1 |
272 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
2 |
|
|
|
3 |
|
|
This file is part of GCC.
|
4 |
|
|
|
5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
6 |
|
|
the terms of the GNU General Public License as published by the Free
|
7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
8 |
|
|
version.
|
9 |
|
|
|
10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
13 |
|
|
for more details.
|
14 |
|
|
|
15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
17 |
|
|
3.1, as published by the Free Software Foundation.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License and
|
20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
/*****************************************************************************
|
25 |
|
|
* BID64 fma
|
26 |
|
|
*****************************************************************************
|
27 |
|
|
*
|
28 |
|
|
* Algorithm description:
|
29 |
|
|
*
|
30 |
|
|
* if multiplication is guranteed exact (short coefficients)
|
31 |
|
|
* call the unpacked arg. equivalent of bid64_add(x*y, z)
|
32 |
|
|
* else
|
33 |
|
|
* get full coefficient_x*coefficient_y product
|
34 |
|
|
* call subroutine to perform addition of 64-bit argument
|
35 |
|
|
* to 128-bit product
|
36 |
|
|
*
|
37 |
|
|
****************************************************************************/
|
38 |
|
|
|
39 |
|
|
#include "bid_inline_add.h"
|
40 |
|
|
|
41 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
42 |
|
|
extern void bid64_mul (UINT64 * pres, UINT64 * px,
|
43 |
|
|
UINT64 *
|
44 |
|
|
py _RND_MODE_PARAM _EXC_FLAGS_PARAM
|
45 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM);
|
46 |
|
|
#else
|
47 |
|
|
|
48 |
|
|
extern UINT64 bid64_mul (UINT64 x,
|
49 |
|
|
UINT64 y _RND_MODE_PARAM
|
50 |
|
|
_EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
51 |
|
|
_EXC_INFO_PARAM);
|
52 |
|
|
#endif
|
53 |
|
|
|
54 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
55 |
|
|
|
56 |
|
|
void
|
57 |
|
|
bid64_fma (UINT64 * pres, UINT64 * px, UINT64 * py,
|
58 |
|
|
UINT64 *
|
59 |
|
|
pz _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
60 |
|
|
_EXC_INFO_PARAM) {
|
61 |
|
|
UINT64 x, y, z;
|
62 |
|
|
#else
|
63 |
|
|
|
64 |
|
|
UINT64
|
65 |
|
|
bid64_fma (UINT64 x, UINT64 y,
|
66 |
|
|
UINT64 z _RND_MODE_PARAM _EXC_FLAGS_PARAM
|
67 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
68 |
|
|
#endif
|
69 |
|
|
UINT128 P, PU, CT, CZ;
|
70 |
|
|
UINT64 sign_x, sign_y, coefficient_x, coefficient_y, sign_z,
|
71 |
|
|
coefficient_z;
|
72 |
|
|
UINT64 C64, remainder_y, res;
|
73 |
|
|
UINT64 CYh, CY0L, T, valid_x, valid_y, valid_z;
|
74 |
|
|
int_double tempx, tempy;
|
75 |
|
|
int extra_digits, exponent_x, exponent_y, bin_expon_cx, bin_expon_cy,
|
76 |
|
|
bin_expon_product, rmode;
|
77 |
|
|
int digits_p, bp, final_exponent, exponent_z, digits_z, ez, ey,
|
78 |
|
|
scale_z, uf_status;
|
79 |
|
|
|
80 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
81 |
|
|
#if !DECIMAL_GLOBAL_ROUNDING
|
82 |
|
|
_IDEC_round rnd_mode = *prnd_mode;
|
83 |
|
|
#endif
|
84 |
|
|
x = *px;
|
85 |
|
|
y = *py;
|
86 |
|
|
z = *pz;
|
87 |
|
|
#endif
|
88 |
|
|
|
89 |
|
|
valid_x = unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x);
