1 |
272 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
2 |
|
|
|
3 |
|
|
This file is part of GCC.
|
4 |
|
|
|
5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
6 |
|
|
the terms of the GNU General Public License as published by the Free
|
7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
8 |
|
|
version.
|
9 |
|
|
|
10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
13 |
|
|
for more details.
|
14 |
|
|
|
15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
17 |
|
|
3.1, as published by the Free Software Foundation.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License and
|
20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
#include "bid_internal.h"
|
25 |
|
|
|
26 |
|
|
/*****************************************************************************
|
27 |
|
|
* BID64 nextup
|
28 |
|
|
****************************************************************************/
|
29 |
|
|
|
30 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
31 |
|
|
void
|
32 |
|
|
bid64_nextup (UINT64 * pres,
|
33 |
|
|
UINT64 *
|
34 |
|
|
px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
35 |
|
|
UINT64 x = *px;
|
36 |
|
|
#else
|
37 |
|
|
UINT64
|
38 |
|
|
bid64_nextup (UINT64 x _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
39 |
|
|
_EXC_INFO_PARAM) {
|
40 |
|
|
#endif
|
41 |
|
|
|
42 |
|
|
UINT64 res;
|
43 |
|
|
UINT64 x_sign;
|
44 |
|
|
UINT64 x_exp;
|
45 |
|
|
BID_UI64DOUBLE tmp1;
|
46 |
|
|
int x_nr_bits;
|
47 |
|
|
int q1, ind;
|
48 |
|
|
UINT64 C1; // C1 represents x_signif (UINT64)
|
49 |
|
|
|
50 |
|
|
// check for NaNs and infinities
|
51 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // check for NaN
|
52 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
|
53 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
54 |
|
|
else
|
55 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
56 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // SNaN
|
57 |
|
|
// set invalid flag
|
58 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
59 |
|
|
// return quiet (SNaN)
|
60 |
|
|
res = x & 0xfdffffffffffffffull;
|
61 |
|
|
} else { // QNaN
|
62 |
|
|
res = x;
|
63 |
|
|
}
|
64 |
|
|
BID_RETURN (res);
|
65 |
|
|
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
|
66 |
|
|
if (!(x & 0x8000000000000000ull)) { // x is +inf
|
67 |
|
|
res = 0x7800000000000000ull;
|
68 |
|
|
} else { // x is -inf
|
69 |
|
|
res = 0xf7fb86f26fc0ffffull; // -MAXFP = -999...99 * 10^emax
|
70 |
|
|
}
|
71 |
|
|
BID_RETURN (res);
|
72 |
|
|
}
|
73 |
|
|
// unpack the argument
|
74 |
|
|
x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
75 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
|
76 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
77 |
|
|
x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
|
78 |
|
|
C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
79 |
|
|
if (C1 > 9999999999999999ull) { // non-canonical
|
80 |
|
|
x_exp = 0;
|
81 |
|
|
C1 = 0;
|
82 |
|
|
}
|
83 |
|
|
} else {
|
84 |
|
|
x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
|
85 |
|
|
C1 = x & MASK_BINARY_SIG1;
|
86 |
|
|
}
|
87 |
|
|
|
88 |
|
|
// check for zeros (possibly from non-canonical values)
|
89 |
|
|
if (C1 == 0x0ull) {
|
90 |
|
|
// x is 0
|
91 |
|
