1 |
280 |
jeremybenn |
/* Transformations based on profile information for values.
|
2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software
|
3 |
|
|
Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "rtl.h"
|
26 |
|
|
#include "expr.h"
|
27 |
|
|
#include "hard-reg-set.h"
|
28 |
|
|
#include "basic-block.h"
|
29 |
|
|
#include "value-prof.h"
|
30 |
|
|
#include "output.h"
|
31 |
|
|
#include "flags.h"
|
32 |
|
|
#include "insn-config.h"
|
33 |
|
|
#include "recog.h"
|
34 |
|
|
#include "optabs.h"
|
35 |
|
|
#include "regs.h"
|
36 |
|
|
#include "ggc.h"
|
37 |
|
|
#include "tree-flow.h"
|
38 |
|
|
#include "tree-flow-inline.h"
|
39 |
|
|
#include "diagnostic.h"
|
40 |
|
|
#include "coverage.h"
|
41 |
|
|
#include "tree.h"
|
42 |
|
|
#include "gcov-io.h"
|
43 |
|
|
#include "cgraph.h"
|
44 |
|
|
#include "timevar.h"
|
45 |
|
|
#include "tree-pass.h"
|
46 |
|
|
#include "toplev.h"
|
47 |
|
|
#include "pointer-set.h"
|
48 |
|
|
|
49 |
|
|
static struct value_prof_hooks *value_prof_hooks;
|
50 |
|
|
|
51 |
|
|
/* In this file value profile based optimizations are placed. Currently the
|
52 |
|
|
following optimizations are implemented (for more detailed descriptions
|
53 |
|
|
see comments at value_profile_transformations):
|
54 |
|
|
|
55 |
|
|
1) Division/modulo specialization. Provided that we can determine that the
|
56 |
|
|
operands of the division have some special properties, we may use it to
|
57 |
|
|
produce more effective code.
|
58 |
|
|
2) Speculative prefetching. If we are able to determine that the difference
|
59 |
|
|
between addresses accessed by a memory reference is usually constant, we
|
60 |
|
|
may add the prefetch instructions.
|
61 |
|
|
FIXME: This transformation was removed together with RTL based value
|
62 |
|
|
profiling.
|
63 |
|
|
|
64 |
|
|
3) Indirect/virtual call specialization. If we can determine most
|
65 |
|
|
common function callee in indirect/virtual call. We can use this
|
66 |
|
|
information to improve code effectiveness (especially info for
|
67 |
|
|
inliner).
|
68 |
|
|
|
69 |
|
|
Every such optimization should add its requirements for profiled values to
|
70 |
|
|
insn_values_to_profile function. This function is called from branch_prob
|
71 |
|
|
in profile.c and the requested values are instrumented by it in the first
|
72 |
|
|
compilation with -fprofile-arcs. The optimization may then read the
|
73 |
|
|
gathered data in the second compilation with -fbranch-probabilities.
|
74 |
|
|
|
75 |
|
|
The measured data is pointed to from the histograms
|
76 |
|
|
field of the statement annotation of the instrumented insns. It is
|
77 |
|
|
kept as a linked list of struct histogram_value_t's, which contain the
|
78 |
|
|
same information as above. */
|
79 |
|
|
|
80 |
|
|
|
81 |
|
|
static tree gimple_divmod_fixed_value (gimple, tree, int, gcov_type, gcov_type);
|
82 |
|
|
static tree gimple_mod_pow2 (gimple, int, gcov_type, gcov_type);
|
83 |
|
|
static tree gimple_mod_subtract (gimple, int, int, int, gcov_type, gcov_type,
|
84 |
|
|
gcov_type);
|
85 |
|
|
static bool gimple_divmod_fixed_value_transform (gimple_stmt_iterator *);
|
86 |
|
|
static bool gimple_mod_pow2_value_transform (gimple_stmt_iterator *);
|
87 |
|
|
static bool gimple_mod_subtract_transform (gimple_stmt_iterator *);
|
88 |
|
|
static bool gimple_stringops_transform (gimple_stmt_iterator *);
|
89 |
|
|
static bool gimple_ic_transform (gimple);
|
90 |
|
|
|
91 |
|
|
/* Allocate histogram value. */
|
92 |
|
|
|
93 |
|
|
static histogram_value
|
94 |
|
|
gimple_alloc_histogram_value (struct function *fun ATTRIBUTE_UNUSED,
|
95 |
|
|
enum hist_type type, gimple stmt, tree value)
|
96 |
|
|
{
|
97 |
|
|
histogram_value hist = (histogram_value) xcalloc (1, sizeof (*hist));
|
98 |
|
|
hist->hvalue.value = value;
|
99 |
|
|
hist->hvalue.stmt = stmt;
|
100 |
|
|
hist->type = type;
|
101 |
|
|
return hist;
|
102 |
|
|
}
|
103 |
|
|
|
104 |
|
|
/* Hash value for histogram. */
|
105 |
|
|
|
106 |
|
|
static hashval_t
|
107 |
|
|
histogram_hash (const void *x)
|
108 |
|
|
{
|
109 |
|
|
return htab_hash_pointer (((const_histogram_value)x)->hvalue.stmt);
|
110 |
|
|
}
|
111 |
|
|
|
112 |
|
|
/* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
|
113 |
|
|
|
114 |
|
|
static int
|
115 |
|
|
histogram_eq (const void *x, const void *y)
|
116 |
|
|
{
|
117 |
|
|
return ((const_histogram_value) x)->hvalue.stmt == (const_gimple) y;
|
118 |
|
|
}
|
119 |
|
|
|
120 |
|
|
/* Set histogram for STMT. */
|
121 |
|
|
|
122 |
|
|
static void
|
123 |
|
|
set_histogram_value (struct function *fun, gimple stmt, histogram_value hist)
|
124 |
|
|
{
|
125 |
|
|
void **loc;
|
126 |
|
|
if (!hist && !VALUE_HISTOGRAMS (fun))
|
127 |
|
|
return;
|
128 |
|
|
if (!VALUE_HISTOGRAMS (fun))
|
129 |
|
|
VALUE_HISTOGRAMS (fun) = htab_create (1, histogram_hash,
|
130 |
|
|
histogram_eq, NULL);
|
131 |
|
|
loc = htab_find_slot_with_hash (VALUE_HISTOGRAMS (fun), stmt,
|
132 |
|
|
htab_hash_pointer (stmt),
|
133 |
|
|
hist ? INSERT : NO_INSERT);
|
134 |
|
|
if (!hist)
|
135 |
|
|
{
|
136 |
|
|
if (loc)
|
137 |
|
|
htab_clear_slot (VALUE_HISTOGRAMS (fun), loc);
|
138 |
|
|
return;
|
139 |
|
|
}
|
140 |
|
|
*loc = hist;
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
/* Get histogram list for STMT. */
|
144 |
|
|
|
145 |
|
|
histogram_value
|
146 |
|
|
gimple_histogram_value (struct function *fun, gimple stmt)
|
147 |
|
|
{
|
148 |
|
|
if (!VALUE_HISTOGRAMS (fun))
|
149 |
|
|
return NULL;
|
150 |
|
|
return (histogram_value) htab_find_with_hash (VALUE_HISTOGRAMS (fun), stmt,
|
151 |
|
|
htab_hash_pointer (stmt));
|
152 |
|
|
}
|
153 |
|
|
|
154 |
|
|
/* Add histogram for STMT. */
|
155 |
|
|
|
156 |
|
|
void
|
157 |
|
|
gimple_add_histogram_value (struct function *fun, gimple stmt,
|
158 |
|
|
histogram_value hist)
|
159 |
|
|
{
|
160 |
|
|
hist->hvalue.next = gimple_histogram_value (fun, stmt);
|
161 |
|
|
set_histogram_value (fun, stmt, hist);
|
162 |
|
|
}
|
163 |
|
|
|
164 |
|
|
|
165 |
|
|
/* Remove histogram HIST from STMT's histogram list. */
|
166 |
|
|
|
167 |
|
|
void
|
168 |
|
|
gimple_remove_histogram_value (struct function *fun, gimple stmt,
|
169 |
|
|
histogram_value hist)
|
170 |
|
|
{
|
171 |
|
|
histogram_value hist2 = gimple_histogram_value (fun, stmt);
|
172 |
|
|
if (hist == hist2)
|
173 |
|
|
{
|
174 |
|
|
set_histogram_value (fun, stmt, hist->hvalue.next);
|
175 |
|
|
}
|
176 |
|
|
else
|
177 |
|
|
{
|
178 |
|
|
while (hist2->hvalue.next != hist)
|
179 |
|
|
hist2 = hist2->hvalue.next;
|
180 |
|
|
hist2->hvalue.next = hist->hvalue.next;
|
181 |
|
|
}
|
182 |
|
|
free (hist->hvalue.counters);
|
183 |
|
|
#ifdef ENABLE_CHECKING
|
184 |
|
|
memset (hist, 0xab, sizeof (*hist));
|
185 |
|
|
#endif
|
186 |
|
|
free (hist);
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
|
190 |
|
|
/* Lookup histogram of type TYPE in the STMT. */
|
191 |
|
|
|
192 |
|
|
histogram_value
|
193 |
|
|
gimple_histogram_value_of_type (struct function *fun, gimple stmt,
|
194 |
|
|
enum hist_type type)
|
195 |
|
|
{
|
196 |
|
|
histogram_value hist;
|
197 |
|
|
for (hist = gimple_histogram_value (fun, stmt); hist;
|
198 |
|
|
hist = hist->hvalue.next)
|
199 |
|
|
if (hist->type == type)
|
200 |
|
|
return hist;
|
201 |
|
|
return NULL;
|
202 |
|
|
}
|
203 |
|
|
|
204 |
|
|
/* Dump information about HIST to DUMP_FILE. */
|
205 |
|
|
|
206 |
|
|
static void
|
207 |
|
|
dump_histogram_value (FILE *dump_file, histogram_value hist)
|
208 |
|
|
{
|
209 |
|
|
switch (hist->type)
|
210 |
|
|
{
|
211 |
|
|
case HIST_TYPE_INTERVAL:
|
212 |
|
|
fprintf (dump_file, "Interval counter range %d -- %d",
|
213 |
|
|
hist->hdata.intvl.int_start,
|
214 |
|
|
(hist->hdata.intvl.int_start
|
215 |
|
|
+ hist->hdata.intvl.steps - 1));
|
216 |
|
|
if (hist->hvalue.counters)
|
217 |
|
|
{
|
218 |
|
|
unsigned int i;
|
219 |
|
|
fprintf(dump_file, " [");
|
220 |
|
|
for (i = 0; i < hist->hdata.intvl.steps; i++)
|
221 |
|
|
fprintf (dump_file, " %d:"HOST_WIDEST_INT_PRINT_DEC,
|
222 |
|
|
hist->hdata.intvl.int_start + i,
|
223 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[i]);
|
224 |
|
|
fprintf (dump_file, " ] outside range:"HOST_WIDEST_INT_PRINT_DEC,
|
