1 |
272 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
2 |
|
|
|
3 |
|
|
This file is part of GCC.
|
4 |
|
|
|
5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
6 |
|
|
the terms of the GNU General Public License as published by the Free
|
7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
8 |
|
|
version.
|
9 |
|
|
|
10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
13 |
|
|
for more details.
|
14 |
|
|
|
15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
17 |
|
|
3.1, as published by the Free Software Foundation.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License and
|
20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
#include "bid_internal.h"
|
25 |
|
|
|
26 |
|
|
/*****************************************************************************
|
27 |
|
|
* BID64_round_integral_exact
|
28 |
|
|
****************************************************************************/
|
29 |
|
|
|
30 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
31 |
|
|
void
|
32 |
|
|
bid64_round_integral_exact (UINT64 * pres,
|
33 |
|
|
UINT64 *
|
34 |
|
|
px _RND_MODE_PARAM _EXC_FLAGS_PARAM
|
35 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
36 |
|
|
UINT64 x = *px;
|
37 |
|
|
#if !DECIMAL_GLOBAL_ROUNDING
|
38 |
|
|
unsigned int rnd_mode = *prnd_mode;
|
39 |
|
|
#endif
|
40 |
|
|
#else
|
41 |
|
|
UINT64
|
42 |
|
|
bid64_round_integral_exact (UINT64 x _RND_MODE_PARAM _EXC_FLAGS_PARAM
|
43 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
44 |
|
|
#endif
|
45 |
|
|
|
46 |
|
|
UINT64 res = 0xbaddbaddbaddbaddull;
|
47 |
|
|
UINT64 x_sign;
|
48 |
|
|
int exp; // unbiased exponent
|
49 |
|
|
// Note: C1 represents the significand (UINT64)
|
50 |
|
|
BID_UI64DOUBLE tmp1;
|
51 |
|
|
int x_nr_bits;
|
52 |
|
|
int q, ind, shift;
|
53 |
|
|
UINT64 C1;
|
54 |
|
|
// UINT64 res is C* at first - represents up to 16 decimal digits <= 54 bits
|
55 |
|
|
UINT128 fstar = { {0x0ull, 0x0ull} };
|
56 |
|
|
UINT128 P128;
|
57 |
|
|
|
58 |
|
|
x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
59 |
|
|
|
60 |
|
|
// check for NaNs and infinities
|
61 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // check for NaN
|
62 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
|
63 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
64 |
|
|
else
|
65 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
66 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // SNaN
|
67 |
|
|
// set invalid flag
|
68 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
69 |
|
|
// return quiet (SNaN)
|
70 |
|
|
res = x & 0xfdffffffffffffffull;
|
71 |
|
|
} else { // QNaN
|
72 |
|
|
res = x;
|
73 |
|
|
}
|
74 |
|
|
BID_RETURN (res);
|
75 |
|
|
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
|
76 |
|
|
res = x_sign | 0x7800000000000000ull;
|
77 |
|
|
BID_RETURN (res);
|
78 |
|
|
}
|
79 |
|
|
// unpack x
|
80 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
81 |
|
|
// if the steering bits are 11 (condition will be 0), then
|
82 |
|
|
// the exponent is G[0:w+1]
|
83 |
|
|
exp = ((x & MASK_BINARY_EXPONENT2) >> 51) - 398;
|
84 |
|
|
C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
85 |
|
|
if (C1 > 9999999999999999ull) { // non-canonical
|
86 |
|
|
C1 = 0;
|
87 |
|
|
}
|
88 |
|
|
} else { // if ((x & MASK_STEERING_BITS) != MASK_STEERING_BITS)
|
89 |
|
|
exp = ((x & MASK_BINARY_EXPONENT1) >> 53) - 398;
|
90 |
|
|
C1 = (x & MASK_BINARY_SIG1);
|
91 |
|
|
}
|
92 |
|
|
|
93 |
|
|
// if x is 0 or non-canonical return 0 preserving the sign bit and
|
94 |
|
|
// the preferred exponent of MAX(Q(x), 0)
|
95 |
|
|
if (C1 == 0) {
|
96 |
|
|
if (exp < 0)
|
97 |
|
|
exp = 0;
|
98 |
|
|
res = x_sign | (((UINT64) exp + 398) << 53);
|
99 |
|
|
BID_RETURN (res);
|
100 |
|
|
}
|
101 |
|
|
// x is a finite non-zero number (not 0, non-canonical, or special)
|
102 |
|
|
|
103 |
|
|
switch (rnd_mode) {
|
104 |
|
|
case ROUNDING_TO_NEAREST:
|
105 |
|
|
case ROUNDING_TIES_AWAY:
|
106 |
|
|
// return 0 if (exp <= -(p+1))
|
107 |
|
|
if (exp <= -17) {
|
108 |
|
|
res = x_sign | 0x31c0000000000000ull;
|
109 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
110 |
|
|
BID_RETURN (res);
|
111 |
|
|
}
|
112 |
|
|
break;
|
113 |
|
|
case ROUNDING_DOWN:
|
114 |
|
|
// return 0 if (exp <= -p)
|
115 |
|
|
if (exp <= -16) {
|
116 |
|
|
if (x_sign) {
|
117 |
|
|
res = 0xb1c0000000000001ull;
|
118 |
|
|
} else {
|
119 |
|
|
res = 0x31c0000000000000ull;
|
120 |
|
|
}
|
121 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
122 |
|
|
BID_RETURN (res);
|
123 |
|
|
}
|
124 |
|
|
break;
|
125 |
|
|
case ROUNDING_UP:
|
126 |
|
|
// return 0 if (exp <= -p)
|
127 |
|
|
if (exp <= -16) {
|
128 |
|
|
if (x_sign) {
|
129 |
|
|
res = 0xb1c0000000000000ull;
|
130 |
|
|
} else {
|
131 |
|
|
res = 0x31c0000000000001ull;
|
132 |
|
|
}
|
133 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
134 |
|
|
BID_RETURN (res);
|
135 |
|
|
}
|
136 |
|
|
break;
|
137 |
|
|
case ROUNDING_TO_ZERO:
|
138 |
|
|
// return 0 if (exp <= -p)
|
139 |
|
|
if (exp <= -16) {
|
140 |
|
|
res = x_sign | 0x31c0000000000000ull;
|
141 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
142 |
|
|
BID_RETURN (res);
|
143 |
|
|
}
|
144 |
|
|
break;
|
145 |
|
|
} // end switch ()
|
146 |
|
|
|
147 |
|
|
// q = nr. of decimal digits in x (1 <= q <= 54)
|
148 |
|
|
// determine first the nr. of bits in x
|
149 |
|
|
if (C1 >= 0x0020000000000000ull) { // x >= 2^53
|
150 |
|
|
q = 16;
|
151 |
|
|
} else { // if x < 2^53
|
152 |
|
|
tmp1.d = (double) C1; // exact conversion
|
153 |
|
|
x_nr_bits =
|
154 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
155 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
156 |
|
|
if (q == 0) {
|
157 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
158 |
|
|
if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
|
159 |
|
|
q++;
|
160 |
|
|
}
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
if (exp >= 0) { // -exp <= 0
|
164 |
|
|
// the argument is an integer already
|
165 |
|
|
res = x;
|
166 |
|
|
BID_RETURN (res);
|
167 |
|
|
}
|
168 |
|
|
|
169 |
|
|
switch (rnd_mode) {
|
170 |
|
|
case ROUNDING_TO_NEAREST:
|
171 |
|
|
if ((q + exp) >= 0) { // exp < 0 and 1 <= -exp <= q
|
172 |
|
|
// need to shift right -exp digits from the coefficient; exp will be 0
|
173 |
|
|
ind = -exp; // 1 <= ind <= 16; ind is a synonym for 'x'
|
174 |
|
|
// chop off ind digits from the lower part of C1
|
175 |
|
|
// C1 = C1 + 1/2 * 10^x where the result C1 fits in 64 bits
|
176 |
|
|
// FOR ROUND_TO_NEAREST, WE ADD 1/2 ULP(y) then truncate
|
177 |
|
|
C1 = C1 + midpoint64[ind - 1];
|
178 |
|
|
// calculate C* and f*
|
179 |
|
|
// C* is actually floor(C*) in this case
|
180 |
|
|
// C* and f* need shifting and masking, as shown by
|
181 |
|
|