|
90 |
|
|
valid_y = unpack_BID64 (&sign_y, &exponent_y, &coefficient_y, y);
|
91 |
|
|
valid_z = unpack_BID64 (&sign_z, &exponent_z, &coefficient_z, z);
|
92 |
|
|
|
93 |
|
|
// unpack arguments, check for NaN, Infinity, or 0
|
94 |
|
|
if (!valid_x || !valid_y || !valid_z) {
|
95 |
|
|
|
96 |
|
|
if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
|
97 |
|
|
// if x = {0, f, inf, NaN}, y = NaN, z = {0, f, inf, NaN} then res = Q (y)
|
98 |
|
|
// check first for non-canonical NaN payload
|
99 |
|
|
y = y & 0xfe03ffffffffffffull; // clear G6-G12
|
100 |
|
|
if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
|
101 |
|
|
y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
102 |
|
|
}
|
103 |
|
|
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
|
104 |
|
|
// set invalid flag
|
105 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
106 |
|
|
// return quiet (y)
|
107 |
|
|
res = y & 0xfdffffffffffffffull;
|
108 |
|
|
} else { // y is QNaN
|
109 |
|
|
// return y
|
110 |
|
|
res = y;
|
111 |
|
|
// if z = SNaN or x = SNaN signal invalid exception
|
112 |
|
|
if ((z & MASK_SNAN) == MASK_SNAN
|
113 |
|
|
|| (x & MASK_SNAN) == MASK_SNAN) {
|
114 |
|
|
// set invalid flag
|
115 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
116 |
|
|
}
|
117 |
|
|
}
|
118 |
|
|
BID_RETURN (res)
|
119 |
|
|
} else if ((z & MASK_NAN) == MASK_NAN) { // z is NAN
|
120 |
|
|
// if x = {0, f, inf, NaN}, y = {0, f, inf}, z = NaN then res = Q (z)
|
121 |
|
|
// check first for non-canonical NaN payload
|
122 |
|
|
z = z & 0xfe03ffffffffffffull; // clear G6-G12
|
123 |
|
|
if ((z & 0x0003ffffffffffffull) > 999999999999999ull) {
|
124 |
|
|
z = z & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
125 |
|
|
}
|
126 |
|
|
if ((z & MASK_SNAN) == MASK_SNAN) { // z is SNAN
|
127 |
|
|
// set invalid flag
|
128 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
129 |
|
|
// return quiet (z)
|
130 |
|
|
res = z & 0xfdffffffffffffffull;
|
131 |
|
|
} else { // z is QNaN
|
132 |
|
|
// return z
|
133 |
|
|
res = z;
|
134 |
|
|
// if x = SNaN signal invalid exception
|
135 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) {
|
136 |
|
|
// set invalid flag
|
137 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
138 |
|
|
}
|
139 |
|
|
}
|
140 |
|
|
BID_RETURN (res)
|
141 |
|
|
} else if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
|
142 |
|
|
// if x = NaN, y = {0, f, inf}, z = {0, f, inf} then res = Q (x)
|
143 |
|
|
// check first for non-canonical NaN payload
|
144 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
145 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
|
146 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
147 |
|
|
}
|
148 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
149 |
|
|
// set invalid flag
|
150 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
151 |
|
|
// return quiet (x)
|
152 |
|
|
res = x & 0xfdffffffffffffffull;
|
153 |
|
|
} else { // x is QNaN
|
154 |
|
|
// return x
|
155 |
|
|
res = x; // clear out G[6]-G[16]
|
156 |
|
|
}
|
157 |
|
|
BID_RETURN (res)
|
158 |
|
|
}
|
159 |
|
|
|
160 |
|
|
if (!valid_x) {
|
161 |
|
|
// x is Inf. or 0
|
162 |
|
|
|
163 |
|
|
// x is Infinity?