225 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[i]);
|
226 |
|
|
}
|
227 |
|
|
fprintf (dump_file, ".\n");
|
228 |
|
|
break;
|
229 |
|
|
|
230 |
|
|
case HIST_TYPE_POW2:
|
231 |
|
|
fprintf (dump_file, "Pow2 counter ");
|
232 |
|
|
if (hist->hvalue.counters)
|
233 |
|
|
{
|
234 |
|
|
fprintf (dump_file, "pow2:"HOST_WIDEST_INT_PRINT_DEC
|
235 |
|
|
" nonpow2:"HOST_WIDEST_INT_PRINT_DEC,
|
236 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[0],
|
237 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[1]);
|
238 |
|
|
}
|
239 |
|
|
fprintf (dump_file, ".\n");
|
240 |
|
|
break;
|
241 |
|
|
|
242 |
|
|
case HIST_TYPE_SINGLE_VALUE:
|
243 |
|
|
fprintf (dump_file, "Single value ");
|
244 |
|
|
if (hist->hvalue.counters)
|
245 |
|
|
{
|
246 |
|
|
fprintf (dump_file, "value:"HOST_WIDEST_INT_PRINT_DEC
|
247 |
|
|
" match:"HOST_WIDEST_INT_PRINT_DEC
|
248 |
|
|
" wrong:"HOST_WIDEST_INT_PRINT_DEC,
|
249 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[0],
|
250 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[1],
|
251 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[2]);
|
252 |
|
|
}
|
253 |
|
|
fprintf (dump_file, ".\n");
|
254 |
|
|
break;
|
255 |
|
|
|
256 |
|
|
case HIST_TYPE_AVERAGE:
|
257 |
|
|
fprintf (dump_file, "Average value ");
|
258 |
|
|
if (hist->hvalue.counters)
|
259 |
|
|
{
|
260 |
|
|
fprintf (dump_file, "sum:"HOST_WIDEST_INT_PRINT_DEC
|
261 |
|
|
" times:"HOST_WIDEST_INT_PRINT_DEC,
|
262 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[0],
|
263 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[1]);
|
264 |
|
|
}
|
265 |
|
|
fprintf (dump_file, ".\n");
|
266 |
|
|
break;
|
267 |
|
|
|
268 |
|
|
case HIST_TYPE_IOR:
|
269 |
|
|
fprintf (dump_file, "IOR value ");
|
270 |
|
|
if (hist->hvalue.counters)
|
271 |
|
|
{
|
272 |
|
|
fprintf (dump_file, "ior:"HOST_WIDEST_INT_PRINT_DEC,
|
273 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[0]);
|
274 |
|
|
}
|
275 |
|
|
fprintf (dump_file, ".\n");
|
276 |
|
|
break;
|
277 |
|
|
|
278 |
|
|
case HIST_TYPE_CONST_DELTA:
|
279 |
|
|
fprintf (dump_file, "Constant delta ");
|
280 |
|
|
if (hist->hvalue.counters)
|
281 |
|
|
{
|
282 |
|
|
fprintf (dump_file, "value:"HOST_WIDEST_INT_PRINT_DEC
|
283 |
|
|
" match:"HOST_WIDEST_INT_PRINT_DEC
|
284 |
|
|
" wrong:"HOST_WIDEST_INT_PRINT_DEC,
|
285 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[0],
|
286 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[1],
|
287 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[2]);
|
288 |
|
|
}
|
289 |
|
|
fprintf (dump_file, ".\n");
|
290 |
|
|
break;
|
291 |
|
|
case HIST_TYPE_INDIR_CALL:
|
292 |
|
|
fprintf (dump_file, "Indirect call ");
|
293 |
|
|
if (hist->hvalue.counters)
|
294 |
|
|
{
|
295 |
|
|
fprintf (dump_file, "value:"HOST_WIDEST_INT_PRINT_DEC
|
296 |
|
|
" match:"HOST_WIDEST_INT_PRINT_DEC
|
297 |
|
|
" all:"HOST_WIDEST_INT_PRINT_DEC,
|
298 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[0],
|
299 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[1],
|
300 |
|
|
(HOST_WIDEST_INT) hist->hvalue.counters[2]);
|
301 |
|
|
}
|
302 |
|
|
fprintf (dump_file, ".\n");
|
303 |
|
|
break;
|
304 |
|
|
}
|
305 |
|
|
}
|
306 |
|
|
|
307 |
|
|
/* Dump all histograms attached to STMT to DUMP_FILE. */
|
308 |
|
|
|
309 |
|
|
void
|
310 |
|
|
dump_histograms_for_stmt (struct function *fun, FILE *dump_file, gimple stmt)
|
311 |
|
|
{
|
312 |
|
|
histogram_value hist;
|
313 |
|
|
for (hist = gimple_histogram_value (fun, stmt); hist; hist = hist->hvalue.next)
|
314 |
|
|
dump_histogram_value (dump_file, hist);
|
315 |
|
|
}
|
316 |
|
|
|
317 |
|
|
/* Remove all histograms associated with STMT. */
|
318 |
|
|
|
319 |
|
|
void
|
320 |
|
|
gimple_remove_stmt_histograms (struct function *fun, gimple stmt)
|
321 |
|
|
{
|
322 |
|
|
histogram_value val;
|
323 |
|
|
while ((val = gimple_histogram_value (fun, stmt)) != NULL)
|
324 |
|
|
gimple_remove_histogram_value (fun, stmt, val);
|
325 |
|
|
}
|
326 |
|
|
|
327 |
|
|
/* Duplicate all histograms associates with OSTMT to STMT. */
|
328 |
|
|
|
329 |
|
|
void
|
330 |
|
|
gimple_duplicate_stmt_histograms (struct function *fun, gimple stmt,
|
331 |
|
|
struct function *ofun, gimple ostmt)
|
332 |
|
|
{
|
333 |
|
|
histogram_value val;
|
334 |
|
|
for (val = gimple_histogram_value (ofun, ostmt); val != NULL; val = val->hvalue.next)
|
335 |
|
|
{
|
336 |
|
|
histogram_value new_val = gimple_alloc_histogram_value (fun, val->type, NULL, NULL);
|
337 |
|
|
memcpy (new_val, val, sizeof (*val));
|
338 |
|
|
new_val->hvalue.stmt = stmt;
|
339 |
|
|
new_val->hvalue.counters = XNEWVAR (gcov_type, sizeof (*new_val->hvalue.counters) * new_val->n_counters);
|
340 |
|
|
memcpy (new_val->hvalue.counters, val->hvalue.counters, sizeof (*new_val->hvalue.counters) * new_val->n_counters);
|
341 |
|
|
gimple_add_histogram_value (fun, stmt, new_val);
|
342 |
|
|
}
|
343 |
|
|
}
|
344 |
|
|
|
345 |
|
|
|
346 |
|
|
/* Move all histograms associated with OSTMT to STMT. */
|
347 |
|
|
|
348 |
|
|
void
|
349 |
|
|
gimple_move_stmt_histograms (struct function *fun, gimple stmt, gimple ostmt)
|
350 |
|
|
{
|
351 |
|
|
histogram_value val = gimple_histogram_value (fun, ostmt);
|
352 |
|
|
if (val)
|
353 |
|
|
{
|
354 |
|
|
/* The following three statements can't be reordered,
|
355 |
|
|
because histogram hashtab relies on stmt field value
|
356 |
|
|
for finding the exact slot. */
|
357 |
|
|
set_histogram_value (fun, ostmt, NULL);
|
358 |
|
|
for (; val != NULL; val = val->hvalue.next)
|
359 |
|
|
val->hvalue.stmt = stmt;
|
360 |
|
|
set_histogram_value (fun, stmt, val);
|
361 |
|
|
}
|
362 |
|
|
}
|
363 |
|
|
|
364 |
|
|
static bool error_found = false;
|
365 |
|
|
|
366 |
|
|
/* Helper function for verify_histograms. For each histogram reachable via htab
|
367 |
|
|
walk verify that it was reached via statement walk. */
|
368 |
|
|
|
369 |
|
|
static int
|
370 |
|
|
visit_hist (void **slot, void *data)
|
371 |
|
|
{
|
372 |
|
|
struct pointer_set_t *visited = (struct pointer_set_t *) data;
|
373 |
|
|
histogram_value hist = *(histogram_value *) slot;
|
374 |
|
|
if (!pointer_set_contains (visited, hist))
|
375 |
|
|
{
|
376 |
|
|
error ("Dead histogram");
|
377 |
|
|
dump_histogram_value (stderr, hist);
|
378 |
|
|
debug_gimple_stmt (hist->hvalue.stmt);
|
379 |
|
|
error_found = true;
|
380 |
|
|
}
|
381 |
|
|
return 1;
|
382 |
|
|
}
|
383 |
|
|
|
384 |
|
|
|
385 |
|
|
/* Verify sanity of the histograms. */
|
386 |
|
|
|
387 |
|
|
void
|
388 |
|
|
verify_histograms (void)
|
389 |
|
|
{
|
390 |
|
|
basic_block bb;
|
391 |
|
|
gimple_stmt_iterator gsi;
|
392 |
|
|
histogram_value hist;
|
393 |
|
|
struct pointer_set_t *visited_hists;
|
394 |
|
|
|
395 |
|
|
error_found = false;
|
396 |
|
|
visited_hists = pointer_set_create ();
|
397 |
|
|
FOR_EACH_BB (bb)
|
398 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
399 |
|
|
{
|
400 |
|
|
gimple stmt = gsi_stmt (gsi);
|
401 |
|
|
|
402 |
|
|
for (hist = gimple_histogram_value (cfun, stmt); hist;
|
403 |
|
|
hist = hist->hvalue.next)
|
404 |
|
|
{
|
405 |
|
|
if (hist->hvalue.stmt != stmt)
|
406 |
|
|
{
|
407 |
|
|
error ("Histogram value statement does not correspond to "
|
408 |
|
|
"the statement it is associated with");
|
409 |
|
|
debug_gimple_stmt (stmt);
|
410 |
|
|
dump_histogram_value (stderr, hist);
|
411 |
|
|
error_found = true;
|
412 |
|
|
}
|
413 |
|
|
pointer_set_insert (visited_hists, hist);
|
414 |
|
|
}
|
415 |
|
|
}
|
416 |
|
|
if (VALUE_HISTOGRAMS (cfun))
|
417 |
|
|
htab_traverse (VALUE_HISTOGRAMS (cfun), visit_hist, visited_hists);
|
418 |
|
|
pointer_set_destroy (visited_hists);
|
419 |
|
|
if (error_found)
|
420 |
|
|
internal_error ("verify_histograms failed");
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
/* Helper function for verify_histograms. For each histogram reachable via htab
|
424 |
|
|
walk verify that it was reached via statement walk. */
|
425 |
|
|
|
426 |
|
|
static int
|
427 |
|
|
free_hist (void **slot, void *data ATTRIBUTE_UNUSED)
|
428 |
|
|
{
|
429 |
|
|
histogram_value hist = *(histogram_value *) slot;
|
430 |
|
|
free (hist->hvalue.counters);
|
431 |
|
|
#ifdef ENABLE_CHECKING
|
432 |
|
|
memset (hist, 0xab, sizeof (*hist));
|
433 |
