1 |
272 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
2 |
|
|
|
3 |
|
|
This file is part of GCC.
|
4 |
|
|
|
5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
6 |
|
|
the terms of the GNU General Public License as published by the Free
|
7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
8 |
|
|
version.
|
9 |
|
|
|
10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
13 |
|
|
for more details.
|
14 |
|
|
|
15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
17 |
|
|
3.1, as published by the Free Software Foundation.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License and
|
20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
#include "bid_internal.h"
|
25 |
|
|
|
26 |
|
|
/*****************************************************************************
|
27 |
|
|
*
|
28 |
|
|
* BID128 non-computational functions:
|
29 |
|
|
* - bid128_isSigned
|
30 |
|
|
* - bid128_isNormal
|
31 |
|
|
* - bid128_isSubnormal
|
32 |
|
|
* - bid128_isFinite
|
33 |
|
|
* - bid128_isZero
|
34 |
|
|
* - bid128_isInf
|
35 |
|
|
* - bid128_isSignaling
|
36 |
|
|
* - bid128_isCanonical
|
37 |
|
|
* - bid128_isNaN
|
38 |
|
|
* - bid128_copy
|
39 |
|
|
* - bid128_negate
|
40 |
|
|
* - bid128_abs
|
41 |
|
|
* - bid128_copySign
|
42 |
|
|
* - bid128_class
|
43 |
|
|
* - bid128_totalOrder
|
44 |
|
|
* - bid128_totalOrderMag
|
45 |
|
|
* - bid128_sameQuantum
|
46 |
|
|
* - bid128_radix
|
47 |
|
|
****************************************************************************/
|
48 |
|
|
|
49 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
50 |
|
|
void
|
51 |
|
|
bid128_isSigned (int *pres,
|
52 |
|
|
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
53 |
|
|
UINT128 x = *px;
|
54 |
|
|
#else
|
55 |
|
|
int
|
56 |
|
|
bid128_isSigned (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
57 |
|
|
#endif
|
58 |
|
|
int res;
|
59 |
|
|
|
60 |
|
|
res = ((x.w[HIGH_128W] & MASK_SIGN) == MASK_SIGN);
|
61 |
|
|
BID_RETURN (res);
|
62 |
|
|
}
|
63 |
|
|
|
64 |
|
|
// return 1 iff x is not zero, nor NaN nor subnormal nor infinity
|
65 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
66 |
|
|
void
|
67 |
|
|
bid128_isNormal (int *pres,
|
68 |
|
|
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
69 |
|
|
UINT128 x = *px;
|
70 |
|
|
#else
|
71 |
|
|
int
|
72 |
|
|
bid128_isNormal (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
73 |
|
|
#endif
|
74 |
|
|
int res;
|
75 |
|
|
UINT64 x_exp, C1_hi, C1_lo;
|
76 |
|
|
BID_UI64DOUBLE tmp1;
|
77 |
|
|
int exp, q, x_nr_bits;
|
78 |
|
|
|
79 |
|
|
BID_SWAP128 (x);
|
80 |
|
|
// test for special values - infinity or NaN
|
81 |
|
|
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
|
82 |
|
|
// x is special
|
83 |
|
|
res = 0;
|
84 |
|
|
BID_RETURN (res);
|
85 |
|
|
}
|
86 |
|
|
// unpack x
|
87 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
88 |
|
|
C1_hi = x.w[1] & MASK_COEFF;
|
89 |
|
|
C1_lo = x.w[0];
|
90 |
|
|
// test for zero
|
91 |
|
|
if (C1_hi == 0 && C1_lo == 0) {
|
92 |
|
|
res = 0;
|
93 |
|
|
BID_RETURN (res);
|
94 |
|
|
}
|
95 |
|
|
// test for non-canonical values of the argument x
|
96 |
|
|
if ((((C1_hi > 0x0001ed09bead87c0ull)
|
97 |
|
|
|| ((C1_hi == 0x0001ed09bead87c0ull)
|
98 |
|
|
&& (C1_lo > 0x378d8e63ffffffffull)))
|
99 |
|
|
&& ((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull))
|
100 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
101 |
|
|
res = 0;
|
102 |
|
|
BID_RETURN (res);
|
103 |
|
|
}
|
104 |
|
|
// x is subnormal or normal
|
105 |
|
|
// determine the number of digits q in the significand
|
106 |
|
|
// q = nr. of decimal digits in x
|
107 |
|
|
// determine first the nr. of bits in x
|
108 |
|
|
if (C1_hi == 0) {
|
109 |
|
|
if (C1_lo >= 0x0020000000000000ull) { // x >= 2^53
|
110 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
111 |
|
|
if (C1_lo >= 0x0000000100000000ull) { // x >= 2^32
|
112 |
|
|
tmp1.d = (double) (C1_lo >> 32); // exact conversion
|
113 |
|
|
x_nr_bits =
|
114 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
115 |
|
|
} else { // x < 2^32
|
116 |
|
|
tmp1.d = (double) (C1_lo); // exact conversion
|
117 |
|
|
x_nr_bits =
|
118 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
119 |
|
|
}
|
120 |
|
|
} else { // if x < 2^53
|
121 |
|
|
tmp1.d = (double) C1_lo; // exact conversion
|
122 |
|
|
x_nr_bits =
|
123 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
124 |
|
|
}
|
125 |
|
|
} else { // C1_hi != 0 => nr. bits = 64 + nr_bits (C1_hi)
|
126 |
|
|
tmp1.d = (double) C1_hi; // exact conversion
|
127 |
|
|
x_nr_bits =
|
128 |
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
129 |
|
|
}
|
130 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
131 |
|
|
if (q == 0) {
|
132 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
133 |
|
|
if (C1_hi > nr_digits[x_nr_bits - 1].threshold_hi ||
|
134 |
|
|
(C1_hi == nr_digits[x_nr_bits - 1].threshold_hi &&
|
135 |
|
|
C1_lo >= nr_digits[x_nr_bits - 1].threshold_lo))
|
136 |
|
|
q++;
|
137 |
|
|
}
|
138 |
|
|
exp = (int) (x_exp >> 49) - 6176;
|
139 |
|
|
// test for subnormal values of x
|
140 |
|
|
if (exp + q <= -6143) {
|
141 |
|
|
res = 0;
|
142 |
|
|
BID_RETURN (res);
|
143 |
|
|
} else {
|
144 |
|
|
res = 1;
|
145 |
|
|
BID_RETURN (res);
|
146 |
|
|
}
|
147 |
|
|
}
|
148 |
|
|
|
149 |
|
|
// return 1 iff x is not zero, nor NaN nor normal nor infinity
|
150 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
151 |
|
|
void
|
152 |
|
|
bid128_isSubnormal (int *pres,
|
153 |
|
|
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
154 |
|
|
UINT128 x = *px;
|
155 |
|
|
#else
|
156 |
|
|
int
|
157 |
|
|