|
164 |
|
|
if ((x & 0x7800000000000000ull) == 0x7800000000000000ull) {
|
165 |
|
|
// check if y is 0
|
166 |
|
|
if (!coefficient_y) {
|
167 |
|
|
// y==0, return NaN
|
168 |
|
|
#ifdef SET_STATUS_FLAGS
|
169 |
|
|
if ((z & 0x7e00000000000000ull) != 0x7c00000000000000ull)
|
170 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
171 |
|
|
#endif
|
172 |
|
|
BID_RETURN (0x7c00000000000000ull);
|
173 |
|
|
}
|
174 |
|
|
// test if z is Inf of oposite sign
|
175 |
|
|
if (((z & 0x7c00000000000000ull) == 0x7800000000000000ull)
|
176 |
|
|
&& (((x ^ y) ^ z) & 0x8000000000000000ull)) {
|
177 |
|
|
// return NaN
|
178 |
|
|
#ifdef SET_STATUS_FLAGS
|
179 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
180 |
|
|
#endif
|
181 |
|
|
BID_RETURN (0x7c00000000000000ull);
|
182 |
|
|
}
|
183 |
|
|
// otherwise return +/-Inf
|
184 |
|
|
BID_RETURN (((x ^ y) & 0x8000000000000000ull) |
|
185 |
|
|
0x7800000000000000ull);
|
186 |
|
|
}
|
187 |
|
|
// x is 0
|
188 |
|
|
if (((y & 0x7800000000000000ull) != 0x7800000000000000ull)
|
189 |
|
|
&& ((z & 0x7800000000000000ull) != 0x7800000000000000ull)) {
|
190 |
|
|
|
191 |
|
|
if (coefficient_z) {
|
192 |
|
|
exponent_y = exponent_x - DECIMAL_EXPONENT_BIAS + exponent_y;
|
193 |
|
|
|
194 |
|
|
sign_z = z & 0x8000000000000000ull;
|
195 |
|
|
|
196 |
|
|
if (exponent_y >= exponent_z)
|
197 |
|
|
BID_RETURN (z);
|
198 |
|
|
res =
|
199 |
|
|
add_zero64 (exponent_y, sign_z, exponent_z, coefficient_z,
|
200 |
|
|
&rnd_mode, pfpsf);
|
201 |
|
|
BID_RETURN (res);
|
202 |
|
|
}
|
203 |
|
|
}
|
204 |
|
|
}
|
205 |
|
|
if (!valid_y) {
|
206 |
|
|
// y is Inf. or 0
|
207 |
|
|
|
208 |
|
|
// y is Infinity?
|
209 |
|
|
if ((y & 0x7800000000000000ull) == 0x7800000000000000ull) {
|
210 |
|
|
// check if x is 0
|
211 |
|
|
if (!coefficient_x) {
|
212 |
|
|
// y==0, return NaN
|
213 |
|
|
#ifdef SET_STATUS_FLAGS
|
214 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
215 |
|
|
#endif
|
216 |
|
|
BID_RETURN (0x7c00000000000000ull);
|
217 |
|
|
}
|
218 |
|
|
// test if z is Inf of oposite sign
|
219 |
|
|
if (((z & 0x7c00000000000000ull) == 0x7800000000000000ull)
|
220 |
|
|
&& (((x ^ y) ^ z) & 0x8000000000000000ull)) {
|
221 |
|
|
#ifdef SET_STATUS_FLAGS
|
222 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
223 |
|
|
#endif
|
224 |
|
|
// return NaN
|
225 |
|
|
BID_RETURN (0x7c00000000000000ull);
|
226 |
|
|
}
|
227 |
|
|
// otherwise return +/-Inf
|
228 |
|
|
BID_RETURN (((x ^ y) & 0x8000000000000000ull) |
|
229 |
|
|
0x7800000000000000ull);
|
230 |
|
|
}
|
231 |
|
|
// y is 0
|
232 |
|
|