|
|
#endif
|
434 |
|
|
free (hist);
|
435 |
|
|
return 1;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
void
|
439 |
|
|
free_histograms (void)
|
440 |
|
|
{
|
441 |
|
|
if (VALUE_HISTOGRAMS (cfun))
|
442 |
|
|
{
|
443 |
|
|
htab_traverse (VALUE_HISTOGRAMS (cfun), free_hist, NULL);
|
444 |
|
|
htab_delete (VALUE_HISTOGRAMS (cfun));
|
445 |
|
|
VALUE_HISTOGRAMS (cfun) = NULL;
|
446 |
|
|
}
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
|
450 |
|
|
/* The overall number of invocations of the counter should match
|
451 |
|
|
execution count of basic block. Report it as error rather than
|
452 |
|
|
internal error as it might mean that user has misused the profile
|
453 |
|
|
somehow. */
|
454 |
|
|
|
455 |
|
|
static bool
|
456 |
|
|
check_counter (gimple stmt, const char * name,
|
457 |
|
|
gcov_type *count, gcov_type *all, gcov_type bb_count)
|
458 |
|
|
{
|
459 |
|
|
if (*all != bb_count || *count > *all)
|
460 |
|
|
{
|
461 |
|
|
location_t locus;
|
462 |
|
|
locus = (stmt != NULL)
|
463 |
|
|
? gimple_location (stmt)
|
464 |
|
|
: DECL_SOURCE_LOCATION (current_function_decl);
|
465 |
|
|
if (flag_profile_correction)
|
466 |
|
|
{
|
467 |
|
|
inform (locus, "Correcting inconsistent value profile: "
|
468 |
|
|
"%s profiler overall count (%d) does not match BB count "
|
469 |
|
|
"(%d)", name, (int)*all, (int)bb_count);
|
470 |
|
|
*all = bb_count;
|
471 |
|
|
if (*count > *all)
|
472 |
|
|
*count = *all;
|
473 |
|
|
return false;
|
474 |
|
|
}
|
475 |
|
|
else
|
476 |
|
|
{
|
477 |
|
|
error_at (locus, "Corrupted value profile: %s "
|
478 |
|
|
"profiler overall count (%d) does not match BB count (%d)",
|
479 |
|
|
name, (int)*all, (int)bb_count);
|
480 |
|
|
return true;
|
481 |
|
|
}
|
482 |
|
|
}
|
483 |
|
|
|
484 |
|
|
return false;
|
485 |
|
|
}
|
486 |
|
|
|
487 |
|
|
|
488 |
|
|
/* GIMPLE based transformations. */
|
489 |
|
|
|
490 |
|
|
static bool
|
491 |
|
|
gimple_value_profile_transformations (void)
|
492 |
|
|
{
|
493 |
|
|
basic_block bb;
|
494 |
|
|
gimple_stmt_iterator gsi;
|
495 |
|
|
bool changed = false;
|
496 |
|
|
|
497 |
|
|
FOR_EACH_BB (bb)
|
498 |
|
|
{
|
499 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
500 |
|
|
{
|
501 |
|
|
gimple stmt = gsi_stmt (gsi);
|
502 |
|
|
histogram_value th = gimple_histogram_value (cfun, stmt);
|
503 |
|
|
if (!th)
|
504 |
|
|
continue;
|
505 |
|
|
|
506 |
|
|
if (dump_file)
|
507 |
|
|
{
|
508 |
|
|
fprintf (dump_file, "Trying transformations on stmt ");
|
509 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
510 |
|
|
dump_histograms_for_stmt (cfun, dump_file, stmt);
|
511 |
|
|
}
|
512 |
|
|
|
513 |
|
|
/* Transformations: */
|
514 |
|
|
/* The order of things in this conditional controls which
|
515 |
|
|
transformation is used when more than one is applicable. */
|
516 |
|
|
/* It is expected that any code added by the transformations
|
517 |
|
|
will be added before the current statement, and that the
|
518 |
|
|
current statement remain valid (although possibly
|
519 |
|
|
modified) upon return. */
|
520 |
|
|
if (flag_value_profile_transformations
|
521 |
|
|
&& (gimple_mod_subtract_transform (&gsi)
|
522 |
|
|
|| gimple_divmod_fixed_value_transform (&gsi)
|
523 |
|
|
|| gimple_mod_pow2_value_transform (&gsi)
|
524 |
|
|
|| gimple_stringops_transform (&gsi)
|
525 |
|
|
|| gimple_ic_transform (stmt)))
|
526 |
|
|
{
|
527 |
|
|
stmt = gsi_stmt (gsi);
|
528 |
|
|
changed = true;
|
529 |
|
|
/* Original statement may no longer be in the same block. */
|
530 |
|
|
if (bb != gimple_bb (stmt))
|
531 |
|
|
{
|
532 |
|
|
bb = gimple_bb (stmt);
|
533 |
|
|
gsi = gsi_for_stmt (stmt);
|
534 |
|
|
}
|
535 |
|
|
}
|
536 |
|
|
}
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
if (changed)
|
540 |
|
|
{
|
541 |
|
|
counts_to_freqs ();
|
542 |
|
|
}
|
543 |
|
|
|
544 |
|
|
return changed;
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
|
548 |
|
|
/* Generate code for transformation 1 (with parent gimple assignment
|
549 |
|
|
STMT and probability of taking the optimal path PROB, which is
|
550 |
|
|
equivalent to COUNT/ALL within roundoff error). This generates the
|
551 |
|
|
result into a temp and returns the temp; it does not replace or
|
552 |
|
|
alter the original STMT. */
|
553 |
|
|
|
554 |
|
|
static tree
|
555 |
|
|
gimple_divmod_fixed_value (gimple stmt, tree value, int prob, gcov_type count,
|
556 |
|
|
gcov_type all)
|
557 |
|
|
{
|
558 |
|
|
gimple stmt1, stmt2, stmt3;
|
559 |
|
|
tree tmp1, tmp2, tmpv;
|
560 |
|
|
gimple bb1end, bb2end, bb3end;
|
561 |
|
|
basic_block bb, bb2, bb3, bb4;
|
562 |
|
|
tree optype, op1, op2;
|
563 |
|
|
edge e12, e13, e23, e24, e34;
|
564 |
|
|
gimple_stmt_iterator gsi;
|
565 |
|
|
|
566 |
|
|
gcc_assert (is_gimple_assign (stmt)
|
567 |
|
|
&& (gimple_assign_rhs_code (stmt) == TRUNC_DIV_EXPR
|
568 |
|
|
|| gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR));
|
569 |
|
|
|
570 |
|
|
optype = TREE_TYPE (gimple_assign_lhs (stmt));
|
571 |
|
|
op1 = gimple_assign_rhs1 (stmt);
|
572 |
|
|
op2 = gimple_assign_rhs2 (stmt);
|
573 |
|
|
|
574 |
|
|
bb = gimple_bb (stmt);
|
575 |
|
|
gsi = gsi_for_stmt (stmt);
|
576 |
|
|
|
577 |
|
|
tmpv = create_tmp_var (optype, "PROF");
|
578 |
|
|
tmp1 = create_tmp_var (optype, "PROF");
|
579 |
|
|
stmt1 = gimple_build_assign (tmpv, fold_convert (optype, value));
|
580 |
|
|
stmt2 = gimple_build_assign (tmp1, op2);
|
581 |
|
|
stmt3 = gimple_build_cond (NE_EXPR, tmp1, tmpv, NULL_TREE, NULL_TREE);
|
582 |
|
|
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
583 |
|
|
gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
|
584 |
|
|
gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
|
585 |
|
|
bb1end = stmt3;
|
586 |
|
|
|
587 |
|
|
tmp2 = create_tmp_var (optype, "PROF");
|
588 |
|
|
stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), tmp2,
|
589 |
|
|
op1, tmpv);
|
590 |
|
|
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
591 |
|
|
bb2end = stmt1;
|
592 |
|
|
|
593 |
|
|
stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), tmp2,
|
594 |
|
|
op1, op2);
|
595 |
|
|
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
596 |
|
|
bb3end = stmt1;
|
597 |
|
|
|
598 |
|
|
/* Fix CFG. */
|
599 |
|
|
/* Edge e23 connects bb2 to bb3, etc. */
|
600 |
|
|
e12 = split_block (bb, bb1end);
|
601 |
|
|
bb2 = e12->dest;
|
602 |
|
|
bb2->count = count;
|
603 |
|
|
e23 = split_block (bb2, bb2end);
|
604 |
|
|
bb3 = e23->dest;
|
605 |
|
|
bb3->count = all - count;
|
606 |
|
|
e34 = split_block (bb3, bb3end);
|
607 |
|
|
bb4 = e34->dest;
|
608 |
|
|
bb4->count = all;
|
609 |
|
|
|
610 |
|
|
e12->flags &= ~EDGE_FALLTHRU;
|
611 |
|
|
e12->flags |= EDGE_FALSE_VALUE;
|
612 |
|
|
e12->probability = prob;
|
613 |
|
|
e12->count = count;
|
614 |
|
|
|
615 |
|
|
e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
|
616 |
|
|
e13->probability = REG_BR_PROB_BASE - prob;
|
617 |
|
|
e13->count = all - count;
|
618 |
|
|
|
619 |
|
|
remove_edge (e23);
|
620 |
|
|
|
621 |
|
|
e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
|
622 |
|
|
e24->probability = REG_BR_PROB_BASE;
|
623 |
|
|
e24->count = count;
|
624 |
|
|
|
625 |
|
|
e34->probability = REG_BR_PROB_BASE;
|
626 |
|
|
e34->count = all - count;
|
627 |
|
|
|
628 |
|
|
return tmp2;
|
629 |
|
|
}
|
630 |
|
|
|
631 |
|
|
|
632 |
|
|
/* Do transform 1) on INSN if applicable. */
|
633 |
|
|
|
634 |
|
|
static bool
|
635 |
|
|
gimple_divmod_fixed_value_transform (gimple_stmt_iterator *si)
|
636 |
|
|
{
|
637 |
|
|
histogram_value histogram;
|
638 |
|
|
enum tree_code code;
|
639 |
|
|
gcov_type val, count, all;
|
640 |
|
|
tree result, value, tree_val;
|
641 |
|
|
gcov_type prob;
|
642 |
|
|
gimple stmt;
|
643 |
|
|
|
644 |
|
|
stmt = gsi_stmt (*si);
|
645 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
646 |
|
|
return false;
|
647 |
|
|
|
648 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt))))
|
649 |
|
|
return false;
|
650 |
|
|
|
651 |
|
|
code = gimple_assign_rhs_code (stmt);
|
652 |
|
|
|
653 |
|
|
if (code != TRUNC_DIV_EXPR && code != TRUNC_MOD_EXPR)
|
654 |
|
|
return false;
|
655 |
|
|
|
656 |
|
|
histogram = gimple_histogram_value_of_type (cfun, stmt,
|
657 |
|
|
HIST_TYPE_SINGLE_VALUE);
