1 |
272 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
2 |
|
|
|
3 |
|
|
This file is part of GCC.
|
4 |
|
|
|
5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
6 |
|
|
the terms of the GNU General Public License as published by the Free
|
7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
8 |
|
|
version.
|
9 |
|
|
|
10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
13 |
|
|
for more details.
|
14 |
|
|
|
15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
17 |
|
|
3.1, as published by the Free Software Foundation.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License and
|
20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
/*****************************************************************************
|
25 |
|
|
*
|
26 |
|
|
* BID64 encoding:
|
27 |
|
|
* ****************************************
|
28 |
|
|
* 63 62 53 52 0
|
29 |
|
|
* |---|------------------|--------------|
|
30 |
|
|
* | S | Biased Exp (E) | Coeff (c) |
|
31 |
|
|
* |---|------------------|--------------|
|
32 |
|
|
*
|
33 |
|
|
* bias = 398
|
34 |
|
|
* number = (-1)^s * 10^(E-398) * c
|
35 |
|
|
* coefficient range - 0 to (2^53)-1
|
36 |
|
|
* COEFF_MAX = 2^53-1 = 9007199254740991
|
37 |
|
|
*
|
38 |
|
|
*****************************************************************************
|
39 |
|
|
*
|
40 |
|
|
* BID128 encoding:
|
41 |
|
|
* 1-bit sign
|
42 |
|
|
* 14-bit biased exponent in [0x21, 0x3020] = [33, 12320]
|
43 |
|
|
* unbiased exponent in [-6176, 6111]; exponent bias = 6176
|
44 |
|
|
* 113-bit unsigned binary integer coefficient (49-bit high + 64-bit low)
|
45 |
|
|
* Note: 10^34-1 ~ 2^112.945555... < 2^113 => coefficient fits in 113 bits
|
46 |
|
|
*
|
47 |
|
|
* Note: assume invalid encodings are not passed to this function
|
48 |
|
|
*
|
49 |
|
|
* Round a number C with q decimal digits, represented as a binary integer
|
50 |
|
|
* to q - x digits. Six different routines are provided for different values
|
51 |
|
|
* of q. The maximum value of q used in the library is q = 3 * P - 1 where
|
52 |
|
|
* P = 16 or P = 34 (so q <= 111 decimal digits).
|
53 |
|
|
* The partitioning is based on the following, where Kx is the scaled
|
54 |
|
|
* integer representing the value of 10^(-x) rounded up to a number of bits
|
55 |
|
|
* sufficient to ensure correct rounding:
|
56 |
|
|
*
|
57 |
|
|
* --------------------------------------------------------------------------
|
58 |
|
|
* q x max. value of a max number min. number
|
59 |
|
|
* of bits in C of bits in Kx
|
60 |
|
|
* --------------------------------------------------------------------------
|
61 |
|
|
*
|
62 |
|
|
* GROUP 1: 64 bits
|
63 |
|
|
* round64_2_18 ()
|
64 |
|
|
*
|
65 |
|
|
* 2 [1,1] 10^1 - 1 < 2^3.33 4 4
|
66 |
|
|
* ... ... ... ... ...
|
67 |
|
|
* 18 [1,17] 10^18 - 1 < 2^59.80 60 61
|
68 |
|
|
*
|
69 |
|
|
* GROUP 2: 128 bits
|
70 |
|
|
* round128_19_38 ()
|
71 |
|
|
*
|
72 |
|
|
* 19 [1,18] 10^19 - 1 < 2^63.11 64 65
|
73 |
|
|
* 20 [1,19] 10^20 - 1 < 2^66.44 67 68
|
74 |
|
|
* ... ... ... ... ...
|
75 |
|
|
* 38 [1,37] 10^38 - 1 < 2^126.24 127 128
|
76 |
|
|
*
|
77 |
|
|
* GROUP 3: 192 bits
|
78 |
|
|
* round192_39_57 ()
|
79 |
|
|
*
|
80 |
|
|
* 39 [1,38] 10^39 - 1 < 2^129.56 130 131
|
81 |
|
|
* ... ... ... ... ...
|
82 |
|
|
* 57 [1,56] 10^57 - 1 < 2^189.35 190 191
|
83 |
|
|
*
|
84 |
|
|
* GROUP 4: 256 bits
|
85 |
|
|
* round256_58_76 ()
|
86 |
|
|
*
|
87 |
|
|
* 58 [1,57] 10^58 - 1 < 2^192.68 193 194
|
88 |
|
|
* ... ... ... ... ...
|
89 |
|
|
* 76 [1,75] 10^76 - 1 < 2^252.47 253 254
|
90 |
|
|
*
|
91 |
|
|
* GROUP 5: 320 bits
|
92 |
|
|
* round320_77_96 ()
|
93 |
|
|
*
|
94 |
|
|
* 77 [1,76] 10^77 - 1 < 2^255.79 256 257
|
95 |
|
|
* 78 [1,77] 10^78 - 1 < 2^259.12 260 261
|
96 |
|
|
* ... ... ... ... ...
|
97 |
|
|
* 96 [1,95] 10^96 - 1 < 2^318.91 319 320
|
98 |
|
|
*
|
99 |
|
|
* GROUP 6: 384 bits
|
100 |
|
|
* round384_97_115 ()
|
101 |
|
|
*
|
102 |
|
|
* 97 [1,96] 10^97 - 1 < 2^322.23 323 324
|
103 |
|
|
* ... ... ... ... ...
|
104 |
|
|
* 115 [1,114] 10^115 - 1 < 2^382.03 383 384
|
105 |
|
|
*
|
106 |
|
|
****************************************************************************/
|
107 |
|
|
|
108 |
|
|
#include "bid_internal.h"
|
109 |
|
|
|
110 |
|
|
void
|
111 |
|
|
round64_2_18 (int q,
|
112 |
|
|
int x,
|
113 |
|
|
UINT64 C,
|
114 |
|
|
UINT64 * ptr_Cstar,
|
115 |
|
|
int *incr_exp,
|
116 |
|
|
int *ptr_is_midpoint_lt_even,
|
117 |
|
|
int *ptr_is_midpoint_gt_even,
|
118 |
|
|
int *ptr_is_inexact_lt_midpoint,
|
119 |
|
|
int *ptr_is_inexact_gt_midpoint) {
|
120 |
|
|
|
121 |
|
|
UINT128 P128;
|
122 |
|
|
UINT128 fstar;
|
123 |
|
|
UINT64 Cstar;
|
124 |
|
|
UINT64 tmp64;
|
125 |
|
|
int shift;
|
126 |
|
|
int ind;
|
127 |
|
|
|
128 |
|
|
// Note:
|
129 |
|
|
// In round128_2_18() positive numbers with 2 <= q <= 18 will be
|
130 |
|
|
// rounded to nearest only for 1 <= x <= 3:
|
131 |
|
|
// x = 1 or x = 2 when q = 17
|
132 |
|
|
// x = 2 or x = 3 when q = 18
|
133 |
|
|
// However, for generality and possible uses outside the frame of IEEE 754R
|
134 |
|
|
// this implementation works for 1 <= x <= q - 1
|
135 |
|
|
|
136 |
|
|
// assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
|
137 |
|
|
// *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
|
138 |
|
|
// initialized to 0 by the caller
|
139 |
|
|
|
140 |
|
|
// round a number C with q decimal digits, 2 <= q <= 18
|
141 |
|
|
// to q - x digits, 1 <= x <= 17
|
142 |
|
|
// C = C + 1/2 * 10^x where the result C fits in 64 bits
|
143 |
|
|
// (because the largest value is 999999999999999999 + 50000000000000000 =
|
144 |
|
|
// 0x0e92596fd628ffff, which fits in 60 bits)
|
145 |
|
|
ind = x - 1; // 0 <= ind <= 16
|
146 |
|
|
C = C + midpoint64[ind];
|
147 |
|
|
// kx ~= 10^(-x), kx = Kx64[ind] * 2^(-Ex), 0 <= ind <= 16
|
148 |
|
|
// P128 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
|
149 |
|
|
// the approximation kx of 10^(-x) was rounded up to 64 bits
|
150 |
|
|
__mul_64x64_to_128MACH (P128, C, Kx64[ind]);
|
151 |
|
|
// calculate C* = floor (P128) and f*
|
152 |
|
|
// Cstar = P128 >> Ex
|
153 |
|
|
// fstar = low Ex bits of P128
|
154 |
|
|
shift = Ex64m64[ind]; // in [3, 56]
|
155 |
|
|
Cstar = P128.w[1] >> shift;
|
156 |
|
|
fstar.w[1] = P128.w[1] & mask64[ind];
|
157 |
|
|
fstar.w[0] = P128.w[0];
|
158 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mxtrunc64[ind], e.g.