|
res = 0x0000000000000001ull; // MINFP = 1 * 10^emin
|
92 |
|
|
} else { // x is not special and is not zero
|
93 |
|
|
if (x == 0x77fb86f26fc0ffffull) {
|
94 |
|
|
// x = +MAXFP = 999...99 * 10^emax
|
95 |
|
|
res = 0x7800000000000000ull; // +inf
|
96 |
|
|
} else if (x == 0x8000000000000001ull) {
|
97 |
|
|
// x = -MINFP = 1...99 * 10^emin
|
98 |
|
|
res = 0x8000000000000000ull; // -0
|
99 |
|
|
} else { // -MAXFP <= x <= -MINFP - 1 ulp OR MINFP <= x <= MAXFP - 1 ulp
|
100 |
|
|
// can add/subtract 1 ulp to the significand
|
101 |
|
|
|
102 |
|
|
// Note: we could check here if x >= 10^16 to speed up the case q1 =16
|
103 |
|
|
// q1 = nr. of decimal digits in x (1 <= q1 <= 54)
|
104 |
|
|
// determine first the nr. of bits in x
|
105 |
|
|
if (C1 >= MASK_BINARY_OR2) { // x >= 2^53
|
106 |
|
|
// split the 64-bit value in two 32-bit halves to avoid rounding errors
|
107 |
|
|
if (C1 >= 0x0000000100000000ull) { // x >= 2^32
|
108 |
|
|
tmp1.d = (double) (C1 >> 32); // exact conversion
|
109 |
|
|
x_nr_bits =
|
110 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
111 |
|
|
} else { // x < 2^32
|
112 |
|
|
tmp1.d = (double) C1; // exact conversion
|
113 |
|
|
x_nr_bits =
|
114 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
115 |
|
|
}
|
116 |
|
|
} else { // if x < 2^53
|
117 |
|
|
tmp1.d = (double) C1; // exact conversion
|
118 |
|
|
x_nr_bits =
|
119 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
120 |
|
|
}
|
121 |
|
|
q1 = nr_digits[x_nr_bits - 1].digits;
|
122 |
|
|
if (q1 == 0) {
|
123 |
|
|
q1 = nr_digits[x_nr_bits - 1].digits1;
|
124 |
|
|
if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
|
125 |
|
|
q1++;
|
126 |
|
|
}
|
127 |
|
|
// if q1 < P16 then pad the significand with zeros
|
128 |
|
|
if (q1 < P16) {
|
129 |
|
|
if (x_exp > (UINT64) (P16 - q1)) {
|
130 |
|
|
ind = P16 - q1; // 1 <= ind <= P16 - 1
|
131 |
|
|
// pad with P16 - q1 zeros, until exponent = emin
|
132 |
|
|
// C1 = C1 * 10^ind
|
133 |
|
|
C1 = C1 * ten2k64[ind];
|
134 |
|
|
x_exp = x_exp - ind;
|
135 |
|
|
} else { // pad with zeros until the exponent reaches emin
|
136 |
|
|
ind = x_exp;
|
137 |
|
|
C1 = C1 * ten2k64[ind];
|
138 |
|
|
x_exp = EXP_MIN;
|
139 |
|
|
}
|
140 |
|
|
}
|
141 |
|
|
if (!x_sign) { // x > 0
|
142 |
|
|
// add 1 ulp (add 1 to the significand)
|
143 |
|
|
C1++;
|
144 |
|
|
if (C1 == 0x002386f26fc10000ull) { // if C1 = 10^16
|
145 |
|
|
C1 = 0x00038d7ea4c68000ull; // C1 = 10^15
|
146 |
|
|
x_exp++;
|
147 |
|
|
}
|
148 |
|
|
// Ok, because MAXFP = 999...99 * 10^emax was caught already
|
149 |
|
|
} else { // x < 0
|
150 |
|
|
// subtract 1 ulp (subtract 1 from the significand)
|
151 |
|
|
C1--;
|
152 |
|
|
if (C1 == 0x00038d7ea4c67fffull && x_exp != 0) { // if C1 = 10^15 - 1
|
153 |
|
|
C1 = 0x002386f26fc0ffffull; // C1 = 10^16 - 1
|
154 |
|
|
x_exp--;
|
155 |
|
|
}
|
156 |
|
|
}
|
157 |
|
|
// assemble the result
|
158 |
|
|
// if significand has 54 bits
|
159 |
|
|
if (C1 & MASK_BINARY_OR2) {
|
160 |
|
|
res =
|
161 |
|
|
x_sign | (x_exp << 51) | MASK_STEERING_BITS | (C1 &
|
162 |
|
|
MASK_BINARY_SIG2);
|
163 |
|
|
} else { // significand fits in 53 bits
|
164 |
|
|
res = x_sign | (x_exp << 53) | C1;
|
165 |
|
|
}
|
166 |
|
|
