OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [libgcc/] [config/] [libbid/] [bid64_add.c] - Blame information for rev 281

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 272 jeremybenn
/* Copyright (C) 2007, 2009  Free Software Foundation, Inc.
2
 
3
This file is part of GCC.
4
 
5
GCC is free software; you can redistribute it and/or modify it under
6
the terms of the GNU General Public License as published by the Free
7
Software Foundation; either version 3, or (at your option) any later
8
version.
9
 
10
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11
WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13
for more details.
14
 
15
Under Section 7 of GPL version 3, you are granted additional
16
permissions described in the GCC Runtime Library Exception, version
17
3.1, as published by the Free Software Foundation.
18
 
19
You should have received a copy of the GNU General Public License and
20
a copy of the GCC Runtime Library Exception along with this program;
21
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
22
<http://www.gnu.org/licenses/>.  */
23
 
24
/*****************************************************************************
25
 *    BID64 add
26
 *****************************************************************************
27
 *
28
 *  Algorithm description:
29
 *
30
 *   if(exponent_a < exponent_b)
31
 *       switch a, b
32
 *   diff_expon = exponent_a - exponent_b
33
 *   if(diff_expon > 16)
34
 *      return normalize(a)
35
 *   if(coefficient_a*10^diff_expon guaranteed below 2^62)
36
 *       S = sign_a*coefficient_a*10^diff_expon + sign_b*coefficient_b
37
 *       if(|S|<10^16)
38
 *           return get_BID64(sign(S),exponent_b,|S|)
39
 *       else
40
 *          determine number of extra digits in S (1, 2, or 3)
41
 *            return rounded result
42
 *   else // large exponent difference
43
 *       if(number_digits(coefficient_a*10^diff_expon) +/- 10^16)
44
 *          guaranteed the same as
45
 *          number_digits(coefficient_a*10^diff_expon) )
46
 *           S = normalize(coefficient_a + (sign_a^sign_b)*10^(16-diff_expon))
47
 *           corr = 10^16 + (sign_a^sign_b)*coefficient_b
48
 *           corr*10^exponent_b is rounded so it aligns with S*10^exponent_S
49
 *           return get_BID64(sign_a,exponent(S),S+rounded(corr))
50
 *       else
51
 *         add sign_a*coefficient_a*10^diff_expon, sign_b*coefficient_b
52
 *             in 128-bit integer arithmetic, then round to 16 decimal digits
53
 *
54
 *
55
 ****************************************************************************/
56
 
57
#include "bid_internal.h"
58
 
59
#if DECIMAL_CALL_BY_REFERENCE
60
void bid64_add (UINT64 * pres, UINT64 * px,
61
                UINT64 *
62
                py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
63
                _EXC_INFO_PARAM);
64
#else
65
UINT64 bid64_add (UINT64 x,
66
                  UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
67
                  _EXC_MASKS_PARAM _EXC_INFO_PARAM);
68
#endif
69
 
70
#if DECIMAL_CALL_BY_REFERENCE
71
 
72
void
73
bid64_sub (UINT64 * pres, UINT64 * px,
74
           UINT64 *
75
           py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
76
           _EXC_INFO_PARAM) {
77
  UINT64 y = *py;
78
#if !DECIMAL_GLOBAL_ROUNDING
79
  _IDEC_round rnd_mode = *prnd_mode;
80
#endif
81
  // check if y is not NaN
82
  if (((y & NAN_MASK64) != NAN_MASK64))
83
    y ^= 0x8000000000000000ull;
84
  bid64_add (pres, px,
85
             &y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
86
             _EXC_INFO_ARG);
87
}
88
#else
89
 
90
UINT64
91
bid64_sub (UINT64 x,
92
           UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
93
           _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
94
  // check if y is not NaN
95
  if (((y & NAN_MASK64) != NAN_MASK64))
96
    y ^= 0x8000000000000000ull;
97
 
98
  return bid64_add (x,
99
                    y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
100
                    _EXC_INFO_ARG);
101
}
102
#endif
103
 
104
 
105
 
106
#if DECIMAL_CALL_BY_REFERENCE
107
 
108
void
109
bid64_add (UINT64 * pres, UINT64 * px,
110
           UINT64 *
111
           py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
112
           _EXC_INFO_PARAM) {
113
  UINT64 x, y;
114
#else
115
 
116
UINT64
117
bid64_add (UINT64 x,
118
           UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
119
           _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
120
#endif
121
 