|
159 |
|
|
// if x=1, T*=ten2mxtrunc64[0]=0xcccccccccccccccc
|
160 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
161 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
162 |
|
|
// shift; C* has q - x decimal digits, correct by Prop. 1)
|
163 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
164 |
|
|
// shift; C* has q - x decimal digits, correct by Pr. 1)
|
165 |
|
|
// else
|
166 |
|
|
// C* = floor(C*) (logical right shift; C has q - x decimal digits,
|
167 |
|
|
// correct by Property 1)
|
168 |
|
|
// in the caling function n = C* * 10^(e+x)
|
169 |
|
|
|
170 |
|
|
// determine inexactness of the rounding of C*
|
171 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
172 |
|
|
// the result is exact
|
173 |
|
|
// else // if (f* - 1/2 > T*) then
|
174 |
|
|
// the result is inexact
|
175 |
|
|
if (fstar.w[1] > half64[ind] ||
|
176 |
|
|
(fstar.w[1] == half64[ind] && fstar.w[0])) {
|
177 |
|
|
// f* > 1/2 and the result may be exact
|
178 |
|
|
// Calculate f* - 1/2
|
179 |
|
|
tmp64 = fstar.w[1] - half64[ind];
|
180 |
|
|
if (tmp64 || fstar.w[0] > ten2mxtrunc64[ind]) { // f* - 1/2 > 10^(-x)
|
181 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
182 |
|
|
} // else the result is exact
|
183 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
184 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
185 |
|
|
}
|
186 |
|
|
// check for midpoints (could do this before determining inexactness)
|
187 |
|
|
if (fstar.w[1] == 0 && fstar.w[0] <= ten2mxtrunc64[ind]) {
|
188 |
|
|
// the result is a midpoint
|
189 |
|
|
if (Cstar & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
|
190 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result may be 0
|
191 |
|
|
Cstar--; // Cstar is now even
|
192 |
|
|
*ptr_is_midpoint_gt_even = 1;
|
193 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
194 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
195 |
|
|
} else { // else MP in [ODD, EVEN]
|
196 |
|
|
*ptr_is_midpoint_lt_even = 1;
|
197 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
198 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
199 |
|
|
}
|
200 |
|
|
}
|
201 |
|
|
// check for rounding overflow, which occurs if Cstar = 10^(q-x)
|
202 |
|
|
ind = q - x; // 1 <= ind <= q - 1
|
203 |
|
|
if (Cstar == ten2k64[ind]) { // if Cstar = 10^(q-x)
|
204 |
|
|
Cstar = ten2k64[ind - 1]; // Cstar = 10^(q-x-1)
|
205 |
|
|
*incr_exp = 1;
|
206 |
|
|
} else { // 10^33 <= Cstar <= 10^34 - 1
|
207 |
|
|
*incr_exp = 0;
|
208 |
|
|
}
|
209 |
|
|
*ptr_Cstar = Cstar;
|
210 |
|
|
}
|
211 |
|
|
|
212 |
|
|
|
213 |
|
|
void
|
214 |
|
|
round128_19_38 (int q,
|
215 |
|
|
int x,
|
216 |
|
|
UINT128 C,
|
217 |
|
|
UINT128 * ptr_Cstar,
|
218 |
|
|
int *incr_exp,
|
219 |
|
|
int *ptr_is_midpoint_lt_even,
|
220 |
|
|
int *ptr_is_midpoint_gt_even,
|
221 |
|
|
int *ptr_is_inexact_lt_midpoint,
|
222 |
|
|
int *ptr_is_inexact_gt_midpoint) {
|
223 |
|
|
|
224 |
|
|
UINT256 P256;
|
225 |
|
|
UINT256 fstar;
|
226 |
|
|
UINT128 Cstar;
|
227 |
|
|
UINT64 tmp64;
|
228 |
|
|
int shift;
|
229 |
|
|
int ind;
|
230 |
|
|
|
231 |
|
|
// Note:
|
232 |
|
|
// In round128_19_38() positive numbers with 19 <= q <= 38 will be
|
233 |
|
|
// rounded to nearest only for 1 <= x <= 23:
|
234 |
|
|
// x = 3 or x = 4 when q = 19
|
235 |
|
|
// x = 4 or x = 5 when q = 20
|
236 |
|
|
// ...
|
237 |
|
|
// x = 18 or x = 19 when q = 34
|
238 |
|
|
// x = 1 or x = 2 or x = 19 or x = 20 when q = 35
|
239 |
|
|
// x = 2 or x = 3 or x = 20 or x = 21 when q = 36
|
240 |
|
|
// x = 3 or x = 4 or x = 21 or x = 22 when q = 37
|
241 |
|
|
// x = 4 or x = 5 or x = 22 or x = 23 when q = 38
|
242 |
|
|
// However, for generality and possible uses outside the frame of IEEE 754R
|
243 |
|
|
// this implementation works for 1 <= x <= q - 1
|
244 |
|
|
|
245 |
|
|
// assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
|
246 |
|
|
// *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
|
247 |
|
|
// initialized to 0 by the caller
|
248 |
|
|
|
249 |
|
|
// round a number C with q decimal digits, 19 <= q <= 38
|
250 |
|
|
// to q - x digits, 1 <= x <= 37
|
251 |
|
|
// C = C + 1/2 * 10^x where the result C fits in 128 bits
|
252 |
|
|
// (because the largest value is 99999999999999999999999999999999999999 +
|
253 |
|
|
// 5000000000000000000000000000000000000 =
|
254 |
|
|
// 0x4efe43b0c573e7e68a043d8fffffffff, which fits is 127 bits)
|
255 |
|
|
|
256 |
|
|
ind = x - 1; // 0 <= ind <= 36
|
257 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
258 |
|
|
tmp64 = C.w[0];
|
259 |
|
|
C.w[0] = C.w[0] + midpoint64[ind];
|
260 |
|
|
if (C.w[0] < tmp64)
|
261 |
|
|
C.w[1]++;
|
262 |
|
|
} else { // if 19 <= ind <= 37
|
263 |
|
|
tmp64 = C.w[0];
|
264 |
|
|
C.w[0] = C.w[0] + midpoint128[ind - 19].w[0];
|
265 |
|
|
if (C.w[0] < tmp64) {
|
266 |
|
|
C.w[1]++;
|
267 |
|
|
}
|
268 |
|
|
C.w[1] = C.w[1] + midpoint128[ind - 19].w[1];
|
269 |
|
|
}
|
270 |
|
|
// kx ~= 10^(-x), kx = Kx128[ind] * 2^(-Ex), 0 <= ind <= 36
|
271 |
|
|
// P256 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
|
272 |
|
|
// the approximation kx of 10^(-x) was rounded up to 128 bits
|
273 |
|
|
__mul_128x128_to_256 (P256, C, Kx128[ind]);
|
274 |
|
|
// calculate C* = floor (P256) and f*
|
275 |
|
|
// Cstar = P256 >> Ex
|
276 |
|
|
// fstar = low Ex bits of P256
|
277 |
|
|
shift = Ex128m128[ind]; // in [2, 63] but have to consider two cases
|
278 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
279 |
|
|
Cstar.w[0] = (P256.w[2] >> shift) | (P256.w[3] << (64 - shift));
|
280 |
|
|
Cstar.w[1] = (P256.w[3] >> shift);
|
281 |
|
|
fstar.w[0] = P256.w[0];
|
282 |
|
|
fstar.w[1] = P256.w[1];
|
283 |
|
|
fstar.w[2] = P256.w[2] & mask128[ind];
|
284 |
|
|
fstar.w[3] = 0x0ULL;
|
285 |
|
|
} else { // if 19 <= ind <= 37
|
286 |
|
|
Cstar.w[0] = P256.w[3] >> shift;
|
287 |
|
|
Cstar.w[1] = 0x0ULL;
|
288 |
|
|
fstar.w[0] = P256.w[0];
|
289 |
|
|
fstar.w[1] = P256.w[1];
|
290 |
|
|
fstar.w[2] = P256.w[2];
|
291 |
|
|
fstar.w[3] = P256.w[3] & mask128[ind];
|
292 |
|
|
}
|
293 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mxtrunc64[ind], e.g.