bid128_isSubnormal (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
158 |
|
|
#endif
|
159 |
|
|
int res;
|
160 |
|
|
UINT64 x_exp, C1_hi, C1_lo;
|
161 |
|
|
BID_UI64DOUBLE tmp1;
|
162 |
|
|
int exp, q, x_nr_bits;
|
163 |
|
|
|
164 |
|
|
BID_SWAP128 (x);
|
165 |
|
|
// test for special values - infinity or NaN
|
166 |
|
|
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
|
167 |
|
|
// x is special
|
168 |
|
|
res = 0;
|
169 |
|
|
BID_RETURN (res);
|
170 |
|
|
}
|
171 |
|
|
// unpack x
|
172 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
173 |
|
|
C1_hi = x.w[1] & MASK_COEFF;
|
174 |
|
|
C1_lo = x.w[0];
|
175 |
|
|
// test for zero
|
176 |
|
|
if (C1_hi == 0 && C1_lo == 0) {
|
177 |
|
|
res = 0;
|
178 |
|
|
BID_RETURN (res);
|
179 |
|
|
}
|
180 |
|
|
// test for non-canonical values of the argument x
|
181 |
|
|
if ((((C1_hi > 0x0001ed09bead87c0ull)
|
182 |
|
|
|| ((C1_hi == 0x0001ed09bead87c0ull)
|
183 |
|
|
&& (C1_lo > 0x378d8e63ffffffffull)))
|
184 |
|
|
&& ((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull))
|
185 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
186 |
|
|
res = 0;
|
187 |
|
|
BID_RETURN (res);
|
188 |
|
|
}
|
189 |
|
|
// x is subnormal or normal
|
190 |
|
|
// determine the number of digits q in the significand
|
191 |
|
|
// q = nr. of decimal digits in x
|
192 |
|
|
// determine first the nr. of bits in x
|
193 |
|
|
if (C1_hi == 0) {
|
194 |
|
|
if (C1_lo >= 0x0020000000000000ull) { // x >= 2^53
|
195 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
196 |
|
|
if (C1_lo >= 0x0000000100000000ull) { // x >= 2^32
|
197 |
|
|
tmp1.d = (double) (C1_lo >> 32); // exact conversion
|
198 |
|
|
x_nr_bits =
|
199 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
200 |
|
|
} else { // x < 2^32
|
201 |
|
|
tmp1.d = (double) (C1_lo); // exact conversion
|
202 |
|
|
x_nr_bits =
|
203 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
204 |
|
|
}
|
205 |
|
|
} else { // if x < 2^53
|
206 |
|
|
tmp1.d = (double) C1_lo; // exact conversion
|
207 |
|
|
x_nr_bits =
|
208 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
209 |
|
|
}
|
210 |
|
|
} else { // C1_hi != 0 => nr. bits = 64 + nr_bits (C1_hi)
|
211 |
|
|
tmp1.d = (double) C1_hi; // exact conversion
|
212 |
|
|
x_nr_bits =
|
213 |
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
214 |
|
|
}
|
215 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
216 |
|
|
if (q == 0) {
|
217 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
218 |
|
|
if (C1_hi > nr_digits[x_nr_bits - 1].threshold_hi ||
|
219 |
|
|
(C1_hi == nr_digits[x_nr_bits - 1].threshold_hi &&
|
220 |
|
|
C1_lo >= nr_digits[x_nr_bits - 1].threshold_lo))
|
221 |
|
|
q++;
|
222 |
|
|
}
|
223 |
|
|
exp = (int) (x_exp >> 49) - 6176;
|
224 |
|
|
// test for subnormal values of x
|
225 |
|
|
if (exp + q <= -6143) {
|
226 |
|
|
res = 1;
|
227 |
|
|
} else {
|
228 |
|
|
res = 0;
|
229 |
|
|
}
|
230 |
|
|
BID_RETURN (res);
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
234 |
|
|
void
|
235 |
|
|
bid128_isFinite (int *pres,
|
236 |
|
|
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
237 |
|
|
UINT128 x = *px;
|
238 |
|
|
#else
|
239 |
|
|
int
|
240 |
|
|
bid128_isFinite (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
241 |
|
|
#endif
|
242 |
|
|
int res;
|
243 |
|
|
res = ((x.w[HIGH_128W] & MASK_INF) != MASK_INF);
|
244 |
|
|
BID_RETURN (res);
|
245 |
|
|
}
|
246 |
|
|
|
247 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
248 |
|
|
void
|
249 |
|
|
bid128_isZero (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
250 |
|
|
UINT128 x = *px;
|
251 |
|
|
#else
|
252 |
|
|
int
|
253 |
|
|
bid128_isZero (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
254 |
|
|
#endif
|
255 |
|
|
int res;
|
256 |
|
|
UINT128 sig_x;
|
257 |
|
|
|
258 |
|
|
BID_SWAP128 (x);
|
259 |
|
|
if ((x.w[1] & MASK_INF) == MASK_INF) {
|
260 |
|
|
res = 0;
|
261 |
|
|
BID_RETURN (res);
|
262 |
|
|
}
|
263 |
|
|
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
|
264 |
|
|
sig_x.w[0] = x.w[0];
|
265 |
|
|
if ((sig_x.w[1] > 0x0001ed09bead87c0ull) || // significand is non-canonical
|
266 |
|
|
((sig_x.w[1] == 0x0001ed09bead87c0ull) && (sig_x.w[0] > 0x378d8e63ffffffffull)) || // significand is non-canonical
|
267 |
|
|
((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull && (x.w[1] & MASK_INF) != MASK_INF) || // significand is non-canonical
|
268 |
|
|
(sig_x.w[1] == 0 && sig_x.w[0] == 0)) { // significand is 0
|
269 |
|
|
res = 1;
|
270 |
|
|
BID_RETURN (res);
|
271 |
|
|
}
|
272 |
|
|
res = 0;
|
273 |
|
|
BID_RETURN (res);
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
277 |
|
|
void
|
278 |
|
|
bid128_isInf (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
279 |
|
|
UINT128 x = *px;
|
280 |
|
|
#else
|
281 |
|
|
int
|
282 |
|
|
bid128_isInf (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
283 |
|
|
#endif
|
284 |
|
|
int res;
|
285 |
|
|
res = ((x.w[HIGH_128W] & MASK_INF) == MASK_INF)
|
286 |
|
|
&& ((x.w[HIGH_128W] & MASK_NAN) != MASK_NAN);
|
287 |
|
|
BID_RETURN (res);
|
288 |
|
|
}
|
289 |
|
|
|
290 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
291 |
|
|
void
|
292 |
|
|
bid128_isSignaling (int *pres,
|
293 |
|
|
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
294 |
|
|
UINT128 x = *px;
|
295 |
|
|
#else
|
296 |
|
|
int
|
297 |
|
|
bid128_isSignaling (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
298 |
|
|
#endif
|
299 |
|
|
int res;
|
300 |
|
|
|
301 |
|
|
res = ((x.w[HIGH_128W] & MASK_SNAN) == MASK_SNAN);
|
302 |
|
|
BID_RETURN (res);
|
303 |
|
|
}
|
304 |
|
|
|
305 |
|
|
// return 1 iff x is a canonical number ,infinity, or NaN.
