1 |
272 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
2 |
|
|
|
3 |
|
|
This file is part of GCC.
|
4 |
|
|
|
5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
6 |
|
|
the terms of the GNU General Public License as published by the Free
|
7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
8 |
|
|
version.
|
9 |
|
|
|
10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
13 |
|
|
for more details.
|
14 |
|
|
|
15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
17 |
|
|
3.1, as published by the Free Software Foundation.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License and
|
20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
#include "bid_internal.h"
|
25 |
|
|
|
26 |
|
|
/*****************************************************************************
|
27 |
|
|
* BID128_to_int32_rnint
|
28 |
|
|
****************************************************************************/
|
29 |
|
|
|
30 |
|
|
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (int, bid128_to_int32_rnint, x)
|
31 |
|
|
|
32 |
|
|
int res;
|
33 |
|
|
UINT64 x_sign;
|
34 |
|
|
UINT64 x_exp;
|
35 |
|
|
int exp; // unbiased exponent
|
36 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
37 |
|
|
UINT64 tmp64;
|
38 |
|
|
BID_UI64DOUBLE tmp1;
|
39 |
|
|
unsigned int x_nr_bits;
|
40 |
|
|
int q, ind, shift;
|
41 |
|
|
UINT128 C1, C;
|
42 |
|
|
UINT128 Cstar; // C* represents up to 34 decimal digits ~ 113 bits
|
43 |
|
|
UINT256 fstar;
|
44 |
|
|
UINT256 P256;
|
45 |
|
|
|
46 |
|
|
// unpack x
|
47 |
|
|
x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
48 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
49 |
|
|
C1.w[1] = x.w[1] & MASK_COEFF;
|
50 |
|
|
C1.w[0] = x.w[0];
|
51 |
|
|
|
52 |
|
|
// check for NaN or Infinity
|
53 |
|
|
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
|
54 |
|
|
// x is special
|
55 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
|
56 |
|
|
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
57 |
|
|
// set invalid flag
|
58 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
59 |
|
|
// return Integer Indefinite
|
60 |
|
|
res = 0x80000000;
|
61 |
|
|
} else { // x is QNaN
|
62 |
|
|
// set invalid flag
|
63 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
64 |
|
|
// return Integer Indefinite
|
65 |
|
|
res = 0x80000000;
|
66 |
|
|
}
|
67 |
|
|
BID_RETURN (res);
|
68 |
|
|
} else { // x is not a NaN, so it must be infinity
|
69 |
|
|
if (!x_sign) { // x is +inf
|
70 |
|
|
// set invalid flag
|
71 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
72 |
|
|
// return Integer Indefinite
|
73 |
|
|
res = 0x80000000;
|
74 |
|
|
} else { // x is -inf
|
75 |
|
|
// set invalid flag
|
76 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
77 |
|
|
// return Integer Indefinite
|
78 |
|
|
res = 0x80000000;
|
79 |
|
|
}
|
80 |
|
|
BID_RETURN (res);
|
81 |
|
|
}
|
82 |
|
|
}
|
83 |
|
|
// check for non-canonical values (after the check for special values)
|
84 |
|
|
if ((C1.w[1] > 0x0001ed09bead87c0ull)
|
85 |
|
|
|| (C1.w[1] == 0x0001ed09bead87c0ull
|
86 |
|
|
&& (C1.w[0] > 0x378d8e63ffffffffull))
|
87 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
88 |
|
|
res = 0x00000000;
|
89 |
|
|
BID_RETURN (res);
|
90 |
|
|
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
|
91 |
|
|
// x is 0
|
92 |
|
|
res = 0x00000000;
|
93 |
|
|
BID_RETURN (res);
|
94 |
|
|
} else { // x is not special and is not zero
|
95 |
|
|
|
96 |
|
|
// q = nr. of decimal digits in x
|
97 |
|
|
// determine first the nr. of bits in x
|
98 |
|
|
if (C1.w[1] == 0) {
|
99 |
|
|
if (C1.w[0] >= 0x0020000000000000ull) { // x >= 2^53
|
100 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
101 |
|
|
if (C1.w[0] >= 0x0000000100000000ull) { // x >= 2^32
|
102 |
|
|
tmp1.d = (double) (C1.w[0] >> 32); // exact conversion
|
103 |
|
|
x_nr_bits =
|
104 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
105 |
|
|
} else { // x < 2^32
|
106 |
|
|
tmp1.d = (double) (C1.w[0]); // exact conversion
|
107 |
|
|
x_nr_bits =
|
108 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
109 |
|
|
}
|
110 |
|
|
} else { // if x < 2^53
|
111 |
|
|
tmp1.d = (double) C1.w[0]; // exact conversion
|
112 |
|
|
x_nr_bits =
|
113 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
114 |
|
|
}
|
115 |
|
|
} else { // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
|
116 |
|
|
tmp1.d = (double) C1.w[1]; // exact conversion
|
117 |
|
|
x_nr_bits =
|
118 |
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
119 |
|
|
}
|
120 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
121 |
|
|
if (q == 0) {
|
122 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
123 |
|
|
if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
|
124 |
|
|
|| (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
|
125 |
|
|
&& C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
|
126 |
|
|
q++;
|
127 |
|
|
}
|
128 |
|
|
exp = (x_exp >> 49) - 6176;
|
129 |
|
|
if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits)
|
130 |
|
|
// set invalid flag
|
131 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
132 |
|
|
// return Integer Indefinite
|
133 |
|
|
res = 0x80000000;
|
134 |
|
|
BID_RETURN (res);
|
135 |
|
|
} else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1)
|
136 |
|
|
// in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2...
|
137 |
|
|
// so x rounded to an integer may or may not fit in a signed 32-bit int
|
138 |
|
|
// the cases that do not fit are identified here; the ones that fit
|
139 |
|
|
// fall through and will be handled with other cases further,
|
140 |
|
|
// under '1 <= q + exp <= 10'
|
141 |
|
|
if (x_sign) { // if n < 0 and q + exp = 10
|
142 |
|
|
// if n < -2^31 - 1/2 then n is too large
|
143 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) > 2^31+1/2
|
144 |
|
|
// <=> 0.c(0)c(1)...c(q-1) * 10^11 > 0x500000005, 1<=q<=34
|
145 |
|
|
if (q <= 11) {
|
146 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
147 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
148 |
|
|
if (tmp64 > 0x500000005ull) {
|
149 |
|
|
// set invalid flag
|
150 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
151 |
|
|
// return Integer Indefinite
|
152 |
|
|
res = 0x80000000;
|
153 |
|
|
BID_RETURN (res);
|
154 |
|
|
}
|
155 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
156 |
|
|
// to '1 <= q + exp <= 10'
|
157 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
158 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 > 0x500000005 <=>
|
159 |
|
|
// C > 0x500000005 * 10^(q-11) where 1 <= q - 11 <= 23
|
160 |
|
|
// (scale 2^31+1/2 up)
|
161 |
|
|
tmp64 = 0x500000005ull;
|
162 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
163 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
164 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
165 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
166 |
|
|
}
|
167 |
|
|
if (C1.w[1] > C.w[1] || (C1.w[1] == C.w[1] && C1.w[0] > C.w[0])) {
|
168 |
|
|
// set invalid flag
|
169 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
170 |
|
|
// return Integer Indefinite
|
171 |
|
|
res = 0x80000000;
|
172 |
|
|
BID_RETURN (res);
|
173 |
|
|
}
|
174 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
175 |
|
|
// to '1 <= q + exp <= 10'
|
176 |
|
|
}
|
177 |
|
|
} else { // if n > 0 and q + exp = 10
|
178 |
|
|
// if n >= 2^31 - 1/2 then n is too large
|
179 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31-1/2
|
180 |
|
|
// too large if 0.c(0)c(1)...c(q-1) * 10^11 >= 0x4fffffffb, 1<=q<=34
|
181 |
|
|
if (q <= 11) {
|
182 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
183 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
184 |
|
|
if (tmp64 >= 0x4fffffffbull) {
|
185 |
|
|
// set invalid flag
|
186 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
187 |
|
|
// return Integer Indefinite
|
188 |
|
|
res = 0x80000000;
|
189 |
|
|
BID_RETURN (res);
|
190 |
|
|
}
|
191 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
192 |
|
|
// to '1 <= q + exp <= 10'
|
193 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
194 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x4fffffffb <=>
|
195 |
|
|
// C >= 0x4fffffffb * 10^(q-11) where 1 <= q - 11 <= 23
|
196 |
|
|
// (scale 2^31-1/2 up)
|
197 |
|
|
tmp64 = 0x4fffffffbull;
|
198 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
199 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
200 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
201 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
202 |
|
|
}
|
203 |
|
|
if (C1.w[1] > C.w[1]
|
204 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
205 |
|
|
// set invalid flag
|
206 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
207 |
|
|
// return Integer Indefinite
|
208 |
|
|
res = 0x80000000;
|
209 |
|
|
BID_RETURN (res);
|
210 |
|
|
}
|
211 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
212 |
|
|
// to '1 <= q + exp <= 10'
|
213 |
|
|
}
|
214 |
|
|
}
|
215 |
|
|
}
|
216 |
|
|
// n is not too large to be converted to int32: -2^31 - 1/2 < n < 2^31 - 1/2
|
217 |
|
|
// Note: some of the cases tested for above fall through to this point
|
218 |
|
|
if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1)
|
219 |
|
|
// return 0
|
220 |
|
|
res = 0x00000000;
|
221 |
|
|
BID_RETURN (res);
|
222 |
|
|
} else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1)
|
223 |
|
|
// if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
|
224 |
|
|
// res = 0
|
225 |
|
|
// else
|
226 |
|
|
// res = +/-1
|
227 |
|
|
ind = q - 1;
|
228 |
|
|
if (ind <= 18) { // 0 <= ind <= 18
|
229 |
|
|
if ((C1.w[1] == 0) && (C1.w[0] <= midpoint64[ind])) {
|
230 |
|
|
res = 0x00000000; // return 0
|
231 |
|
|
} else if (x_sign) { // n < 0
|
232 |
|
|
res = 0xffffffff; // return -1
|
233 |
|
|
} else { // n > 0
|
234 |
|
|
res = 0x00000001; // return +1
|
235 |
|
|
}
|
236 |
|
|
} else { // 19 <= ind <= 33
|
237 |
|
|
if ((C1.w[1] < midpoint128[ind - 19].w[1])
|
238 |
|
|
|| ((C1.w[1] == midpoint128[ind - 19].w[1])
|
239 |
|
|
&& (C1.w[0] <= midpoint128[ind - 19].w[0]))) {
|
240 |
|
|
res = 0x00000000; // return 0
|
241 |
|
|
} else if (x_sign) { // n < 0
|
242 |
|
|
res = 0xffffffff; // return -1
|
243 |
|
|
} else { // n > 0
|
244 |
|
|
res = 0x00000001; // return +1
|
245 |
|
|
}
|
246 |
|
|
}
|
247 |
|
|
} else { // if (1 <= q + exp <= 10, 1 <= q <= 34, -33 <= exp <= 9)
|
248 |
|
|
// -2^31-1/2 <= x <= -1 or 1 <= x < 2^31-1/2 so x can be rounded
|
249 |
|
|
// to nearest to a 32-bit signed integer
|
250 |
|
|
if (exp < 0) { // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 10
|
251 |
|
|
ind = -exp; // 1 <= ind <= 33; ind is a synonym for 'x'
|
252 |
|
|
// chop off ind digits from the lower part of C1
|
253 |
|
|
// C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
|
254 |
|
|
tmp64 = C1.w[0];
|
255 |
|
|
if (ind <= 19) {
|
256 |
|
|
C1.w[0] = C1.w[0] + midpoint64[ind - 1];
|
257 |
|
|
} else {
|
258 |
|
|
C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
|
259 |
|
|
C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
|
260 |
|
|
}
|
261 |
|
|
if (C1.w[0] < tmp64)
|
262 |
|
|
C1.w[1]++;
|
263 |
|
|
// calculate C* and f*
|
264 |
|
|
// C* is actually floor(C*) in this case
|
265 |
|
|
// C* and f* need shifting and masking, as shown by
|
266 |
|
|
// shiftright128[] and maskhigh128[]
|
267 |
|
|
// 1 <= x <= 33
|
268 |
|
|
// kx = 10^(-x) = ten2mk128[ind - 1]
|
269 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
270 |
|
|
// the approximation of 10^(-x) was rounded up to 118 bits
|
271 |
|
|
__mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
|
272 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
273 |
|
|
Cstar.w[1] = P256.w[3];
|
274 |
|
|
Cstar.w[0] = P256.w[2];
|
275 |
|
|
fstar.w[3] = 0;
|
276 |
|
|
fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
|
277 |
|
|
fstar.w[1] = P256.w[1];
|
278 |
|
|
fstar.w[0] = P256.w[0];
|
279 |
|
|
} else { // 22 <= ind - 1 <= 33
|
280 |
|
|
Cstar.w[1] = 0;
|
281 |
|
|
Cstar.w[0] = P256.w[3];
|
282 |
|
|
fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
|
283 |
|
|
fstar.w[2] = P256.w[2];
|
284 |
|
|
fstar.w[1] = P256.w[1];
|
285 |
|
|
fstar.w[0] = P256.w[0];
|
286 |
|
|
}
|
287 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
|
288 |
|
|
// if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
|
289 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
290 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
291 |
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
292 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
293 |
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
294 |
|
|
// else
|
295 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
296 |
|
|
// correct by Property 1)
|
297 |
|
|
// n = C* * 10^(e+x)
|
298 |
|
|
|
299 |
|
|
// shift right C* by Ex-128 = shiftright128[ind]
|
300 |
|
|
shift = shiftright128[ind - 1]; // 0 <= shift <= 102
|
301 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
302 |
|
|
Cstar.w[0] =
|
303 |
|
|
(Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
|
304 |
|
|
// redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
|
305 |
|
|
} else { // 22 <= ind - 1 <= 33
|
306 |
|
|
Cstar.w[0] = (Cstar.w[0] >> (shift - 64)); // 2 <= shift - 64 <= 38
|
307 |
|
|
}
|
308 |
|
|
// if the result was a midpoint it was rounded away from zero, so
|
309 |
|
|
// it will need a correction
|
310 |
|
|
// check for midpoints
|
311 |
|
|
if ((fstar.w[3] == 0) && (fstar.w[2] == 0)
|
312 |
|
|
&& (fstar.w[1] || fstar.w[0])
|
313 |
|
|
&& (fstar.w[1] < ten2mk128trunc[ind - 1].w[1]
|
314 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
315 |
|
|
&& fstar.w[0] <= ten2mk128trunc[ind - 1].w[0]))) {
|
316 |
|
|
// the result is a midpoint; round to nearest
|
317 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
|
318 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result >= 1
|
319 |
|
|
Cstar.w[0]--; // Cstar.w[0] is now even
|
320 |
|
|
} // else MP in [ODD, EVEN]
|
321 |
|
|
}
|
322 |
|
|
if (x_sign)
|
323 |
|
|
res = -Cstar.w[0];
|
324 |
|
|
else
|
325 |
|
|
res = Cstar.w[0];
|
326 |
|
|
} else if (exp == 0) {
|
327 |
|
|
// 1 <= q <= 10
|
328 |
|
|
// res = +/-C (exact)
|
329 |
|
|
if (x_sign)
|
330 |
|
|
res = -C1.w[0];
|
331 |
|
|
else
|
332 |
|
|
res = C1.w[0];
|
333 |
|
|
} else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
|
334 |
|
|
// res = +/-C * 10^exp (exact)
|
335 |
|
|
if (x_sign)
|
336 |
|
|
res = -C1.w[0] * ten2k64[exp];
|
337 |
|
|
else
|
338 |
|
|
res = C1.w[0] * ten2k64[exp];
|
339 |
|
|
}
|
340 |
|
|
}
|
341 |
|
|
}
|
342 |
|
|
|
343 |
|
|
BID_RETURN (res);
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
/*****************************************************************************
|
347 |
|
|
* BID128_to_int32_xrnint
|
348 |
|
|
****************************************************************************/
|
349 |
|
|
|
350 |
|
|
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (int, bid128_to_int32_xrnint,
|
351 |
|
|
x)
|
352 |
|
|
|
353 |
|
|
int res;
|
354 |
|
|
UINT64 x_sign;
|
355 |
|
|
UINT64 x_exp;
|
356 |
|
|
int exp; // unbiased exponent
|
357 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
358 |
|
|
UINT64 tmp64, tmp64A;
|
359 |
|
|
BID_UI64DOUBLE tmp1;
|
360 |
|
|
unsigned int x_nr_bits;
|
361 |
|
|
int q, ind, shift;
|
362 |
|
|
UINT128 C1, C;
|
363 |
|
|
UINT128 Cstar; // C* represents up to 34 decimal digits ~ 113 bits
|
364 |
|
|
UINT256 fstar;
|
365 |
|
|
UINT256 P256;
|
366 |
|
|
|
367 |
|
|
// unpack x
|
368 |
|
|
x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
369 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
370 |
|
|
C1.w[1] = x.w[1] & MASK_COEFF;
|
371 |
|
|
C1.w[0] = x.w[0];
|
372 |
|
|
|
373 |
|
|
// check for NaN or Infinity
|
374 |
|
|
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
|
375 |
|
|
// x is special
|
376 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
|
377 |
|
|
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
378 |
|
|
// set invalid flag
|
379 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
380 |
|
|
// return Integer Indefinite
|
381 |
|
|
res = 0x80000000;
|
382 |
|
|
} else { // x is QNaN
|
383 |
|
|
// set invalid flag
|
384 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
385 |
|
|
// return Integer Indefinite
|
386 |
|
|
res = 0x80000000;
|
387 |
|
|
}
|
388 |
|
|
BID_RETURN (res);
|
389 |
|
|
} else { // x is not a NaN, so it must be infinity
|
390 |
|
|
if (!x_sign) { // x is +inf
|
391 |
|
|
// set invalid flag
|
392 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
393 |
|
|
// return Integer Indefinite
|
394 |
|
|
res = 0x80000000;
|
395 |
|
|
} else { // x is -inf
|
396 |
|
|
// set invalid flag
|
397 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
398 |
|
|
// return Integer Indefinite
|
399 |
|
|
res = 0x80000000;
|
400 |
|
|
}
|
401 |
|
|
BID_RETURN (res);
|
402 |
|
|
}
|
403 |
|
|
}
|
404 |
|
|
// check for non-canonical values (after the check for special values)
|
405 |
|
|
if ((C1.w[1] > 0x0001ed09bead87c0ull)
|
406 |
|
|
|| (C1.w[1] == 0x0001ed09bead87c0ull
|
407 |
|
|
&& (C1.w[0] > 0x378d8e63ffffffffull))
|
408 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
409 |
|
|
res = 0x00000000;
|
410 |
|
|
BID_RETURN (res);
|
411 |
|
|
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
|
412 |
|
|
// x is 0
|
413 |
|
|
res = 0x00000000;
|
414 |
|
|
BID_RETURN (res);
|
415 |
|
|
} else { // x is not special and is not zero
|
416 |
|
|
|
417 |
|
|
// q = nr. of decimal digits in x
|
418 |
|
|
// determine first the nr. of bits in x
|
419 |
|
|
if (C1.w[1] == 0) {
|
420 |
|
|
if (C1.w[0] >= 0x0020000000000000ull) { // x >= 2^53
|
421 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
422 |
|
|
if (C1.w[0] >= 0x0000000100000000ull) { // x >= 2^32
|
423 |
|
|
tmp1.d = (double) (C1.w[0] >> 32); // exact conversion
|
424 |
|
|
x_nr_bits =
|
425 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
426 |
|
|
} else { // x < 2^32
|
427 |
|
|
tmp1.d = (double) (C1.w[0]); // exact conversion
|
428 |
|
|
x_nr_bits =
|
429 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
430 |
|
|
}
|
431 |
|
|
} else { // if x < 2^53
|
432 |
|
|
tmp1.d = (double) C1.w[0]; // exact conversion
|
433 |
|
|
x_nr_bits =
|
434 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
435 |
|
|
}
|
436 |
|
|
} else { // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
|
437 |
|
|
tmp1.d = (double) C1.w[1]; // exact conversion
|
438 |
|
|
x_nr_bits =
|
439 |
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
440 |
|
|
}
|
441 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
442 |
|
|
if (q == 0) {
|
443 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
444 |
|
|
if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
|
445 |
|
|
|| (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
|
446 |
|
|
&& C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
|
447 |
|
|
q++;
|
448 |
|
|
}
|
449 |
|
|
exp = (x_exp >> 49) - 6176;
|
450 |
|
|
if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits)
|
451 |
|
|
// set invalid flag
|
452 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
453 |
|
|
// return Integer Indefinite
|
454 |
|
|
res = 0x80000000;
|
455 |
|
|
BID_RETURN (res);
|
456 |
|
|
} else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1)
|
457 |
|
|
// in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2...