|
294 |
|
|
// if x=1, T*=ten2mxtrunc128[0]=0xcccccccccccccccccccccccccccccccc
|
295 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
296 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
297 |
|
|
// shift; C* has q - x decimal digits, correct by Prop. 1)
|
298 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
299 |
|
|
// shift; C* has q - x decimal digits, correct by Pr. 1)
|
300 |
|
|
// else
|
301 |
|
|
// C* = floor(C*) (logical right shift; C has q - x decimal digits,
|
302 |
|
|
// correct by Property 1)
|
303 |
|
|
// in the caling function n = C* * 10^(e+x)
|
304 |
|
|
|
305 |
|
|
// determine inexactness of the rounding of C*
|
306 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
307 |
|
|
// the result is exact
|
308 |
|
|
// else // if (f* - 1/2 > T*) then
|
309 |
|
|
// the result is inexact
|
310 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
311 |
|
|
if (fstar.w[2] > half128[ind] ||
|
312 |
|
|
(fstar.w[2] == half128[ind] && (fstar.w[1] || fstar.w[0]))) {
|
313 |
|
|
// f* > 1/2 and the result may be exact
|
314 |
|
|
// Calculate f* - 1/2
|
315 |
|
|
tmp64 = fstar.w[2] - half128[ind];
|
316 |
|
|
if (tmp64 || fstar.w[1] > ten2mxtrunc128[ind].w[1] || (fstar.w[1] == ten2mxtrunc128[ind].w[1] && fstar.w[0] > ten2mxtrunc128[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
317 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
318 |
|
|
} // else the result is exact
|
319 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
320 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
321 |
|
|
}
|
322 |
|
|
} else { // if 19 <= ind <= 37
|
323 |
|
|
if (fstar.w[3] > half128[ind] || (fstar.w[3] == half128[ind] &&
|
324 |
|
|
(fstar.w[2] || fstar.w[1]
|
325 |
|
|
|| fstar.w[0]))) {
|
326 |
|
|
// f* > 1/2 and the result may be exact
|
327 |
|
|
// Calculate f* - 1/2
|
328 |
|
|
tmp64 = fstar.w[3] - half128[ind];
|
329 |
|
|
if (tmp64 || fstar.w[2] || fstar.w[1] > ten2mxtrunc128[ind].w[1] || (fstar.w[1] == ten2mxtrunc128[ind].w[1] && fstar.w[0] > ten2mxtrunc128[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
330 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
331 |
|
|
} // else the result is exact
|
332 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
333 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
334 |
|
|
}
|
335 |
|
|
}
|
336 |
|
|
// check for midpoints (could do this before determining inexactness)
|
337 |
|
|
if (fstar.w[3] == 0 && fstar.w[2] == 0 &&
|
338 |
|
|
(fstar.w[1] < ten2mxtrunc128[ind].w[1] ||
|
339 |
|
|
(fstar.w[1] == ten2mxtrunc128[ind].w[1] &&
|
340 |
|
|
fstar.w[0] <= ten2mxtrunc128[ind].w[0]))) {
|
341 |
|
|
// the result is a midpoint
|
342 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
|
343 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result may be 0
|
344 |
|
|
Cstar.w[0]--; // Cstar is now even
|
345 |
|
|
if (Cstar.w[0] == 0xffffffffffffffffULL) {
|
346 |
|
|
Cstar.w[1]--;
|
347 |
|
|
}
|
348 |
|
|
*ptr_is_midpoint_gt_even = 1;
|
349 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
350 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
351 |
|
|
} else { // else MP in [ODD, EVEN]
|
352 |
|
|
*ptr_is_midpoint_lt_even = 1;
|
353 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
354 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
355 |
|
|
}
|
356 |
|
|
}
|
357 |
|
|
// check for rounding overflow, which occurs if Cstar = 10^(q-x)
|
358 |
|
|
ind = q - x; // 1 <= ind <= q - 1
|
359 |
|
|
if (ind <= 19) {
|
360 |
|
|
if (Cstar.w[1] == 0x0ULL && Cstar.w[0] == ten2k64[ind]) {
|
361 |
|
|
// if Cstar = 10^(q-x)
|
362 |
|
|
Cstar.w[0] = ten2k64[ind - 1]; // Cstar = 10^(q-x-1)
|
363 |
|
|
*incr_exp = 1;
|
364 |
|
|
} else {
|
365 |
|
|
*incr_exp = 0;
|
366 |
|
|
}
|
367 |
|
|
} else if (ind == 20) {
|
368 |
|
|
// if ind = 20
|
369 |
|
|
if (Cstar.w[1] == ten2k128[0].w[1]
|
370 |
|
|
&& Cstar.w[0] == ten2k128[0].w[0]) {
|
371 |
|
|
// if Cstar = 10^(q-x)
|
372 |
|
|
Cstar.w[0] = ten2k64[19]; // Cstar = 10^(q-x-1)
|
373 |
|
|
Cstar.w[1] = 0x0ULL;
|
374 |
|
|
*incr_exp = 1;
|
375 |
|
|
} else {
|
376 |
|
|
*incr_exp = 0;
|
377 |
|
|
}
|
378 |
|
|
} else { // if 21 <= ind <= 37
|
379 |
|
|
if (Cstar.w[1] == ten2k128[ind - 20].w[1] &&
|
380 |
|
|
Cstar.w[0] == ten2k128[ind - 20].w[0]) {
|
381 |
|
|
// if Cstar = 10^(q-x)
|
382 |
|
|
Cstar.w[0] = ten2k128[ind - 21].w[0]; // Cstar = 10^(q-x-1)
|
383 |
|
|
Cstar.w[1] = ten2k128[ind - 21].w[1];
|
384 |
|
|
*incr_exp = 1;
|
385 |
|
|
} else {
|
386 |
|
|
*incr_exp = 0;
|
387 |
|
|
}
|
388 |
|
|
}
|
389 |
|
|
ptr_Cstar->w[1] = Cstar.w[1];
|
390 |
|
|
ptr_Cstar->w[0] = Cstar.w[0];
|
391 |
|
|
}
|
392 |
|
|
|
393 |
|
|
|
394 |
|
|
void
|
395 |
|
|
round192_39_57 (int q,
|
396 |
|
|
int x,
|
397 |
|
|
UINT192 C,
|
398 |
|
|
UINT192 * ptr_Cstar,
|
399 |
|
|
int *incr_exp,
|
400 |
|
|
int *ptr_is_midpoint_lt_even,
|
401 |
|
|
int *ptr_is_midpoint_gt_even,
|
402 |
|
|
int *ptr_is_inexact_lt_midpoint,
|
403 |
|
|
int *ptr_is_inexact_gt_midpoint) {
|
404 |
|
|
|
405 |
|
|
UINT384 P384;
|
406 |
|
|
UINT384 fstar;
|
407 |
|
|
UINT192 Cstar;
|
408 |
|
|
UINT64 tmp64;
|
409 |
|
|
int shift;
|
410 |
|
|
int ind;
|
411 |
|
|
|
412 |
|
|
// Note:
|
413 |
|
|
// In round192_39_57() positive numbers with 39 <= q <= 57 will be
|
414 |
|
|
// rounded to nearest only for 5 <= x <= 42:
|
415 |
|
|
// x = 23 or x = 24 or x = 5 or x = 6 when q = 39
|
416 |
|
|
// x = 24 or x = 25 or x = 6 or x = 7 when q = 40
|
417 |
|
|
// ...