if (((z & 0x7800000000000000ull) != 0x7800000000000000ull)) {
|
233 |
|
|
|
234 |
|
|
if (coefficient_z) {
|
235 |
|
|
exponent_y += exponent_x - DECIMAL_EXPONENT_BIAS;
|
236 |
|
|
|
237 |
|
|
sign_z = z & 0x8000000000000000ull;
|
238 |
|
|
|
239 |
|
|
if (exponent_y >= exponent_z)
|
240 |
|
|
BID_RETURN (z);
|
241 |
|
|
res =
|
242 |
|
|
add_zero64 (exponent_y, sign_z, exponent_z, coefficient_z,
|
243 |
|
|
&rnd_mode, pfpsf);
|
244 |
|
|
BID_RETURN (res);
|
245 |
|
|
}
|
246 |
|
|
}
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
if (!valid_z) {
|
250 |
|
|
// y is Inf. or 0
|
251 |
|
|
|
252 |
|
|
// test if y is NaN/Inf
|
253 |
|
|
if ((z & 0x7800000000000000ull) == 0x7800000000000000ull) {
|
254 |
|
|
BID_RETURN (coefficient_z & QUIET_MASK64);
|
255 |
|
|
}
|
256 |
|
|
// z is 0, return x*y
|
257 |
|
|
if ((!coefficient_x) || (!coefficient_y)) {
|
258 |
|
|
//0+/-0
|
259 |
|
|
exponent_x += exponent_y - DECIMAL_EXPONENT_BIAS;
|
260 |
|
|
if (exponent_x > DECIMAL_MAX_EXPON_64)
|
261 |
|
|
exponent_x = DECIMAL_MAX_EXPON_64;
|
262 |
|
|
else if (exponent_x < 0)
|
263 |
|
|
exponent_x = 0;
|
264 |
|
|
if (exponent_x <= exponent_z)
|
265 |
|
|
res = ((UINT64) exponent_x) << 53;
|
266 |
|
|
else
|
267 |
|
|
res = ((UINT64) exponent_z) << 53;
|
268 |
|
|
if ((sign_x ^ sign_y) == sign_z)
|
269 |
|
|
res |= sign_z;
|
270 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
271 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
272 |
|
|
else if (rnd_mode == ROUNDING_DOWN)
|
273 |
|
|
res |= 0x8000000000000000ull;
|
274 |
|
|
#endif
|
275 |
|
|
#endif
|
276 |
|
|
BID_RETURN (res);
|
277 |
|
|
}
|
278 |
|
|
}
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
/* get binary coefficients of x and y */
|
282 |
|
|
|
283 |
|
|
//--- get number of bits in the coefficients of x and y ---
|
284 |
|
|
// version 2 (original)
|
285 |
|
|
tempx.d = (double) coefficient_x;
|
286 |
|
|
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52);
|
287 |
|
|
|
288 |
|
|
tempy.d = (double) coefficient_y;
|
289 |
|
|
bin_expon_cy = ((tempy.i & MASK_BINARY_EXPONENT) >> 52);
|
290 |
|
|
|
291 |
|
|
// magnitude estimate for coefficient_x*coefficient_y is
|
292 |
|
|
// 2^(unbiased_bin_expon_cx + unbiased_bin_expon_cx)
|
293 |
|
|
bin_expon_product = bin_expon_cx + bin_expon_cy;
|
294 |
|
|
|
295 |
|
|
// check if coefficient_x*coefficient_y<2^(10*k+3)
|
296 |
|
|
// equivalent to unbiased_bin_expon_cx + unbiased_bin_expon_cx < 10*k+1
|
297 |
|
|
if (bin_expon_product < UPPER_EXPON_LIMIT + 2 * BINARY_EXPONENT_BIAS) {
|
298 |
|
|