|
458 |
|
|
// so x rounded to an integer may or may not fit in a signed 32-bit int
|
459 |
|
|
// the cases that do not fit are identified here; the ones that fit
|
460 |
|
|
// fall through and will be handled with other cases further,
|
461 |
|
|
// under '1 <= q + exp <= 10'
|
462 |
|
|
if (x_sign) { // if n < 0 and q + exp = 10
|
463 |
|
|
// if n < -2^31 - 1/2 then n is too large
|
464 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) > 2^31+1/2
|
465 |
|
|
// <=> 0.c(0)c(1)...c(q-1) * 10^11 > 0x500000005, 1<=q<=34
|
466 |
|
|
if (q <= 11) {
|
467 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
468 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
469 |
|
|
if (tmp64 > 0x500000005ull) {
|
470 |
|
|
// set invalid flag
|
471 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
472 |
|
|
// return Integer Indefinite
|
473 |
|
|
res = 0x80000000;
|
474 |
|
|
BID_RETURN (res);
|
475 |
|
|
}
|
476 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
477 |
|
|
// to '1 <= q + exp <= 10'
|
478 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
479 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 > 0x500000005 <=>
|
480 |
|
|
// C > 0x500000005 * 10^(q-11) where 1 <= q - 11 <= 23
|
481 |
|
|
// (scale 2^31+1/2 up)
|
482 |
|
|
tmp64 = 0x500000005ull;
|
483 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
484 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
485 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
486 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
487 |
|
|
}
|
488 |
|
|
if (C1.w[1] > C.w[1] || (C1.w[1] == C.w[1] && C1.w[0] > C.w[0])) {
|
489 |
|
|
// set invalid flag
|
490 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
491 |
|
|
// return Integer Indefinite
|
492 |
|
|
res = 0x80000000;
|
493 |
|
|
BID_RETURN (res);
|
494 |
|
|
}
|
495 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
496 |
|
|
// to '1 <= q + exp <= 10'
|
497 |
|
|
}
|
498 |
|
|
} else { // if n > 0 and q + exp = 10
|
499 |
|
|
// if n >= 2^31 - 1/2 then n is too large
|
500 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31-1/2
|
501 |
|
|
// too large if 0.c(0)c(1)...c(q-1) * 10^11 >= 0x4fffffffb, 1<=q<=34
|
502 |
|
|
if (q <= 11) {
|
503 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
504 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
505 |
|
|
if (tmp64 >= 0x4fffffffbull) {
|
506 |
|
|
// set invalid flag
|
507 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
508 |
|
|
// return Integer Indefinite
|
509 |
|
|
res = 0x80000000;
|
510 |
|
|
BID_RETURN (res);
|
511 |
|
|
}
|
512 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
513 |
|
|
// to '1 <= q + exp <= 10'
|
514 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
515 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x4fffffffb <=>
|
516 |
|
|
// C >= 0x4fffffffb * 10^(q-11) where 1 <= q - 11 <= 23
|
517 |
|
|
// (scale 2^31-1/2 up)
|
518 |
|
|
tmp64 = 0x4fffffffbull;
|
519 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
520 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
521 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
522 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
523 |
|
|
}
|
524 |
|
|
if (C1.w[1] > C.w[1]
|
525 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
526 |
|
|
// set invalid flag
|
527 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
528 |
|
|
// return Integer Indefinite
|
529 |
|
|
res = 0x80000000;
|
530 |
|
|
BID_RETURN (res);
|
531 |
|
|
}
|
532 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
533 |
|
|
// to '1 <= q + exp <= 10'
|
534 |
|
|
}
|
535 |
|
|
}
|
536 |
|
|
}
|
537 |
|
|
// n is not too large to be converted to int32: -2^31 - 1/2 < n < 2^31 - 1/2
|
538 |
|
|
// Note: some of the cases tested for above fall through to this point
|
539 |
|
|
if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1)
|
540 |
|
|
// set inexact flag
|
541 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
542 |
|
|
// return 0
|
543 |
|
|
res = 0x00000000;
|
544 |
|
|
BID_RETURN (res);
|
545 |
|
|
} else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1)
|
546 |
|
|
// if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
|
547 |
|
|
// res = 0
|
548 |
|
|
// else
|
549 |
|
|
// res = +/-1
|
550 |
|
|
ind = q - 1;
|
551 |
|
|
if (ind <= 18) { // 0 <= ind <= 18
|
552 |
|
|
if ((C1.w[1] == 0) && (C1.w[0] <= midpoint64[ind])) {
|
553 |
|
|
res = 0x00000000; // return 0
|
554 |
|
|
} else if (x_sign) { // n < 0
|
555 |
|
|
res = 0xffffffff; // return -1
|
556 |
|
|
} else { // n > 0
|
557 |
|
|
res = 0x00000001; // return +1
|
558 |
|
|
}
|
559 |
|
|
} else { // 19 <= ind <= 33
|
560 |
|
|
if ((C1.w[1] < midpoint128[ind - 19].w[1])
|
561 |
|
|
|| ((C1.w[1] == midpoint128[ind - 19].w[1])
|
562 |
|
|
&& (C1.w[0] <= midpoint128[ind - 19].w[0]))) {
|
563 |
|
|
res = 0x00000000; // return 0
|
564 |
|
|
} else if (x_sign) { // n < 0
|
565 |
|
|
res = 0xffffffff; // return -1
|
566 |
|
|
} else { // n > 0
|
567 |
|
|
res = 0x00000001; // return +1
|
568 |
|
|
}
|
569 |
|
|
}
|
570 |
|
|
// set inexact flag
|
571 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
572 |
|
|
} else { // if (1 <= q + exp <= 10, 1 <= q <= 34, -33 <= exp <= 9)
|
573 |
|
|
// -2^31-1/2 <= x <= -1 or 1 <= x < 2^31-1/2 so x can be rounded
|
574 |
|
|
// to nearest to a 32-bit signed integer
|
575 |
|
|
if (exp < 0) { // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 10
|
576 |
|
|
ind = -exp; // 1 <= ind <= 33; ind is a synonym for 'x'
|
577 |
|
|
// chop off ind digits from the lower part of C1
|
578 |
|
|
// C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
|
579 |
|
|
tmp64 = C1.w[0];
|
580 |
|
|
if (ind <= 19) {
|
581 |
|
|
C1.w[0] = C1.w[0] + midpoint64[ind - 1];
|
582 |
|
|
} else {
|
583 |
|
|
C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
|
584 |
|
|
C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
|
585 |
|
|
}
|
586 |
|
|
if (C1.w[0] < tmp64)
|
587 |
|
|
C1.w[1]++;
|
588 |
|
|
// calculate C* and f*
|
589 |
|
|
// C* is actually floor(C*) in this case
|
590 |
|
|
// C* and f* need shifting and masking, as shown by
|
591 |
|
|
// shiftright128[] and maskhigh128[]
|
592 |
|
|
// 1 <= x <= 33
|
593 |
|
|
// kx = 10^(-x) = ten2mk128[ind - 1]
|
594 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
595 |
|
|
// the approximation of 10^(-x) was rounded up to 118 bits
|
596 |
|
|
__mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
|
597 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
598 |
|
|
Cstar.w[1] = P256.w[3];
|
599 |
|
|
Cstar.w[0] = P256.w[2];
|
600 |
|
|
fstar.w[3] = 0;
|
601 |
|
|
fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
|
602 |
|
|
fstar.w[1] = P256.w[1];
|
603 |
|
|
fstar.w[0] = P256.w[0];
|
604 |
|
|
} else { // 22 <= ind - 1 <= 33
|
605 |
|
|
Cstar.w[1] = 0;
|
606 |
|
|
Cstar.w[0] = P256.w[3];
|
607 |
|
|
fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
|
608 |
|
|
fstar.w[2] = P256.w[2];
|
609 |
|
|
fstar.w[1] = P256.w[1];
|
610 |
|
|
fstar.w[0] = P256.w[0];
|
611 |
|
|
}
|
612 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
|
613 |
|
|
// if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
|
614 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
615 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
616 |
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
617 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
618 |
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
619 |
|
|
// else
|
620 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
621 |
|
|
// correct by Property 1)
|
622 |
|
|
// n = C* * 10^(e+x)
|
623 |
|
|
|
624 |
|
|
// shift right C* by Ex-128 = shiftright128[ind]
|
625 |
|
|
shift = shiftright128[ind - 1]; // 0 <= shift <= 102
|
626 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
627 |
|
|
Cstar.w[0] =
|
628 |
|
|
(Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
|
629 |
|
|
// redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
|
630 |
|
|
} else { // 22 <= ind - 1 <= 33
|
631 |
|
|
Cstar.w[0] = (Cstar.w[0] >> (shift - 64)); // 2 <= shift - 64 <= 38
|
632 |
|
|
}
|
633 |
|
|
// determine inexactness of the rounding of C*
|
634 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
635 |
|
|
// the result is exact
|
636 |
|
|
// else // if (f* - 1/2 > T*) then
|
637 |
|
|
// the result is inexact
|
638 |
|
|
if (ind - 1 <= 2) {
|
639 |
|
|
if (fstar.w[1] > 0x8000000000000000ull || (fstar.w[1] == 0x8000000000000000ull && fstar.w[0] > 0x0ull)) { // f* > 1/2 and the result may be exact
|
640 |
|
|
tmp64 = fstar.w[1] - 0x8000000000000000ull; // f* - 1/2
|
641 |
|
|
if (tmp64 > ten2mk128trunc[ind - 1].w[1]
|
642 |
|
|
|| (tmp64 == ten2mk128trunc[ind - 1].w[1]
|
643 |
|
|
&& fstar.w[0] >= ten2mk128trunc[ind - 1].w[0])) {
|
644 |
|
|
// set the inexact flag
|
645 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
646 |
|
|
} // else the result is exact
|
647 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
648 |
|
|
// set the inexact flag
|
649 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
650 |
|
|
}
|
651 |
|
|
} else if (ind - 1 <= 21) { // if 3 <= ind <= 21
|
652 |
|
|
if (fstar.w[3] > 0x0 ||
|
653 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] > onehalf128[ind - 1]) ||
|
654 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] == onehalf128[ind - 1] &&
|
655 |
|
|
(fstar.w[1] || fstar.w[0]))) {
|
656 |
|
|
// f2* > 1/2 and the result may be exact
|
657 |
|
|
// Calculate f2* - 1/2
|
658 |
|
|
tmp64 = fstar.w[2] - onehalf128[ind - 1];
|
659 |
|
|
tmp64A = fstar.w[3];
|
660 |
|
|
if (tmp64 > fstar.w[2])
|
661 |
|
|
tmp64A--;
|
662 |
|
|
if (tmp64A || tmp64
|
663 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
664 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
665 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
666 |
|
|
// set the inexact flag
|
667 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
668 |
|
|
} // else the result is exact
|
669 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
670 |
|
|
// set the inexact flag
|
671 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
672 |
|
|
}
|
673 |
|
|
} else { // if 22 <= ind <= 33
|
674 |
|
|
if (fstar.w[3] > onehalf128[ind - 1] ||
|
675 |
|
|
(fstar.w[3] == onehalf128[ind - 1] &&
|
676 |
|
|
(fstar.w[2] || fstar.w[1] || fstar.w[0]))) {
|
677 |
|
|
// f2* > 1/2 and the result may be exact
|
678 |
|
|
// Calculate f2* - 1/2
|
679 |
|
|
tmp64 = fstar.w[3] - onehalf128[ind - 1];
|
680 |
|
|
if (tmp64 || fstar.w[2]
|
681 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
682 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
683 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
684 |
|
|
// set the inexact flag
|
685 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
686 |
|
|
} // else the result is exact
|
687 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
688 |
|
|
// set the inexact flag
|
689 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
690 |
|
|
}
|
691 |
|
|
}
|
692 |
|
|
// if the result was a midpoint it was rounded away from zero, so
|
693 |
|
|
// it will need a correction
|
694 |
|
|
// check for midpoints
|
695 |
|
|
if ((fstar.w[3] == 0) && (fstar.w[2] == 0)
|
696 |
|
|
&& (fstar.w[1] || fstar.w[0])
|
697 |
|
|
&& (fstar.w[1] < ten2mk128trunc[ind - 1].w[1]
|
698 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
699 |
|
|
&& fstar.w[0] <= ten2mk128trunc[ind - 1].w[0]))) {
|
700 |
|
|
// the result is a midpoint; round to nearest
|
701 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
|
702 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result >= 1
|
703 |
|
|
Cstar.w[0]--; // Cstar.w[0] is now even
|
704 |
|
|
} // else MP in [ODD, EVEN]
|
705 |
|
|
}
|
706 |
|
|
if (x_sign)
|
707 |
|
|
res = -Cstar.w[0];
|
708 |
|
|
else
|
709 |
|
|
res = Cstar.w[0];
|
710 |
|
|
} else if (exp == 0) {
|
711 |
|
|
// 1 <= q <= 10
|
712 |
|
|
// res = +/-C (exact)
|
713 |
|
|
if (x_sign)
|
714 |
|
|
res = -C1.w[0];
|
715 |
|
|
else
|
716 |
|
|
res = C1.w[0];
|
717 |
|
|
} else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
|
718 |
|
|
// res = +/-C * 10^exp (exact)
|
719 |
|
|
if (x_sign)
|
720 |
|
|
res = -C1.w[0] * ten2k64[exp];
|
721 |
|
|
else
|
722 |
|
|
res = C1.w[0] * ten2k64[exp];
|
723 |
|
|
}
|
724 |
|
|
}
|
725 |
|
|
}
|
726 |
|
|
|
727 |
|
|
BID_RETURN (res);
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
/*****************************************************************************
|
731 |
|
|
* BID128_to_int32_floor
|
732 |
|
|
****************************************************************************/
|
733 |
|
|
|
734 |
|
|
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (int, bid128_to_int32_floor, x)
|
735 |
|
|
|
736 |
|
|
int res;
|
737 |
|
|
UINT64 x_sign;
|
738 |
|
|
UINT64 x_exp;
|
739 |
|
|
int exp; // unbiased exponent
|
740 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
741 |
|
|
UINT64 tmp64, tmp64A;
|
742 |
|
|
BID_UI64DOUBLE tmp1;
|
743 |
|
|
unsigned int x_nr_bits;
|
744 |
|
|
int q, ind, shift;
|
745 |
|
|
UINT128 C1, C;
|
746 |
|
|
UINT128 Cstar; // C* represents up to 34 decimal digits ~ 113 bits
|
747 |
|
|
UINT256 fstar;
|
748 |
|
|
UINT256 P256;
|
749 |
|
|
int is_inexact_lt_midpoint = 0;
|
750 |
|
|
int is_inexact_gt_midpoint = 0;
|
751 |
|
|
int is_midpoint_lt_even = 0;
|
752 |
|
|
int is_midpoint_gt_even = 0;
|
753 |
|
|
|
754 |
|
|
// unpack x
|
755 |
|
|
x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
756 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
757 |
|
|
C1.w[1] = x.w[1] & MASK_COEFF;
|
758 |
|
|
C1.w[0] = x.w[0];
|
759 |
|
|
|
760 |
|
|
// check for NaN or Infinity
|
761 |
|
|
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
|
762 |
|
|
// x is special
|
763 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
|
764 |
|
|
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
765 |
|
|
// set invalid flag
|
766 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
767 |
|
|
// return Integer Indefinite
|
768 |
|
|
res = 0x80000000;
|
769 |
|
|
} else { // x is QNaN
|
770 |
|
|
// set invalid flag
|
771 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
772 |
|
|
// return Integer Indefinite
|
773 |
|
|
res = 0x80000000;
|
774 |
|
|
}
|
775 |
|
|
BID_RETURN (res);
|
776 |
|
|
} else { // x is not a NaN, so it must be infinity
|
777 |
|
|
if (!x_sign) { // x is +inf
|
778 |
|
|
// set invalid flag
|
779 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
780 |
|
|
// return Integer Indefinite
|
781 |
|
|
res = 0x80000000;
|
782 |
|
|
} else { // x is -inf
|
783 |
|
|
// set invalid flag
|
784 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
785 |
|
|
// return Integer Indefinite
|
786 |
|
|
res = 0x80000000;
|
787 |
|
|
}
|
788 |
|
|
BID_RETURN (res);
|
789 |
|
|
}
|
790 |
|
|
}
|
791 |
|
|
// check for non-canonical values (after the check for special values)
|
792 |
|
|
if ((C1.w[1] > 0x0001ed09bead87c0ull)
|
793 |
|
|
|| (C1.w[1] == 0x0001ed09bead87c0ull
|
794 |
|
|
&& (C1.w[0] > 0x378d8e63ffffffffull))
|
795 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
796 |
|
|
res = 0x00000000;
|
797 |
|
|
BID_RETURN (res);
|
798 |
|
|
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
|
799 |
|
|
// x is 0
|
800 |
|
|
res = 0x00000000;
|
801 |
|
|
BID_RETURN (res);
|
802 |
|
|
} else { // x is not special and is not zero
|
803 |
|
|
|
804 |
|
|
// q = nr. of decimal digits in x
|
805 |
|
|
// determine first the nr. of bits in x
|
806 |
|
|
if (C1.w[1] == 0) {
|
807 |
|
|
if (C1.w[0] >= 0x0020000000000000ull) { // x >= 2^53
|
808 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
809 |
|
|
if (C1.w[0] >= 0x0000000100000000ull) { // x >= 2^32
|
810 |
|
|
tmp1.d = (double) (C1.w[0] >> 32); // exact conversion
|
811 |
|
|
x_nr_bits =
|
812 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
813 |
|
|
} else { // x < 2^32
|
814 |
|
|
tmp1.d = (double) (C1.w[0]); // exact conversion
|
815 |
|
|
x_nr_bits =
|
816 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
817 |
|
|
}
|
818 |
|
|
} else { // if x < 2^53
|
819 |
|
|
tmp1.d = (double) C1.w[0]; // exact conversion
|
820 |
|
|
x_nr_bits =
|
821 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
822 |
|
|
}
|
823 |
|
|
} else { // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
|
824 |
|
|
tmp1.d = (double) C1.w[1]; // exact conversion
|
825 |
|
|
x_nr_bits =
|
826 |
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
827 |
|
|
}
|
828 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
829 |
|
|
if (q == 0) {
|
830 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
831 |
|
|
if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
|
832 |
|
|
|| (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
|
833 |
|
|
&& C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
|
834 |
|
|
q++;
|
835 |
|
|
}
|
836 |
|
|
exp = (x_exp >> 49) - 6176;
|
837 |
|
|
if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits)
|
838 |
|
|
// set invalid flag
|
839 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
840 |
|
|
// return Integer Indefinite
|
841 |
|
|
res = 0x80000000;
|
842 |
|
|
BID_RETURN (res);
|
843 |
|
|
} else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1)
|
844 |
|
|
// in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2...