|
306 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
307 |
|
|
void
|
308 |
|
|
bid128_isCanonical (int *pres,
|
309 |
|
|
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
310 |
|
|
UINT128 x = *px;
|
311 |
|
|
#else
|
312 |
|
|
int
|
313 |
|
|
bid128_isCanonical (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
314 |
|
|
#endif
|
315 |
|
|
int res;
|
316 |
|
|
UINT128 sig_x;
|
317 |
|
|
|
318 |
|
|
BID_SWAP128 (x);
|
319 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // NaN
|
320 |
|
|
if (x.w[1] & 0x01ffc00000000000ull) {
|
321 |
|
|
res = 0;
|
322 |
|
|
BID_RETURN (res);
|
323 |
|
|
}
|
324 |
|
|
sig_x.w[1] = x.w[1] & 0x00003fffffffffffull; // 46 bits
|
325 |
|
|
sig_x.w[0] = x.w[0]; // 64 bits
|
326 |
|
|
// payload must be < 10^33 = 0x0000314dc6448d93_38c15b0a00000000
|
327 |
|
|
if (sig_x.w[1] < 0x0000314dc6448d93ull
|
328 |
|
|
|| (sig_x.w[1] == 0x0000314dc6448d93ull
|
329 |
|
|
&& sig_x.w[0] < 0x38c15b0a00000000ull)) {
|
330 |
|
|
res = 1;
|
331 |
|
|
} else {
|
332 |
|
|
res = 0;
|
333 |
|
|
}
|
334 |
|
|
BID_RETURN (res);
|
335 |
|
|
} else if ((x.w[1] & MASK_INF) == MASK_INF) { // infinity
|
336 |
|
|
if ((x.w[1] & 0x03ffffffffffffffull) || x.w[0]) {
|
337 |
|
|
res = 0;
|
338 |
|
|
} else {
|
339 |
|
|
res = 1;
|
340 |
|
|
}
|
341 |
|
|
BID_RETURN (res);
|
342 |
|
|
}
|
343 |
|
|
// not NaN or infinity; extract significand to ensure it is canonical
|
344 |
|
|
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
|
345 |
|
|
sig_x.w[0] = x.w[0];
|
346 |
|
|
// a canonical number has a coefficient < 10^34
|
347 |
|
|
// (0x0001ed09_bead87c0_378d8e64_00000000)
|
348 |
|
|
if ((sig_x.w[1] > 0x0001ed09bead87c0ull) || // significand is non-canonical
|
349 |
|
|
((sig_x.w[1] == 0x0001ed09bead87c0ull) && (sig_x.w[0] > 0x378d8e63ffffffffull)) || // significand is non-canonical
|
350 |
|
|
((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
351 |
|
|
res = 0;
|
352 |
|
|
} else {
|
353 |
|
|
res = 1;
|
354 |
|
|
}
|
355 |
|
|
BID_RETURN (res);
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
359 |
|
|
void
|
360 |
|
|
bid128_isNaN (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
361 |
|
|
UINT128 x = *px;
|
362 |
|
|
#else
|
363 |
|
|
int
|
364 |
|
|
bid128_isNaN (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
365 |
|
|
#endif
|
366 |
|
|
int res;
|
367 |
|
|
|
368 |
|
|
res = ((x.w[HIGH_128W] & MASK_NAN) == MASK_NAN);
|
369 |
|
|
BID_RETURN (res);
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
// copies a floating-point operand x to destination y, with no change
|
373 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
374 |
|
|
void
|
375 |
|
|
bid128_copy (UINT128 * pres,
|
376 |
|
|
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
377 |
|
|
UINT128 x = *px;
|
378 |
|
|
#else
|
379 |
|
|
UINT128
|
380 |
|
|
bid128_copy (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
381 |
|
|
#endif
|
382 |
|
|
UINT128 res;
|
383 |
|
|
|
384 |
|
|
res = x;
|
385 |
|
|
BID_RETURN (res);
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
// copies a floating-point operand x to destination y, reversing the sign
|
389 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
390 |
|
|
void
|
391 |
|
|
bid128_negate (UINT128 * pres,
|
392 |
|
|
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
393 |
|
|
UINT128 x = *px;
|
394 |
|
|
#else
|
395 |
|
|
UINT128
|
396 |
|
|
bid128_negate (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
397 |
|
|
#endif
|
398 |
|
|
UINT128 res;
|
399 |
|
|
|
400 |
|
|
x.w[HIGH_128W] ^= MASK_SIGN;
|
401 |
|
|
res = x;
|
402 |
|
|
BID_RETURN (res);
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
// copies a floating-point operand x to destination y, changing the sign to positive
|
406 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
407 |
|
|
void
|
408 |
|
|
bid128_abs (UINT128 * pres,
|
409 |
|
|
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
410 |
|
|
UINT128 x = *px;
|
411 |
|
|
#else
|
412 |
|
|
UINT128
|
413 |
|
|
bid128_abs (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
414 |
|
|
#endif
|
415 |
|
|
UINT128 res;
|
416 |
|
|
|
417 |
|
|
x.w[HIGH_128W] &= ~MASK_SIGN;
|
418 |
|
|
res = x;
|
419 |
|
|
BID_RETURN (res);
|
420 |
|
|
}
|
421 |
|
|
|
422 |
|
|
// copies operand x to destination in the same format as x, but with the sign of y
|
423 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
424 |
|
|
void
|
425 |
|
|
bid128_copySign (UINT128 * pres, UINT128 * px,
|
426 |
|
|
UINT128 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
427 |
|
|
UINT128 x = *px;
|
428 |
|
|
UINT128 y = *py;
|
429 |
|
|
#else
|
430 |
|
|
UINT128
|
431 |
|
|
bid128_copySign (UINT128 x, UINT128 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
432 |
|
|
#endif
|
433 |
|
|
UINT128 res;
|
434 |
|
|
|
435 |
|
|
x.w[HIGH_128W] =
|
436 |
|
|
(x.w[HIGH_128W] & ~MASK_SIGN) | (y.w[HIGH_128W] & MASK_SIGN);
|
437 |
|
|
res = x;
|
438 |
|
|
BID_RETURN (res);
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
442 |
|
|
void
|
443 |
|
|
bid128_class (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
444 |
|
|
UINT128 x = *px;
|
445 |
|
|
#else
|
446 |
|
|
int
|
447 |
|
|
bid128_class (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
448 |
|
|
#endif
|
449 |
|
|
int res;
|
450 |
|
|
UINT256 sig_x_prime256;
|
451 |
|
|
UINT192 sig_x_prime192;
|
452 |
|
|
UINT128 sig_x;
|
453 |
|
|
int exp_x;
|
454 |
|
|
|
455 |
|
|
BID_SWAP128 (x);
|
456 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) {
|
457 |
|
|
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) {
|
458 |
|
|
res = signalingNaN;
|
459 |
|
|
} else {
|
460 |
|
|
res = quietNaN;
|
461 |
|
|
}
|
462 |
|
|
BID_RETURN (res);
|
463 |
|
|
}
|
464 |
|
|
if ((x.w[1] & MASK_INF) == MASK_INF) {
|
465 |
|
|
if ((x.w[1] & MASK_SIGN) == MASK_SIGN) {
|
466 |
|
|
res = negativeInfinity;
|
467 |
|
|
} else {
|
468 |
|
|
res = positiveInfinity;
|
469 |
|
|
}
|
470 |
|
|
BID_RETURN (res);
|
471 |
|
|
}
|
472 |
|
|
// decode number into exponent and significand
|
473 |
|
|
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
|
474 |
|
|
sig_x.w[0] = x.w[0];
|
475 |
|
|
// check for zero or non-canonical
|
476 |
|
|
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|
477 |
|
|
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
|
478 |
|
|
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|
479 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)
|
480 |
|
|
|| ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
|
481 |
|
|
if ((x.w[1] & MASK_SIGN) == MASK_SIGN) {
|
482 |
|
|
res = negativeZero;
|
483 |
|
|
} else {
|
484 |
|
|
res = positiveZero;
|
485 |
|
|
}
|
486 |
|
|
BID_RETURN (res);
|
487 |
|
|
}
|
488 |
|
|
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
|
489 |
|
|
// if exponent is less than -6176, the number may be subnormal
|
490 |
|
|
// (less than the smallest normal value)
|
491 |
|
|
// the smallest normal value is 1 x 10^-6143 = 10^33 x 10^-6176
|
492 |
|
|
// if (exp_x - 6176 < -6143)
|
493 |
|
|
if (exp_x < 33) { // sig_x * 10^exp_x
|
494 |
|
|
if (exp_x > 19) {
|
495 |
|
|
__mul_128x128_to_256 (sig_x_prime256, sig_x,
|
496 |
|
|
ten2k128[exp_x - 20]);
|
497 |
|
|
// 10^33 = 0x0000314dc6448d93_38c15b0a00000000
|
498 |
|
|
if ((sig_x_prime256.w[3] == 0) && (sig_x_prime256.w[2] == 0)
|
499 |
|
|
&& ((sig_x_prime256.w[1] < 0x0000314dc6448d93ull)
|
500 |
|
|
|| ((sig_x_prime256.w[1] == 0x0000314dc6448d93ull)
|
501 |
|
|
&& (sig_x_prime256.w[0] < 0x38c15b0a00000000ull)))) {
|
502 |
|
|
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN) ? negativeSubnormal :
|
503 |
|
|
positiveSubnormal;
|
504 |
|
|
BID_RETURN (res);
|
505 |
|
|
}
|
506 |
|
|
} else {
|
507 |
|
|
__mul_64x128_to_192 (sig_x_prime192, ten2k64[exp_x], sig_x);
|
508 |
|
|
// 10^33 = 0x0000314dc6448d93_38c15b0a00000000
|
509 |
|
|
if ((sig_x_prime192.w[2] == 0)
|
510 |
|
|
&& ((sig_x_prime192.w[1] < 0x0000314dc6448d93ull)
|
511 |
|
|
|| ((sig_x_prime192.w[1] == 0x0000314dc6448d93ull)
|
512 |
|
|
&& (sig_x_prime192.w[0] < 0x38c15b0a00000000ull)))) {
|
513 |
|
|
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN) ? negativeSubnormal :
|
514 |
|
|
positiveSubnormal;
|
515 |
|
|
BID_RETURN (res);
|
516 |
|
|
}
|
517 |
|
|
}
|
518 |
|
|
}
|
519 |
|
|
// otherwise, normal number, determine the sign
|
520 |
|
|
res =
|
521 |
|
|
((x.w[1] & MASK_SIGN) ==
|
522 |
|
|
MASK_SIGN) ? negativeNormal : positiveNormal;
|
523 |
|
|
BID_RETURN (res);
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
// true if the exponents of x and y are the same, false otherwise.