|
658 |
|
|
if (!histogram)
|
659 |
|
|
return false;
|
660 |
|
|
|
661 |
|
|
value = histogram->hvalue.value;
|
662 |
|
|
val = histogram->hvalue.counters[0];
|
663 |
|
|
count = histogram->hvalue.counters[1];
|
664 |
|
|
all = histogram->hvalue.counters[2];
|
665 |
|
|
gimple_remove_histogram_value (cfun, stmt, histogram);
|
666 |
|
|
|
667 |
|
|
/* We require that count is at least half of all; this means
|
668 |
|
|
that for the transformation to fire the value must be constant
|
669 |
|
|
at least 50% of time (and 75% gives the guarantee of usage). */
|
670 |
|
|
if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1
|
671 |
|
|
|| 2 * count < all
|
672 |
|
|
|| optimize_bb_for_size_p (gimple_bb (stmt)))
|
673 |
|
|
return false;
|
674 |
|
|
|
675 |
|
|
if (check_counter (stmt, "value", &count, &all, gimple_bb (stmt)->count))
|
676 |
|
|
return false;
|
677 |
|
|
|
678 |
|
|
/* Compute probability of taking the optimal path. */
|
679 |
|
|
if (all > 0)
|
680 |
|
|
prob = (count * REG_BR_PROB_BASE + all / 2) / all;
|
681 |
|
|
else
|
682 |
|
|
prob = 0;
|
683 |
|
|
|
684 |
|
|
tree_val = build_int_cst_wide (get_gcov_type (),
|
685 |
|
|
(unsigned HOST_WIDE_INT) val,
|
686 |
|
|
val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1);
|
687 |
|
|
result = gimple_divmod_fixed_value (stmt, tree_val, prob, count, all);
|
688 |
|
|
|
689 |
|
|
if (dump_file)
|
690 |
|
|
{
|
691 |
|
|
fprintf (dump_file, "Div/mod by constant ");
|
692 |
|
|
print_generic_expr (dump_file, value, TDF_SLIM);
|
693 |
|
|
fprintf (dump_file, "=");
|
694 |
|
|
print_generic_expr (dump_file, tree_val, TDF_SLIM);
|
695 |
|
|
fprintf (dump_file, " transformation on insn ");
|
696 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
gimple_assign_set_rhs_from_tree (si, result);
|
700 |
|
|
|
701 |
|
|
return true;
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
/* Generate code for transformation 2 (with parent gimple assign STMT and
|
705 |
|
|
probability of taking the optimal path PROB, which is equivalent to COUNT/ALL
|
706 |
|
|
within roundoff error). This generates the result into a temp and returns
|
707 |
|
|
the temp; it does not replace or alter the original STMT. */
|
708 |
|
|
static tree
|
709 |
|
|
gimple_mod_pow2 (gimple stmt, int prob, gcov_type count, gcov_type all)
|
710 |
|
|
{
|
711 |
|
|
gimple stmt1, stmt2, stmt3, stmt4;
|
712 |
|
|
tree tmp2, tmp3;
|
713 |
|
|
gimple bb1end, bb2end, bb3end;
|
714 |
|
|
basic_block bb, bb2, bb3, bb4;
|
715 |
|
|
tree optype, op1, op2;
|
716 |
|
|
edge e12, e13, e23, e24, e34;
|
717 |
|
|
gimple_stmt_iterator gsi;
|
718 |
|
|
tree result;
|
719 |
|
|
|
720 |
|
|
gcc_assert (is_gimple_assign (stmt)
|
721 |
|
|
&& gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR);
|
722 |
|
|
|
723 |
|
|
optype = TREE_TYPE (gimple_assign_lhs (stmt));
|
724 |
|
|
op1 = gimple_assign_rhs1 (stmt);
|
725 |
|
|
op2 = gimple_assign_rhs2 (stmt);
|
726 |
|
|
|
727 |
|
|
bb = gimple_bb (stmt);
|
728 |
|
|
gsi = gsi_for_stmt (stmt);
|
729 |
|
|
|
730 |
|
|
result = create_tmp_var (optype, "PROF");
|
731 |
|
|
tmp2 = create_tmp_var (optype, "PROF");
|
732 |
|
|
tmp3 = create_tmp_var (optype, "PROF");
|
733 |
|
|
stmt2 = gimple_build_assign_with_ops (PLUS_EXPR, tmp2, op2,
|
734 |
|
|
build_int_cst (optype, -1));
|
735 |
|
|
stmt3 = gimple_build_assign_with_ops (BIT_AND_EXPR, tmp3, tmp2, op2);
|
736 |
|
|
stmt4 = gimple_build_cond (NE_EXPR, tmp3, build_int_cst (optype, 0),
|
737 |
|
|
NULL_TREE, NULL_TREE);
|
738 |
|
|
gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
|
739 |
|
|
gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
|
740 |
|
|
gsi_insert_before (&gsi, stmt4, GSI_SAME_STMT);
|
741 |
|
|
bb1end = stmt4;
|
742 |
|
|
|
743 |
|
|
/* tmp2 == op2-1 inherited from previous block. */
|
744 |
|
|
stmt1 = gimple_build_assign_with_ops (BIT_AND_EXPR, result, op1, tmp2);
|
745 |
|
|
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
746 |
|
|
bb2end = stmt1;
|
747 |
|
|
|
748 |
|
|
stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), result,
|
749 |
|
|
op1, op2);
|
750 |
|
|
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
751 |
|
|
bb3end = stmt1;
|
752 |
|
|
|
753 |
|
|
/* Fix CFG. */
|
754 |
|
|
/* Edge e23 connects bb2 to bb3, etc. */
|
755 |
|
|
e12 = split_block (bb, bb1end);
|
756 |
|
|
bb2 = e12->dest;
|
757 |
|
|
bb2->count = count;
|
758 |
|
|
e23 = split_block (bb2, bb2end);
|
759 |
|
|
bb3 = e23->dest;
|
760 |
|
|
bb3->count = all - count;
|
761 |
|
|
e34 = split_block (bb3, bb3end);
|
762 |
|
|
bb4 = e34->dest;
|
763 |
|
|
bb4->count = all;
|
764 |
|
|
|
765 |
|
|
e12->flags &= ~EDGE_FALLTHRU;
|
766 |
|
|
e12->flags |= EDGE_FALSE_VALUE;
|
767 |
|
|
e12->probability = prob;
|
768 |
|
|
e12->count = count;
|
769 |
|
|
|
770 |
|
|
e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
|
771 |
|
|
e13->probability = REG_BR_PROB_BASE - prob;
|
772 |
|
|
e13->count = all - count;
|
773 |
|
|
|
774 |
|
|
remove_edge (e23);
|
775 |
|
|
|
776 |
|
|
e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
|
777 |
|
|
e24->probability = REG_BR_PROB_BASE;
|
778 |
|
|
e24->count = count;
|
779 |
|
|
|
780 |
|
|
e34->probability = REG_BR_PROB_BASE;
|
781 |
|
|
e34->count = all - count;
|
782 |
|
|
|
783 |
|
|
return result;
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
/* Do transform 2) on INSN if applicable. */
|
787 |
|
|
static bool
|
788 |
|
|
gimple_mod_pow2_value_transform (gimple_stmt_iterator *si)
|
789 |
|
|
{
|
790 |
|
|
histogram_value histogram;
|
791 |
|
|
enum tree_code code;
|
792 |
|
|
gcov_type count, wrong_values, all;
|
793 |
|
|
tree lhs_type, result, value;
|
794 |
|
|
gcov_type prob;
|
795 |
|
|
gimple stmt;
|
796 |
|
|
|
797 |
|
|
stmt = gsi_stmt (*si);
|
798 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
799 |
|
|
return false;
|
800 |
|
|
|
801 |
|
|
lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
|
802 |
|
|
if (!INTEGRAL_TYPE_P (lhs_type))
|
803 |
|
|
return false;
|
804 |
|
|
|
805 |
|
|
code = gimple_assign_rhs_code (stmt);
|
806 |
|
|
|
807 |
|
|
if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type))
|
808 |
|
|
return false;
|
809 |
|
|
|
810 |
|
|
histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_POW2);
|
811 |
|
|
if (!histogram)
|
812 |
|
|
return false;
|
813 |
|
|
|
814 |
|
|
value = histogram->hvalue.value;
|
815 |
|
|
wrong_values = histogram->hvalue.counters[0];
|
816 |
|
|
count = histogram->hvalue.counters[1];
|
817 |
|
|
|
818 |
|
|
gimple_remove_histogram_value (cfun, stmt, histogram);
|
819 |
|
|
|
820 |
|
|
/* We require that we hit a power of 2 at least half of all evaluations. */
|
821 |
|
|
if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1
|
822 |
|
|
|| count < wrong_values
|
823 |
|
|
|| optimize_bb_for_size_p (gimple_bb (stmt)))
|
824 |
|
|
return false;
|
825 |
|
|
|
826 |
|
|
if (dump_file)
|
827 |
|
|
{
|
828 |
|
|
fprintf (dump_file, "Mod power of 2 transformation on insn ");
|
829 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
830 |
|
|
}
|
831 |
|
|
|
832 |
|
|
/* Compute probability of taking the optimal path. */
|
833 |
|
|
all = count + wrong_values;
|
834 |
|
|
|
835 |
|
|
if (check_counter (stmt, "pow2", &count, &all, gimple_bb (stmt)->count))
|
836 |
|
|
return false;
|
837 |
|
|
|
838 |
|
|
if (all > 0)
|
839 |
|
|
prob = (count * REG_BR_PROB_BASE + all / 2) / all;
|
840 |
|
|
else
|
841 |
|
|
prob = 0;
|
842 |
|
|
|
843 |
|
|
result = gimple_mod_pow2 (stmt, prob, count, all);
|
844 |
|
|
|
845 |
|
|
gimple_assign_set_rhs_from_tree (si, result);
|
846 |
|
|
|
847 |
|
|
return true;
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
/* Generate code for transformations 3 and 4 (with parent gimple assign STMT, and
|
851 |
|
|
NCOUNTS the number of cases to support. Currently only NCOUNTS==0 or 1 is
|
852 |
|
|
supported and this is built into this interface. The probabilities of taking
|
853 |
|
|
the optimal paths are PROB1 and PROB2, which are equivalent to COUNT1/ALL and
|
854 |
|
|
COUNT2/ALL respectively within roundoff error). This generates the
|
855 |
|
|
result into a temp and returns the temp; it does not replace or alter
|
856 |
|
|
the original STMT. */
|
857 |