// shiftright128[] and maskhigh128[]
|
182 |
|
|
// 1 <= x <= 16
|
183 |
|
|
// kx = 10^(-x) = ten2mk64[ind - 1]
|
184 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
185 |
|
|
// the approximation of 10^(-x) was rounded up to 64 bits
|
186 |
|
|
__mul_64x64_to_128 (P128, C1, ten2mk64[ind - 1]);
|
187 |
|
|
|
188 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
189 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
190 |
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
191 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
192 |
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
193 |
|
|
// else
|
194 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
195 |
|
|
// correct by Property 1)
|
196 |
|
|
// n = C* * 10^(e+x)
|
197 |
|
|
|
198 |
|
|
if (ind - 1 <= 2) { // 0 <= ind - 1 <= 2 => shift = 0
|
199 |
|
|
res = P128.w[1];
|
200 |
|
|
fstar.w[1] = 0;
|
201 |
|
|
fstar.w[0] = P128.w[0];
|
202 |
|
|
} else if (ind - 1 <= 21) { // 3 <= ind - 1 <= 21 => 3 <= shift <= 63
|
203 |
|
|
shift = shiftright128[ind - 1]; // 3 <= shift <= 63
|
204 |
|
|
res = (P128.w[1] >> shift);
|
205 |
|
|
fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
|
206 |
|
|
fstar.w[0] = P128.w[0];
|
207 |
|
|
}
|
208 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
209 |
|
|
// since round_to_even, subtract 1 if current result is odd
|
210 |
|
|
if ((res & 0x0000000000000001ull) && (fstar.w[1] == 0)
|
211 |
|
|
&& (fstar.w[0] < ten2mk64[ind - 1])) {
|
212 |
|
|
res--;
|
213 |
|
|
}
|
214 |
|
|
// determine inexactness of the rounding of C*
|
215 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
216 |
|
|
// the result is exact
|
217 |
|
|
// else // if (f* - 1/2 > T*) then
|
218 |
|
|
// the result is inexact
|
219 |
|
|
if (ind - 1 <= 2) {
|
220 |
|
|
if (fstar.w[0] > 0x8000000000000000ull) {
|
221 |
|
|
// f* > 1/2 and the result may be exact
|
222 |
|
|
// fstar.w[0] - 0x8000000000000000ull is f* - 1/2
|
223 |
|
|
if ((fstar.w[0] - 0x8000000000000000ull) > ten2mk64[ind - 1]) {
|
224 |
|
|
// set the inexact flag
|
225 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
226 |
|
|
} // else the result is exact
|
227 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
228 |
|
|
// set the inexact flag
|
229 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
230 |
|
|
}
|
231 |
|
|
} else { // if 3 <= ind - 1 <= 21
|
232 |
|
|
if (fstar.w[1] > onehalf128[ind - 1] ||
|
233 |
|
|
(fstar.w[1] == onehalf128[ind - 1] && fstar.w[0])) {
|
234 |
|
|
// f2* > 1/2 and the result may be exact
|
235 |
|
|
// Calculate f2* - 1/2
|
236 |
|
|
if (fstar.w[1] > onehalf128[ind - 1]
|
237 |
|
|
|| fstar.w[0] > ten2mk64[ind - 1]) {
|
238 |
|
|
// set the inexact flag
|
239 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
240 |
|
|
} // else the result is exact
|
241 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
242 |
|
|
// set the inexact flag
|
243 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
244 |
|
|
}
|
245 |
|
|
}
|
246 |
|
|
// set exponent to zero as it was negative before.
|
247 |
|
|
res = x_sign | 0x31c0000000000000ull | res;
|
248 |
|
|
BID_RETURN (res);
|
249 |
|
|
} else { // if exp < 0 and q + exp < 0
|
250 |
|
|
// the result is +0 or -0
|
251 |
|
|
res = x_sign | 0x31c0000000000000ull;
|
252 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
253 |
|
|
BID_RETURN (res);
|
254 |
|
|
}
|
255 |
|
|
break;
|
256 |
|
|
case ROUNDING_TIES_AWAY:
|
257 |
|
|
if ((q + exp) >= 0) { // exp < 0 and 1 <= -exp <= q
|
258 |
|
|
// need to shift right -exp digits from the coefficient; exp will be 0
|
259 |
|
|
ind = -exp; // 1 <= ind <= 16; ind is a synonym for 'x'
|
260 |
|
|
// chop off ind digits from the lower part of C1
|
261 |
|
|
// C1 = C1 + 1/2 * 10^x where the result C1 fits in 64 bits
|
262 |
|
|
// FOR ROUND_TO_NEAREST, WE ADD 1/2 ULP(y) then truncate
|
263 |
|
|
C1 = C1 + midpoint64[ind - 1];
|
264 |
|
|
// calculate C* and f*
|
265 |
|
|
// C* is actually floor(C*) in this case
|
266 |
|
|
// C* and f* need shifting and masking, as shown by
|
267 |
|
|
// shiftright128[] and maskhigh128[]
|
268 |
|
|
// 1 <= x <= 16
|
269 |
|
|
// kx = 10^(-x) = ten2mk64[ind - 1]
|
270 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
271 |
|
|
// the approximation of 10^(-x) was rounded up to 64 bits
|
272 |
|
|
__mul_64x64_to_128 (P128, C1, ten2mk64[ind - 1]);
|
273 |
|
|
|
274 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
275 |
|
|
// C* = floor(C*) - logical right shift; C* has p decimal digits,
|
276 |
|
|
// correct by Prop. 1)
|
277 |
|
|
// else
|
278 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
279 |
|
|
// correct by Property 1)
|
280 |
|
|
// n = C* * 10^(e+x)
|
281 |
|
|
|
282 |
|
|
if (ind - 1 <= 2) { // 0 <= ind - 1 <= 2 => shift = 0
|
283 |
|
|
res = P128.w[1];
|
284 |
|
|
fstar.w[1] = 0;
|
285 |
|
|
fstar.w[0] = P128.w[0];
|
286 |
|
|
} else if (ind - 1 <= 21) { // 3 <= ind - 1 <= 21 => 3 <= shift <= 63
|
287 |
|
|
shift = shiftright128[ind - 1]; // 3 <= shift <= 63
|
288 |
|
|
res = (P128.w[1] >> shift);
|
289 |
|
|
fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
|
290 |
|
|
fstar.w[0] = P128.w[0];
|
291 |
|
|
}
|
292 |
|
|
// midpoints are already rounded correctly
|
293 |
|
|
// determine inexactness of the rounding of C*
|
294 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
295 |
|
|
// the result is exact
|
296 |
|
|
// else // if (f* - 1/2 > T*) then
|
297 |
|
|
// the result is inexact
|
298 |
|
|
if (ind - 1 <= 2) {
|
299 |
|
|
if (fstar.w[0] > 0x8000000000000000ull) {
|
300 |
|
|
// f* > 1/2 and the result may be exact
|
301 |
|
|
// fstar.w[0] - 0x8000000000000000ull is f* - 1/2
|
302 |
|
|
if ((fstar.w[0] - 0x8000000000000000ull) > ten2mk64[ind - 1]) {
|
303 |
|
|
// set the inexact flag
|
304 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
305 |
|
|
} // else the result is exact
|
306 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
307 |
|
|
// set the inexact flag
|
308 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
309 |
|
|
}
|
310 |
|
|
} else { // if 3 <= ind - 1 <= 21
|
311 |
|
|
if (fstar.w[1] > onehalf128[ind - 1] ||
|
312 |
|
|
(fstar.w[1] == onehalf128[ind - 1] && fstar.w[0])) {
|
313 |
|
|
// f2* > 1/2 and the result may be exact
|
314 |
|
|
// Calculate f2* - 1/2
|
315 |
|
|
if (fstar.w[1] > onehalf128[ind - 1]
|
316 |
|
|
|| fstar.w[0] > ten2mk64[ind - 1]) {
|
317 |
|
|
// set the inexact flag
|
318 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
319 |
|
|
} // else the result is exact
|
320 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
321 |
|
|
// set the inexact flag
|
322 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
323 |
|
|
}
|
324 |
|
|
}
|
325 |
|
|
// set exponent to zero as it was negative before.