122
  UINT128 CA, CT, CT_new;
123
  UINT64 sign_x, sign_y, coefficient_x, coefficient_y, C64_new;
124
  UINT64 valid_x, valid_y;
125
  UINT64 res;
126
  UINT64 sign_a, sign_b, coefficient_a, coefficient_b, sign_s, sign_ab,
127
    rem_a;
128
  UINT64 saved_ca, saved_cb, C0_64, C64, remainder_h, T1, carry, tmp;
129
  int_double tempx;
130
  int exponent_x, exponent_y, exponent_a, exponent_b, diff_dec_expon;
131
  int bin_expon_ca, extra_digits, amount, scale_k, scale_ca;
132
  unsigned rmode, status;
133
 
134
#if DECIMAL_CALL_BY_REFERENCE
135
#if !DECIMAL_GLOBAL_ROUNDING
136
  _IDEC_round rnd_mode = *prnd_mode;
137
#endif
138
  x = *px;
139
  y = *py;
140
#endif
141
 
142
  valid_x = unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x);
143
  valid_y = unpack_BID64 (&sign_y, &exponent_y, &coefficient_y, y);
144
 
145
  // unpack arguments, check for NaN or Infinity
146
  if (!valid_x) {
147
    // x is Inf. or NaN
148
 
149
    // test if x is NaN
150
    if ((x & NAN_MASK64) == NAN_MASK64) {
151
#ifdef SET_STATUS_FLAGS
152
      if (((x & SNAN_MASK64) == SNAN_MASK64)    // sNaN
153
          || ((y & SNAN_MASK64) == SNAN_MASK64))
154
        __set_status_flags (pfpsf, INVALID_EXCEPTION);
155
#endif
156
      res = coefficient_x & QUIET_MASK64;
157
      BID_RETURN (res);
158
    }
159
    // x is Infinity?
160
    if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
161
      // check if y is Inf
162
      if (((y & NAN_MASK64) == INFINITY_MASK64)) {
163
        if (sign_x == (y & 0x8000000000000000ull)) {
164
          res = coefficient_x;
165
          BID_RETURN (res);
166
        }
167
        // return NaN
168
        {
169
#ifdef SET_STATUS_FLAGS
170
          __set_status_flags (pfpsf, INVALID_EXCEPTION);
171
#endif
172
          res = NAN_MASK64;
173
          BID_RETURN (res);
174
        }
175
      }
176
      // check if y is NaN
177
      if (((y & NAN_MASK64) == NAN_MASK64)) {
178
        res = coefficient_y & QUIET_MASK64;
179
#ifdef SET_STATUS_FLAGS
180
        if (((y & SNAN_MASK64) == SNAN_MASK64))
181
          __set_status_flags (pfpsf, INVALID_EXCEPTION);
182
#endif
183
        BID_RETURN (res);
184
      }
185
      // otherwise return +/-Inf
186
      {
187
        res = coefficient_x;
188
        BID_RETURN (res);
189
      }
190
    }
191
    // x is 0
192
    {
193
      if (((y & INFINITY_MASK64) != INFINITY_MASK64) && coefficient_y) {
194
        if (exponent_y <= exponent_x) {
195
          res = y;
196
          BID_RETURN (res);
197
        }
198
      }
199
    }
200
 
201
  }
202
  if (!valid_y) {
203
    // y is Inf. or NaN?
204
    if (((y & INFINITY_MASK64) == INFINITY_MASK64)) {
205
#ifdef SET_STATUS_FLAGS
206
      if ((y & SNAN_MASK64) == SNAN_MASK64)     // sNaN
207
        __set_status_flags (pfpsf, INVALID_EXCEPTION);
208
#endif
209
      res = coefficient_y & QUIET_MASK64;
210
      BID_RETURN (res);
211
    }
212
    // y is 0
213
    if (!coefficient_x) {       // x==0
214
      if (exponent_x <= exponent_y)
215
        res = ((UINT64) exponent_x) << 53;
216
      else
217
        res = ((UINT64) exponent_y) << 53;
218
      if (sign_x == sign_y)
219
        res |= sign_x;
220
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
221
#ifndef IEEE_ROUND_NEAREST
222
      if (rnd_mode == ROUNDING_DOWN && sign_x != sign_y)
223
        res |= 0x8000000000000000ull;
224
#endif
225
#endif
226
      BID_RETURN (res);
227
    } else if (exponent_y >= exponent_x) {
228
      res = x;
229
      BID_RETURN (res);
230
    }
231
  }
232
  // sort arguments by exponent
233
  if (exponent_x < exponent_y) {
234
    sign_a = sign_y;
235
    exponent_a = exponent_y;
236
    coefficient_a = coefficient_y;
237
    sign_b = sign_x;
238
    exponent_b = exponent_x;
239
    coefficient_b = coefficient_x;
240
  } else {
241
    sign_a = sign_x;
242
    exponent_a = exponent_x;
243
    coefficient_a = coefficient_x;
244
    sign_b = sign_y;
245
    exponent_b = exponent_y;
246
    coefficient_b = coefficient_y;
247
  }
248
 