|
|
/* FIXME: Generalize the interface to handle NCOUNTS > 1. */
|
858 |
|
|
|
859 |
|
|
static tree
|
860 |
|
|
gimple_mod_subtract (gimple stmt, int prob1, int prob2, int ncounts,
|
861 |
|
|
gcov_type count1, gcov_type count2, gcov_type all)
|
862 |
|
|
{
|
863 |
|
|
gimple stmt1, stmt2, stmt3;
|
864 |
|
|
tree tmp1;
|
865 |
|
|
gimple bb1end, bb2end = NULL, bb3end;
|
866 |
|
|
basic_block bb, bb2, bb3, bb4;
|
867 |
|
|
tree optype, op1, op2;
|
868 |
|
|
edge e12, e23 = 0, e24, e34, e14;
|
869 |
|
|
gimple_stmt_iterator gsi;
|
870 |
|
|
tree result;
|
871 |
|
|
|
872 |
|
|
gcc_assert (is_gimple_assign (stmt)
|
873 |
|
|
&& gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR);
|
874 |
|
|
|
875 |
|
|
optype = TREE_TYPE (gimple_assign_lhs (stmt));
|
876 |
|
|
op1 = gimple_assign_rhs1 (stmt);
|
877 |
|
|
op2 = gimple_assign_rhs2 (stmt);
|
878 |
|
|
|
879 |
|
|
bb = gimple_bb (stmt);
|
880 |
|
|
gsi = gsi_for_stmt (stmt);
|
881 |
|
|
|
882 |
|
|
result = create_tmp_var (optype, "PROF");
|
883 |
|
|
tmp1 = create_tmp_var (optype, "PROF");
|
884 |
|
|
stmt1 = gimple_build_assign (result, op1);
|
885 |
|
|
stmt2 = gimple_build_assign (tmp1, op2);
|
886 |
|
|
stmt3 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE);
|
887 |
|
|
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
888 |
|
|
gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
|
889 |
|
|
gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
|
890 |
|
|
bb1end = stmt3;
|
891 |
|
|
|
892 |
|
|
if (ncounts) /* Assumed to be 0 or 1 */
|
893 |
|
|
{
|
894 |
|
|
stmt1 = gimple_build_assign_with_ops (MINUS_EXPR, result, result, tmp1);
|
895 |
|
|
stmt2 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE);
|
896 |
|
|
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
897 |
|
|
gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
|
898 |
|
|
bb2end = stmt2;
|
899 |
|
|
}
|
900 |
|
|
|
901 |
|
|
/* Fallback case. */
|
902 |
|
|
stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), result,
|
903 |
|
|
result, tmp1);
|
904 |
|
|
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
905 |
|
|
bb3end = stmt1;
|
906 |
|
|
|
907 |
|
|
/* Fix CFG. */
|
908 |
|
|
/* Edge e23 connects bb2 to bb3, etc. */
|
909 |
|
|
/* However block 3 is optional; if it is not there, references
|
910 |
|
|
to 3 really refer to block 2. */
|
911 |
|
|
e12 = split_block (bb, bb1end);
|
912 |
|
|
bb2 = e12->dest;
|
913 |
|
|
bb2->count = all - count1;
|
914 |
|
|
|
915 |
|
|
if (ncounts) /* Assumed to be 0 or 1. */
|
916 |
|
|
{
|
917 |
|
|
e23 = split_block (bb2, bb2end);
|
918 |
|
|
bb3 = e23->dest;
|
919 |
|
|
bb3->count = all - count1 - count2;
|
920 |
|
|
}
|
921 |
|
|
|
922 |
|
|
e34 = split_block (ncounts ? bb3 : bb2, bb3end);
|
923 |
|
|
bb4 = e34->dest;
|
924 |
|
|
bb4->count = all;
|
925 |
|
|
|
926 |
|
|
e12->flags &= ~EDGE_FALLTHRU;
|
927 |
|
|
e12->flags |= EDGE_FALSE_VALUE;
|
928 |
|
|
e12->probability = REG_BR_PROB_BASE - prob1;
|
929 |
|
|
e12->count = all - count1;
|
930 |
|
|
|
931 |
|
|
e14 = make_edge (bb, bb4, EDGE_TRUE_VALUE);
|
932 |
|
|
e14->probability = prob1;
|
933 |
|
|
e14->count = count1;
|
934 |
|
|
|
935 |
|
|
if (ncounts) /* Assumed to be 0 or 1. */
|
936 |
|
|
{
|
937 |
|
|
e23->flags &= ~EDGE_FALLTHRU;
|
938 |
|
|
e23->flags |= EDGE_FALSE_VALUE;
|
939 |
|
|
e23->count = all - count1 - count2;
|
940 |
|
|
e23->probability = REG_BR_PROB_BASE - prob2;
|
941 |
|
|
|
942 |
|
|
e24 = make_edge (bb2, bb4, EDGE_TRUE_VALUE);
|
943 |
|
|
e24->probability = prob2;
|
944 |
|
|
e24->count = count2;
|
945 |
|
|
}
|
946 |
|
|
|
947 |
|
|
e34->probability = REG_BR_PROB_BASE;
|
948 |
|
|
e34->count = all - count1 - count2;
|
949 |
|
|
|
950 |
|
|
return result;
|
951 |
|
|
}
|
952 |
|
|
|
953 |
|
|
|
954 |
|
|
/* Do transforms 3) and 4) on the statement pointed-to by SI if applicable. */
|
955 |
|
|
|
956 |
|
|
static bool
|
957 |
|
|
gimple_mod_subtract_transform (gimple_stmt_iterator *si)
|
958 |
|
|
{
|
959 |
|
|
histogram_value histogram;
|
960 |
|
|
enum tree_code code;
|
961 |
|
|
gcov_type count, wrong_values, all;
|
962 |
|
|
tree lhs_type, result;
|
963 |
|
|
gcov_type prob1, prob2;
|
964 |
|
|
unsigned int i, steps;
|
965 |
|
|
gcov_type count1, count2;
|
966 |
|
|
gimple stmt;
|
967 |
|
|
|
968 |
|
|
stmt = gsi_stmt (*si);
|
969 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
970 |
|
|
return false;
|
971 |
|
|
|
972 |
|
|
lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
|
973 |
|
|
if (!INTEGRAL_TYPE_P (lhs_type))
|
974 |
|
|
return false;
|
975 |
|
|
|
976 |
|
|
code = gimple_assign_rhs_code (stmt);
|
977 |
|
|
|
978 |
|
|
if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type))
|
979 |
|
|
return false;
|
980 |
|
|
|
981 |
|
|
histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INTERVAL);
|
982 |
|
|
if (!histogram)
|
983 |
|
|
return false;
|
984 |
|
|
|
985 |
|
|
all = 0;
|
986 |
|
|
wrong_values = 0;
|
987 |
|
|
for (i = 0; i < histogram->hdata.intvl.steps; i++)
|
988 |
|
|
all += histogram->hvalue.counters[i];
|
989 |
|
|
|
990 |
|
|
wrong_values += histogram->hvalue.counters[i];
|
991 |
|
|
wrong_values += histogram->hvalue.counters[i+1];
|
992 |
|
|
steps = histogram->hdata.intvl.steps;
|
993 |
|
|
all += wrong_values;
|
994 |
|
|
count1 = histogram->hvalue.counters[0];
|
995 |
|
|
count2 = histogram->hvalue.counters[1];
|
996 |
|
|
|
997 |
|
|
/* Compute probability of taking the optimal path. */
|
998 |
|
|
if (check_counter (stmt, "interval", &count1, &all, gimple_bb (stmt)->count))
|
999 |
|
|
{
|
1000 |
|
|
gimple_remove_histogram_value (cfun, stmt, histogram);
|
1001 |
|
|
return false;
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
|
|
if (flag_profile_correction && count1 + count2 > all)
|
1005 |
|
|
all = count1 + count2;
|
1006 |
|
|
|
1007 |
|
|
gcc_assert (count1 + count2 <= all);
|
1008 |
|
|
|
1009 |
|
|
/* We require that we use just subtractions in at least 50% of all
|
1010 |
|
|
evaluations. */
|
1011 |
|
|
count = 0;
|
1012 |
|
|
for (i = 0; i < histogram->hdata.intvl.steps; i++)
|
1013 |
|
|
{
|
1014 |
|
|
count += histogram->hvalue.counters[i];
|
1015 |
|
|
if (count * 2 >= all)
|
1016 |
|
|
break;
|
1017 |
|
|
}
|
1018 |
|
|
if (i == steps
|
1019 |
|
|
|| optimize_bb_for_size_p (gimple_bb (stmt)))
|
1020 |
|
|
return false;
|
1021 |
|
|
|
1022 |
|
|
gimple_remove_histogram_value (cfun, stmt, histogram);
|
1023 |
|
|
if (dump_file)
|
1024 |
|
|
{
|
1025 |
|
|
fprintf (dump_file, "Mod subtract transformation on insn ");
|
1026 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
1027 |
|
|
}
|
1028 |
|
|
|
1029 |
|
|
/* Compute probability of taking the optimal path(s). */
|
1030 |
|
|
if (all > 0)
|
1031 |
|
|
{
|
1032 |
|
|
prob1 = (count1 * REG_BR_PROB_BASE + all / 2) / all;
|
1033 |
|
|
prob2 = (count2 * REG_BR_PROB_BASE + all / 2) / all;
|
1034 |
|
|
}
|
1035 |
|
|
else
|
1036 |
|
|
{
|
1037 |
|
|
prob1 = prob2 = 0;
|
1038 |
|
|
}
|
1039 |
|
|
|
1040 |
|
|
/* In practice, "steps" is always 2. This interface reflects this,
|
1041 |
|
|
and will need to be changed if "steps" can change. */
|
1042 |
|
|
result = gimple_mod_subtract (stmt, prob1, prob2, i, count1, count2, all);
|
1043 |
|
|
|
1044 |
|
|
gimple_assign_set_rhs_from_tree (si, result);
|
1045 |
|
|
|
1046 |
|
|
return true;
|
1047 |
|
|
}
|
1048 |
|
|
|
1049 |
|
|
static struct cgraph_node** pid_map = NULL;
|
1050 |
|
|
|
1051 |
|
|
/* Initialize map of pids (pid -> cgraph node) */
|
1052 |
|
|
|
1053 |
|
|
static void
|
1054 |
|
|
init_pid_map (void)
|
1055 |
|
|
{
|
1056 |
|
|
struct cgraph_node *n;
|
1057 |
|
|
|
1058 |
|
|
if (pid_map != NULL)
|
1059 |
|
|
return;
|
1060 |
|
|
|
1061 |
|
|
pid_map = XCNEWVEC (struct cgraph_node*, cgraph_max_pid);
|
1062 |
|
|
|
1063 |
|
|
for (n = cgraph_nodes; n; n = n->next)
|
1064 |
|
|
{
|
1065 |
|
|
if (n->pid != -1)
|
1066 |
|
|
pid_map [n->pid] = n;
|
1067 |
|
|
}
|
1068 |
|
|
}
|
1069 |
|
|
|
1070 |
|
|
/* Return cgraph node for function with pid */
|
1071 |
|
|
|
1072 |
|
|
static inline struct cgraph_node*
|
1073 |
|
|
find_func_by_pid (int pid)
|
1074 |
|
|
{
|
1075 |
|
|
init_pid_map ();
|
1076 |
|
|
|
1077 |
|
|
return pid_map [pid];
|
1078 |
|
|
}
|
1079 |
|
|
|
1080 |
|
|