// easy multiply
|
299 |
|
|
C64 = coefficient_x * coefficient_y;
|
300 |
|
|
final_exponent = exponent_x + exponent_y - DECIMAL_EXPONENT_BIAS;
|
301 |
|
|
if ((final_exponent > 0) || (!coefficient_z)) {
|
302 |
|
|
res =
|
303 |
|
|
get_add64 (sign_x ^ sign_y,
|
304 |
|
|
final_exponent, C64, sign_z, exponent_z, coefficient_z, rnd_mode, pfpsf);
|
305 |
|
|
BID_RETURN (res);
|
306 |
|
|
} else {
|
307 |
|
|
P.w[0] = C64;
|
308 |
|
|
P.w[1] = 0;
|
309 |
|
|
extra_digits = 0;
|
310 |
|
|
}
|
311 |
|
|
} else {
|
312 |
|
|
if (!coefficient_z) {
|
313 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
314 |
|
|
bid64_mul (&res, px,
|
315 |
|
|
py _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
|
316 |
|
|
_EXC_INFO_ARG);
|
317 |
|
|
#else
|
318 |
|
|
res =
|
319 |
|
|
bid64_mul (x,
|
320 |
|
|
y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
|
321 |
|
|
_EXC_INFO_ARG);
|
322 |
|
|
#endif
|
323 |
|
|
BID_RETURN (res);
|
324 |
|
|
}
|
325 |
|
|
// get 128-bit product: coefficient_x*coefficient_y
|
326 |
|
|
__mul_64x64_to_128 (P, coefficient_x, coefficient_y);
|
327 |
|
|
|
328 |
|
|
// tighten binary range of P: leading bit is 2^bp
|
329 |
|
|
// unbiased_bin_expon_product <= bp <= unbiased_bin_expon_product+1
|
330 |
|
|
bin_expon_product -= 2 * BINARY_EXPONENT_BIAS;
|
331 |
|
|
__tight_bin_range_128 (bp, P, bin_expon_product);
|
332 |
|
|
|
333 |
|
|
// get number of decimal digits in the product
|
334 |
|
|
digits_p = estimate_decimal_digits[bp];
|
335 |
|
|
if (!(__unsigned_compare_gt_128 (power10_table_128[digits_p], P)))
|
336 |
|
|
digits_p++; // if power10_table_128[digits_p] <= P
|
337 |
|
|
|
338 |
|
|
// determine number of decimal digits to be rounded out
|
339 |
|
|
extra_digits = digits_p - MAX_FORMAT_DIGITS;
|
340 |
|
|
final_exponent =
|
341 |
|
|
exponent_x + exponent_y + extra_digits - DECIMAL_EXPONENT_BIAS;
|
342 |
|
|
}
|
343 |
|
|
|
344 |
|
|
if (((unsigned) final_exponent) >= 3 * 256) {
|
345 |
|
|
if (final_exponent < 0) {
|
346 |
|
|
//--- get number of bits in the coefficients of z ---
|
347 |
|
|
tempx.d = (double) coefficient_z;
|
348 |
|
|
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
349 |
|
|
// get number of decimal digits in the coeff_x
|
350 |
|
|
digits_z = estimate_decimal_digits[bin_expon_cx];
|
351 |
|
|
if (coefficient_z >= power10_table_128[digits_z].w[0])
|
352 |
|
|
digits_z++;
|
353 |
|
|
// underflow
|
354 |
|
|
if ((final_exponent + 16 < 0)
|
355 |
|
|
|| (exponent_z + digits_z > 33 + final_exponent)) {
|
356 |
|
|
res =
|
357 |
|
|
BID_normalize (sign_z, exponent_z, coefficient_z,