|
326 |
|
|
res = x_sign | 0x31c0000000000000ull | res;
|
327 |
|
|
BID_RETURN (res);
|
328 |
|
|
} else { // if exp < 0 and q + exp < 0
|
329 |
|
|
// the result is +0 or -0
|
330 |
|
|
res = x_sign | 0x31c0000000000000ull;
|
331 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
332 |
|
|
BID_RETURN (res);
|
333 |
|
|
}
|
334 |
|
|
break;
|
335 |
|
|
case ROUNDING_DOWN:
|
336 |
|
|
if ((q + exp) > 0) { // exp < 0 and 1 <= -exp < q
|
337 |
|
|
// need to shift right -exp digits from the coefficient; exp will be 0
|
338 |
|
|
ind = -exp; // 1 <= ind <= 16; ind is a synonym for 'x'
|
339 |
|
|
// chop off ind digits from the lower part of C1
|
340 |
|
|
// C1 fits in 64 bits
|
341 |
|
|
// calculate C* and f*
|
342 |
|
|
// C* is actually floor(C*) in this case
|
343 |
|
|
// C* and f* need shifting and masking, as shown by
|
344 |
|
|
// shiftright128[] and maskhigh128[]
|
345 |
|
|
// 1 <= x <= 16
|
346 |
|
|
// kx = 10^(-x) = ten2mk64[ind - 1]
|
347 |
|
|
// C* = C1 * 10^(-x)
|
348 |
|
|
// the approximation of 10^(-x) was rounded up to 64 bits
|
349 |
|
|
__mul_64x64_to_128 (P128, C1, ten2mk64[ind - 1]);
|
350 |
|
|
|
351 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
352 |
|
|
// correct by Property 1)
|
353 |
|
|
// if (0 < f* < 10^(-x)) then the result is exact
|
354 |
|
|
// n = C* * 10^(e+x)
|
355 |
|
|
|
356 |
|
|
if (ind - 1 <= 2) { // 0 <= ind - 1 <= 2 => shift = 0
|
357 |
|
|
res = P128.w[1];
|
358 |
|
|
fstar.w[1] = 0;
|
359 |
|
|
fstar.w[0] = P128.w[0];
|
360 |
|
|
} else if (ind - 1 <= 21) { // 3 <= ind - 1 <= 21 => 3 <= shift <= 63
|
361 |
|
|
shift = shiftright128[ind - 1]; // 3 <= shift <= 63
|
362 |
|
|
res = (P128.w[1] >> shift);
|
363 |
|
|
fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
|
364 |
|
|
fstar.w[0] = P128.w[0];
|
365 |
|
|
}
|
366 |
|
|
// if (f* > 10^(-x)) then the result is inexact
|
367 |
|
|
if ((fstar.w[1] != 0) || (fstar.w[0] >= ten2mk64[ind - 1])) {
|
368 |
|
|
if (x_sign) {
|
369 |
|
|
// if negative and not exact, increment magnitude
|
370 |
|
|
res++;
|
371 |
|
|
}
|
372 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
373 |
|
|
}
|
374 |
|
|
// set exponent to zero as it was negative before.
|
375 |
|
|
res = x_sign | 0x31c0000000000000ull | res;
|
376 |
|
|
BID_RETURN (res);
|
377 |
|
|
} else { // if exp < 0 and q + exp <= 0
|
378 |
|
|
// the result is +0 or -1
|
379 |
|
|
if (x_sign) {
|
380 |
|
|
res = 0xb1c0000000000001ull;
|
381 |
|
|
} else {
|
382 |
|
|
res = 0x31c0000000000000ull;
|
383 |
|
|
}
|
384 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
385 |
|
|
BID_RETURN (res);
|
386 |
|
|
}
|
387 |
|
|
break;
|
388 |
|
|
case ROUNDING_UP:
|
389 |
|
|
if ((q + exp) > 0) { // exp < 0 and 1 <= -exp < q
|
390 |
|
|
// need to shift right -exp digits from the coefficient; exp will be 0
|
391 |
|
|
ind = -exp; // 1 <= ind <= 16; ind is a synonym for 'x'
|
392 |
|
|
// chop off ind digits from the lower part of C1
|
393 |
|
|
// C1 fits in 64 bits
|
394 |
|
|
// calculate C* and f*
|
395 |
|
|
// C* is actually floor(C*) in this case
|
396 |
|
|
// C* and f* need shifting and masking, as shown by
|
397 |
|
|
// shiftright128[] and maskhigh128[]
|
398 |
|
|
// 1 <= x <= 16
|
399 |
|
|
// kx = 10^(-x) = ten2mk64[ind - 1]
|
400 |
|
|
// C* = C1 * 10^(-x)
|
401 |
|
|
// the approximation of 10^(-x) was rounded up to 64 bits
|
402 |
|
|
__mul_64x64_to_128 (P128, C1, ten2mk64[ind - 1]);
|
403 |
|
|
|
404 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
405 |
|
|
// correct by Property 1)
|
406 |
|
|
// if (0 < f* < 10^(-x)) then the result is exact
|
407 |
|
|
// n = C* * 10^(e+x)
|
408 |
|
|
|
409 |
|
|
if (ind - 1 <= 2) { // 0 <= ind - 1 <= 2 => shift = 0
|
410 |
|
|
res = P128.w[1];
|
411 |
|
|
fstar.w[1] = 0;
|
412 |
|
|
fstar.w[0] = P128.w[0];
|
413 |
|
|
} else if (ind - 1 <= 21) { // 3 <= ind - 1 <= 21 => 3 <= shift <= 63
|
414 |
|
|
shift = shiftright128[ind - 1]; // 3 <= shift <= 63
|
415 |
|
|
res = (P128.w[1] >> shift);
|
416 |
|
|
fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
|
417 |
|
|
fstar.w[0] = P128.w[0];
|
418 |
|
|
}
|
419 |
|
|
// if (f* > 10^(-x)) then the result is inexact
|
420 |
|
|
if ((fstar.w[1] != 0) || (fstar.w[0] >= ten2mk64[ind - 1])) {
|
421 |
|
|
if (!x_sign) {
|
422 |
|
|
// if positive and not exact, increment magnitude
|
423 |
|
|
res++;
|
424 |
|
|
}
|
425 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
426 |
|
|
}
|
427 |
|
|
// set exponent to zero as it was negative before.
|
428 |
|
|
res = x_sign | 0x31c0000000000000ull | res;
|
429 |
|
|
BID_RETURN (res);
|
430 |
|
|
} else { // if exp < 0 and q + exp <= 0
|
431 |
|
|
// the result is -0 or +1
|
432 |
|
|
if (x_sign) {
|
433 |
|
|
res = 0xb1c0000000000000ull;
|
434 |
|
|
} else {
|
435 |
|
|
res = 0x31c0000000000001ull;
|
436 |
|
|
}
|
437 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
438 |
|
|
BID_RETURN (res);
|
439 |
|
|
}
|
440 |
|
|
break;
|
441 |
|
|
case ROUNDING_TO_ZERO:
|
442 |
|
|
if ((q + exp) >= 0) { // exp < 0 and 1 <= -exp <= q
|
443 |
|
|
// need to shift right -exp digits from the coefficient; exp will be 0
|
444 |
|
|
ind = -exp; // 1 <= ind <= 16; ind is a synonym for 'x'
|
445 |
|
|
// chop off ind digits from the lower part of C1
|
446 |
|
|
// C1 fits in 127 bits
|
447 |
|
|
// calculate C* and f*
|
448 |
|
|
// C* is actually floor(C*) in this case
|
449 |
|
|
// C* and f* need shifting and masking, as shown by
|
450 |
|
|
// shiftright128[] and maskhigh128[]
|
451 |
|
|
// 1 <= x <= 16
|
452 |
|
|
// kx = 10^(-x) = ten2mk64[ind - 1]
|
453 |
|
|
// C* = C1 * 10^(-x)
|
454 |
|
|
// the approximation of 10^(-x) was rounded up to 64 bits
|
455 |
|
|
__mul_64x64_to_128 (P128, C1, ten2mk64[ind - 1]);
|
456 |
|
|
|
457 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
458 |
|
|
// correct by Property 1)
|
459 |
|
|
// if (0 < f* < 10^(-x)) then the result is exact
|
460 |
|
|
// n = C* * 10^(e+x)
|
461 |
|
|
|
462 |
|
|
if (ind - 1 <= 2) { // 0 <= ind - 1 <= 2 => shift = 0
|
463 |
|
|
res = P128.w[1];
|
464 |
|
|
fstar.w[1] = 0;
|
465 |
|
|
fstar.w[0] = P128.w[0];
|
466 |
|
|
} else if (ind - 1 <= 21) { // 3 <= ind - 1 <= 21 => 3 <= shift <= 63
|
467 |
|
|
shift = shiftright128[ind - 1]; // 3 <= shift <= 63
|
468 |
|
|
res = (P128.w[1] >> shift);
|
469 |
|
|
fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
|
470 |
|
|
fstar.w[0] = P128.w[0];
|
471 |
|
|
}
|
472 |
|
|
// if (f* > 10^(-x)) then the result is inexact
|
473 |
|
|
if ((fstar.w[1] != 0) || (fstar.w[0] >= ten2mk64[ind - 1])) {
|
474 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
475 |
|
|
}
|
476 |
|
|
// set exponent to zero as it was negative before.