/* Do transformation
|
1081 |
|
|
|
1082 |
|
|
if (actual_callee_address == address_of_most_common_function/method)
|
1083 |
|
|
do direct call
|
1084 |
|
|
else
|
1085 |
|
|
old call
|
1086 |
|
|
*/
|
1087 |
|
|
|
1088 |
|
|
static gimple
|
1089 |
|
|
gimple_ic (gimple icall_stmt, struct cgraph_node *direct_call,
|
1090 |
|
|
int prob, gcov_type count, gcov_type all)
|
1091 |
|
|
{
|
1092 |
|
|
gimple dcall_stmt, load_stmt, cond_stmt;
|
1093 |
|
|
tree tmp1, tmpv, tmp;
|
1094 |
|
|
basic_block cond_bb, dcall_bb, icall_bb, join_bb;
|
1095 |
|
|
tree optype = build_pointer_type (void_type_node);
|
1096 |
|
|
edge e_cd, e_ci, e_di, e_dj, e_ij;
|
1097 |
|
|
gimple_stmt_iterator gsi;
|
1098 |
|
|
int lp_nr;
|
1099 |
|
|
|
1100 |
|
|
cond_bb = gimple_bb (icall_stmt);
|
1101 |
|
|
gsi = gsi_for_stmt (icall_stmt);
|
1102 |
|
|
|
1103 |
|
|
tmpv = create_tmp_var (optype, "PROF");
|
1104 |
|
|
tmp1 = create_tmp_var (optype, "PROF");
|
1105 |
|
|
tmp = unshare_expr (gimple_call_fn (icall_stmt));
|
1106 |
|
|
load_stmt = gimple_build_assign (tmpv, tmp);
|
1107 |
|
|
gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
|
1108 |
|
|
|
1109 |
|
|
tmp = fold_convert (optype, build_addr (direct_call->decl,
|
1110 |
|
|
current_function_decl));
|
1111 |
|
|
load_stmt = gimple_build_assign (tmp1, tmp);
|
1112 |
|
|
gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
|
1113 |
|
|
|
1114 |
|
|
cond_stmt = gimple_build_cond (EQ_EXPR, tmp1, tmpv, NULL_TREE, NULL_TREE);
|
1115 |
|
|
gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
|
1116 |
|
|
|
1117 |
|
|
dcall_stmt = gimple_copy (icall_stmt);
|
1118 |
|
|
gimple_call_set_fndecl (dcall_stmt, direct_call->decl);
|
1119 |
|
|
gsi_insert_before (&gsi, dcall_stmt, GSI_SAME_STMT);
|
1120 |
|
|
|
1121 |
|
|
/* Fix CFG. */
|
1122 |
|
|
/* Edge e_cd connects cond_bb to dcall_bb, etc; note the first letters. */
|
1123 |
|
|
e_cd = split_block (cond_bb, cond_stmt);
|
1124 |
|
|
dcall_bb = e_cd->dest;
|
1125 |
|
|
dcall_bb->count = count;
|
1126 |
|
|
|
1127 |
|
|
e_di = split_block (dcall_bb, dcall_stmt);
|
1128 |
|
|
icall_bb = e_di->dest;
|
1129 |
|
|
icall_bb->count = all - count;
|
1130 |
|
|
|
1131 |
|
|
e_ij = split_block (icall_bb, icall_stmt);
|
1132 |
|
|
join_bb = e_ij->dest;
|
1133 |
|
|
join_bb->count = all;
|
1134 |
|
|
|
1135 |
|
|
e_cd->flags = (e_cd->flags & ~EDGE_FALLTHRU) | EDGE_TRUE_VALUE;
|
1136 |
|
|
e_cd->probability = prob;
|
1137 |
|
|
e_cd->count = count;
|
1138 |
|
|
|
1139 |
|
|
e_ci = make_edge (cond_bb, icall_bb, EDGE_FALSE_VALUE);
|
1140 |
|
|
e_ci->probability = REG_BR_PROB_BASE - prob;
|
1141 |
|
|
e_ci->count = all - count;
|
1142 |
|
|
|
1143 |
|
|
remove_edge (e_di);
|
1144 |
|
|
|
1145 |
|
|
e_dj = make_edge (dcall_bb, join_bb, EDGE_FALLTHRU);
|
1146 |
|
|
e_dj->probability = REG_BR_PROB_BASE;
|
1147 |
|
|
e_dj->count = count;
|
1148 |
|
|
|
1149 |
|
|
e_ij->probability = REG_BR_PROB_BASE;
|
1150 |
|
|
e_ij->count = all - count;
|
1151 |
|
|
|
1152 |
|
|
/* Fix eh edges */
|
1153 |
|
|
lp_nr = lookup_stmt_eh_lp (icall_stmt);
|
1154 |
|
|
if (lp_nr != 0)
|
1155 |
|
|
{
|
1156 |
|
|
if (stmt_could_throw_p (dcall_stmt))
|
1157 |
|
|
{
|
1158 |
|
|
add_stmt_to_eh_lp (dcall_stmt, lp_nr);
|
1159 |
|
|
make_eh_edges (dcall_stmt);
|
1160 |
|
|
}
|
1161 |
|
|
|
1162 |
|
|
gcc_assert (stmt_could_throw_p (icall_stmt));
|
1163 |
|
|
make_eh_edges (icall_stmt);
|
1164 |
|
|
|
1165 |
|
|
/* The old EH edges are sill on the join BB, purge them. */
|
1166 |
|
|
gimple_purge_dead_eh_edges (join_bb);
|
1167 |
|
|
}
|
1168 |
|
|
|
1169 |
|
|
return dcall_stmt;
|
1170 |
|
|
}
|
1171 |
|
|
|
1172 |
|
|
/*
|
1173 |
|
|
For every checked indirect/virtual call determine if most common pid of
|
1174 |
|
|
function/class method has probability more than 50%. If yes modify code of
|
1175 |
|
|
this call to:
|
1176 |
|
|
*/
|
1177 |
|
|
|
1178 |
|
|
static bool
|
1179 |
|
|
gimple_ic_transform (gimple stmt)
|
1180 |
|
|
{
|
1181 |
|
|
histogram_value histogram;
|
1182 |
|
|
gcov_type val, count, all, bb_all;
|
1183 |
|
|
gcov_type prob;
|
1184 |
|
|
tree callee;
|
1185 |
|
|
gimple modify;
|
1186 |
|
|
struct cgraph_node *direct_call;
|
1187 |
|
|
|
1188 |
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
1189 |
|
|
return false;
|
1190 |
|
|
|
1191 |
|
|
callee = gimple_call_fn (stmt);
|
1192 |
|
|
|
1193 |
|
|
if (TREE_CODE (callee) == FUNCTION_DECL)
|
1194 |
|
|
return false;
|
1195 |
|
|
|
1196 |
|
|
histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INDIR_CALL);
|
1197 |
|
|
if (!histogram)
|
1198 |
|
|
return false;
|
1199 |
|
|
|
1200 |
|
|
val = histogram->hvalue.counters [0];
|
1201 |
|
|
count = histogram->hvalue.counters [1];
|
1202 |
|
|
all = histogram->hvalue.counters [2];
|
1203 |
|
|
gimple_remove_histogram_value (cfun, stmt, histogram);
|
1204 |
|
|
|
1205 |
|
|
if (4 * count <= 3 * all)
|
1206 |
|
|
return false;
|
1207 |
|
|
|
1208 |
|
|
bb_all = gimple_bb (stmt)->count;
|
1209 |
|
|
/* The order of CHECK_COUNTER calls is important -
|
1210 |
|
|
since check_counter can correct the third parameter
|
1211 |
|
|
and we want to make count <= all <= bb_all. */
|
1212 |
|
|
if ( check_counter (stmt, "ic", &all, &bb_all, bb_all)
|
1213 |
|
|
|| check_counter (stmt, "ic", &count, &all, all))
|
1214 |
|
|
return false;
|
1215 |
|
|
|
1216 |
|
|
if (all > 0)
|
1217 |
|
|
prob = (count * REG_BR_PROB_BASE + all / 2) / all;
|
1218 |
|
|
else
|
1219 |
|
|
prob = 0;
|
1220 |
|
|
direct_call = find_func_by_pid ((int)val);
|
1221 |
|
|
|
1222 |
|
|
if (direct_call == NULL)
|
1223 |
|
|
return false;
|
1224 |
|
|
|
1225 |
|
|
modify = gimple_ic (stmt, direct_call, prob, count, all);
|
1226 |
|
|
|
1227 |
|
|
if (dump_file)
|
1228 |
|
|
{
|
1229 |
|
|
fprintf (dump_file, "Indirect call -> direct call ");
|
1230 |
|
|
print_generic_expr (dump_file, gimple_call_fn (stmt), TDF_SLIM);
|
1231 |
|
|
fprintf (dump_file, "=> ");
|
1232 |
|
|
print_generic_expr (dump_file, direct_call->decl, TDF_SLIM);
|
1233 |
|
|
fprintf (dump_file, " transformation on insn ");
|
1234 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
1235 |
|
|
fprintf (dump_file, " to ");
|
1236 |
|
|
print_gimple_stmt (dump_file, modify, 0, TDF_SLIM);
|
1237 |
|
|
fprintf (dump_file, "hist->count "HOST_WIDEST_INT_PRINT_DEC
|
1238 |
|
|
" hist->all "HOST_WIDEST_INT_PRINT_DEC"\n", count, all);
|
1239 |
|
|
}
|
1240 |
|
|
|
1241 |
|
|
return true;
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
/* Return true if the stringop CALL with FNDECL shall be profiled.
|
1245 |
|
|
SIZE_ARG be set to the argument index for the size of the string
|
1246 |
|
|
operation.
|
1247 |
|
|
*/
|
1248 |
|
|
static bool
|
1249 |
|
|
interesting_stringop_to_profile_p (tree fndecl, gimple call, int *size_arg)
|
1250 |
|
|
{
|
1251 |
|
|
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
1252 |
|
|
|
1253 |
|
|
if (fcode != BUILT_IN_MEMCPY && fcode != BUILT_IN_MEMPCPY
|
1254 |
|
|
&& fcode != BUILT_IN_MEMSET && fcode != BUILT_IN_BZERO)
|
1255 |
|
|
return false;
|
1256 |
|
|
|
1257 |
|
|
switch (fcode)
|
1258 |
|
|
{
|
1259 |
|
|
case BUILT_IN_MEMCPY:
|
1260 |
|
|
case BUILT_IN_MEMPCPY:
|
1261 |
|
|
*size_arg = 2;
|
1262 |
|
|
return validate_gimple_arglist (call, POINTER_TYPE, POINTER_TYPE,
|
1263 |
|
|
INTEGER_TYPE, VOID_TYPE);
|
1264 |
|
|
case BUILT_IN_MEMSET:
|
1265 |
|
|
*size_arg = 2;
|
1266 |
|
|
return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE,
|
1267 |
|
|
INTEGER_TYPE, VOID_TYPE);
|
1268 |
|
|
case BUILT_IN_BZERO:
|
1269 |
|
|
*size_arg = 1;
|
1270 |
|
|
return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE,
|
1271 |
|
|
VOID_TYPE);
|
1272 |
|
|
default:
|
1273 |
|
|
gcc_unreachable ();
|
1274 |
|
|
}
|
1275 |
|
|
}
|
1276 |
|
|
|
1277 |
|
|
/* Convert stringop (..., vcall_size)
|
1278 |
|
|
into
|
1279 |
|
|
if (vcall_size == icall_size)
|
1280 |
|
|
stringop (..., icall_size);
|
1281 |
|
|
else
|
1282 |
|
|
stringop (..., vcall_size);
|
1283 |
|
|
assuming we'll propagate a true constant into ICALL_SIZE later. */
|
1284 |
|
|
|
1285 |
|
|
static void
|
1286 |
|
|
gimple_stringop_fixed_value (gimple vcall_stmt, tree icall_size, int prob,
|
1287 |
|
|
gcov_type count, gcov_type all)
|
1288 |
|
|
{