|
418 |
|
|
// x = 41 or x = 42 or x = 23 or x = 24 when q = 57
|
419 |
|
|
// However, for generality and possible uses outside the frame of IEEE 754R
|
420 |
|
|
// this implementation works for 1 <= x <= q - 1
|
421 |
|
|
|
422 |
|
|
// assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
|
423 |
|
|
// *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
|
424 |
|
|
// initialized to 0 by the caller
|
425 |
|
|
|
426 |
|
|
// round a number C with q decimal digits, 39 <= q <= 57
|
427 |
|
|
// to q - x digits, 1 <= x <= 56
|
428 |
|
|
// C = C + 1/2 * 10^x where the result C fits in 192 bits
|
429 |
|
|
// (because the largest value is
|
430 |
|
|
// 999999999999999999999999999999999999999999999999999999999 +
|
431 |
|
|
// 50000000000000000000000000000000000000000000000000000000 =
|
432 |
|
|
// 0x2ad282f212a1da846afdaf18c034ff09da7fffffffffffff, which fits in 190 bits)
|
433 |
|
|
ind = x - 1; // 0 <= ind <= 55
|
434 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
435 |
|
|
tmp64 = C.w[0];
|
436 |
|
|
C.w[0] = C.w[0] + midpoint64[ind];
|
437 |
|
|
if (C.w[0] < tmp64) {
|
438 |
|
|
C.w[1]++;
|
439 |
|
|
if (C.w[1] == 0x0) {
|
440 |
|
|
C.w[2]++;
|
441 |
|
|
}
|
442 |
|
|
}
|
443 |
|
|
} else if (ind <= 37) { // if 19 <= ind <= 37
|
444 |
|
|
tmp64 = C.w[0];
|
445 |
|
|
C.w[0] = C.w[0] + midpoint128[ind - 19].w[0];
|
446 |
|
|
if (C.w[0] < tmp64) {
|
447 |
|
|
C.w[1]++;
|
448 |
|
|
if (C.w[1] == 0x0) {
|
449 |
|
|
C.w[2]++;
|
450 |
|
|
}
|
451 |
|
|
}
|
452 |
|
|
tmp64 = C.w[1];
|
453 |
|
|
C.w[1] = C.w[1] + midpoint128[ind - 19].w[1];
|
454 |
|
|
if (C.w[1] < tmp64) {
|
455 |
|
|
C.w[2]++;
|
456 |
|
|
}
|
457 |
|
|
} else { // if 38 <= ind <= 57 (actually ind <= 55)
|
458 |
|
|
tmp64 = C.w[0];
|
459 |
|
|
C.w[0] = C.w[0] + midpoint192[ind - 38].w[0];
|
460 |
|
|
if (C.w[0] < tmp64) {
|
461 |
|
|
C.w[1]++;
|
462 |
|
|
if (C.w[1] == 0x0ull) {
|
463 |
|
|
C.w[2]++;
|
464 |
|
|
}
|
465 |
|
|
}
|
466 |
|
|
tmp64 = C.w[1];
|
467 |
|
|
C.w[1] = C.w[1] + midpoint192[ind - 38].w[1];
|
468 |
|
|
if (C.w[1] < tmp64) {
|
469 |
|
|
C.w[2]++;
|
470 |
|
|
}
|
471 |
|
|
C.w[2] = C.w[2] + midpoint192[ind - 38].w[2];
|
472 |
|
|
}
|
473 |
|
|
// kx ~= 10^(-x), kx = Kx192[ind] * 2^(-Ex), 0 <= ind <= 55
|
474 |
|
|
// P384 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
|
475 |
|
|
// the approximation kx of 10^(-x) was rounded up to 192 bits
|
476 |
|
|
__mul_192x192_to_384 (P384, C, Kx192[ind]);
|
477 |
|
|
// calculate C* = floor (P384) and f*
|
478 |
|
|
// Cstar = P384 >> Ex
|
479 |
|
|
// fstar = low Ex bits of P384
|
480 |
|
|
shift = Ex192m192[ind]; // in [1, 63] but have to consider three cases
|
481 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
482 |
|
|
Cstar.w[2] = (P384.w[5] >> shift);
|
483 |
|
|
Cstar.w[1] = (P384.w[5] << (64 - shift)) | (P384.w[4] >> shift);
|
484 |
|
|
Cstar.w[0] = (P384.w[4] << (64 - shift)) | (P384.w[3] >> shift);
|
485 |
|
|
fstar.w[5] = 0x0ULL;
|
486 |
|
|
fstar.w[4] = 0x0ULL;
|
487 |
|
|
fstar.w[3] = P384.w[3] & mask192[ind];
|
488 |
|
|
fstar.w[2] = P384.w[2];
|
489 |
|
|
fstar.w[1] = P384.w[1];
|
490 |
|
|
fstar.w[0] = P384.w[0];
|
491 |
|
|
} else if (ind <= 37) { // if 19 <= ind <= 37
|
492 |
|
|
Cstar.w[2] = 0x0ULL;
|
493 |
|
|
Cstar.w[1] = P384.w[5] >> shift;
|
494 |
|
|
Cstar.w[0] = (P384.w[5] << (64 - shift)) | (P384.w[4] >> shift);
|
495 |
|
|
fstar.w[5] = 0x0ULL;
|
496 |
|
|
fstar.w[4] = P384.w[4] & mask192[ind];
|
497 |
|
|
fstar.w[3] = P384.w[3];
|
498 |
|
|
fstar.w[2] = P384.w[2];
|
499 |
|
|
fstar.w[1] = P384.w[1];
|
500 |
|
|
fstar.w[0] = P384.w[0];
|
501 |
|
|
} else { // if 38 <= ind <= 57
|
502 |
|
|
Cstar.w[2] = 0x0ULL;
|
503 |
|
|
Cstar.w[1] = 0x0ULL;
|
504 |
|
|
Cstar.w[0] = P384.w[5] >> shift;
|
505 |
|
|
fstar.w[5] = P384.w[5] & mask192[ind];
|
506 |
|
|
fstar.w[4] = P384.w[4];
|
507 |
|
|
fstar.w[3] = P384.w[3];
|
508 |
|
|
fstar.w[2] = P384.w[2];
|
509 |
|
|
fstar.w[1] = P384.w[1];
|
510 |
|
|
fstar.w[0] = P384.w[0];
|
511 |
|
|
}
|
512 |
|
|
|
513 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mxtrunc192[ind], e.g. if x=1,
|
514 |
|
|
// T*=ten2mxtrunc192[0]=0xcccccccccccccccccccccccccccccccccccccccccccccccc
|
515 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
516 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
517 |
|
|
// shift; C* has q - x decimal digits, correct by Prop. 1)
|
518 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
519 |
|
|
// shift; C* has q - x decimal digits, correct by Pr. 1)
|
520 |
|
|
// else
|
521 |
|
|
// C* = floor(C*) (logical right shift; C has q - x decimal digits,
|
522 |
|
|
// correct by Property 1)
|
523 |
|
|
// in the caling function n = C* * 10^(e+x)
|
524 |
|
|
|
525 |
|
|
// determine inexactness of the rounding of C*
|
526 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
527 |
|
|
// the result is exact
|
528 |
|
|
// else // if (f* - 1/2 > T*) then
|
529 |
|
|
// the result is inexact
|
530 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
531 |
|
|
if (fstar.w[3] > half192[ind] || (fstar.w[3] == half192[ind] &&
|
532 |
|
|
(fstar.w[2] || fstar.w[1]
|
533 |
|
|
|| fstar.w[0]))) {
|
534 |
|
|
// f* > 1/2 and the result may be exact
|
535 |
|
|
// Calculate f* - 1/2
|
536 |
|
|
tmp64 = fstar.w[3] - half192[ind];
|
537 |
|
|
if (tmp64 || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
538 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
539 |
|
|
} // else the result is exact
|
540 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
541 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
542 |
|
|
}
|
543 |
|
|
} else if (ind <= 37) { // if 19 <= ind <= 37
|
544 |
|
|
if (fstar.w[4] > half192[ind] || (fstar.w[4] == half192[ind] &&
|
545 |
|
|
(fstar.w[3] || fstar.w[2]
|
546 |
|
|
