx = 0; idx < n; ++idx)
|
4568 |
|
|
TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
|
4569 |
|
|
qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
|
4570 |
|
|
|
4571 |
|
|
for (idx = 0; idx < n; ++idx)
|
4572 |
|
|
{
|
4573 |
|
|
tree min, max;
|
4574 |
|
|
tree cl = TREE_VEC_ELT (vec2, idx);
|
4575 |
|
|
|
4576 |
|
|
min = CASE_LOW (cl);
|
4577 |
|
|
max = CASE_HIGH (cl);
|
4578 |
|
|
|
4579 |
|
|
/* If there are multiple case labels with the same destination
|
4580 |
|
|
we need to combine them to a single value range for the edge. */
|
4581 |
|
|
if (idx + 1 < n
|
4582 |
|
|
&& CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
|
4583 |
|
|
{
|
4584 |
|
|
/* Skip labels until the last of the group. */
|
4585 |
|
|
do {
|
4586 |
|
|
++idx;
|
4587 |
|
|
} while (idx < n
|
4588 |
|
|
&& CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
|
4589 |
|
|
--idx;
|
4590 |
|
|
|
4591 |
|
|
/* Pick up the maximum of the case label range. */
|
4592 |
|
|
if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
|
4593 |
|
|
max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
|
4594 |
|
|
else
|
4595 |
|
|
max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
|
4596 |
|
|
}
|
4597 |
|
|
|
4598 |
|
|
/* Nothing to do if the range includes the default label until we
|
4599 |
|
|
can register anti-ranges. */
|
4600 |
|
|
if (min == NULL_TREE)
|
4601 |
|
|
continue;
|
4602 |
|
|
|
4603 |
|
|
/* Find the edge to register the assert expr on. */
|
4604 |
|
|
e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
|
4605 |
|
|
|
4606 |
|
|
/* Register the necessary assertions for the operand in the
|
4607 |
|
|
SWITCH_EXPR. */
|
4608 |
|
|
need_assert |= register_edge_assert_for (op, e, bsi,
|
4609 |
|
|
max ? GE_EXPR : EQ_EXPR,
|
4610 |
|
|
op,
|
4611 |
|
|
fold_convert (TREE_TYPE (op),
|
4612 |
|
|
min));
|
4613 |
|
|
if (max)
|
4614 |
|
|
{
|
4615 |
|
|
need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
|
4616 |
|
|
op,
|
4617 |
|
|
fold_convert (TREE_TYPE (op),
|
4618 |
|
|
max));
|
4619 |
|
|
}
|
4620 |
|
|
}
|
4621 |
|
|
|
4622 |
|
|
return need_assert;
|
4623 |
|
|
}
|
4624 |
|
|
|
4625 |
|
|
|
4626 |
|
|
/* Traverse all the statements in block BB looking for statements that
|
4627 |
|
|
may generate useful assertions for the SSA names in their operand.
|
4628 |
|
|
If a statement produces a useful assertion A for name N_i, then the
|
4629 |
|
|
list of assertions already generated for N_i is scanned to
|
4630 |
|
|
determine if A is actually needed.
|
4631 |
|
|
|
4632 |
|
|
If N_i already had the assertion A at a location dominating the
|
4633 |
|
|
current location, then nothing needs to be done. Otherwise, the
|
4634 |
|
|
new location for A is recorded instead.
|
4635 |
|
|
|
4636 |
|
|
1- For every statement S in BB, all the variables used by S are
|
4637 |
|
|
added to bitmap FOUND_IN_SUBGRAPH.
|
4638 |
|
|
|
4639 |
|
|
2- If statement S uses an operand N in a way that exposes a known
|
4640 |
|
|
value range for N, then if N was not already generated by an
|
4641 |
|
|
ASSERT_EXPR, create a new assert location for N. For instance,
|
4642 |
|
|
if N is a pointer and the statement dereferences it, we can
|
4643 |
|
|
assume that N is not NULL.
|
4644 |
|
|
|
4645 |
|
|
3- COND_EXPRs are a special case of #2. We can derive range
|
4646 |
|
|
information from the predicate but need to insert different
|
4647 |
|
|
ASSERT_EXPRs for each of the sub-graphs rooted at the
|
4648 |
|
|
conditional block. If the last statement of BB is a conditional
|
4649 |
|
|
expression of the form 'X op Y', then
|
4650 |
|
|
|
4651 |
|
|
a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
|
4652 |
|
|
|
4653 |
|
|
b) If the conditional is the only entry point to the sub-graph
|
4654 |
|
|
corresponding to the THEN_CLAUSE, recurse into it. On
|
4655 |
|
|
return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
|
4656 |
|
|
an ASSERT_EXPR is added for the corresponding variable.
|
4657 |
|
|
|
4658 |
|
|
c) Repeat step (b) on the ELSE_CLAUSE.
|
4659 |
|
|
|
4660 |
|
|
d) Mark X and Y in FOUND_IN_SUBGRAPH.
|
4661 |
|
|
|
4662 |
|
|
For instance,
|
4663 |
|
|
|
4664 |
|
|
if (a == 9)
|
4665 |
|
|
b = a;
|
4666 |
|
|
else
|
4667 |
|
|
b = c + 1;
|
4668 |
|
|
|
4669 |
|
|
In this case, an assertion on the THEN clause is useful to
|
4670 |
|
|
determine that 'a' is always 9 on that edge. However, an assertion
|
4671 |
|
|
on the ELSE clause would be unnecessary.
|
4672 |
|
|
|
4673 |
|
|
4- If BB does not end in a conditional expression, then we recurse
|
4674 |
|
|
into BB's dominator children.
|
4675 |
|
|
|
4676 |
|
|
At the end of the recursive traversal, every SSA name will have a
|
4677 |
|
|
list of locations where ASSERT_EXPRs should be added. When a new
|
4678 |
|
|
location for name N is found, it is registered by calling
|
4679 |
|
|
register_new_assert_for. That function keeps track of all the
|
4680 |
|
|
registered assertions to prevent adding unnecessary assertions.
|
4681 |
|
|
For instance, if a pointer P_4 is dereferenced more than once in a
|
4682 |
|
|
dominator tree, only the location dominating all the dereference of
|
4683 |
|
|
P_4 will receive an ASSERT_EXPR.
|
4684 |
|
|
|
4685 |
|
|
If this function returns true, then it means that there are names
|
4686 |
|
|
for which we need to generate ASSERT_EXPRs. Those assertions are
|
4687 |
|
|
inserted by process_assert_insertions. */
|
4688 |
|
|
|
4689 |
|
|
static bool
|
4690 |
|
|
find_assert_locations_1 (basic_block bb, sbitmap live)
|
4691 |
|
|
{
|
4692 |
|
|
gimple_stmt_iterator si;
|
4693 |
|
|
gimple last;
|
4694 |
|
|
gimple phi;
|
4695 |
|
|
bool need_assert;
|
4696 |
|
|
|
4697 |
|
|
need_assert = false;
|
4698 |
|
|
last = last_stmt (bb);
|
4699 |
|
|
|
4700 |
|
|
/* If BB's last statement is a conditional statement involving integer
|
4701 |
|
|
operands, determine if we need to add ASSERT_EXPRs. */
|
4702 |
|
|
if (last
|
4703 |
|
|
&& gimple_code (last) == GIMPLE_COND
|
4704 |
|
|
&& !fp_predicate (last)
|
4705 |
|
|
&& !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
|
4706 |
|
|
need_assert |= find_conditional_asserts (bb, last);
|
4707 |
|
|
|
4708 |
|
|
/* If BB's last statement is a switch statement involving integer
|
4709 |
|
|
operands, determine if we need to add ASSERT_EXPRs. */
|
4710 |
|
|
if (last
|
4711 |
|
|
&& gimple_code (last) == GIMPLE_SWITCH
|
4712 |
|
|
&& !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
|
4713 |
|
|
need_assert |= find_switch_asserts (bb, last);
|
4714 |
|
|
|
4715 |
|
|
/* Traverse all the statements in BB marking used names and looking
|
4716 |
|
|
for statements that may infer assertions for their used operands. */
|
4717 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
4718 |
|
|
{
|
4719 |
|
|
gimple stmt;
|
4720 |
|
|
tree op;
|
4721 |
|
|
ssa_op_iter i;
|
4722 |
|
|
|
4723 |
|
|
stmt = gsi_stmt (si);
|
4724 |
|
|
|
4725 |
|
|
if (is_gimple_debug (stmt))
|
4726 |
|
|
continue;
|
4727 |
|
|
|
4728 |
|
|
/* See if we can derive an assertion for any of STMT's operands. */
|
4729 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
|
4730 |
|
|
{
|
4731 |
|
|
tree value;
|
4732 |
|
|
enum tree_code comp_code;
|
4733 |
|
|
|
4734 |
|
|
/* Mark OP in our live bitmap. */
|
4735 |
|
|
SET_BIT (live, SSA_NAME_VERSION (op));
|
4736 |
|
|
|
4737 |
|
|
/* If OP is used in such a way that we can infer a value
|
4738 |
|
|
range for it, and we don't find a previous assertion for
|
4739 |
|
|
it, create a new assertion location node for OP. */
|
4740 |
|
|
if (infer_value_range (stmt, op, &comp_code, &value))
|
4741 |
|
|
{
|
4742 |
|
|
/* If we are able to infer a nonzero value range for OP,
|
4743 |
|
|
then walk backwards through the use-def chain to see if OP
|
4744 |
|
|
was set via a typecast.
|
4745 |
|
|
|
4746 |
|
|
If so, then we can also infer a nonzero value range
|
4747 |
|
|
for the operand of the NOP_EXPR. */
|
4748 |
|
|
if (comp_code == NE_EXPR && integer_zerop (value))
|
4749 |
|
|
{
|
4750 |
|
|
tree t = op;
|
4751 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (t);
|
4752 |
|
|
|
4753 |
|
|
while (is_gimple_assign (def_stmt)
|
4754 |
|
|
&& gimple_assign_rhs_code (def_stmt) == NOP_EXPR
|
4755 |
|
|
&& TREE_CODE
|
4756 |
|
|
(gimple_assign_rhs1 (def_stmt)) == SSA_NAME
|
4757 |
|
|
&& POINTER_TYPE_P
|
4758 |
|
|
(TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
|
4759 |
|
|
{
|
4760 |
|
|
t = gimple_assign_rhs1 (def_stmt);
|
4761 |
|
|
def_stmt = SSA_NAME_DEF_STMT (t);
|
4762 |
|
|
|
4763 |
|
|
/* Note we want to register the assert for the
|
4764 |
|
|
operand of the NOP_EXPR after SI, not after the
|
4765 |
|
|
conversion. */
|
4766 |
|
|
if (! has_single_use (t))
|
4767 |
|
|
{
|
4768 |
|
|
register_new_assert_for (t, t, comp_code, value,
|
4769 |
|
|
bb, NULL, si);
|
4770 |
|
|
need_assert = true;
|
4771 |
|
|
}
|
4772 |
|
|
}
|
4773 |
|
|
}
|
4774 |
|
|
|
4775 |
|
|
/* If OP is used only once, namely in this STMT, don't
|
4776 |
|
|
bother creating an ASSERT_EXPR for it. Such an
|
4777 |
|
|
ASSERT_EXPR would do nothing but increase compile time. */
|
4778 |
|
|
if (!has_single_use (op))
|
4779 |
|
|
{
|
4780 |
|
|
register_new_assert_for (op, op, comp_code, value,
|
4781 |
|
|
bb, NULL, si);
|
4782 |
|
|
need_assert = true;
|
4783 |
|
|
}
|
4784 |
|
|
}
|
4785 |
|
|
}
|
4786 |
|
|
}
|
4787 |
|
|
|
4788 |
|
|
/* Traverse all PHI nodes in BB marking used operands. */
|
4789 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
|
4790 |
|
|
{
|
4791 |
|
|
use_operand_p arg_p;
|
4792 |
|
|
ssa_op_iter i;
|
4793 |
|
|
phi = gsi_stmt (si);
|
4794 |
|
|
|
4795 |
|
|
FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
|
4796 |
|
|
{
|
4797 |
|
|
tree arg = USE_FROM_PTR (arg_p);
|
4798 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
4799 |
|
|
SET_BIT (live, SSA_NAME_VERSION (arg));
|
4800 |
|
|
}
|
4801 |
|
|
}
|
4802 |
|
|
|
4803 |
|
|
return need_assert;
|
4804 |
|
|
}
|
4805 |
|
|
|
4806 |
|
|
/* Do an RPO walk over the function computing SSA name liveness
|
4807 |
|
|
on-the-fly and deciding on assert expressions to insert.
|
4808 |
|
|
Returns true if there are assert expressions to be inserted. */
|
4809 |
|
|
|
4810 |
|
|
static bool
|
4811 |
|
|
find_assert_locations (void)
|
4812 |
|
|
{
|
4813 |
|
|
int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
|
4814 |
|
|
int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
|
4815 |
|
|
int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
|
4816 |
|
|
int rpo_cnt, i;
|
4817 |
|
|
bool need_asserts;
|
4818 |
|
|
|
4819 |
|
|
live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
|
4820 |
|
|
rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
|
4821 |
|
|
for (i = 0; i < rpo_cnt; ++i)
|
4822 |
|
|
bb_rpo[rpo[i]] = i;
|
4823 |
|
|
|
4824 |
|
|
need_asserts = false;
|
4825 |
|
|
for (i = rpo_cnt-1; i >= 0; --i)
|
4826 |
|
|
{
|
4827 |
|
|
basic_block bb = BASIC_BLOCK (rpo[i]);
|
4828 |
|
|
edge e;
|
4829 |
|
|
edge_iterator ei;
|
4830 |
|
|
|
4831 |
|
|
if (!live[rpo[i]])
|
4832 |
|
|
{
|
4833 |
|
|
live[rpo[i]] = sbitmap_alloc (num_ssa_names);
|
4834 |
|
|
sbitmap_zero (live[rpo[i]]);
|
4835 |
|
|
}
|
4836 |
|
|
|
4837 |
|
|
/* Process BB and update the live information with uses in
|
4838 |
|
|
this block. */
|
4839 |
|
|
need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
|
4840 |
|
|
|
4841 |
|
|
/* Merge liveness into the predecessor blocks and free it. */
|
4842 |
|
|
if (!sbitmap_empty_p (live[rpo[i]]))
|
4843 |
|
|
{
|
4844 |
|
|
int pred_rpo = i;
|
4845 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
4846 |
|
|
{
|
4847 |
|
|
int pred = e->src->index;
|
4848 |
|
|
if (e->flags & EDGE_DFS_BACK)
|
4849 |
|
|
continue;
|
4850 |
|
|
|
4851 |
|
|
if (!live[pred])
|
4852 |
|
|
{
|
4853 |
|
|
live[pred] = sbitmap_alloc (num_ssa_names);
|
4854 |
|
|
sbitmap_zero (live[pred]);
|
4855 |
|
|
}
|
4856 |
|
|
sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
|
4857 |
|
|
|
4858 |
|
|
if (bb_rpo[pred] < pred_rpo)
|
4859 |
|
|
pred_rpo = bb_rpo[pred];
|
4860 |
|
|
}
|
4861 |
|
|
|
4862 |
|
|
/* Record the RPO number of the last visited block that needs
|
4863 |
|
|
live information from this block. */
|
4864 |
|
|
last_rpo[rpo[i]] = pred_rpo;
|
4865 |
|
|
}
|
4866 |
|
|
else
|
4867 |
|
|
{
|
4868 |
|
|
sbitmap_free (live[rpo[i]]);
|
4869 |
|
|
live[rpo[i]] = NULL;
|
4870 |
|
|
}
|
4871 |
|
|
|
4872 |
|
|
/* We can free all successors live bitmaps if all their
|
4873 |
|
|
predecessors have been visited already. */
|
4874 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
4875 |
|
|
if (last_rpo[e->dest->index] == i
|
4876 |
|
|
&& live[e->dest->index])
|
4877 |
|
|
{
|
4878 |
|
|
sbitmap_free (live[e->dest->index]);
|
4879 |
|
|
live[e->dest->index] = NULL;
|
4880 |
|
|
}
|
4881 |
|
|
}
|
4882 |
|
|
|
4883 |
|
|
XDELETEVEC (rpo);
|
4884 |
|
|
XDELETEVEC (bb_rpo);
|
4885 |
|
|
XDELETEVEC (last_rpo);
|
4886 |
|
|
for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
|
4887 |
|
|
if (live[i])
|
4888 |
|
|
sbitmap_free (live[i]);
|
4889 |
|
|
XDELETEVEC (live);
|
4890 |
|
|
|
4891 |
|
|
return need_asserts;
|
4892 |
|
|
}
|
4893 |
|
|
|
4894 |
|
|
/* Create an ASSERT_EXPR for NAME and insert it in the location
|
4895 |
|
|
indicated by LOC. Return true if we made any edge insertions. */
|
4896 |
|
|
|
4897 |
|
|
static bool
|
4898 |
|
|
process_assert_insertions_for (tree name, assert_locus_t loc)
|
4899 |
|
|
{
|
4900 |
|
|
/* Build the comparison expression NAME_i COMP_CODE VAL. */
|
4901 |
|
|
gimple stmt;
|
4902 |
|
|
tree cond;
|
4903 |
|
|
gimple assert_stmt;
|
4904 |
|
|
edge_iterator ei;
|
4905 |
|
|
edge e;
|
4906 |
|
|
|
4907 |
|
|
/* If we have X <=> X do not insert an assert expr for that. */
|
4908 |
|
|
if (loc->expr == loc->val)
|
4909 |
|
|
return false;
|
4910 |
|
|
|
4911 |
|
|
cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
|
4912 |
|
|
assert_stmt = build_assert_expr_for (cond, name);
|
4913 |
|
|
if (loc->e)
|
4914 |
|
|
{
|
4915 |
|
|
/* We have been asked to insert the assertion on an edge. This
|
4916 |
|
|
is used only by COND_EXPR and SWITCH_EXPR assertions. */
|
4917 |
|
|
#if defined ENABLE_CHECKING
|
4918 |
|
|
gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
|
4919 |
|
|
|| gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
|
4920 |
|
|
#endif
|
4921 |
|
|
|
4922 |
|
|
gsi_insert_on_edge (loc->e, assert_stmt);
|
4923 |
|
|
return true;
|
4924 |
|
|
}
|
4925 |
|
|
|
4926 |
|
|
/* Otherwise, we can insert right after LOC->SI iff the
|
4927 |
|
|
statement must not be the last statement in the block. */
|
4928 |
|
|
stmt = gsi_stmt (loc->si);
|
4929 |
|
|
if (!stmt_ends_bb_p (stmt))
|
4930 |
|
|
{
|
4931 |
|
|
gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
|
4932 |
|
|
return false;
|
4933 |
|
|
}
|
4934 |
|
|
|
4935 |
|
|
/* If STMT must be the last statement in BB, we can only insert new
|
4936 |
|
|
assertions on the non-abnormal edge out of BB. Note that since
|
4937 |
|
|
STMT is not control flow, there may only be one non-abnormal edge
|
4938 |
|
|
out of BB. */
|
4939 |
|
|
FOR_EACH_EDGE (e, ei, loc->bb->succs)
|
4940 |
|
|
if (!(e->flags & EDGE_ABNORMAL))
|
4941 |
|
|
{
|
4942 |
|
|
gsi_insert_on_edge (e, assert_stmt);
|
4943 |
|
|
return true;
|
4944 |
|
|
}
|
4945 |
|
|
|
4946 |
|
|
gcc_unreachable ();
|
4947 |
|
|
}
|
4948 |
|
|
|
4949 |
|
|
|
4950 |
|
|
/* Process all the insertions registered for every name N_i registered
|
4951 |
|
|
in NEED_ASSERT_FOR. The list of assertions to be inserted are
|
4952 |
|
|
found in ASSERTS_FOR[i]. */
|
4953 |
|
|
|
4954 |
|
|
static void
|
4955 |
|
|
process_assert_insertions (void)
|
4956 |
|
|
{
|
4957 |
|
|
unsigned i;
|
4958 |
|
|
bitmap_iterator bi;
|
4959 |
|
|
bool update_edges_p = false;
|
4960 |
|
|
int num_asserts = 0;
|
4961 |
|
|
|
4962 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4963 |
|
|
dump_all_asserts (dump_file);
|
4964 |
|
|
|
4965 |
|
|
EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
|
4966 |
|
|
{
|
4967 |
|
|
assert_locus_t loc = asserts_for[i];
|
4968 |
|
|
gcc_assert (loc);
|
4969 |
|
|
|
4970 |
|
|
while (loc)
|
4971 |
|
|
{
|
4972 |
|
|
assert_locus_t next = loc->next;
|
4973 |
|
|
update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
|
4974 |
|
|
free (loc);
|
4975 |
|
|
loc = next;
|
4976 |
|
|
num_asserts++;
|
4977 |
|
|
}
|
4978 |
|
|
}
|
4979 |
|
|
|
4980 |
|
|
if (update_edges_p)
|
4981 |
|
|
gsi_commit_edge_inserts ();
|
4982 |
|
|
|
4983 |
|
|
statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
|
4984 |
|
|
num_asserts);
|
4985 |
|
|
}
|
4986 |
|
|
|
4987 |
|
|
|
4988 |
|
|
/* Traverse the flowgraph looking for conditional jumps to insert range
|
4989 |
|
|
expressions. These range expressions are meant to provide information
|
4990 |
|
|
to optimizations that need to reason in terms of value ranges. They
|
4991 |
|
|
will not be expanded into RTL. For instance, given:
|
4992 |
|
|
|
4993 |
|
|
x = ...