|
1289 |
|
|
gimple tmp_stmt, cond_stmt, icall_stmt;
|
1290 |
|
|
tree tmp1, tmpv, vcall_size, optype;
|
1291 |
|
|
basic_block cond_bb, icall_bb, vcall_bb, join_bb;
|
1292 |
|
|
edge e_ci, e_cv, e_iv, e_ij, e_vj;
|
1293 |
|
|
gimple_stmt_iterator gsi;
|
1294 |
|
|
tree fndecl;
|
1295 |
|
|
int size_arg;
|
1296 |
|
|
|
1297 |
|
|
fndecl = gimple_call_fndecl (vcall_stmt);
|
1298 |
|
|
if (!interesting_stringop_to_profile_p (fndecl, vcall_stmt, &size_arg))
|
1299 |
|
|
gcc_unreachable();
|
1300 |
|
|
|
1301 |
|
|
cond_bb = gimple_bb (vcall_stmt);
|
1302 |
|
|
gsi = gsi_for_stmt (vcall_stmt);
|
1303 |
|
|
|
1304 |
|
|
vcall_size = gimple_call_arg (vcall_stmt, size_arg);
|
1305 |
|
|
optype = TREE_TYPE (vcall_size);
|
1306 |
|
|
|
1307 |
|
|
tmpv = create_tmp_var (optype, "PROF");
|
1308 |
|
|
tmp1 = create_tmp_var (optype, "PROF");
|
1309 |
|
|
tmp_stmt = gimple_build_assign (tmpv, fold_convert (optype, icall_size));
|
1310 |
|
|
gsi_insert_before (&gsi, tmp_stmt, GSI_SAME_STMT);
|
1311 |
|
|
|
1312 |
|
|
tmp_stmt = gimple_build_assign (tmp1, vcall_size);
|
1313 |
|
|
gsi_insert_before (&gsi, tmp_stmt, GSI_SAME_STMT);
|
1314 |
|
|
|
1315 |
|
|
cond_stmt = gimple_build_cond (EQ_EXPR, tmp1, tmpv, NULL_TREE, NULL_TREE);
|
1316 |
|
|
gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
|
1317 |
|
|
|
1318 |
|
|
icall_stmt = gimple_copy (vcall_stmt);
|
1319 |
|
|
gimple_call_set_arg (icall_stmt, size_arg, icall_size);
|
1320 |
|
|
gsi_insert_before (&gsi, icall_stmt, GSI_SAME_STMT);
|
1321 |
|
|
|
1322 |
|
|
/* Fix CFG. */
|
1323 |
|
|
/* Edge e_ci connects cond_bb to icall_bb, etc. */
|
1324 |
|
|
e_ci = split_block (cond_bb, cond_stmt);
|
1325 |
|
|
icall_bb = e_ci->dest;
|
1326 |
|
|
icall_bb->count = count;
|
1327 |
|
|
|
1328 |
|
|
e_iv = split_block (icall_bb, icall_stmt);
|
1329 |
|
|
vcall_bb = e_iv->dest;
|
1330 |
|
|
vcall_bb->count = all - count;
|
1331 |
|
|
|
1332 |
|
|
e_vj = split_block (vcall_bb, vcall_stmt);
|
1333 |
|
|
join_bb = e_vj->dest;
|
1334 |
|
|
join_bb->count = all;
|
1335 |
|
|
|
1336 |
|
|
e_ci->flags = (e_ci->flags & ~EDGE_FALLTHRU) | EDGE_TRUE_VALUE;
|
1337 |
|
|
e_ci->probability = prob;
|
1338 |
|
|
e_ci->count = count;
|
1339 |
|
|
|
1340 |
|
|
e_cv = make_edge (cond_bb, vcall_bb, EDGE_FALSE_VALUE);
|
1341 |
|
|
e_cv->probability = REG_BR_PROB_BASE - prob;
|
1342 |
|
|
e_cv->count = all - count;
|
1343 |
|
|
|
1344 |
|
|
remove_edge (e_iv);
|
1345 |
|
|
|
1346 |
|
|
e_ij = make_edge (icall_bb, join_bb, EDGE_FALLTHRU);
|
1347 |
|
|
e_ij->probability = REG_BR_PROB_BASE;
|
1348 |
|
|
e_ij->count = count;
|
1349 |
|
|
|
1350 |
|
|
e_vj->probability = REG_BR_PROB_BASE;
|
1351 |
|
|
e_vj->count = all - count;
|
1352 |
|
|
|
1353 |
|
|
/* Because these are all string op builtins, they're all nothrow. */
|
1354 |
|
|
gcc_assert (!stmt_could_throw_p (vcall_stmt));
|
1355 |
|
|
gcc_assert (!stmt_could_throw_p (icall_stmt));
|
1356 |
|
|
}
|
1357 |
|
|
|
1358 |
|
|
/* Find values inside STMT for that we want to measure histograms for
|
1359 |
|
|
division/modulo optimization. */
|
1360 |
|
|
static bool
|
1361 |
|
|
gimple_stringops_transform (gimple_stmt_iterator *gsi)
|
1362 |
|
|
{
|
1363 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
1364 |
|
|
tree fndecl;
|
1365 |
|
|
tree blck_size;
|
1366 |
|
|
enum built_in_function fcode;
|
1367 |
|
|
histogram_value histogram;
|
1368 |
|
|
gcov_type count, all, val;
|
1369 |
|
|
tree dest, src;
|
1370 |
|
|
unsigned int dest_align, src_align;
|
1371 |
|
|
gcov_type prob;
|
1372 |
|
|
tree tree_val;
|
1373 |
|
|
int size_arg;
|
1374 |
|
|
|
1375 |
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
1376 |
|
|
return false;
|
1377 |
|
|
fndecl = gimple_call_fndecl (stmt);
|
1378 |
|
|
if (!fndecl)
|
1379 |
|
|
return false;
|
1380 |
|
|
fcode = DECL_FUNCTION_CODE (fndecl);
|
1381 |
|
|
if (!interesting_stringop_to_profile_p (fndecl, stmt, &size_arg))
|
1382 |
|
|
return false;
|
1383 |
|
|
|
1384 |
|
|
blck_size = gimple_call_arg (stmt, size_arg);
|
1385 |
|
|
if (TREE_CODE (blck_size) == INTEGER_CST)
|
1386 |
|
|
return false;
|
1387 |
|
|
|
1388 |
|
|
histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_SINGLE_VALUE);
|
1389 |
|
|
if (!histogram)
|
1390 |
|
|
return false;
|
1391 |
|
|
val = histogram->hvalue.counters[0];
|
1392 |
|
|
count = histogram->hvalue.counters[1];
|
1393 |
|
|
all = histogram->hvalue.counters[2];
|
1394 |
|
|
gimple_remove_histogram_value (cfun, stmt, histogram);
|
1395 |
|
|
/* We require that count is at least half of all; this means
|
1396 |
|
|
that for the transformation to fire the value must be constant
|
1397 |
|
|
at least 80% of time. */
|
1398 |
|
|
if ((6 * count / 5) < all || optimize_bb_for_size_p (gimple_bb (stmt)))
|
1399 |
|
|
return false;
|
1400 |
|
|
if (check_counter (stmt, "value", &count, &all, gimple_bb (stmt)->count))
|
1401 |
|
|
return false;
|
1402 |
|
|
if (all > 0)
|
1403 |
|
|
prob = (count * REG_BR_PROB_BASE + all / 2) / all;
|
1404 |
|
|
else
|
1405 |
|
|
prob = 0;
|
1406 |
|
|
dest = gimple_call_arg (stmt, 0);
|
1407 |
|
|
dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
|
1408 |
|
|
switch (fcode)
|
1409 |
|
|
{
|
1410 |
|
|
case BUILT_IN_MEMCPY:
|
1411 |
|
|
case BUILT_IN_MEMPCPY:
|
1412 |
|
|
src = gimple_call_arg (stmt, 1);
|
1413 |
|
|
src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
|
1414 |
|
|
if (!can_move_by_pieces (val, MIN (dest_align, src_align)))
|
1415 |
|
|
return false;
|
1416 |
|
|
break;
|
1417 |
|
|
case BUILT_IN_MEMSET:
|
1418 |
|
|
if (!can_store_by_pieces (val, builtin_memset_read_str,
|
1419 |
|
|
gimple_call_arg (stmt, 1),
|
1420 |
|
|
dest_align, true))
|
1421 |
|
|
return false;
|
1422 |
|
|
break;
|
1423 |
|
|
case BUILT_IN_BZERO:
|
1424 |
|
|
if (!can_store_by_pieces (val, builtin_memset_read_str,
|
1425 |
|
|
integer_zero_node,
|
1426 |
|
|
dest_align, true))
|
1427 |
|
|
return false;
|
1428 |
|
|
break;
|
1429 |
|
|
default:
|
1430 |
|
|
gcc_unreachable ();
|
1431 |
|
|
}
|
1432 |
|
|
tree_val = build_int_cst_wide (get_gcov_type (),
|
1433 |
|
|
(unsigned HOST_WIDE_INT) val,
|
1434 |
|
|
val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1);
|
1435 |
|
|
if (dump_file)
|
1436 |
|
|
{
|
1437 |
|
|
fprintf (dump_file, "Single value %i stringop transformation on ",
|
1438 |
|
|
(int)val);
|
1439 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
1440 |
|
|
}
|
1441 |
|
|
gimple_stringop_fixed_value (stmt, tree_val, prob, count, all);
|
1442 |
|
|
|
1443 |
|
|
return true;
|
1444 |
|
|
}
|
1445 |
|
|
|
1446 |
|
|
void
|
1447 |
|
|
stringop_block_profile (gimple stmt, unsigned int *expected_align,
|
1448 |
|
|
HOST_WIDE_INT *expected_size)
|
1449 |
|
|
{
|
1450 |
|
|
histogram_value histogram;
|
1451 |
|
|
histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_AVERAGE);
|
1452 |
|
|
if (!histogram)
|
1453 |
|
|
*expected_size = -1;
|
1454 |
|
|
else if (!histogram->hvalue.counters[1])
|
1455 |
|
|
{
|
1456 |
|
|
*expected_size = -1;
|
1457 |
|
|
gimple_remove_histogram_value (cfun, stmt, histogram);
|
1458 |
|
|
}
|
1459 |
|
|
else
|
1460 |
|
|
{
|
1461 |
|
|
gcov_type size;
|
1462 |
|
|
size = ((histogram->hvalue.counters[0]
|
1463 |
|
|
+ histogram->hvalue.counters[1] / 2)
|
1464 |
|
|
/ histogram->hvalue.counters[1]);
|
1465 |
|
|
/* Even if we can hold bigger value in SIZE, INT_MAX
|
1466 |
|
|
is safe "infinity" for code generation strategies. */
|
1467 |
|
|
if (size > INT_MAX)
|
1468 |
|
|
size = INT_MAX;
|
1469 |
|
|
*expected_size = size;
|
1470 |
|
|
gimple_remove_histogram_value (cfun, stmt, histogram);
|
1471 |
|
|
}
|
1472 |
|
|
histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_IOR);
|
1473 |
|
|
if (!histogram)
|
1474 |
|
|
*expected_align = 0;
|
1475 |
|
|
else if (!histogram->hvalue.counters[0])
|
1476 |
|
|
{
|
1477 |
|
|
gimple_remove_histogram_value (cfun, stmt, histogram);
|
1478 |
|
|
*expected_align = 0;
|
1479 |
|
|
}
|
1480 |
|
|
else
|
1481 |
|
|
{
|
1482 |
|
|
gcov_type count;
|
1483 |
|
|
int alignment;
|
1484 |
|
|
|
1485 |
|
|
count = histogram->hvalue.counters[0];
|
1486 |
|
|
alignment = 1;
|
1487 |
|
|
while (!(count & alignment)
|
1488 |
|
|
&& (alignment * 2 * BITS_PER_UNIT))
|
1489 |
|
|