|| fstar.w[1] || fstar.w[0]))) {
|
547 |
|
|
// f* > 1/2 and the result may be exact
|
548 |
|
|
// Calculate f* - 1/2
|
549 |
|
|
tmp64 = fstar.w[4] - half192[ind];
|
550 |
|
|
if (tmp64 || fstar.w[3] || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
551 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
552 |
|
|
} // else the result is exact
|
553 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
554 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
555 |
|
|
}
|
556 |
|
|
} else { // if 38 <= ind <= 55
|
557 |
|
|
if (fstar.w[5] > half192[ind] || (fstar.w[5] == half192[ind] &&
|
558 |
|
|
(fstar.w[4] || fstar.w[3]
|
559 |
|
|
|| fstar.w[2] || fstar.w[1]
|
560 |
|
|
|| fstar.w[0]))) {
|
561 |
|
|
// f* > 1/2 and the result may be exact
|
562 |
|
|
// Calculate f* - 1/2
|
563 |
|
|
tmp64 = fstar.w[5] - half192[ind];
|
564 |
|
|
if (tmp64 || fstar.w[4] || fstar.w[3] || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
565 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
566 |
|
|
} // else the result is exact
|
567 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
568 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
569 |
|
|
}
|
570 |
|
|
}
|
571 |
|
|
// check for midpoints (could do this before determining inexactness)
|
572 |
|
|
if (fstar.w[5] == 0 && fstar.w[4] == 0 && fstar.w[3] == 0 &&
|
573 |
|
|
(fstar.w[2] < ten2mxtrunc192[ind].w[2] ||
|
574 |
|
|
(fstar.w[2] == ten2mxtrunc192[ind].w[2] &&
|
575 |
|
|
fstar.w[1] < ten2mxtrunc192[ind].w[1]) ||
|
576 |
|
|
(fstar.w[2] == ten2mxtrunc192[ind].w[2] &&
|
577 |
|
|
fstar.w[1] == ten2mxtrunc192[ind].w[1] &&
|
578 |
|
|
fstar.w[0] <= ten2mxtrunc192[ind].w[0]))) {
|
579 |
|
|
// the result is a midpoint
|
580 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
|
581 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result may be 0
|
582 |
|
|
Cstar.w[0]--; // Cstar is now even
|
583 |
|
|
if (Cstar.w[0] == 0xffffffffffffffffULL) {
|
584 |
|
|
Cstar.w[1]--;
|
585 |
|
|
if (Cstar.w[1] == 0xffffffffffffffffULL) {
|
586 |
|
|
Cstar.w[2]--;
|
587 |
|
|
}
|
588 |
|
|
}
|
589 |
|
|
*ptr_is_midpoint_gt_even = 1;
|
590 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
591 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
592 |
|
|
} else { // else MP in [ODD, EVEN]
|
593 |
|
|
*ptr_is_midpoint_lt_even = 1;
|
594 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
595 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
596 |
|
|
}
|
597 |
|
|
}
|
598 |
|
|
// check for rounding overflow, which occurs if Cstar = 10^(q-x)
|
599 |
|
|
ind = q - x; // 1 <= ind <= q - 1
|
600 |
|
|
if (ind <= 19) {
|
601 |
|
|
if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == 0x0ULL &&
|
602 |
|
|
Cstar.w[0] == ten2k64[ind]) {
|
603 |
|
|
// if Cstar = 10^(q-x)
|
604 |
|
|
Cstar.w[0] = ten2k64[ind - 1]; // Cstar = 10^(q-x-1)
|
605 |
|
|
*incr_exp = 1;
|
606 |
|
|
} else {
|
607 |
|
|
*incr_exp = 0;
|
608 |
|
|
}
|
609 |
|
|
} else if (ind == 20) {
|
610 |
|
|
// if ind = 20
|
611 |
|
|
if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == ten2k128[0].w[1] &&
|
612 |
|
|
Cstar.w[0] == ten2k128[0].w[0]) {
|
613 |
|
|
// if Cstar = 10^(q-x)
|
614 |
|
|
Cstar.w[0] = ten2k64[19]; // Cstar = 10^(q-x-1)
|
615 |
|
|
Cstar.w[1] = 0x0ULL;
|
616 |
|
|
*incr_exp = 1;
|
617 |
|
|
} else {
|
618 |
|
|
*incr_exp = 0;
|
619 |
|
|
}
|
620 |
|
|
} else if (ind <= 38) { // if 21 <= ind <= 38
|
621 |
|
|
if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == ten2k128[ind - 20].w[1] &&
|
622 |
|
|
Cstar.w[0] == ten2k128[ind - 20].w[0]) {
|
623 |
|
|
// if Cstar = 10^(q-x)
|
624 |
|
|
Cstar.w[0] = ten2k128[ind - 21].w[0]; // Cstar = 10^(q-x-1)
|
625 |
|
|
Cstar.w[1] = ten2k128[ind - 21].w[1];
|
626 |
|
|
*incr_exp = 1;
|
627 |
|
|
} else {
|
628 |
|
|
*incr_exp = 0;
|
629 |
|
|
}
|
630 |
|
|
} else if (ind == 39) {
|
631 |
|
|
if (Cstar.w[2] == ten2k256[0].w[2] && Cstar.w[1] == ten2k256[0].w[1]
|
632 |
|
|
&& Cstar.w[0] == ten2k256[0].w[0]) {
|
633 |
|
|
// if Cstar = 10^(q-x)
|
634 |
|
|
Cstar.w[0] = ten2k128[18].w[0]; // Cstar = 10^(q-x-1)
|
635 |
|
|
Cstar.w[1] = ten2k128[18].w[1];
|
636 |
|
|
Cstar.w[2] = 0x0ULL;
|
637 |
|
|
*incr_exp = 1;
|
638 |
|
|
} else {
|
639 |
|
|
*incr_exp = 0;
|
640 |
|
|
}
|
641 |
|
|
} else { // if 40 <= ind <= 56
|
642 |
|
|
if (Cstar.w[2] == ten2k256[ind - 39].w[2] &&
|
643 |
|
|
Cstar.w[1] == ten2k256[ind - 39].w[1] &&
|
644 |
|
|
Cstar.w[0] == ten2k256[ind - 39].w[0]) {
|
645 |
|
|
// if Cstar = 10^(q-x)
|
646 |
|
|
Cstar.w[0] = ten2k256[ind - 40].w[0]; // Cstar = 10^(q-x-1)
|
647 |
|
|
Cstar.w[1] = ten2k256[ind - 40].w[1];
|
648 |
|
|
Cstar.w[2] = ten2k256[ind - 40].w[2];
|
649 |
|
|
*incr_exp = 1;
|
650 |
|
|
} else {
|
651 |
|
|
*incr_exp = 0;
|
652 |
|
|
}
|
653 |
|
|
}
|
654 |
|
|
ptr_Cstar->w[2] = Cstar.w[2];
|
655 |
|
|
ptr_Cstar->w[1] = Cstar.w[1];
|
656 |
|
|
ptr_Cstar->w[0] = Cstar.w[0];
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
|
660 |
|
|
void
|
661 |
|
|
round256_58_76 (int q,
|
662 |
|
|
int x,
|
663 |
|
|
UINT256 C,
|
664 |
|
|
UINT256 * ptr_Cstar,
|
665 |
|
|
int *incr_exp,
|
666 |
|
|
int *ptr_is_midpoint_lt_even,
|
667 |
|
|
int *ptr_is_midpoint_gt_even,
|
668 |
|
|
int *ptr_is_inexact_lt_midpoint,
|
669 |
|
|
int *ptr_is_inexact_gt_midpoint) {
|
670 |
|
|
|
671 |
|
|
UINT512 P512;
|
672 |
|
|
UINT512 fstar;
|
673 |
|
|
UINT256 Cstar;
|
674 |
|
|
UINT64 tmp64;
|
675 |
|
|
int shift;
|
676 |
|
|
int ind;
|
677 |
|
|
|
678 |
|
|
// Note:
|
679 |
|
|
// In round256_58_76() positive numbers with 58 <= q <= 76 will be
|
680 |
|
|
// rounded to nearest only for 24 <= x <= 61:
|
681 |
|
|
// x = 42 or x = 43 or x = 24 or x = 25 when q = 58
|
682 |
|
|
// x = 43 or x = 44 or x = 25 or x = 26 when q = 59
|
683 |
|
|
// ...