|
845 |
|
|
// so x rounded to an integer may or may not fit in a signed 32-bit int
|
846 |
|
|
// the cases that do not fit are identified here; the ones that fit
|
847 |
|
|
// fall through and will be handled with other cases further,
|
848 |
|
|
// under '1 <= q + exp <= 10'
|
849 |
|
|
if (x_sign) { // if n < 0 and q + exp = 10
|
850 |
|
|
// if n < -2^31 then n is too large
|
851 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) > 2^31
|
852 |
|
|
// <=> 0.c(0)c(1)...c(q-1) * 10^11 > 0x500000000, 1<=q<=34
|
853 |
|
|
if (q <= 11) {
|
854 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
855 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
856 |
|
|
if (tmp64 > 0x500000000ull) {
|
857 |
|
|
// set invalid flag
|
858 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
859 |
|
|
// return Integer Indefinite
|
860 |
|
|
res = 0x80000000;
|
861 |
|
|
BID_RETURN (res);
|
862 |
|
|
}
|
863 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
864 |
|
|
// to '1 <= q + exp <= 10'
|
865 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
866 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 > 0x500000000 <=>
|
867 |
|
|
// C > 0x500000000 * 10^(q-11) where 1 <= q - 11 <= 23
|
868 |
|
|
// (scale 2^31 up)
|
869 |
|
|
tmp64 = 0x500000000ull;
|
870 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
871 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
872 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
873 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
874 |
|
|
}
|
875 |
|
|
if (C1.w[1] > C.w[1] || (C1.w[1] == C.w[1] && C1.w[0] > C.w[0])) {
|
876 |
|
|
// set invalid flag
|
877 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
878 |
|
|
// return Integer Indefinite
|
879 |
|
|
res = 0x80000000;
|
880 |
|
|
BID_RETURN (res);
|
881 |
|
|
}
|
882 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
883 |
|
|
// to '1 <= q + exp <= 10'
|
884 |
|
|
}
|
885 |
|
|
} else { // if n > 0 and q + exp = 10
|
886 |
|
|
// if n >= 2^31 then n is too large
|
887 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31
|
888 |
|
|
// too large if 0.c(0)c(1)...c(q-1) * 10^11 >= 0x500000000, 1<=q<=34
|
889 |
|
|
if (q <= 11) {
|
890 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
891 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
892 |
|
|
if (tmp64 >= 0x500000000ull) {
|
893 |
|
|
// set invalid flag
|
894 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
895 |
|
|
// return Integer Indefinite
|
896 |
|
|
res = 0x80000000;
|
897 |
|
|
BID_RETURN (res);
|
898 |
|
|
}
|
899 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
900 |
|
|
// to '1 <= q + exp <= 10'
|
901 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
902 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x500000000 <=>
|
903 |
|
|
// C >= 0x500000000 * 10^(q-11) where 1 <= q - 11 <= 23
|
904 |
|
|
// (scale 2^31 up)
|
905 |
|
|
tmp64 = 0x500000000ull;
|
906 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
907 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
908 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
909 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
910 |
|
|
}
|
911 |
|
|
if (C1.w[1] > C.w[1]
|
912 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
913 |
|
|
// set invalid flag
|
914 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
915 |
|
|
// return Integer Indefinite
|
916 |
|
|
res = 0x80000000;
|
917 |
|
|
BID_RETURN (res);
|
918 |
|
|
}
|
919 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
920 |
|
|
// to '1 <= q + exp <= 10'
|
921 |
|
|
}
|
922 |
|
|
}
|
923 |
|
|
}
|
924 |
|
|
// n is not too large to be converted to int32: -2^31 <= n < 2^31
|
925 |
|
|
// Note: some of the cases tested for above fall through to this point
|
926 |
|
|
if ((q + exp) <= 0) {
|
927 |
|
|
// n = +/-0.0...c(0)c(1)...c(q-1) or n = +/-0.c(0)c(1)...c(q-1)
|
928 |
|
|
// return 0
|
929 |
|
|
if (x_sign)
|
930 |
|
|
res = 0xffffffff;
|
931 |
|
|
else
|
932 |
|
|
res = 0x00000000;
|
933 |
|
|
BID_RETURN (res);
|
934 |
|
|
} else { // if (1 <= q + exp <= 10, 1 <= q <= 34, -33 <= exp <= 9)
|
935 |
|
|
// -2^31 <= x <= -1 or 1 <= x < 2^31 so x can be rounded
|
936 |
|
|
// toward negative infinity to a 32-bit signed integer
|
937 |
|
|
if (exp < 0) { // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 10
|
938 |
|
|
ind = -exp; // 1 <= ind <= 33; ind is a synonym for 'x'
|
939 |
|
|
// chop off ind digits from the lower part of C1
|
940 |
|
|
// C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
|
941 |
|
|
tmp64 = C1.w[0];
|
942 |
|
|
if (ind <= 19) {
|
943 |
|
|
C1.w[0] = C1.w[0] + midpoint64[ind - 1];
|
944 |
|
|
} else {
|
945 |
|
|
C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
|
946 |
|
|
C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
|
947 |
|
|
}
|
948 |
|
|
if (C1.w[0] < tmp64)
|
949 |
|
|
C1.w[1]++;
|
950 |
|
|
// calculate C* and f*
|
951 |
|
|
// C* is actually floor(C*) in this case
|
952 |
|
|
// C* and f* need shifting and masking, as shown by
|
953 |
|
|
// shiftright128[] and maskhigh128[]
|
954 |
|
|
// 1 <= x <= 33
|
955 |
|
|
// kx = 10^(-x) = ten2mk128[ind - 1]
|
956 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
957 |
|
|
// the approximation of 10^(-x) was rounded up to 118 bits
|
958 |
|
|
__mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
|
959 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
960 |
|
|
Cstar.w[1] = P256.w[3];
|
961 |
|
|
Cstar.w[0] = P256.w[2];
|
962 |
|
|
fstar.w[3] = 0;
|
963 |
|
|
fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
|
964 |
|
|
fstar.w[1] = P256.w[1];
|
965 |
|
|
fstar.w[0] = P256.w[0];
|
966 |
|
|
} else { // 22 <= ind - 1 <= 33
|
967 |
|
|
Cstar.w[1] = 0;
|
968 |
|
|
Cstar.w[0] = P256.w[3];
|
969 |
|
|
fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
|
970 |
|
|
fstar.w[2] = P256.w[2];
|
971 |
|
|
fstar.w[1] = P256.w[1];
|
972 |
|
|
fstar.w[0] = P256.w[0];
|
973 |
|
|
}
|
974 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
|
975 |
|
|
// if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
|
976 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
977 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
978 |
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
979 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
980 |
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
981 |
|
|
// else
|
982 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
983 |
|
|
// correct by Property 1)
|
984 |
|
|
// n = C* * 10^(e+x)
|
985 |
|
|
|
986 |
|
|
// shift right C* by Ex-128 = shiftright128[ind]
|
987 |
|
|
shift = shiftright128[ind - 1]; // 0 <= shift <= 102
|
988 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
989 |
|
|
Cstar.w[0] =
|
990 |
|
|
(Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
|
991 |
|
|
// redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
|
992 |
|
|
} else { // 22 <= ind - 1 <= 33
|
993 |
|
|
Cstar.w[0] = (Cstar.w[0] >> (shift - 64)); // 2 <= shift - 64 <= 38
|
994 |
|
|
}
|
995 |
|
|
// determine inexactness of the rounding of C*
|
996 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
997 |
|
|
// the result is exact
|
998 |
|
|
// else // if (f* - 1/2 > T*) then
|
999 |
|
|
// the result is inexact
|
1000 |
|
|
if (ind - 1 <= 2) {
|
1001 |
|
|
if (fstar.w[1] > 0x8000000000000000ull || (fstar.w[1] == 0x8000000000000000ull && fstar.w[0] > 0x0ull)) { // f* > 1/2 and the result may be exact
|
1002 |
|
|
tmp64 = fstar.w[1] - 0x8000000000000000ull; // f* - 1/2
|
1003 |
|
|
if (tmp64 > ten2mk128trunc[ind - 1].w[1]
|
1004 |
|
|
|| (tmp64 == ten2mk128trunc[ind - 1].w[1]
|
1005 |
|
|
&& fstar.w[0] >= ten2mk128trunc[ind - 1].w[0])) {
|
1006 |
|
|
is_inexact_lt_midpoint = 1;
|
1007 |
|
|
} // else the result is exact
|
1008 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
1009 |
|
|
is_inexact_gt_midpoint = 1;
|
1010 |
|
|
}
|
1011 |
|
|
} else if (ind - 1 <= 21) { // if 3 <= ind <= 21
|
1012 |
|
|
if (fstar.w[3] > 0x0 ||
|
1013 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] > onehalf128[ind - 1]) ||
|
1014 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] == onehalf128[ind - 1] &&
|
1015 |
|
|
(fstar.w[1] || fstar.w[0]))) {
|
1016 |
|
|
// f2* > 1/2 and the result may be exact
|
1017 |
|
|
// Calculate f2* - 1/2
|
1018 |
|
|
tmp64 = fstar.w[2] - onehalf128[ind - 1];
|
1019 |
|
|
tmp64A = fstar.w[3];
|
1020 |
|
|
if (tmp64 > fstar.w[2])
|
1021 |
|
|
tmp64A--;
|
1022 |
|
|
if (tmp64A || tmp64
|
1023 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
1024 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
1025 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
1026 |
|
|
is_inexact_lt_midpoint = 1;
|
1027 |
|
|
} // else the result is exact
|
1028 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
1029 |
|
|
is_inexact_gt_midpoint = 1;
|
1030 |
|
|
}
|
1031 |
|
|
} else { // if 22 <= ind <= 33
|
1032 |
|
|
if (fstar.w[3] > onehalf128[ind - 1] ||
|
1033 |
|
|
(fstar.w[3] == onehalf128[ind - 1] &&
|
1034 |
|
|
(fstar.w[2] || fstar.w[1] || fstar.w[0]))) {
|
1035 |
|
|
// f2* > 1/2 and the result may be exact
|
1036 |
|
|
// Calculate f2* - 1/2
|
1037 |
|
|
tmp64 = fstar.w[3] - onehalf128[ind - 1];
|
1038 |
|
|
if (tmp64 || fstar.w[2]
|
1039 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
1040 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
1041 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
1042 |
|
|
is_inexact_lt_midpoint = 1;
|
1043 |
|
|
} // else the result is exact
|
1044 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
1045 |
|
|
is_inexact_gt_midpoint = 1;
|
1046 |
|
|
}
|
1047 |
|
|
}
|
1048 |
|
|
|
1049 |
|
|
// if the result was a midpoint it was rounded away from zero, so
|
1050 |
|
|
// it will need a correction
|
1051 |
|
|
// check for midpoints
|
1052 |
|
|
if ((fstar.w[3] == 0) && (fstar.w[2] == 0)
|
1053 |
|
|
&& (fstar.w[1] || fstar.w[0])
|
1054 |
|
|
&& (fstar.w[1] < ten2mk128trunc[ind - 1].w[1]
|
1055 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
1056 |
|
|
&& fstar.w[0] <= ten2mk128trunc[ind - 1].w[0]))) {
|
1057 |
|
|
// the result is a midpoint; round to nearest
|
1058 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
|
1059 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result >= 1
|
1060 |
|
|
Cstar.w[0]--; // Cstar.w[0] is now even
|
1061 |
|
|
is_midpoint_gt_even = 1;
|
1062 |
|
|
is_inexact_lt_midpoint = 0;
|
1063 |
|
|
is_inexact_gt_midpoint = 0;
|
1064 |
|
|
} else { // else MP in [ODD, EVEN]
|
1065 |
|
|
is_midpoint_lt_even = 1;
|
1066 |
|
|
is_inexact_lt_midpoint = 0;
|
1067 |
|
|
is_inexact_gt_midpoint = 0;
|
1068 |
|
|
}
|
1069 |
|
|
}
|
1070 |
|
|
// general correction for RM
|
1071 |
|
|
if (x_sign && (is_midpoint_gt_even || is_inexact_lt_midpoint)) {
|
1072 |
|
|
Cstar.w[0] = Cstar.w[0] + 1;
|
1073 |
|
|
} else if (!x_sign
|
1074 |
|
|
&& (is_midpoint_lt_even || is_inexact_gt_midpoint)) {
|
1075 |
|
|
Cstar.w[0] = Cstar.w[0] - 1;
|
1076 |
|
|
} else {
|
1077 |
|
|
; // the result is already correct
|
1078 |
|
|
}
|
1079 |
|
|
if (x_sign)
|
1080 |
|
|
res = -Cstar.w[0];
|
1081 |
|
|
else
|
1082 |
|
|
res = Cstar.w[0];
|
1083 |
|
|
} else if (exp == 0) {
|
1084 |
|
|
// 1 <= q <= 10
|
1085 |
|
|
// res = +/-C (exact)
|
1086 |
|
|
if (x_sign)
|
1087 |
|
|
res = -C1.w[0];
|
1088 |
|
|
else
|
1089 |
|
|
res = C1.w[0];
|
1090 |
|
|
} else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
|
1091 |
|
|
// res = +/-C * 10^exp (exact)
|
1092 |
|
|
if (x_sign)
|
1093 |
|
|
res = -C1.w[0] * ten2k64[exp];
|
1094 |
|
|
else
|
1095 |
|
|
res = C1.w[0] * ten2k64[exp];
|
1096 |
|
|
}
|
1097 |
|
|
}
|
1098 |
|
|
}
|
1099 |
|
|
|
1100 |
|
|
BID_RETURN (res);
|
1101 |
|
|
}
|
1102 |
|
|
|
1103 |
|
|
|
1104 |
|
|
/*****************************************************************************
|
1105 |
|
|
* BID128_to_int32_xfloor
|
1106 |
|
|
****************************************************************************/
|
1107 |
|
|
|
1108 |
|
|
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (int, bid128_to_int32_xfloor,
|
1109 |
|
|
x)
|
1110 |
|
|
|
1111 |
|
|
int res;
|
1112 |
|
|
UINT64 x_sign;
|
1113 |
|
|
UINT64 x_exp;
|
1114 |
|
|
int exp; // unbiased exponent
|
1115 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
1116 |
|
|
UINT64 tmp64, tmp64A;
|
1117 |
|
|
BID_UI64DOUBLE tmp1;
|
1118 |
|
|
unsigned int x_nr_bits;
|
1119 |
|
|
int q, ind, shift;
|
1120 |
|
|
UINT128 C1, C;
|
1121 |
|
|
UINT128 Cstar; // C* represents up to 34 decimal digits ~ 113 bits
|
1122 |
|
|
UINT256 fstar;
|
1123 |
|
|
UINT256 P256;
|
1124 |
|
|
int is_inexact_lt_midpoint = 0;
|
1125 |
|
|
int is_inexact_gt_midpoint = 0;
|
1126 |
|
|
int is_midpoint_lt_even = 0;
|
1127 |
|
|
int is_midpoint_gt_even = 0;
|
1128 |
|
|
|
1129 |
|
|
// unpack x
|
1130 |
|
|
x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
1131 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
1132 |
|
|
C1.w[1] = x.w[1] & MASK_COEFF;
|
1133 |
|
|
C1.w[0] = x.w[0];
|
1134 |
|
|
|
1135 |
|
|
// check for NaN or Infinity
|
1136 |
|
|
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
|
1137 |
|
|
// x is special
|
1138 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
|
1139 |
|
|
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
1140 |
|
|
// set invalid flag
|
1141 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1142 |
|
|
// return Integer Indefinite
|
1143 |
|
|
res = 0x80000000;
|
1144 |
|
|
} else { // x is QNaN
|
1145 |
|
|
// set invalid flag
|
1146 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1147 |
|
|
// return Integer Indefinite
|
1148 |
|
|
res = 0x80000000;
|
1149 |
|
|
}
|
1150 |
|
|
BID_RETURN (res);
|
1151 |
|
|
} else { // x is not a NaN, so it must be infinity
|
1152 |
|
|
if (!x_sign) { // x is +inf
|
1153 |
|
|
// set invalid flag
|
1154 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1155 |
|
|
// return Integer Indefinite
|
1156 |
|
|
res = 0x80000000;
|
1157 |
|
|
} else { // x is -inf
|
1158 |
|
|
// set invalid flag
|
1159 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1160 |
|
|
// return Integer Indefinite
|
1161 |
|
|
res = 0x80000000;
|
1162 |
|
|
}
|
1163 |
|
|
BID_RETURN (res);
|
1164 |
|
|
}
|
1165 |
|
|
}
|
1166 |
|
|
// check for non-canonical values (after the check for special values)
|
1167 |
|
|
if ((C1.w[1] > 0x0001ed09bead87c0ull)
|
1168 |
|
|
|| (C1.w[1] == 0x0001ed09bead87c0ull
|
1169 |
|
|
&& (C1.w[0] > 0x378d8e63ffffffffull))
|
1170 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
1171 |
|
|
res = 0x00000000;
|
1172 |
|
|
BID_RETURN (res);
|
1173 |
|
|
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
|
1174 |
|
|
// x is 0
|
1175 |
|
|
res = 0x00000000;
|
1176 |
|
|
BID_RETURN (res);
|
1177 |
|
|
} else { // x is not special and is not zero
|
1178 |
|
|
|
1179 |
|
|
// q = nr. of decimal digits in x
|
1180 |
|
|
// determine first the nr. of bits in x
|
1181 |
|
|
if (C1.w[1] == 0) {
|
1182 |
|
|
if (C1.w[0] >= 0x0020000000000000ull) { // x >= 2^53
|
1183 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
1184 |
|
|
if (C1.w[0] >= 0x0000000100000000ull) { // x >= 2^32
|
1185 |
|
|
tmp1.d = (double) (C1.w[0] >> 32); // exact conversion
|
1186 |
|
|
x_nr_bits =
|
1187 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1188 |
|
|
} else { // x < 2^32
|
1189 |
|
|
tmp1.d = (double) (C1.w[0]); // exact conversion
|
1190 |
|
|
x_nr_bits =
|
1191 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1192 |
|
|
}
|
1193 |
|
|
} else { // if x < 2^53
|
1194 |
|
|
tmp1.d = (double) C1.w[0]; // exact conversion
|
1195 |
|
|
x_nr_bits =
|
1196 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1197 |
|
|
}
|
1198 |
|
|
} else { // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
|
1199 |
|
|
tmp1.d = (double) C1.w[1]; // exact conversion
|
1200 |
|
|
x_nr_bits =
|
1201 |
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1202 |
|
|
}
|
1203 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
1204 |
|
|
if (q == 0) {
|
1205 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
1206 |
|
|
if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
|
1207 |
|
|
|| (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
|
1208 |
|
|
&& C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
|
1209 |
|
|
q++;
|
1210 |
|
|
}
|
1211 |
|
|
exp = (x_exp >> 49) - 6176;
|
1212 |
|
|
if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits)
|
1213 |
|
|
// set invalid flag
|
1214 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1215 |
|
|
// return Integer Indefinite
|
1216 |
|
|
res = 0x80000000;
|
1217 |
|
|
BID_RETURN (res);
|
1218 |
|
|
} else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1)
|
1219 |
|
|
// in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2...
|
1220 |
|
|
// so x rounded to an integer may or may not fit in a signed 32-bit int
|
1221 |
|
|
// the cases that do not fit are identified here; the ones that fit
|
1222 |
|
|
// fall through and will be handled with other cases further,
|
1223 |
|
|
// under '1 <= q + exp <= 10'
|
1224 |
|
|
if (x_sign) { // if n < 0 and q + exp = 10
|
1225 |
|
|
// if n < -2^31 then n is too large
|
1226 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) > 2^31
|
1227 |
|
|
// <=> 0.c(0)c(1)...c(q-1) * 10^11 > 0x500000000, 1<=q<=34
|
1228 |
|
|
if (q <= 11) {
|
1229 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
1230 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
1231 |
|
|
if (tmp64 > 0x500000000ull) {
|
1232 |
|
|
// set invalid flag
|
1233 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1234 |
|
|
// return Integer Indefinite
|
1235 |
|
|
res = 0x80000000;
|
1236 |
|
|
BID_RETURN (res);
|
1237 |
|
|
}
|
1238 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
1239 |
|
|
// to '1 <= q + exp <= 10'
|
1240 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
1241 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 > 0x500000000 <=>
|
1242 |
|
|
// C > 0x500000000 * 10^(q-11) where 1 <= q - 11 <= 23
|
1243 |
|
|
// (scale 2^31 up)
|
1244 |
|
|
tmp64 = 0x500000000ull;
|
1245 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
1246 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
1247 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
1248 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
1249 |
|
|
}
|
1250 |
|
|
if (C1.w[1] > C.w[1] || (C1.w[1] == C.w[1] && C1.w[0] > C.w[0])) {
|
1251 |
|
|
// set invalid flag
|
1252 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1253 |
|
|
// return Integer Indefinite
|
1254 |
|
|
res = 0x80000000;
|
1255 |
|
|
BID_RETURN (res);
|
1256 |
|
|
}
|
1257 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
1258 |
|
|
// to '1 <= q + exp <= 10'
|
1259 |
|
|
}
|
1260 |
|
|
} else { // if n > 0 and q + exp = 10
|
1261 |
|
|
// if n >= 2^31 then n is too large
|
1262 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31
|
1263 |
|
|
// too large if 0.c(0)c(1)...c(q-1) * 10^11 >= 0x500000000, 1<=q<=34
|
1264 |
|
|
if (q <= 11) {
|
1265 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
1266 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
1267 |
|
|
if (tmp64 >= 0x500000000ull) {
|
1268 |
|
|
// set invalid flag
|
1269 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1270 |
|
|
// return Integer Indefinite
|
1271 |
|
|
res = 0x80000000;
|
1272 |
|
|
BID_RETURN (res);
|
1273 |
|
|
}
|
1274 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
1275 |
|
|
// to '1 <= q + exp <= 10'
|
1276 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
1277 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x500000000 <=>
|
1278 |
|
|
// C >= 0x500000000 * 10^(q-11) where 1 <= q - 11 <= 23
|
1279 |
|
|
// (scale 2^31 up)
|
1280 |
|
|
tmp64 = 0x500000000ull;
|
1281 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
1282 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
1283 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
1284 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
1285 |
|
|
}
|
1286 |
|
|
if (C1.w[1] > C.w[1]
|
1287 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
1288 |
|
|
// set invalid flag
|
1289 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1290 |
|
|
// return Integer Indefinite
|
1291 |
|
|
res = 0x80000000;
|
1292 |
|
|
BID_RETURN (res);
|
1293 |
|
|
}
|
1294 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
1295 |
|
|
// to '1 <= q + exp <= 10'
|
1296 |
|
|
}
|
1297 |
|
|
}
|
1298 |
|
|
}
|
1299 |
|
|
// n is not too large to be converted to int32: -2^31 <= n < 2^31
|
1300 |
|
|
// Note: some of the cases tested for above fall through to this point
|
1301 |
|
|
if ((q + exp) <= 0) {
|
1302 |
|
|
// n = +/-0.0...c(0)c(1)...c(q-1) or n = +/-0.c(0)c(1)...c(q-1)
|
1303 |
|
|
// set inexact flag
|
1304 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
1305 |
|
|
// return 0
|
1306 |
|
|
if (x_sign)
|
1307 |
|
|
res = 0xffffffff;
|
1308 |
|
|
else
|
1309 |
|
|
res = 0x00000000;
|
1310 |
|
|
BID_RETURN (res);
|
1311 |
|
|
} else { // if (1 <= q + exp <= 10, 1 <= q <= 34, -33 <= exp <= 9)
|
1312 |
|
|
// -2^31 <= x <= -1 or 1 <= x < 2^31 so x can be rounded
|
1313 |
|
|
// toward negative infinity to a 32-bit signed integer
|
1314 |
|
|
if (exp < 0) { // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 10
|
1315 |
|
|
ind = -exp; // 1 <= ind <= 33; ind is a synonym for 'x'
|
1316 |
|
|
// chop off ind digits from the lower part of C1
|
1317 |
|
|
// C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
|
1318 |
|
|
tmp64 = C1.w[0];
|
1319 |
|
|
if (ind <= 19) {
|
1320 |
|
|
C1.w[0] = C1.w[0] + midpoint64[ind - 1];
|
1321 |
|
|
} else {
|
1322 |
|
|
C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
|
1323 |
|
|
C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
|
1324 |
|
|
}
|
1325 |
|
|
if (C1.w[0] < tmp64)
|
1326 |
|
|
C1.w[1]++;
|
1327 |
|
|
// calculate C* and f*
|
1328 |
|
|
// C* is actually floor(C*) in this case
|
1329 |
|
|
// C* and f* need shifting and masking, as shown by
|
1330 |
|
|
// shiftright128[] and maskhigh128[]
|
1331 |
|
|
// 1 <= x <= 33
|
1332 |
|
|
// kx = 10^(-x) = ten2mk128[ind - 1]
|
1333 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
1334 |
|
|
// the approximation of 10^(-x) was rounded up to 118 bits
|
1335 |
|
|
__mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
|
1336 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
1337 |
|
|
Cstar.w[1] = P256.w[3];
|
1338 |
|
|
Cstar.w[0] = P256.w[2];
|
1339 |
|
|
fstar.w[3] = 0;
|
1340 |
|
|
fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
|
1341 |
|
|
fstar.w[1] = P256.w[1];
|
1342 |
|
|
fstar.w[0] = P256.w[0];
|
1343 |
|
|
} else { // 22 <= ind - 1 <= 33
|
1344 |
|
|
Cstar.w[1] = 0;
|
1345 |
|
|
Cstar.w[0] = P256.w[3];
|
1346 |
|
|
fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
|
1347 |
|
|
fstar.w[2] = P256.w[2];
|
1348 |
|
|
fstar.w[1] = P256.w[1];
|
1349 |
|
|
fstar.w[0] = P256.w[0];
|
1350 |
|
|
}
|
1351 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
|
1352 |
|
|
// if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
|
1353 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
1354 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
1355 |
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
1356 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
1357 |
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
1358 |
|
|
// else
|
1359 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
1360 |
|
|
// correct by Property 1)
|
1361 |
|
|
// n = C* * 10^(e+x)
|
1362 |
|
|
|
1363 |
|
|
// shift right C* by Ex-128 = shiftright128[ind]
|
1364 |
|
|
shift = shiftright128[ind - 1]; // 0 <= shift <= 102
|
1365 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
1366 |
|
|
Cstar.w[0] =
|
1367 |
|
|
(Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
|
1368 |
|
|
// redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
|
1369 |
|
|
} else { // 22 <= ind - 1 <= 33
|
1370 |
|
|
Cstar.w[0] = (Cstar.w[0] >> (shift - 64)); // 2 <= shift - 64 <= 38
|
1371 |
|
|
}
|
1372 |
|
|
// determine inexactness of the rounding of C*
|
1373 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
1374 |
|
|
// the result is exact
|
1375 |
|
|
// else // if (f* - 1/2 > T*) then
|
1376 |
|
|
// the result is inexact
|
1377 |
|
|
if (ind - 1 <= 2) {
|
1378 |
|
|
if (fstar.w[1] > 0x8000000000000000ull || (fstar.w[1] == 0x8000000000000000ull && fstar.w[0] > 0x0ull)) { // f* > 1/2 and the result may be exact
|
1379 |
|
|
tmp64 = fstar.w[1] - 0x8000000000000000ull; // f* - 1/2
|
1380 |
|
|
if (tmp64 > ten2mk128trunc[ind - 1].w[1]
|
1381 |
|
|
|| (tmp64 == ten2mk128trunc[ind - 1].w[1]
|
1382 |
|
|
&& fstar.w[0] >= ten2mk128trunc[ind - 1].w[0])) {
|
1383 |
|
|
// set the inexact flag
|
1384 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
1385 |
|
|
is_inexact_lt_midpoint = 1;
|
1386 |
|
|
} // else the result is exact
|
1387 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
1388 |
|
|
// set the inexact flag
|
1389 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
1390 |
|
|
is_inexact_gt_midpoint = 1;
|
1391 |
|
|
}
|
1392 |
|
|
} else if (ind - 1 <= 21) { // if 3 <= ind <= 21
|
1393 |
|
|
if (fstar.w[3] > 0x0 ||
|
1394 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] > onehalf128[ind - 1]) ||
|
1395 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] == onehalf128[ind - 1] &&
|
1396 |
|
|
(fstar.w[1] || fstar.w[0]))) {
|
1397 |
|
|
// f2* > 1/2 and the result may be exact
|
1398 |
|
|
// Calculate f2* - 1/2
|
1399 |
|
|
tmp64 = fstar.w[2] - onehalf128[ind - 1];
|
1400 |
|
|
tmp64A = fstar.w[3];
|
1401 |
|
|
if (tmp64 > fstar.w[2])