alignment <<= 1;
|
1490 |
|
|
*expected_align = alignment * BITS_PER_UNIT;
|
1491 |
|
|
gimple_remove_histogram_value (cfun, stmt, histogram);
|
1492 |
|
|
}
|
1493 |
|
|
}
|
1494 |
|
|
|
1495 |
|
|
struct value_prof_hooks {
|
1496 |
|
|
/* Find list of values for which we want to measure histograms. */
|
1497 |
|
|
void (*find_values_to_profile) (histogram_values *);
|
1498 |
|
|
|
1499 |
|
|
/* Identify and exploit properties of values that are hard to analyze
|
1500 |
|
|
statically. See value-prof.c for more detail. */
|
1501 |
|
|
bool (*value_profile_transformations) (void);
|
1502 |
|
|
};
|
1503 |
|
|
|
1504 |
|
|
/* Find values inside STMT for that we want to measure histograms for
|
1505 |
|
|
division/modulo optimization. */
|
1506 |
|
|
static void
|
1507 |
|
|
gimple_divmod_values_to_profile (gimple stmt, histogram_values *values)
|
1508 |
|
|
{
|
1509 |
|
|
tree lhs, divisor, op0, type;
|
1510 |
|
|
histogram_value hist;
|
1511 |
|
|
|
1512 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
1513 |
|
|
return;
|
1514 |
|
|
|
1515 |
|
|
lhs = gimple_assign_lhs (stmt);
|
1516 |
|
|
type = TREE_TYPE (lhs);
|
1517 |
|
|
if (!INTEGRAL_TYPE_P (type))
|
1518 |
|
|
return;
|
1519 |
|
|
|
1520 |
|
|
switch (gimple_assign_rhs_code (stmt))
|
1521 |
|
|
{
|
1522 |
|
|
case TRUNC_DIV_EXPR:
|
1523 |
|
|
case TRUNC_MOD_EXPR:
|
1524 |
|
|
divisor = gimple_assign_rhs2 (stmt);
|
1525 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
1526 |
|
|
|
1527 |
|
|
VEC_reserve (histogram_value, heap, *values, 3);
|
1528 |
|
|
|
1529 |
|
|
if (is_gimple_reg (divisor))
|
1530 |
|
|
/* Check for the case where the divisor is the same value most
|
1531 |
|
|
of the time. */
|
1532 |
|
|
VEC_quick_push (histogram_value, *values,
|
1533 |
|
|
gimple_alloc_histogram_value (cfun,
|
1534 |
|
|
HIST_TYPE_SINGLE_VALUE,
|
1535 |
|
|
stmt, divisor));
|
1536 |
|
|
|
1537 |
|
|
/* For mod, check whether it is not often a noop (or replaceable by
|
1538 |
|
|
a few subtractions). */
|
1539 |
|
|
if (gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR
|
1540 |
|
|
&& TYPE_UNSIGNED (type))
|
1541 |
|
|
{
|
1542 |
|
|
tree val;
|
1543 |
|
|
/* Check for a special case where the divisor is power of 2. */
|
1544 |
|
|
VEC_quick_push (histogram_value, *values,
|
1545 |
|
|
gimple_alloc_histogram_value (cfun, HIST_TYPE_POW2,
|
1546 |
|
|
stmt, divisor));
|
1547 |
|
|
|
1548 |
|
|
val = build2 (TRUNC_DIV_EXPR, type, op0, divisor);
|
1549 |
|
|
hist = gimple_alloc_histogram_value (cfun, HIST_TYPE_INTERVAL,
|
1550 |
|
|
stmt, val);
|
1551 |
|
|
hist->hdata.intvl.int_start = 0;
|
1552 |
|
|
hist->hdata.intvl.steps = 2;
|
1553 |
|
|
VEC_quick_push (histogram_value, *values, hist);
|
1554 |
|
|
}
|
1555 |
|
|
return;
|
1556 |
|
|
|
1557 |
|
|
default:
|
1558 |
|
|
return;
|
1559 |
|
|
}
|
1560 |
|
|
}
|
1561 |
|
|
|
1562 |
|
|
/* Find calls inside STMT for that we want to measure histograms for
|
1563 |
|
|
indirect/virtual call optimization. */
|
1564 |
|
|
|
1565 |
|
|
static void
|
1566 |
|
|
gimple_indirect_call_to_profile (gimple stmt, histogram_values *values)
|
1567 |
|
|
{
|
1568 |
|
|
tree callee;
|
1569 |
|
|
|
1570 |
|
|
if (gimple_code (stmt) != GIMPLE_CALL
|
1571 |
|
|
|| gimple_call_fndecl (stmt) != NULL_TREE)
|
1572 |
|
|
return;
|
1573 |
|
|
|
1574 |
|
|
callee = gimple_call_fn (stmt);
|
1575 |
|
|
|
1576 |
|
|
VEC_reserve (histogram_value, heap, *values, 3);
|
1577 |
|
|
|
1578 |
|
|
VEC_quick_push (histogram_value, *values,
|
1579 |
|
|
gimple_alloc_histogram_value (cfun, HIST_TYPE_INDIR_CALL,
|
1580 |
|
|
stmt, callee));
|
1581 |
|
|
|
1582 |
|
|
return;
|
1583 |
|
|
}
|
1584 |
|
|
|
1585 |
|
|
/* Find values inside STMT for that we want to measure histograms for
|
1586 |
|
|
string operations. */
|
1587 |
|
|
static void
|
1588 |
|
|
gimple_stringops_values_to_profile (gimple stmt, histogram_values *values)
|
1589 |
|
|
{
|
1590 |
|
|
tree fndecl;
|
1591 |
|
|
tree blck_size;
|
1592 |
|
|
tree dest;
|
1593 |
|
|
int size_arg;
|
1594 |
|
|
|
1595 |
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
1596 |
|
|
return;
|
1597 |
|
|
fndecl = gimple_call_fndecl (stmt);
|
1598 |
|
|
if (!fndecl)
|
1599 |
|
|
return;
|
1600 |
|
|
|
1601 |
|
|
if (!interesting_stringop_to_profile_p (fndecl, stmt, &size_arg))
|
1602 |
|
|
return;
|
1603 |
|
|
|
1604 |
|
|
dest = gimple_call_arg (stmt, 0);
|
1605 |
|
|
blck_size = gimple_call_arg (stmt, size_arg);
|
1606 |
|
|
|
1607 |
|
|
if (TREE_CODE (blck_size) != INTEGER_CST)
|
1608 |
|
|
{
|
1609 |
|
|
VEC_safe_push (histogram_value, heap, *values,
|
1610 |
|
|
gimple_alloc_histogram_value (cfun, HIST_TYPE_SINGLE_VALUE,
|
1611 |
|
|
stmt, blck_size));
|
1612 |
|
|
VEC_safe_push (histogram_value, heap, *values,
|
1613 |
|
|
gimple_alloc_histogram_value (cfun, HIST_TYPE_AVERAGE,
|
1614 |
|
|
stmt, blck_size));
|
1615 |
|
|
}
|
1616 |
|
|
if (TREE_CODE (blck_size) != INTEGER_CST)
|
1617 |
|
|
VEC_safe_push (histogram_value, heap, *values,
|
1618 |
|
|
gimple_alloc_histogram_value (cfun, HIST_TYPE_IOR,
|
1619 |
|
|
stmt, dest));
|
1620 |
|
|
}
|
1621 |
|
|
|
1622 |
|
|
/* Find values inside STMT for that we want to measure histograms and adds
|
1623 |
|
|
them to list VALUES. */
|
1624 |
|
|
|
1625 |
|
|
static void
|
1626 |
|
|
gimple_values_to_profile (gimple stmt, histogram_values *values)
|
1627 |
|
|
{
|
1628 |
|
|
if (flag_value_profile_transformations)
|
1629 |
|
|
{
|
1630 |
|
|
gimple_divmod_values_to_profile (stmt, values);
|
1631 |
|
|
gimple_stringops_values_to_profile (stmt, values);
|
1632 |
|
|
gimple_indirect_call_to_profile (stmt, values);
|
1633 |
|
|
}
|
1634 |
|
|
}
|
1635 |
|
|
|
1636 |
|
|
static void
|
1637 |
|
|
gimple_find_values_to_profile (histogram_values *values)
|
1638 |
|
|
{
|
1639 |
|
|
basic_block bb;
|
1640 |
|
|
gimple_stmt_iterator gsi;
|
1641 |
|
|
unsigned i;
|
1642 |
|
|
histogram_value hist = NULL;
|
1643 |
|
|
|
1644 |
|
|
*values = NULL;
|
1645 |
|
|
FOR_EACH_BB (bb)
|
1646 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1647 |
|
|
gimple_values_to_profile (gsi_stmt (gsi), values);
|
1648 |
|
|
|
1649 |
|
|
for (i = 0; VEC_iterate (histogram_value, *values, i, hist); i++)
|
1650 |
|
|
{
|
1651 |
|
|
switch (hist->type)
|
1652 |
|
|
{
|
1653 |
|
|
case HIST_TYPE_INTERVAL:
|
1654 |
|
|
hist->n_counters = hist->hdata.intvl.steps + 2;
|
1655 |
|
|
break;
|
1656 |
|
|
|
1657 |
|
|
case HIST_TYPE_POW2:
|
1658 |
|
|
hist->n_counters = 2;
|
1659 |
|
|
break;
|
1660 |
|
|
|
1661 |
|
|
case HIST_TYPE_SINGLE_VALUE:
|
1662 |
|
|
hist->n_counters = 3;
|
1663 |
|
|
break;
|
1664 |
|
|
|
1665 |
|
|
case HIST_TYPE_CONST_DELTA:
|
1666 |
|
|
hist->n_counters = 4;
|
1667 |
|
|
break;
|
1668 |
|
|
|
1669 |
|
|
case HIST_TYPE_INDIR_CALL:
|
1670 |
|
|
hist->n_counters = 3;
|
1671 |
|
|
break;
|
1672 |
|
|
|
1673 |
|
|
case HIST_TYPE_AVERAGE:
|
1674 |
|
|
hist->n_counters = 2;
|
1675 |
|
|
break;
|
1676 |
|
|
|
1677 |
|
|
case HIST_TYPE_IOR:
|
1678 |
|
|
hist->n_counters = 1;
|
1679 |
|
|
break;
|
1680 |
|
|
|
1681 |
|
|
default:
|
1682 |
|
|
gcc_unreachable ();
|
1683 |
|
|
}
|
1684 |
|
|
if (dump_file)
|
1685 |
|
|
{
|
1686 |
|
|
fprintf (dump_file, "Stmt ");
|
1687 |
|
|
print_gimple_stmt (dump_file, hist->hvalue.stmt, 0, TDF_SLIM);
|
1688 |
|
|
dump_histogram_value (dump_file, hist);
|
1689 |
|
|
}
|
1690 |
|
|
}
|
1691 |
|
|
}
|
1692 |
|
|
|
1693 |
|
|
static struct value_prof_hooks gimple_value_prof_hooks = {
|
1694 |
|
|
gimple_find_values_to_profile,
|
1695 |
|
|
gimple_value_profile_transformations
|
1696 |
|
|
};
|
1697 |
|
|
|
1698 |
|
|
void
|
1699 |
|
|
gimple_register_value_prof_hooks (void)
|
1700 |
|
|
{
|
1701 |
|
|
gcc_assert (current_ir_type () == IR_GIMPLE);
|
1702 |
|
|
value_prof_hooks = &gimple_value_prof_hooks;
|
1703 |
|
|
}
|
1704 |
|
|
|
1705 |
|
|
/* IR-independent entry points. */
|
1706 |
|
|
void
|
1707 |
|
|
find_values_to_profile (histogram_values *values)
|
1708 |
|
|
{
|
1709 |
|
|
(value_prof_hooks->find_values_to_profile) (values);
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
bool
|
1713 |
|
|
value_profile_transformations (void)
|
1714 |
|
|
{
|
1715 |
|
|
return (value_prof_hooks->value_profile_transformations) ();
|
1716 |
|
|
}
|
1717 |
|
|
|