|
684 |
|
|
// x = 60 or x = 61 or x = 42 or x = 43 when q = 76
|
685 |
|
|
// However, for generality and possible uses outside the frame of IEEE 754R
|
686 |
|
|
// this implementation works for 1 <= x <= q - 1
|
687 |
|
|
|
688 |
|
|
// assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
|
689 |
|
|
// *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
|
690 |
|
|
// initialized to 0 by the caller
|
691 |
|
|
|
692 |
|
|
// round a number C with q decimal digits, 58 <= q <= 76
|
693 |
|
|
// to q - x digits, 1 <= x <= 75
|
694 |
|
|
// C = C + 1/2 * 10^x where the result C fits in 256 bits
|
695 |
|
|
// (because the largest value is 9999999999999999999999999999999999999999
|
696 |
|
|
// 999999999999999999999999999999999999 + 500000000000000000000000000
|
697 |
|
|
// 000000000000000000000000000000000000000000000000 =
|
698 |
|
|
// 0x1736ca15d27a56cae15cf0e7b403d1f2bd6ebb0a50dc83ffffffffffffffffff,
|
699 |
|
|
// which fits in 253 bits)
|
700 |
|
|
ind = x - 1; // 0 <= ind <= 74
|
701 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
702 |
|
|
tmp64 = C.w[0];
|
703 |
|
|
C.w[0] = C.w[0] + midpoint64[ind];
|
704 |
|
|
if (C.w[0] < tmp64) {
|
705 |
|
|
C.w[1]++;
|
706 |
|
|
if (C.w[1] == 0x0) {
|
707 |
|
|
C.w[2]++;
|
708 |
|
|
if (C.w[2] == 0x0) {
|
709 |
|
|
C.w[3]++;
|
710 |
|
|
}
|
711 |
|
|
}
|
712 |
|
|
}
|
713 |
|
|
} else if (ind <= 37) { // if 19 <= ind <= 37
|
714 |
|
|
tmp64 = C.w[0];
|
715 |
|
|
C.w[0] = C.w[0] + midpoint128[ind - 19].w[0];
|
716 |
|
|
if (C.w[0] < tmp64) {
|
717 |
|
|
C.w[1]++;
|
718 |
|
|
if (C.w[1] == 0x0) {
|
719 |
|
|
C.w[2]++;
|
720 |
|
|
if (C.w[2] == 0x0) {
|
721 |
|
|
C.w[3]++;
|
722 |
|
|
}
|
723 |
|
|
}
|
724 |
|
|
}
|
725 |
|
|
tmp64 = C.w[1];
|
726 |
|
|
C.w[1] = C.w[1] + midpoint128[ind - 19].w[1];
|
727 |
|
|
if (C.w[1] < tmp64) {
|
728 |
|
|
C.w[2]++;
|
729 |
|
|
if (C.w[2] == 0x0) {
|
730 |
|
|
C.w[3]++;
|
731 |
|
|
}
|
732 |
|
|
}
|
733 |
|
|
} else if (ind <= 57) { // if 38 <= ind <= 57
|
734 |
|
|
tmp64 = C.w[0];
|
735 |
|
|
C.w[0] = C.w[0] + midpoint192[ind - 38].w[0];
|
736 |
|
|
if (C.w[0] < tmp64) {
|
737 |
|
|
C.w[1]++;
|
738 |
|
|
if (C.w[1] == 0x0ull) {
|
739 |
|
|
C.w[2]++;
|
740 |
|
|
if (C.w[2] == 0x0) {
|
741 |
|
|
C.w[3]++;
|
742 |
|
|
}
|
743 |
|
|
}
|
744 |
|
|
}
|
745 |
|
|
tmp64 = C.w[1];
|
746 |
|
|
C.w[1] = C.w[1] + midpoint192[ind - 38].w[1];
|
747 |
|
|
if (C.w[1] < tmp64) {
|
748 |
|
|
C.w[2]++;
|
749 |
|
|
if (C.w[2] == 0x0) {
|
750 |
|
|
C.w[3]++;
|
751 |
|
|
}
|
752 |
|
|
}
|
753 |
|
|
tmp64 = C.w[2];
|
754 |
|
|
C.w[2] = C.w[2] + midpoint192[ind - 38].w[2];
|
755 |
|
|
if (C.w[2] < tmp64) {
|
756 |
|
|
C.w[3]++;
|
757 |
|
|
}
|
758 |
|
|
} else { // if 58 <= ind <= 76 (actually 58 <= ind <= 74)
|
759 |
|
|
tmp64 = C.w[0];
|
760 |
|
|
C.w[0] = C.w[0] + midpoint256[ind - 58].w[0];
|
761 |
|
|
if (C.w[0] < tmp64) {
|
762 |
|
|
C.w[1]++;
|
763 |
|
|
if (C.w[1] == 0x0ull) {
|
764 |
|
|
C.w[2]++;
|
765 |
|
|
if (C.w[2] == 0x0) {
|
766 |
|
|
C.w[3]++;
|
767 |
|
|
}
|
768 |
|
|
}
|
769 |
|
|
}
|
770 |
|
|
tmp64 = C.w[1];
|
771 |
|
|
C.w[1] = C.w[1] + midpoint256[ind - 58].w[1];
|
772 |
|
|
if (C.w[1] < tmp64) {
|
773 |
|
|
C.w[2]++;
|
774 |
|
|
if (C.w[2] == 0x0) {
|
775 |
|
|
C.w[3]++;
|
776 |
|
|
}
|
777 |
|
|
}
|
778 |
|
|
tmp64 = C.w[2];
|
779 |
|
|
C.w[2] = C.w[2] + midpoint256[ind - 58].w[2];
|
780 |
|
|
if (C.w[2] < tmp64) {
|
781 |
|
|
C.w[3]++;
|
782 |
|
|
}
|
783 |
|
|
C.w[3] = C.w[3] + midpoint256[ind - 58].w[3];
|
784 |
|
|
}
|
785 |
|
|
// kx ~= 10^(-x), kx = Kx256[ind] * 2^(-Ex), 0 <= ind <= 74
|
786 |
|
|
// P512 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
|
787 |
|
|
// the approximation kx of 10^(-x) was rounded up to 192 bits
|
788 |
|
|
__mul_256x256_to_512 (P512, C, Kx256[ind]);
|
789 |
|
|
// calculate C* = floor (P512) and f*
|
790 |
|
|
// Cstar = P512 >> Ex
|
791 |
|
|
// fstar = low Ex bits of P512
|
792 |
|
|
shift = Ex256m256[ind]; // in [0, 63] but have to consider four cases
|
793 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
794 |
|
|
Cstar.w[3] = (P512.w[7] >> shift);
|
795 |
|
|
Cstar.w[2] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift);
|
796 |
|
|
Cstar.w[1] = (P512.w[6] << (64 - shift)) | (P512.w[5] >> shift);
|
797 |
|
|
Cstar.w[0] = (P512.w[5] << (64 - shift)) | (P512.w[4] >> shift);
|
798 |
|
|
fstar.w[7] = 0x0ULL;
|
799 |
|
|
fstar.w[6] = 0x0ULL;
|
800 |
|
|
fstar.w[5] = 0x0ULL;
|
801 |
|
|
fstar.w[4] = P512.w[4] & mask256[ind];
|
802 |
|
|
fstar.w[3] = P512.w[3];
|
803 |
|
|
fstar.w[2] = P512.w[2];
|
804 |
|
|
fstar.w[1] = P512.w[1];
|
805 |
|
|
fstar.w[0] = P512.w[0];
|
806 |
|
|
} else if (ind <= 37) { // if 19 <= ind <= 37
|
807 |
|
|
Cstar.w[3] = 0x0ULL;
|
808 |
|
|
Cstar.w[2] = P512.w[7] >> shift;
|
809 |
|
|
Cstar.w[1] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift);
|
810 |
|
|
Cstar.w[0] = (P512.w[6] << (64 - shift)) | (P512.w[5] >> shift);
|
811 |
|
|
fstar.w[7] = 0x0ULL;
|
812 |
|
|
fstar.w[6] = 0x0ULL;
|
813 |
|
|
fstar.w[5] = P512.w[5] & mask256[ind];
|
814 |
|
|
fstar.w[4] = P512.w[4];
|
815 |
|
|
fstar.w[3] = P512.w[3];
|
816 |
|
|
fstar.w[2] = P512.w[2];
|
817 |
|
|
fstar.w[1] = P512.w[1];
|
818 |
|
|
fstar.w[0] = P512.w[0];