|
477 |
|
|
res = x_sign | 0x31c0000000000000ull | res;
|
478 |
|
|
BID_RETURN (res);
|
479 |
|
|
} else { // if exp < 0 and q + exp < 0
|
480 |
|
|
// the result is +0 or -0
|
481 |
|
|
res = x_sign | 0x31c0000000000000ull;
|
482 |
|
|
*pfpsf |= INEXACT_EXCEPTION;
|
483 |
|
|
BID_RETURN (res);
|
484 |
|
|
}
|
485 |
|
|
break;
|
486 |
|
|
} // end switch ()
|
487 |
|
|
BID_RETURN (res);
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
/*****************************************************************************
|
491 |
|
|
* BID64_round_integral_nearest_even
|
492 |
|
|
****************************************************************************/
|
493 |
|
|
|
494 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
495 |
|
|
void
|
496 |
|
|
bid64_round_integral_nearest_even (UINT64 * pres,
|
497 |
|
|
UINT64 *
|
498 |
|
|
px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
499 |
|
|
_EXC_INFO_PARAM) {
|
500 |
|
|
UINT64 x = *px;
|
501 |
|
|
#else
|
502 |
|
|
UINT64
|
503 |
|
|
bid64_round_integral_nearest_even (UINT64 x _EXC_FLAGS_PARAM
|
504 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
505 |
|
|
#endif
|
506 |
|
|
|
507 |
|
|
UINT64 res = 0xbaddbaddbaddbaddull;
|
508 |
|
|
UINT64 x_sign;
|
509 |
|
|
int exp; // unbiased exponent
|
510 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
511 |
|
|
BID_UI64DOUBLE tmp1;
|
512 |
|
|
int x_nr_bits;
|
513 |
|
|
int q, ind, shift;
|
514 |
|
|
UINT64 C1;
|
515 |
|
|
UINT128 fstar;
|
516 |
|
|
UINT128 P128;
|
517 |
|
|
|
518 |
|
|
x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
519 |
|
|
|
520 |
|
|
// check for NaNs and infinities
|
521 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // check for NaN
|
522 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
|
523 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
524 |
|
|
else
|
525 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
526 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // SNaN
|
527 |
|
|
// set invalid flag
|
528 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
529 |
|
|
// return quiet (SNaN)
|
530 |
|
|
res = x & 0xfdffffffffffffffull;
|
531 |
|
|
} else { // QNaN
|
532 |
|
|
res = x;
|
533 |
|
|
}
|
534 |
|
|
BID_RETURN (res);
|
535 |
|
|
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
|
536 |
|
|
res = x_sign | 0x7800000000000000ull;
|
537 |
|
|
BID_RETURN (res);
|
538 |
|
|
}
|
539 |
|
|
// unpack x
|
540 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
541 |
|
|
// if the steering bits are 11 (condition will be 0), then
|
542 |
|
|
// the exponent is G[0:w+1]
|
543 |
|
|
exp = ((x & MASK_BINARY_EXPONENT2) >> 51) - 398;
|
544 |
|
|
C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
545 |
|
|
if (C1 > 9999999999999999ull) { // non-canonical
|
546 |
|
|
C1 = 0;
|
547 |
|
|
}
|
548 |
|
|
} else { // if ((x & MASK_STEERING_BITS) != MASK_STEERING_BITS)
|
549 |
|
|
exp = ((x & MASK_BINARY_EXPONENT1) >> 53) - 398;
|
550 |
|
|
C1 = (x & MASK_BINARY_SIG1);
|
551 |
|
|
}
|
552 |
|
|
|
553 |
|
|
// if x is 0 or non-canonical
|
554 |
|
|
if (C1 == 0) {
|
555 |
|
|
if (exp < 0)
|
556 |
|
|
exp = 0;
|
557 |
|
|
res = x_sign | (((UINT64) exp + 398) << 53);
|
558 |
|
|
BID_RETURN (res);
|
559 |
|
|
}
|
560 |
|
|
// x is a finite non-zero number (not 0, non-canonical, or special)
|
561 |
|
|
|
562 |
|
|
// return 0 if (exp <= -(p+1))
|
563 |
|
|
if (exp <= -17) {
|
564 |
|
|
res = x_sign | 0x31c0000000000000ull;
|
565 |
|
|
BID_RETURN (res);
|
566 |
|
|
}
|
567 |
|
|
// q = nr. of decimal digits in x (1 <= q <= 54)
|
568 |
|
|
// determine first the nr. of bits in x
|
569 |
|
|
if (C1 >= 0x0020000000000000ull) { // x >= 2^53
|
570 |
|
|
q = 16;
|
571 |
|
|
} else { // if x < 2^53
|
572 |
|
|
tmp1.d = (double) C1; // exact conversion
|
573 |
|
|
x_nr_bits =
|
574 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
575 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
576 |
|
|
if (q == 0) {
|
577 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
578 |
|
|
if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
|
579 |
|
|
q++;
|
580 |
|
|
}
|
581 |
|
|
}
|
582 |
|
|
|
583 |
|
|
if (exp >= 0) { // -exp <= 0
|
584 |
|
|
// the argument is an integer already
|
585 |
|
|
res = x;
|
586 |
|
|
BID_RETURN (res);
|
587 |
|
|
} else if ((q + exp) >= 0) { // exp < 0 and 1 <= -exp <= q
|
588 |
|
|
// need to shift right -exp digits from the coefficient; the exp will be 0
|
589 |
|
|
ind = -exp; // 1 <= ind <= 16; ind is a synonym for 'x'
|
590 |
|
|
// chop off ind digits from the lower part of C1
|
591 |
|
|
// C1 = C1 + 1/2 * 10^x where the result C1 fits in 64 bits
|
592 |
|
|
// FOR ROUND_TO_NEAREST, WE ADD 1/2 ULP(y) then truncate
|
593 |
|
|
C1 = C1 + midpoint64[ind - 1];
|
594 |
|
|
// calculate C* and f*
|
595 |
|
|
// C* is actually floor(C*) in this case
|
596 |
|
|
// C* and f* need shifting and masking, as shown by
|
597 |
|
|
// shiftright128[] and maskhigh128[]
|
598 |
|
|
// 1 <= x <= 16
|
599 |
|
|
// kx = 10^(-x) = ten2mk64[ind - 1]
|
600 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
601 |
|
|
// the approximation of 10^(-x) was rounded up to 64 bits
|
602 |
|
|
__mul_64x64_to_128 (P128, C1, ten2mk64[ind - 1]);
|
603 |
|
|
|
604 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
605 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
606 |
|
|
// shift; C* has p decimal digits, correct by Prop. 1)
|
607 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
608 |
|
|
// shift; C* has p decimal digits, correct by Pr. 1)
|
609 |
|
|
// else
|
610 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
611 |
|
|
// correct by Property 1)
|
612 |
|
|
// n = C* * 10^(e+x)
|
613 |
|
|
|
614 |
|
|
if (ind - 1 <= 2) { // 0 <= ind - 1 <= 2 => shift = 0
|
615 |
|
|
res = P128.w[1];
|
616 |
|
|
fstar.w[1] = 0;
|
617 |
|
|
fstar.w[0] = P128.w[0];
|
618 |
|
|
} else if (ind - 1 <= 21) { // 3 <= ind - 1 <= 21 => 3 <= shift <= 63
|
619 |
|
|
shift = shiftright128[ind - 1]; // 3 <= shift <= 63
|
620 |
|
|
res = (P128.w[1] >> shift);
|
621 |
|
|
fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
|
622 |
|
|
fstar.w[0] = P128.w[0];
|
623 |
|
|
}
|
624 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
625 |
|
|
// since round_to_even, subtract 1 if current result is odd
|
626 |
|
|
if ((res & 0x0000000000000001ull) && (fstar.w[1] == 0)
|
627 |
|
|
&& (fstar.w[0] < ten2mk64[ind - 1])) {
|
628 |
|
|
res--;
|
629 |
|
|
}
|
630 |
|
|
// set exponent to zero as it was negative before.
