1 |
272 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
2 |
|
|
|
3 |
|
|
This file is part of GCC.
|
4 |
|
|
|
5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
6 |
|
|
the terms of the GNU General Public License as published by the Free
|
7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
8 |
|
|
version.
|
9 |
|
|
|
10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
13 |
|
|
for more details.
|
14 |
|
|
|
15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
17 |
|
|
3.1, as published by the Free Software Foundation.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License and
|
20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
/*****************************************************************************
|
25 |
|
|
* BID64 multiply
|
26 |
|
|
*****************************************************************************
|
27 |
|
|
*
|
28 |
|
|
* Algorithm description:
|
29 |
|
|
*
|
30 |
|
|
* if(number_digits(coefficient_x)+number_digits(coefficient_y) guaranteed
|
31 |
|
|
* below 16)
|
32 |
|
|
* return get_BID64(sign_x^sign_y, exponent_x + exponent_y - dec_bias,
|
33 |
|
|
* coefficient_x*coefficient_y)
|
34 |
|
|
* else
|
35 |
|
|
* get long product: coefficient_x*coefficient_y
|
36 |
|
|
* determine number of digits to round off (extra_digits)
|
37 |
|
|
* rounding is performed as a 128x128-bit multiplication by
|
38 |
|
|
* 2^M[extra_digits]/10^extra_digits, followed by a shift
|
39 |
|
|
* M[extra_digits] is sufficiently large for required accuracy
|
40 |
|
|
*
|
41 |
|
|
****************************************************************************/
|
42 |
|
|
|
43 |
|
|
#include "bid_internal.h"
|
44 |
|
|
|
45 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
46 |
|
|
|
47 |
|
|
void
|
48 |
|
|
bid64_mul (UINT64 * pres, UINT64 * px,
|
49 |
|
|
UINT64 *
|
50 |
|
|
py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
51 |
|
|
_EXC_INFO_PARAM) {
|
52 |
|
|
UINT64 x, y;
|
53 |
|
|
#else
|
54 |
|
|
|
55 |
|
|
UINT64
|
56 |
|
|
bid64_mul (UINT64 x,
|
57 |
|
|
UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
|
58 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
59 |
|
|
#endif
|
60 |
|
|
UINT128 P, PU, C128, Q_high, Q_low, Stemp;
|
61 |
|
|
UINT64 sign_x, sign_y, coefficient_x, coefficient_y;
|
62 |
|
|
UINT64 C64, remainder_h, carry, CY, res;
|
63 |
|
|
UINT64 valid_x, valid_y;
|
64 |
|
|
int_double tempx, tempy;
|
65 |
|
|
int extra_digits, exponent_x, exponent_y, bin_expon_cx, bin_expon_cy,
|
66 |
|
|
bin_expon_product;
|
67 |
|
|
int rmode, digits_p, bp, amount, amount2, final_exponent, round_up;
|
68 |
|
|
unsigned status, uf_status;
|
69 |
|
|
|
70 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
71 |
|
|
#if !DECIMAL_GLOBAL_ROUNDING
|
72 |
|
|
_IDEC_round rnd_mode = *prnd_mode;
|
73 |
|
|
#endif
|
74 |
|
|
x = *px;
|
75 |
|
|
y = *py;
|
76 |
|
|
#endif
|
77 |
|
|
|
78 |
|
|
valid_x = unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x);
|
79 |
|
|
valid_y = unpack_BID64 (&sign_y, &exponent_y, &coefficient_y, y);
|
80 |
|
|
|
81 |
|
|
// unpack arguments, check for NaN or Infinity
|
82 |
|
|
if (!valid_x) {
|
83 |
|
|
|
84 |
|
|
#ifdef SET_STATUS_FLAGS
|
85 |
|
|
if ((y & SNAN_MASK64) == SNAN_MASK64) // y is sNaN
|
86 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
87 |
|
|
#endif
|
88 |
|
|
// x is Inf. or NaN
|
89 |
|
|
|
90 |
|
|
// test if x is NaN
|
91 |
|
|
if ((x & NAN_MASK64) == NAN_MASK64) {
|
92 |
|
|
#ifdef SET_STATUS_FLAGS
|
93 |
|
|
if ((x & SNAN_MASK64) == SNAN_MASK64) // sNaN
|
94 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
95 |
|
|
#endif
|
96 |
|
|
BID_RETURN (coefficient_x & QUIET_MASK64);
|
97 |
|
|
}
|
98 |
|
|
// x is Infinity?