|
4994 |
|
|
y = ...
|
4995 |
|
|
if (x < y)
|
4996 |
|
|
y = x - 2;
|
4997 |
|
|
else
|
4998 |
|
|
x = y + 3;
|
4999 |
|
|
|
5000 |
|
|
this pass will transform the code into:
|
5001 |
|
|
|
5002 |
|
|
x = ...
|
5003 |
|
|
y = ...
|
5004 |
|
|
if (x < y)
|
5005 |
|
|
{
|
5006 |
|
|
x = ASSERT_EXPR <x, x < y>
|
5007 |
|
|
y = x - 2
|
5008 |
|
|
}
|
5009 |
|
|
else
|
5010 |
|
|
{
|
5011 |
|
|
y = ASSERT_EXPR <y, x <= y>
|
5012 |
|
|
x = y + 3
|
5013 |
|
|
}
|
5014 |
|
|
|
5015 |
|
|
The idea is that once copy and constant propagation have run, other
|
5016 |
|
|
optimizations will be able to determine what ranges of values can 'x'
|
5017 |
|
|
take in different paths of the code, simply by checking the reaching
|
5018 |
|
|
definition of 'x'. */
|
5019 |
|
|
|
5020 |
|
|
static void
|
5021 |
|
|
insert_range_assertions (void)
|
5022 |
|
|
{
|
5023 |
|
|
need_assert_for = BITMAP_ALLOC (NULL);
|
5024 |
|
|
asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
|
5025 |
|
|
|
5026 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
5027 |
|
|
|
5028 |
|
|
if (find_assert_locations ())
|
5029 |
|
|
{
|
5030 |
|
|
process_assert_insertions ();
|
5031 |
|
|
update_ssa (TODO_update_ssa_no_phi);
|
5032 |
|
|
}
|
5033 |
|
|
|
5034 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
5035 |
|
|
{
|
5036 |
|
|
fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
|
5037 |
|
|
dump_function_to_file (current_function_decl, dump_file, dump_flags);
|
5038 |
|
|
}
|
5039 |
|
|
|
5040 |
|
|
free (asserts_for);
|
5041 |
|
|
BITMAP_FREE (need_assert_for);
|
5042 |
|
|
}
|
5043 |
|
|
|
5044 |
|
|
/* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
|
5045 |
|
|
and "struct" hacks. If VRP can determine that the
|
5046 |
|
|
array subscript is a constant, check if it is outside valid
|
5047 |
|
|
range. If the array subscript is a RANGE, warn if it is
|
5048 |
|
|
non-overlapping with valid range.
|
5049 |
|
|
IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
|
5050 |
|
|
|
5051 |
|
|
static void
|
5052 |
|
|
check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
|
5053 |
|
|
{
|
5054 |
|
|
value_range_t* vr = NULL;
|
5055 |
|
|
tree low_sub, up_sub;
|
5056 |
|
|
tree low_bound, up_bound = array_ref_up_bound (ref);
|
5057 |
|
|
|
5058 |
|
|
low_sub = up_sub = TREE_OPERAND (ref, 1);
|
5059 |
|
|
|
5060 |
|
|
if (!up_bound || TREE_NO_WARNING (ref)
|
5061 |
|
|
|| TREE_CODE (up_bound) != INTEGER_CST
|
5062 |
|
|
/* Can not check flexible arrays. */
|
5063 |
|
|
|| (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
|
5064 |
|
|
&& TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
|
5065 |
|
|
&& TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
|
5066 |
|
|
/* Accesses after the end of arrays of size 0 (gcc
|
5067 |
|
|
extension) and 1 are likely intentional ("struct
|
5068 |
|
|
hack"). */
|
5069 |
|
|
|| compare_tree_int (up_bound, 1) <= 0)
|
5070 |
|
|
return;
|
5071 |
|
|
|
5072 |
|
|
low_bound = array_ref_low_bound (ref);
|
5073 |
|
|
|
5074 |
|
|
if (TREE_CODE (low_sub) == SSA_NAME)
|
5075 |
|
|
{
|
5076 |
|
|
vr = get_value_range (low_sub);
|
5077 |
|
|
if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
|
5078 |
|
|
{
|
5079 |
|
|
low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
|
5080 |
|
|
up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
|
5081 |
|
|
}
|
5082 |
|
|
}
|
5083 |
|
|
|
5084 |
|
|
if (vr && vr->type == VR_ANTI_RANGE)
|
5085 |
|
|
{
|
5086 |
|
|
if (TREE_CODE (up_sub) == INTEGER_CST
|
5087 |
|
|
&& tree_int_cst_lt (up_bound, up_sub)
|
5088 |
|
|
&& TREE_CODE (low_sub) == INTEGER_CST
|
5089 |
|
|
&& tree_int_cst_lt (low_sub, low_bound))
|
5090 |
|
|
{
|
5091 |
|
|
warning_at (location, OPT_Warray_bounds,
|
5092 |
|
|
"array subscript is outside array bounds");
|
5093 |
|
|
TREE_NO_WARNING (ref) = 1;
|
5094 |
|
|
}
|
5095 |
|
|
}
|
5096 |
|
|
else if (TREE_CODE (up_sub) == INTEGER_CST
|
5097 |
|
|
&& tree_int_cst_lt (up_bound, up_sub)
|
5098 |
|
|
&& !tree_int_cst_equal (up_bound, up_sub)
|
5099 |
|
|
&& (!ignore_off_by_one
|
5100 |
|
|
|| !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
|
5101 |
|
|
up_bound,
|
5102 |
|
|
integer_one_node,
|
5103 |
|
|
0),
|
5104 |
|
|
up_sub)))
|
5105 |
|
|
{
|
5106 |
|
|
warning_at (location, OPT_Warray_bounds,
|
5107 |
|
|
"array subscript is above array bounds");
|
5108 |
|
|
TREE_NO_WARNING (ref) = 1;
|
5109 |
|
|
}
|
5110 |
|
|
else if (TREE_CODE (low_sub) == INTEGER_CST
|
5111 |
|
|
&& tree_int_cst_lt (low_sub, low_bound))
|
5112 |
|
|
{
|
5113 |
|
|
warning_at (location, OPT_Warray_bounds,
|
5114 |
|
|
"array subscript is below array bounds");
|
5115 |
|
|
TREE_NO_WARNING (ref) = 1;
|
5116 |
|
|
}
|
5117 |
|
|
}
|
5118 |
|
|
|
5119 |
|
|
/* Searches if the expr T, located at LOCATION computes
|
5120 |
|
|
address of an ARRAY_REF, and call check_array_ref on it. */
|
5121 |
|
|
|
5122 |
|
|
static void
|
5123 |
|
|
search_for_addr_array (tree t, location_t location)
|
5124 |
|
|
{
|
5125 |
|
|
while (TREE_CODE (t) == SSA_NAME)
|
5126 |
|
|
{
|
5127 |
|
|
gimple g = SSA_NAME_DEF_STMT (t);
|
5128 |
|
|
|
5129 |
|
|
if (gimple_code (g) != GIMPLE_ASSIGN)
|
5130 |
|
|
return;
|
5131 |
|
|
|
5132 |
|
|
if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
|
5133 |
|
|
!= GIMPLE_SINGLE_RHS)
|
5134 |
|
|
return;
|
5135 |
|
|
|
5136 |
|
|
t = gimple_assign_rhs1 (g);
|
5137 |
|
|
}
|
5138 |
|
|
|
5139 |
|
|
|
5140 |
|
|
/* We are only interested in addresses of ARRAY_REF's. */
|
5141 |
|
|
if (TREE_CODE (t) != ADDR_EXPR)
|
5142 |
|
|
return;
|
5143 |
|
|
|
5144 |
|
|
/* Check each ARRAY_REFs in the reference chain. */
|
5145 |
|
|
do
|
5146 |
|
|
{
|
5147 |
|
|
if (TREE_CODE (t) == ARRAY_REF)
|
5148 |
|
|
check_array_ref (location, t, true /*ignore_off_by_one*/);
|
5149 |
|
|
|
5150 |
|
|
t = TREE_OPERAND (t, 0);
|
5151 |
|
|
}
|
5152 |
|
|
while (handled_component_p (t));
|
5153 |
|
|
}
|
5154 |
|
|
|
5155 |
|
|
/* walk_tree() callback that checks if *TP is
|
5156 |
|
|
an ARRAY_REF inside an ADDR_EXPR (in which an array
|
5157 |
|
|
subscript one outside the valid range is allowed). Call
|
5158 |
|
|
check_array_ref for each ARRAY_REF found. The location is
|
5159 |
|
|
passed in DATA. */
|
5160 |
|
|
|
5161 |
|
|
static tree
|
5162 |
|
|
check_array_bounds (tree *tp, int *walk_subtree, void *data)
|
5163 |
|
|
{
|
5164 |
|
|
tree t = *tp;
|
5165 |
|
|
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
|
5166 |
|
|
location_t location;
|
5167 |
|
|
|
5168 |
|
|
if (EXPR_HAS_LOCATION (t))
|
5169 |
|
|
location = EXPR_LOCATION (t);
|
5170 |
|
|
else
|
5171 |
|
|
{
|
5172 |
|
|
location_t *locp = (location_t *) wi->info;
|
5173 |
|
|
location = *locp;
|
5174 |
|
|
}
|
5175 |
|
|
|
5176 |
|
|
*walk_subtree = TRUE;
|
5177 |
|
|
|
5178 |
|
|
if (TREE_CODE (t) == ARRAY_REF)
|
5179 |
|
|
check_array_ref (location, t, false /*ignore_off_by_one*/);
|
5180 |
|
|
|
5181 |
|
|
if (TREE_CODE (t) == INDIRECT_REF
|
5182 |
|
|
|| (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
|
5183 |
|
|
search_for_addr_array (TREE_OPERAND (t, 0), location);
|
5184 |
|
|
|
5185 |
|
|
if (TREE_CODE (t) == ADDR_EXPR)
|
5186 |
|
|
*walk_subtree = FALSE;
|
5187 |
|
|
|
5188 |
|
|
return NULL_TREE;
|
5189 |
|
|
}
|
5190 |
|
|
|
5191 |
|
|
/* Walk over all statements of all reachable BBs and call check_array_bounds
|
5192 |
|
|
on them. */
|
5193 |
|
|
|
5194 |
|
|
static void
|
5195 |
|
|
check_all_array_refs (void)
|
5196 |
|
|
{
|
5197 |
|
|
basic_block bb;
|
5198 |
|
|
gimple_stmt_iterator si;
|
5199 |
|
|
|
5200 |
|
|
FOR_EACH_BB (bb)
|
5201 |
|
|
{
|
5202 |
|
|
edge_iterator ei;
|
5203 |
|
|
edge e;
|
5204 |
|
|
bool executable = false;
|
5205 |
|
|
|
5206 |
|
|
/* Skip blocks that were found to be unreachable. */
|
5207 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
5208 |
|
|
executable |= !!(e->flags & EDGE_EXECUTABLE);
|
5209 |
|
|
if (!executable)
|
5210 |
|
|
continue;
|
5211 |
|
|
|
5212 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
5213 |
|
|
{
|
5214 |
|
|
gimple stmt = gsi_stmt (si);
|
5215 |
|
|
struct walk_stmt_info wi;
|
5216 |
|
|
if (!gimple_has_location (stmt))
|
5217 |
|
|
continue;
|
5218 |
|
|
|
5219 |
|
|
if (is_gimple_call (stmt))
|
5220 |
|
|
{
|
5221 |
|
|
size_t i;
|
5222 |
|
|
size_t n = gimple_call_num_args (stmt);
|
5223 |
|
|
for (i = 0; i < n; i++)
|
5224 |
|
|
{
|
5225 |
|
|
tree arg = gimple_call_arg (stmt, i);
|
5226 |
|
|
search_for_addr_array (arg, gimple_location (stmt));
|
5227 |
|
|
}
|
5228 |
|
|
}
|
5229 |
|
|
else
|
5230 |
|
|
{
|
5231 |
|
|
memset (&wi, 0, sizeof (wi));
|
5232 |
|
|
wi.info = CONST_CAST (void *, (const void *)
|
5233 |
|
|
gimple_location_ptr (stmt));
|
5234 |
|
|
|
5235 |
|
|
walk_gimple_op (gsi_stmt (si),
|
5236 |
|
|
check_array_bounds,
|
5237 |
|
|
&wi);
|
5238 |
|
|
}
|
5239 |
|
|
}
|
5240 |
|
|
}
|
5241 |
|
|
}
|
5242 |
|
|
|
5243 |
|
|
/* Convert range assertion expressions into the implied copies and
|
5244 |
|
|
copy propagate away the copies. Doing the trivial copy propagation
|
5245 |
|
|
here avoids the need to run the full copy propagation pass after
|
5246 |
|
|
VRP.
|
5247 |
|
|
|
5248 |
|
|
FIXME, this will eventually lead to copy propagation removing the
|
5249 |
|
|
names that had useful range information attached to them. For
|
5250 |
|
|
instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
|
5251 |
|
|
then N_i will have the range [3, +INF].
|
5252 |
|
|
|
5253 |
|
|
However, by converting the assertion into the implied copy
|
5254 |
|
|
operation N_i = N_j, we will then copy-propagate N_j into the uses
|
5255 |
|
|
of N_i and lose the range information. We may want to hold on to
|
5256 |
|
|
ASSERT_EXPRs a little while longer as the ranges could be used in
|
5257 |
|
|
things like jump threading.
|
5258 |
|
|
|
5259 |
|
|
The problem with keeping ASSERT_EXPRs around is that passes after
|
5260 |
|
|
VRP need to handle them appropriately.