|
819 |
|
|
} else if (ind <= 56) { // if 38 <= ind <= 56
|
820 |
|
|
Cstar.w[3] = 0x0ULL;
|
821 |
|
|
Cstar.w[2] = 0x0ULL;
|
822 |
|
|
Cstar.w[1] = P512.w[7] >> shift;
|
823 |
|
|
Cstar.w[0] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift);
|
824 |
|
|
fstar.w[7] = 0x0ULL;
|
825 |
|
|
fstar.w[6] = P512.w[6] & mask256[ind];
|
826 |
|
|
fstar.w[5] = P512.w[5];
|
827 |
|
|
fstar.w[4] = P512.w[4];
|
828 |
|
|
fstar.w[3] = P512.w[3];
|
829 |
|
|
fstar.w[2] = P512.w[2];
|
830 |
|
|
fstar.w[1] = P512.w[1];
|
831 |
|
|
fstar.w[0] = P512.w[0];
|
832 |
|
|
} else if (ind == 57) {
|
833 |
|
|
Cstar.w[3] = 0x0ULL;
|
834 |
|
|
Cstar.w[2] = 0x0ULL;
|
835 |
|
|
Cstar.w[1] = 0x0ULL;
|
836 |
|
|
Cstar.w[0] = P512.w[7];
|
837 |
|
|
fstar.w[7] = 0x0ULL;
|
838 |
|
|
fstar.w[6] = P512.w[6];
|
839 |
|
|
fstar.w[5] = P512.w[5];
|
840 |
|
|
fstar.w[4] = P512.w[4];
|
841 |
|
|
fstar.w[3] = P512.w[3];
|
842 |
|
|
fstar.w[2] = P512.w[2];
|
843 |
|
|
fstar.w[1] = P512.w[1];
|
844 |
|
|
fstar.w[0] = P512.w[0];
|
845 |
|
|
} else { // if 58 <= ind <= 74
|
846 |
|
|
Cstar.w[3] = 0x0ULL;
|
847 |
|
|
Cstar.w[2] = 0x0ULL;
|
848 |
|
|
Cstar.w[1] = 0x0ULL;
|
849 |
|
|
Cstar.w[0] = P512.w[7] >> shift;
|
850 |
|
|
fstar.w[7] = P512.w[7] & mask256[ind];
|
851 |
|
|
fstar.w[6] = P512.w[6];
|
852 |
|
|
fstar.w[5] = P512.w[5];
|
853 |
|
|
fstar.w[4] = P512.w[4];
|
854 |
|
|
fstar.w[3] = P512.w[3];
|
855 |
|
|
fstar.w[2] = P512.w[2];
|
856 |
|
|
fstar.w[1] = P512.w[1];
|
857 |
|
|
fstar.w[0] = P512.w[0];
|
858 |
|
|
}
|
859 |
|
|
|
860 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mxtrunc256[ind], e.g. if x=1,
|
861 |
|
|
// T*=ten2mxtrunc256[0]=
|
862 |
|
|
// 0xcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
|
863 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
864 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
865 |
|
|
// shift; C* has q - x decimal digits, correct by Prop. 1)
|
866 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
867 |
|
|
// shift; C* has q - x decimal digits, correct by Pr. 1)
|
868 |
|
|
// else
|
869 |
|
|
// C* = floor(C*) (logical right shift; C has q - x decimal digits,
|
870 |
|
|
// correct by Property 1)
|
871 |
|
|
// in the caling function n = C* * 10^(e+x)
|
872 |
|
|
|
873 |
|
|
// determine inexactness of the rounding of C*
|
874 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
875 |
|
|
// the result is exact
|
876 |
|
|
// else // if (f* - 1/2 > T*) then
|
877 |
|
|
// the result is inexact
|
878 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
879 |
|
|
if (fstar.w[4] > half256[ind] || (fstar.w[4] == half256[ind] &&
|
880 |
|
|
(fstar.w[3] || fstar.w[2]
|
881 |
|
|
|| fstar.w[1] || fstar.w[0]))) {
|
882 |
|
|
// f* > 1/2 and the result may be exact
|
883 |
|
|
// Calculate f* - 1/2
|
884 |
|
|
tmp64 = fstar.w[4] - half256[ind];
|
885 |
|
|
if (tmp64 || fstar.w[3] > ten2mxtrunc256[ind].w[2] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
886 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
887 |
|
|
} // else the result is exact
|
888 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
889 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
890 |
|
|
}
|
891 |
|
|
} else if (ind <= 37) { // if 19 <= ind <= 37
|
892 |
|
|
if (fstar.w[5] > half256[ind] || (fstar.w[5] == half256[ind] &&
|
893 |
|
|
(fstar.w[4] || fstar.w[3]
|
894 |
|
|
|| fstar.w[2] || fstar.w[1]
|
895 |
|
|
|| fstar.w[0]))) {
|
896 |
|
|
// f* > 1/2 and the result may be exact
|
897 |
|
|
// Calculate f* - 1/2
|
898 |
|
|
tmp64 = fstar.w[5] - half256[ind];
|
899 |
|
|
if (tmp64 || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
900 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
901 |
|
|
} // else the result is exact
|
902 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
903 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
904 |
|
|
}
|
905 |
|
|
} else if (ind <= 57) { // if 38 <= ind <= 57
|
906 |
|
|
if (fstar.w[6] > half256[ind] || (fstar.w[6] == half256[ind] &&
|
907 |
|
|
(fstar.w[5] || fstar.w[4]
|
908 |
|
|
|| fstar.w[3] || fstar.w[2]
|
909 |
|
|
|| fstar.w[1] || fstar.w[0]))) {
|
910 |
|
|
// f* > 1/2 and the result may be exact
|
911 |
|
|
// Calculate f* - 1/2
|
912 |
|
|
tmp64 = fstar.w[6] - half256[ind];
|
913 |
|
|
if (tmp64 || fstar.w[5] || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
914 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
915 |
|
|
} // else the result is exact
|
916 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
917 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
918 |
|
|
}
|
919 |
|
|
} else { // if 58 <= ind <= 74
|
920 |
|
|
if (fstar.w[7] > half256[ind] || (fstar.w[7] == half256[ind] &&
|
921 |
|
|
(fstar.w[6] || fstar.w[5]
|
922 |
|
|
|| fstar.w[4] || fstar.w[3]
|
923 |
|
|
|| fstar.w[2] || fstar.w[1]
|
924 |
|
|
|| fstar.w[0]))) {
|
925 |
|
|
// f* > 1/2 and the result may be exact
|
926 |
|
|
// Calculate f* - 1/2
|
927 |
|
|
tmp64 = fstar.w[7] - half256[ind];
|
928 |
|
|
if (tmp64 || fstar.w[6] || fstar.w[5] || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
929 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
930 |
|
|
} // else the result is exact
|