|
99 |
|
|
if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
|
100 |
|
|
// check if y is 0
|
101 |
|
|
if (((y & INFINITY_MASK64) != INFINITY_MASK64)
|
102 |
|
|
&& !coefficient_y) {
|
103 |
|
|
#ifdef SET_STATUS_FLAGS
|
104 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
105 |
|
|
#endif
|
106 |
|
|
// y==0 , return NaN
|
107 |
|
|
BID_RETURN (NAN_MASK64);
|
108 |
|
|
}
|
109 |
|
|
// check if y is NaN
|
110 |
|
|
if ((y & NAN_MASK64) == NAN_MASK64)
|
111 |
|
|
// y==NaN , return NaN
|
112 |
|
|
BID_RETURN (coefficient_y & QUIET_MASK64);
|
113 |
|
|
// otherwise return +/-Inf
|
114 |
|
|
BID_RETURN (((x ^ y) & 0x8000000000000000ull) | INFINITY_MASK64);
|
115 |
|
|
}
|
116 |
|
|
// x is 0
|
117 |
|
|
if (((y & INFINITY_MASK64) != INFINITY_MASK64)) {
|
118 |
|
|
if ((y & SPECIAL_ENCODING_MASK64) == SPECIAL_ENCODING_MASK64)
|
119 |
|
|
exponent_y = ((UINT32) (y >> 51)) & 0x3ff;
|
120 |
|
|
else
|
121 |
|
|
exponent_y = ((UINT32) (y >> 53)) & 0x3ff;
|
122 |
|
|
sign_y = y & 0x8000000000000000ull;
|
123 |
|
|
|
124 |
|
|
exponent_x += exponent_y - DECIMAL_EXPONENT_BIAS;
|
125 |
|
|
if (exponent_x > DECIMAL_MAX_EXPON_64)
|
126 |
|
|
exponent_x = DECIMAL_MAX_EXPON_64;
|
127 |
|
|
else if (exponent_x < 0)
|
128 |
|
|
exponent_x = 0;
|
129 |
|
|
BID_RETURN ((sign_x ^ sign_y) | (((UINT64) exponent_x) << 53));
|
130 |
|
|
}
|
131 |
|
|
}
|
132 |
|
|
if (!valid_y) {
|
133 |
|
|
// y is Inf. or NaN
|
134 |
|
|
|
135 |
|
|
// test if y is NaN
|
136 |
|
|
if ((y & NAN_MASK64) == NAN_MASK64) {
|
137 |
|
|
#ifdef SET_STATUS_FLAGS
|
138 |
|
|
if ((y & SNAN_MASK64) == SNAN_MASK64) // sNaN
|
139 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
140 |
|
|
#endif
|
141 |
|
|
BID_RETURN (coefficient_y & QUIET_MASK64);
|
142 |
|
|
}
|
143 |
|
|
// y is Infinity?