|
5261 |
|
|
|
5262 |
|
|
Another approach would be to make the range information a first
|
5263 |
|
|
class property of the SSA_NAME so that it can be queried from
|
5264 |
|
|
any pass. This is made somewhat more complex by the need for
|
5265 |
|
|
multiple ranges to be associated with one SSA_NAME. */
|
5266 |
|
|
|
5267 |
|
|
static void
|
5268 |
|
|
remove_range_assertions (void)
|
5269 |
|
|
{
|
5270 |
|
|
basic_block bb;
|
5271 |
|
|
gimple_stmt_iterator si;
|
5272 |
|
|
|
5273 |
|
|
/* Note that the BSI iterator bump happens at the bottom of the
|
5274 |
|
|
loop and no bump is necessary if we're removing the statement
|
5275 |
|
|
referenced by the current BSI. */
|
5276 |
|
|
FOR_EACH_BB (bb)
|
5277 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si);)
|
5278 |
|
|
{
|
5279 |
|
|
gimple stmt = gsi_stmt (si);
|
5280 |
|
|
gimple use_stmt;
|
5281 |
|
|
|
5282 |
|
|
if (is_gimple_assign (stmt)
|
5283 |
|
|
&& gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
|
5284 |
|
|
{
|
5285 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
5286 |
|
|
tree var;
|
5287 |
|
|
tree cond = fold (ASSERT_EXPR_COND (rhs));
|
5288 |
|
|
use_operand_p use_p;
|
5289 |
|
|
imm_use_iterator iter;
|
5290 |
|
|
|
5291 |
|
|
gcc_assert (cond != boolean_false_node);
|
5292 |
|
|
|
5293 |
|
|
/* Propagate the RHS into every use of the LHS. */
|
5294 |
|
|
var = ASSERT_EXPR_VAR (rhs);
|
5295 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter,
|
5296 |
|
|
gimple_assign_lhs (stmt))
|
5297 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
5298 |
|
|
{
|
5299 |
|
|
SET_USE (use_p, var);
|
5300 |
|
|
gcc_assert (TREE_CODE (var) == SSA_NAME);
|
5301 |
|
|
}
|
5302 |
|
|
|
5303 |
|
|
/* And finally, remove the copy, it is not needed. */
|
5304 |
|
|
gsi_remove (&si, true);
|
5305 |
|
|
release_defs (stmt);
|
5306 |
|
|
}
|
5307 |
|
|
else
|
5308 |
|
|
gsi_next (&si);
|
5309 |
|
|
}
|
5310 |
|
|
}
|
5311 |
|
|
|
5312 |
|
|
|
5313 |
|
|
/* Return true if STMT is interesting for VRP. */
|
5314 |
|
|
|
5315 |
|
|
static bool
|
5316 |
|
|
stmt_interesting_for_vrp (gimple stmt)
|
5317 |
|
|
{
|
5318 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
5319 |
|
|
&& is_gimple_reg (gimple_phi_result (stmt))
|
5320 |
|
|
&& (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
|
5321 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
|
5322 |
|
|
return true;
|
5323 |
|
|
else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
|
5324 |
|
|
{
|
5325 |
|
|
tree lhs = gimple_get_lhs (stmt);
|
5326 |
|
|
|
5327 |
|
|
/* In general, assignments with virtual operands are not useful
|
5328 |
|
|
for deriving ranges, with the obvious exception of calls to
|
5329 |
|
|
builtin functions. */
|
5330 |
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME
|
5331 |
|
|
&& (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
5332 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (lhs)))
|
5333 |
|
|
&& ((is_gimple_call (stmt)
|
5334 |
|
|
&& gimple_call_fndecl (stmt) != NULL_TREE
|
5335 |
|
|
&& DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
|
5336 |
|
|
|| !gimple_vuse (stmt)))
|
5337 |
|
|
return true;
|
5338 |
|
|
}
|
5339 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND
|
5340 |
|
|
|| gimple_code (stmt) == GIMPLE_SWITCH)
|
5341 |
|
|
return true;
|
5342 |
|
|
|
5343 |
|
|
return false;
|
5344 |
|
|
}
|
5345 |
|
|
|
5346 |
|
|
|
5347 |
|
|
/* Initialize local data structures for VRP. */
|
5348 |
|
|
|
5349 |
|
|
static void
|
5350 |
|
|
vrp_initialize (void)
|
5351 |
|
|
{
|
5352 |
|
|
basic_block bb;
|
5353 |
|
|
|
5354 |
|
|
vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
|
5355 |
|
|
vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
|
5356 |
|
|
|
5357 |
|
|
FOR_EACH_BB (bb)
|
5358 |
|
|
{
|
5359 |
|
|
gimple_stmt_iterator si;
|
5360 |
|
|
|
5361 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
5362 |
|
|
{
|
5363 |
|
|
gimple phi = gsi_stmt (si);
|
5364 |
|
|
if (!stmt_interesting_for_vrp (phi))
|
5365 |
|
|
{
|
5366 |
|
|
tree lhs = PHI_RESULT (phi);
|
5367 |
|
|
set_value_range_to_varying (get_value_range (lhs));
|
5368 |
|
|
prop_set_simulate_again (phi, false);
|
5369 |
|
|
}
|
5370 |
|
|
else
|
5371 |
|
|
prop_set_simulate_again (phi, true);
|
5372 |
|
|
}
|
5373 |
|
|
|
5374 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
5375 |
|
|
{
|
5376 |
|
|
gimple stmt = gsi_stmt (si);
|
5377 |
|
|
|
5378 |
|
|
/* If the statement is a control insn, then we do not
|
5379 |
|
|
want to avoid simulating the statement once. Failure
|
5380 |
|
|
to do so means that those edges will never get added. */
|
5381 |
|
|
if (stmt_ends_bb_p (stmt))
|
5382 |
|
|
prop_set_simulate_again (stmt, true);
|
5383 |
|
|
else if (!stmt_interesting_for_vrp (stmt))
|
5384 |
|
|
{
|
5385 |
|
|
ssa_op_iter i;
|
5386 |
|
|
tree def;
|
5387 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
|
5388 |
|
|
set_value_range_to_varying (get_value_range (def));
|
5389 |
|
|
prop_set_simulate_again (stmt, false);
|
5390 |
|
|
}
|
5391 |
|
|
else
|
5392 |
|
|
prop_set_simulate_again (stmt, true);
|
5393 |
|
|
}
|
5394 |
|
|
}
|
5395 |
|
|
}
|
5396 |
|
|
|
5397 |
|
|
|
5398 |
|
|
/* Visit assignment STMT. If it produces an interesting range, record
|
5399 |
|
|
the SSA name in *OUTPUT_P. */
|
5400 |
|
|
|
5401 |
|
|
static enum ssa_prop_result
|
5402 |
|
|
vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
|
5403 |
|
|
{
|
5404 |
|
|
tree def, lhs;
|
5405 |
|
|
ssa_op_iter iter;
|
5406 |
|
|
enum gimple_code code = gimple_code (stmt);
|
5407 |
|
|
lhs = gimple_get_lhs (stmt);
|
5408 |
|
|
|
5409 |
|
|
/* We only keep track of ranges in integral and pointer types. */
|
5410 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
5411 |
|
|
&& ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
5412 |
|
|
/* It is valid to have NULL MIN/MAX values on a type. See
|
5413 |
|
|
build_range_type. */
|
5414 |
|
|
&& TYPE_MIN_VALUE (TREE_TYPE (lhs))
|
5415 |
|
|
&& TYPE_MAX_VALUE (TREE_TYPE (lhs)))
|
5416 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (lhs))))
|
5417 |
|
|
{
|
5418 |
|
|
value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
5419 |
|
|
|
5420 |
|
|
if (code == GIMPLE_CALL)
|
5421 |
|
|
extract_range_basic (&new_vr, stmt);
|
5422 |
|
|
else
|
5423 |
|
|
extract_range_from_assignment (&new_vr, stmt);
|
5424 |
|
|
|
5425 |
|
|
if (update_value_range (lhs, &new_vr))
|
5426 |
|
|
{
|
5427 |
|
|
*output_p = lhs;
|
5428 |
|
|
|
5429 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
5430 |
|
|
{
|
5431 |
|
|
fprintf (dump_file, "Found new range for ");
|
5432 |
|
|
print_generic_expr (dump_file, lhs, 0);
|
5433 |
|
|
fprintf (dump_file, ": ");
|
5434 |
|
|
dump_value_range (dump_file, &new_vr);
|
5435 |
|
|
fprintf (dump_file, "\n\n");
|
5436 |
|
|
}
|
5437 |
|
|
|
5438 |
|
|
if (new_vr.type == VR_VARYING)
|
5439 |
|
|
return SSA_PROP_VARYING;
|
5440 |
|
|
|
5441 |
|
|
return SSA_PROP_INTERESTING;
|
5442 |
|
|
}
|
5443 |
|
|
|
5444 |
|
|
return SSA_PROP_NOT_INTERESTING;
|
5445 |
|
|
}
|
5446 |
|
|
|
5447 |
|
|
/* Every other statement produces no useful ranges. */
|
5448 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
|
5449 |
|
|
set_value_range_to_varying (get_value_range (def));
|
5450 |
|
|
|
5451 |
|
|
return SSA_PROP_VARYING;
|
5452 |
|
|
}
|
5453 |
|
|
|
5454 |
|
|
/* Helper that gets the value range of the SSA_NAME with version I
|
5455 |
|
|
or a symbolic range containing the SSA_NAME only if the value range
|
5456 |
|
|
is varying or undefined. */
|
5457 |
|
|
|
5458 |
|
|
static inline value_range_t
|
5459 |
|
|
get_vr_for_comparison (int i)
|
5460 |
|
|
{
|
5461 |
|
|
value_range_t vr = *(vr_value[i]);
|
5462 |
|
|
|
5463 |
|
|
/* If name N_i does not have a valid range, use N_i as its own
|
5464 |
|
|
range. This allows us to compare against names that may
|
5465 |
|
|
have N_i in their ranges. */
|
5466 |
|
|
if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
|
5467 |
|
|
{
|
5468 |
|
|
vr.type = VR_RANGE;
|
5469 |
|
|
vr.min = ssa_name (i);
|
5470 |
|
|
vr.max = ssa_name (i);
|
5471 |
|
|
}
|
5472 |
|
|
|
5473 |
|
|
return vr;
|
5474 |
|
|
}
|
5475 |
|
|
|
5476 |
|
|
/* Compare all the value ranges for names equivalent to VAR with VAL
|
5477 |
|
|
using comparison code COMP. Return the same value returned by
|
5478 |
|
|
compare_range_with_value, including the setting of
|
5479 |
|
|
*STRICT_OVERFLOW_P. */
|
5480 |
|
|
|
5481 |
|
|
static tree
|
5482 |
|
|
compare_name_with_value (enum tree_code comp, tree var, tree val,
|
5483 |
|
|
bool *strict_overflow_p)
|
5484 |
|
|
{
|
5485 |
|
|
bitmap_iterator bi;
|
5486 |
|
|
unsigned i;
|
5487 |
|
|
bitmap e;
|
5488 |
|
|
tree retval, t;
|
5489 |
|
|
int used_strict_overflow;
|
5490 |
|
|
bool sop;
|
5491 |
|
|
value_range_t equiv_vr;
|
5492 |
|
|
|
5493 |
|
|
/* Get the set of equivalences for VAR. */
|
5494 |
|
|
e = get_value_range (var)->equiv;
|
5495 |
|
|
|
5496 |
|
|
/* Start at -1. Set it to 0 if we do a comparison without relying
|
5497 |
|
|
on overflow, or 1 if all comparisons rely on overflow. */
|
5498 |
|
|
used_strict_overflow = -1;
|
5499 |
|
|
|
5500 |
|
|
/* Compare vars' value range with val. */
|
5501 |
|
|
equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
|
5502 |
|
|
sop = false;
|
5503 |
|
|
retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
|
5504 |
|
|
if (retval)
|
5505 |
|
|
used_strict_overflow = sop ? 1 : 0;
|
5506 |
|
|
|
5507 |
|
|
/* If the equiv set is empty we have done all work we need to do. */
|
5508 |
|
|
if (e == NULL)
|
5509 |
|
|
{
|
5510 |
|
|
if (retval
|
5511 |
|
|
&& used_strict_overflow > 0)
|
5512 |
|
|
*strict_overflow_p = true;
|
5513 |
|
|
return retval;
|
5514 |
|
|
}
|
5515 |
|
|
|
5516 |
|
|
EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
|
5517 |
|
|
{
|
5518 |
|
|
equiv_vr = get_vr_for_comparison (i);
|
5519 |
|
|
sop = false;
|
5520 |
|
|
t = compare_range_with_value (comp, &equiv_vr, val, &sop);
|
5521 |
|
|
if (t)
|
5522 |
|
|
{
|
5523 |
|
|
/* If we get different answers from different members
|
5524 |
|
|
of the equivalence set this check must be in a dead
|
5525 |
|
|
code region. Folding it to a trap representation
|
5526 |
|
|
would be correct here. For now just return don't-know. */
|
5527 |
|
|
if (retval != NULL
|
5528 |
|
|
&& t != retval)
|
5529 |
|
|
{
|
5530 |
|
|
retval = NULL_TREE;
|
5531 |
|
|
break;
|
5532 |
|
|
}
|
5533 |
|
|
retval = t;
|
5534 |
|
|
|
5535 |
|
|
if (!sop)
|
5536 |
|
|
used_strict_overflow = 0;
|
5537 |
|
|
else if (used_strict_overflow < 0)
|
5538 |
|
|
used_strict_overflow = 1;
|
5539 |
|
|
}
|
5540 |
|
|
}
|
5541 |
|
|
|
5542 |
|
|
if (retval
|
5543 |
|
|
&& used_strict_overflow > 0)
|
5544 |
|
|
*strict_overflow_p = true;
|
5545 |
|
|
|
5546 |
|
|
return retval;
|
5547 |
|
|
}
|
5548 |
|
|
|
5549 |
|
|
|
5550 |
|
|
/* Given a comparison code COMP and names N1 and N2, compare all the
|
5551 |
|
|
ranges equivalent to N1 against all the ranges equivalent to N2
|
5552 |
|
|
to determine the value of N1 COMP N2. Return the same value
|
5553 |
|
|
returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
|
5554 |
|
|
whether we relied on an overflow infinity in the comparison. */
|
5555 |
|
|
|
5556 |
|
|
|
5557 |
|
|
static tree
|
5558 |
|
|
compare_names (enum tree_code comp, tree n1, tree n2,
|
5559 |
|
|
bool *strict_overflow_p)
|
5560 |
|
|
{
|
5561 |
|
|
tree t, retval;
|
5562 |
|
|
bitmap e1, e2;
|
5563 |
|
|
bitmap_iterator bi1, bi2;
|
5564 |
|
|
unsigned i1, i2;
|
5565 |
|
|
int used_strict_overflow;
|
5566 |
|
|
static bitmap_obstack *s_obstack = NULL;
|
5567 |
|
|
static bitmap s_e1 = NULL, s_e2 = NULL;
|
5568 |
|
|
|
5569 |
|
|
/* Compare the ranges of every name equivalent to N1 against the
|
5570 |
|
|
ranges of every name equivalent to N2. */
|
5571 |
|
|
e1 = get_value_range (n1)->equiv;
|
5572 |
|
|
e2 = get_value_range (n2)->equiv;
|
5573 |
|
|
|
5574 |
|
|
/* Use the fake bitmaps if e1 or e2 are not available. */
|
5575 |
|
|
if (s_obstack == NULL)
|
5576 |
|
|
{
|
5577 |
|
|
s_obstack = XNEW (bitmap_obstack);
|
5578 |
|
|
bitmap_obstack_initialize (s_obstack);
|
5579 |
|
|
s_e1 = BITMAP_ALLOC (s_obstack);
|
5580 |
|
|
s_e2 = BITMAP_ALLOC (s_obstack);
|
5581 |
|
|
}
|
5582 |
|
|
if (e1 == NULL)
|
5583 |
|
|
e1 = s_e1;
|
5584 |
|
|
if (e2 == NULL)
|
5585 |
|
|
e2 = s_e2;
|
5586 |
|
|
|
5587 |
|
|
/* Add N1 and N2 to their own set of equivalences to avoid
|
5588 |
|
|
duplicating the body of the loop just to check N1 and N2
|
5589 |
|
|
ranges. */
|
5590 |
|
|
bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
|
5591 |
|
|
bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
|
5592 |
|
|
|
5593 |
|
|
/* If the equivalence sets have a common intersection, then the two
|
5594 |
|
|
names can be compared without checking their ranges. */
|
5595 |
|
|
if (bitmap_intersect_p (e1, e2))
|
5596 |
|
|
{
|
5597 |
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
5598 |
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
5599 |
|
|
|
5600 |
|
|
return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
|
5601 |
|
|
? boolean_true_node
|
5602 |
|
|
: boolean_false_node;
|
5603 |
|
|
}
|
5604 |
|
|
|
5605 |
|
|
/* Start at -1. Set it to 0 if we do a comparison without relying
|
5606 |
|
|
on overflow, or 1 if all comparisons rely on overflow. */
|
5607 |
|
|
used_strict_overflow = -1;
|
5608 |
|
|
|
5609 |
|
|
/* Otherwise, compare all the equivalent ranges. First, add N1 and
|
5610 |
|
|
N2 to their own set of equivalences to avoid duplicating the body
|
5611 |
|
|
of the loop just to check N1 and N2 ranges. */
|
5612 |
|
|
EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
|
5613 |
|
|
{
|
5614 |
|
|
value_range_t vr1 = get_vr_for_comparison (i1);
|
5615 |
|
|
|
5616 |
|
|
t = retval = NULL_TREE;
|
5617 |
|
|
EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
|
5618 |
|
|
{
|
5619 |
|
|
bool sop = false;
|
5620 |
|
|
|
5621 |
|
|
value_range_t vr2 = get_vr_for_comparison (i2);
|
5622 |
|
|
|
5623 |
|
|
t = compare_ranges (comp, &vr1, &vr2, &sop);
|
5624 |
|
|
if (t)
|
5625 |
|
|
{
|
5626 |
|
|
/* If we get different answers from different members
|
5627 |
|
|
of the equivalence set this check must be in a dead
|
5628 |
|
|
code region. Folding it to a trap representation
|
5629 |
|
|
would be correct here. For now just return don't-know. */
|
5630 |
|
|
if (retval != NULL
|
5631 |
|
|
&& t != retval)
|
5632 |
|
|
{
|
5633 |
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
5634 |
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
5635 |
|
|
return NULL_TREE;
|
5636 |
|
|
}
|
5637 |
|
|
retval = t;
|
5638 |
|
|
|
5639 |
|
|
if (!sop)
|
5640 |
|
|
used_strict_overflow = 0;
|
5641 |
|
|
else if (used_strict_overflow < 0)
|
5642 |
|
|
used_strict_overflow = 1;
|
5643 |
|
|
}
|
5644 |
|
|
}
|
5645 |
|
|
|
5646 |
|
|
if (retval)
|
5647 |
|
|
{
|
5648 |
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
5649 |
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
5650 |
|
|
if (used_strict_overflow > 0)
|
5651 |
|
|
*strict_overflow_p = true;
|
5652 |
|
|
return retval;
|
5653 |
|
|
}
|
5654 |
|
|
}
|
5655 |
|
|
|
5656 |
|
|
/* None of the equivalent ranges are useful in computing this
|
5657 |
|
|
comparison. */
|
5658 |
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
5659 |
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
5660 |
|
|
return NULL_TREE;
|
5661 |
|
|
}
|
5662 |
|
|
|
5663 |
|
|
/* Helper function for vrp_evaluate_conditional_warnv. */
|
5664 |
|
|
|
5665 |
|
|
static tree
|
5666 |
|
|
vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
|
5667 |
|
|
tree op0, tree op1,
|
5668 |
|
|
bool * strict_overflow_p)
|
5669 |
|
|
{
|
5670 |
|
|
value_range_t *vr0, *vr1;
|
5671 |
|
|
|
5672 |
|
|
vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
|
5673 |
|
|
vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
|
5674 |
|
|
|
5675 |
|
|
if (vr0 && vr1)
|
5676 |
|
|
return compare_ranges (code, vr0, vr1, strict_overflow_p);
|
5677 |
|
|
else if (vr0 && vr1 == NULL)
|
5678 |
|
|
return compare_range_with_value (code, vr0, op1, strict_overflow_p);
|
5679 |
|
|
else if (vr0 == NULL && vr1)
|
5680 |
|
|
return (compare_range_with_value
|
5681 |
|
|
(swap_tree_comparison (code), vr1, op0, strict_overflow_p));
|
5682 |
|
|
return NULL;
|
5683 |
|
|
}
|
5684 |
|
|
|
5685 |
|
|
/* Helper function for vrp_evaluate_conditional_warnv. */
|
5686 |
|
|
|
5687 |
|
|
static tree
|
5688 |
|
|
vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
|
5689 |
|
|
tree op1, bool use_equiv_p,
|
5690 |
|
|
bool *strict_overflow_p, bool *only_ranges)
|
5691 |
|
|
{
|
5692 |
|
|
tree ret;
|
5693 |
|
|
if (only_ranges)
|
5694 |
|
|
*only_ranges = true;
|
5695 |
|
|
|
5696 |
|
|
/* We only deal with integral and pointer types. */
|
5697 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
|
5698 |
|
|
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
|
5699 |
|
|
return NULL_TREE;
|
5700 |
|
|
|
5701 |
|
|
if (use_equiv_p)
|
5702 |
|
|
{
|
5703 |
|
|
if (only_ranges
|
5704 |
|
|
&& (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
|
5705 |
|
|
(code, op0, op1, strict_overflow_p)))
|
5706 |
|
|
return ret;
|
5707 |
|
|
*only_ranges = false;
|
5708 |
|
|
if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
|
5709 |
|
|
return compare_names (code, op0, op1, strict_overflow_p);
|
5710 |
|
|
else if (TREE_CODE (op0) == SSA_NAME)
|
5711 |
|
|
return compare_name_with_value (code, op0, op1, strict_overflow_p);
|
5712 |
|
|
else if (TREE_CODE (op1) == SSA_NAME)
|
5713 |
|
|
return (compare_name_with_value
|
5714 |
|
|
(swap_tree_comparison (code), op1, op0, strict_overflow_p));
|
5715 |
|
|
}
|
5716 |
|
|
else
|
5717 |
|
|
return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
|
5718 |
|
|
strict_overflow_p);
|
5719 |
|
|
return NULL_TREE;
|
5720 |
|
|
}
|
5721 |
|
|
|
5722 |
|
|
/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
|
5723 |
|
|
information. Return NULL if the conditional can not be evaluated.