|
1402 |
|
|
tmp64A--;
|
1403 |
|
|
if (tmp64A || tmp64
|
1404 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
1405 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
1406 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
1407 |
|
|
// set the inexact flag
|
1408 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
1409 |
|
|
is_inexact_lt_midpoint = 1;
|
1410 |
|
|
} // else the result is exact
|
1411 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
1412 |
|
|
// set the inexact flag
|
1413 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
1414 |
|
|
is_inexact_gt_midpoint = 1;
|
1415 |
|
|
}
|
1416 |
|
|
} else { // if 22 <= ind <= 33
|
1417 |
|
|
if (fstar.w[3] > onehalf128[ind - 1] ||
|
1418 |
|
|
(fstar.w[3] == onehalf128[ind - 1] &&
|
1419 |
|
|
(fstar.w[2] || fstar.w[1] || fstar.w[0]))) {
|
1420 |
|
|
// f2* > 1/2 and the result may be exact
|
1421 |
|
|
// Calculate f2* - 1/2
|
1422 |
|
|
tmp64 = fstar.w[3] - onehalf128[ind - 1];
|
1423 |
|
|
if (tmp64 || fstar.w[2]
|
1424 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
1425 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
1426 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
1427 |
|
|
// set the inexact flag
|
1428 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
1429 |
|
|
is_inexact_lt_midpoint = 1;
|
1430 |
|
|
} // else the result is exact
|
1431 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
1432 |
|
|
// set the inexact flag
|
1433 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
1434 |
|
|
is_inexact_gt_midpoint = 1;
|
1435 |
|
|
}
|
1436 |
|
|
}
|
1437 |
|
|
|
1438 |
|
|
// if the result was a midpoint it was rounded away from zero, so
|
1439 |
|
|
// it will need a correction
|
1440 |
|
|
// check for midpoints
|
1441 |
|
|
if ((fstar.w[3] == 0) && (fstar.w[2] == 0)
|
1442 |
|
|
&& (fstar.w[1] || fstar.w[0])
|
1443 |
|
|
&& (fstar.w[1] < ten2mk128trunc[ind - 1].w[1]
|
1444 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
1445 |
|
|
&& fstar.w[0] <= ten2mk128trunc[ind - 1].w[0]))) {
|
1446 |
|
|
// the result is a midpoint; round to nearest
|
1447 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
|
1448 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result >= 1
|
1449 |
|
|
Cstar.w[0]--; // Cstar.w[0] is now even
|
1450 |
|
|
is_midpoint_gt_even = 1;
|
1451 |
|
|
is_inexact_lt_midpoint = 0;
|
1452 |
|
|
is_inexact_gt_midpoint = 0;
|
1453 |
|
|
} else { // else MP in [ODD, EVEN]
|
1454 |
|
|
is_midpoint_lt_even = 1;
|
1455 |
|
|
is_inexact_lt_midpoint = 0;
|
1456 |
|
|
is_inexact_gt_midpoint = 0;
|
1457 |
|
|
}
|
1458 |
|
|
}
|
1459 |
|
|
// general correction for RM
|
1460 |
|
|
if (x_sign && (is_midpoint_gt_even || is_inexact_lt_midpoint)) {
|
1461 |
|
|
Cstar.w[0] = Cstar.w[0] + 1;
|
1462 |
|
|
} else if (!x_sign
|
1463 |
|
|
&& (is_midpoint_lt_even || is_inexact_gt_midpoint)) {
|
1464 |
|
|
Cstar.w[0] = Cstar.w[0] - 1;
|
1465 |
|
|
} else {
|
1466 |
|
|
; // the result is already correct
|
1467 |
|
|
}
|
1468 |
|
|
if (x_sign)
|
1469 |
|
|
res = -Cstar.w[0];
|
1470 |
|
|
else
|
1471 |
|
|
res = Cstar.w[0];
|
1472 |
|
|
} else if (exp == 0) {
|
1473 |
|
|
// 1 <= q <= 10
|
1474 |
|
|
// res = +/-C (exact)
|
1475 |
|
|
if (x_sign)
|
1476 |
|
|
res = -C1.w[0];
|
1477 |
|
|
else
|
1478 |
|
|
res = C1.w[0];
|
1479 |
|
|
} else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
|
1480 |
|
|
// res = +/-C * 10^exp (exact)
|
1481 |
|
|
if (x_sign)
|
1482 |
|
|
res = -C1.w[0] * ten2k64[exp];
|
1483 |
|
|
else
|
1484 |
|
|
res = C1.w[0] * ten2k64[exp];
|
1485 |
|
|
}
|
1486 |
|
|
}
|
1487 |
|
|
}
|
1488 |
|
|
|
1489 |
|
|
BID_RETURN (res);
|
1490 |
|
|
}
|
1491 |
|
|
|
1492 |
|
|
/*****************************************************************************
|
1493 |
|
|
* BID128_to_int32_ceil
|
1494 |
|
|
****************************************************************************/
|
1495 |
|
|
|
1496 |
|
|
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (int, bid128_to_int32_ceil, x)
|
1497 |
|
|
|
1498 |
|
|
int res;
|
1499 |
|
|
UINT64 x_sign;
|
1500 |
|
|
UINT64 x_exp;
|
1501 |
|
|
int exp; // unbiased exponent
|
1502 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
1503 |
|
|
UINT64 tmp64, tmp64A;
|
1504 |
|
|
BID_UI64DOUBLE tmp1;
|
1505 |
|
|
unsigned int x_nr_bits;
|
1506 |
|
|
int q, ind, shift;
|
1507 |
|
|
UINT128 C1, C;
|
1508 |
|
|
UINT128 Cstar; // C* represents up to 34 decimal digits ~ 113 bits
|
1509 |
|
|
UINT256 fstar;
|
1510 |
|
|
UINT256 P256;
|
1511 |
|
|
int is_inexact_lt_midpoint = 0;
|
1512 |
|
|
int is_inexact_gt_midpoint = 0;
|
1513 |
|
|
int is_midpoint_lt_even = 0;
|
1514 |
|
|
int is_midpoint_gt_even = 0;
|
1515 |
|
|
|
1516 |
|
|
// unpack x
|
1517 |
|
|
x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
1518 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
1519 |
|
|
C1.w[1] = x.w[1] & MASK_COEFF;
|
1520 |
|
|
C1.w[0] = x.w[0];
|
1521 |
|
|
|
1522 |
|
|
// check for NaN or Infinity
|
1523 |
|
|
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
|
1524 |
|
|
// x is special
|
1525 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
|
1526 |
|
|
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
1527 |
|
|
// set invalid flag
|
1528 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1529 |
|
|
// return Integer Indefinite
|
1530 |
|
|
res = 0x80000000;
|
1531 |
|
|
} else { // x is QNaN
|
1532 |
|
|
// set invalid flag
|
1533 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1534 |
|
|
// return Integer Indefinite
|
1535 |
|
|
res = 0x80000000;
|
1536 |
|
|
}
|
1537 |
|
|
BID_RETURN (res);
|
1538 |
|
|
} else { // x is not a NaN, so it must be infinity
|
1539 |
|
|
if (!x_sign) { // x is +inf
|
1540 |
|
|
// set invalid flag
|
1541 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1542 |
|
|
// return Integer Indefinite
|
1543 |
|
|
res = 0x80000000;
|
1544 |
|
|
} else { // x is -inf
|
1545 |
|
|
// set invalid flag
|
1546 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1547 |
|
|
// return Integer Indefinite
|
1548 |
|
|
res = 0x80000000;
|
1549 |
|
|
}
|
1550 |
|
|
BID_RETURN (res);
|
1551 |
|
|
}
|
1552 |
|
|
}
|
1553 |
|
|
// check for non-canonical values (after the check for special values)
|
1554 |
|
|
if ((C1.w[1] > 0x0001ed09bead87c0ull)
|
1555 |
|
|
|| (C1.w[1] == 0x0001ed09bead87c0ull
|
1556 |
|
|
&& (C1.w[0] > 0x378d8e63ffffffffull))
|
1557 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
1558 |
|
|
res = 0x00000000;
|
1559 |
|
|
BID_RETURN (res);
|
1560 |
|
|
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
|
1561 |
|
|
// x is 0
|
1562 |
|
|
res = 0x00000000;
|
1563 |
|
|
BID_RETURN (res);
|
1564 |
|
|
} else { // x is not special and is not zero
|
1565 |
|
|
|
1566 |
|
|
// q = nr. of decimal digits in x
|
1567 |
|
|
// determine first the nr. of bits in x
|
1568 |
|
|
if (C1.w[1] == 0) {
|
1569 |
|
|
if (C1.w[0] >= 0x0020000000000000ull) { // x >= 2^53
|
1570 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
1571 |
|
|
if (C1.w[0] >= 0x0000000100000000ull) { // x >= 2^32
|
1572 |
|
|
tmp1.d = (double) (C1.w[0] >> 32); // exact conversion
|
1573 |
|
|
x_nr_bits =
|
1574 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1575 |
|
|
} else { // x < 2^32
|
1576 |
|
|
tmp1.d = (double) (C1.w[0]); // exact conversion
|
1577 |
|
|
x_nr_bits =
|
1578 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1579 |
|
|
}
|
1580 |
|
|
} else { // if x < 2^53
|
1581 |
|
|
tmp1.d = (double) C1.w[0]; // exact conversion
|
1582 |
|
|
x_nr_bits =
|
1583 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1584 |
|
|
}
|
1585 |
|
|
} else { // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
|
1586 |
|
|
tmp1.d = (double) C1.w[1]; // exact conversion
|
1587 |
|
|
x_nr_bits =
|
1588 |
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1589 |
|
|
}
|
1590 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
1591 |
|
|
if (q == 0) {
|
1592 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
1593 |
|
|
if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
|
1594 |
|
|
|| (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
|
1595 |
|
|
&& C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
|
1596 |
|
|
q++;
|
1597 |
|
|
}
|
1598 |
|
|
exp = (x_exp >> 49) - 6176;
|
1599 |
|
|
if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits)
|
1600 |
|
|
// set invalid flag
|
1601 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1602 |
|
|
// return Integer Indefinite
|
1603 |
|
|
res = 0x80000000;
|
1604 |
|
|
BID_RETURN (res);
|
1605 |
|
|
} else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1)
|
1606 |
|
|
// in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2...
|
1607 |
|
|
// so x rounded to an integer may or may not fit in a signed 32-bit int
|
1608 |
|
|
// the cases that do not fit are identified here; the ones that fit
|
1609 |
|
|
// fall through and will be handled with other cases further,
|
1610 |
|
|
// under '1 <= q + exp <= 10'
|
1611 |
|
|
if (x_sign) { // if n < 0 and q + exp = 10
|
1612 |
|
|
// if n <= -2^31-1 then n is too large
|
1613 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31+1
|
1614 |
|
|
// <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0x50000000a, 1<=q<=34
|
1615 |
|
|
if (q <= 11) {
|
1616 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
1617 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
1618 |
|
|
if (tmp64 >= 0x50000000aull) {
|
1619 |
|
|
// set invalid flag
|
1620 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1621 |
|
|
// return Integer Indefinite
|
1622 |
|
|
res = 0x80000000;
|
1623 |
|
|
BID_RETURN (res);
|
1624 |
|
|
}
|
1625 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
1626 |
|
|
// to '1 <= q + exp <= 10'
|
1627 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
1628 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x50000000a <=>
|
1629 |
|
|
// C >= 0x50000000a * 10^(q-11) where 1 <= q - 11 <= 23
|
1630 |
|
|
// (scale 2^31+1 up)
|
1631 |
|
|
tmp64 = 0x50000000aull;
|
1632 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
1633 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
1634 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
1635 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
1636 |
|
|
}
|
1637 |
|
|
if (C1.w[1] > C.w[1]
|
1638 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
1639 |
|
|
// set invalid flag
|
1640 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1641 |
|
|
// return Integer Indefinite
|
1642 |
|
|
res = 0x80000000;
|
1643 |
|
|
BID_RETURN (res);
|
1644 |
|
|
}
|
1645 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
1646 |
|
|
// to '1 <= q + exp <= 10'
|
1647 |
|
|
}
|
1648 |
|
|
} else { // if n > 0 and q + exp = 10
|
1649 |
|
|
// if n > 2^31 - 1 then n is too large
|
1650 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) > 2^31 - 1
|
1651 |
|
|
// too large if 0.c(0)c(1)...c(q-1) * 10^11 > 0x4fffffff6, 1<=q<=34
|
1652 |
|
|
if (q <= 11) {
|
1653 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
1654 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
1655 |
|
|
if (tmp64 > 0x4fffffff6ull) {
|
1656 |
|
|
// set invalid flag
|
1657 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1658 |
|
|
// return Integer Indefinite
|
1659 |
|
|
res = 0x80000000;
|
1660 |
|
|
BID_RETURN (res);
|
1661 |
|
|
}
|
1662 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
1663 |
|
|
// to '1 <= q + exp <= 10'
|
1664 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
1665 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 > 0x4fffffff6 <=>
|
1666 |
|
|
// C > 0x4fffffff6 * 10^(q-11) where 1 <= q - 11 <= 23
|
1667 |
|
|
// (scale 2^31 up)
|
1668 |
|
|
tmp64 = 0x4fffffff6ull;
|
1669 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
1670 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
1671 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
1672 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
1673 |
|
|
}
|
1674 |
|
|
if (C1.w[1] > C.w[1] || (C1.w[1] == C.w[1] && C1.w[0] > C.w[0])) {
|
1675 |
|
|
// set invalid flag
|
1676 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1677 |
|
|
// return Integer Indefinite
|
1678 |
|
|
res = 0x80000000;
|
1679 |
|
|
BID_RETURN (res);
|
1680 |
|
|
}
|
1681 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
1682 |
|
|
// to '1 <= q + exp <= 10'
|
1683 |
|
|
}
|
1684 |
|
|
}
|
1685 |
|
|
}
|
1686 |
|
|
// n is not too large to be converted to int32: -2^31-1 < n <= 2^31-1
|
1687 |
|
|
// Note: some of the cases tested for above fall through to this point
|
1688 |
|
|
if ((q + exp) <= 0) {
|
1689 |
|
|
// n = +/-0.0...c(0)c(1)...c(q-1) or n = +/-0.c(0)c(1)...c(q-1)
|
1690 |
|
|
// return 0
|
1691 |
|
|
if (x_sign)
|
1692 |
|
|
res = 0x00000000;
|
1693 |
|
|
else
|
1694 |
|
|
res = 0x00000001;
|
1695 |
|
|
BID_RETURN (res);
|
1696 |
|
|
} else { // if (1 <= q + exp <= 10, 1 <= q <= 34, -33 <= exp <= 9)
|
1697 |
|
|
// -2^31-1 < x <= -1 or 1 <= x <= 2^31-1 so x can be rounded
|
1698 |
|
|
// toward positive infinity to a 32-bit signed integer
|
1699 |
|
|
if (exp < 0) { // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 10
|
1700 |
|
|
ind = -exp; // 1 <= ind <= 33; ind is a synonym for 'x'
|
1701 |
|
|
// chop off ind digits from the lower part of C1
|
1702 |
|
|
// C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
|
1703 |
|
|
tmp64 = C1.w[0];
|
1704 |
|
|
if (ind <= 19) {
|
1705 |
|
|
C1.w[0] = C1.w[0] + midpoint64[ind - 1];
|
1706 |
|
|
} else {
|
1707 |
|
|
C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
|
1708 |
|
|
C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
|
1709 |
|
|
}
|
1710 |
|
|
if (C1.w[0] < tmp64)
|
1711 |
|
|
C1.w[1]++;
|
1712 |
|
|
// calculate C* and f*
|
1713 |
|
|
// C* is actually floor(C*) in this case
|
1714 |
|
|
// C* and f* need shifting and masking, as shown by
|
1715 |
|
|
// shiftright128[] and maskhigh128[]
|
1716 |
|
|
// 1 <= x <= 33
|
1717 |
|
|
// kx = 10^(-x) = ten2mk128[ind - 1]
|
1718 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
1719 |
|
|
// the approximation of 10^(-x) was rounded up to 118 bits
|
1720 |
|
|
__mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
|
1721 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
1722 |
|
|
Cstar.w[1] = P256.w[3];
|
1723 |
|
|
Cstar.w[0] = P256.w[2];
|
1724 |
|
|
fstar.w[3] = 0;
|
1725 |
|
|
fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
|
1726 |
|
|
fstar.w[1] = P256.w[1];
|
1727 |
|
|
fstar.w[0] = P256.w[0];
|
1728 |
|
|
} else { // 22 <= ind - 1 <= 33
|
1729 |
|
|
Cstar.w[1] = 0;
|
1730 |
|
|
Cstar.w[0] = P256.w[3];
|
1731 |
|
|
fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
|
1732 |
|
|
fstar.w[2] = P256.w[2];
|
1733 |
|
|
fstar.w[1] = P256.w[1];
|
1734 |
|
|
fstar.w[0] = P256.w[0];
|
1735 |
|
|
}
|
1736 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
|
1737 |
|
|
// if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
|
1738 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
1739 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
1740 |
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
1741 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
1742 |
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
1743 |
|
|
// else
|
1744 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
1745 |
|
|
// correct by Property 1)
|
1746 |
|
|
// n = C* * 10^(e+x)
|
1747 |
|
|
|
1748 |
|
|
// shift right C* by Ex-128 = shiftright128[ind]
|
1749 |
|
|
shift = shiftright128[ind - 1]; // 0 <= shift <= 102
|
1750 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
1751 |
|
|
Cstar.w[0] =
|
1752 |
|
|
(Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
|
1753 |
|
|
// redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
|
1754 |
|
|
} else { // 22 <= ind - 1 <= 33
|
1755 |
|
|
Cstar.w[0] = (Cstar.w[0] >> (shift - 64)); // 2 <= shift - 64 <= 38
|
1756 |
|
|
}
|
1757 |
|
|
// determine inexactness of the rounding of C*
|
1758 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
1759 |
|
|
// the result is exact
|
1760 |
|
|
// else // if (f* - 1/2 > T*) then
|
1761 |
|
|
// the result is inexact
|
1762 |
|
|
if (ind - 1 <= 2) {
|
1763 |
|
|
if (fstar.w[1] > 0x8000000000000000ull || (fstar.w[1] == 0x8000000000000000ull && fstar.w[0] > 0x0ull)) { // f* > 1/2 and the result may be exact
|
1764 |
|
|
tmp64 = fstar.w[1] - 0x8000000000000000ull; // f* - 1/2
|
1765 |
|
|
if (tmp64 > ten2mk128trunc[ind - 1].w[1]
|
1766 |
|
|
|| (tmp64 == ten2mk128trunc[ind - 1].w[1]
|
1767 |
|
|
&& fstar.w[0] >= ten2mk128trunc[ind - 1].w[0])) {
|
1768 |
|
|
is_inexact_lt_midpoint = 1;
|
1769 |
|
|
} // else the result is exact
|
1770 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
1771 |
|
|
is_inexact_gt_midpoint = 1;
|
1772 |
|
|
}
|
1773 |
|
|
} else if (ind - 1 <= 21) { // if 3 <= ind <= 21
|
1774 |
|
|
if (fstar.w[3] > 0x0 ||
|
1775 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] > onehalf128[ind - 1]) ||
|
1776 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] == onehalf128[ind - 1] &&
|
1777 |
|
|
(fstar.w[1] || fstar.w[0]))) {
|
1778 |
|
|
// f2* > 1/2 and the result may be exact
|
1779 |
|
|
// Calculate f2* - 1/2
|
1780 |
|
|
tmp64 = fstar.w[2] - onehalf128[ind - 1];
|
1781 |
|
|
tmp64A = fstar.w[3];
|
1782 |
|
|
if (tmp64 > fstar.w[2])
|
1783 |
|
|
tmp64A--;
|
1784 |
|
|
if (tmp64A || tmp64
|
1785 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
1786 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
1787 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
1788 |
|
|
is_inexact_lt_midpoint = 1;
|
1789 |
|
|
} // else the result is exact
|
1790 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
1791 |
|
|
is_inexact_gt_midpoint = 1;
|
1792 |
|
|
}
|
1793 |
|
|
} else { // if 22 <= ind <= 33
|
1794 |
|
|
if (fstar.w[3] > onehalf128[ind - 1] ||
|
1795 |
|
|
(fstar.w[3] == onehalf128[ind - 1] &&
|
1796 |
|
|
(fstar.w[2] || fstar.w[1] || fstar.w[0]))) {
|
1797 |
|
|
// f2* > 1/2 and the result may be exact
|
1798 |
|
|
// Calculate f2* - 1/2
|
1799 |
|
|
tmp64 = fstar.w[3] - onehalf128[ind - 1];
|
1800 |
|
|
if (tmp64 || fstar.w[2]
|
1801 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
1802 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
1803 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
1804 |
|
|
is_inexact_lt_midpoint = 1;
|
1805 |
|
|
} // else the result is exact
|
1806 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
1807 |
|
|
is_inexact_gt_midpoint = 1;
|
1808 |
|
|
}
|
1809 |
|
|
}
|
1810 |
|
|
|
1811 |
|
|
// if the result was a midpoint it was rounded away from zero, so
|
1812 |
|
|
// it will need a correction
|
1813 |
|
|
// check for midpoints
|
1814 |
|
|
if ((fstar.w[3] == 0) && (fstar.w[2] == 0)
|
1815 |
|
|
&& (fstar.w[1] || fstar.w[0])
|
1816 |
|
|
&& (fstar.w[1] < ten2mk128trunc[ind - 1].w[1]
|
1817 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
1818 |
|
|
&& fstar.w[0] <= ten2mk128trunc[ind - 1].w[0]))) {
|
1819 |
|
|
// the result is a midpoint; round to nearest
|
1820 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
|
1821 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result >= 1
|
1822 |
|
|
Cstar.w[0]--; // Cstar.w[0] is now even
|
1823 |
|
|
is_midpoint_gt_even = 1;
|
1824 |
|
|
is_inexact_lt_midpoint = 0;
|
1825 |
|
|
is_inexact_gt_midpoint = 0;
|
1826 |
|
|
} else { // else MP in [ODD, EVEN]
|
1827 |
|
|
is_midpoint_lt_even = 1;
|
1828 |
|
|
is_inexact_lt_midpoint = 0;
|
1829 |
|
|
is_inexact_gt_midpoint = 0;
|
1830 |
|
|
}
|
1831 |
|
|
}
|
1832 |
|
|
// general correction for RM
|
1833 |
|
|
if (x_sign && (is_midpoint_lt_even || is_inexact_gt_midpoint)) {
|
1834 |
|
|
Cstar.w[0] = Cstar.w[0] - 1;
|
1835 |
|
|
} else if (!x_sign
|
1836 |
|
|
&& (is_midpoint_gt_even || is_inexact_lt_midpoint)) {
|
1837 |
|
|
Cstar.w[0] = Cstar.w[0] + 1;
|
1838 |
|
|
} else {
|
1839 |
|
|
; // the result is already correct
|
1840 |
|
|
}
|
1841 |
|
|
if (x_sign)
|
1842 |
|
|
res = -Cstar.w[0];
|
1843 |
|
|
else
|
1844 |
|
|
res = Cstar.w[0];
|
1845 |
|
|
} else if (exp == 0) {
|
1846 |
|
|
// 1 <= q <= 10
|
1847 |
|
|
// res = +/-C (exact)
|
1848 |
|
|
if (x_sign)
|
1849 |
|
|
res = -C1.w[0];
|
1850 |
|
|
else
|
1851 |
|
|
res = C1.w[0];
|
1852 |
|
|
} else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
|
1853 |
|
|
// res = +/-C * 10^exp (exact)
|
1854 |
|
|
if (x_sign)
|
1855 |
|
|
res = -C1.w[0] * ten2k64[exp];
|
1856 |
|
|
else
|
1857 |
|
|
res = C1.w[0] * ten2k64[exp];
|
1858 |
|
|
}
|
1859 |
|
|
}
|
1860 |
|
|
}
|
1861 |
|
|
|
1862 |
|
|
BID_RETURN (res);
|
1863 |
|
|
}
|
1864 |
|
|
|
1865 |
|
|
/*****************************************************************************
|
1866 |
|
|
* BID128_to_int32_xceil
|
1867 |
|
|
****************************************************************************/
|
1868 |
|
|
|
1869 |
|
|
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (int, bid128_to_int32_xceil, x)
|
1870 |
|
|
|
1871 |
|
|
int res;
|
1872 |
|
|
UINT64 x_sign;
|
1873 |
|
|
UINT64 x_exp;
|
1874 |
|
|
int exp; // unbiased exponent
|
1875 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
1876 |
|
|
UINT64 tmp64, tmp64A;
|
1877 |
|
|
BID_UI64DOUBLE tmp1;
|
1878 |
|
|
unsigned int x_nr_bits;
|
1879 |
|
|
int q, ind, shift;
|
1880 |
|
|
UINT128 C1, C;
|
1881 |
|
|
UINT128 Cstar; // C* represents up to 34 decimal digits ~ 113 bits
|
1882 |
|
|
UINT256 fstar;
|
1883 |
|
|
UINT256 P256;
|
1884 |
|
|
int is_inexact_lt_midpoint = 0;
|
1885 |
|
|
int is_inexact_gt_midpoint = 0;
|
1886 |
|
|
int is_midpoint_lt_even = 0;
|
1887 |
|
|
int is_midpoint_gt_even = 0;
|
1888 |
|
|
|
1889 |
|
|
// unpack x
|
1890 |
|
|
x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
1891 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
1892 |
|
|
C1.w[1] = x.w[1] & MASK_COEFF;
|
1893 |
|
|
C1.w[0] = x.w[0];
|
1894 |
|
|
|
1895 |
|
|
// check for NaN or Infinity
|
1896 |
|
|
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
|
1897 |
|
|
// x is special
|
1898 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
|
1899 |
|
|
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
1900 |
|
|
// set invalid flag
|
1901 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1902 |
|
|
// return Integer Indefinite
|
1903 |
|
|
res = 0x80000000;
|
1904 |
|
|
} else { // x is QNaN
|
1905 |
|
|
// set invalid flag
|
1906 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1907 |
|
|
// return Integer Indefinite
|
1908 |
|
|
res = 0x80000000;
|
1909 |
|
|
}
|
1910 |
|
|
BID_RETURN (res);
|
1911 |
|
|
} else { // x is not a NaN, so it must be infinity
|
1912 |
|
|
if (!x_sign) { // x is +inf
|
1913 |
|
|
// set invalid flag
|
1914 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1915 |
|
|
// return Integer Indefinite
|
1916 |
|
|
res = 0x80000000;
|
1917 |
|
|
} else { // x is -inf
|
1918 |
|
|
// set invalid flag
|
1919 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1920 |
|
|
// return Integer Indefinite
|
1921 |
|
|
res = 0x80000000;
|
1922 |
|
|
}
|
1923 |
|
|
BID_RETURN (res);
|
1924 |
|
|
}
|
1925 |
|
|
}
|
1926 |
|
|
// check for non-canonical values (after the check for special values)
|
1927 |
|
|
if ((C1.w[1] > 0x0001ed09bead87c0ull)
|
1928 |
|
|
|| (C1.w[1] == 0x0001ed09bead87c0ull
|
1929 |
|
|
&& (C1.w[0] > 0x378d8e63ffffffffull))
|
1930 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
1931 |
|
|
res = 0x00000000;
|
1932 |
|
|
BID_RETURN (res);
|
1933 |
|
|
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
|
1934 |
|
|
// x is 0
|
1935 |
|
|
res = 0x00000000;
|
1936 |
|
|
BID_RETURN (res);
|
1937 |
|
|
} else { // x is not special and is not zero
|
1938 |
|
|
|
1939 |
|
|
// q = nr. of decimal digits in x
|
1940 |
|
|
// determine first the nr. of bits in x
|
1941 |
|
|
if (C1.w[1] == 0) {
|
1942 |
|
|
if (C1.w[0] >= 0x0020000000000000ull) { // x >= 2^53
|
1943 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
1944 |
|
|
if (C1.w[0] >= 0x0000000100000000ull) { // x >= 2^32
|
1945 |
|
|
tmp1.d = (double) (C1.w[0] >> 32); // exact conversion
|
1946 |
|
|
x_nr_bits =
|
1947 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1948 |
|
|
} else { // x < 2^32
|
1949 |
|
|
tmp1.d = (double) (C1.w[0]); // exact conversion
|
1950 |
|
|
x_nr_bits =
|
1951 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1952 |
|
|
}
|
1953 |
|
|
} else { // if x < 2^53
|
1954 |
|
|
tmp1.d = (double) C1.w[0]; // exact conversion
|
1955 |
|
|
x_nr_bits =
|
1956 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1957 |
|
|
}
|
1958 |
|
|
} else { // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
|
1959 |
|
|
tmp1.d = (double) C1.w[1]; // exact conversion
|
1960 |
|
|
x_nr_bits =
|
1961 |
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1962 |
|
|
}
|
1963 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
1964 |
|
|
if (q == 0) {
|
1965 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
1966 |
|
|
if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
|
1967 |
|
|
|| (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
|
1968 |
|
|
&& C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
|
1969 |
|
|
q++;
|
1970 |
|
|
}
|
1971 |
|
|
exp = (x_exp >> 49) - 6176;
|
1972 |
|
|
if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits)
|
1973 |
|
|
// set invalid flag
|
1974 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1975 |
|
|
// return Integer Indefinite
|
1976 |
|
|
res = 0x80000000;
|
1977 |
|
|
BID_RETURN (res);
|
1978 |
|
|
} else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1)
|
1979 |
|
|
// in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2...