|
631 |
|
|
res = x_sign | 0x31c0000000000000ull | res;
|
632 |
|
|
BID_RETURN (res);
|
633 |
|
|
} else { // if exp < 0 and q + exp < 0
|
634 |
|
|
// the result is +0 or -0
|
635 |
|
|
res = x_sign | 0x31c0000000000000ull;
|
636 |
|
|
BID_RETURN (res);
|
637 |
|
|
}
|
638 |
|
|
}
|
639 |
|
|
|
640 |
|
|
/*****************************************************************************
|
641 |
|
|
* BID64_round_integral_negative
|
642 |
|
|
*****************************************************************************/
|
643 |
|
|
|
644 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
645 |
|
|
void
|
646 |
|
|
bid64_round_integral_negative (UINT64 * pres,
|
647 |
|
|
UINT64 *
|
648 |
|
|
px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
649 |
|
|
_EXC_INFO_PARAM) {
|
650 |
|
|
UINT64 x = *px;
|
651 |
|
|
#else
|
652 |
|
|
UINT64
|
653 |
|
|
bid64_round_integral_negative (UINT64 x _EXC_FLAGS_PARAM
|
654 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
655 |
|
|
#endif
|
656 |
|
|
|
657 |
|
|
UINT64 res = 0xbaddbaddbaddbaddull;
|
658 |
|
|
UINT64 x_sign;
|
659 |
|
|
int exp; // unbiased exponent
|
660 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
661 |
|
|
BID_UI64DOUBLE tmp1;
|
662 |
|
|
int x_nr_bits;
|
663 |
|
|
int q, ind, shift;
|
664 |
|
|
UINT64 C1;
|
665 |
|
|
// UINT64 res is C* at first - represents up to 34 decimal digits ~ 113 bits
|
666 |
|
|
UINT128 fstar;
|
667 |
|
|
UINT128 P128;
|
668 |
|
|
|
669 |
|
|
x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
670 |
|
|
|
671 |
|
|
// check for NaNs and infinities
|
672 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // check for NaN
|
673 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
|
674 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
675 |
|
|
else
|
676 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
677 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // SNaN
|
678 |
|
|
// set invalid flag
|
679 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
680 |
|
|
// return quiet (SNaN)
|
681 |
|
|
res = x & 0xfdffffffffffffffull;
|
682 |
|
|
} else { // QNaN
|
683 |
|
|
res = x;
|
684 |
|
|
}
|
685 |
|
|
BID_RETURN (res);
|
686 |
|
|
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
|
687 |
|
|
res = x_sign | 0x7800000000000000ull;
|
688 |
|
|
BID_RETURN (res);
|
689 |
|
|
}
|
690 |
|
|
// unpack x
|
691 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
692 |
|
|
// if the steering bits are 11 (condition will be 0), then
|
693 |
|
|
// the exponent is G[0:w+1]
|
694 |
|
|
exp = ((x & MASK_BINARY_EXPONENT2) >> 51) - 398;
|
695 |
|
|
C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
696 |
|
|
if (C1 > 9999999999999999ull) { // non-canonical
|
697 |
|
|
C1 = 0;
|
698 |
|
|
}
|
699 |
|
|
} else { // if ((x & MASK_STEERING_BITS) != MASK_STEERING_BITS)
|
700 |
|
|
exp = ((x & MASK_BINARY_EXPONENT1) >> 53) - 398;
|
701 |
|
|
C1 = (x & MASK_BINARY_SIG1);
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
// if x is 0 or non-canonical
|
705 |
|
|
if (C1 == 0) {
|
706 |
|
|
if (exp < 0)
|
707 |
|
|
exp = 0;
|
708 |
|
|
res = x_sign | (((UINT64) exp + 398) << 53);
|
709 |
|
|
BID_RETURN (res);
|
710 |
|
|
}
|
711 |
|
|
// x is a finite non-zero number (not 0, non-canonical, or special)
|
712 |
|
|
|
713 |
|
|
// return 0 if (exp <= -p)
|
714 |
|
|
if (exp <= -16) {
|
715 |
|
|
if (x_sign) {
|
716 |
|
|
res = 0xb1c0000000000001ull;
|
717 |
|
|
} else {
|
718 |
|
|
res = 0x31c0000000000000ull;
|
719 |
|
|
}
|
720 |
|
|
BID_RETURN (res);
|
721 |
|
|
}
|
722 |
|
|
// q = nr. of decimal digits in x (1 <= q <= 54)
|
723 |
|
|
// determine first the nr. of bits in x
|
724 |
|
|
if (C1 >= 0x0020000000000000ull) { // x >= 2^53
|
725 |
|
|
q = 16;
|
726 |
|
|
} else { // if x < 2^53
|
727 |
|
|
tmp1.d = (double) C1; // exact conversion
|
728 |
|
|
x_nr_bits =
|
729 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
730 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
731 |
|
|
if (q == 0) {
|
732 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
733 |
|
|
if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
|
734 |
|
|
q++;
|
735 |
|
|
}
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
if (exp >= 0) { // -exp <= 0
|
739 |
|
|
// the argument is an integer already
|
740 |
|
|
res = x;
|
741 |
|
|
BID_RETURN (res);
|
742 |
|
|
} else if ((q + exp) > 0) { // exp < 0 and 1 <= -exp < q
|
743 |
|
|
// need to shift right -exp digits from the coefficient; the exp will be 0
|
744 |
|
|
ind = -exp; // 1 <= ind <= 16; ind is a synonym for 'x'
|
745 |
|
|
// chop off ind digits from the lower part of C1
|
746 |
|
|
// C1 fits in 64 bits
|
747 |
|
|
// calculate C* and f*
|
748 |
|
|
// C* is actually floor(C*) in this case
|
749 |
|
|
// C* and f* need shifting and masking, as shown by
|
750 |
|
|
// shiftright128[] and maskhigh128[]
|
751 |
|
|
// 1 <= x <= 16
|
752 |
|
|
// kx = 10^(-x) = ten2mk64[ind - 1]
|
753 |
|
|
// C* = C1 * 10^(-x)
|
754 |
|
|
// the approximation of 10^(-x) was rounded up to 64 bits
|
755 |
|
|
__mul_64x64_to_128 (P128, C1, ten2mk64[ind - 1]);
|
756 |
|
|
|
757 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
758 |
|
|
// correct by Property 1)
|
759 |
|
|
// if (0 < f* < 10^(-x)) then the result is exact
|
760 |
|
|
// n = C* * 10^(e+x)
|
761 |
|
|
|
762 |
|
|
if (ind - 1 <= 2) { // 0 <= ind - 1 <= 2 => shift = 0
|
763 |
|
|
res = P128.w[1];
|
764 |
|
|
fstar.w[1] = 0;
|
765 |
|
|
fstar.w[0] = P128.w[0];
|
766 |
|
|
} else if (ind - 1 <= 21) { // 3 <= ind - 1 <= 21 => 3 <= shift <= 63
|
767 |
|
|
shift = shiftright128[ind - 1]; // 3 <= shift <= 63
|
768 |
|
|
res = (P128.w[1] >> shift);
|
769 |
|
|
fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
|
770 |
|
|
fstar.w[0] = P128.w[0];
|
771 |
|
|
}
|
772 |
|
|
// if (f* > 10^(-x)) then the result is inexact
|
773 |
|
|
if (x_sign
|
774 |
|
|
&& ((fstar.w[1] != 0) || (fstar.w[0] >= ten2mk64[ind - 1]))) {
|
775 |
|
|
// if negative and not exact, increment magnitude
|
776 |
|
|
res++;
|
777 |
|
|
}
|
778 |
|
|
// set exponent to zero as it was negative before.