|
5724 |
|
|
The ranges of all the names equivalent with the operands in COND
|
5725 |
|
|
will be used when trying to compute the value. If the result is
|
5726 |
|
|
based on undefined signed overflow, issue a warning if
|
5727 |
|
|
appropriate. */
|
5728 |
|
|
|
5729 |
|
|
static tree
|
5730 |
|
|
vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
|
5731 |
|
|
{
|
5732 |
|
|
bool sop;
|
5733 |
|
|
tree ret;
|
5734 |
|
|
bool only_ranges;
|
5735 |
|
|
|
5736 |
|
|
/* Some passes and foldings leak constants with overflow flag set
|
5737 |
|
|
into the IL. Avoid doing wrong things with these and bail out. */
|
5738 |
|
|
if ((TREE_CODE (op0) == INTEGER_CST
|
5739 |
|
|
&& TREE_OVERFLOW (op0))
|
5740 |
|
|
|| (TREE_CODE (op1) == INTEGER_CST
|
5741 |
|
|
&& TREE_OVERFLOW (op1)))
|
5742 |
|
|
return NULL_TREE;
|
5743 |
|
|
|
5744 |
|
|
sop = false;
|
5745 |
|
|
ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
|
5746 |
|
|
&only_ranges);
|
5747 |
|
|
|
5748 |
|
|
if (ret && sop)
|
5749 |
|
|
{
|
5750 |
|
|
enum warn_strict_overflow_code wc;
|
5751 |
|
|
const char* warnmsg;
|
5752 |
|
|
|
5753 |
|
|
if (is_gimple_min_invariant (ret))
|
5754 |
|
|
{
|
5755 |
|
|
wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
|
5756 |
|
|
warnmsg = G_("assuming signed overflow does not occur when "
|
5757 |
|
|
"simplifying conditional to constant");
|
5758 |
|
|
}
|
5759 |
|
|
else
|
5760 |
|
|
{
|
5761 |
|
|
wc = WARN_STRICT_OVERFLOW_COMPARISON;
|
5762 |
|
|
warnmsg = G_("assuming signed overflow does not occur when "
|
5763 |
|
|
"simplifying conditional");
|
5764 |
|
|
}
|
5765 |
|
|
|
5766 |
|
|
if (issue_strict_overflow_warning (wc))
|
5767 |
|
|
{
|
5768 |
|
|
location_t location;
|
5769 |
|
|
|
5770 |
|
|
if (!gimple_has_location (stmt))
|
5771 |
|
|
location = input_location;
|
5772 |
|
|
else
|
5773 |
|
|
location = gimple_location (stmt);
|
5774 |
|
|
warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
|
5775 |
|
|
}
|
5776 |
|
|
}
|
5777 |
|
|
|
5778 |
|
|
if (warn_type_limits
|
5779 |
|
|
&& ret && only_ranges
|
5780 |
|
|
&& TREE_CODE_CLASS (code) == tcc_comparison
|
5781 |
|
|
&& TREE_CODE (op0) == SSA_NAME)
|
5782 |
|
|
{
|
5783 |
|
|
/* If the comparison is being folded and the operand on the LHS
|
5784 |
|
|
is being compared against a constant value that is outside of
|
5785 |
|
|
the natural range of OP0's type, then the predicate will
|
5786 |
|
|
always fold regardless of the value of OP0. If -Wtype-limits
|
5787 |
|
|
was specified, emit a warning. */
|
5788 |
|
|
tree type = TREE_TYPE (op0);
|
5789 |
|
|
value_range_t *vr0 = get_value_range (op0);
|
5790 |
|
|
|
5791 |
|
|
if (vr0->type != VR_VARYING
|
5792 |
|
|
&& INTEGRAL_TYPE_P (type)
|
5793 |
|
|
&& vrp_val_is_min (vr0->min)
|
5794 |
|
|
&& vrp_val_is_max (vr0->max)
|
5795 |
|
|
&& is_gimple_min_invariant (op1))
|
5796 |
|
|
{
|
5797 |
|
|
location_t location;
|
5798 |
|
|
|
5799 |
|
|
if (!gimple_has_location (stmt))
|
5800 |
|
|
location = input_location;
|
5801 |
|
|
else
|
5802 |
|
|
location = gimple_location (stmt);
|
5803 |
|
|
|
5804 |
|
|
warning_at (location, OPT_Wtype_limits,
|
5805 |
|
|
integer_zerop (ret)
|
5806 |
|
|
? G_("comparison always false "
|
5807 |
|
|
"due to limited range of data type")
|
5808 |
|
|
: G_("comparison always true "
|
5809 |
|
|
"due to limited range of data type"));
|
5810 |
|
|
}
|
5811 |
|
|
}
|
5812 |
|
|
|
5813 |
|
|
return ret;
|
5814 |
|
|
}
|
5815 |
|
|
|
5816 |
|
|
|
5817 |
|
|
/* Visit conditional statement STMT. If we can determine which edge
|
5818 |
|
|
will be taken out of STMT's basic block, record it in
|
5819 |
|
|
*TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
|
5820 |
|
|
SSA_PROP_VARYING. */
|
5821 |
|
|
|
5822 |
|
|
static enum ssa_prop_result
|
5823 |
|
|
vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
|
5824 |
|
|
{
|
5825 |
|
|
tree val;
|
5826 |
|
|
bool sop;
|
5827 |
|
|
|
5828 |
|
|
*taken_edge_p = NULL;
|
5829 |
|
|
|
5830 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
5831 |
|
|
{
|
5832 |
|
|
tree use;
|
5833 |
|
|
ssa_op_iter i;
|
5834 |
|
|
|
5835 |
|
|
fprintf (dump_file, "\nVisiting conditional with predicate: ");
|
5836 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
5837 |
|
|
fprintf (dump_file, "\nWith known ranges\n");
|
5838 |
|
|
|
5839 |
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
|
5840 |
|
|
{
|
5841 |
|
|
fprintf (dump_file, "\t");
|
5842 |
|
|
print_generic_expr (dump_file, use, 0);
|
5843 |
|
|
fprintf (dump_file, ": ");
|
5844 |
|
|
dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
|
5845 |
|
|
}
|
5846 |
|
|
|
5847 |
|
|
fprintf (dump_file, "\n");
|
5848 |
|
|
}
|
5849 |
|
|
|
5850 |
|
|
/* Compute the value of the predicate COND by checking the known
|
5851 |
|
|
ranges of each of its operands.
|
5852 |
|
|
|
5853 |
|
|
Note that we cannot evaluate all the equivalent ranges here
|
5854 |
|
|
because those ranges may not yet be final and with the current
|
5855 |
|
|
propagation strategy, we cannot determine when the value ranges
|
5856 |
|
|
of the names in the equivalence set have changed.
|
5857 |
|
|
|
5858 |
|
|
For instance, given the following code fragment
|
5859 |
|
|
|
5860 |
|
|
i_5 = PHI <8, i_13>
|
5861 |
|
|
...
|
5862 |
|
|
i_14 = ASSERT_EXPR <i_5, i_5 != 0>
|
5863 |
|
|
if (i_14 == 1)
|
5864 |
|
|
...
|
5865 |
|
|
|
5866 |
|
|
Assume that on the first visit to i_14, i_5 has the temporary
|
5867 |
|
|
range [8, 8] because the second argument to the PHI function is
|
5868 |
|
|
not yet executable. We derive the range ~[0, 0] for i_14 and the
|
5869 |
|
|
equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
|
5870 |
|
|
the first time, since i_14 is equivalent to the range [8, 8], we
|
5871 |
|
|
determine that the predicate is always false.
|
5872 |
|
|
|
5873 |
|
|
On the next round of propagation, i_13 is determined to be
|
5874 |
|
|
VARYING, which causes i_5 to drop down to VARYING. So, another
|
5875 |
|
|
visit to i_14 is scheduled. In this second visit, we compute the
|
5876 |
|
|
exact same range and equivalence set for i_14, namely ~[0, 0] and
|
5877 |
|
|
{ i_5 }. But we did not have the previous range for i_5
|
5878 |
|
|
registered, so vrp_visit_assignment thinks that the range for
|
5879 |
|
|
i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
|
5880 |
|
|
is not visited again, which stops propagation from visiting
|
5881 |
|
|
statements in the THEN clause of that if().
|
5882 |
|
|
|
5883 |
|
|
To properly fix this we would need to keep the previous range
|
5884 |
|
|
value for the names in the equivalence set. This way we would've
|
5885 |
|
|
discovered that from one visit to the other i_5 changed from
|
5886 |
|
|
range [8, 8] to VR_VARYING.
|
5887 |
|
|
|
5888 |
|
|
However, fixing this apparent limitation may not be worth the
|
5889 |
|
|
additional checking. Testing on several code bases (GCC, DLV,
|
5890 |
|
|
MICO, TRAMP3D and SPEC2000) showed that doing this results in
|
5891 |
|
|
4 more predicates folded in SPEC. */
|
5892 |
|
|
sop = false;
|
5893 |
|
|
|
5894 |
|
|
val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
|
5895 |
|
|
gimple_cond_lhs (stmt),
|
5896 |
|
|
gimple_cond_rhs (stmt),
|
5897 |
|
|
false, &sop, NULL);
|
5898 |
|
|
if (val)
|
5899 |
|
|
{
|
5900 |
|
|
if (!sop)
|
5901 |
|
|
*taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
|
5902 |
|
|
else
|
5903 |
|
|
{
|
5904 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
5905 |
|
|
fprintf (dump_file,
|
5906 |
|
|
"\nIgnoring predicate evaluation because "
|
5907 |
|
|
"it assumes that signed overflow is undefined");
|
5908 |
|
|
val = NULL_TREE;
|
5909 |
|
|
}
|
5910 |
|
|
}
|
5911 |
|
|
|
5912 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
5913 |
|
|
{
|
5914 |
|
|
fprintf (dump_file, "\nPredicate evaluates to: ");
|
5915 |
|
|
if (val == NULL_TREE)
|
5916 |
|
|
fprintf (dump_file, "DON'T KNOW\n");
|
5917 |
|
|
else
|
5918 |
|
|
print_generic_stmt (dump_file, val, 0);
|
5919 |
|
|
}
|
5920 |
|
|
|
5921 |
|
|
return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
|
5922 |
|
|
}
|
5923 |
|
|
|
5924 |
|
|
/* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
|
5925 |
|
|
that includes the value VAL. The search is restricted to the range
|
5926 |
|
|
[START_IDX, n - 1] where n is the size of VEC.
|
5927 |
|
|
|
5928 |
|
|
If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
|
5929 |
|
|
returned.
|
5930 |
|
|
|
5931 |
|
|
If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
|
5932 |
|
|
it is placed in IDX and false is returned.
|
5933 |
|
|
|
5934 |
|
|
If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
|
5935 |
|
|
returned. */
|
5936 |
|
|
|
5937 |
|
|
static bool
|
5938 |
|
|
find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
|
5939 |
|
|
{
|
5940 |
|
|
size_t n = gimple_switch_num_labels (stmt);
|
5941 |
|
|
size_t low, high;
|
5942 |
|
|
|
5943 |
|
|
/* Find case label for minimum of the value range or the next one.
|
5944 |
|
|
At each iteration we are searching in [low, high - 1]. */
|
5945 |
|
|
|
5946 |
|
|
for (low = start_idx, high = n; high != low; )
|
5947 |
|
|
{
|
5948 |
|
|
tree t;
|
5949 |
|
|
int cmp;
|
5950 |
|
|
/* Note that i != high, so we never ask for n. */
|
5951 |
|
|
size_t i = (high + low) / 2;
|
5952 |
|
|
t = gimple_switch_label (stmt, i);
|
5953 |
|
|
|
5954 |
|
|
/* Cache the result of comparing CASE_LOW and val. */
|
5955 |
|
|
cmp = tree_int_cst_compare (CASE_LOW (t), val);
|
5956 |
|
|
|
5957 |
|
|
if (cmp == 0)
|
5958 |
|
|
{
|
5959 |
|
|
/* Ranges cannot be empty. */
|
5960 |
|
|
*idx = i;
|
5961 |
|
|
return true;
|
5962 |
|
|
}
|
5963 |
|
|
else if (cmp > 0)
|
5964 |
|
|
high = i;
|
5965 |
|
|
else
|
5966 |
|
|
{
|
5967 |
|
|
low = i + 1;
|
5968 |
|
|
if (CASE_HIGH (t) != NULL
|
5969 |
|
|
&& tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
|
5970 |
|
|
{
|
5971 |
|
|
*idx = i;
|
5972 |
|
|
return true;
|
5973 |
|
|
}
|
5974 |
|
|
}
|
5975 |
|
|
}
|
5976 |
|
|
|
5977 |
|
|
*idx = high;
|
5978 |
|
|
return false;
|
5979 |
|
|
}
|
5980 |
|
|
|
5981 |
|
|
/* Searches the case label vector VEC for the range of CASE_LABELs that is used
|
5982 |
|
|
for values between MIN and MAX. The first index is placed in MIN_IDX. The
|
5983 |
|
|
last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
|
5984 |
|
|
then MAX_IDX < MIN_IDX.
|
5985 |
|
|
Returns true if the default label is not needed. */
|
5986 |
|
|
|
5987 |
|
|
static bool
|
5988 |
|
|
find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
|
5989 |
|
|
size_t *max_idx)
|
5990 |
|
|
{
|
5991 |
|
|
size_t i, j;
|
5992 |
|
|
bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
|
5993 |
|
|
bool max_take_default = !find_case_label_index (stmt, i, max, &j);
|
5994 |
|
|
|
5995 |
|
|
if (i == j
|
5996 |
|
|
&& min_take_default
|
5997 |
|
|
&& max_take_default)
|
5998 |
|
|
{
|
5999 |
|
|
/* Only the default case label reached.