|
1980 |
|
|
// so x rounded to an integer may or may not fit in a signed 32-bit int
|
1981 |
|
|
// the cases that do not fit are identified here; the ones that fit
|
1982 |
|
|
// fall through and will be handled with other cases further,
|
1983 |
|
|
// under '1 <= q + exp <= 10'
|
1984 |
|
|
if (x_sign) { // if n < 0 and q + exp = 10
|
1985 |
|
|
// if n <= -2^31-1 then n is too large
|
1986 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31+1
|
1987 |
|
|
// <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0x50000000a, 1<=q<=34
|
1988 |
|
|
if (q <= 11) {
|
1989 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
1990 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
1991 |
|
|
if (tmp64 >= 0x50000000aull) {
|
1992 |
|
|
// set invalid flag
|
1993 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1994 |
|
|
// return Integer Indefinite
|
1995 |
|
|
res = 0x80000000;
|
1996 |
|
|
BID_RETURN (res);
|
1997 |
|
|
}
|
1998 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
1999 |
|
|
// to '1 <= q + exp <= 10'
|
2000 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
2001 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x50000000a <=>
|
2002 |
|
|
// C >= 0x50000000a * 10^(q-11) where 1 <= q - 11 <= 23
|
2003 |
|
|
// (scale 2^31+1 up)
|
2004 |
|
|
tmp64 = 0x50000000aull;
|
2005 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
2006 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
2007 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
2008 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
2009 |
|
|
}
|
2010 |
|
|
if (C1.w[1] > C.w[1]
|
2011 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
2012 |
|
|
// set invalid flag
|
2013 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2014 |
|
|
// return Integer Indefinite
|
2015 |
|
|
res = 0x80000000;
|
2016 |
|
|
BID_RETURN (res);
|
2017 |
|
|
}
|
2018 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
2019 |
|
|
// to '1 <= q + exp <= 10'
|
2020 |
|
|
}
|
2021 |
|
|
} else { // if n > 0 and q + exp = 10
|
2022 |
|
|
// if n > 2^31 - 1 then n is too large
|
2023 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) > 2^31 - 1
|
2024 |
|
|
// too large if 0.c(0)c(1)...c(q-1) * 10^11 > 0x4fffffff6, 1<=q<=34
|
2025 |
|
|
if (q <= 11) {
|
2026 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
2027 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
2028 |
|
|
if (tmp64 > 0x4fffffff6ull) {
|
2029 |
|
|
// set invalid flag
|
2030 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2031 |
|
|
// return Integer Indefinite
|
2032 |
|
|
res = 0x80000000;
|
2033 |
|
|
BID_RETURN (res);
|
2034 |
|
|
}
|
2035 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
2036 |
|
|
// to '1 <= q + exp <= 10'
|
2037 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
2038 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 > 0x4fffffff6 <=>
|
2039 |
|
|
// C > 0x4fffffff6 * 10^(q-11) where 1 <= q - 11 <= 23
|
2040 |
|
|
// (scale 2^31 up)
|
2041 |
|
|
tmp64 = 0x4fffffff6ull;
|
2042 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
2043 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
2044 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
2045 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
2046 |
|
|
}
|
2047 |
|
|
if (C1.w[1] > C.w[1] || (C1.w[1] == C.w[1] && C1.w[0] > C.w[0])) {
|
2048 |
|
|
// set invalid flag
|
2049 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2050 |
|
|
// return Integer Indefinite
|
2051 |
|
|
res = 0x80000000;
|
2052 |
|
|
BID_RETURN (res);
|
2053 |
|
|
}
|
2054 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
2055 |
|
|
// to '1 <= q + exp <= 10'
|
2056 |
|
|
}
|
2057 |
|
|
}
|
2058 |
|
|
}
|
2059 |
|
|
// n is not too large to be converted to int32: -2^31-1 < n <= 2^31-1
|
2060 |
|
|
// Note: some of the cases tested for above fall through to this point
|
2061 |
|
|
if ((q + exp) <= 0) {
|
2062 |
|
|
// n = +/-0.0...c(0)c(1)...c(q-1) or n = +/-0.c(0)c(1)...c(q-1)
|
2063 |
|
|
// set inexact flag
|
2064 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2065 |
|
|
// return 0
|
2066 |
|
|
if (x_sign)
|
2067 |
|
|
res = 0x00000000;
|
2068 |
|
|
else
|
2069 |
|
|
res = 0x00000001;
|
2070 |
|
|
BID_RETURN (res);
|
2071 |
|
|
} else { // if (1 <= q + exp <= 10, 1 <= q <= 34, -33 <= exp <= 9)
|
2072 |
|
|
// -2^31-1 < x <= -1 or 1 <= x <= 2^31-1 so x can be rounded
|
2073 |
|
|
// toward positive infinity to a 32-bit signed integer
|
2074 |
|
|
if (exp < 0) { // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 10
|
2075 |
|
|
ind = -exp; // 1 <= ind <= 33; ind is a synonym for 'x'
|
2076 |
|
|
// chop off ind digits from the lower part of C1
|
2077 |
|
|
// C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
|
2078 |
|
|
tmp64 = C1.w[0];
|
2079 |
|
|
if (ind <= 19) {
|
2080 |
|
|
C1.w[0] = C1.w[0] + midpoint64[ind - 1];
|
2081 |
|
|
} else {
|
2082 |
|
|
C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
|
2083 |
|
|
C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
|
2084 |
|
|
}
|
2085 |
|
|
if (C1.w[0] < tmp64)
|
2086 |
|
|
C1.w[1]++;
|
2087 |
|
|
// calculate C* and f*
|
2088 |
|
|
// C* is actually floor(C*) in this case
|
2089 |
|
|
// C* and f* need shifting and masking, as shown by
|
2090 |
|
|
// shiftright128[] and maskhigh128[]
|
2091 |
|
|
// 1 <= x <= 33
|
2092 |
|
|
// kx = 10^(-x) = ten2mk128[ind - 1]
|
2093 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
2094 |
|
|
// the approximation of 10^(-x) was rounded up to 118 bits
|
2095 |
|
|
__mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
|
2096 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
2097 |
|
|
Cstar.w[1] = P256.w[3];
|
2098 |
|
|
Cstar.w[0] = P256.w[2];
|
2099 |
|
|
fstar.w[3] = 0;
|
2100 |
|
|
fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
|
2101 |
|
|
fstar.w[1] = P256.w[1];
|
2102 |
|
|
fstar.w[0] = P256.w[0];
|
2103 |
|
|
} else { // 22 <= ind - 1 <= 33
|
2104 |
|
|
Cstar.w[1] = 0;
|
2105 |
|
|
Cstar.w[0] = P256.w[3];
|
2106 |
|
|
fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
|
2107 |
|
|
fstar.w[2] = P256.w[2];
|
2108 |
|
|
fstar.w[1] = P256.w[1];
|
2109 |
|
|
fstar.w[0] = P256.w[0];
|
2110 |
|
|
}
|
2111 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
|
2112 |
|
|
// if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
|
2113 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
2114 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
2115 |
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
2116 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
2117 |
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
2118 |
|
|
// else
|
2119 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
2120 |
|
|
// correct by Property 1)
|
2121 |
|
|
// n = C* * 10^(e+x)
|
2122 |
|
|
|
2123 |
|
|
// shift right C* by Ex-128 = shiftright128[ind]
|
2124 |
|
|
shift = shiftright128[ind - 1]; // 0 <= shift <= 102
|
2125 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
2126 |
|
|
Cstar.w[0] =
|
2127 |
|
|
(Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
|
2128 |
|
|
// redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
|
2129 |
|
|
} else { // 22 <= ind - 1 <= 33
|
2130 |
|
|
Cstar.w[0] = (Cstar.w[0] >> (shift - 64)); // 2 <= shift - 64 <= 38
|
2131 |
|
|
}
|
2132 |
|
|
// determine inexactness of the rounding of C*
|
2133 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
2134 |
|
|
// the result is exact
|
2135 |
|
|
// else // if (f* - 1/2 > T*) then
|
2136 |
|
|
// the result is inexact
|
2137 |
|
|
if (ind - 1 <= 2) {
|
2138 |
|
|
if (fstar.w[1] > 0x8000000000000000ull || (fstar.w[1] == 0x8000000000000000ull && fstar.w[0] > 0x0ull)) { // f* > 1/2 and the result may be exact
|
2139 |
|
|
tmp64 = fstar.w[1] - 0x8000000000000000ull; // f* - 1/2
|
2140 |
|
|
if (tmp64 > ten2mk128trunc[ind - 1].w[1]
|
2141 |
|
|
|| (tmp64 == ten2mk128trunc[ind - 1].w[1]
|
2142 |
|
|
&& fstar.w[0] >= ten2mk128trunc[ind - 1].w[0])) {
|
2143 |
|
|
// set the inexact flag
|
2144 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2145 |
|
|
is_inexact_lt_midpoint = 1;
|
2146 |
|
|
} // else the result is exact
|
2147 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
2148 |
|
|
// set the inexact flag
|
2149 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2150 |
|
|
is_inexact_gt_midpoint = 1;
|
2151 |
|
|
}
|
2152 |
|
|
} else if (ind - 1 <= 21) { // if 3 <= ind <= 21
|
2153 |
|
|
if (fstar.w[3] > 0x0 ||
|
2154 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] > onehalf128[ind - 1]) ||
|
2155 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] == onehalf128[ind - 1] &&
|
2156 |
|
|
(fstar.w[1] || fstar.w[0]))) {
|
2157 |
|
|
// f2* > 1/2 and the result may be exact
|
2158 |
|
|
// Calculate f2* - 1/2
|
2159 |
|
|
tmp64 = fstar.w[2] - onehalf128[ind - 1];
|
2160 |
|
|
tmp64A = fstar.w[3];
|
2161 |
|
|
if (tmp64 > fstar.w[2])
|
2162 |
|
|
tmp64A--;
|
2163 |
|
|
if (tmp64A || tmp64
|
2164 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
2165 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
2166 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
2167 |
|
|
// set the inexact flag
|
2168 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2169 |
|
|
is_inexact_lt_midpoint = 1;
|
2170 |
|
|
} // else the result is exact
|
2171 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
2172 |
|
|
// set the inexact flag
|
2173 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2174 |
|
|
is_inexact_gt_midpoint = 1;
|
2175 |
|
|
}
|
2176 |
|
|
} else { // if 22 <= ind <= 33
|
2177 |
|
|
if (fstar.w[3] > onehalf128[ind - 1] ||
|
2178 |
|
|
(fstar.w[3] == onehalf128[ind - 1] &&
|
2179 |
|
|
(fstar.w[2] || fstar.w[1] || fstar.w[0]))) {
|
2180 |
|
|
// f2* > 1/2 and the result may be exact
|
2181 |
|
|
// Calculate f2* - 1/2
|
2182 |
|
|
tmp64 = fstar.w[3] - onehalf128[ind - 1];
|
2183 |
|
|
if (tmp64 || fstar.w[2]
|
2184 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
2185 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
2186 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
2187 |
|
|
// set the inexact flag
|
2188 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2189 |
|
|
is_inexact_lt_midpoint = 1;
|
2190 |
|
|
} // else the result is exact
|
2191 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
2192 |
|
|
// set the inexact flag
|
2193 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2194 |
|
|
is_inexact_gt_midpoint = 1;
|
2195 |
|
|
}
|
2196 |
|
|
}
|
2197 |
|
|
|
2198 |
|
|
// if the result was a midpoint it was rounded away from zero, so
|
2199 |
|
|
// it will need a correction
|
2200 |
|
|
// check for midpoints
|
2201 |
|
|
if ((fstar.w[3] == 0) && (fstar.w[2] == 0)
|
2202 |
|
|
&& (fstar.w[1] || fstar.w[0])
|
2203 |
|
|
&& (fstar.w[1] < ten2mk128trunc[ind - 1].w[1]
|
2204 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
2205 |
|
|
&& fstar.w[0] <= ten2mk128trunc[ind - 1].w[0]))) {
|
2206 |
|
|
// the result is a midpoint; round to nearest
|
2207 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
|
2208 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result >= 1
|
2209 |
|
|
Cstar.w[0]--; // Cstar.w[0] is now even
|
2210 |
|
|
is_midpoint_gt_even = 1;
|
2211 |
|
|
is_inexact_lt_midpoint = 0;
|
2212 |
|
|
is_inexact_gt_midpoint = 0;
|
2213 |
|
|
} else { // else MP in [ODD, EVEN]
|
2214 |
|
|
is_midpoint_lt_even = 1;
|
2215 |
|
|
is_inexact_lt_midpoint = 0;
|
2216 |
|
|
is_inexact_gt_midpoint = 0;
|
2217 |
|
|
}
|
2218 |
|
|
}
|
2219 |
|
|
// general correction for RM
|
2220 |
|
|
if (x_sign && (is_midpoint_lt_even || is_inexact_gt_midpoint)) {
|
2221 |
|
|
Cstar.w[0] = Cstar.w[0] - 1;
|
2222 |
|
|
} else if (!x_sign
|
2223 |
|
|
&& (is_midpoint_gt_even || is_inexact_lt_midpoint)) {
|
2224 |
|
|
Cstar.w[0] = Cstar.w[0] + 1;
|
2225 |
|
|
} else {
|
2226 |
|
|
; // the result is already correct
|
2227 |
|
|
}
|
2228 |
|
|
if (x_sign)
|
2229 |
|
|
res = -Cstar.w[0];
|
2230 |
|
|
else
|
2231 |
|
|
res = Cstar.w[0];
|
2232 |
|
|
} else if (exp == 0) {
|
2233 |
|
|
// 1 <= q <= 10
|
2234 |
|
|
// res = +/-C (exact)
|
2235 |
|
|
if (x_sign)
|
2236 |
|
|
res = -C1.w[0];
|
2237 |
|
|
else
|
2238 |
|
|
res = C1.w[0];
|
2239 |
|
|
} else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
|
2240 |
|
|
// res = +/-C * 10^exp (exact)
|
2241 |
|
|
if (x_sign)
|
2242 |
|
|
res = -C1.w[0] * ten2k64[exp];
|
2243 |
|
|
else
|
2244 |
|
|
res = C1.w[0] * ten2k64[exp];
|
2245 |
|
|
}
|
2246 |
|
|
}
|
2247 |
|
|
}
|
2248 |
|
|
|
2249 |
|
|
BID_RETURN (res);
|
2250 |
|
|
}
|
2251 |
|
|
|
2252 |
|
|
/*****************************************************************************
|
2253 |
|
|
* BID128_to_int32_int
|
2254 |
|
|
****************************************************************************/
|
2255 |
|
|
|
2256 |
|
|
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (int, bid128_to_int32_int, x)
|
2257 |
|
|
|
2258 |
|
|
int res;
|
2259 |
|
|
UINT64 x_sign;
|
2260 |
|
|
UINT64 x_exp;
|
2261 |
|
|
int exp; // unbiased exponent
|
2262 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
2263 |
|
|
UINT64 tmp64, tmp64A;
|
2264 |
|
|
BID_UI64DOUBLE tmp1;
|
2265 |
|
|
unsigned int x_nr_bits;
|
2266 |
|
|
int q, ind, shift;
|
2267 |
|
|
UINT128 C1, C;
|
2268 |
|
|
UINT128 Cstar; // C* represents up to 34 decimal digits ~ 113 bits
|
2269 |
|
|
UINT256 fstar;
|
2270 |
|
|
UINT256 P256;
|
2271 |
|
|
int is_inexact_gt_midpoint = 0;
|
2272 |
|
|
int is_midpoint_lt_even = 0;
|
2273 |
|
|
|
2274 |
|
|
// unpack x
|
2275 |
|
|
x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
2276 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
2277 |
|
|
C1.w[1] = x.w[1] & MASK_COEFF;
|
2278 |
|
|
C1.w[0] = x.w[0];
|
2279 |
|
|
|
2280 |
|
|
// check for NaN or Infinity
|
2281 |
|
|
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
|
2282 |
|
|
// x is special
|
2283 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
|
2284 |
|
|
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
2285 |
|
|
// set invalid flag
|
2286 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2287 |
|
|
// return Integer Indefinite
|
2288 |
|
|
res = 0x80000000;
|
2289 |
|
|
} else { // x is QNaN
|
2290 |
|
|
// set invalid flag
|
2291 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2292 |
|
|
// return Integer Indefinite
|
2293 |
|
|
res = 0x80000000;
|
2294 |
|
|
}
|
2295 |
|
|
BID_RETURN (res);
|
2296 |
|
|
} else { // x is not a NaN, so it must be infinity
|
2297 |
|
|
if (!x_sign) { // x is +inf
|
2298 |
|
|
// set invalid flag
|
2299 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2300 |
|
|
// return Integer Indefinite
|
2301 |
|
|
res = 0x80000000;
|
2302 |
|
|
} else { // x is -inf
|
2303 |
|
|
// set invalid flag
|
2304 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2305 |
|
|
// return Integer Indefinite
|
2306 |
|
|
res = 0x80000000;
|
2307 |
|
|
}
|
2308 |
|
|
BID_RETURN (res);
|
2309 |
|
|
}
|
2310 |
|
|
}
|
2311 |
|
|
// check for non-canonical values (after the check for special values)
|
2312 |
|
|
if ((C1.w[1] > 0x0001ed09bead87c0ull)
|
2313 |
|
|
|| (C1.w[1] == 0x0001ed09bead87c0ull
|
2314 |
|
|
&& (C1.w[0] > 0x378d8e63ffffffffull))
|
2315 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
2316 |
|
|
res = 0x00000000;
|
2317 |
|
|
BID_RETURN (res);
|
2318 |
|
|
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
|
2319 |
|
|
// x is 0
|
2320 |
|
|
res = 0x00000000;
|
2321 |
|
|
BID_RETURN (res);
|
2322 |
|
|
} else { // x is not special and is not zero
|
2323 |
|
|
|
2324 |
|
|
// q = nr. of decimal digits in x
|
2325 |
|
|
// determine first the nr. of bits in x
|
2326 |
|
|
if (C1.w[1] == 0) {
|
2327 |
|
|
if (C1.w[0] >= 0x0020000000000000ull) { // x >= 2^53
|
2328 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
2329 |
|
|
if (C1.w[0] >= 0x0000000100000000ull) { // x >= 2^32
|
2330 |
|
|
tmp1.d = (double) (C1.w[0] >> 32); // exact conversion
|
2331 |
|
|
x_nr_bits =
|
2332 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
2333 |
|
|
} else { // x < 2^32
|
2334 |
|
|
tmp1.d = (double) (C1.w[0]); // exact conversion
|
2335 |
|
|
x_nr_bits =
|
2336 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
2337 |
|
|
}
|
2338 |
|
|
} else { // if x < 2^53
|
2339 |
|
|
tmp1.d = (double) C1.w[0]; // exact conversion
|
2340 |
|
|
x_nr_bits =
|
2341 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
2342 |
|
|
}
|
2343 |
|
|
} else { // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
|
2344 |
|
|
tmp1.d = (double) C1.w[1]; // exact conversion
|
2345 |
|
|
x_nr_bits =
|
2346 |
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
2347 |
|
|
}
|
2348 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
2349 |
|
|
if (q == 0) {
|
2350 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
2351 |
|
|
if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
|
2352 |
|
|
|| (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
|
2353 |
|
|
&& C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
|
2354 |
|
|
q++;
|
2355 |
|
|
}
|
2356 |
|
|
exp = (x_exp >> 49) - 6176;
|
2357 |
|
|
if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits)
|
2358 |
|
|
// set invalid flag
|
2359 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2360 |
|
|
// return Integer Indefinite
|
2361 |
|
|
res = 0x80000000;
|
2362 |
|
|
BID_RETURN (res);
|
2363 |
|
|
} else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1)
|
2364 |
|
|
// in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2...