} // end -MAXFP <= x <= -MINFP - 1 ulp OR MINFP <= x <= MAXFP - 1 ulp
|
167 |
|
|
} // end x is not special and is not zero
|
168 |
|
|
BID_RETURN (res);
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
/*****************************************************************************
|
172 |
|
|
* BID64 nextdown
|
173 |
|
|
****************************************************************************/
|
174 |
|
|
|
175 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
176 |
|
|
void
|
177 |
|
|
bid64_nextdown (UINT64 * pres,
|
178 |
|
|
UINT64 *
|
179 |
|
|
px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
180 |
|
|
UINT64 x = *px;
|
181 |
|
|
#else
|
182 |
|
|
UINT64
|
183 |
|
|
bid64_nextdown (UINT64 x _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
184 |
|
|
_EXC_INFO_PARAM) {
|
185 |
|
|
#endif
|
186 |
|
|
|
187 |
|
|
UINT64 res;
|
188 |
|
|
UINT64 x_sign;
|
189 |
|
|
UINT64 x_exp;
|
190 |
|
|
BID_UI64DOUBLE tmp1;
|
191 |
|
|
int x_nr_bits;
|
192 |
|
|
int q1, ind;
|
193 |
|
|
UINT64 C1; // C1 represents x_signif (UINT64)
|
194 |
|
|
|
195 |
|
|
// check for NaNs and infinities
|
196 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // check for NaN
|
197 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
|
198 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
199 |
|
|
else
|
200 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
201 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // SNaN
|
202 |
|
|
// set invalid flag
|
203 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
204 |
|
|
// return quiet (SNaN)
|
205 |
|
|
res = x & 0xfdffffffffffffffull;
|
206 |
|
|
} else { // QNaN
|
207 |
|
|
res = x;
|
208 |
|
|
}
|
209 |
|
|
BID_RETURN (res);
|
210 |
|
|
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
|
211 |
|
|
if (x & 0x8000000000000000ull) { // x is -inf
|
212 |
|
|
res = 0xf800000000000000ull;
|
213 |
|
|
} else { // x is +inf
|
214 |
|
|
res = 0x77fb86f26fc0ffffull; // +MAXFP = +999...99 * 10^emax
|
215 |
|
|
}
|
216 |
|
|
BID_RETURN (res);
|
217 |
|
|
}
|
218 |
|
|
// unpack the argument
|
219 |
|
|
x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
220 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
|
221 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
222 |
|
|
x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
|
223 |
|
|
C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
224 |
|
|
if (C1 > 9999999999999999ull) { // non-canonical
|
225 |
|
|
x_exp = 0;
|
226 |
|
|
C1 = 0;
|
227 |
|
|
}
|
228 |
|
|
} else {
|
229 |
|
|
x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
|
230 |
|
|
C1 = x & MASK_BINARY_SIG1;
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
// check for zeros (possibly from non-canonical values)
|
234 |
|
|
if (C1 == 0x0ull) {
|
235 |
|
|
// x is 0
|
236 |
|
|
res = 0x8000000000000001ull; // -MINFP = -1 * 10^emin
|
237 |
|
|
} else { // x is not special and is not zero
|
238 |
|
|
if (x == 0xf7fb86f26fc0ffffull) {
|
239 |
|
|
// x = -MAXFP = -999...99 * 10^emax
|
240 |
|
|
res = 0xf800000000000000ull; // -inf
|
241 |
|
|
} else if (x == 0x0000000000000001ull) {
|
242 |
|
|
// x = +MINFP = 1...99 * 10^emin
|
243 |
|
|
res = 0x0000000000000000ull; // -0
|
244 |
|
|
} else { // -MAXFP + 1ulp <= x <= -MINFP OR MINFP + 1 ulp <= x <= MAXFP