|
6000 |
|
|
Return an empty range. */
|
6001 |
|
|
*min_idx = 1;
|
6002 |
|
|
*max_idx = 0;
|
6003 |
|
|
return false;
|
6004 |
|
|
}
|
6005 |
|
|
else
|
6006 |
|
|
{
|
6007 |
|
|
bool take_default = min_take_default || max_take_default;
|
6008 |
|
|
tree low, high;
|
6009 |
|
|
size_t k;
|
6010 |
|
|
|
6011 |
|
|
if (max_take_default)
|
6012 |
|
|
j--;
|
6013 |
|
|
|
6014 |
|
|
/* If the case label range is continuous, we do not need
|
6015 |
|
|
the default case label. Verify that. */
|
6016 |
|
|
high = CASE_LOW (gimple_switch_label (stmt, i));
|
6017 |
|
|
if (CASE_HIGH (gimple_switch_label (stmt, i)))
|
6018 |
|
|
high = CASE_HIGH (gimple_switch_label (stmt, i));
|
6019 |
|
|
for (k = i + 1; k <= j; ++k)
|
6020 |
|
|
{
|
6021 |
|
|
low = CASE_LOW (gimple_switch_label (stmt, k));
|
6022 |
|
|
if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
|
6023 |
|
|
{
|
6024 |
|
|
take_default = true;
|
6025 |
|
|
break;
|
6026 |
|
|
}
|
6027 |
|
|
high = low;
|
6028 |
|
|
if (CASE_HIGH (gimple_switch_label (stmt, k)))
|
6029 |
|
|
high = CASE_HIGH (gimple_switch_label (stmt, k));
|
6030 |
|
|
}
|
6031 |
|
|
|
6032 |
|
|
*min_idx = i;
|
6033 |
|
|
*max_idx = j;
|
6034 |
|
|
return !take_default;
|
6035 |
|
|
}
|
6036 |
|
|
}
|
6037 |
|
|
|
6038 |
|
|
/* Visit switch statement STMT. If we can determine which edge
|
6039 |
|
|
will be taken out of STMT's basic block, record it in
|
6040 |
|
|
*TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
|
6041 |
|
|
SSA_PROP_VARYING. */
|
6042 |
|
|
|
6043 |
|
|
static enum ssa_prop_result
|
6044 |
|
|
vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
|
6045 |
|
|
{
|
6046 |
|
|
tree op, val;
|
6047 |
|
|
value_range_t *vr;
|
6048 |
|
|
size_t i = 0, j = 0;
|
6049 |
|
|
bool take_default;
|
6050 |
|
|
|
6051 |
|
|
*taken_edge_p = NULL;
|
6052 |
|
|
op = gimple_switch_index (stmt);
|
6053 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
6054 |
|
|
return SSA_PROP_VARYING;
|
6055 |
|
|
|
6056 |
|
|
vr = get_value_range (op);
|
6057 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
6058 |
|
|
{
|
6059 |
|
|
fprintf (dump_file, "\nVisiting switch expression with operand ");
|
6060 |
|
|
print_generic_expr (dump_file, op, 0);
|
6061 |
|
|
fprintf (dump_file, " with known range ");
|
6062 |
|
|
dump_value_range (dump_file, vr);
|
6063 |
|
|
fprintf (dump_file, "\n");
|
6064 |
|
|
}
|
6065 |
|
|
|
6066 |
|
|
if (vr->type != VR_RANGE
|
6067 |
|
|
|| symbolic_range_p (vr))
|
6068 |
|
|
return SSA_PROP_VARYING;
|
6069 |
|
|
|
6070 |
|
|
/* Find the single edge that is taken from the switch expression. */
|
6071 |
|
|
take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
|
6072 |
|
|
|
6073 |
|
|
/* Check if the range spans no CASE_LABEL. If so, we only reach the default
|
6074 |
|
|
label */
|
6075 |
|
|
if (j < i)
|
6076 |
|
|
{
|
6077 |
|
|
gcc_assert (take_default);
|
6078 |
|
|
val = gimple_switch_default_label (stmt);
|
6079 |
|
|
}
|
6080 |
|
|
else
|
6081 |
|
|
{
|
6082 |
|
|
/* Check if labels with index i to j and maybe the default label
|
6083 |
|
|
are all reaching the same label. */
|
6084 |
|
|
|
6085 |
|
|
val = gimple_switch_label (stmt, i);
|
6086 |
|
|
if (take_default
|
6087 |
|
|
&& CASE_LABEL (gimple_switch_default_label (stmt))
|
6088 |
|
|
!= CASE_LABEL (val))
|
6089 |
|
|
{
|
6090 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
6091 |
|
|
fprintf (dump_file, " not a single destination for this "
|
6092 |
|
|
"range\n");
|
6093 |
|
|
return SSA_PROP_VARYING;
|
6094 |
|
|
}
|
6095 |
|
|
for (++i; i <= j; ++i)
|
6096 |
|
|
{
|
6097 |
|
|
if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
|
6098 |
|
|
{
|
6099 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
6100 |
|
|
fprintf (dump_file, " not a single destination for this "
|
6101 |
|
|
"range\n");
|
6102 |
|
|
return SSA_PROP_VARYING;
|
6103 |
|
|
}
|
6104 |
|
|
}
|
6105 |
|
|
}
|
6106 |
|
|
|
6107 |
|
|
*taken_edge_p = find_edge (gimple_bb (stmt),
|
6108 |
|
|
label_to_block (CASE_LABEL (val)));
|
6109 |
|
|
|
6110 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
6111 |
|
|
{
|
6112 |
|
|
fprintf (dump_file, " will take edge to ");
|
6113 |
|
|
print_generic_stmt (dump_file, CASE_LABEL (val), 0);
|
6114 |
|
|
}
|
6115 |
|
|
|
6116 |
|
|
return SSA_PROP_INTERESTING;
|
6117 |
|
|
}
|
6118 |
|
|
|
6119 |
|
|
|
6120 |
|
|
/* Evaluate statement STMT. If the statement produces a useful range,
|
6121 |
|
|
return SSA_PROP_INTERESTING and record the SSA name with the
|
6122 |
|
|
interesting range into *OUTPUT_P.
|
6123 |
|
|
|
6124 |
|
|
If STMT is a conditional branch and we can determine its truth
|
6125 |
|
|
value, the taken edge is recorded in *TAKEN_EDGE_P.
|
6126 |
|
|
|
6127 |
|
|
If STMT produces a varying value, return SSA_PROP_VARYING. */
|
6128 |
|
|
|
6129 |
|
|
static enum ssa_prop_result
|
6130 |
|
|
vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
|
6131 |
|
|
{
|
6132 |
|
|
tree def;
|
6133 |
|
|
ssa_op_iter iter;
|
6134 |
|
|
|
6135 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
6136 |
|
|
{
|
6137 |
|
|
fprintf (dump_file, "\nVisiting statement:\n");
|
6138 |
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
6139 |
|
|
fprintf (dump_file, "\n");
|
6140 |
|
|
}
|
6141 |
|
|
|
6142 |
|
|
if (!stmt_interesting_for_vrp (stmt))
|
6143 |
|
|
gcc_assert (stmt_ends_bb_p (stmt));
|
6144 |
|
|
else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
|
6145 |
|
|
{
|
6146 |
|
|
/* In general, assignments with virtual operands are not useful
|
6147 |
|
|
for deriving ranges, with the obvious exception of calls to
|
6148 |
|
|
builtin functions. */
|
6149 |
|
|
|
6150 |
|
|
if ((is_gimple_call (stmt)
|
6151 |
|
|
&& gimple_call_fndecl (stmt) != NULL_TREE
|
6152 |
|
|
&& DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
|
6153 |
|
|
|| !gimple_vuse (stmt))
|
6154 |
|
|
return vrp_visit_assignment_or_call (stmt, output_p);
|
6155 |
|
|
}
|
6156 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
6157 |
|
|
return vrp_visit_cond_stmt (stmt, taken_edge_p);
|
6158 |
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
6159 |
|
|
return vrp_visit_switch_stmt (stmt, taken_edge_p);
|
6160 |
|
|
|
6161 |
|
|
/* All other statements produce nothing of interest for VRP, so mark
|
6162 |
|
|
their outputs varying and prevent further simulation. */
|
6163 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
|
6164 |
|
|
set_value_range_to_varying (get_value_range (def));
|
6165 |
|
|
|
6166 |
|
|
return SSA_PROP_VARYING;
|
6167 |
|
|
}
|
6168 |
|
|
|
6169 |
|
|
|
6170 |
|
|
/* Meet operation for value ranges. Given two value ranges VR0 and
|
6171 |
|
|
VR1, store in VR0 a range that contains both VR0 and VR1. This
|
6172 |
|
|
may not be the smallest possible such range. */
|
6173 |
|
|
|
6174 |
|
|
static void
|
6175 |
|
|
vrp_meet (value_range_t *vr0, value_range_t *vr1)
|
6176 |
|
|
{
|
6177 |
|
|
if (vr0->type == VR_UNDEFINED)
|
6178 |
|
|
{
|
6179 |
|
|
copy_value_range (vr0, vr1);
|
6180 |
|
|
return;
|
6181 |
|
|
}
|
6182 |
|
|
|
6183 |
|
|
if (vr1->type == VR_UNDEFINED)
|
6184 |
|
|
{
|
6185 |
|
|
/* Nothing to do. VR0 already has the resulting range. */
|
6186 |
|
|
return;
|
6187 |
|
|
}
|
6188 |
|
|
|
6189 |
|
|
if (vr0->type == VR_VARYING)
|
6190 |
|
|
{
|
6191 |
|
|
/* Nothing to do. VR0 already has the resulting range. */
|
6192 |
|
|
return;
|
6193 |
|
|
}
|
6194 |
|
|
|
6195 |
|
|
if (vr1->type == VR_VARYING)
|
6196 |
|
|
{
|
6197 |
|
|
set_value_range_to_varying (vr0);
|
6198 |
|
|
return;
|
6199 |
|
|
}
|
6200 |
|
|
|
6201 |
|
|
if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
|
6202 |
|
|
{
|
6203 |
|
|
int cmp;
|
6204 |
|
|
tree min, max;
|
6205 |
|
|
|
6206 |
|
|
/* Compute the convex hull of the ranges. The lower limit of
|
6207 |
|
|
the new range is the minimum of the two ranges. If they
|
6208 |
|
|
cannot be compared, then give up. */
|
6209 |
|
|
cmp = compare_values (vr0->min, vr1->min);
|
6210 |
|
|
if (cmp == 0 || cmp == 1)
|
6211 |
|
|
min = vr1->min;
|
6212 |
|
|
else if (cmp == -1)
|
6213 |
|
|
min = vr0->min;
|
6214 |
|
|
else
|
6215 |
|
|
goto give_up;
|
6216 |
|
|
|
6217 |
|
|
/* Similarly, the upper limit of the new range is the maximum
|
6218 |
|
|
of the two ranges. If they cannot be compared, then
|
6219 |
|
|
give up. */
|
6220 |
|
|
cmp = compare_values (vr0->max, vr1->max);
|
6221 |
|
|
if (cmp == 0 || cmp == -1)
|
6222 |
|
|
max = vr1->max;
|
6223 |
|
|
else if (cmp == 1)
|
6224 |
|
|
max = vr0->max;
|
6225 |
|
|
else
|
6226 |
|
|
goto give_up;
|
6227 |
|
|
|
6228 |
|
|
/* Check for useless ranges. */
|
6229 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (min))
|
6230 |
|
|
&& ((vrp_val_is_min (min) || is_overflow_infinity (min))
|
6231 |
|
|
&& (vrp_val_is_max (max) || is_overflow_infinity (max))))
|
6232 |
|
|
goto give_up;
|
6233 |
|
|
|
6234 |
|
|
/* The resulting set of equivalences is the intersection of
|
6235 |
|
|
the two sets. */
|
6236 |
|
|
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
|
6237 |
|
|
bitmap_and_into (vr0->equiv, vr1->equiv);
|
6238 |
|
|
else if (vr0->equiv && !vr1->equiv)
|
6239 |
|
|
bitmap_clear (vr0->equiv);
|
6240 |
|
|
|
6241 |
|
|
set_value_range (vr0, vr0->type, min, max, vr0->equiv);
|
6242 |
|
|
}
|
6243 |
|
|
else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
|
6244 |
|
|
{
|
6245 |
|
|
/* Two anti-ranges meet only if their complements intersect.
|
6246 |
|
|
Only handle the case of identical ranges. */
|
6247 |
|
|
if (compare_values (vr0->min, vr1->min) == 0
|
6248 |
|
|
&& compare_values (vr0->max, vr1->max) == 0
|
6249 |
|
|
&& compare_values (vr0->min, vr0->max) == 0)
|
6250 |
|
|
{
|
6251 |
|
|
/* The resulting set of equivalences is the intersection of
|
6252 |
|
|
the two sets. */
|
6253 |
|
|
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
|
6254 |
|
|
bitmap_and_into (vr0->equiv, vr1->equiv);
|
6255 |
|
|
else if (vr0->equiv && !vr1->equiv)
|
6256 |
|
|
bitmap_clear (vr0->equiv);
|
6257 |
|
|
}
|
6258 |
|
|
else
|
6259 |
|
|
goto give_up;
|
6260 |
|
|
}
|
6261 |
|
|
else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
|
6262 |
|
|
{
|
6263 |
|
|
/* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
|
6264 |
|
|
only handle the case where the ranges have an empty intersection.
|
6265 |
|
|
The result of the meet operation is the anti-range. */
|
6266 |
|
|
if (!symbolic_range_p (vr0)
|
6267 |
|
|
&& !symbolic_range_p (vr1)
|
6268 |
|
|
&& !value_ranges_intersect_p (vr0, vr1))
|
6269 |
|
|
{
|
6270 |
|
|
/* Copy most of VR1 into VR0. Don't copy VR1's equivalence
|
6271 |
|
|
set. We need to compute the intersection of the two
|
6272 |
|
|
equivalence sets. */
|
6273 |
|
|
if (vr1->type == VR_ANTI_RANGE)
|
6274 |
|
|
set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
|
6275 |
|
|
|
6276 |
|
|
/* The resulting set of equivalences is the intersection of
|
6277 |
|
|
the two sets. */
|
6278 |
|
|
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
|
6279 |
|
|
bitmap_and_into (vr0->equiv, vr1->equiv);
|
6280 |
|
|
else if (vr0->equiv && !vr1->equiv)
|
6281 |
|
|
bitmap_clear (vr0->equiv);
|
6282 |
|
|
}
|
6283 |
|
|
else
|
6284 |
|
|
goto give_up;
|
6285 |
|
|
}
|
6286 |
|
|
else
|
6287 |
|
|
gcc_unreachable ();
|
6288 |
|
|
|
6289 |
|
|
return;
|
6290 |
|
|
|
6291 |
|
|
give_up:
|
6292 |
|
|
/* Failed to find an efficient meet. Before giving up and setting
|
6293 |
|
|
the result to VARYING, see if we can at least derive a useful
|
6294 |
|
|
anti-range. FIXME, all this nonsense about distinguishing
|
6295 |
|
|
anti-ranges from ranges is necessary because of the odd
|
6296 |
|
|
semantics of range_includes_zero_p and friends. */
|
6297 |
|
|
if (!symbolic_range_p (vr0)
|
6298 |
|
|
&& ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
|
6299 |
|
|
|| (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
|
6300 |
|
|
&& !symbolic_range_p (vr1)
|
6301 |
|
|
&& ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
|
6302 |
|
|
|| (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
|
6303 |
|
|
{
|
6304 |
|
|
set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
|
6305 |
|
|
|
6306 |
|
|
/* Since this meet operation did not result from the meeting of
|
6307 |
|
|
two equivalent names, VR0 cannot have any equivalences. */
|
6308 |
|
|
if (vr0->equiv)
|
6309 |
|
|
bitmap_clear (vr0->equiv);
|
6310 |
|
|
}
|
6311 |
|
|
else
|
6312 |
|
|
set_value_range_to_varying (vr0);
|
6313 |
|
|
}
|
6314 |
|
|
|
6315 |
|
|
|
6316 |
|
|
/* Visit all arguments for PHI node PHI that flow through executable
|
6317 |
|
|
edges. If a valid value range can be derived from all the incoming
|
6318 |
|
|
value ranges, set a new range for the LHS of PHI. */
|
6319 |
|
|
|
6320 |
|
|
static enum ssa_prop_result
|
6321 |
|
|
vrp_visit_phi_node (gimple phi)
|
6322 |
|
|
{
|
6323 |
|
|
size_t i;
|
6324 |
|
|
tree lhs = PHI_RESULT (phi);
|
6325 |
|
|
value_range_t *lhs_vr = get_value_range (lhs);
|
6326 |
|
|
value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
|
6327 |
|
|
int edges, old_edges;
|
6328 |
|
|
struct loop *l;
|
6329 |
|
|
|
6330 |
|
|
copy_value_range (&vr_result, lhs_vr);
|
6331 |
|
|
|
6332 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
6333 |
|
|
{
|
6334 |
|
|
fprintf (dump_file, "\nVisiting PHI node: ");
|
6335 |
|
|
print_gimple_stmt (dump_file, phi, 0, dump_flags);
|
6336 |
|
|
}
|
6337 |
|
|
|
6338 |
|
|
edges = 0;
|
6339 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
6340 |
|
|
{
|
6341 |
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
6342 |
|
|
|
6343 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
6344 |
|
|
{
|
6345 |
|
|
fprintf (dump_file,
|
6346 |
|
|
"\n Argument #%d (%d -> %d %sexecutable)\n",
|
6347 |
|
|
(int) i, e->src->index, e->dest->index,
|
6348 |
|
|
(e->flags & EDGE_EXECUTABLE) ? "" : "not ");
|
6349 |
|
|
}
|
6350 |
|
|
|
6351 |
|
|
if (e->flags & EDGE_EXECUTABLE)
|
6352 |
|
|
{
|
6353 |
|
|
tree arg = PHI_ARG_DEF (phi, i);
|
6354 |
|
|
value_range_t vr_arg;
|
6355 |
|
|
|
6356 |
|
|
++edges;
|
6357 |
|
|
|
6358 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
6359 |
|
|
{
|
6360 |
|
|
vr_arg = *(get_value_range (arg));
|
6361 |
|
|
}
|
6362 |
|
|
else
|
6363 |
|
|
{
|
6364 |
|
|
if (is_overflow_infinity (arg))
|
6365 |
|
|
{
|
6366 |
|
|
arg = copy_node (arg);
|
6367 |
|
|
TREE_OVERFLOW (arg) = 0;
|
6368 |
|
|
}
|
6369 |
|
|
|
6370 |
|
|
vr_arg.type = VR_RANGE;
|
6371 |
|
|
vr_arg.min = arg;
|
6372 |
|
|
vr_arg.max = arg;
|
6373 |
|
|