|
779 |
|
|
res = x_sign | 0x31c0000000000000ull | res;
|
780 |
|
|
BID_RETURN (res);
|
781 |
|
|
} else { // if exp < 0 and q + exp <= 0
|
782 |
|
|
// the result is +0 or -1
|
783 |
|
|
if (x_sign) {
|
784 |
|
|
res = 0xb1c0000000000001ull;
|
785 |
|
|
} else {
|
786 |
|
|
res = 0x31c0000000000000ull;
|
787 |
|
|
}
|
788 |
|
|
BID_RETURN (res);
|
789 |
|
|
}
|
790 |
|
|
}
|
791 |
|
|
|
792 |
|
|
/*****************************************************************************
|
793 |
|
|
* BID64_round_integral_positive
|
794 |
|
|
****************************************************************************/
|
795 |
|
|
|
796 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
797 |
|
|
void
|
798 |
|
|
bid64_round_integral_positive (UINT64 * pres,
|
799 |
|
|
UINT64 *
|
800 |
|
|
px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
801 |
|
|
_EXC_INFO_PARAM) {
|
802 |
|
|
UINT64 x = *px;
|
803 |
|
|
#else
|
804 |
|
|
UINT64
|
805 |
|
|
bid64_round_integral_positive (UINT64 x _EXC_FLAGS_PARAM
|
806 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
807 |
|
|
#endif
|
808 |
|
|
|
809 |
|
|
UINT64 res = 0xbaddbaddbaddbaddull;
|
810 |
|
|
UINT64 x_sign;
|
811 |
|
|
int exp; // unbiased exponent
|
812 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
813 |
|
|
BID_UI64DOUBLE tmp1;
|
814 |
|
|
int x_nr_bits;
|
815 |
|
|
int q, ind, shift;
|
816 |
|
|
UINT64 C1;
|
817 |
|
|
// UINT64 res is C* at first - represents up to 34 decimal digits ~ 113 bits
|
818 |
|
|
UINT128 fstar;
|
819 |
|
|
UINT128 P128;
|
820 |
|
|
|
821 |
|
|
x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
822 |
|
|
|
823 |
|
|
// check for NaNs and infinities
|
824 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // check for NaN
|
825 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
|
826 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
827 |
|
|
else
|
828 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
829 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // SNaN
|
830 |
|
|
// set invalid flag
|
831 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
832 |
|
|
// return quiet (SNaN)
|
833 |
|
|
res = x & 0xfdffffffffffffffull;
|
834 |
|
|
} else { // QNaN
|
835 |
|
|
res = x;
|
836 |
|
|
}
|
837 |
|
|
BID_RETURN (res);
|
838 |
|
|
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
|
839 |
|
|
res = x_sign | 0x7800000000000000ull;
|
840 |
|
|
BID_RETURN (res);
|
841 |
|
|
}
|
842 |
|
|
// unpack x
|
843 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
844 |
|
|
// if the steering bits are 11 (condition will be 0), then
|
845 |
|
|
// the exponent is G[0:w+1]
|
846 |
|
|
exp = ((x & MASK_BINARY_EXPONENT2) >> 51) - 398;
|
847 |
|
|
C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
848 |
|
|
if (C1 > 9999999999999999ull) { // non-canonical
|
849 |
|
|
C1 = 0;
|
850 |
|
|
}
|
851 |
|
|
} else { // if ((x & MASK_STEERING_BITS) != MASK_STEERING_BITS)
|
852 |
|
|
exp = ((x & MASK_BINARY_EXPONENT1) >> 53) - 398;
|
853 |
|
|
C1 = (x & MASK_BINARY_SIG1);
|
854 |
|
|
}
|
855 |
|
|
|
856 |
|
|
// if x is 0 or non-canonical
|
857 |
|
|
if (C1 == 0) {
|
858 |
|
|
if (exp < 0)
|
859 |
|
|
exp = 0;
|
860 |
|
|
res = x_sign | (((UINT64) exp + 398) << 53);
|
861 |
|
|
BID_RETURN (res);
|
862 |
|
|
}
|
863 |
|
|
// x is a finite non-zero number (not 0, non-canonical, or special)
|
864 |
|
|
|
865 |
|
|
// return 0 if (exp <= -p)
|
866 |
|
|
if (exp <= -16) {
|
867 |
|
|
if (x_sign) {
|
868 |
|
|
res = 0xb1c0000000000000ull;
|
869 |
|
|
} else {
|
870 |
|
|
res = 0x31c0000000000001ull;
|
871 |
|
|
}
|
872 |
|
|
BID_RETURN (res);
|
873 |
|
|
}
|
874 |
|
|
// q = nr. of decimal digits in x (1 <= q <= 54)
|
875 |
|
|
// determine first the nr. of bits in x
|
876 |
|
|
if (C1 >= 0x0020000000000000ull) { // x >= 2^53
|
877 |
|
|
q = 16;
|
878 |
|
|
} else { // if x < 2^53
|
879 |
|
|
tmp1.d = (double) C1; // exact conversion
|
880 |
|
|
x_nr_bits =
|
881 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
882 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
883 |
|
|
if (q == 0) {
|
884 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
885 |
|
|
if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
|
886 |
|
|
q++;
|
887 |
|
|
}
|
888 |
|
|
}
|
889 |
|
|
|
890 |
|
|
if (exp >= 0) { // -exp <= 0
|
891 |
|
|
// the argument is an integer already
|
892 |
|
|
res = x;
|
893 |
|
|
BID_RETURN (res);
|
894 |
|
|
} else if ((q + exp) > 0) { // exp < 0 and 1 <= -exp < q
|
895 |
|
|
// need to shift right -exp digits from the coefficient; the exp will be 0
|
896 |
|
|
ind = -exp; // 1 <= ind <= 16; ind is a synonym for 'x'
|
897 |
|
|
// chop off ind digits from the lower part of C1
|
898 |
|
|
// C1 fits in 64 bits
|
899 |
|
|
// calculate C* and f*
|
900 |
|
|
// C* is actually floor(C*) in this case
|
901 |
|
|
// C* and f* need shifting and masking, as shown by
|
902 |
|
|
// shiftright128[] and maskhigh128[]
|
903 |
|
|
// 1 <= x <= 16
|
904 |
|
|
// kx = 10^(-x) = ten2mk64[ind - 1]
|
905 |
|
|
// C* = C1 * 10^(-x)
|
906 |
|
|
// the approximation of 10^(-x) was rounded up to 64 bits
|
907 |
|
|
__mul_64x64_to_128 (P128, C1, ten2mk64[ind - 1]);
|
908 |
|
|
|
909 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
910 |
|
|
// correct by Property 1)
|
911 |
|
|
// if (0 < f* < 10^(-x)) then the result is exact
|
912 |
|
|
// n = C* * 10^(e+x)
|
913 |
|
|
|
914 |
|
|
if (ind - 1 <= 2) { // 0 <= ind - 1 <= 2 => shift = 0
|
915 |
|
|
res = P128.w[1];
|
916 |
|
|
fstar.w[1] = 0;
|
917 |
|
|
fstar.w[0] = P128.w[0];
|
918 |
|
|
} else if (ind - 1 <= 21) { // 3 <= ind - 1 <= 21 => 3 <= shift <= 63
|
919 |
|
|
shift = shiftright128[ind - 1]; // 3 <= shift <= 63
|
920 |
|
|
res = (P128.w[1] >> shift);
|
921 |
|
|
fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
|
922 |
|
|
fstar.w[0] = P128.w[0];
|
923 |
|
|
}
|
924 |
|
|
// if (f* > 10^(-x)) then the result is inexact
|
925 |
|
|
if (!x_sign
|
926 |
|
|
&& ((fstar.w[1] != 0) || (fstar.w[0] >= ten2mk64[ind - 1]))) {
|
927 |
|
|
// if positive and not exact, increment magnitude
|
928 |
|
|
res++;
|
929 |
|
|
}
|
930 |
|
|
// set exponent to zero as it was negative before.