|
245 |
|
|
// can add/subtract 1 ulp to the significand
|
246 |
|
|
|
247 |
|
|
// Note: we could check here if x >= 10^16 to speed up the case q1 =16
|
248 |
|
|
// q1 = nr. of decimal digits in x (1 <= q1 <= 16)
|
249 |
|
|
// determine first the nr. of bits in x
|
250 |
|
|
if (C1 >= 0x0020000000000000ull) { // x >= 2^53
|
251 |
|
|
// split the 64-bit value in two 32-bit halves to avoid
|
252 |
|
|
// rounding errors
|
253 |
|
|
if (C1 >= 0x0000000100000000ull) { // x >= 2^32
|
254 |
|
|
tmp1.d = (double) (C1 >> 32); // exact conversion
|
255 |
|
|
x_nr_bits =
|
256 |
|
|
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
257 |
|
|
} else { // x < 2^32
|
258 |
|
|
tmp1.d = (double) C1; // exact conversion
|
259 |
|
|
x_nr_bits =
|
260 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
261 |
|
|
}
|
262 |
|
|
} else { // if x < 2^53
|
263 |
|
|
tmp1.d = (double) C1; // exact conversion
|
264 |
|
|
x_nr_bits =
|
265 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
266 |
|
|
}
|
267 |
|
|
q1 = nr_digits[x_nr_bits - 1].digits;
|
268 |
|
|
if (q1 == 0) {
|
269 |
|
|
q1 = nr_digits[x_nr_bits - 1].digits1;
|
270 |
|
|
if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
|
271 |
|
|
q1++;
|
272 |
|
|
}
|
273 |
|
|
// if q1 < P16 then pad the significand with zeros
|
274 |
|
|
if (q1 < P16) {
|
275 |
|
|
if (x_exp > (UINT64) (P16 - q1)) {
|
276 |
|
|
ind = P16 - q1; // 1 <= ind <= P16 - 1
|
277 |
|
|
// pad with P16 - q1 zeros, until exponent = emin
|
278 |
|
|
// C1 = C1 * 10^ind
|
279 |
|
|
C1 = C1 * ten2k64[ind];
|
280 |
|
|
x_exp = x_exp - ind;
|
281 |
|
|
} else { // pad with zeros until the exponent reaches emin
|
282 |
|
|
ind = x_exp;
|
283 |
|
|
C1 = C1 * ten2k64[ind];
|
284 |
|
|
x_exp = EXP_MIN;
|
285 |
|
|
}
|
286 |
|
|
}
|
287 |
|
|
if (x_sign) { // x < 0
|
288 |
|
|
// add 1 ulp (add 1 to the significand)
|
289 |
|
|
C1++;
|
290 |
|
|
if (C1 == 0x002386f26fc10000ull) { // if C1 = 10^16
|
291 |
|
|
C1 = 0x00038d7ea4c68000ull; // C1 = 10^15
|
292 |
|
|
x_exp++;
|
293 |
|
|
// Ok, because -MAXFP = -999...99 * 10^emax was caught already
|
294 |
|
|
}
|
295 |
|
|
} else { // x > 0
|
296 |
|
|
// subtract 1 ulp (subtract 1 from the significand)
|
297 |
|
|
C1--;
|
298 |
|
|
if (C1 == 0x00038d7ea4c67fffull && x_exp != 0) { // if C1 = 10^15 - 1
|
299 |
|
|
C1 = 0x002386f26fc0ffffull; // C1 = 10^16 - 1
|
300 |
|
|
x_exp--;
|
301 |
|
|
}
|
302 |
|
|
}
|
303 |
|
|
// assemble the result
|
304 |
|
|
// if significand has 54 bits
|
305 |
|
|
if (C1 & MASK_BINARY_OR2) {
|
306 |
|
|
res =
|
307 |
|
|
x_sign | (x_exp << 51) | MASK_STEERING_BITS | (C1 &
|
308 |
|
|
MASK_BINARY_SIG2);
|
309 |
|
|
} else { // significand fits in 53 bits
|
310 |
|
|
res = x_sign | (x_exp << 53) | C1;
|
311 |
|
|
}
|
312 |
|
|
} // end -MAXFP <= x <= -MINFP - 1 ulp OR MINFP <= x <= MAXFP - 1 ulp
|
313 |
|
|
} // end x is not special and is not zero
|
314 |
|
|
BID_RETURN (res);
|
315 |
|
|
}
|
316 |
|
|
|
317 |
|
|
/*****************************************************************************
|
318 |
|
|
* BID64 nextafter
|
319 |
|
|
****************************************************************************/
|
320 |
|
|
|
321 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