vr_arg.equiv = NULL;
|
6374 |
|
|
}
|
6375 |
|
|
|
6376 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
6377 |
|
|
{
|
6378 |
|
|
fprintf (dump_file, "\t");
|
6379 |
|
|
print_generic_expr (dump_file, arg, dump_flags);
|
6380 |
|
|
fprintf (dump_file, "\n\tValue: ");
|
6381 |
|
|
dump_value_range (dump_file, &vr_arg);
|
6382 |
|
|
fprintf (dump_file, "\n");
|
6383 |
|
|
}
|
6384 |
|
|
|
6385 |
|
|
vrp_meet (&vr_result, &vr_arg);
|
6386 |
|
|
|
6387 |
|
|
if (vr_result.type == VR_VARYING)
|
6388 |
|
|
break;
|
6389 |
|
|
}
|
6390 |
|
|
}
|
6391 |
|
|
|
6392 |
|
|
/* If this is a loop PHI node SCEV may known more about its
|
6393 |
|
|
value-range. */
|
6394 |
|
|
if (current_loops
|
6395 |
|
|
&& (l = loop_containing_stmt (phi))
|
6396 |
|
|
&& l->header == gimple_bb (phi))
|
6397 |
|
|
adjust_range_with_scev (&vr_result, l, phi, lhs);
|
6398 |
|
|
|
6399 |
|
|
if (vr_result.type == VR_VARYING)
|
6400 |
|
|
goto varying;
|
6401 |
|
|
|
6402 |
|
|
old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
|
6403 |
|
|
vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
|
6404 |
|
|
|
6405 |
|
|
/* To prevent infinite iterations in the algorithm, derive ranges
|
6406 |
|
|
when the new value is slightly bigger or smaller than the
|
6407 |
|
|
previous one. We don't do this if we have seen a new executable
|
6408 |
|
|
edge; this helps us avoid an overflow infinity for conditionals
|
6409 |
|
|
which are not in a loop. */
|
6410 |
|
|
if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
|
6411 |
|
|
&& edges <= old_edges)
|
6412 |
|
|
{
|
6413 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
|
6414 |
|
|
{
|
6415 |
|
|
int cmp_min = compare_values (lhs_vr->min, vr_result.min);
|
6416 |
|
|
int cmp_max = compare_values (lhs_vr->max, vr_result.max);
|
6417 |
|
|
|
6418 |
|
|
/* If the new minimum is smaller or larger than the previous
|
6419 |
|
|
one, go all the way to -INF. In the first case, to avoid
|
6420 |
|
|
iterating millions of times to reach -INF, and in the
|
6421 |
|
|
other case to avoid infinite bouncing between different
|
6422 |
|
|
minimums. */
|
6423 |
|
|
if (cmp_min > 0 || cmp_min < 0)
|
6424 |
|
|
{
|
6425 |
|
|
/* If we will end up with a (-INF, +INF) range, set it to
|
6426 |
|
|
VARYING. Same if the previous max value was invalid for
|
6427 |
|
|
the type and we'd end up with vr_result.min > vr_result.max. */
|
6428 |
|
|
if (vrp_val_is_max (vr_result.max)
|
6429 |
|
|
|| compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result.min)),
|
6430 |
|
|
vr_result.max) > 0)
|
6431 |
|
|
goto varying;
|
6432 |
|
|
|
6433 |
|
|
if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
|
6434 |
|
|
|| !vrp_var_may_overflow (lhs, phi))
|
6435 |
|
|
vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
|
6436 |
|
|
else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
|
6437 |
|
|
vr_result.min =
|
6438 |
|
|
negative_overflow_infinity (TREE_TYPE (vr_result.min));
|
6439 |
|
|
else
|
6440 |
|
|
goto varying;
|
6441 |
|
|
}
|
6442 |
|
|
|
6443 |
|
|
/* Similarly, if the new maximum is smaller or larger than
|
6444 |
|
|
the previous one, go all the way to +INF. */
|
6445 |
|
|
if (cmp_max < 0 || cmp_max > 0)
|
6446 |
|
|
{
|
6447 |
|
|
/* If we will end up with a (-INF, +INF) range, set it to
|
6448 |
|
|
VARYING. Same if the previous min value was invalid for
|
6449 |
|
|
the type and we'd end up with vr_result.max < vr_result.min. */
|
6450 |
|
|
if (vrp_val_is_min (vr_result.min)
|
6451 |
|
|
|| compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)),
|
6452 |
|
|
vr_result.min) < 0)
|
6453 |
|
|
goto varying;
|
6454 |
|
|
|
6455 |
|
|
if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
|
6456 |
|
|
|| !vrp_var_may_overflow (lhs, phi))
|
6457 |
|
|
vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
|
6458 |
|
|
else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
|
6459 |
|
|
vr_result.max =
|
6460 |
|
|
positive_overflow_infinity (TREE_TYPE (vr_result.max));
|
6461 |
|
|
else
|
6462 |
|
|
goto varying;
|
6463 |
|
|
}
|
6464 |
|
|
}
|
6465 |
|
|
}
|
6466 |
|
|
|
6467 |
|
|
/* If the new range is different than the previous value, keep
|
6468 |
|
|
iterating. */
|
6469 |
|
|
if (update_value_range (lhs, &vr_result))
|
6470 |
|
|
{
|
6471 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
6472 |
|
|
{
|
6473 |
|
|
fprintf (dump_file, "Found new range for ");
|
6474 |
|
|
print_generic_expr (dump_file, lhs, 0);
|
6475 |
|
|
fprintf (dump_file, ": ");
|
6476 |
|
|
dump_value_range (dump_file, &vr_result);
|
6477 |
|
|
fprintf (dump_file, "\n\n");
|
6478 |
|
|
}
|
6479 |
|
|
|
6480 |
|
|
return SSA_PROP_INTERESTING;
|
6481 |
|
|
}
|
6482 |
|
|
|
6483 |
|
|
/* Nothing changed, don't add outgoing edges. */
|
6484 |
|
|
return SSA_PROP_NOT_INTERESTING;
|
6485 |
|
|
|
6486 |
|
|
/* No match found. Set the LHS to VARYING. */
|
6487 |
|
|
varying:
|
6488 |
|
|
set_value_range_to_varying (lhs_vr);
|
6489 |
|
|
return SSA_PROP_VARYING;
|
6490 |
|
|
}
|
6491 |
|
|
|
6492 |
|
|
/* Simplify boolean operations if the source is known
|
6493 |
|
|
to be already a boolean. */
|
6494 |
|
|
static bool
|
6495 |
|
|
simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
|
6496 |
|
|
{
|
6497 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
6498 |
|
|
tree val = NULL;
|
6499 |
|
|
tree op0, op1;
|
6500 |
|
|
value_range_t *vr;
|
6501 |
|
|
bool sop = false;
|
6502 |
|
|
bool need_conversion;
|
6503 |
|
|
|
6504 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
6505 |
|
|
if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
|
6506 |
|
|
{
|
6507 |
|
|
if (TREE_CODE (op0) != SSA_NAME)
|
6508 |
|
|
return false;
|
6509 |
|
|
vr = get_value_range (op0);
|
6510 |
|
|
|
6511 |
|
|
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
|
6512 |
|
|
if (!val || !integer_onep (val))
|
6513 |
|
|
return false;
|
6514 |
|
|
|
6515 |
|
|
val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
|
6516 |
|
|
if (!val || !integer_onep (val))
|
6517 |
|
|
return false;
|
6518 |
|
|
}
|
6519 |
|
|
|
6520 |
|
|
if (rhs_code == TRUTH_NOT_EXPR)
|
6521 |
|
|
{
|
6522 |
|
|
rhs_code = NE_EXPR;
|
6523 |
|
|
op1 = build_int_cst (TREE_TYPE (op0), 1);
|
6524 |
|
|
}
|
6525 |
|
|
else
|
6526 |
|
|
{
|
6527 |
|
|
op1 = gimple_assign_rhs2 (stmt);
|
6528 |
|
|
|
6529 |
|
|
/* Reduce number of cases to handle. */
|
6530 |
|
|
if (is_gimple_min_invariant (op1))
|
6531 |
|
|
{
|
6532 |
|
|
/* Exclude anything that should have been already folded. */
|
6533 |
|
|
if (rhs_code != EQ_EXPR
|
6534 |
|
|
&& rhs_code != NE_EXPR
|
6535 |
|
|
&& rhs_code != TRUTH_XOR_EXPR)
|
6536 |
|
|
return false;
|
6537 |
|
|
|
6538 |
|
|
if (!integer_zerop (op1)
|
6539 |
|
|
&& !integer_onep (op1)
|
6540 |
|
|
&& !integer_all_onesp (op1))
|
6541 |
|
|
return false;
|
6542 |
|
|
|
6543 |
|
|
/* Limit the number of cases we have to consider. */
|
6544 |
|
|
if (rhs_code == EQ_EXPR)
|
6545 |
|
|
{
|
6546 |
|
|
rhs_code = NE_EXPR;
|
6547 |
|
|
op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
|
6548 |
|
|
}
|
6549 |
|
|
}
|
6550 |
|
|
else
|
6551 |
|
|
{
|
6552 |
|
|
/* Punt on A == B as there is no BIT_XNOR_EXPR. */
|
6553 |
|
|
if (rhs_code == EQ_EXPR)
|
6554 |
|
|
return false;
|
6555 |
|
|
|
6556 |
|
|
if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
|
6557 |
|
|
{
|
6558 |
|
|
vr = get_value_range (op1);
|
6559 |
|
|
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
|
6560 |
|
|
if (!val || !integer_onep (val))
|
6561 |
|
|
return false;
|
6562 |
|
|
|
6563 |
|
|
val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
|
6564 |
|
|
if (!val || !integer_onep (val))
|
6565 |
|
|
return false;
|
6566 |
|
|
}
|
6567 |
|
|
}
|
6568 |
|
|
}
|
6569 |
|
|
|
6570 |
|
|
if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
|
6571 |
|
|
{
|
6572 |
|
|
location_t location;
|
6573 |
|
|
|
6574 |
|
|
if (!gimple_has_location (stmt))
|
6575 |
|
|
location = input_location;
|
6576 |
|
|
else
|
6577 |
|
|
location = gimple_location (stmt);
|
6578 |
|
|
|
6579 |
|
|
if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
|
6580 |
|
|
warning_at (location, OPT_Wstrict_overflow,
|
6581 |
|
|
_("assuming signed overflow does not occur when "
|
6582 |
|
|
"simplifying && or || to & or |"));
|
6583 |
|
|
else
|
6584 |
|
|
warning_at (location, OPT_Wstrict_overflow,
|
6585 |
|
|
_("assuming signed overflow does not occur when "
|
6586 |
|
|
"simplifying ==, != or ! to identity or ^"));
|
6587 |
|
|
}
|
6588 |
|
|
|
6589 |
|
|
need_conversion =
|
6590 |
|
|
!useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
|
6591 |
|
|
TREE_TYPE (op0));
|
6592 |
|
|
|
6593 |
|
|
/* Make sure to not sign-extend -1 as a boolean value. */
|
6594 |
|
|
if (need_conversion
|
6595 |
|
|
&& !TYPE_UNSIGNED (TREE_TYPE (op0))
|
6596 |
|
|
&& TYPE_PRECISION (TREE_TYPE (op0)) == 1)
|
6597 |
|
|
return false;
|
6598 |
|
|
|
6599 |
|
|
switch (rhs_code)
|
6600 |
|
|
{
|
6601 |
|
|
case TRUTH_AND_EXPR:
|
6602 |
|
|
rhs_code = BIT_AND_EXPR;
|
6603 |
|
|
break;
|
6604 |
|
|
case TRUTH_OR_EXPR:
|
6605 |
|
|
rhs_code = BIT_IOR_EXPR;
|
6606 |
|
|
break;
|
6607 |
|
|
case TRUTH_XOR_EXPR:
|
6608 |
|
|
case NE_EXPR:
|
6609 |
|
|
if (integer_zerop (op1))
|
6610 |
|
|
{
|
6611 |
|
|
gimple_assign_set_rhs_with_ops (gsi,
|
6612 |
|
|
need_conversion ? NOP_EXPR : SSA_NAME,
|
6613 |
|
|
op0, NULL);
|
6614 |
|
|
update_stmt (gsi_stmt (*gsi));
|
6615 |
|
|
return true;
|
6616 |
|
|
}
|
6617 |
|
|
|
6618 |
|
|
rhs_code = BIT_XOR_EXPR;
|
6619 |
|
|
break;
|
6620 |
|
|
default:
|
6621 |
|
|
gcc_unreachable ();
|
6622 |
|
|
}
|
6623 |
|
|
|
6624 |
|
|
if (need_conversion)
|
6625 |
|
|
return false;
|
6626 |
|
|
|
6627 |
|
|
gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
|
6628 |
|
|
update_stmt (gsi_stmt (*gsi));
|
6629 |
|
|
return true;
|
6630 |
|
|
}
|
6631 |
|
|
|
6632 |
|
|
/* Simplify a division or modulo operator to a right shift or
|
6633 |
|
|
bitwise and if the first operand is unsigned or is greater
|
6634 |
|
|
than zero and the second operand is an exact power of two. */
|
6635 |
|
|
|
6636 |
|
|
static bool
|
6637 |
|
|
simplify_div_or_mod_using_ranges (gimple stmt)
|
6638 |
|
|
{
|
6639 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
6640 |
|
|
tree val = NULL;
|
6641 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
6642 |
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
6643 |
|
|
value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
|
6644 |
|
|
|
6645 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (op0)))
|
6646 |
|
|
{
|
6647 |
|
|
val = integer_one_node;
|
6648 |
|
|
}
|
6649 |
|
|
else
|
6650 |
|
|
{
|
6651 |
|
|
bool sop = false;
|
6652 |
|
|
|
6653 |
|
|
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
|
6654 |
|
|
|
6655 |
|
|
if (val
|
6656 |
|
|
&& sop
|
6657 |
|
|
&& integer_onep (val)
|
6658 |
|
|
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
|
6659 |
|
|
{
|
6660 |
|
|
location_t location;
|
6661 |
|
|
|
6662 |
|
|
if (!gimple_has_location (stmt))
|
6663 |
|
|
location = input_location;
|
6664 |
|
|
else
|
6665 |
|
|
location = gimple_location (stmt);
|
6666 |
|
|
warning_at (location, OPT_Wstrict_overflow,
|
6667 |
|
|
"assuming signed overflow does not occur when "
|
6668 |
|
|
"simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
|
6669 |
|
|
}
|
6670 |
|
|
}
|
6671 |
|
|
|
6672 |
|
|
if (val && integer_onep (val))
|
6673 |
|
|
{
|
6674 |
|
|
tree t;
|
6675 |
|
|
|
6676 |
|
|
if (rhs_code == TRUNC_DIV_EXPR)
|
6677 |
|
|
{
|
6678 |
|
|
t = build_int_cst (NULL_TREE, tree_log2 (op1));
|
6679 |
|
|
gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
|
6680 |
|
|
gimple_assign_set_rhs1 (stmt, op0);
|
6681 |
|
|
gimple_assign_set_rhs2 (stmt, t);
|
6682 |
|
|
}
|
6683 |
|
|
else
|
6684 |
|
|
{
|
6685 |
|
|
t = build_int_cst (TREE_TYPE (op1), 1);
|
6686 |
|
|
t = int_const_binop (MINUS_EXPR, op1, t, 0);
|
6687 |
|
|
t = fold_convert (TREE_TYPE (op0), t);
|
6688 |
|
|
|
6689 |
|
|
gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
|
6690 |
|
|
gimple_assign_set_rhs1 (stmt, op0);
|
6691 |
|
|
gimple_assign_set_rhs2 (stmt, t);
|
6692 |
|
|
}
|
6693 |
|
|
|
6694 |
|
|
update_stmt (stmt);
|
6695 |
|
|
return true;
|
6696 |
|
|
}
|
6697 |
|
|
|
6698 |
|
|
return false;
|
6699 |
|
|
}
|
6700 |
|
|
|
6701 |
|
|
/* If the operand to an ABS_EXPR is >= 0, then eliminate the
|
6702 |
|
|
ABS_EXPR. If the operand is <= 0, then simplify the
|
6703 |
|
|
ABS_EXPR into a NEGATE_EXPR. */
|
6704 |
|
|
|
6705 |
|
|
static bool
|
6706 |
|
|
simplify_abs_using_ranges (gimple stmt)
|
6707 |
|
|
{
|
6708 |
|
|
tree val = NULL;
|
6709 |
|
|
tree op = gimple_assign_rhs1 (stmt);
|
6710 |
|
|
tree type = TREE_TYPE (op);
|
6711 |
|
|
value_range_t *vr = get_value_range (op);
|
6712 |
|
|
|
6713 |
|
|
if (TYPE_UNSIGNED (type))
|
6714 |
|
|
{
|
6715 |
|
|
val = integer_zero_node;
|
6716 |
|
|
}
|
6717 |
|
|
else if (vr)
|
6718 |
|
|
{
|
6719 |
|
|
bool sop = false;
|
6720 |
|
|
|
6721 |
|
|
val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
|
6722 |
|
|
if (!val)
|
6723 |
|
|
{
|
6724 |
|
|
sop = false;
|
6725 |
|
|
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
|
6726 |
|
|
&sop);
|
6727 |
|
|
|
6728 |
|
|
if (val)
|
6729 |
|
|
{
|
6730 |
|
|
if (integer_zerop (val))
|
6731 |
|
|
val = integer_one_node;
|
6732 |
|
|
else if (integer_onep (val))
|
6733 |
|
|
val = integer_zero_node;
|
6734 |
|
|
}
|
6735 |
|
|
}
|
6736 |
|
|
|
6737 |
|
|
if (val
|
6738 |
|
|
&& (integer_onep (val) || integer_zerop (val)))
|
6739 |
|
|
{
|
6740 |
|
|
if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
|
6741 |
|
|
{
|
6742 |
|
|
location_t location;
|
6743 |
|
|
|
6744 |
|
|
if (!gimple_has_location (stmt))
|
6745 |
|
|
location = input_location;
|
6746 |
|
|
else
|
6747 |
|
|
location = gimple_location (stmt);
|
6748 |
|
|
warning_at (location, OPT_Wstrict_overflow,
|
6749 |
|
|
"assuming signed overflow does not occur when "
|
6750 |
|
|
"simplifying %<abs (X)%> to %<X%> or %<-X%>");
|
6751 |
|
|
}
|
6752 |
|
|
|
6753 |
|
|
gimple_assign_set_rhs1 (stmt, op);
|
6754 |
|
|
if (integer_onep (val))
|
6755 |
|
|
gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
|
6756 |
|
|
else
|
6757 |
|
|
gimple_assign_set_rhs_code (stmt, SSA_NAME);
|
6758 |
|
|
update_stmt (stmt);
|
6759 |
|
|
return true;
|
6760 |
|
|
}
|
6761 |
|
|
}
|
6762 |
|
|
|
6763 |
|
|
return false;
|
6764 |
|
|
}
|
6765 |
|
|
|
6766 |
|
|
/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
|
6767 |
|
|
a known value range VR.