|
931 |
|
|
res = x_sign | 0x31c0000000000000ull | res;
|
932 |
|
|
BID_RETURN (res);
|
933 |
|
|
} else { // if exp < 0 and q + exp <= 0
|
934 |
|
|
// the result is -0 or +1
|
935 |
|
|
if (x_sign) {
|
936 |
|
|
res = 0xb1c0000000000000ull;
|
937 |
|
|
} else {
|
938 |
|
|
res = 0x31c0000000000001ull;
|
939 |
|
|
}
|
940 |
|
|
BID_RETURN (res);
|
941 |
|
|
}
|
942 |
|
|
}
|
943 |
|
|
|
944 |
|
|
/*****************************************************************************
|
945 |
|
|
* BID64_round_integral_zero
|
946 |
|
|
****************************************************************************/
|
947 |
|
|
|
948 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
949 |
|
|
void
|
950 |
|
|
bid64_round_integral_zero (UINT64 * pres,
|
951 |
|
|
UINT64 *
|
952 |
|
|
px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
953 |
|
|
_EXC_INFO_PARAM) {
|
954 |
|
|
UINT64 x = *px;
|
955 |
|
|
#else
|
956 |
|
|
UINT64
|
957 |
|
|
bid64_round_integral_zero (UINT64 x _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
958 |
|
|
_EXC_INFO_PARAM) {
|
959 |
|
|
#endif
|
960 |
|
|
|
961 |
|
|
UINT64 res = 0xbaddbaddbaddbaddull;
|
962 |
|
|
UINT64 x_sign;
|
963 |
|
|
int exp; // unbiased exponent
|
964 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
965 |
|
|
BID_UI64DOUBLE tmp1;
|
966 |
|
|
int x_nr_bits;
|
967 |
|
|
int q, ind, shift;
|
968 |
|
|
UINT64 C1;
|
969 |
|
|
// UINT64 res is C* at first - represents up to 34 decimal digits ~ 113 bits
|
970 |
|
|
UINT128 P128;
|
971 |
|
|
|
972 |
|
|
x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
973 |
|
|
|
974 |
|
|
// check for NaNs and infinities
|
975 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // check for NaN
|
976 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
|
977 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
978 |
|
|
else
|
979 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
980 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // SNaN
|
981 |
|
|
// set invalid flag
|
982 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
983 |
|
|
// return quiet (SNaN)
|
984 |
|
|
res = x & 0xfdffffffffffffffull;
|
985 |
|
|
} else { // QNaN
|
986 |
|
|
res = x;
|
987 |
|
|
}
|
988 |
|
|
BID_RETURN (res);
|
989 |
|
|
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
|
990 |
|
|
res = x_sign | 0x7800000000000000ull;
|
991 |
|
|
BID_RETURN (res);
|
992 |
|
|
}
|
993 |
|
|
// unpack x
|
994 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
995 |
|
|
// if the steering bits are 11 (condition will be 0), then
|
996 |
|
|
// the exponent is G[0:w+1]
|
997 |
|
|
exp = ((x & MASK_BINARY_EXPONENT2) >> 51) - 398;
|
998 |
|
|
C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
999 |
|
|
if (C1 > 9999999999999999ull) { // non-canonical
|
1000 |
|
|
C1 = 0;
|
1001 |
|
|
}
|
1002 |
|
|
} else { // if ((x & MASK_STEERING_BITS) != MASK_STEERING_BITS)
|
1003 |
|
|
exp = ((x & MASK_BINARY_EXPONENT1) >> 53) - 398;
|
1004 |
|
|
C1 = (x & MASK_BINARY_SIG1);
|
1005 |
|
|
}
|
1006 |
|
|
|
1007 |
|
|
// if x is 0 or non-canonical
|
1008 |
|
|
if (C1 == 0) {
|
1009 |
|
|
if (exp < 0)
|
1010 |
|
|
exp = 0;
|
1011 |
|
|
res = x_sign | (((UINT64) exp + 398) << 53);
|
1012 |
|
|
BID_RETURN (res);
|
1013 |
|
|
}
|
1014 |
|
|
// x is a finite non-zero number (not 0, non-canonical, or special)
|
1015 |
|
|
|
1016 |
|
|
// return 0 if (exp <= -p)
|
1017 |
|
|
if (exp <= -16) {
|
1018 |
|
|
res = x_sign | 0x31c0000000000000ull;
|
1019 |
|
|
BID_RETURN (res);
|
1020 |
|
|
}
|
1021 |
|
|
// q = nr. of decimal digits in x (1 <= q <= 54)
|
1022 |
|
|
// determine first the nr. of bits in x
|
1023 |
|
|
if (C1 >= 0x0020000000000000ull) { // x >= 2^53
|
1024 |
|
|
q = 16;
|
1025 |
|
|
} else { // if x < 2^53
|
1026 |
|
|
tmp1.d = (double) C1; // exact conversion
|
1027 |
|
|
x_nr_bits =
|
1028 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1029 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
1030 |
|
|
if (q == 0) {
|
1031 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
1032 |
|
|
if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
|
1033 |
|
|
q++;
|
1034 |
|
|
}
|
1035 |
|
|
}
|
1036 |
|
|
|
1037 |
|
|
if (exp >= 0) { // -exp <= 0
|
1038 |
|
|
// the argument is an integer already
|
1039 |
|
|
res = x;
|
1040 |
|
|
BID_RETURN (res);
|
1041 |
|
|
} else if ((q + exp) >= 0) { // exp < 0 and 1 <= -exp <= q
|
1042 |
|
|
// need to shift right -exp digits from the coefficient; the exp will be 0
|
1043 |
|
|
ind = -exp; // 1 <= ind <= 16; ind is a synonym for 'x'
|
1044 |
|
|
// chop off ind digits from the lower part of C1
|
1045 |
|
|
// C1 fits in 127 bits
|
1046 |
|
|
// calculate C* and f*
|
1047 |
|
|
// C* is actually floor(C*) in this case
|
1048 |
|
|
// C* and f* need shifting and masking, as shown by
|
1049 |
|
|
// shiftright128[] and maskhigh128[]
|
1050 |
|
|
// 1 <= x <= 16
|
1051 |
|
|
// kx = 10^(-x) = ten2mk64[ind - 1]
|
1052 |
|
|
// C* = C1 * 10^(-x)
|
1053 |
|
|
// the approximation of 10^(-x) was rounded up to 64 bits
|
1054 |
|
|
__mul_64x64_to_128 (P128, C1, ten2mk64[ind - 1]);
|
1055 |
|
|
|
1056 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
1057 |
|
|
// correct by Property 1)
|
1058 |
|
|
// if (0 < f* < 10^(-x)) then the result is exact
|
1059 |
|
|
// n = C* * 10^(e+x)
|
1060 |
|
|
|
1061 |
|
|
if (ind - 1 <= 2) { // 0 <= ind - 1 <= 2 => shift = 0
|
1062 |
|
|
res = P128.w[1];
|
1063 |
|
|
// redundant fstar.w[1] = 0;
|
1064 |
|
|
// redundant fstar.w[0] = P128.w[0];
|
1065 |
|
|
} else if (ind - 1 <= 21) { // 3 <= ind - 1 <= 21 => 3 <= shift <= 63
|
1066 |
|
|
shift = shiftright128[ind - 1]; // 3 <= shift <= 63
|
1067 |
|
|
res = (P128.w[1] >> shift);
|
1068 |
|
|
// redundant fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
|
1069 |
|
|
// redundant fstar.w[0] = P128.w[0];
|
1070 |
|
|
}
|
1071 |
|
|
// if (f* > 10^(-x)) then the result is inexact
|
1072 |
|
|
// if ((fstar.w[1] != 0) || (fstar.w[0] >= ten2mk64[ind-1])){
|
1073 |
|
|
// // redundant
|
1074 |
|
|
// }
|
1075 |
|
|
// set exponent to zero as it was negative before.