|
144 |
|
|
if ((y & INFINITY_MASK64) == INFINITY_MASK64) {
|
145 |
|
|
// check if x is 0
|
146 |
|
|
if (!coefficient_x) {
|
147 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
148 |
|
|
// x==0, return NaN
|
149 |
|
|
BID_RETURN (NAN_MASK64);
|
150 |
|
|
}
|
151 |
|
|
// otherwise return +/-Inf
|
152 |
|
|
BID_RETURN (((x ^ y) & 0x8000000000000000ull) | INFINITY_MASK64);
|
153 |
|
|
}
|
154 |
|
|
// y is 0
|
155 |
|
|
exponent_x += exponent_y - DECIMAL_EXPONENT_BIAS;
|
156 |
|
|
if (exponent_x > DECIMAL_MAX_EXPON_64)
|
157 |
|
|
exponent_x = DECIMAL_MAX_EXPON_64;
|
158 |
|
|
else if (exponent_x < 0)
|
159 |
|
|
exponent_x = 0;
|
160 |
|
|
BID_RETURN ((sign_x ^ sign_y) | (((UINT64) exponent_x) << 53));
|
161 |
|
|
}
|
162 |
|
|
//--- get number of bits in the coefficients of x and y ---
|
163 |
|
|
// version 2 (original)
|
164 |
|
|
tempx.d = (double) coefficient_x;
|
165 |
|
|
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52);
|
166 |
|
|
tempy.d = (double) coefficient_y;
|
167 |
|
|
bin_expon_cy = ((tempy.i & MASK_BINARY_EXPONENT) >> 52);
|
168 |
|
|
|
169 |
|
|
// magnitude estimate for coefficient_x*coefficient_y is
|
170 |
|
|
// 2^(unbiased_bin_expon_cx + unbiased_bin_expon_cx)
|
171 |
|
|
bin_expon_product = bin_expon_cx + bin_expon_cy;
|
172 |
|
|
|
173 |
|
|
// check if coefficient_x*coefficient_y<2^(10*k+3)
|
174 |
|
|
// equivalent to unbiased_bin_expon_cx + unbiased_bin_expon_cx < 10*k+1
|
175 |
|
|
if (bin_expon_product < UPPER_EXPON_LIMIT + 2 * BINARY_EXPONENT_BIAS) {
|
176 |
|
|
// easy multiply
|
177 |
|
|
C64 = coefficient_x * coefficient_y;
|
178 |
|
|
|
179 |
|
|
res =
|
180 |
|
|
get_BID64_small_mantissa (sign_x ^ sign_y,
|
181 |
|
|
exponent_x + exponent_y -
|
182 |
|
|
DECIMAL_EXPONENT_BIAS, C64, rnd_mode,
|
183 |
|
|
pfpsf);
|
184 |
|
|
BID_RETURN (res);
|
185 |
|
|
} else {
|
186 |
|
|
uf_status = 0;
|
187 |
|
|
// get 128-bit product: coefficient_x*coefficient_y
|
188 |
|
|
__mul_64x64_to_128 (P, coefficient_x, coefficient_y);
|
189 |
|
|
|
190 |
|
|
// tighten binary range of P: leading bit is 2^bp
|
191 |
|
|
// unbiased_bin_expon_product <= bp <= unbiased_bin_expon_product+1
|
192 |
|
|
bin_expon_product -= 2 * BINARY_EXPONENT_BIAS;
|
193 |
|
|
|
194 |
|
|
__tight_bin_range_128 (bp, P, bin_expon_product);
|
195 |
|
|
|
196 |
|
|
// get number of decimal digits in the product
|
197 |
|
|
digits_p = estimate_decimal_digits[bp];
|
198 |
|
|
if (!(__unsigned_compare_gt_128 (power10_table_128[digits_p], P)))
|
199 |
|
|
digits_p++; // if power10_table_128[digits_p] <= P
|
200 |
|
|
|
201 |
|
|
// determine number of decimal digits to be rounded out
|
202 |
|
|
extra_digits = digits_p - MAX_FORMAT_DIGITS;
|
203 |
|
|
final_exponent =
|
204 |
|
|
exponent_x + exponent_y + extra_digits - DECIMAL_EXPONENT_BIAS;
|
205 |
|
|
|
206 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
207 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
208 |
|
|
rmode = rnd_mode;