|
2365 |
|
|
// so x rounded to an integer may or may not fit in a signed 32-bit int
|
2366 |
|
|
// the cases that do not fit are identified here; the ones that fit
|
2367 |
|
|
// fall through and will be handled with other cases further,
|
2368 |
|
|
// under '1 <= q + exp <= 10'
|
2369 |
|
|
if (x_sign) { // if n < 0 and q + exp = 10
|
2370 |
|
|
// if n <= -2^31 - 1 then n is too large
|
2371 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31+1
|
2372 |
|
|
// <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0x50000000a, 1<=q<=34
|
2373 |
|
|
if (q <= 11) {
|
2374 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
2375 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
2376 |
|
|
if (tmp64 >= 0x50000000aull) {
|
2377 |
|
|
// set invalid flag
|
2378 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2379 |
|
|
// return Integer Indefinite
|
2380 |
|
|
res = 0x80000000;
|
2381 |
|
|
BID_RETURN (res);
|
2382 |
|
|
}
|
2383 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
2384 |
|
|
// to '1 <= q + exp <= 10'
|
2385 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
2386 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x50000000a <=>
|
2387 |
|
|
// C >= 0x50000000a * 10^(q-11) where 1 <= q - 11 <= 23
|
2388 |
|
|
// (scale 2^31+1 up)
|
2389 |
|
|
tmp64 = 0x50000000aull;
|
2390 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
2391 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
2392 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
2393 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
2394 |
|
|
}
|
2395 |
|
|
if (C1.w[1] > C.w[1]
|
2396 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
2397 |
|
|
// set invalid flag
|
2398 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2399 |
|
|
// return Integer Indefinite
|
2400 |
|
|
res = 0x80000000;
|
2401 |
|
|
BID_RETURN (res);
|
2402 |
|
|
}
|
2403 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
2404 |
|
|
// to '1 <= q + exp <= 10'
|
2405 |
|
|
}
|
2406 |
|
|
} else { // if n > 0 and q + exp = 10
|
2407 |
|
|
// if n >= 2^31 then n is too large
|
2408 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31
|
2409 |
|
|
// too large if 0.c(0)c(1)...c(q-1) * 10^11 >= 0x500000000, 1<=q<=34
|
2410 |
|
|
if (q <= 11) {
|
2411 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
2412 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
2413 |
|
|
if (tmp64 >= 0x500000000ull) {
|
2414 |
|
|
// set invalid flag
|
2415 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2416 |
|
|
// return Integer Indefinite
|
2417 |
|
|
res = 0x80000000;
|
2418 |
|
|
BID_RETURN (res);
|
2419 |
|
|
}
|
2420 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
2421 |
|
|
// to '1 <= q + exp <= 10'
|
2422 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
2423 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x500000000 <=>
|
2424 |
|
|
// C >= 0x500000000 * 10^(q-11) where 1 <= q - 11 <= 23
|
2425 |
|
|
// (scale 2^31-1/2 up)
|
2426 |
|
|
tmp64 = 0x500000000ull;
|
2427 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
2428 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
2429 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
2430 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
2431 |
|
|
}
|
2432 |
|
|
if (C1.w[1] > C.w[1]
|
2433 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
2434 |
|
|
// set invalid flag
|
2435 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2436 |
|
|
// return Integer Indefinite
|
2437 |
|
|
res = 0x80000000;
|
2438 |
|
|
BID_RETURN (res);
|
2439 |
|
|
}
|
2440 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
2441 |
|
|
// to '1 <= q + exp <= 10'
|
2442 |
|
|
}
|
2443 |
|
|
}
|
2444 |
|
|
}
|
2445 |
|
|
// n is not too large to be converted to int32: -2^31 - 1 < n < 2^31
|
2446 |
|
|
// Note: some of the cases tested for above fall through to this point
|
2447 |
|
|
if ((q + exp) <= 0) {
|
2448 |
|
|
// n = +/-0.0...c(0)c(1)...c(q-1) or n = +/-0.c(0)c(1)...c(q-1)
|
2449 |
|
|
// return 0
|
2450 |
|
|
res = 0x00000000;
|
2451 |
|
|
BID_RETURN (res);
|
2452 |
|
|
} else { // if (1 <= q + exp <= 10, 1 <= q <= 34, -33 <= exp <= 9)
|
2453 |
|
|
// -2^31-1 < x <= -1 or 1 <= x < 2^31 so x can be rounded
|
2454 |
|
|
// toward zero to a 32-bit signed integer
|
2455 |
|
|
if (exp < 0) { // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 10
|
2456 |
|
|
ind = -exp; // 1 <= ind <= 33; ind is a synonym for 'x'
|
2457 |
|
|
// chop off ind digits from the lower part of C1
|
2458 |
|
|
// C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
|
2459 |
|
|
tmp64 = C1.w[0];
|
2460 |
|
|
if (ind <= 19) {
|
2461 |
|
|
C1.w[0] = C1.w[0] + midpoint64[ind - 1];
|
2462 |
|
|
} else {
|
2463 |
|
|
C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
|
2464 |
|
|
C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
|
2465 |
|
|
}
|
2466 |
|
|
if (C1.w[0] < tmp64)
|
2467 |
|
|
C1.w[1]++;
|
2468 |
|
|
// calculate C* and f*
|
2469 |
|
|
// C* is actually floor(C*) in this case
|
2470 |
|
|
// C* and f* need shifting and masking, as shown by
|
2471 |
|
|
// shiftright128[] and maskhigh128[]
|
2472 |
|
|
// 1 <= x <= 33
|
2473 |
|
|
// kx = 10^(-x) = ten2mk128[ind - 1]
|
2474 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
2475 |
|
|
// the approximation of 10^(-x) was rounded up to 118 bits
|
2476 |
|
|
__mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
|
2477 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
2478 |
|
|
Cstar.w[1] = P256.w[3];
|
2479 |
|
|
Cstar.w[0] = P256.w[2];
|
2480 |
|
|
fstar.w[3] = 0;
|
2481 |
|
|
fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
|
2482 |
|
|
fstar.w[1] = P256.w[1];
|
2483 |
|
|
fstar.w[0] = P256.w[0];
|
2484 |
|
|
} else { // 22 <= ind - 1 <= 33
|
2485 |
|
|
Cstar.w[1] = 0;
|
2486 |
|
|
Cstar.w[0] = P256.w[3];
|
2487 |
|
|
fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
|
2488 |
|
|
fstar.w[2] = P256.w[2];
|
2489 |
|
|
fstar.w[1] = P256.w[1];
|
2490 |
|
|
fstar.w[0] = P256.w[0];
|
2491 |
|
|
}
|
2492 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
|
2493 |
|
|
// if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
|
2494 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
2495 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
2496 |
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
2497 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
2498 |
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
2499 |
|
|
// else
|
2500 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
2501 |
|
|
// correct by Property 1)
|
2502 |
|
|
// n = C* * 10^(e+x)
|
2503 |
|
|
|
2504 |
|
|
// shift right C* by Ex-128 = shiftright128[ind]
|
2505 |
|
|
shift = shiftright128[ind - 1]; // 0 <= shift <= 102
|
2506 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
2507 |
|
|
Cstar.w[0] =
|
2508 |
|
|
(Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
|
2509 |
|
|
// redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
|
2510 |
|
|
} else { // 22 <= ind - 1 <= 33
|
2511 |
|
|
Cstar.w[0] = (Cstar.w[0] >> (shift - 64)); // 2 <= shift - 64 <= 38
|
2512 |
|
|
}
|
2513 |
|
|
// determine inexactness of the rounding of C*
|
2514 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
2515 |
|
|
// the result is exact
|
2516 |
|
|
// else // if (f* - 1/2 > T*) then
|
2517 |
|
|
// the result is inexact
|
2518 |
|
|
if (ind - 1 <= 2) {
|
2519 |
|
|
if (fstar.w[1] > 0x8000000000000000ull || (fstar.w[1] == 0x8000000000000000ull && fstar.w[0] > 0x0ull)) { // f* > 1/2 and the result may be exact
|
2520 |
|
|
tmp64 = fstar.w[1] - 0x8000000000000000ull; // f* - 1/2
|
2521 |
|
|
if ((tmp64 > ten2mk128trunc[ind - 1].w[1]
|
2522 |
|
|
|| (tmp64 == ten2mk128trunc[ind - 1].w[1]
|
2523 |
|
|
&& fstar.w[0] >= ten2mk128trunc[ind - 1].w[0]))) {
|
2524 |
|
|
} // else the result is exact
|
2525 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
2526 |
|
|
is_inexact_gt_midpoint = 1;
|
2527 |
|
|
}
|
2528 |
|
|
} else if (ind - 1 <= 21) { // if 3 <= ind <= 21
|
2529 |
|
|
if (fstar.w[3] > 0x0 ||
|
2530 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] > onehalf128[ind - 1]) ||
|
2531 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] == onehalf128[ind - 1] &&
|
2532 |
|
|
(fstar.w[1] || fstar.w[0]))) {
|
2533 |
|
|
// f2* > 1/2 and the result may be exact
|
2534 |
|
|
// Calculate f2* - 1/2
|
2535 |
|
|
tmp64 = fstar.w[2] - onehalf128[ind - 1];
|
2536 |
|
|
tmp64A = fstar.w[3];
|
2537 |
|
|
if (tmp64 > fstar.w[2])
|
2538 |
|
|
tmp64A--;
|
2539 |
|
|
if (tmp64A || tmp64
|
2540 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
2541 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
2542 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
2543 |
|
|
} // else the result is exact
|
2544 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
2545 |
|
|
is_inexact_gt_midpoint = 1;
|
2546 |
|
|
}
|
2547 |
|
|
} else { // if 22 <= ind <= 33
|
2548 |
|
|
if (fstar.w[3] > onehalf128[ind - 1] ||
|
2549 |
|
|
(fstar.w[3] == onehalf128[ind - 1] &&
|
2550 |
|
|
(fstar.w[2] || fstar.w[1] || fstar.w[0]))) {
|
2551 |
|
|
// f2* > 1/2 and the result may be exact
|
2552 |
|
|
// Calculate f2* - 1/2
|
2553 |
|
|
tmp64 = fstar.w[3] - onehalf128[ind - 1];
|
2554 |
|
|
if (tmp64 || fstar.w[2]
|
2555 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
2556 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
2557 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
2558 |
|
|
} // else the result is exact
|
2559 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
2560 |
|
|
is_inexact_gt_midpoint = 1;
|
2561 |
|
|
}
|
2562 |
|
|
}
|
2563 |
|
|
|
2564 |
|
|
// if the result was a midpoint it was rounded away from zero, so
|
2565 |
|
|
// it will need a correction
|
2566 |
|
|
// check for midpoints
|
2567 |
|
|
if ((fstar.w[3] == 0) && (fstar.w[2] == 0) &&
|
2568 |
|
|
(fstar.w[1] || fstar.w[0]) &&
|
2569 |
|
|
(fstar.w[1] < ten2mk128trunc[ind - 1].w[1] ||
|
2570 |
|
|
(fstar.w[1] == ten2mk128trunc[ind - 1].w[1] &&
|
2571 |
|
|
fstar.w[0] <= ten2mk128trunc[ind - 1].w[0]))) {
|
2572 |
|
|
// the result is a midpoint; round to nearest
|
2573 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
|
2574 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result >= 1
|
2575 |
|
|
Cstar.w[0]--; // Cstar.w[0] is now even
|
2576 |
|
|
is_inexact_gt_midpoint = 0;
|
2577 |
|
|
} else { // else MP in [ODD, EVEN]
|
2578 |
|
|
is_midpoint_lt_even = 1;
|
2579 |
|
|
is_inexact_gt_midpoint = 0;
|
2580 |
|
|
}
|
2581 |
|
|
}
|
2582 |
|
|
// general correction for RZ
|
2583 |
|
|
if (is_midpoint_lt_even || is_inexact_gt_midpoint) {
|
2584 |
|
|
Cstar.w[0] = Cstar.w[0] - 1;
|
2585 |
|
|
} else {
|
2586 |
|
|
; // exact, the result is already correct
|
2587 |
|
|
}
|
2588 |
|
|
if (x_sign)
|
2589 |
|
|
res = -Cstar.w[0];
|
2590 |
|
|
else
|
2591 |
|
|
res = Cstar.w[0];
|
2592 |
|
|
} else if (exp == 0) {
|
2593 |
|
|
// 1 <= q <= 10
|
2594 |
|
|
// res = +/-C (exact)
|
2595 |
|
|
if (x_sign)
|
2596 |
|
|
res = -C1.w[0];
|
2597 |
|
|
else
|
2598 |
|
|
res = C1.w[0];
|
2599 |
|
|
} else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
|
2600 |
|
|
// res = +/-C * 10^exp (exact)
|
2601 |
|
|
if (x_sign)
|
2602 |
|
|
res = -C1.w[0] * ten2k64[exp];
|
2603 |
|
|
else
|
2604 |
|
|
res = C1.w[0] * ten2k64[exp];
|
2605 |
|
|
}
|
2606 |
|
|
}
|
2607 |
|
|
}
|
2608 |
|
|
|
2609 |
|
|
BID_RETURN (res);
|
2610 |
|
|
}
|
2611 |
|
|
|
2612 |
|
|
/*****************************************************************************
|
2613 |
|
|
* BID128_to_int32_xint
|
2614 |
|
|
****************************************************************************/
|
2615 |
|
|
|
2616 |
|
|
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (int, bid128_to_int32_xint, x)
|
2617 |
|
|
|
2618 |
|
|
int res;
|
2619 |
|
|
UINT64 x_sign;
|
2620 |
|
|
UINT64 x_exp;
|
2621 |
|
|
int exp; // unbiased exponent
|
2622 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
2623 |
|
|
UINT64 tmp64, tmp64A;
|
2624 |
|
|
BID_UI64DOUBLE tmp1;
|
2625 |
|
|
unsigned int x_nr_bits;
|
2626 |
|
|
int q, ind, shift;
|
2627 |
|
|
UINT128 C1, C;
|
2628 |
|
|
UINT128 Cstar; // C* represents up to 34 decimal digits ~ 113 bits
|
2629 |
|
|
UINT256 fstar;
|
2630 |
|
|
UINT256 P256;
|
2631 |
|
|
int is_inexact_gt_midpoint = 0;
|
2632 |
|
|
int is_midpoint_lt_even = 0;
|
2633 |
|
|
|
2634 |
|
|
// unpack x
|
2635 |
|
|
x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
2636 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
2637 |
|
|
C1.w[1] = x.w[1] & MASK_COEFF;
|
2638 |
|
|
C1.w[0] = x.w[0];
|
2639 |
|
|
|
2640 |
|
|
// check for NaN or Infinity
|
2641 |
|
|
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
|
2642 |
|
|
// x is special
|
2643 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
|
2644 |
|
|
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
2645 |
|
|
// set invalid flag
|
2646 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2647 |
|
|
// return Integer Indefinite
|
2648 |
|
|
res = 0x80000000;
|
2649 |
|
|
} else { // x is QNaN
|
2650 |
|
|
// set invalid flag
|
2651 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2652 |
|
|
// return Integer Indefinite
|
2653 |
|
|
res = 0x80000000;
|
2654 |
|
|
}
|
2655 |
|
|
BID_RETURN (res);
|
2656 |
|
|
} else { // x is not a NaN, so it must be infinity
|
2657 |
|
|
if (!x_sign) { // x is +inf
|
2658 |
|
|
// set invalid flag
|
2659 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2660 |
|
|
// return Integer Indefinite
|
2661 |
|
|
res = 0x80000000;
|
2662 |
|
|
} else { // x is -inf
|
2663 |
|
|
// set invalid flag
|
2664 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2665 |
|
|
// return Integer Indefinite
|
2666 |
|
|
res = 0x80000000;
|
2667 |
|
|
}
|
2668 |
|
|
BID_RETURN (res);
|
2669 |
|
|
}
|
2670 |
|
|
}
|
2671 |
|
|
// check for non-canonical values (after the check for special values)
|
2672 |
|
|
if ((C1.w[1] > 0x0001ed09bead87c0ull)
|
2673 |
|
|
|| (C1.w[1] == 0x0001ed09bead87c0ull
|
2674 |
|
|
&& (C1.w[0] > 0x378d8e63ffffffffull))
|
2675 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
2676 |
|
|
res = 0x00000000;
|
2677 |
|
|
BID_RETURN (res);
|
2678 |
|
|
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
|
2679 |
|
|
// x is 0
|
2680 |
|
|
res = 0x00000000;
|
2681 |
|
|
BID_RETURN (res);
|
2682 |
|
|
} else { // x is not special and is not zero
|
2683 |
|
|
|
2684 |
|
|
// q = nr. of decimal digits in x
|
2685 |
|
|
// determine first the nr. of bits in x
|
2686 |
|
|
if (C1.w[1] == 0) {
|
2687 |
|
|
if (C1.w[0] >= 0x0020000000000000ull) { // x >= 2^53
|
2688 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
2689 |
|
|
if (C1.w[0] >= 0x0000000100000000ull) { // x >= 2^32
|
2690 |
|
|
tmp1.d = (double) (C1.w[0] >> 32); // exact conversion
|
2691 |
|
|
x_nr_bits =
|
2692 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
2693 |
|
|
} else { // x < 2^32
|
2694 |
|
|
tmp1.d = (double) (C1.w[0]); // exact conversion
|
2695 |
|
|
x_nr_bits =
|
2696 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
2697 |
|
|
}
|
2698 |
|
|
} else { // if x < 2^53
|
2699 |
|
|
tmp1.d = (double) C1.w[0]; // exact conversion
|
2700 |
|
|
x_nr_bits =
|
2701 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
2702 |
|
|
}
|
2703 |
|
|
} else { // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
|
2704 |
|
|
tmp1.d = (double) C1.w[1]; // exact conversion
|
2705 |
|
|
x_nr_bits =
|
2706 |
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
2707 |
|
|
}
|
2708 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
2709 |
|
|
if (q == 0) {
|
2710 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
2711 |
|
|
if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
|
2712 |
|
|
|| (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
|
2713 |
|
|
&& C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
|
2714 |
|
|
q++;
|
2715 |
|
|
}
|
2716 |
|
|
exp = (x_exp >> 49) - 6176;
|
2717 |
|
|
if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits)
|
2718 |
|
|
// set invalid flag
|
2719 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2720 |
|
|
// return Integer Indefinite
|
2721 |
|
|
res = 0x80000000;
|
2722 |
|
|
BID_RETURN (res);
|
2723 |
|
|
} else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1)
|
2724 |
|
|
// in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2...