|
527 |
|
|
// The special cases of sameQuantum(NaN, NaN) and sameQuantum(Inf, Inf) are true
|
528 |
|
|
// If exactly one operand is infinite or exactly one operand is NaN, then false
|
529 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
530 |
|
|
void
|
531 |
|
|
bid128_sameQuantum (int *pres, UINT128 * px,
|
532 |
|
|
UINT128 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
533 |
|
|
UINT128 x = *px;
|
534 |
|
|
UINT128 y = *py;
|
535 |
|
|
#else
|
536 |
|
|
int
|
537 |
|
|
bid128_sameQuantum (UINT128 x,
|
538 |
|
|
UINT128 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
539 |
|
|
#endif
|
540 |
|
|
int res;
|
541 |
|
|
UINT64 x_exp, y_exp;
|
542 |
|
|
|
543 |
|
|
BID_SWAP128 (x);
|
544 |
|
|
BID_SWAP128 (y);
|
545 |
|
|
// if both operands are NaN, return true
|
546 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN
|
547 |
|
|
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
|
548 |
|
|
res = ((x.w[1] & MASK_NAN) == MASK_NAN
|
549 |
|
|
&& (y.w[1] & MASK_NAN) == MASK_NAN);
|
550 |
|
|
BID_RETURN (res);
|
551 |
|
|
}
|
552 |
|
|
// if both operands are INF, return true
|
553 |
|
|
if ((x.w[1] & MASK_INF) == MASK_INF
|
554 |
|
|
|| (y.w[1] & MASK_INF) == MASK_INF) {
|
555 |
|
|
res = ((x.w[1] & MASK_INF) == MASK_INF)
|
556 |
|
|
&& ((y.w[1] & MASK_INF) == MASK_INF);
|
557 |
|
|
BID_RETURN (res);
|
558 |
|
|
}
|
559 |
|
|
// decode exponents for both numbers, and return true if they match
|
560 |
|
|
if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) { // G0_G1=11
|
561 |
|
|
x_exp = (x.w[1] << 2) & MASK_EXP; // biased and shifted left 49 bits
|
562 |
|
|
} else { // G0_G1 != 11
|
563 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bits
|
564 |
|
|
}
|
565 |
|
|
if ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) { // G0_G1=11
|
566 |
|
|
y_exp = (y.w[1] << 2) & MASK_EXP; // biased and shifted left 49 bits
|
567 |
|
|
} else { // G0_G1 != 11
|
568 |
|
|
y_exp = y.w[1] & MASK_EXP; // biased and shifted left 49 bits
|
569 |
|
|
}
|
570 |
|
|
res = (x_exp == y_exp);
|
571 |
|
|
BID_RETURN (res);
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
575 |
|
|
void
|
576 |
|
|
bid128_totalOrder (int *pres, UINT128 * px,
|
577 |
|
|
UINT128 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
578 |
|
|
UINT128 x = *px;
|
579 |
|
|
UINT128 y = *py;
|
580 |
|
|
#else
|
581 |
|
|
int
|
582 |
|
|
bid128_totalOrder (UINT128 x,
|
583 |
|
|
UINT128 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
584 |
|
|
#endif
|
585 |
|
|
int res;
|
586 |
|
|
int exp_x, exp_y;
|
587 |
|
|
UINT128 sig_x, sig_y, pyld_y, pyld_x;
|
588 |
|
|
UINT192 sig_n_prime192;
|
589 |
|
|
UINT256 sig_n_prime256;
|
590 |
|
|
char x_is_zero = 0, y_is_zero = 0;
|
591 |
|
|
|
592 |
|
|
BID_SWAP128 (x);
|
593 |
|
|
BID_SWAP128 (y);
|
594 |
|
|
// NaN (CASE 1)
|
595 |
|
|
// if x and y are unordered numerically because either operand is NaN
|
596 |
|
|
// (1) totalOrder(-NaN, number) is true
|
597 |
|
|
// (2) totalOrder(number, +NaN) is true
|
598 |
|
|
// (3) if x and y are both NaN:
|
599 |
|
|
// i) negative sign bit < positive sign bit
|
600 |
|
|
// ii) signaling < quiet for +NaN, reverse for -NaN
|
601 |
|
|
// iii) lesser payload < greater payload for +NaN (reverse for -NaN)
|
602 |
|
|
// iv) else if bitwise identical (in canonical form), return 1
|
603 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) {
|
604 |
|
|
// if x is -NaN
|
605 |
|
|
if ((x.w[1] & MASK_SIGN) == MASK_SIGN) {
|
606 |
|
|
// return true, unless y is -NaN also
|
607 |
|
|
if ((y.w[1] & MASK_NAN) != MASK_NAN
|
608 |
|
|
|| (y.w[1] & MASK_SIGN) != MASK_SIGN) {
|
609 |
|
|
res = 1; // y is a number, return 1
|
610 |
|
|
BID_RETURN (res);
|
611 |
|
|
} else { // if y and x are both -NaN
|
612 |
|
|
pyld_x.w[1] = x.w[1] & 0x00003fffffffffffull;
|
613 |
|
|
pyld_x.w[0] = x.w[0];
|
614 |
|
|
pyld_y.w[1] = y.w[1] & 0x00003fffffffffffull;
|
615 |
|
|
pyld_y.w[0] = y.w[0];
|
616 |
|
|
if ((pyld_x.w[1] > 0x0000314dc6448d93ull)
|
617 |
|
|
|| ((pyld_x.w[1] == 0x0000314dc6448d93ull)
|
618 |
|
|
&& (pyld_x.w[0] > 0x38c15b09ffffffffull))) {
|
619 |
|
|
pyld_x.w[1] = 0;
|
620 |
|
|
pyld_x.w[0] = 0;
|
621 |
|
|
}
|
622 |
|
|
if ((pyld_y.w[1] > 0x0000314dc6448d93ull)
|
623 |
|
|
|| ((pyld_y.w[1] == 0x0000314dc6448d93ull)
|
624 |
|
|
&& (pyld_y.w[0] > 0x38c15b09ffffffffull))) {
|
625 |
|
|
pyld_y.w[1] = 0;
|
626 |
|
|
pyld_y.w[0] = 0;
|
627 |
|
|
}
|
628 |
|
|
// if x and y are both -SNaN or both -QNaN, we have to compare payloads
|
629 |
|
|
// this statement evaluates to true if both are SNaN or QNaN
|
630 |
|
|
if (!
|
631 |
|
|
(((y.w[1] & MASK_SNAN) == MASK_SNAN) ^
|
632 |
|
|
((x.w[1] & MASK_SNAN) == MASK_SNAN))) {
|
633 |
|
|
// it comes down to the payload. we want to return true if x has a
|
634 |
|
|
// larger payload, or if the payloads are equal (canonical forms
|
635 |
|
|
// are bitwise identical)
|
636 |
|
|
if ((pyld_x.w[1] > pyld_y.w[1]) ||
|
637 |
|
|
((pyld_x.w[1] == pyld_y.w[1])
|
638 |
|
|
&& (pyld_x.w[0] >= pyld_y.w[0])))
|
639 |
|
|
res = 1;
|
640 |
|
|
else
|
641 |
|
|
res = 0;
|
642 |
|
|
BID_RETURN (res);
|
643 |
|
|
} else {
|
644 |
|
|
// either x = -SNaN and y = -QNaN or x = -QNaN and y = -SNaN
|
645 |
|
|
res = ((y.w[1] & MASK_SNAN) == MASK_SNAN);
|
646 |
|
|
// totalOrder (-QNaN, -SNaN) == 1
|
647 |
|
|
BID_RETURN (res);
|
648 |
|
|
}
|
649 |
|
|
}
|
650 |
|
|
} else { // x is +NaN
|
651 |
|
|
// return false, unless y is +NaN also
|
652 |
|
|
if ((y.w[1] & MASK_NAN) != MASK_NAN
|
653 |
|
|
|| (y.w[1] & MASK_SIGN) == MASK_SIGN) {
|
654 |
|
|
res = 0; // y is a number, return 1
|
655 |
|
|
BID_RETURN (res);
|
656 |
|
|
} else {
|
657 |
|
|
// x and y are both +NaN;
|
658 |
|
|
pyld_x.w[1] = x.w[1] & 0x00003fffffffffffull;
|
659 |
|
|
pyld_x.w[0] = x.w[0];
|
660 |
|
|
pyld_y.w[1] = y.w[1] & 0x00003fffffffffffull;
|
661 |
|
|
pyld_y.w[0] = y.w[0];
|
662 |
|
|
if ((pyld_x.w[1] > 0x0000314dc6448d93ull)
|
663 |
|
|
|| ((pyld_x.w[1] == 0x0000314dc6448d93ull)
|
664 |
|
|
&& (pyld_x.w[0] > 0x38c15b09ffffffffull))) {
|
665 |
|
|
pyld_x.w[1] = 0;
|
666 |
|
|
pyld_x.w[0] = 0;
|
667 |
|
|
}
|
668 |
|
|
if ((pyld_y.w[1] > 0x0000314dc6448d93ull)
|
669 |
|
|
|| ((pyld_y.w[1] == 0x0000314dc6448d93ull)
|
670 |
|
|
&& (pyld_y.w[0] > 0x38c15b09ffffffffull))) {
|
671 |
|
|
pyld_y.w[1] = 0;
|
672 |
|
|
pyld_y.w[0] = 0;
|
673 |
|
|
}
|
674 |
|
|
// if x and y are both +SNaN or both +QNaN, we have to compare payloads
|
675 |
|
|
// this statement evaluates to true if both are SNaN or QNaN
|
676 |
|
|
if (!