249
  // exponent difference
250
  diff_dec_expon = exponent_a - exponent_b;
251
 
252
  /* get binary coefficients of x and y */
253
 
254
  //--- get number of bits in the coefficients of x and y ---
255
 
256
  // version 2 (original)
257
  tempx.d = (double) coefficient_a;
258
  bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
259
 
260
  if (diff_dec_expon > MAX_FORMAT_DIGITS) {
261
    // normalize a to a 16-digit coefficient
262
 
263
    scale_ca = estimate_decimal_digits[bin_expon_ca];
264
    if (coefficient_a >= power10_table_128[scale_ca].w[0])
265
      scale_ca++;
266
 
267
    scale_k = 16 - scale_ca;
268
 
269
    coefficient_a *= power10_table_128[scale_k].w[0];
270
 
271
    diff_dec_expon -= scale_k;
272
    exponent_a -= scale_k;
273
 
274
    /* get binary coefficients of x and y */
275
 
276
    //--- get number of bits in the coefficients of x and y ---
277
    tempx.d = (double) coefficient_a;
278
    bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
279
 
280
    if (diff_dec_expon > MAX_FORMAT_DIGITS) {
281
#ifdef SET_STATUS_FLAGS
282
      if (coefficient_b) {
283
        __set_status_flags (pfpsf, INEXACT_EXCEPTION);
284
      }
285
#endif
286
 
287
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
288
#ifndef IEEE_ROUND_NEAREST
289
      if (((rnd_mode) & 3) && coefficient_b)    // not ROUNDING_TO_NEAREST
290
      {
291
        switch (rnd_mode) {
292
        case ROUNDING_DOWN:
293
          if (sign_b) {
294
            coefficient_a -= ((((SINT64) sign_a) >> 63) | 1);
295
            if (coefficient_a < 1000000000000000ull) {
296
              exponent_a--;
297
              coefficient_a = 9999999999999999ull;
298
            } else if (coefficient_a >= 10000000000000000ull) {
299
              exponent_a++;
300
              coefficient_a = 1000000000000000ull;
301
            }
302
          }
303
          break;
304
        case ROUNDING_UP:
305
          if (!sign_b) {
306
            coefficient_a += ((((SINT64) sign_a) >> 63) | 1);
307
            if (coefficient_a < 1000000000000000ull) {
308
              exponent_a--;
309
              coefficient_a = 9999999999999999ull;
310
            } else if (coefficient_a >= 10000000000000000ull) {
311
              exponent_a++;
312
              coefficient_a = 1000000000000000ull;
313
            }
314
          }
315
          break;
316
        default:        // RZ
317
          if (sign_a != sign_b) {
318
            coefficient_a--;
319
            if (coefficient_a < 1000000000000000ull) {
320
              exponent_a--;
321
              coefficient_a = 9999999999999999ull;
322
            }
323
          }
324
          break;
325
        }
326
      } else
327
#endif
328
#endif
329
        // check special case here
330
        if ((coefficient_a == 1000000000000000ull)
331
            && (diff_dec_expon == MAX_FORMAT_DIGITS + 1)
332
            && (sign_a ^ sign_b)
333
            && (coefficient_b > 5000000000000000ull)) {
334
        coefficient_a = 9999999999999999ull;
335
        exponent_a--;
336
      }
337
 
338
      res =
339
        fast_get_BID64_check_OF (sign_a, exponent_a, coefficient_a,
340
                                 rnd_mode, pfpsf);
341
      BID_RETURN (res);
342
    }
343
  }
344
  // test whether coefficient_a*10^(exponent_a-exponent_b)  may exceed 2^62
345
  if (bin_expon_ca + estimate_bin_expon[diff_dec_expon] < 60) {
346
    // coefficient_a*10^(exponent_a-exponent_b)<2^63
347
 
348
    // multiply by 10^(exponent_a-exponent_b)
349
    coefficient_a *= power10_table_128[diff_dec_expon].w[0];
350
 
351
    // sign mask
352
    sign_b = ((SINT64) sign_b) >> 63;
353
    // apply sign to coeff. of b
354
    coefficient_b = (coefficient_b + sign_b) ^ sign_b;
355
 