322 |
|
|
void
|
323 |
|
|
bid64_nextafter (UINT64 * pres, UINT64 * px,
|
324 |
|
|
UINT64 *
|
325 |
|
|
py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
326 |
|
|
UINT64 x = *px;
|
327 |
|
|
UINT64 y = *py;
|
328 |
|
|
#else
|
329 |
|
|
UINT64
|
330 |
|
|
bid64_nextafter (UINT64 x,
|
331 |
|
|
UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
332 |
|
|
_EXC_INFO_PARAM) {
|
333 |
|
|
#endif
|
334 |
|
|
|
335 |
|
|
UINT64 res;
|
336 |
|
|
UINT64 tmp1, tmp2;
|
337 |
|
|
FPSC tmp_fpsf = 0; // dummy fpsf for calls to comparison functions
|
338 |
|
|
int res1, res2;
|
339 |
|
|
|
340 |
|
|
// check for NaNs or infinities
|
341 |
|
|
if (((x & MASK_SPECIAL) == MASK_SPECIAL) ||
|
342 |
|
|
((y & MASK_SPECIAL) == MASK_SPECIAL)) {
|
343 |
|
|
// x is NaN or infinity or y is NaN or infinity
|
344 |
|
|
|
345 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
|
346 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
|
347 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
348 |
|
|
else
|
349 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
350 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNAN
|
351 |
|
|
// set invalid flag
|
352 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
353 |
|
|
// return quiet (x)
|
354 |
|
|
res = x & 0xfdffffffffffffffull;
|
355 |
|
|
} else { // x is QNaN
|
356 |
|
|
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
|
357 |
|
|
// set invalid flag
|
358 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
359 |
|
|
}
|
360 |
|
|
// return x
|
361 |
|
|
res = x;
|
362 |
|
|
}
|
363 |
|
|
BID_RETURN (res);
|
364 |
|
|
} else if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
|
365 |
|
|
if ((y & 0x0003ffffffffffffull) > 999999999999999ull)
|
366 |
|
|
y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
367 |
|
|
else
|
368 |
|
|
y = y & 0xfe03ffffffffffffull; // clear G6-G12
|
369 |
|
|
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
|
370 |
|
|
// set invalid flag
|
371 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
372 |
|
|
// return quiet (y)
|
373 |
|
|
res = y & 0xfdffffffffffffffull;
|
374 |
|
|
} else { // y is QNaN
|
375 |
|
|
// return y
|
376 |
|
|
res = y;
|
377 |
|
|
}
|
378 |
|
|
BID_RETURN (res);
|
379 |
|
|
} else { // at least one is infinity
|
380 |
|
|
if ((x & MASK_ANY_INF) == MASK_INF) { // x = inf
|
381 |
|
|
x = x & (MASK_SIGN | MASK_INF);
|
382 |
|
|
}
|
383 |
|
|
if ((y & MASK_ANY_INF) == MASK_INF) { // y = inf
|
384 |
|
|
y = y & (MASK_SIGN | MASK_INF);
|
385 |
|
|
}
|
386 |
|
|
}
|
387 |
|
|
}
|
388 |
|
|
// neither x nor y is NaN
|
389 |
|
|
|
390 |
|
|
// if not infinity, check for non-canonical values x (treated as zero)
|
391 |
|
|
if ((x & MASK_ANY_INF) != MASK_INF) { // x != inf
|
392 |
|
|
// unpack x
|
393 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
394 |
|
|
// if the steering bits are 11 (condition will be 0), then
|
395 |
|
|
// the exponent is G[0:w+1]
|
396 |
|
|
if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
|
397 |
|
|
9999999999999999ull) {
|
398 |
|
|
// non-canonical
|
399 |
|
|
x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
|
400 |
|
|
}
|
401 |
|
|
} else { // if ((x & MASK_STEERING_BITS) != MASK_STEERING_BITS) x is unch.