|
358 |
|
|
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
|
359 |
|
|
BID_RETURN (res);
|
360 |
|
|
}
|
361 |
|
|
|
362 |
|
|
ez = exponent_z + digits_z - 16;
|
363 |
|
|
if (ez < 0)
|
364 |
|
|
ez = 0;
|
365 |
|
|
scale_z = exponent_z - ez;
|
366 |
|
|
coefficient_z *= power10_table_128[scale_z].w[0];
|
367 |
|
|
ey = final_exponent - extra_digits;
|
368 |
|
|
extra_digits = ez - ey;
|
369 |
|
|
if (extra_digits > 33) {
|
370 |
|
|
res =
|
371 |
|
|
BID_normalize (sign_z, exponent_z, coefficient_z,
|
372 |
|
|
sign_x ^ sign_y, 1, rnd_mode, pfpsf);
|
373 |
|
|
BID_RETURN (res);
|
374 |
|
|
}
|
375 |
|
|
//else // extra_digits<=32
|
376 |
|
|
|
377 |
|
|
if (extra_digits > 17) {
|
378 |
|
|
CYh = __truncate (P, 16);
|
379 |
|
|
// get remainder
|
380 |
|
|
T = power10_table_128[16].w[0];
|
381 |
|
|
__mul_64x64_to_64 (CY0L, CYh, T);
|
382 |
|
|
remainder_y = P.w[0] - CY0L;
|
383 |
|
|
|
384 |
|
|
extra_digits -= 16;
|
385 |
|
|
P.w[0] = CYh;
|
386 |
|
|
P.w[1] = 0;
|
387 |
|
|
} else
|
388 |
|
|
remainder_y = 0;
|
389 |
|
|
|
390 |
|
|
// align coeff_x, CYh
|
391 |
|
|
__mul_64x64_to_128 (CZ, coefficient_z,
|
392 |
|
|
power10_table_128[extra_digits].w[0]);
|
393 |
|
|
|
394 |
|
|
if (sign_z == (sign_y ^ sign_x)) {
|
395 |
|
|
__add_128_128 (CT, CZ, P);
|
396 |
|
|
if (__unsigned_compare_ge_128
|
397 |
|
|
(CT, power10_table_128[16 + extra_digits])) {
|
398 |
|
|
extra_digits++;
|
399 |
|
|
ez++;
|
400 |
|
|
}
|
401 |
|
|
} else {
|
402 |
|
|
if (remainder_y && (__unsigned_compare_ge_128 (CZ, P))) {
|
403 |
|
|
P.w[0]++;
|
404 |
|
|
if (!P.w[0])
|
405 |
|
|
P.w[1]++;
|
406 |
|
|
}
|
407 |
|
|
__sub_128_128 (CT, CZ, P);
|
408 |
|
|
if (((SINT64) CT.w[1]) < 0) {
|
409 |
|
|
sign_z = sign_y ^ sign_x;
|
410 |
|
|
CT.w[0] = 0 - CT.w[0];
|
411 |
|
|
CT.w[1] = 0 - CT.w[1];
|
412 |
|
|
if (CT.w[0])
|
413 |
|
|
CT.w[1]--;
|
414 |
|
|
} else if(!(CT.w[1]|CT.w[0]))
|
415 |
|
|
sign_z = (rnd_mode!=ROUNDING_DOWN)? 0: 0x8000000000000000ull;
|
416 |
|
|
if (ez
|
417 |
|
|
&&
|
418 |
|
|
(__unsigned_compare_gt_128
|
419 |
|
|
(power10_table_128[15 + extra_digits], CT))) {
|
420 |
|
|
extra_digits--;
|
421 |
|
|
ez--;
|
422 |
|
|
}
|
423 |
|
|
}
|
424 |
|
|
|
425 |
|
|
#ifdef SET_STATUS_FLAGS
|
426 |
|
|
uf_status = 0;
|
427 |
|
|
if ((!ez)
|
428 |
|
|
&&
|
429 |
|
|
__unsigned_compare_gt_128 (power10_table_128
|
430 |
|
|
[extra_digits + 15], CT)) {
|
431 |
|
|
rmode = rnd_mode;
|
432 |
|
|
if (sign_z && (unsigned) (rmode - 1) < 2)
|
433 |
|
|
rmode = 3 - rmode;
|
434 |
|
|