|
209 |
|
|
if (sign_x ^ sign_y && (unsigned) (rmode - 1) < 2)
|
210 |
|
|
rmode = 3 - rmode;
|
211 |
|
|
#else
|
212 |
|
|
rmode = 0;
|
213 |
|
|
#endif
|
214 |
|
|
#else
|
215 |
|
|
rmode = 0;
|
216 |
|
|
#endif
|
217 |
|
|
|
218 |
|
|
round_up = 0;
|
219 |
|
|
if (((unsigned) final_exponent) >= 3 * 256) {
|
220 |
|
|
if (final_exponent < 0) {
|
221 |
|
|
// underflow
|
222 |
|
|
if (final_exponent + 16 < 0) {
|
223 |
|
|
res = sign_x ^ sign_y;
|
224 |
|
|
__set_status_flags (pfpsf,
|
225 |
|
|
UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
|
226 |
|
|
if (rmode == ROUNDING_UP)
|
227 |
|
|
res |= 1;
|
228 |
|
|
BID_RETURN (res);
|
229 |
|
|
}
|
230 |
|
|
|
231 |
|
|
uf_status = UNDERFLOW_EXCEPTION;
|
232 |
|
|
if (final_exponent == -1) {
|
233 |
|
|
__add_128_64 (PU, P, round_const_table[rmode][extra_digits]);
|
234 |
|
|
if (__unsigned_compare_ge_128
|
235 |
|
|
(PU, power10_table_128[extra_digits + 16]))
|
236 |
|
|
uf_status = 0;
|
237 |
|
|
}
|
238 |
|
|
extra_digits -= final_exponent;
|
239 |
|
|
final_exponent = 0;
|
240 |
|
|
|
241 |
|
|
if (extra_digits > 17) {
|
242 |
|
|
__mul_128x128_full (Q_high, Q_low, P, reciprocals10_128[16]);
|
243 |
|
|
|
244 |
|
|
amount = recip_scale[16];
|
245 |
|
|
__shr_128 (P, Q_high, amount);
|
246 |
|
|
|
247 |
|
|
// get sticky bits
|
248 |
|
|
amount2 = 64 - amount;
|
249 |
|
|
remainder_h = 0;
|
250 |
|
|
remainder_h--;
|
251 |
|
|
remainder_h >>= amount2;
|
252 |
|
|
remainder_h = remainder_h & Q_high.w[0];
|
253 |
|
|
|
254 |
|
|
extra_digits -= 16;
|
255 |
|
|
if (remainder_h || (Q_low.w[1] > reciprocals10_128[16].w[1]
|
256 |
|
|
|| (Q_low.w[1] ==
|
257 |
|
|
reciprocals10_128[16].w[1]
|
258 |
|
|
&& Q_low.w[0] >=
|
259 |
|
|
reciprocals10_128[16].w[0]))) {
|
260 |
|
|
round_up = 1;
|
261 |
|
|
__set_status_flags (pfpsf,
|
262 |
|
|
UNDERFLOW_EXCEPTION |
|
263 |
|
|
INEXACT_EXCEPTION);
|
264 |
|
|
P.w[0] = (P.w[0] << 3) + (P.w[0] << 1);
|
265 |
|
|
P.w[0] |= 1;
|
266 |
|
|
extra_digits++;
|
267 |
|
|
}
|
268 |
|
|
}
|
269 |
|
|
} else {
|
270 |
|
|
res =
|
271 |
|
|
fast_get_BID64_check_OF (sign_x ^ sign_y, final_exponent,
|
272 |
|
|
1000000000000000ull, rnd_mode,
|
273 |
|
|
pfpsf);
|
274 |
|
|
BID_RETURN (res);
|
275 |
|
|
}
|
276 |
|
|
}
|
277 |
|
|
|
278 |
|
|
|
279 |
|
|
if (extra_digits > 0) {
|
280 |
|
|
// will divide by 10^(digits_p - 16)
|
281 |
|
|
|
282 |
|
|
// add a constant to P, depending on rounding mode
|
283 |
|
|
// 0.5*10^(digits_p - 16) for round-to-nearest
|
284 |
|
|
__add_128_64 (P, P, round_const_table[rmode][extra_digits]);
|
285 |
|
|
|
286 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
287 |
|
|
__mul_128x128_full (Q_high, Q_low, P,
|
288 |
|
|
reciprocals10_128[extra_digits]);
|
289 |
|
|
|
290 |
|
|
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
|
291 |
|
|
amount = recip_scale[extra_digits];
|
292 |
|
|
__shr_128 (C128, Q_high, amount);
|
293 |
|
|
|
294 |
|
|
C64 = __low_64 (C128);