|
2725 |
|
|
// so x rounded to an integer may or may not fit in a signed 32-bit int
|
2726 |
|
|
// the cases that do not fit are identified here; the ones that fit
|
2727 |
|
|
// fall through and will be handled with other cases further,
|
2728 |
|
|
// under '1 <= q + exp <= 10'
|
2729 |
|
|
if (x_sign) { // if n < 0 and q + exp = 10
|
2730 |
|
|
// if n <= -2^31 - 1 then n is too large
|
2731 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31+1
|
2732 |
|
|
// <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0x50000000a, 1<=q<=34
|
2733 |
|
|
if (q <= 11) {
|
2734 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
2735 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
2736 |
|
|
if (tmp64 >= 0x50000000aull) {
|
2737 |
|
|
// set invalid flag
|
2738 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2739 |
|
|
// return Integer Indefinite
|
2740 |
|
|
res = 0x80000000;
|
2741 |
|
|
BID_RETURN (res);
|
2742 |
|
|
}
|
2743 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
2744 |
|
|
// to '1 <= q + exp <= 10'
|
2745 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
2746 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x50000000a <=>
|
2747 |
|
|
// C >= 0x50000000a * 10^(q-11) where 1 <= q - 11 <= 23
|
2748 |
|
|
// (scale 2^31+1 up)
|
2749 |
|
|
tmp64 = 0x50000000aull;
|
2750 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
2751 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
2752 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
2753 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
2754 |
|
|
}
|
2755 |
|
|
if (C1.w[1] > C.w[1]
|
2756 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
2757 |
|
|
// set invalid flag
|
2758 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2759 |
|
|
// return Integer Indefinite
|
2760 |
|
|
res = 0x80000000;
|
2761 |
|
|
BID_RETURN (res);
|
2762 |
|
|
}
|
2763 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
2764 |
|
|
// to '1 <= q + exp <= 10'
|
2765 |
|
|
}
|
2766 |
|
|
} else { // if n > 0 and q + exp = 10
|
2767 |
|
|
// if n >= 2^31 then n is too large
|
2768 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31
|
2769 |
|
|
// too large if 0.c(0)c(1)...c(q-1) * 10^11 >= 0x500000000, 1<=q<=34
|
2770 |
|
|
if (q <= 11) {
|
2771 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
2772 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
2773 |
|
|
if (tmp64 >= 0x500000000ull) {
|
2774 |
|
|
// set invalid flag
|
2775 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2776 |
|
|
// return Integer Indefinite
|
2777 |
|
|
res = 0x80000000;
|
2778 |
|
|
BID_RETURN (res);
|
2779 |
|
|
}
|
2780 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
2781 |
|
|
// to '1 <= q + exp <= 10'
|
2782 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
2783 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x500000000 <=>
|
2784 |
|
|
// C >= 0x500000000 * 10^(q-11) where 1 <= q - 11 <= 23
|
2785 |
|
|
// (scale 2^31-1/2 up)
|
2786 |
|
|
tmp64 = 0x500000000ull;
|
2787 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
2788 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
2789 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
2790 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
2791 |
|
|
}
|
2792 |
|
|
if (C1.w[1] > C.w[1]
|
2793 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
2794 |
|
|
// set invalid flag
|
2795 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
2796 |
|
|
// return Integer Indefinite
|
2797 |
|
|
res = 0x80000000;
|
2798 |
|
|
BID_RETURN (res);
|
2799 |
|
|
}
|
2800 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
2801 |
|
|
// to '1 <= q + exp <= 10'
|
2802 |
|
|
}
|
2803 |
|
|
}
|
2804 |
|
|
}
|
2805 |
|
|
// n is not too large to be converted to int32: -2^31 - 1 < n < 2^31
|
2806 |
|
|
// Note: some of the cases tested for above fall through to this point
|
2807 |
|
|
if ((q + exp) <= 0) {
|
2808 |
|
|
// n = +/-0.0...c(0)c(1)...c(q-1) or n = +/-0.c(0)c(1)...c(q-1)
|
2809 |
|
|
// set inexact flag
|
2810 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2811 |
|
|
// return 0
|
2812 |
|
|
res = 0x00000000;
|
2813 |
|
|
BID_RETURN (res);
|
2814 |
|
|
} else { // if (1 <= q + exp <= 10, 1 <= q <= 34, -33 <= exp <= 9)
|
2815 |
|
|
// -2^31-1 < x <= -1 or 1 <= x < 2^31 so x can be rounded
|
2816 |
|
|
// toward zero to a 32-bit signed integer
|
2817 |
|
|
if (exp < 0) { // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 10
|
2818 |
|
|
ind = -exp; // 1 <= ind <= 33; ind is a synonym for 'x'
|
2819 |
|
|
// chop off ind digits from the lower part of C1
|
2820 |
|
|
// C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
|
2821 |
|
|
tmp64 = C1.w[0];
|
2822 |
|
|
if (ind <= 19) {
|
2823 |
|
|
C1.w[0] = C1.w[0] + midpoint64[ind - 1];
|
2824 |
|
|
} else {
|
2825 |
|
|
C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
|
2826 |
|
|
C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
|
2827 |
|
|
}
|
2828 |
|
|
if (C1.w[0] < tmp64)
|
2829 |
|
|
C1.w[1]++;
|
2830 |
|
|
// calculate C* and f*
|
2831 |
|
|
// C* is actually floor(C*) in this case
|
2832 |
|
|
// C* and f* need shifting and masking, as shown by
|
2833 |
|
|
// shiftright128[] and maskhigh128[]
|
2834 |
|
|
// 1 <= x <= 33
|
2835 |
|
|
// kx = 10^(-x) = ten2mk128[ind - 1]
|
2836 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
2837 |
|
|
// the approximation of 10^(-x) was rounded up to 118 bits
|
2838 |
|
|
__mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
|
2839 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
2840 |
|
|
Cstar.w[1] = P256.w[3];
|
2841 |
|
|
Cstar.w[0] = P256.w[2];
|
2842 |
|
|
fstar.w[3] = 0;
|
2843 |
|
|
fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
|
2844 |
|
|
fstar.w[1] = P256.w[1];
|
2845 |
|
|
fstar.w[0] = P256.w[0];
|
2846 |
|
|
} else { // 22 <= ind - 1 <= 33
|
2847 |
|
|
Cstar.w[1] = 0;
|
2848 |
|
|
Cstar.w[0] = P256.w[3];
|
2849 |
|
|
fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
|
2850 |
|
|
fstar.w[2] = P256.w[2];
|
2851 |
|
|
fstar.w[1] = P256.w[1];
|
2852 |
|
|
fstar.w[0] = P256.w[0];
|
2853 |
|
|
}
|
2854 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
|
2855 |
|
|
// if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
|
2856 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
2857 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
2858 |
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
2859 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
2860 |
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
2861 |
|
|
// else
|
2862 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
2863 |
|
|
// correct by Property 1)
|
2864 |
|
|
// n = C* * 10^(e+x)
|
2865 |
|
|
|
2866 |
|
|
// shift right C* by Ex-128 = shiftright128[ind]
|
2867 |
|
|
shift = shiftright128[ind - 1]; // 0 <= shift <= 102
|
2868 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
2869 |
|
|
Cstar.w[0] =
|
2870 |
|
|
(Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
|
2871 |
|
|
// redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
|
2872 |
|
|
} else { // 22 <= ind - 1 <= 33
|
2873 |
|
|
Cstar.w[0] = (Cstar.w[0] >> (shift - 64)); // 2 <= shift - 64 <= 38
|
2874 |
|
|
}
|
2875 |
|
|
// determine inexactness of the rounding of C*
|
2876 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
2877 |
|
|
// the result is exact
|
2878 |
|
|
// else // if (f* - 1/2 > T*) then
|
2879 |
|
|
// the result is inexact
|
2880 |
|
|
if (ind - 1 <= 2) {
|
2881 |
|
|
if (fstar.w[1] > 0x8000000000000000ull || (fstar.w[1] == 0x8000000000000000ull && fstar.w[0] > 0x0ull)) { // f* > 1/2 and the result may be exact
|
2882 |
|
|
tmp64 = fstar.w[1] - 0x8000000000000000ull; // f* - 1/2
|
2883 |
|
|
if (tmp64 > ten2mk128trunc[ind - 1].w[1]
|
2884 |
|
|
|| (tmp64 == ten2mk128trunc[ind - 1].w[1]
|
2885 |
|
|
&& fstar.w[0] >= ten2mk128trunc[ind - 1].w[0])) {
|
2886 |
|
|
// set the inexact flag
|
2887 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2888 |
|
|
} // else the result is exact
|
2889 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
2890 |
|
|
// set the inexact flag
|
2891 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2892 |
|
|
is_inexact_gt_midpoint = 1;
|
2893 |
|
|
}
|
2894 |
|
|
} else if (ind - 1 <= 21) { // if 3 <= ind <= 21
|
2895 |
|
|
if (fstar.w[3] > 0x0 ||
|
2896 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] > onehalf128[ind - 1]) ||
|
2897 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] == onehalf128[ind - 1] &&
|
2898 |
|
|
(fstar.w[1] || fstar.w[0]))) {
|
2899 |
|
|
// f2* > 1/2 and the result may be exact
|
2900 |
|
|
// Calculate f2* - 1/2
|
2901 |
|
|
tmp64 = fstar.w[2] - onehalf128[ind - 1];
|
2902 |
|
|
tmp64A = fstar.w[3];
|
2903 |
|
|
if (tmp64 > fstar.w[2])
|
2904 |
|
|
tmp64A--;
|
2905 |
|
|
if (tmp64A || tmp64
|
2906 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
2907 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
2908 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
2909 |
|
|
// set the inexact flag
|
2910 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2911 |
|
|
} // else the result is exact
|
2912 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
2913 |
|
|
// set the inexact flag
|
2914 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2915 |
|
|
is_inexact_gt_midpoint = 1;
|
2916 |
|
|
}
|
2917 |
|
|
} else { // if 22 <= ind <= 33
|
2918 |
|
|
if (fstar.w[3] > onehalf128[ind - 1] ||
|
2919 |
|
|
(fstar.w[3] == onehalf128[ind - 1] && (fstar.w[2] ||
|
2920 |
|
|
fstar.w[1]
|
2921 |
|
|
|| fstar.w[0]))) {
|
2922 |
|
|
// f2* > 1/2 and the result may be exact
|
2923 |
|
|
// Calculate f2* - 1/2
|
2924 |
|
|
tmp64 = fstar.w[3] - onehalf128[ind - 1];
|
2925 |
|
|
if (tmp64 || fstar.w[2]
|
2926 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
2927 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
2928 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
2929 |
|
|
// set the inexact flag
|
2930 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2931 |
|
|
} // else the result is exact
|
2932 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
2933 |
|
|
// set the inexact flag
|
2934 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
2935 |
|
|
is_inexact_gt_midpoint = 1;
|
2936 |
|
|
}
|
2937 |
|
|
}
|
2938 |
|
|
|
2939 |
|
|
// if the result was a midpoint it was rounded away from zero, so
|
2940 |
|
|
// it will need a correction
|
2941 |
|
|
// check for midpoints
|
2942 |
|
|
if ((fstar.w[3] == 0) && (fstar.w[2] == 0)
|
2943 |
|
|
&& (fstar.w[1] || fstar.w[0])
|
2944 |
|
|
&& (fstar.w[1] < ten2mk128trunc[ind - 1].w[1]
|
2945 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
2946 |
|
|
&& fstar.w[0] <= ten2mk128trunc[ind - 1].w[0]))) {
|
2947 |
|
|
// the result is a midpoint; round to nearest
|
2948 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
|
2949 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result >= 1
|
2950 |
|
|
Cstar.w[0]--; // Cstar.w[0] is now even
|
2951 |
|
|
is_inexact_gt_midpoint = 0;
|
2952 |
|
|
} else { // else MP in [ODD, EVEN]
|
2953 |
|
|
is_midpoint_lt_even = 1;
|
2954 |
|
|
is_inexact_gt_midpoint = 0;
|
2955 |
|
|
}
|
2956 |
|
|
}
|
2957 |
|
|
// general correction for RZ
|
2958 |
|
|
if (is_midpoint_lt_even || is_inexact_gt_midpoint) {
|
2959 |
|
|
Cstar.w[0] = Cstar.w[0] - 1;
|
2960 |
|
|
} else {
|
2961 |
|
|
; // exact, the result is already correct
|
2962 |
|
|
}
|
2963 |
|
|
if (x_sign)
|
2964 |
|
|
res = -Cstar.w[0];
|
2965 |
|
|
else
|
2966 |
|
|
res = Cstar.w[0];
|
2967 |
|
|
} else if (exp == 0) {
|
2968 |
|
|
// 1 <= q <= 10
|
2969 |
|
|
// res = +/-C (exact)
|
2970 |
|
|
if (x_sign)
|
2971 |
|
|
res = -C1.w[0];
|
2972 |
|
|
else
|
2973 |
|
|
res = C1.w[0];
|
2974 |
|
|
} else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
|
2975 |
|
|
// res = +/-C * 10^exp (exact)
|
2976 |
|
|
if (x_sign)
|
2977 |
|
|
res = -C1.w[0] * ten2k64[exp];
|
2978 |
|
|
else
|
2979 |
|
|
res = C1.w[0] * ten2k64[exp];
|
2980 |
|
|
}
|
2981 |
|
|
}
|
2982 |
|
|
}
|
2983 |
|
|
|
2984 |
|
|
BID_RETURN (res);
|
2985 |
|
|
}
|
2986 |
|
|
|
2987 |
|
|
/*****************************************************************************
|
2988 |
|
|
* BID128_to_int32_rninta
|
2989 |
|
|
****************************************************************************/
|
2990 |
|
|
|
2991 |
|
|
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (int, bid128_to_int32_rninta,
|
2992 |
|
|
x)
|
2993 |
|
|
|
2994 |
|
|
int res;
|
2995 |
|
|
UINT64 x_sign;
|
2996 |
|
|
UINT64 x_exp;
|
2997 |
|
|
int exp; // unbiased exponent
|
2998 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
2999 |
|
|
UINT64 tmp64;
|
3000 |
|
|
BID_UI64DOUBLE tmp1;
|
3001 |
|
|
unsigned int x_nr_bits;
|
3002 |
|
|
int q, ind, shift;
|
3003 |
|
|
UINT128 C1, C;
|
3004 |
|
|
UINT128 Cstar; // C* represents up to 34 decimal digits ~ 113 bits
|
3005 |
|
|
UINT256 P256;
|
3006 |
|
|
|
3007 |
|
|
// unpack x
|
3008 |
|
|
x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
3009 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
3010 |
|
|
C1.w[1] = x.w[1] & MASK_COEFF;
|
3011 |
|
|
C1.w[0] = x.w[0];
|
3012 |
|
|
|
3013 |
|
|
// check for NaN or Infinity
|
3014 |
|
|
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
|
3015 |
|
|
// x is special
|
3016 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
|
3017 |
|
|
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
3018 |
|
|
// set invalid flag
|
3019 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3020 |
|
|
// return Integer Indefinite
|
3021 |
|
|
res = 0x80000000;
|
3022 |
|
|
} else { // x is QNaN
|
3023 |
|
|
// set invalid flag
|
3024 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3025 |
|
|
// return Integer Indefinite
|
3026 |
|
|
res = 0x80000000;
|
3027 |
|
|
}
|
3028 |
|
|
BID_RETURN (res);
|
3029 |
|
|
} else { // x is not a NaN, so it must be infinity
|
3030 |
|
|
if (!x_sign) { // x is +inf
|
3031 |
|
|
// set invalid flag
|
3032 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3033 |
|
|
// return Integer Indefinite
|
3034 |
|
|
res = 0x80000000;
|
3035 |
|
|
} else { // x is -inf
|
3036 |
|
|
// set invalid flag
|
3037 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3038 |
|
|
// return Integer Indefinite
|
3039 |
|
|
res = 0x80000000;
|
3040 |
|
|
}
|
3041 |
|
|
BID_RETURN (res);
|
3042 |
|
|
}
|
3043 |
|
|
}
|
3044 |
|
|
// check for non-canonical values (after the check for special values)
|
3045 |
|
|
if ((C1.w[1] > 0x0001ed09bead87c0ull)
|
3046 |
|
|
|| (C1.w[1] == 0x0001ed09bead87c0ull
|
3047 |
|
|
&& (C1.w[0] > 0x378d8e63ffffffffull))
|
3048 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
3049 |
|
|
res = 0x00000000;
|
3050 |
|
|
BID_RETURN (res);
|
3051 |
|
|
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
|
3052 |
|
|
// x is 0
|
3053 |
|
|
res = 0x00000000;
|
3054 |
|
|
BID_RETURN (res);
|
3055 |
|
|
} else { // x is not special and is not zero
|
3056 |
|
|
|
3057 |
|
|
// q = nr. of decimal digits in x
|
3058 |
|
|
// determine first the nr. of bits in x
|
3059 |
|
|
if (C1.w[1] == 0) {
|
3060 |
|
|
if (C1.w[0] >= 0x0020000000000000ull) { // x >= 2^53
|
3061 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
3062 |
|
|
if (C1.w[0] >= 0x0000000100000000ull) { // x >= 2^32
|
3063 |
|
|
tmp1.d = (double) (C1.w[0] >> 32); // exact conversion
|
3064 |
|
|
x_nr_bits =
|
3065 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
3066 |
|
|
} else { // x < 2^32
|
3067 |
|
|
tmp1.d = (double) (C1.w[0]); // exact conversion
|
3068 |
|
|
x_nr_bits =
|
3069 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
3070 |
|
|
}
|
3071 |
|
|
} else { // if x < 2^53
|
3072 |
|
|
tmp1.d = (double) C1.w[0]; // exact conversion
|
3073 |
|
|
x_nr_bits =
|
3074 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
3075 |
|
|
}
|
3076 |
|
|
} else { // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
|
3077 |
|
|
tmp1.d = (double) C1.w[1]; // exact conversion
|
3078 |
|
|
x_nr_bits =
|
3079 |
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
3080 |
|
|
}
|
3081 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
3082 |
|
|
if (q == 0) {
|
3083 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
3084 |
|
|
if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
|
3085 |
|
|
|| (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
|
3086 |
|
|
&& C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
|
3087 |
|
|
q++;
|
3088 |
|
|
}
|
3089 |
|
|
exp = (x_exp >> 49) - 6176;
|
3090 |
|
|
if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits)
|
3091 |
|
|
// set invalid flag
|
3092 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3093 |
|
|
// return Integer Indefinite
|
3094 |
|
|
res = 0x80000000;
|
3095 |
|
|
BID_RETURN (res);
|
3096 |
|
|
} else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1)
|
3097 |
|
|
// in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2...
|
3098 |
|
|
// so x rounded to an integer may or may not fit in a signed 32-bit int
|
3099 |
|
|
// the cases that do not fit are identified here; the ones that fit
|
3100 |
|
|
// fall through and will be handled with other cases further,
|
3101 |
|
|
// under '1 <= q + exp <= 10'
|
3102 |
|
|
if (x_sign) { // if n < 0 and q + exp = 10
|
3103 |
|
|
// if n <= -2^31 - 1/2 then n is too large
|
3104 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31+1/2
|
3105 |
|
|
// <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0x500000005, 1<=q<=34
|
3106 |
|
|
if (q <= 11) {
|
3107 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
3108 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
3109 |
|
|
if (tmp64 >= 0x500000005ull) {
|
3110 |
|
|
// set invalid flag
|
3111 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3112 |
|
|
// return Integer Indefinite
|
3113 |
|
|
res = 0x80000000;
|
3114 |
|
|
BID_RETURN (res);
|
3115 |
|
|
}
|
3116 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
3117 |
|
|
// to '1 <= q + exp <= 10'
|
3118 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
3119 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x500000005 <=>
|
3120 |
|
|
// C >= 0x500000005 * 10^(q-11) where 1 <= q - 11 <= 23
|
3121 |
|
|
// (scale 2^31+1/2 up)
|
3122 |
|
|
tmp64 = 0x500000005ull;
|
3123 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
3124 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
3125 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
3126 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
3127 |
|
|
}
|
3128 |
|
|
if (C1.w[1] > C.w[1]
|
3129 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
3130 |
|
|
// set invalid flag
|
3131 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3132 |
|
|
// return Integer Indefinite
|
3133 |
|
|
res = 0x80000000;
|
3134 |
|
|
BID_RETURN (res);
|
3135 |
|
|
}
|
3136 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
3137 |
|
|
// to '1 <= q + exp <= 10'
|
3138 |
|
|
}
|
3139 |
|
|
} else { // if n > 0 and q + exp = 10
|
3140 |
|
|
// if n >= 2^31 - 1/2 then n is too large
|
3141 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31-1/2
|
3142 |
|
|
// too large if 0.c(0)c(1)...c(q-1) * 10^11 >= 0x4fffffffb, 1<=q<=34
|
3143 |
|
|
if (q <= 11) {
|
3144 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
3145 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
3146 |
|
|
if (tmp64 >= 0x4fffffffbull) {
|
3147 |
|
|
// set invalid flag
|
3148 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3149 |
|
|
// return Integer Indefinite
|
3150 |
|
|
res = 0x80000000;
|
3151 |
|
|
BID_RETURN (res);
|
3152 |
|
|
}
|
3153 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
3154 |
|
|
// to '1 <= q + exp <= 10'
|
3155 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
3156 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x4fffffffb <=>
|
3157 |
|
|
// C >= 0x4fffffffb * 10^(q-11) where 1 <= q - 11 <= 23
|
3158 |
|
|
// (scale 2^31-1/2 up)
|
3159 |
|
|
tmp64 = 0x4fffffffbull;
|
3160 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
3161 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
3162 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
3163 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
3164 |
|
|
}
|
3165 |
|
|
if (C1.w[1] > C.w[1]
|
3166 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
3167 |
|
|
// set invalid flag
|
3168 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3169 |
|
|
// return Integer Indefinite
|
3170 |
|
|
res = 0x80000000;
|
3171 |
|
|
BID_RETURN (res);
|
3172 |
|
|
}
|
3173 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
3174 |
|
|
// to '1 <= q + exp <= 10'
|
3175 |
|
|
}
|
3176 |
|
|
}
|
3177 |
|
|
}
|
3178 |
|
|
// n is not too large to be converted to int32: -2^31 - 1/2 < n < 2^31 - 1/2
|
3179 |
|
|
// Note: some of the cases tested for above fall through to this point
|
3180 |
|
|
if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1)
|
3181 |
|
|
// return 0
|
3182 |
|
|
res = 0x00000000;
|
3183 |
|
|
BID_RETURN (res);
|
3184 |
|
|
} else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1)
|
3185 |
|
|
// if 0.c(0)c(1)...c(q-1) < 0.5 <=> c(0)c(1)...c(q-1) < 5 * 10^(q-1)
|
3186 |
|
|
// res = 0
|
3187 |
|
|
// else
|
3188 |
|
|
// res = +/-1
|
3189 |
|
|
ind = q - 1;
|
3190 |
|
|
if (ind <= 18) { // 0 <= ind <= 18
|
3191 |
|
|
if ((C1.w[1] == 0) && (C1.w[0] < midpoint64[ind])) {
|
3192 |
|
|
res = 0x00000000; // return 0
|
3193 |
|
|
} else if (x_sign) { // n < 0
|
3194 |
|
|
res = 0xffffffff; // return -1
|
3195 |
|
|
} else { // n > 0
|
3196 |
|
|
res = 0x00000001; // return +1
|
3197 |
|
|
}
|
3198 |
|
|
} else { // 19 <= ind <= 33
|
3199 |
|
|
if ((C1.w[1] < midpoint128[ind - 19].w[1])
|
3200 |
|
|
|| ((C1.w[1] == midpoint128[ind - 19].w[1])
|
3201 |
|
|
&& (C1.w[0] < midpoint128[ind - 19].w[0]))) {
|
3202 |
|
|
res = 0x00000000; // return 0
|
3203 |
|
|
} else if (x_sign) { // n < 0
|
3204 |
|
|
res = 0xffffffff; // return -1
|
3205 |
|
|
} else { // n > 0
|
3206 |
|
|
res = 0x00000001; // return +1
|
3207 |
|
|
}
|
3208 |
|
|
}
|
3209 |
|
|
} else { // if (1 <= q + exp <= 10, 1 <= q <= 34, -33 <= exp <= 9)
|
3210 |
|
|
// -2^31-1/2 < x <= -1 or 1 <= x < 2^31-1/2 so x can be rounded
|
3211 |
|
|
// to nearest-away to a 32-bit signed integer
|
3212 |
|
|
if (exp < 0) { // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 10
|
3213 |
|
|
ind = -exp; // 1 <= ind <= 33; ind is a synonym for 'x'
|
3214 |
|
|
// chop off ind digits from the lower part of C1
|
3215 |
|
|
// C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
|
3216 |
|
|
tmp64 = C1.w[0];
|
3217 |
|
|
if (ind <= 19) {
|
3218 |
|
|
C1.w[0] = C1.w[0] + midpoint64[ind - 1];
|
3219 |
|
|
} else {
|
3220 |
|
|
C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
|
3221 |
|
|
C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
|
3222 |
|
|
}
|
3223 |
|
|
if (C1.w[0] < tmp64)
|
3224 |
|
|
C1.w[1]++;
|
3225 |
|
|
// calculate C* and f*
|
3226 |
|
|
// C* is actually floor(C*) in this case
|
3227 |
|
|
// C* and f* need shifting and masking, as shown by
|
3228 |
|
|
// shiftright128[] and maskhigh128[]
|
3229 |
|
|
// 1 <= x <= 33
|
3230 |
|
|
// kx = 10^(-x) = ten2mk128[ind - 1]
|
3231 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
3232 |
|
|
// the approximation of 10^(-x) was rounded up to 118 bits
|
3233 |
|
|
__mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
|
3234 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
3235 |
|
|
Cstar.w[1] = P256.w[3];
|
3236 |
|
|
Cstar.w[0] = P256.w[2];
|
3237 |
|
|
} else { // 22 <= ind - 1 <= 33
|
3238 |
|
|
Cstar.w[1] = 0;
|
3239 |
|
|
Cstar.w[0] = P256.w[3];
|
3240 |
|
|
}
|
3241 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
|
3242 |
|
|
// if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
|
3243 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
3244 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
3245 |
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
3246 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
3247 |
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
3248 |
|
|
// else
|
3249 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
3250 |
|
|
// correct by Property 1)
|
3251 |
|
|
// n = C* * 10^(e+x)
|
3252 |
|
|
|
3253 |
|
|
// shift right C* by Ex-128 = shiftright128[ind]
|
3254 |
|
|
shift = shiftright128[ind - 1]; // 0 <= shift <= 102
|
3255 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
3256 |
|
|
Cstar.w[0] =
|
3257 |
|
|
(Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
|
3258 |
|
|
// redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
|
3259 |
|
|
} else { // 22 <= ind - 1 <= 33
|
3260 |
|
|
Cstar.w[0] = (Cstar.w[0] >> (shift - 64)); // 2 <= shift - 64 <= 38
|
3261 |
|
|
}
|
3262 |
|
|
// if the result was a midpoint, it was already rounded away from zero
|
3263 |
|
|
if (x_sign)
|
3264 |
|
|
res = -Cstar.w[0];
|
3265 |
|
|
else
|
3266 |
|
|
res = Cstar.w[0];
|
3267 |
|
|
// no need to check for midpoints - already rounded away from zero!