|
6768 |
|
|
|
6769 |
|
|
If there is one and only one value which will satisfy the
|
6770 |
|
|
conditional, then return that value. Else return NULL. */
|
6771 |
|
|
|
6772 |
|
|
static tree
|
6773 |
|
|
test_for_singularity (enum tree_code cond_code, tree op0,
|
6774 |
|
|
tree op1, value_range_t *vr)
|
6775 |
|
|
{
|
6776 |
|
|
tree min = NULL;
|
6777 |
|
|
tree max = NULL;
|
6778 |
|
|
|
6779 |
|
|
/* Extract minimum/maximum values which satisfy the
|
6780 |
|
|
the conditional as it was written. */
|
6781 |
|
|
if (cond_code == LE_EXPR || cond_code == LT_EXPR)
|
6782 |
|
|
{
|
6783 |
|
|
/* This should not be negative infinity; there is no overflow
|
6784 |
|
|
here. */
|
6785 |
|
|
min = TYPE_MIN_VALUE (TREE_TYPE (op0));
|
6786 |
|
|
|
6787 |
|
|
max = op1;
|
6788 |
|
|
if (cond_code == LT_EXPR && !is_overflow_infinity (max))
|
6789 |
|
|
{
|
6790 |
|
|
tree one = build_int_cst (TREE_TYPE (op0), 1);
|
6791 |
|
|
max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
|
6792 |
|
|
if (EXPR_P (max))
|
6793 |
|
|
TREE_NO_WARNING (max) = 1;
|
6794 |
|
|
}
|
6795 |
|
|
}
|
6796 |
|
|
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
|
6797 |
|
|
{
|
6798 |
|
|
/* This should not be positive infinity; there is no overflow
|
6799 |
|
|
here. */
|
6800 |
|
|
max = TYPE_MAX_VALUE (TREE_TYPE (op0));
|
6801 |
|
|
|
6802 |
|
|
min = op1;
|
6803 |
|
|
if (cond_code == GT_EXPR && !is_overflow_infinity (min))
|
6804 |
|
|
{
|
6805 |
|
|
tree one = build_int_cst (TREE_TYPE (op0), 1);
|
6806 |
|
|
min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
|
6807 |
|
|
if (EXPR_P (min))
|
6808 |
|
|
TREE_NO_WARNING (min) = 1;
|
6809 |
|
|
}
|
6810 |
|
|
}
|
6811 |
|
|
|
6812 |
|
|
/* Now refine the minimum and maximum values using any
|
6813 |
|
|
value range information we have for op0. */
|
6814 |
|
|
if (min && max)
|
6815 |
|
|
{
|
6816 |
|
|
if (compare_values (vr->min, min) == 1)
|
6817 |
|
|
min = vr->min;
|
6818 |
|
|
if (compare_values (vr->max, max) == -1)
|
6819 |
|
|
max = vr->max;
|
6820 |
|
|
|
6821 |
|
|
/* If the new min/max values have converged to a single value,
|
6822 |
|
|
then there is only one value which can satisfy the condition,
|
6823 |
|
|
return that value. */
|
6824 |
|
|
if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
|
6825 |
|
|
return min;
|
6826 |
|
|
}
|
6827 |
|
|
return NULL;
|
6828 |
|
|
}
|
6829 |
|
|
|
6830 |
|
|
/* Simplify a conditional using a relational operator to an equality
|
6831 |
|
|
test if the range information indicates only one value can satisfy
|
6832 |
|
|
the original conditional. */
|
6833 |
|
|
|
6834 |
|
|
static bool
|
6835 |
|
|
simplify_cond_using_ranges (gimple stmt)
|
6836 |
|
|
{
|
6837 |
|
|
tree op0 = gimple_cond_lhs (stmt);
|
6838 |
|
|
tree op1 = gimple_cond_rhs (stmt);
|
6839 |
|
|
enum tree_code cond_code = gimple_cond_code (stmt);
|
6840 |
|
|
|
6841 |
|
|
if (cond_code != NE_EXPR
|
6842 |
|
|
&& cond_code != EQ_EXPR
|
6843 |
|
|
&& TREE_CODE (op0) == SSA_NAME
|
6844 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (op0))
|
6845 |
|
|
&& is_gimple_min_invariant (op1))
|
6846 |
|
|
{
|
6847 |
|
|
value_range_t *vr = get_value_range (op0);
|
6848 |
|
|
|
6849 |
|
|
/* If we have range information for OP0, then we might be
|
6850 |
|
|
able to simplify this conditional. */
|
6851 |
|
|
if (vr->type == VR_RANGE)
|
6852 |
|
|
{
|
6853 |
|
|
tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
|
6854 |
|
|
|
6855 |
|
|
if (new_tree)
|
6856 |
|
|
{
|
6857 |
|
|
if (dump_file)
|
6858 |
|
|
{
|
6859 |
|
|
fprintf (dump_file, "Simplified relational ");
|
6860 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
6861 |
|
|
fprintf (dump_file, " into ");
|
6862 |
|
|
}
|
6863 |
|
|
|
6864 |
|
|
gimple_cond_set_code (stmt, EQ_EXPR);
|
6865 |
|
|
gimple_cond_set_lhs (stmt, op0);
|
6866 |
|
|
gimple_cond_set_rhs (stmt, new_tree);
|
6867 |
|
|
|
6868 |
|
|
update_stmt (stmt);
|
6869 |
|
|
|
6870 |
|
|
if (dump_file)
|
6871 |
|
|
{
|
6872 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
6873 |
|
|
fprintf (dump_file, "\n");
|
6874 |
|
|
}
|
6875 |
|
|
|
6876 |
|
|
return true;
|
6877 |
|
|
}
|
6878 |
|
|
|
6879 |
|
|
/* Try again after inverting the condition. We only deal
|
6880 |
|
|
with integral types here, so no need to worry about
|
6881 |
|
|
issues with inverting FP comparisons. */
|
6882 |
|
|
cond_code = invert_tree_comparison (cond_code, false);
|
6883 |
|
|
new_tree = test_for_singularity (cond_code, op0, op1, vr);
|
6884 |
|
|
|
6885 |
|
|
if (new_tree)
|
6886 |
|
|
{
|
6887 |
|
|
if (dump_file)
|
6888 |
|
|
{
|
6889 |
|
|
fprintf (dump_file, "Simplified relational ");
|
6890 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
6891 |
|
|
fprintf (dump_file, " into ");
|
6892 |
|
|
}
|
6893 |
|
|
|
6894 |
|
|
gimple_cond_set_code (stmt, NE_EXPR);
|
6895 |
|
|
gimple_cond_set_lhs (stmt, op0);
|
6896 |
|
|
gimple_cond_set_rhs (stmt, new_tree);
|
6897 |
|
|
|
6898 |
|
|
update_stmt (stmt);
|
6899 |
|
|
|
6900 |
|
|
if (dump_file)
|
6901 |
|
|
{
|
6902 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
6903 |
|
|
fprintf (dump_file, "\n");
|
6904 |
|
|
}
|
6905 |
|
|
|
6906 |
|
|
return true;
|
6907 |
|
|
}
|
6908 |
|
|
}
|
6909 |
|
|
}
|
6910 |
|
|
|
6911 |
|
|
return false;
|
6912 |
|
|
}
|
6913 |
|
|
|
6914 |
|
|
/* Simplify a switch statement using the value range of the switch
|
6915 |
|
|
argument. */
|
6916 |
|
|
|
6917 |
|
|
static bool
|
6918 |
|
|
simplify_switch_using_ranges (gimple stmt)
|
6919 |
|
|
{
|
6920 |
|
|
tree op = gimple_switch_index (stmt);
|
6921 |
|
|
value_range_t *vr;
|
6922 |
|
|
bool take_default;
|
6923 |
|
|
edge e;
|
6924 |
|
|
edge_iterator ei;
|
6925 |
|
|
size_t i = 0, j = 0, n, n2;
|
6926 |
|
|
tree vec2;
|
6927 |
|
|
switch_update su;
|
6928 |
|
|
|
6929 |
|
|
if (TREE_CODE (op) == SSA_NAME)
|
6930 |
|
|
{
|
6931 |
|
|
vr = get_value_range (op);
|
6932 |
|
|
|
6933 |
|
|
/* We can only handle integer ranges. */
|
6934 |
|
|
if (vr->type != VR_RANGE
|
6935 |
|
|
|| symbolic_range_p (vr))
|
6936 |
|
|
return false;
|
6937 |
|
|
|
6938 |
|
|
/* Find case label for min/max of the value range. */
|
6939 |
|
|
take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
|
6940 |
|
|
}
|
6941 |
|
|
else if (TREE_CODE (op) == INTEGER_CST)
|
6942 |
|
|
{
|
6943 |
|
|
take_default = !find_case_label_index (stmt, 1, op, &i);
|
6944 |
|
|
if (take_default)
|
6945 |
|
|
{
|
6946 |
|
|
i = 1;
|
6947 |
|
|
j = 0;
|
6948 |
|
|
}
|
6949 |
|
|
else
|
6950 |
|
|
{
|
6951 |
|
|
j = i;
|
6952 |
|
|
}
|
6953 |
|
|
}
|
6954 |
|
|
else
|
6955 |
|
|
return false;
|
6956 |
|
|
|
6957 |
|
|
n = gimple_switch_num_labels (stmt);
|
6958 |
|
|
|
6959 |
|
|
/* Bail out if this is just all edges taken. */
|
6960 |
|
|
if (i == 1
|
6961 |
|
|
&& j == n - 1
|
6962 |
|
|
&& take_default)
|
6963 |
|
|
return false;
|
6964 |
|
|
|
6965 |
|
|
/* Build a new vector of taken case labels. */
|
6966 |
|
|
vec2 = make_tree_vec (j - i + 1 + (int)take_default);
|
6967 |
|
|
n2 = 0;
|
6968 |
|
|
|
6969 |
|
|
/* Add the default edge, if necessary. */
|
6970 |
|
|
if (take_default)
|
6971 |
|
|
TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
|
6972 |
|
|
|
6973 |
|
|
for (; i <= j; ++i, ++n2)
|
6974 |
|
|
TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
|
6975 |
|
|
|
6976 |
|
|
/* Mark needed edges. */
|
6977 |
|
|
for (i = 0; i < n2; ++i)
|
6978 |
|
|
{
|
6979 |
|
|
e = find_edge (gimple_bb (stmt),
|
6980 |
|
|
label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
|
6981 |
|
|
e->aux = (void *)-1;
|
6982 |
|
|
}
|
6983 |
|
|
|
6984 |
|
|
/* Queue not needed edges for later removal. */
|
6985 |
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
|
6986 |
|
|
{
|
6987 |
|
|
if (e->aux == (void *)-1)
|
6988 |
|
|
{
|
6989 |
|
|
e->aux = NULL;
|
6990 |
|
|
continue;
|
6991 |
|
|
}
|
6992 |
|
|
|
6993 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
6994 |
|
|
{
|
6995 |
|
|
fprintf (dump_file, "removing unreachable case label\n");
|
6996 |
|
|
}
|
6997 |
|
|
VEC_safe_push (edge, heap, to_remove_edges, e);
|
6998 |
|
|
e->flags &= ~EDGE_EXECUTABLE;
|
6999 |
|
|
}
|
7000 |
|
|
|
7001 |
|
|
/* And queue an update for the stmt. */
|
7002 |
|
|
su.stmt = stmt;
|
7003 |
|
|
su.vec = vec2;
|
7004 |
|
|
VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
|
7005 |
|
|
return false;
|
7006 |
|
|
}
|
7007 |
|
|
|
7008 |
|
|
/* Simplify STMT using ranges if possible. */
|
7009 |
|
|
|
7010 |
|
|
static bool
|
7011 |
|
|
simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
|
7012 |
|
|
{
|
7013 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
7014 |
|
|
if (is_gimple_assign (stmt))
|
7015 |
|
|
{
|
7016 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
7017 |
|
|
|
7018 |
|
|
switch (rhs_code)
|
7019 |
|
|
{
|
7020 |
|
|
case EQ_EXPR:
|
7021 |
|
|
case NE_EXPR:
|
7022 |
|
|
case TRUTH_NOT_EXPR:
|
7023 |
|
|
case TRUTH_AND_EXPR:
|
7024 |
|
|
case TRUTH_OR_EXPR:
|
7025 |
|
|
case TRUTH_XOR_EXPR:
|
7026 |
|
|
/* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
|
7027 |
|
|
or identity if the RHS is zero or one, and the LHS are known
|
7028 |
|
|
to be boolean values. Transform all TRUTH_*_EXPR into
|
7029 |
|
|
BIT_*_EXPR if both arguments are known to be boolean values. */
|
7030 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
|
7031 |
|
|
return simplify_truth_ops_using_ranges (gsi, stmt);
|
7032 |
|
|
break;
|
7033 |
|
|
|
7034 |
|
|
/* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
|
7035 |
|
|
and BIT_AND_EXPR respectively if the first operand is greater
|
7036 |
|
|
than zero and the second operand is an exact power of two. */
|
7037 |
|
|
case TRUNC_DIV_EXPR:
|
7038 |
|
|
case TRUNC_MOD_EXPR:
|
7039 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
|
7040 |
|
|
&& integer_pow2p (gimple_assign_rhs2 (stmt)))
|
7041 |
|
|
return simplify_div_or_mod_using_ranges (stmt);
|
7042 |
|
|
break;
|
7043 |
|
|
|
7044 |
|
|
/* Transform ABS (X) into X or -X as appropriate. */
|
7045 |
|
|
case ABS_EXPR:
|
7046 |
|
|
if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
7047 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
|
7048 |
|
|
return simplify_abs_using_ranges (stmt);
|
7049 |
|
|
break;
|
7050 |
|
|
|
7051 |
|
|
default:
|
7052 |
|
|
break;
|
7053 |
|
|
}
|
7054 |
|
|
}
|
7055 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
7056 |
|
|
return simplify_cond_using_ranges (stmt);
|
7057 |
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
7058 |
|
|
return simplify_switch_using_ranges (stmt);
|
7059 |
|
|
|
7060 |
|
|
return false;
|
7061 |
|
|
}
|
7062 |
|
|
|
7063 |
|
|
/* If the statement pointed by SI has a predicate whose value can be
|
7064 |
|
|
computed using the value range information computed by VRP, compute
|
7065 |
|
|
its value and return true. Otherwise, return false. */
|
7066 |
|
|
|
7067 |
|
|
static bool
|
7068 |
|
|
fold_predicate_in (gimple_stmt_iterator *si)
|
7069 |
|
|
{
|
7070 |
|
|
bool assignment_p = false;
|
7071 |
|
|
tree val;
|
7072 |
|
|
gimple stmt = gsi_stmt (*si);
|
7073 |
|
|
|
7074 |
|
|
if (is_gimple_assign (stmt)
|
7075 |
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
|
7076 |
|
|
{
|
7077 |
|
|
assignment_p = true;
|
7078 |
|
|
val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
|
7079 |
|
|
gimple_assign_rhs1 (stmt),
|
7080 |
|
|
gimple_assign_rhs2 (stmt),
|
7081 |
|
|
stmt);
|
7082 |
|
|
}
|
7083 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
7084 |
|
|
val = vrp_evaluate_conditional (gimple_cond_code (stmt),
|
7085 |
|
|
gimple_cond_lhs (stmt),
|
7086 |
|
|
gimple_cond_rhs (stmt),
|
7087 |
|
|
stmt);
|
7088 |
|
|
else
|
7089 |
|
|
return false;
|
7090 |
|
|
|
7091 |
|
|
if (val)
|
7092 |
|
|
{
|
7093 |
|
|
if (assignment_p)
|
7094 |
|
|
val = fold_convert (gimple_expr_type (stmt), val);
|
7095 |
|
|
|
7096 |
|
|
if (dump_file)
|
7097 |
|
|
{
|
7098 |
|
|
fprintf (dump_file, "Folding predicate ");
|
7099 |
|
|
print_gimple_expr (dump_file, stmt, 0, 0);
|
7100 |
|
|
fprintf (dump_file, " to ");
|
7101 |
|
|
print_generic_expr (dump_file, val, 0);
|
7102 |
|
|
fprintf (dump_file, "\n");
|
7103 |
|
|
}
|
7104 |
|
|
|
7105 |
|
|
if (is_gimple_assign (stmt))
|
7106 |
|
|
gimple_assign_set_rhs_from_tree (si, val);
|
7107 |
|
|
else
|
7108 |
|
|
{
|
7109 |
|
|
gcc_assert (gimple_code (stmt) == GIMPLE_COND);
|
7110 |
|
|
if (integer_zerop (val))
|
7111 |
|
|
gimple_cond_make_false (stmt);
|
7112 |
|
|
else if (integer_onep (val))
|
7113 |
|
|
gimple_cond_make_true (stmt);
|
7114 |
|
|
else
|
7115 |
|
|
gcc_unreachable ();
|
7116 |
|
|
}
|
7117 |
|
|
|
7118 |
|
|
return true;
|
7119 |
|
|
}
|
7120 |
|
|
|
7121 |
|
|
return false;
|
7122 |
|
|
}
|
7123 |
|
|
|
7124 |
|
|
/* Callback for substitute_and_fold folding the stmt at *SI. */
|
7125 |
|
|
|
7126 |
|
|
static bool
|
7127 |
|
|
vrp_fold_stmt (gimple_stmt_iterator *si)
|
7128 |
|
|
{
|
7129 |
|
|
if (fold_predicate_in (si))
|
7130 |
|
|
return true;
|
7131 |
|
|
|
7132 |
|
|
return simplify_stmt_using_ranges (si);
|
7133 |
|
|
}
|
7134 |
|
|
|
7135 |
|
|
/* Stack of dest,src equivalency pairs that need to be restored after
|
7136 |
|
|
each attempt to thread a block's incoming edge to an outgoing edge.