|
402 |
|
|
; // canonical
|
403 |
|
|
}
|
404 |
|
|
}
|
405 |
|
|
// no need to check for non-canonical y
|
406 |
|
|
|
407 |
|
|
// neither x nor y is NaN
|
408 |
|
|
tmp_fpsf = *pfpsf; // save fpsf
|
409 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
410 |
|
|
bid64_quiet_equal (&res1, px,
|
411 |
|
|
py _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
|
412 |
|
|
bid64_quiet_greater (&res2, px,
|
413 |
|
|
py _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
|
414 |
|
|
#else
|
415 |
|
|
res1 =
|
416 |
|
|
bid64_quiet_equal (x,
|
417 |
|
|
y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
|
418 |
|
|
res2 =
|
419 |
|
|
bid64_quiet_greater (x,
|
420 |
|
|
y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
|
421 |
|
|
#endif
|
422 |
|
|
*pfpsf = tmp_fpsf; // restore fpsf
|
423 |
|
|
if (res1) { // x = y
|
424 |
|
|
// return x with the sign of y
|
425 |
|
|
res = (y & 0x8000000000000000ull) | (x & 0x7fffffffffffffffull);
|
426 |
|
|
} else if (res2) { // x > y
|
427 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
428 |
|
|
bid64_nextdown (&res,
|
429 |
|
|
px _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
|
430 |
|
|
#else
|
431 |
|
|
res =
|
432 |
|
|
bid64_nextdown (x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
|
433 |
|
|
#endif
|
434 |
|
|
} else { // x < y
|
435 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
436 |
|
|
bid64_nextup (&res, px _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
|
437 |
|
|
#else
|
438 |
|
|
res = bid64_nextup (x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
|
439 |
|
|
#endif
|
440 |
|
|
}
|
441 |
|
|
// if the operand x is finite but the result is infinite, signal
|
442 |
|
|
// overflow and inexact
|
443 |
|
|
if (((x & MASK_INF) != MASK_INF) && ((res & MASK_INF) == MASK_INF)) {
|
444 |
|
|
// set the inexact flag
|
445 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
446 |
|
|
// set the overflow flag
|
447 |
|
|
*pfpsf |= OVERFLOW_EXCEPTION;
|
448 |
|
|
}
|
449 |
|
|
// if the result is in (-10^emin, 10^emin), and is different from the
|
450 |
|
|
// operand x, signal underflow and inexact
|
451 |
|
|
tmp1 = 0x00038d7ea4c68000ull; // +100...0[16] * 10^emin
|
452 |
|
|
tmp2 = res & 0x7fffffffffffffffull;
|
453 |
|
|
tmp_fpsf = *pfpsf; // save fpsf
|
454 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
455 |
|
|
bid64_quiet_greater (&res1, &tmp1,
|
456 |
|
|
&tmp2 _EXC_FLAGS_ARG _EXC_MASKS_ARG
|
457 |
|
|
_EXC_INFO_ARG);
|
458 |
|
|
bid64_quiet_not_equal (&res2, &x,
|
459 |
|
|
&res _EXC_FLAGS_ARG _EXC_MASKS_ARG
|
460 |
|
|
_EXC_INFO_ARG);
|
461 |
|
|
#else
|
462 |
|
|
res1 =
|
463 |
|
|
bid64_quiet_greater (tmp1,
|
464 |
|
|
tmp2 _EXC_FLAGS_ARG _EXC_MASKS_ARG
|
465 |
|
|
_EXC_INFO_ARG);
|
466 |
|
|
res2 =
|
467 |
|
|
bid64_quiet_not_equal (x,
|
468 |
|
|
res _EXC_FLAGS_ARG _EXC_MASKS_ARG
|
469 |
|
|
_EXC_INFO_ARG);
|
470 |
|
|
#endif
|
471 |
|
|
*pfpsf = tmp_fpsf; // restore fpsf
|
472 |
|
|
if (res1 && res2) {
|
473 |
|
|
// if (bid64_quiet_greater (tmp1, tmp2, &tmp_fpsf) &&
|
474 |
|
|
// bid64_quiet_not_equal (x, res, &tmp_fpsf)) {
|
475 |
|
|
// set the inexact flag
|
476 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
477 |
|
|
// set the underflow flag
|
478 |
|
|
*pfpsf |= UNDERFLOW_EXCEPTION;
|
479 |
|
|
}
|
480 |
|
|
BID_RETURN (res);
|
481 |
|
|
}
|