356
    // apply sign to coefficient a
357
    sign_a = ((SINT64) sign_a) >> 63;
358
    coefficient_a = (coefficient_a + sign_a) ^ sign_a;
359
 
360
    coefficient_a += coefficient_b;
361
    // get sign
362
    sign_s = ((SINT64) coefficient_a) >> 63;
363
    coefficient_a = (coefficient_a + sign_s) ^ sign_s;
364
    sign_s &= 0x8000000000000000ull;
365
 
366
    // coefficient_a < 10^16 ?
367
    if (coefficient_a < power10_table_128[MAX_FORMAT_DIGITS].w[0]) {
368
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
369
#ifndef IEEE_ROUND_NEAREST
370
      if (rnd_mode == ROUNDING_DOWN && (!coefficient_a)
371
          && sign_a != sign_b)
372
        sign_s = 0x8000000000000000ull;
373
#endif
374
#endif
375
      res = very_fast_get_BID64 (sign_s, exponent_b, coefficient_a);
376
      BID_RETURN (res);
377
    }
378
    // otherwise rounding is necessary
379
 
380
    // already know coefficient_a<10^19
381
    // coefficient_a < 10^17 ?
382
    if (coefficient_a < power10_table_128[17].w[0])
383
      extra_digits = 1;
384
    else if (coefficient_a < power10_table_128[18].w[0])
385
      extra_digits = 2;
386
    else
387
      extra_digits = 3;
388
 
389
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
390
#ifndef IEEE_ROUND_NEAREST
391
    rmode = rnd_mode;
392
    if (sign_s && (unsigned) (rmode - 1) < 2)
393
      rmode = 3 - rmode;
394
#else
395
    rmode = 0;
396
#endif
397
#else
398
    rmode = 0;
399
#endif
400
    coefficient_a += round_const_table[rmode][extra_digits];
401
 
402
    // get P*(2^M[extra_digits])/10^extra_digits
403
    __mul_64x64_to_128 (CT, coefficient_a,
404
                        reciprocals10_64[extra_digits]);
405
 
406
    // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
407
    amount = short_recip_scale[extra_digits];
408
    C64 = CT.w[1] >> amount;
409
 
410
  } else {
411
    // coefficient_a*10^(exponent_a-exponent_b) is large
412
    sign_s = sign_a;
413
 
414
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
415
#ifndef IEEE_ROUND_NEAREST
416
    rmode = rnd_mode;
417
    if (sign_s && (unsigned) (rmode - 1) < 2)
418
      rmode = 3 - rmode;
419
#else
420
    rmode = 0;
421
#endif
422
#else
423
    rmode = 0;
424
#endif
425
 
426
    // check whether we can take faster path
427
    scale_ca = estimate_decimal_digits[bin_expon_ca];
428
 
429
    sign_ab = sign_a ^ sign_b;
430
    sign_ab = ((SINT64) sign_ab) >> 63;
431
 
432
    // T1 = 10^(16-diff_dec_expon)
433
    T1 = power10_table_128[16 - diff_dec_expon].w[0];
434
 
435
    // get number of digits in coefficient_a
436
    if (coefficient_a >= power10_table_128[scale_ca].w[0]) {
437
      scale_ca++;
438
    }
439
 
440
    scale_k = 16 - scale_ca;
441
 
442
    // addition
443
    saved_ca = coefficient_a - T1;
444
    coefficient_a =
445
      (SINT64) saved_ca *(SINT64) power10_table_128[scale_k].w[0];
446
    extra_digits = diff_dec_expon - scale_k;
447
 
448
    // apply sign
449
    saved_cb = (coefficient_b + sign_ab) ^ sign_ab;
450
    // add 10^16 and rounding constant
451
    coefficient_b =
452
      saved_cb + 10000000000000000ull +
453
      round_const_table[rmode][extra_digits];
454
 
455
    // get P*(2^M[extra_digits])/10^extra_digits
456
    __mul_64x64_to_128 (CT, coefficient_b,
457
                        reciprocals10_64[extra_digits]);
458
 
459
    // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
460
    amount = short_recip_scale[extra_digits];
461
    C0_64 = CT.w[1] >> amount;
462
 
463
    // result coefficient 
464
    C64 = C0_64 + coefficient_a;
465
    // filter out difficult (corner) cases
466
    // this test ensures the number of digits in coefficient_a does not change 
467
    // after adding (the appropriately scaled and rounded) coefficient_b
468
    if ((UINT64) (C64 - 1000000000000000ull - 1) >
469
        9000000000000000ull - 2) {
470
      if (C64 >= 10000000000000000ull) {
471
        // result has more than 16 digits
472
        if (!scale_k) {
473
          // must divide coeff_a by 10
474
          saved_ca = saved_ca + T1;
475
          __mul_64x64_to_128 (CA, saved_ca, 0x3333333333333334ull);
476
          //reciprocals10_64[1]);
477
          coefficient_a = CA.w[1] >> 1;
478
          rem_a =
479
            saved_ca - (coefficient_a << 3) - (coefficient_a << 1);
480
          coefficient_a = coefficient_a - T1;
481
 