931 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
932 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
933 |
|
|
}
|
934 |
|
|
}
|
935 |
|
|
// check for midpoints (could do this before determining inexactness)
|
936 |
|
|
if (fstar.w[7] == 0 && fstar.w[6] == 0 &&
|
937 |
|
|
fstar.w[5] == 0 && fstar.w[4] == 0 &&
|
938 |
|
|
(fstar.w[3] < ten2mxtrunc256[ind].w[3] ||
|
939 |
|
|
(fstar.w[3] == ten2mxtrunc256[ind].w[3] &&
|
940 |
|
|
fstar.w[2] < ten2mxtrunc256[ind].w[2]) ||
|
941 |
|
|
(fstar.w[3] == ten2mxtrunc256[ind].w[3] &&
|
942 |
|
|
fstar.w[2] == ten2mxtrunc256[ind].w[2] &&
|
943 |
|
|
fstar.w[1] < ten2mxtrunc256[ind].w[1]) ||
|
944 |
|
|
(fstar.w[3] == ten2mxtrunc256[ind].w[3] &&
|
945 |
|
|
fstar.w[2] == ten2mxtrunc256[ind].w[2] &&
|
946 |
|
|
fstar.w[1] == ten2mxtrunc256[ind].w[1] &&
|
947 |
|
|
fstar.w[0] <= ten2mxtrunc256[ind].w[0]))) {
|
948 |
|
|
// the result is a midpoint
|
949 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
|
950 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result may be 0
|
951 |
|
|
Cstar.w[0]--; // Cstar is now even
|
952 |
|
|
if (Cstar.w[0] == 0xffffffffffffffffULL) {
|
953 |
|
|
Cstar.w[1]--;
|
954 |
|
|
if (Cstar.w[1] == 0xffffffffffffffffULL) {
|
955 |
|
|
Cstar.w[2]--;
|
956 |
|
|
if (Cstar.w[2] == 0xffffffffffffffffULL) {
|
957 |
|
|
Cstar.w[3]--;
|
958 |
|
|
}
|
959 |
|
|
}
|
960 |
|
|
}
|
961 |
|
|
*ptr_is_midpoint_gt_even = 1;
|
962 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
963 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
964 |
|
|
} else { // else MP in [ODD, EVEN]
|
965 |
|
|
*ptr_is_midpoint_lt_even = 1;
|
966 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
967 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
968 |
|
|
}
|
969 |
|
|
}
|
970 |
|
|
// check for rounding overflow, which occurs if Cstar = 10^(q-x)
|
971 |
|
|
ind = q - x; // 1 <= ind <= q - 1
|
972 |
|
|
if (ind <= 19) {
|
973 |
|
|
if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL &&
|
974 |
|
|
Cstar.w[1] == 0x0ULL && Cstar.w[0] == ten2k64[ind]) {
|
975 |
|
|
// if Cstar = 10^(q-x)
|
976 |
|
|
Cstar.w[0] = ten2k64[ind - 1]; // Cstar = 10^(q-x-1)
|
977 |
|
|
*incr_exp = 1;
|
978 |
|
|
} else {
|
979 |
|
|
*incr_exp = 0;
|
980 |
|
|
}
|
981 |
|
|
} else if (ind == 20) {
|
982 |
|
|
// if ind = 20
|
983 |
|
|
if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL &&
|
984 |
|
|
Cstar.w[1] == ten2k128[0].w[1]
|
985 |
|
|
&& Cstar.w[0] == ten2k128[0].w[0]) {
|
986 |
|
|
// if Cstar = 10^(q-x)
|
987 |
|
|
Cstar.w[0] = ten2k64[19]; // Cstar = 10^(q-x-1)
|
988 |
|
|
Cstar.w[1] = 0x0ULL;
|
989 |
|
|
*incr_exp = 1;
|
990 |
|
|
} else {
|
991 |
|
|
*incr_exp = 0;
|
992 |
|
|
}
|
993 |
|
|
} else if (ind <= 38) { // if 21 <= ind <= 38
|
994 |
|
|
if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL &&
|
995 |
|
|
Cstar.w[1] == ten2k128[ind - 20].w[1] &&
|
996 |
|
|
Cstar.w[0] == ten2k128[ind - 20].w[0]) {
|
997 |
|
|
// if Cstar = 10^(q-x)
|
998 |
|
|
Cstar.w[0] = ten2k128[ind - 21].w[0]; // Cstar = 10^(q-x-1)
|
999 |
|
|
Cstar.w[1] = ten2k128[ind - 21].w[1];
|
1000 |
|
|
*incr_exp = 1;
|
1001 |
|
|
} else {
|
1002 |
|
|
*incr_exp = 0;
|
1003 |
|
|
}
|
1004 |
|
|
} else if (ind == 39) {
|
1005 |
|
|
if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == ten2k256[0].w[2] &&
|
1006 |
|
|
Cstar.w[1] == ten2k256[0].w[1]
|
1007 |
|
|
&& Cstar.w[0] == ten2k256[0].w[0]) {
|
1008 |
|
|
// if Cstar = 10^(q-x)
|
1009 |
|
|
Cstar.w[0] = ten2k128[18].w[0]; // Cstar = 10^(q-x-1)
|
1010 |
|
|
Cstar.w[1] = ten2k128[18].w[1];
|
1011 |
|
|
Cstar.w[2] = 0x0ULL;
|
1012 |
|
|
*incr_exp = 1;
|
1013 |
|
|
} else {
|
1014 |
|
|
*incr_exp = 0;
|
1015 |
|
|
}
|
1016 |
|
|
} else if (ind <= 57) { // if 40 <= ind <= 57
|
1017 |
|
|
if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == ten2k256[ind - 39].w[2] &&
|
1018 |
|
|
Cstar.w[1] == ten2k256[ind - 39].w[1] &&
|
1019 |
|
|
Cstar.w[0] == ten2k256[ind - 39].w[0]) {
|
1020 |
|
|
// if Cstar = 10^(q-x)
|
1021 |
|
|
Cstar.w[0] = ten2k256[ind - 40].w[0]; // Cstar = 10^(q-x-1)
|
1022 |
|
|
Cstar.w[1] = ten2k256[ind - 40].w[1];
|
1023 |
|
|
Cstar.w[2] = ten2k256[ind - 40].w[2];
|
1024 |
|
|
*incr_exp = 1;
|
1025 |
|
|
} else {
|
1026 |
|
|
*incr_exp = 0;
|
1027 |
|
|
}
|
1028 |
|
|
// else if (ind == 58) is not needed becauae we do not have ten2k192[] yet
|
1029 |
|
|
} else { // if 58 <= ind <= 77 (actually 58 <= ind <= 74)
|
1030 |
|
|
if (Cstar.w[3] == ten2k256[ind - 39].w[3] &&
|
1031 |
|
|
Cstar.w[2] == ten2k256[ind - 39].w[2] &&
|
1032 |
|
|
Cstar.w[1] == ten2k256[ind - 39].w[1] &&
|
1033 |
|
|
Cstar.w[0] == ten2k256[ind - 39].w[0]) {
|
1034 |
|
|
// if Cstar = 10^(q-x)
|
1035 |
|
|
Cstar.w[0] = ten2k256[ind - 40].w[0]; // Cstar = 10^(q-x-1)
|
1036 |
|
|
Cstar.w[1] = ten2k256[ind - 40].w[1];
|
1037 |
|
|
Cstar.w[2] = ten2k256[ind - 40].w[2];
|
1038 |
|
|
Cstar.w[3] = ten2k256[ind - 40].w[3];
|
1039 |
|
|
*incr_exp = 1;
|
1040 |
|
|
} else {
|
1041 |
|
|
*incr_exp = 0;
|
1042 |
|
|
}
|
1043 |
|
|
}
|
1044 |
|
|
ptr_Cstar->w[3] = Cstar.w[3];
|
1045 |
|
|
ptr_Cstar->w[2] = Cstar.w[2];
|
1046 |
|
|
ptr_Cstar->w[1] = Cstar.w[1];
|
1047 |
|
|
ptr_Cstar->w[0] = Cstar.w[0];
|
1048 |
|
|
|
1049 |
|
|
}
|