|
677 |
|
|
(((y.w[1] & MASK_SNAN) == MASK_SNAN) ^
|
678 |
|
|
((x.w[1] & MASK_SNAN) == MASK_SNAN))) {
|
679 |
|
|
// it comes down to the payload. we want to return true if x has a
|
680 |
|
|
// smaller payload, or if the payloads are equal (canonical forms
|
681 |
|
|
// are bitwise identical)
|
682 |
|
|
if ((pyld_x.w[1] < pyld_y.w[1]) ||
|
683 |
|
|
((pyld_x.w[1] == pyld_y.w[1])
|
684 |
|
|
&& (pyld_x.w[0] <= pyld_y.w[0])))
|
685 |
|
|
res = 1;
|
686 |
|
|
else
|
687 |
|
|
res = 0;
|
688 |
|
|
BID_RETURN (res);
|
689 |
|
|
} else {
|
690 |
|
|
// either x = SNaN and y = QNaN or x = QNaN and y = SNaN
|
691 |
|
|
res = ((x.w[1] & MASK_SNAN) == MASK_SNAN);
|
692 |
|
|
// totalOrder (-QNaN, -SNaN) == 1
|
693 |
|
|
BID_RETURN (res);
|
694 |
|
|
}
|
695 |
|
|
}
|
696 |
|
|
}
|
697 |
|
|
} else if ((y.w[1] & MASK_NAN) == MASK_NAN) {
|
698 |
|
|
// x is certainly not NAN in this case.
|
699 |
|
|
// return true if y is positive
|
700 |
|
|
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
|
701 |
|
|
BID_RETURN (res);
|
702 |
|
|
}
|
703 |
|
|
// SIMPLE (CASE 2)
|
704 |
|
|
// if all the bits are the same, the numbers are equal.
|
705 |
|
|
if ((x.w[1] == y.w[1]) && (x.w[0] == y.w[0])) {
|
706 |
|
|
res = 1;
|
707 |
|
|
BID_RETURN (res);
|
708 |
|
|
}
|
709 |
|
|
// OPPOSITE SIGNS (CASE 3)
|
710 |
|
|
// if signs are opposite, return 1 if x is negative
|
711 |
|
|
// (if x < y, totalOrder is true)
|
712 |
|
|
if (((x.w[1] & MASK_SIGN) == MASK_SIGN) ^ ((y.w[1] & MASK_SIGN) ==
|
713 |
|
|
MASK_SIGN)) {
|
714 |
|
|
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
|
715 |
|
|
BID_RETURN (res);
|
716 |
|
|
}
|
717 |
|
|
// INFINITY (CASE 4)
|
718 |
|
|
if ((x.w[1] & MASK_INF) == MASK_INF) {
|
719 |
|
|
// if x == neg_inf, return (y == neg_inf);
|
720 |
|
|
if ((x.w[1] & MASK_SIGN) == MASK_SIGN) {
|
721 |
|
|
res = 1;
|
722 |
|
|
BID_RETURN (res);
|
723 |
|
|
} else {
|
724 |
|
|
// x is positive infinity, only return1 if y is positive infinity as well
|
725 |
|
|
res = ((y.w[1] & MASK_INF) == MASK_INF);
|
726 |
|
|
BID_RETURN (res);
|
727 |
|
|
// && (y & MASK_SIGN) != MASK_SIGN); (we know y has same sign as x)
|
728 |
|
|
}
|
729 |
|
|
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
|
730 |
|
|
// x is finite, so:
|
731 |
|
|
// if y is +inf, x<y
|
732 |
|
|
// if y is -inf, x>y
|
733 |
|
|
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
|
734 |
|
|
BID_RETURN (res);
|
735 |
|
|
}
|
736 |
|
|
// CONVERT x
|
737 |
|
|
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
|
738 |
|
|
sig_x.w[0] = x.w[0];
|
739 |
|
|
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
|
740 |
|
|
|
741 |
|
|
// CHECK IF x IS CANONICAL
|
742 |
|
|
// 9999999999999999999999999999999999 (decimal) =
|
743 |
|
|
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
|
744 |
|
|
// [0, 10^34) is the 754r supported canonical range.
|
745 |
|
|
// If the value exceeds that, it is interpreted as 0.
|
746 |
|
|
if ((((sig_x.w[1] > 0x0001ed09bead87c0ull) ||
|
747 |
|
|
((sig_x.w[1] == 0x0001ed09bead87c0ull) &&
|
748 |
|
|
(sig_x.w[0] > 0x378d8e63ffffffffull))) &&
|
749 |
|
|
((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) ||
|
750 |
|
|
((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) ||
|
751 |
|
|
((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
|
752 |
|
|
x_is_zero = 1;
|
753 |
|
|
// check for the case where the exponent is shifted right by 2 bits!
|
754 |
|
|
if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {
|
755 |
|
|
exp_x = (x.w[1] >> 47) & 0x000000000003fffull;
|
756 |
|
|
}
|
757 |
|
|
}
|
758 |
|
|
// CONVERT y
|
759 |
|
|
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
|
760 |
|
|
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
|
761 |
|
|
sig_y.w[0] = y.w[0];
|
762 |
|
|
|
763 |
|
|
// CHECK IF y IS CANONICAL
|
764 |
|
|
// 9999999999999999999999999999999999(decimal) =
|
765 |
|
|
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
|
766 |
|
|
// [0, 10^34) is the 754r supported canonical range.
|
767 |
|
|
// If the value exceeds that, it is interpreted as 0.
|
768 |
|
|
if ((((sig_y.w[1] > 0x0001ed09bead87c0ull) ||
|
769 |
|
|
((sig_y.w[1] == 0x0001ed09bead87c0ull) &&
|
770 |
|
|
(sig_y.w[0] > 0x378d8e63ffffffffull))) &&
|
771 |
|
|
((y.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) ||
|
772 |
|
|
((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) ||
|
773 |
|
|
((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
|
774 |
|
|
y_is_zero = 1;
|
775 |
|
|
// check for the case where the exponent is shifted right by 2 bits!