482
          saved_cb += rem_a * power10_table_128[diff_dec_expon].w[0];
483
        } else
484
          coefficient_a =
485
            (SINT64) (saved_ca - T1 -
486
                      (T1 << 3)) * (SINT64) power10_table_128[scale_k -
487
                                                              1].w[0];
488
 
489
        extra_digits++;
490
        coefficient_b =
491
          saved_cb + 100000000000000000ull +
492
          round_const_table[rmode][extra_digits];
493
 
494
        // get P*(2^M[extra_digits])/10^extra_digits
495
        __mul_64x64_to_128 (CT, coefficient_b,
496
                            reciprocals10_64[extra_digits]);
497
 
498
        // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
499
        amount = short_recip_scale[extra_digits];
500
        C0_64 = CT.w[1] >> amount;
501
 
502
        // result coefficient 
503
        C64 = C0_64 + coefficient_a;
504
      } else if (C64 <= 1000000000000000ull) {
505
        // less than 16 digits in result
506
        coefficient_a =
507
          (SINT64) saved_ca *(SINT64) power10_table_128[scale_k +
508
                                                        1].w[0];
509
        //extra_digits --;
510
        exponent_b--;
511
        coefficient_b =
512
          (saved_cb << 3) + (saved_cb << 1) + 100000000000000000ull +
513
          round_const_table[rmode][extra_digits];
514
 
515
        // get P*(2^M[extra_digits])/10^extra_digits
516
        __mul_64x64_to_128 (CT_new, coefficient_b,
517
                            reciprocals10_64[extra_digits]);
518
 
519
        // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
520
        amount = short_recip_scale[extra_digits];
521
        C0_64 = CT_new.w[1] >> amount;
522
 
523
        // result coefficient 
524
        C64_new = C0_64 + coefficient_a;
525
        if (C64_new < 10000000000000000ull) {
526
          C64 = C64_new;
527
#ifdef SET_STATUS_FLAGS
528
          CT = CT_new;
529
#endif
530
        } else
531
          exponent_b++;
532
      }
533
 
534
    }
535
 
536
  }
537
 
538
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
539
#ifndef IEEE_ROUND_NEAREST
540
  if (rmode == 0)        //ROUNDING_TO_NEAREST
541
#endif
542
    if (C64 & 1) {
543
      // check whether fractional part of initial_P/10^extra_digits is 
544
      // exactly .5
545
      // this is the same as fractional part of 
546
      //      (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero
547
 
548
      // get remainder
549
      remainder_h = CT.w[1] << (64 - amount);
550
 
551
      // test whether fractional part is 0
552
      if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) {
553
        C64--;
554
      }
555
    }
556
#endif
557
 
558
#ifdef SET_STATUS_FLAGS
559
  status = INEXACT_EXCEPTION;
560
 
561
  // get remainder
562
  remainder_h = CT.w[1] << (64 - amount);
563
 
564
  switch (rmode) {
565
  case ROUNDING_TO_NEAREST:
566
  case ROUNDING_TIES_AWAY:
567
    // test whether fractional part is 0
568
    if ((remainder_h == 0x8000000000000000ull)
569
        && (CT.w[0] < reciprocals10_64[extra_digits]))
570
      status = EXACT_STATUS;
571
    break;
572
  case ROUNDING_DOWN:
573
  case ROUNDING_TO_ZERO:
574
    if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits]))
575
      status = EXACT_STATUS;
576
    //if(!C64 && rmode==ROUNDING_DOWN) sign_s=sign_y;
577
    break;
578
  default:
579
    // round up
580
    __add_carry_out (tmp, carry, CT.w[0],
581
                     reciprocals10_64[extra_digits]);
582
    if ((remainder_h >> (64 - amount)) + carry >=
583
        (((UINT64) 1) << amount))
584
      status = EXACT_STATUS;
585
    break;
586
  }
587
  __set_status_flags (pfpsf, status);
588
 
589
#endif
590
 
591
  res =
592
    fast_get_BID64_check_OF (sign_s, exponent_b + extra_digits, C64,
593
                             rnd_mode, pfpsf);
594
  BID_RETURN (res);
595
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.