|
7137 |
|
|
|
7138 |
|
|
A NULL entry is used to mark the end of pairs which need to be
|
7139 |
|
|
restored. */
|
7140 |
|
|
static VEC(tree,heap) *stack;
|
7141 |
|
|
|
7142 |
|
|
/* A trivial wrapper so that we can present the generic jump threading
|
7143 |
|
|
code with a simple API for simplifying statements. STMT is the
|
7144 |
|
|
statement we want to simplify, WITHIN_STMT provides the location
|
7145 |
|
|
for any overflow warnings. */
|
7146 |
|
|
|
7147 |
|
|
static tree
|
7148 |
|
|
simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
|
7149 |
|
|
{
|
7150 |
|
|
/* We only use VRP information to simplify conditionals. This is
|
7151 |
|
|
overly conservative, but it's unclear if doing more would be
|
7152 |
|
|
worth the compile time cost. */
|
7153 |
|
|
if (gimple_code (stmt) != GIMPLE_COND)
|
7154 |
|
|
return NULL;
|
7155 |
|
|
|
7156 |
|
|
return vrp_evaluate_conditional (gimple_cond_code (stmt),
|
7157 |
|
|
gimple_cond_lhs (stmt),
|
7158 |
|
|
gimple_cond_rhs (stmt), within_stmt);
|
7159 |
|
|
}
|
7160 |
|
|
|
7161 |
|
|
/* Blocks which have more than one predecessor and more than
|
7162 |
|
|
one successor present jump threading opportunities, i.e.,
|
7163 |
|
|
when the block is reached from a specific predecessor, we
|
7164 |
|
|
may be able to determine which of the outgoing edges will
|
7165 |
|
|
be traversed. When this optimization applies, we are able
|
7166 |
|
|
to avoid conditionals at runtime and we may expose secondary
|
7167 |
|
|
optimization opportunities.
|
7168 |
|
|
|
7169 |
|
|
This routine is effectively a driver for the generic jump
|
7170 |
|
|
threading code. It basically just presents the generic code
|
7171 |
|
|
with edges that may be suitable for jump threading.
|
7172 |
|
|
|
7173 |
|
|
Unlike DOM, we do not iterate VRP if jump threading was successful.
|
7174 |
|
|
While iterating may expose new opportunities for VRP, it is expected
|
7175 |
|
|
those opportunities would be very limited and the compile time cost
|
7176 |
|
|
to expose those opportunities would be significant.
|
7177 |
|
|
|
7178 |
|
|
As jump threading opportunities are discovered, they are registered
|
7179 |
|
|
for later realization. */
|
7180 |
|
|
|
7181 |
|
|
static void
|
7182 |
|
|
identify_jump_threads (void)
|
7183 |
|
|
{
|
7184 |
|
|
basic_block bb;
|
7185 |
|
|
gimple dummy;
|
7186 |
|
|
int i;
|
7187 |
|
|
edge e;
|
7188 |
|
|
|
7189 |
|
|
/* Ugh. When substituting values earlier in this pass we can
|
7190 |
|
|
wipe the dominance information. So rebuild the dominator
|
7191 |
|
|
information as we need it within the jump threading code. */
|
7192 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
7193 |
|
|
|
7194 |
|
|
/* We do not allow VRP information to be used for jump threading
|
7195 |
|
|
across a back edge in the CFG. Otherwise it becomes too
|
7196 |
|
|
difficult to avoid eliminating loop exit tests. Of course
|
7197 |
|
|
EDGE_DFS_BACK is not accurate at this time so we have to
|
7198 |
|
|
recompute it. */
|
7199 |
|
|
mark_dfs_back_edges ();
|
7200 |
|
|
|
7201 |
|
|
/* Do not thread across edges we are about to remove. Just marking
|
7202 |
|
|
them as EDGE_DFS_BACK will do. */
|
7203 |
|
|
for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
|
7204 |
|
|
e->flags |= EDGE_DFS_BACK;
|
7205 |
|
|
|
7206 |
|
|
/* Allocate our unwinder stack to unwind any temporary equivalences
|
7207 |
|
|
that might be recorded. */
|
7208 |
|
|
stack = VEC_alloc (tree, heap, 20);
|
7209 |
|
|
|
7210 |
|
|
/* To avoid lots of silly node creation, we create a single
|
7211 |
|
|
conditional and just modify it in-place when attempting to
|
7212 |
|
|
thread jumps. */
|
7213 |
|
|
dummy = gimple_build_cond (EQ_EXPR,
|
7214 |
|
|
integer_zero_node, integer_zero_node,
|
7215 |
|
|
NULL, NULL);
|
7216 |
|
|
|
7217 |
|
|
/* Walk through all the blocks finding those which present a
|
7218 |
|
|
potential jump threading opportunity. We could set this up
|
7219 |
|
|
as a dominator walker and record data during the walk, but
|
7220 |
|
|
I doubt it's worth the effort for the classes of jump
|
7221 |
|
|
threading opportunities we are trying to identify at this
|
7222 |
|
|
point in compilation. */
|
7223 |
|
|
FOR_EACH_BB (bb)
|
7224 |
|
|
{
|
7225 |
|
|
gimple last;
|
7226 |
|
|
|
7227 |
|
|
/* If the generic jump threading code does not find this block
|
7228 |
|
|
interesting, then there is nothing to do. */
|
7229 |
|
|
if (! potentially_threadable_block (bb))
|
7230 |
|
|
continue;
|
7231 |
|
|
|
7232 |
|
|
/* We only care about blocks ending in a COND_EXPR. While there
|
7233 |
|
|
may be some value in handling SWITCH_EXPR here, I doubt it's
|
7234 |
|
|
terribly important. */
|
7235 |
|
|
last = gsi_stmt (gsi_last_bb (bb));
|
7236 |
|
|
if (gimple_code (last) != GIMPLE_COND)
|
7237 |
|
|
continue;
|
7238 |
|
|
|
7239 |
|
|
/* We're basically looking for any kind of conditional with
|
7240 |
|
|
integral type arguments. */
|
7241 |
|
|
if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
|
7242 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
|
7243 |
|
|
&& (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
|
7244 |
|
|
|| is_gimple_min_invariant (gimple_cond_rhs (last)))
|
7245 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
|
7246 |
|
|
{
|
7247 |
|
|
edge_iterator ei;
|
7248 |
|
|
|
7249 |
|
|
/* We've got a block with multiple predecessors and multiple
|
7250 |
|
|
successors which also ends in a suitable conditional. For
|
7251 |
|
|
each predecessor, see if we can thread it to a specific
|
7252 |
|
|
successor. */
|
7253 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
7254 |
|
|
{
|
7255 |
|
|
/* Do not thread across back edges or abnormal edges
|
7256 |
|
|
in the CFG. */
|
7257 |
|
|
if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
|
7258 |
|
|
continue;
|
7259 |
|
|
|
7260 |
|
|
thread_across_edge (dummy, e, true, &stack,
|
7261 |
|
|
simplify_stmt_for_jump_threading);
|
7262 |
|
|
}
|
7263 |
|
|
}
|
7264 |
|
|
}
|
7265 |
|
|
|
7266 |
|
|
/* We do not actually update the CFG or SSA graphs at this point as
|
7267 |
|
|
ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
|
7268 |
|
|
handle ASSERT_EXPRs gracefully. */
|
7269 |
|
|
}
|
7270 |
|
|
|
7271 |
|
|
/* We identified all the jump threading opportunities earlier, but could
|
7272 |
|
|
not transform the CFG at that time. This routine transforms the
|
7273 |
|
|
CFG and arranges for the dominator tree to be rebuilt if necessary.
|
7274 |
|
|
|
7275 |
|
|
Note the SSA graph update will occur during the normal TODO
|
7276 |
|
|
processing by the pass manager. */
|
7277 |
|
|
static void
|
7278 |
|
|
finalize_jump_threads (void)
|
7279 |
|
|
{
|
7280 |
|
|
thread_through_all_blocks (false);
|
7281 |
|
|
VEC_free (tree, heap, stack);
|
7282 |
|
|
}
|
7283 |
|
|
|
7284 |
|
|
|
7285 |
|
|
/* Traverse all the blocks folding conditionals with known ranges. */
|
7286 |
|
|
|
7287 |
|
|
static void
|
7288 |
|
|
vrp_finalize (void)
|
7289 |
|
|
{
|
7290 |
|
|
size_t i;
|
7291 |
|
|
prop_value_t *single_val_range;
|
7292 |
|
|
bool do_value_subst_p;
|
7293 |
|
|
|
7294 |
|
|
if (dump_file)
|
7295 |
|
|
{
|
7296 |
|
|
fprintf (dump_file, "\nValue ranges after VRP:\n\n");
|
7297 |
|
|
dump_all_value_ranges (dump_file);
|
7298 |
|
|
fprintf (dump_file, "\n");
|
7299 |
|
|
}
|
7300 |
|
|
|
7301 |
|
|
/* We may have ended with ranges that have exactly one value. Those
|
7302 |
|
|
values can be substituted as any other const propagated
|
7303 |
|
|
value using substitute_and_fold. */
|
7304 |
|
|
single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
|
7305 |
|
|
|
7306 |
|
|
do_value_subst_p = false;
|
7307 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
7308 |
|
|
if (vr_value[i]
|
7309 |
|
|
&& vr_value[i]->type == VR_RANGE
|
7310 |
|
|
&& vr_value[i]->min == vr_value[i]->max
|
7311 |
|
|
&& is_gimple_min_invariant (vr_value[i]->min))
|
7312 |
|
|
{
|
7313 |
|
|
single_val_range[i].value = vr_value[i]->min;
|
7314 |
|
|
do_value_subst_p = true;
|
7315 |
|
|
}
|
7316 |
|
|
|
7317 |
|
|
if (!do_value_subst_p)
|
7318 |
|
|
{
|
7319 |
|
|
/* We found no single-valued ranges, don't waste time trying to
|
7320 |
|
|
do single value substitution in substitute_and_fold. */
|
7321 |
|
|
free (single_val_range);
|
7322 |
|
|
single_val_range = NULL;
|
7323 |
|
|
}
|
7324 |
|
|
|
7325 |
|
|
substitute_and_fold (single_val_range, vrp_fold_stmt, false);
|
7326 |
|
|
|
7327 |
|
|
if (warn_array_bounds)
|
7328 |
|
|
check_all_array_refs ();
|
7329 |
|
|
|
7330 |
|
|
/* We must identify jump threading opportunities before we release
|
7331 |
|
|
the datastructures built by VRP. */
|
7332 |
|
|
identify_jump_threads ();
|
7333 |
|
|
|
7334 |
|
|
/* Free allocated memory. */
|
7335 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
7336 |
|
|
if (vr_value[i])
|
7337 |
|
|
{
|
7338 |
|
|
BITMAP_FREE (vr_value[i]->equiv);
|
7339 |
|
|
free (vr_value[i]);
|
7340 |
|
|
}
|
7341 |
|
|
|
7342 |
|
|
free (single_val_range);
|
7343 |
|
|
free (vr_value);
|
7344 |
|
|
free (vr_phi_edge_counts);
|
7345 |
|
|
|
7346 |
|
|
/* So that we can distinguish between VRP data being available
|
7347 |
|
|
and not available. */
|
7348 |
|
|
vr_value = NULL;
|
7349 |
|
|
vr_phi_edge_counts = NULL;
|
7350 |
|
|
}
|
7351 |
|
|
|
7352 |
|
|
|
7353 |
|
|
/* Main entry point to VRP (Value Range Propagation). This pass is
|
7354 |
|
|
loosely based on J. R. C. Patterson, ``Accurate Static Branch
|
7355 |
|
|
Prediction by Value Range Propagation,'' in SIGPLAN Conference on
|
7356 |
|
|
Programming Language Design and Implementation, pp. 67-78, 1995.
|
7357 |
|
|
Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
|
7358 |
|
|
|
7359 |
|
|
This is essentially an SSA-CCP pass modified to deal with ranges
|
7360 |
|
|
instead of constants.
|
7361 |
|
|
|
7362 |
|
|
While propagating ranges, we may find that two or more SSA name
|
7363 |
|
|
have equivalent, though distinct ranges. For instance,
|
7364 |
|
|
|
7365 |
|
|
1 x_9 = p_3->a;
|
7366 |
|
|
2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
|
7367 |
|
|
3 if (p_4 == q_2)
|
7368 |
|
|
4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
|
7369 |
|
|
5 endif
|
7370 |
|
|
6 if (q_2)
|
7371 |
|
|
|
7372 |
|
|
In the code above, pointer p_5 has range [q_2, q_2], but from the
|
7373 |
|
|
code we can also determine that p_5 cannot be NULL and, if q_2 had
|
7374 |
|
|
a non-varying range, p_5's range should also be compatible with it.
|
7375 |
|
|
|
7376 |
|
|
These equivalences are created by two expressions: ASSERT_EXPR and
|
7377 |
|
|
copy operations. Since p_5 is an assertion on p_4, and p_4 was the
|
7378 |
|
|
result of another assertion, then we can use the fact that p_5 and
|
7379 |
|
|
p_4 are equivalent when evaluating p_5's range.
|
7380 |
|
|
|
7381 |
|
|
Together with value ranges, we also propagate these equivalences
|
7382 |
|
|
between names so that we can take advantage of information from
|
7383 |
|
|
multiple ranges when doing final replacement. Note that this
|
7384 |
|
|
equivalency relation is transitive but not symmetric.
|
7385 |
|
|
|
7386 |
|
|
In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
|
7387 |
|
|
cannot assert that q_2 is equivalent to p_5 because q_2 may be used
|
7388 |
|
|
in contexts where that assertion does not hold (e.g., in line 6).
|
7389 |
|
|
|
7390 |
|
|
TODO, the main difference between this pass and Patterson's is that
|
7391 |
|
|
we do not propagate edge probabilities. We only compute whether
|
7392 |
|
|
edges can be taken or not. That is, instead of having a spectrum
|
7393 |
|
|
of jump probabilities between 0 and 1, we only deal with 0, 1 and
|
7394 |
|
|
DON'T KNOW. In the future, it may be worthwhile to propagate
|
7395 |
|
|
probabilities to aid branch prediction. */
|
7396 |
|
|
|
7397 |
|
|
static unsigned int
|
7398 |
|
|
execute_vrp (void)
|
7399 |
|
|
{
|
7400 |
|
|
int i;
|
7401 |
|
|
edge e;
|
7402 |
|
|
switch_update *su;
|
7403 |
|
|
|
7404 |
|
|
loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
|
7405 |
|
|
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
|
7406 |
|
|
scev_initialize ();
|
7407 |
|
|
|
7408 |
|
|
insert_range_assertions ();
|
7409 |
|
|
|
7410 |
|
|
to_remove_edges = VEC_alloc (edge, heap, 10);
|
7411 |
|
|
to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
|
7412 |
|
|
threadedge_initialize_values ();
|
7413 |
|
|
|
7414 |
|
|
vrp_initialize ();
|
7415 |
|
|
ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
|
7416 |
|
|
vrp_finalize ();
|
7417 |
|
|
|
7418 |
|
|
/* ASSERT_EXPRs must be removed before finalizing jump threads
|
7419 |
|
|
as finalizing jump threads calls the CFG cleanup code which
|
7420 |
|
|
does not properly handle ASSERT_EXPRs. */
|
7421 |
|
|
remove_range_assertions ();
|
7422 |
|
|
|
7423 |
|
|
/* If we exposed any new variables, go ahead and put them into
|
7424 |
|
|
SSA form now, before we handle jump threading. This simplifies
|
7425 |
|
|
interactions between rewriting of _DECL nodes into SSA form
|
7426 |
|
|
and rewriting SSA_NAME nodes into SSA form after block
|
7427 |
|
|
duplication and CFG manipulation. */
|
7428 |
|
|
update_ssa (TODO_update_ssa);
|
7429 |
|
|
|
7430 |
|
|
finalize_jump_threads ();
|
7431 |
|
|
|
7432 |
|
|
/* Remove dead edges from SWITCH_EXPR optimization. This leaves the
|
7433 |
|
|
CFG in a broken state and requires a cfg_cleanup run. */
|
7434 |
|
|
for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
|
7435 |
|
|
remove_edge (e);
|
7436 |
|
|
/* Update SWITCH_EXPR case label vector. */
|
7437 |
|
|
for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
|
7438 |
|
|
{
|
7439 |
|
|
size_t j;
|
7440 |
|
|
size_t n = TREE_VEC_LENGTH (su->vec);
|
7441 |
|
|
tree label;
|
7442 |
|
|
gimple_switch_set_num_labels (su->stmt, n);
|
7443 |
|
|
for (j = 0; j < n; j++)
|
7444 |
|
|
gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
|
7445 |
|
|
/* As we may have replaced the default label with a regular one
|
7446 |
|
|
make sure to make it a real default label again. This ensures
|
7447 |
|
|
optimal expansion. */
|
7448 |
|
|
label = gimple_switch_default_label (su->stmt);
|
7449 |
|
|
CASE_LOW (label) = NULL_TREE;
|
7450 |
|
|
CASE_HIGH (label) = NULL_TREE;
|
7451 |
|
|
}
|
7452 |
|
|
|
7453 |
|
|
if (VEC_length (edge, to_remove_edges) > 0)
|
7454 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
7455 |
|
|
|
7456 |
|
|
VEC_free (edge, heap, to_remove_edges);
|
7457 |
|
|
VEC_free (switch_update, heap, to_update_switch_stmts);
|
7458 |
|
|
threadedge_finalize_values ();
|
7459 |
|
|
|
7460 |
|
|
scev_finalize ();
|
7461 |
|
|
loop_optimizer_finalize ();
|
7462 |
|
|
return 0;
|
7463 |
|
|
}
|
7464 |
|
|
|
7465 |
|
|
static bool
|
7466 |
|
|
gate_vrp (void)
|
7467 |
|
|
{
|
7468 |
|
|
return flag_tree_vrp != 0;
|
7469 |
|
|
}
|
7470 |
|
|
|
7471 |
|
|
struct gimple_opt_pass pass_vrp =
|
7472 |
|
|
{
|
7473 |
|
|
{
|
7474 |
|
|
GIMPLE_PASS,
|
7475 |
|
|
"vrp", /* name */
|
7476 |
|
|
gate_vrp, /* gate */
|
7477 |
|
|
execute_vrp, /* execute */
|
7478 |
|
|
NULL, /* sub */
|
7479 |
|
|
NULL, /* next */
|
7480 |
|
|
0, /* static_pass_number */
|
7481 |
|
|
TV_TREE_VRP, /* tv_id */
|
7482 |
|
|
PROP_ssa, /* properties_required */
|
7483 |
|
|
0, /* properties_provided */
|
7484 |
|
|
0, /* properties_destroyed */
|
7485 |
|
|
0, /* todo_flags_start */
|
7486 |
|
|
TODO_cleanup_cfg
|
7487 |
|
|
| TODO_ggc_collect
|
7488 |
|
|
| TODO_verify_ssa
|
7489 |
|
|
| TODO_dump_func
|
7490 |
|
|
| TODO_update_ssa /* todo_flags_finish */
|
7491 |
|
|
}
|
7492 |
|
|
};
|