//__add_128_64(PU, CT, round_const_table[rmode][extra_digits]);
|
435 |
|
|
PU = power10_table_128[extra_digits + 15];
|
436 |
|
|
PU.w[0]--;
|
437 |
|
|
if (__unsigned_compare_gt_128 (PU, CT)
|
438 |
|
|
|| (rmode == ROUNDING_DOWN)
|
439 |
|
|
|| (rmode == ROUNDING_TO_ZERO))
|
440 |
|
|
uf_status = UNDERFLOW_EXCEPTION;
|
441 |
|
|
else if (extra_digits < 2) {
|
442 |
|
|
if ((rmode == ROUNDING_UP)) {
|
443 |
|
|
if (!extra_digits)
|
444 |
|
|
uf_status = UNDERFLOW_EXCEPTION;
|
445 |
|
|
else {
|
446 |
|
|
if (remainder_y && (sign_z != (sign_y ^ sign_x)))
|
447 |
|
|
remainder_y = power10_table_128[16].w[0] - remainder_y;
|
448 |
|
|
|
449 |
|
|
if (power10_table_128[15].w[0] > remainder_y)
|
450 |
|
|
uf_status = UNDERFLOW_EXCEPTION;
|
451 |
|
|
}
|
452 |
|
|
} else // RN or RN_away
|
453 |
|
|
{
|
454 |
|
|
if (remainder_y && (sign_z != (sign_y ^ sign_x)))
|
455 |
|
|
remainder_y = power10_table_128[16].w[0] - remainder_y;
|
456 |
|
|
|
457 |
|
|
if (!extra_digits) {
|
458 |
|
|
remainder_y += round_const_table[rmode][15];
|
459 |
|
|
if (remainder_y < power10_table_128[16].w[0])
|
460 |
|
|
uf_status = UNDERFLOW_EXCEPTION;
|
461 |
|
|
} else {
|
462 |
|
|
if (remainder_y < round_const_table[rmode][16])
|
463 |
|
|
uf_status = UNDERFLOW_EXCEPTION;
|
464 |
|
|
}
|
465 |
|
|
}
|
466 |
|
|
//__set_status_flags (pfpsf, uf_status);
|
467 |
|
|
}
|
468 |
|
|
}
|
469 |
|
|
#endif
|
470 |
|
|
res =
|
471 |
|
|
__bid_full_round64_remainder (sign_z, ez - extra_digits, CT,
|
472 |
|
|
extra_digits, remainder_y,
|
473 |
|
|
rnd_mode, pfpsf, uf_status);
|
474 |
|
|
BID_RETURN (res);
|
475 |
|
|
|
476 |
|
|
} else {
|
477 |
|
|
if ((sign_z == (sign_x ^ sign_y))
|
478 |
|
|
|| (final_exponent > 3 * 256 + 15)) {
|
479 |
|
|
res =
|
480 |
|
|
fast_get_BID64_check_OF (sign_x ^ sign_y, final_exponent,
|
481 |
|
|
1000000000000000ull, rnd_mode,
|
482 |
|
|
pfpsf);
|
483 |
|
|
BID_RETURN (res);
|
484 |
|
|
}
|
485 |
|
|
}
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
|
489 |
|
|
if (extra_digits > 0) {
|
490 |
|
|
res =
|
491 |
|
|
get_add128 (sign_z, exponent_z, coefficient_z, sign_x ^ sign_y,
|
492 |
|
|
final_exponent, P, extra_digits, rnd_mode, pfpsf);
|
493 |
|
|
BID_RETURN (res);
|
494 |
|
|
}
|
495 |
|
|
// go to convert_format and exit
|
496 |
|
|
else {
|
497 |
|
|
C64 = __low_64 (P);
|
498 |
|
|
|
499 |
|
|
res =
|
500 |
|
|
get_add64 (sign_x ^ sign_y,
|
501 |
|
|
exponent_x + exponent_y - DECIMAL_EXPONENT_BIAS, C64,
|
502 |
|
|
sign_z, exponent_z, coefficient_z,
|
503 |
|
|
rnd_mode, pfpsf);
|
504 |
|
|
BID_RETURN (res);
|
505 |
|
|
}
|
506 |
|
|
}
|