|
776 |
|
|
if ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {
|
777 |
|
|
exp_y = (y.w[1] >> 47) & 0x000000000003fffull;
|
778 |
|
|
}
|
779 |
|
|
}
|
780 |
|
|
// ZERO (CASE 5)
|
781 |
|
|
// if x and y represent the same entities, and both are negative
|
782 |
|
|
// return true iff exp_x <= exp_y
|
783 |
|
|
if (x_is_zero && y_is_zero) {
|
784 |
|
|
// we know that signs must be the same because we would have caught it
|
785 |
|
|
// in case3 if signs were different
|
786 |
|
|
// totalOrder(x,y) iff exp_x >= exp_y for negative numbers
|
787 |
|
|
// totalOrder(x,y) iff exp_x <= exp_y for positive numbers
|
788 |
|
|
if (exp_x == exp_y) {
|
789 |
|
|
res = 1;
|
790 |
|
|
BID_RETURN (res);
|
791 |
|
|
}
|
792 |
|
|
res = ((exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
|
793 |
|
|
BID_RETURN (res);
|
794 |
|
|
}
|
795 |
|
|
// if x is zero and y isn't, clearly x has the smaller payload
|
796 |
|
|
if (x_is_zero) {
|
797 |
|
|
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
|
798 |
|
|
BID_RETURN (res);
|
799 |
|
|
}
|
800 |
|
|
// if y is zero, and x isn't, clearly y has the smaller payload
|
801 |
|
|
if (y_is_zero) {
|
802 |
|
|
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
|
803 |
|
|
BID_RETURN (res);
|
804 |
|
|
}
|
805 |
|
|
// REDUNDANT REPRESENTATIONS (CASE 6)
|
806 |
|
|
// if both components are either bigger or smaller
|
807 |
|
|
if (((sig_x.w[1] > sig_y.w[1])
|
808 |
|
|
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
|
809 |
|
|
&& exp_x >= exp_y) {
|
810 |
|
|
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
|
811 |
|
|
BID_RETURN (res);
|
812 |
|
|
}
|
813 |
|
|
if (((sig_x.w[1] < sig_y.w[1])
|
814 |
|
|
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
|
815 |
|
|
&& exp_x <= exp_y) {
|
816 |
|
|
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
|
817 |
|
|
BID_RETURN (res);
|
818 |
|
|
}
|
819 |
|
|
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
|
820 |
|
|
if (exp_x > exp_y) {
|
821 |
|
|
// if exp_x is 33 greater than exp_y, it is definitely larger,
|
822 |
|
|
// so no need for compensation
|
823 |
|
|
if (exp_x - exp_y > 33) {
|
824 |
|
|
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
|
825 |
|
|
BID_RETURN (res);
|
826 |
|
|
// difference cannot be greater than 10^33
|
827 |
|
|
}
|
828 |
|
|
// otherwise adjust the x significand upwards
|
829 |
|
|
if (exp_x - exp_y > 19) {
|
830 |
|
|
__mul_128x128_to_256 (sig_n_prime256, sig_x,
|
831 |
|
|
ten2k128[exp_x - exp_y - 20]);
|
832 |
|
|
// the compensated significands are equal (ie "x and y represent the same
|
833 |
|
|
// entities") return 1 if (negative && expx > expy) ||
|
834 |
|
|
// (positive && expx < expy)
|
835 |
|
|
if ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
|
836 |
|
|
&& (sig_n_prime256.w[1] == sig_y.w[1])
|
837 |
|
|
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
|
838 |
|
|
// the case exp_x == exp_y cannot occur, because all bits must be
|
839 |
|
|
// the same - would have been caught if (x == y)
|
840 |
|
|
res = ((exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
|
841 |
|
|
BID_RETURN (res);
|
842 |
|
|
}
|
843 |
|
|
// if positive, return 1 if adjusted x is smaller than y
|
844 |
|
|
res = (((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
|
845 |
|
|
&& ((sig_n_prime256.w[1] < sig_y.w[1])
|
846 |
|
|
|| (sig_n_prime256.w[1] == sig_y.w[1]
|
847 |
|
|
&& sig_n_prime256.w[0] <
|
848 |
|
|
sig_y.w[0]))) ^ ((x.w[1] & MASK_SIGN) ==
|
849 |
|
|
MASK_SIGN));
|
850 |
|
|
BID_RETURN (res);
|
851 |
|
|
}
|
852 |
|
|
__mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_x - exp_y], sig_x);
|
853 |
|
|
// if positive, return whichever significand is larger
|
854 |
|
|
// (converse if negative)
|
855 |
|
|
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
|
856 |
|
|
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
|
857 |
|
|
res = ((exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
|
858 |
|
|
BID_RETURN (res);
|
859 |
|
|
}
|
860 |
|
|
res = (((sig_n_prime192.w[2] == 0)
|
861 |
|
|
&& ((sig_n_prime192.w[1] < sig_y.w[1])
|
862 |
|
|
|| (sig_n_prime192.w[1] == sig_y.w[1]
|
863 |
|
|
&& sig_n_prime192.w[0] <
|
864 |
|
|
sig_y.w[0]))) ^ ((x.w[1] & MASK_SIGN) ==
|
865 |
|
|
MASK_SIGN));
|
866 |
|
|
BID_RETURN (res);
|
867 |
|
|
}
|
868 |
|
|
// if exp_x is 33 less than exp_y, it is definitely smaller,
|
869 |
|
|
// no need for compensation
|
870 |
|
|
if (exp_y - exp_x > 33) {
|
871 |
|
|
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
|
872 |
|
|
BID_RETURN (res);
|
873 |
|
|
}
|
874 |
|
|
if (exp_y - exp_x > 19) {
|
875 |
|
|
// adjust the y significand upwards
|
876 |
|
|
__mul_128x128_to_256 (sig_n_prime256, sig_y,
|
877 |
|
|
ten2k128[exp_y - exp_x - 20]);
|
878 |
|
|
// if x and y represent the same entities and both are negative
|
879 |
|
|
// return true iff exp_x <= exp_y
|
880 |
|
|
if ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
|
881 |
|
|
&& (sig_n_prime256.w[1] == sig_x.w[1])
|
882 |
|
|
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
|
883 |
|
|
res = (exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN);
|
884 |
|
|
BID_RETURN (res);
|
885 |
|
|
}
|
886 |
|
|
// values are not equal, for positive numbers return 1 if x is less than y
|
887 |
|
|
// and 0 otherwise
|
888 |
|
|
res = (((sig_n_prime256.w[3] != 0) ||
|
889 |
|
|
// if upper128 bits of compensated y are non-zero, y is bigger
|
890 |
|
|
(sig_n_prime256.w[2] != 0) ||
|
891 |
|
|
// if upper128 bits of compensated y are non-zero, y is bigger
|
892 |
|
|
(sig_n_prime256.w[1] > sig_x.w[1]) ||
|
893 |
|
|
// if compensated y is bigger, y is bigger
|
894 |
|
|
(sig_n_prime256.w[1] == sig_x.w[1]
|
895 |
|
|
&& sig_n_prime256.w[0] >
|
896 |
|
|
sig_x.w[0])) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
|
897 |
|
|
BID_RETURN (res);
|
898 |
|
|
}
|
899 |
|
|
__mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_y - exp_x], sig_y);
|
900 |
|
|
if ((sig_n_prime192.w[2] == 0) && (sig_n_prime192.w[1] == sig_x.w[1])
|
901 |
|
|
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
|
902 |
|
|
res = (exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN);
|
903 |
|
|
BID_RETURN (res);
|
904 |
|
|
}
|
905 |
|
|
res = (((sig_n_prime192.w[2] != 0) ||
|
906 |
|
|
// if upper128 bits of compensated y are non-zero, y is bigger
|
907 |
|
|
(sig_n_prime192.w[1] > sig_x.w[1]) ||
|
908 |
|
|
// if compensated y is bigger, y is bigger
|
909 |
|
|
(sig_n_prime192.w[1] == sig_x.w[1]
|
910 |
|
|
&& sig_n_prime192.w[0] >