|
295 |
|
|
|
296 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
297 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
298 |
|
|
if (rmode == 0) //ROUNDING_TO_NEAREST
|
299 |
|
|
#endif
|
300 |
|
|
if ((C64 & 1) && !round_up) {
|
301 |
|
|
// check whether fractional part of initial_P/10^extra_digits
|
302 |
|
|
// is exactly .5
|
303 |
|
|
// this is the same as fractional part of
|
304 |
|
|
// (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero
|
305 |
|
|
|
306 |
|
|
// get remainder
|
307 |
|
|
remainder_h = Q_high.w[0] << (64 - amount);
|
308 |
|
|
|
309 |
|
|
// test whether fractional part is 0
|
310 |
|
|
if (!remainder_h
|
311 |
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
312 |
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
313 |
|
|
&& Q_low.w[0] <
|
314 |
|
|
reciprocals10_128[extra_digits].w[0]))) {
|
315 |
|
|
C64--;
|
316 |
|
|
}
|
317 |
|
|
}
|
318 |
|
|
#endif
|
319 |
|
|
|
320 |
|
|
#ifdef SET_STATUS_FLAGS
|
321 |
|
|
status = INEXACT_EXCEPTION | uf_status;
|
322 |
|
|
|
323 |
|
|
// get remainder
|
324 |
|
|
remainder_h = Q_high.w[0] << (64 - amount);
|
325 |
|
|
|
326 |
|
|
switch (rmode) {
|
327 |
|
|
case ROUNDING_TO_NEAREST:
|
328 |
|
|
case ROUNDING_TIES_AWAY:
|
329 |
|
|
// test whether fractional part is 0
|
330 |
|
|
if (remainder_h == 0x8000000000000000ull
|
331 |
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
332 |
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
333 |
|
|
&& Q_low.w[0] <
|
334 |
|
|
reciprocals10_128[extra_digits].w[0])))
|
335 |
|
|
status = EXACT_STATUS;
|
336 |
|
|
break;
|
337 |
|
|
case ROUNDING_DOWN:
|
338 |
|
|
case ROUNDING_TO_ZERO:
|
339 |
|
|
if (!remainder_h
|
340 |
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
341 |
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
342 |
|
|
&& Q_low.w[0] <
|
343 |
|
|
reciprocals10_128[extra_digits].w[0])))
|
344 |
|
|
status = EXACT_STATUS;
|
345 |
|
|
break;
|
346 |
|
|
default:
|
347 |
|
|
// round up
|
348 |
|
|
__add_carry_out (Stemp.w[0], CY, Q_low.w[0],
|
349 |
|
|
reciprocals10_128[extra_digits].w[0]);
|
350 |
|
|
__add_carry_in_out (Stemp.w[1], carry, Q_low.w[1],
|
351 |
|
|
reciprocals10_128[extra_digits].w[1], CY);
|
352 |
|
|
if ((remainder_h >> (64 - amount)) + carry >=
|
353 |
|
|
(((UINT64) 1) << amount))
|
354 |
|
|
status = EXACT_STATUS;
|
355 |
|
|
}
|
356 |
|
|
|
357 |
|
|
__set_status_flags (pfpsf, status);
|
358 |
|
|
#endif
|
359 |
|
|
|
360 |
|
|
// convert to BID and return
|
361 |
|
|
res =
|
362 |
|
|
fast_get_BID64_check_OF (sign_x ^ sign_y, final_exponent, C64,
|
363 |
|
|
rmode, pfpsf);
|
364 |
|
|
BID_RETURN (res);
|
365 |
|
|
}
|
366 |
|
|
// go to convert_format and exit
|
367 |
|
|
C64 = __low_64 (P);
|
368 |
|
|
res =
|
369 |
|
|
get_BID64 (sign_x ^ sign_y,
|
370 |
|
|
exponent_x + exponent_y - DECIMAL_EXPONENT_BIAS, C64,
|
371 |
|
|
rmode, pfpsf);
|
372 |
|
|
BID_RETURN (res);
|
373 |
|
|
}
|
374 |
|
|
}
|