|
3268 |
|
|
} else if (exp == 0) {
|
3269 |
|
|
// 1 <= q <= 10
|
3270 |
|
|
// res = +/-C (exact)
|
3271 |
|
|
if (x_sign)
|
3272 |
|
|
res = -C1.w[0];
|
3273 |
|
|
else
|
3274 |
|
|
res = C1.w[0];
|
3275 |
|
|
} else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
|
3276 |
|
|
// res = +/-C * 10^exp (exact)
|
3277 |
|
|
if (x_sign)
|
3278 |
|
|
res = -C1.w[0] * ten2k64[exp];
|
3279 |
|
|
else
|
3280 |
|
|
res = C1.w[0] * ten2k64[exp];
|
3281 |
|
|
}
|
3282 |
|
|
}
|
3283 |
|
|
}
|
3284 |
|
|
|
3285 |
|
|
BID_RETURN (res);
|
3286 |
|
|
}
|
3287 |
|
|
|
3288 |
|
|
/*****************************************************************************
|
3289 |
|
|
* BID128_to_int32_xrninta
|
3290 |
|
|
****************************************************************************/
|
3291 |
|
|
|
3292 |
|
|
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (int, bid128_to_int32_xrninta,
|
3293 |
|
|
x)
|
3294 |
|
|
|
3295 |
|
|
int res;
|
3296 |
|
|
UINT64 x_sign;
|
3297 |
|
|
UINT64 x_exp;
|
3298 |
|
|
int exp; // unbiased exponent
|
3299 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
3300 |
|
|
UINT64 tmp64, tmp64A;
|
3301 |
|
|
BID_UI64DOUBLE tmp1;
|
3302 |
|
|
unsigned int x_nr_bits;
|
3303 |
|
|
int q, ind, shift;
|
3304 |
|
|
UINT128 C1, C;
|
3305 |
|
|
UINT128 Cstar; // C* represents up to 34 decimal digits ~ 113 bits
|
3306 |
|
|
UINT256 fstar;
|
3307 |
|
|
UINT256 P256;
|
3308 |
|
|
|
3309 |
|
|
// unpack x
|
3310 |
|
|
x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
3311 |
|
|
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
|
3312 |
|
|
C1.w[1] = x.w[1] & MASK_COEFF;
|
3313 |
|
|
C1.w[0] = x.w[0];
|
3314 |
|
|
|
3315 |
|
|
// check for NaN or Infinity
|
3316 |
|
|
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
|
3317 |
|
|
// x is special
|
3318 |
|
|
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
|
3319 |
|
|
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
3320 |
|
|
// set invalid flag
|
3321 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3322 |
|
|
// return Integer Indefinite
|
3323 |
|
|
res = 0x80000000;
|
3324 |
|
|
} else { // x is QNaN
|
3325 |
|
|
// set invalid flag
|
3326 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3327 |
|
|
// return Integer Indefinite
|
3328 |
|
|
res = 0x80000000;
|
3329 |
|
|
}
|
3330 |
|
|
BID_RETURN (res);
|
3331 |
|
|
} else { // x is not a NaN, so it must be infinity
|
3332 |
|
|
if (!x_sign) { // x is +inf
|
3333 |
|
|
// set invalid flag
|
3334 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3335 |
|
|
// return Integer Indefinite
|
3336 |
|
|
res = 0x80000000;
|
3337 |
|
|
} else { // x is -inf
|
3338 |
|
|
// set invalid flag
|
3339 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3340 |
|
|
// return Integer Indefinite
|
3341 |
|
|
res = 0x80000000;
|
3342 |
|
|
}
|
3343 |
|
|
BID_RETURN (res);
|
3344 |
|
|
}
|
3345 |
|
|
}
|
3346 |
|
|
// check for non-canonical values (after the check for special values)
|
3347 |
|
|
if ((C1.w[1] > 0x0001ed09bead87c0ull)
|
3348 |
|
|
|| (C1.w[1] == 0x0001ed09bead87c0ull
|
3349 |
|
|
&& (C1.w[0] > 0x378d8e63ffffffffull))
|
3350 |
|
|
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
|
3351 |
|
|
res = 0x00000000;
|
3352 |
|
|
BID_RETURN (res);
|
3353 |
|
|
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
|
3354 |
|
|
// x is 0
|
3355 |
|
|
res = 0x00000000;
|
3356 |
|
|
BID_RETURN (res);
|
3357 |
|
|
} else { // x is not special and is not zero
|
3358 |
|
|
|
3359 |
|
|
// q = nr. of decimal digits in x
|
3360 |
|
|
// determine first the nr. of bits in x
|
3361 |
|
|
if (C1.w[1] == 0) {
|
3362 |
|
|
if (C1.w[0] >= 0x0020000000000000ull) { // x >= 2^53
|
3363 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
3364 |
|
|
if (C1.w[0] >= 0x0000000100000000ull) { // x >= 2^32
|
3365 |
|
|
tmp1.d = (double) (C1.w[0] >> 32); // exact conversion
|
3366 |
|
|
x_nr_bits =
|
3367 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
3368 |
|
|
} else { // x < 2^32
|
3369 |
|
|
tmp1.d = (double) (C1.w[0]); // exact conversion
|
3370 |
|
|
x_nr_bits =
|
3371 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
3372 |
|
|
}
|
3373 |
|
|
} else { // if x < 2^53
|
3374 |
|
|
tmp1.d = (double) C1.w[0]; // exact conversion
|
3375 |
|
|
x_nr_bits =
|
3376 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
3377 |
|
|
}
|
3378 |
|
|
} else { // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
|
3379 |
|
|
tmp1.d = (double) C1.w[1]; // exact conversion
|
3380 |
|
|
x_nr_bits =
|
3381 |
|
|
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
3382 |
|
|
}
|
3383 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
3384 |
|
|
if (q == 0) {
|
3385 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
3386 |
|
|
if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
|
3387 |
|
|
|| (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
|
3388 |
|
|
&& C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
|
3389 |
|
|
q++;
|
3390 |
|
|
}
|
3391 |
|
|
exp = (x_exp >> 49) - 6176;
|
3392 |
|
|
if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits)
|
3393 |
|
|
// set invalid flag
|
3394 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3395 |
|
|
// return Integer Indefinite
|
3396 |
|
|
res = 0x80000000;
|
3397 |
|
|
BID_RETURN (res);
|
3398 |
|
|
} else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1)
|
3399 |
|
|
// in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2...
|
3400 |
|
|
// so x rounded to an integer may or may not fit in a signed 32-bit int
|
3401 |
|
|
// the cases that do not fit are identified here; the ones that fit
|
3402 |
|
|
// fall through and will be handled with other cases further,
|
3403 |
|
|
// under '1 <= q + exp <= 10'
|
3404 |
|
|
if (x_sign) { // if n < 0 and q + exp = 10
|
3405 |
|
|
// if n <= -2^31 - 1/2 then n is too large
|
3406 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31+1/2
|
3407 |
|
|
// <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0x500000005, 1<=q<=34
|
3408 |
|
|
if (q <= 11) {
|
3409 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
3410 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
3411 |
|
|
if (tmp64 >= 0x500000005ull) {
|
3412 |
|
|
// set invalid flag
|
3413 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3414 |
|
|
// return Integer Indefinite
|
3415 |
|
|
res = 0x80000000;
|
3416 |
|
|
BID_RETURN (res);
|
3417 |
|
|
}
|
3418 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
3419 |
|
|
// to '1 <= q + exp <= 10'
|
3420 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
3421 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x500000005 <=>
|
3422 |
|
|
// C >= 0x500000005 * 10^(q-11) where 1 <= q - 11 <= 23
|
3423 |
|
|
// (scale 2^31+1/2 up)
|
3424 |
|
|
tmp64 = 0x500000005ull;
|
3425 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
3426 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
3427 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
3428 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
3429 |
|
|
}
|
3430 |
|
|
if (C1.w[1] > C.w[1]
|
3431 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
3432 |
|
|
// set invalid flag
|
3433 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3434 |
|
|
// return Integer Indefinite
|
3435 |
|
|
res = 0x80000000;
|
3436 |
|
|
BID_RETURN (res);
|
3437 |
|
|
}
|
3438 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
3439 |
|
|
// to '1 <= q + exp <= 10'
|
3440 |
|
|
}
|
3441 |
|
|
} else { // if n > 0 and q + exp = 10
|
3442 |
|
|
// if n >= 2^31 - 1/2 then n is too large
|
3443 |
|
|
// too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^31-1/2
|
3444 |
|
|
// too large if 0.c(0)c(1)...c(q-1) * 10^11 >= 0x4fffffffb, 1<=q<=34
|
3445 |
|
|
if (q <= 11) {
|
3446 |
|
|
tmp64 = C1.w[0] * ten2k64[11 - q]; // C scaled up to 11-digit int
|
3447 |
|
|
// c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits)
|
3448 |
|
|
if (tmp64 >= 0x4fffffffbull) {
|
3449 |
|
|
// set invalid flag
|
3450 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3451 |
|
|
// return Integer Indefinite
|
3452 |
|
|
res = 0x80000000;
|
3453 |
|
|
BID_RETURN (res);
|
3454 |
|
|
}
|
3455 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
3456 |
|
|
// to '1 <= q + exp <= 10'
|
3457 |
|
|
} else { // if (q > 11), i.e. 12 <= q <= 34 and so -24 <= exp <= -2
|
3458 |
|
|
// 0.c(0)c(1)...c(q-1) * 10^11 >= 0x4fffffffb <=>
|
3459 |
|
|
// C >= 0x4fffffffb * 10^(q-11) where 1 <= q - 11 <= 23
|
3460 |
|
|
// (scale 2^31-1/2 up)
|
3461 |
|
|
tmp64 = 0x4fffffffbull;
|
3462 |
|
|
if (q - 11 <= 19) { // 1 <= q - 11 <= 19; 10^(q-11) requires 64 bits
|
3463 |
|
|
__mul_64x64_to_128MACH (C, tmp64, ten2k64[q - 11]);
|
3464 |
|
|
} else { // 20 <= q - 11 <= 23, and 10^(q-11) requires 128 bits
|
3465 |
|
|
__mul_128x64_to_128 (C, tmp64, ten2k128[q - 31]);
|
3466 |
|
|
}
|
3467 |
|
|
if (C1.w[1] > C.w[1]
|
3468 |
|
|
|| (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
|
3469 |
|
|
// set invalid flag
|
3470 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
3471 |
|
|
// return Integer Indefinite
|
3472 |
|
|
res = 0x80000000;
|
3473 |
|
|
BID_RETURN (res);
|
3474 |
|
|
}
|
3475 |
|
|
// else cases that can be rounded to a 32-bit int fall through
|
3476 |
|
|
// to '1 <= q + exp <= 10'
|
3477 |
|
|
}
|
3478 |
|
|
}
|
3479 |
|
|
}
|
3480 |
|
|
// n is not too large to be converted to int32: -2^31 - 1/2 < n < 2^31 - 1/2
|
3481 |
|
|
// Note: some of the cases tested for above fall through to this point
|
3482 |
|
|
if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1)
|
3483 |
|
|
// set inexact flag
|
3484 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
3485 |
|
|
// return 0
|
3486 |
|
|
res = 0x00000000;
|
3487 |
|
|
BID_RETURN (res);
|
3488 |
|
|
} else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1)
|
3489 |
|
|
// if 0.c(0)c(1)...c(q-1) < 0.5 <=> c(0)c(1)...c(q-1) < 5 * 10^(q-1)
|
3490 |
|
|
// res = 0
|
3491 |
|
|
// else
|
3492 |
|
|
// res = +/-1
|
3493 |
|
|
ind = q - 1;
|
3494 |
|
|
if (ind <= 18) { // 0 <= ind <= 18
|
3495 |
|
|
if ((C1.w[1] == 0) && (C1.w[0] < midpoint64[ind])) {
|
3496 |
|
|
res = 0x00000000; // return 0
|
3497 |
|
|
} else if (x_sign) { // n < 0
|
3498 |
|
|
res = 0xffffffff; // return -1
|
3499 |
|
|
} else { // n > 0
|
3500 |
|
|
res = 0x00000001; // return +1
|
3501 |
|
|
}
|
3502 |
|
|
} else { // 19 <= ind <= 33
|
3503 |
|
|
if ((C1.w[1] < midpoint128[ind - 19].w[1])
|
3504 |
|
|
|| ((C1.w[1] == midpoint128[ind - 19].w[1])
|
3505 |
|
|
&& (C1.w[0] < midpoint128[ind - 19].w[0]))) {
|
3506 |
|
|
res = 0x00000000; // return 0
|
3507 |
|
|
} else if (x_sign) { // n < 0
|
3508 |
|
|
res = 0xffffffff; // return -1
|
3509 |
|
|
} else { // n > 0
|
3510 |
|
|
res = 0x00000001; // return +1
|
3511 |
|
|
}
|
3512 |
|
|
}
|
3513 |
|
|
// set inexact flag
|
3514 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
3515 |
|
|
} else { // if (1 <= q + exp <= 10, 1 <= q <= 34, -33 <= exp <= 9)
|
3516 |
|
|
// -2^31-1/2 < x <= -1 or 1 <= x < 2^31-1/2 so x can be rounded
|
3517 |
|
|
// to nearest-away to a 32-bit signed integer
|
3518 |
|
|
if (exp < 0) { // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 10
|
3519 |
|
|
ind = -exp; // 1 <= ind <= 33; ind is a synonym for 'x'
|
3520 |
|
|
// chop off ind digits from the lower part of C1
|
3521 |
|
|
// C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
|
3522 |
|
|
tmp64 = C1.w[0];
|
3523 |
|
|
if (ind <= 19) {
|
3524 |
|
|
C1.w[0] = C1.w[0] + midpoint64[ind - 1];
|
3525 |
|
|
} else {
|
3526 |
|
|
C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
|
3527 |
|
|
C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
|
3528 |
|
|
}
|
3529 |
|
|
if (C1.w[0] < tmp64)
|
3530 |
|
|
C1.w[1]++;
|
3531 |
|
|
// calculate C* and f*
|
3532 |
|
|
// C* is actually floor(C*) in this case
|
3533 |
|
|
// C* and f* need shifting and masking, as shown by
|
3534 |
|
|
// shiftright128[] and maskhigh128[]
|
3535 |
|
|
// 1 <= x <= 33
|
3536 |
|
|
// kx = 10^(-x) = ten2mk128[ind - 1]
|
3537 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
3538 |
|
|
// the approximation of 10^(-x) was rounded up to 118 bits
|
3539 |
|
|
__mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
|
3540 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
3541 |
|
|
Cstar.w[1] = P256.w[3];
|
3542 |
|
|
Cstar.w[0] = P256.w[2];
|
3543 |
|
|
fstar.w[3] = 0;
|
3544 |
|
|
fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
|
3545 |
|
|
fstar.w[1] = P256.w[1];
|
3546 |
|
|
fstar.w[0] = P256.w[0];
|
3547 |
|
|
} else { // 22 <= ind - 1 <= 33
|
3548 |
|
|
Cstar.w[1] = 0;
|
3549 |
|
|
Cstar.w[0] = P256.w[3];
|
3550 |
|
|
fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
|
3551 |
|
|
fstar.w[2] = P256.w[2];
|
3552 |
|
|
fstar.w[1] = P256.w[1];
|
3553 |
|
|
fstar.w[0] = P256.w[0];
|
3554 |
|
|
}
|
3555 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
|
3556 |
|
|
// if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
|
3557 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
3558 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
3559 |
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
3560 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
3561 |
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
3562 |
|
|
// else
|
3563 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
3564 |
|
|
// correct by Property 1)
|
3565 |
|
|
// n = C* * 10^(e+x)
|
3566 |
|
|
|
3567 |
|
|
// shift right C* by Ex-128 = shiftright128[ind]
|
3568 |
|
|
shift = shiftright128[ind - 1]; // 0 <= shift <= 102
|
3569 |
|
|
if (ind - 1 <= 21) { // 0 <= ind - 1 <= 21
|
3570 |
|
|
Cstar.w[0] =
|
3571 |
|
|
(Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
|
3572 |
|
|
// redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
|
3573 |
|
|
} else { // 22 <= ind - 1 <= 33
|
3574 |
|
|
Cstar.w[0] = (Cstar.w[0] >> (shift - 64)); // 2 <= shift - 64 <= 38
|
3575 |
|
|
}
|
3576 |
|
|
// if the result was a midpoint, it was already rounded away from zero
|
3577 |
|
|
if (x_sign)
|
3578 |
|
|
res = -Cstar.w[0];
|
3579 |
|
|
else
|
3580 |
|
|
res = Cstar.w[0];
|
3581 |
|
|
// determine inexactness of the rounding of C*
|
3582 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
3583 |
|
|
// the result is exact
|
3584 |
|
|
// else // if (f* - 1/2 > T*) then
|
3585 |
|
|
// the result is inexact
|
3586 |
|
|
if (ind - 1 <= 2) {
|
3587 |
|
|
if (fstar.w[1] > 0x8000000000000000ull || (fstar.w[1] == 0x8000000000000000ull && fstar.w[0] > 0x0ull)) { // f* > 1/2 and the result may be exact
|
3588 |
|
|
tmp64 = fstar.w[1] - 0x8000000000000000ull; // f* - 1/2
|
3589 |
|
|
if ((tmp64 > ten2mk128trunc[ind - 1].w[1]
|
3590 |
|
|
|| (tmp64 == ten2mk128trunc[ind - 1].w[1]
|
3591 |
|
|
&& fstar.w[0] >= ten2mk128trunc[ind - 1].w[0]))) {
|
3592 |
|
|
// set the inexact flag
|
3593 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
3594 |
|
|
} // else the result is exact
|
3595 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
3596 |
|
|
// set the inexact flag
|
3597 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
3598 |
|
|
}
|
3599 |
|
|
} else if (ind - 1 <= 21) { // if 3 <= ind <= 21
|
3600 |
|
|
if (fstar.w[3] > 0x0 ||
|
3601 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] > onehalf128[ind - 1]) ||
|
3602 |
|
|
(fstar.w[3] == 0x0 && fstar.w[2] == onehalf128[ind - 1] &&
|
3603 |
|
|
(fstar.w[1] || fstar.w[0]))) {
|
3604 |
|
|
// f2* > 1/2 and the result may be exact
|
3605 |
|
|
// Calculate f2* - 1/2
|
3606 |
|
|
tmp64 = fstar.w[2] - onehalf128[ind - 1];
|
3607 |
|
|
tmp64A = fstar.w[3];
|
3608 |
|
|
if (tmp64 > fstar.w[2])
|
3609 |
|
|
tmp64A--;
|
3610 |
|
|
if (tmp64A || tmp64
|
3611 |
|
|
|| fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
3612 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
3613 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
3614 |
|
|
// set the inexact flag
|
3615 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
3616 |
|
|
} // else the result is exact
|
3617 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
3618 |
|
|
// set the inexact flag
|
3619 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
3620 |
|
|
}
|
3621 |
|
|
} else { // if 22 <= ind <= 33
|
3622 |
|
|
if (fstar.w[3] > onehalf128[ind - 1] ||
|
3623 |
|
|
(fstar.w[3] == onehalf128[ind - 1] &&
|
3624 |
|
|
(fstar.w[2] || fstar.w[1] || fstar.w[0]))) {
|
3625 |
|
|
// f2* > 1/2 and the result may be exact
|
3626 |
|
|
// Calculate f2* - 1/2
|
3627 |
|
|
tmp64 = fstar.w[3] - onehalf128[ind - 1];
|
3628 |
|
|
if (tmp64 || fstar.w[2] ||
|
3629 |
|
|
fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
|
3630 |
|
|
|| (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
|
3631 |
|
|
&& fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
|
3632 |
|
|
// set the inexact flag
|
3633 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
3634 |
|
|
} // else the result is exact
|
3635 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
3636 |
|
|
// set the inexact flag
|
3637 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
3638 |
|
|
}
|
3639 |
|
|
}
|
3640 |
|
|
// no need to check for midpoints - already rounded away from zero!
|
3641 |
|
|
} else if (exp == 0) {
|
3642 |
|
|
// 1 <= q <= 10
|
3643 |
|
|
// res = +/-C (exact)
|
3644 |
|
|
if (x_sign)
|
3645 |
|
|
res = -C1.w[0];
|
3646 |
|
|
else
|
3647 |
|
|
res = C1.w[0];
|
3648 |
|
|
} else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
|
3649 |
|
|
// res = +/-C * 10^exp (exact)
|
3650 |
|
|
if (x_sign)
|
3651 |
|
|
res = -C1.w[0] * ten2k64[exp];
|
3652 |
|
|
else
|
3653 |
|
|
res = C1.w[0] * ten2k64[exp];
|
3654 |
|
|
}
|
3655 |
|
|
}
|
3656 |
|
|
}
|
3657 |
|
|
|
3658 |
|
|
BID_RETURN (res);
|
3659 |
|
|
}
|