|
911 |
|
|
sig_x.w[0])) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
|
912 |
|
|
BID_RETURN (res);
|
913 |
|
|
}
|
914 |
|
|
|
915 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
916 |
|
|
void
|
917 |
|
|
bid128_totalOrderMag (int *pres, UINT128 * px,
|
918 |
|
|
UINT128 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
919 |
|
|
UINT128 x = *px;
|
920 |
|
|
UINT128 y = *py;
|
921 |
|
|
#else
|
922 |
|
|
int
|
923 |
|
|
bid128_totalOrderMag (UINT128 x,
|
924 |
|
|
UINT128 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
925 |
|
|
#endif
|
926 |
|
|
int res;
|
927 |
|
|
int exp_x, exp_y;
|
928 |
|
|
UINT128 sig_x, sig_y, pyld_y, pyld_x;
|
929 |
|
|
UINT192 sig_n_prime192;
|
930 |
|
|
UINT256 sig_n_prime256;
|
931 |
|
|
char x_is_zero = 0, y_is_zero = 0;
|
932 |
|
|
|
933 |
|
|
BID_SWAP128 (x);
|
934 |
|
|
BID_SWAP128 (y);
|
935 |
|
|
x.w[1] = x.w[1] & 0x7fffffffffffffffull;
|
936 |
|
|
y.w[1] = y.w[1] & 0x7fffffffffffffffull;
|
937 |
|
|
|
938 |
|
|
// NaN (CASE 1)
|
939 |
|
|
// if x and y are unordered numerically because either operand is NaN
|
940 |
|
|
// (1) totalOrder(number, +NaN) is true
|
941 |
|
|
// (2) if x and y are both NaN:
|
942 |
|
|
// i) signaling < quiet for +NaN
|
943 |
|
|
// ii) lesser payload < greater payload for +NaN
|
944 |
|
|
// iii) else if bitwise identical (in canonical form), return 1
|
945 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) {
|
946 |
|
|
// x is +NaN
|
947 |
|
|
// return false, unless y is +NaN also
|
948 |
|
|
if ((y.w[1] & MASK_NAN) != MASK_NAN) {
|
949 |
|
|
res = 0; // y is a number, return 0
|
950 |
|
|
BID_RETURN (res);
|
951 |
|
|
} else {
|
952 |
|
|
// x and y are both +NaN;
|
953 |
|
|
pyld_x.w[1] = x.w[1] & 0x00003fffffffffffull;
|
954 |
|
|
pyld_x.w[0] = x.w[0];
|
955 |
|
|
pyld_y.w[1] = y.w[1] & 0x00003fffffffffffull;
|
956 |
|
|
pyld_y.w[0] = y.w[0];
|
957 |
|
|
if ((pyld_x.w[1] > 0x0000314dc6448d93ull)
|
958 |
|
|
|| ((pyld_x.w[1] == 0x0000314dc6448d93ull)
|
959 |
|
|
&& (pyld_x.w[0] > 0x38c15b09ffffffffull))) {
|
960 |
|
|
pyld_x.w[1] = 0;
|
961 |
|
|
pyld_x.w[0] = 0;
|
962 |
|
|
}
|
963 |
|
|
if ((pyld_y.w[1] > 0x0000314dc6448d93ull)
|
964 |
|
|
|| ((pyld_y.w[1] == 0x0000314dc6448d93ull)
|
965 |
|
|
&& (pyld_y.w[0] > 0x38c15b09ffffffffull))) {
|
966 |
|
|
pyld_y.w[1] = 0;
|
967 |
|
|
pyld_y.w[0] = 0;
|
968 |
|
|
}
|
969 |
|
|
// if x and y are both +SNaN or both +QNaN, we have to compare payloads
|
970 |
|
|
// this statement evaluates to true if both are SNaN or QNaN
|
971 |
|
|
if (!
|
972 |
|
|
(((y.w[1] & MASK_SNAN) == MASK_SNAN) ^
|
973 |
|
|
((x.w[1] & MASK_SNAN) == MASK_SNAN))) {
|
974 |
|
|
// it comes down to the payload. we want to return true if x has a
|
975 |
|
|
// smaller payload, or if the payloads are equal (canonical forms
|
976 |
|
|
// are bitwise identical)
|
977 |
|
|
if ((pyld_x.w[1] < pyld_y.w[1]) ||
|
978 |
|
|
((pyld_x.w[1] == pyld_y.w[1])
|
979 |
|
|
&& (pyld_x.w[0] <= pyld_y.w[0]))) {
|
980 |
|
|
res = 1;
|
981 |
|
|
} else {
|
982 |
|
|
res = 0;
|
983 |
|
|
}
|
984 |
|
|
BID_RETURN (res);
|
985 |
|
|
} else {
|
986 |
|
|
// either x = SNaN and y = QNaN or x = QNaN and y = SNaN
|
987 |
|
|
res = ((x.w[1] & MASK_SNAN) == MASK_SNAN);
|
988 |
|
|
// totalOrder (-QNaN, -SNaN) == 1
|
989 |
|
|
BID_RETURN (res);
|
990 |
|
|
}
|
991 |
|
|
}
|
992 |
|
|
} else if ((y.w[1] & MASK_NAN) == MASK_NAN) {
|
993 |
|
|
// x is certainly not NAN in this case.
|
994 |
|
|
// return true because y is positive
|
995 |
|
|
res = 1;
|
996 |
|
|
BID_RETURN (res);
|
997 |
|
|
}
|
998 |
|
|
// SIMPLE (CASE 2)
|
999 |
|
|
// if all the bits are the same, the numbers are equal.
|
1000 |
|
|
if ((x.w[1] == y.w[1]) && (x.w[0] == y.w[0])) {
|
1001 |
|
|
res = 1;
|
1002 |
|
|
BID_RETURN (res);
|
1003 |
|
|
}
|
1004 |
|
|
// INFINITY (CASE 3)
|
1005 |
|
|
if ((x.w[1] & MASK_INF) == MASK_INF) {
|
1006 |
|
|
// x is positive infinity, only return 1 if y is positive infinity as well
|
1007 |
|
|
res = ((y.w[1] & MASK_INF) == MASK_INF);
|
1008 |
|
|
BID_RETURN (res);
|
1009 |
|
|
// (we know y has same sign as x)
|
1010 |
|
|
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
|
1011 |
|
|
// x is finite, so:
|
1012 |
|
|
// since y is +inf, x<y
|
1013 |
|
|
res = 1;
|
1014 |
|
|
BID_RETURN (res);
|
1015 |
|
|
} else {
|
1016 |
|
|
; // continue
|
1017 |
|
|
}
|
1018 |
|
|
|
1019 |
|
|
// CONVERT x
|
1020 |
|
|
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
|
1021 |
|
|
sig_x.w[0] = x.w[0];
|
1022 |
|
|
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
|
1023 |
|
|
|
1024 |
|
|
// CHECK IF x IS CANONICAL
|
1025 |
|
|
// 9999999999999999999999999999999999 (decimal) =
|
1026 |
|
|
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
|
1027 |
|
|
// [0, 10^34) is the 754r supported canonical range.
|
1028 |
|
|
// If the value exceeds that, it is interpreted as 0.
|
1029 |
|
|
if ((((sig_x.w[1] > 0x0001ed09bead87c0ull) ||
|
1030 |
|
|
((sig_x.w[1] == 0x0001ed09bead87c0ull) &&
|
1031 |
|
|
(sig_x.w[0] > 0x378d8e63ffffffffull))) &&
|
1032 |
|
|
((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) ||
|
1033 |
|
|
((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) ||
|
1034 |
|
|
((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
|
1035 |
|
|
x_is_zero = 1;
|
1036 |
|
|
// check for the case where the exponent is shifted right by 2 bits!
|
1037 |
|
|
if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {
|
1038 |
|
|
exp_x = (x.w[1] >> 47) & 0x000000000003fffull;
|
1039 |
|
|
}
|
1040 |
|
|
}
|
1041 |
|
|
// CONVERT y
|
1042 |
|
|
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
|
1043 |
|
|
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
|
1044 |
|
|
sig_y.w[0] = y.w[0];
|
1045 |
|
|
|
1046 |
|
|
// CHECK IF y IS CANONICAL
|
1047 |
|
|
// 9999999999999999999999999999999999(decimal) =
|
1048 |
|
|
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
|
1049 |
|
|
// [0, 10^34) is the 754r supported canonical range.
|
1050 |
|
|
// If the value exceeds that, it is interpreted as 0.
|
1051 |
|
|
if ((((sig_y.w[1] > 0x0001ed09bead87c0ull) ||
|
1052 |
|
|
((sig_y.w[1] == 0x0001ed09bead87c0ull) &&
|
1053 |
|
|
(sig_y.w[0] > 0x378d8e63ffffffffull))) &&
|
1054 |
|
|
((y.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) ||
|
1055 |
|
|
((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) ||
|
1056 |
|
|
((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
|
1057 |
|
|
y_is_zero = 1;
|
1058 |
|
|
// check for the case where the exponent is shifted right by 2 bits!