|
1076 |
|
|
res = x_sign | 0x31c0000000000000ull | res;
|
1077 |
|
|
BID_RETURN (res);
|
1078 |
|
|
} else { // if exp < 0 and q + exp < 0
|
1079 |
|
|
// the result is +0 or -0
|
1080 |
|
|
res = x_sign | 0x31c0000000000000ull;
|
1081 |
|
|
BID_RETURN (res);
|
1082 |
|
|
}
|
1083 |
|
|
}
|
1084 |
|
|
|
1085 |
|
|
/*****************************************************************************
|
1086 |
|
|
* BID64_round_integral_nearest_away
|
1087 |
|
|
****************************************************************************/
|
1088 |
|
|
|
1089 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
1090 |
|
|
void
|
1091 |
|
|
bid64_round_integral_nearest_away (UINT64 * pres,
|
1092 |
|
|
UINT64 *
|
1093 |
|
|
px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
1094 |
|
|
_EXC_INFO_PARAM) {
|
1095 |
|
|
UINT64 x = *px;
|
1096 |
|
|
#else
|
1097 |
|
|
UINT64
|
1098 |
|
|
bid64_round_integral_nearest_away (UINT64 x _EXC_FLAGS_PARAM
|
1099 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
1100 |
|
|
#endif
|
1101 |
|
|
|
1102 |
|
|
UINT64 res = 0xbaddbaddbaddbaddull;
|
1103 |
|
|
UINT64 x_sign;
|
1104 |
|
|
int exp; // unbiased exponent
|
1105 |
|
|
// Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
|
1106 |
|
|
BID_UI64DOUBLE tmp1;
|
1107 |
|
|
int x_nr_bits;
|
1108 |
|
|
int q, ind, shift;
|
1109 |
|
|
UINT64 C1;
|
1110 |
|
|
UINT128 P128;
|
1111 |
|
|
|
1112 |
|
|
x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
|
1113 |
|
|
|
1114 |
|
|
// check for NaNs and infinities
|
1115 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // check for NaN
|
1116 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
|
1117 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
1118 |
|
|
else
|
1119 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
1120 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // SNaN
|
1121 |
|
|
// set invalid flag
|
1122 |
|
|
*pfpsf |= INVALID_EXCEPTION;
|
1123 |
|
|
// return quiet (SNaN)
|
1124 |
|
|
res = x & 0xfdffffffffffffffull;
|
1125 |
|
|
} else { // QNaN
|
1126 |
|
|
res = x;
|
1127 |
|
|
}
|
1128 |
|
|
BID_RETURN (res);
|
1129 |
|
|
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
|
1130 |
|
|
res = x_sign | 0x7800000000000000ull;
|
1131 |
|
|
BID_RETURN (res);
|
1132 |
|
|
}
|
1133 |
|
|
// unpack x
|
1134 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
1135 |
|
|
// if the steering bits are 11 (condition will be 0), then
|
1136 |
|
|
// the exponent is G[0:w+1]
|
1137 |
|
|
exp = ((x & MASK_BINARY_EXPONENT2) >> 51) - 398;
|
1138 |
|
|
C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
1139 |
|
|
if (C1 > 9999999999999999ull) { // non-canonical
|
1140 |
|
|
C1 = 0;
|
1141 |
|
|
}
|
1142 |
|
|
} else { // if ((x & MASK_STEERING_BITS) != MASK_STEERING_BITS)
|
1143 |
|
|
exp = ((x & MASK_BINARY_EXPONENT1) >> 53) - 398;
|
1144 |
|
|
C1 = (x & MASK_BINARY_SIG1);
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
// if x is 0 or non-canonical
|
1148 |
|
|
if (C1 == 0) {
|
1149 |
|
|
if (exp < 0)
|
1150 |
|
|
exp = 0;
|
1151 |
|
|
res = x_sign | (((UINT64) exp + 398) << 53);
|
1152 |
|
|
BID_RETURN (res);
|
1153 |
|
|
}
|
1154 |
|
|
// x is a finite non-zero number (not 0, non-canonical, or special)
|
1155 |
|
|
|
1156 |
|
|
// return 0 if (exp <= -(p+1))
|
1157 |
|
|
if (exp <= -17) {
|
1158 |
|
|
res = x_sign | 0x31c0000000000000ull;
|
1159 |
|
|
BID_RETURN (res);
|
1160 |
|
|
}
|
1161 |
|
|
// q = nr. of decimal digits in x (1 <= q <= 54)
|
1162 |
|
|
// determine first the nr. of bits in x
|
1163 |
|
|
if (C1 >= 0x0020000000000000ull) { // x >= 2^53
|
1164 |
|
|
q = 16;
|
1165 |
|
|
} else { // if x < 2^53
|
1166 |
|
|
tmp1.d = (double) C1; // exact conversion
|
1167 |
|
|
x_nr_bits =
|
1168 |
|
|
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
|
1169 |
|
|
q = nr_digits[x_nr_bits - 1].digits;
|
1170 |
|
|
if (q == 0) {
|
1171 |
|
|
q = nr_digits[x_nr_bits - 1].digits1;
|
1172 |
|
|
if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
|
1173 |
|
|
q++;
|
1174 |
|
|
}
|
1175 |
|
|
}
|
1176 |
|
|
|
1177 |
|
|
if (exp >= 0) { // -exp <= 0
|
1178 |
|
|
// the argument is an integer already
|
1179 |
|
|
res = x;
|
1180 |
|
|
BID_RETURN (res);
|
1181 |
|
|
} else if ((q + exp) >= 0) { // exp < 0 and 1 <= -exp <= q
|
1182 |
|
|
// need to shift right -exp digits from the coefficient; the exp will be 0
|
1183 |
|
|
ind = -exp; // 1 <= ind <= 16; ind is a synonym for 'x'
|
1184 |
|
|
// chop off ind digits from the lower part of C1
|
1185 |
|
|
// C1 = C1 + 1/2 * 10^x where the result C1 fits in 64 bits
|
1186 |
|
|
// FOR ROUND_TO_NEAREST, WE ADD 1/2 ULP(y) then truncate
|
1187 |
|
|
C1 = C1 + midpoint64[ind - 1];
|
1188 |
|
|
// calculate C* and f*
|
1189 |
|
|
// C* is actually floor(C*) in this case
|
1190 |
|
|
// C* and f* need shifting and masking, as shown by
|
1191 |
|
|
// shiftright128[] and maskhigh128[]
|
1192 |
|
|
// 1 <= x <= 16
|
1193 |
|
|
// kx = 10^(-x) = ten2mk64[ind - 1]
|
1194 |
|
|
// C* = (C1 + 1/2 * 10^x) * 10^(-x)
|
1195 |
|
|
// the approximation of 10^(-x) was rounded up to 64 bits
|
1196 |
|
|
__mul_64x64_to_128 (P128, C1, ten2mk64[ind - 1]);
|
1197 |
|
|
|
1198 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
1199 |
|
|
// C* = floor(C*) - logical right shift; C* has p decimal digits,
|
1200 |
|
|
// correct by Prop. 1)
|
1201 |
|
|
// else
|
1202 |
|
|
// C* = floor(C*) (logical right shift; C has p decimal digits,
|
1203 |
|
|
// correct by Property 1)
|
1204 |
|
|
// n = C* * 10^(e+x)
|
1205 |
|
|
|
1206 |
|
|
if (ind - 1 <= 2) { // 0 <= ind - 1 <= 2 => shift = 0
|
1207 |
|
|
res = P128.w[1];
|
1208 |
|
|
} else if (ind - 1 <= 21) { // 3 <= ind - 1 <= 21 => 3 <= shift <= 63
|
1209 |
|
|
shift = shiftright128[ind - 1]; // 3 <= shift <= 63
|
1210 |
|
|
res = (P128.w[1] >> shift);
|
1211 |
|
|
}
|
1212 |
|
|
// midpoints are already rounded correctly
|
1213 |
|
|
// set exponent to zero as it was negative before.
|
1214 |
|
|
res = x_sign | 0x31c0000000000000ull | res;
|
1215 |
|
|
BID_RETURN (res);
|
1216 |
|
|
} else { // if exp < 0 and q + exp < 0
|
1217 |
|
|
// the result is +0 or -0
|
1218 |
|
|
res = x_sign | 0x31c0000000000000ull;
|
1219 |
|
|
BID_RETURN (res);
|
1220 |
|
|
}
|
1221 |
|
|
}
|