|
1059 |
|
|
if ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {
|
1060 |
|
|
exp_y = (y.w[1] >> 47) & 0x000000000003fffull;
|
1061 |
|
|
}
|
1062 |
|
|
}
|
1063 |
|
|
// ZERO (CASE 4)
|
1064 |
|
|
if (x_is_zero && y_is_zero) {
|
1065 |
|
|
// we know that signs must be the same because we would have caught it
|
1066 |
|
|
// in case3 if signs were different
|
1067 |
|
|
// totalOrder(x,y) iff exp_x <= exp_y for positive numbers
|
1068 |
|
|
if (exp_x == exp_y) {
|
1069 |
|
|
res = 1;
|
1070 |
|
|
BID_RETURN (res);
|
1071 |
|
|
}
|
1072 |
|
|
res = (exp_x <= exp_y);
|
1073 |
|
|
BID_RETURN (res);
|
1074 |
|
|
}
|
1075 |
|
|
// if x is zero and y isn't, clearly x has the smaller payload
|
1076 |
|
|
if (x_is_zero) {
|
1077 |
|
|
res = 1;
|
1078 |
|
|
BID_RETURN (res);
|
1079 |
|
|
}
|
1080 |
|
|
// if y is zero, and x isn't, clearly y has the smaller payload
|
1081 |
|
|
if (y_is_zero) {
|
1082 |
|
|
res = 0;
|
1083 |
|
|
BID_RETURN (res);
|
1084 |
|
|
}
|
1085 |
|
|
// REDUNDANT REPRESENTATIONS (CASE 5)
|
1086 |
|
|
// if both components are either bigger or smaller
|
1087 |
|
|
if (((sig_x.w[1] > sig_y.w[1])
|
1088 |
|
|
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
|
1089 |
|
|
&& exp_x >= exp_y) {
|
1090 |
|
|
res = 0;
|
1091 |
|
|
BID_RETURN (res);
|
1092 |
|
|
}
|
1093 |
|
|
if (((sig_x.w[1] < sig_y.w[1])
|
1094 |
|
|
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
|
1095 |
|
|
&& exp_x <= exp_y) {
|
1096 |
|
|
res = 1;
|
1097 |
|
|
BID_RETURN (res);
|
1098 |
|
|
}
|
1099 |
|
|
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
|
1100 |
|
|
if (exp_x > exp_y) {
|
1101 |
|
|
// if exp_x is 33 greater than exp_y, it is definitely larger,
|
1102 |
|
|
// so no need for compensation
|
1103 |
|
|
if (exp_x - exp_y > 33) {
|
1104 |
|
|
res = 0; // difference cannot be greater than 10^33
|
1105 |
|
|
BID_RETURN (res);
|
1106 |
|
|
}
|
1107 |
|
|
// otherwise adjust the x significand upwards
|
1108 |
|
|
if (exp_x - exp_y > 19) {
|
1109 |
|
|
__mul_128x128_to_256 (sig_n_prime256, sig_x,
|
1110 |
|
|
ten2k128[exp_x - exp_y - 20]);
|
1111 |
|
|
// the compensated significands are equal (ie "x and y represent the same
|
1112 |
|
|
// entities") return 1 if (negative && expx > expy) ||
|
1113 |
|
|
// (positive && expx < expy)
|
1114 |
|
|
if ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
|
1115 |
|
|
&& (sig_n_prime256.w[1] == sig_y.w[1])
|
1116 |
|
|
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
|
1117 |
|
|
// the case (exp_x == exp_y) cannot occur, because all bits must be
|
1118 |
|
|
// the same - would have been caught if (x == y)
|
1119 |
|
|
res = (exp_x <= exp_y);
|
1120 |
|
|
BID_RETURN (res);
|
1121 |
|
|
}
|
1122 |
|
|
// since positive, return 1 if adjusted x is smaller than y
|
1123 |
|
|
res = ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
|
1124 |
|
|
&& ((sig_n_prime256.w[1] < sig_y.w[1])
|
1125 |
|
|
|| (sig_n_prime256.w[1] == sig_y.w[1]
|
1126 |
|
|
&& sig_n_prime256.w[0] < sig_y.w[0])));
|
1127 |
|
|
BID_RETURN (res);
|
1128 |
|
|
}
|
1129 |
|
|
__mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_x - exp_y], sig_x);
|
1130 |
|
|
// if positive, return whichever significand is larger
|
1131 |
|
|
// (converse if negative)
|
1132 |
|
|
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
|
1133 |
|
|
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
|
1134 |
|
|
res = (exp_x <= exp_y);
|
1135 |
|
|
BID_RETURN (res);
|
1136 |
|
|
}
|
1137 |
|
|
res = ((sig_n_prime192.w[2] == 0)
|
1138 |
|
|
&& ((sig_n_prime192.w[1] < sig_y.w[1])
|
1139 |
|
|
|| (sig_n_prime192.w[1] == sig_y.w[1]
|
1140 |
|
|
&& sig_n_prime192.w[0] < sig_y.w[0])));
|
1141 |
|
|
BID_RETURN (res);
|
1142 |
|
|
}
|
1143 |
|
|
// if exp_x is 33 less than exp_y, it is definitely smaller,
|
1144 |
|
|
// no need for compensation
|
1145 |
|
|
if (exp_y - exp_x > 33) {
|
1146 |
|
|
res = 1;
|
1147 |
|
|
BID_RETURN (res);
|
1148 |
|
|
}
|
1149 |
|
|
if (exp_y - exp_x > 19) {
|
1150 |
|
|
// adjust the y significand upwards
|
1151 |
|
|
__mul_128x128_to_256 (sig_n_prime256, sig_y,
|
1152 |
|
|
ten2k128[exp_y - exp_x - 20]);
|
1153 |
|
|
if ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
|
1154 |
|
|
&& (sig_n_prime256.w[1] == sig_x.w[1])
|
1155 |
|
|
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
|
1156 |
|
|
res = (exp_x <= exp_y);
|
1157 |
|
|
BID_RETURN (res);
|
1158 |
|
|
}
|
1159 |
|
|
// values are not equal, for positive numbers return 1 if x is less than y
|
1160 |
|
|
// and 0 otherwise
|
1161 |
|
|
res = ((sig_n_prime256.w[3] != 0) ||
|
1162 |
|
|
// if upper128 bits of compensated y are non-zero, y is bigger
|
1163 |
|
|
(sig_n_prime256.w[2] != 0) ||
|
1164 |
|
|
// if upper128 bits of compensated y are non-zero, y is bigger
|
1165 |
|
|
(sig_n_prime256.w[1] > sig_x.w[1]) ||
|
1166 |
|
|
// if compensated y is bigger, y is bigger
|
1167 |
|
|
(sig_n_prime256.w[1] == sig_x.w[1]
|
1168 |
|
|
&& sig_n_prime256.w[0] > sig_x.w[0]));
|
1169 |
|
|
BID_RETURN (res);
|
1170 |
|
|
}
|
1171 |
|
|
__mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_y - exp_x], sig_y);
|
1172 |
|
|
if ((sig_n_prime192.w[2] == 0) && (sig_n_prime192.w[1] == sig_x.w[1])
|
1173 |
|
|
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
|
1174 |
|
|
res = (exp_x <= exp_y);
|
1175 |
|
|
BID_RETURN (res);
|
1176 |
|
|
}
|
1177 |
|
|
res = ((sig_n_prime192.w[2] != 0) ||
|
1178 |
|
|
// if upper128 bits of compensated y are non-zero, y is bigger
|
1179 |
|
|
(sig_n_prime192.w[1] > sig_x.w[1]) ||
|
1180 |
|
|
// if compensated y is bigger, y is bigger
|
1181 |
|
|
(sig_n_prime192.w[1] == sig_x.w[1]
|
1182 |
|
|
&& sig_n_prime192.w[0] > sig_x.w[0]));
|
1183 |
|
|
BID_RETURN (res);
|
1184 |
|
|
}
|
1185 |
|
|
|
1186 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
1187 |
|
|
void
|
1188 |
|
|
bid128_radix (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
1189 |
|
|
UINT128 x = *px;
|
1190 |
|
|
#else
|
1191 |
|
|
int
|
1192 |
|
|
bid128_radix (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
1193 |
|
|
#endif
|
1194 |
|
|
int res;
|
1195 |
|
|
if (x.w[LOW_128W]) // dummy test
|
1196 |
|
|
res = 10;
|
1197 |
|
|
else
|
1198 |
|
|
res = 10;
|
1199 |
|
|
BID_RETURN (res);
|
1200 |
|
|
}
|