OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [libstdc++-v3/] [include/] [ext/] [bitmap_allocator.h] - Blame information for rev 424

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 424 jeremybenn
// Bitmap Allocator. -*- C++ -*-
2
 
3
// Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
 
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
 
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// <http://www.gnu.org/licenses/>.
25
 
26
/** @file ext/bitmap_allocator.h
27
 *  This file is a GNU extension to the Standard C++ Library.
28
 */
29
 
30
#ifndef _BITMAP_ALLOCATOR_H
31
#define _BITMAP_ALLOCATOR_H 1
32
 
33
#include <cstddef> // For std::size_t, and ptrdiff_t.
34
#include <bits/functexcept.h> // For __throw_bad_alloc().
35
#include <utility> // For std::pair.
36
#include <functional> // For greater_equal, and less_equal.
37
#include <new> // For operator new.
38
#include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
39
#include <ext/concurrence.h>
40
#include <bits/move.h>
41
 
42
/** @brief The constant in the expression below is the alignment
43
 * required in bytes.
44
 */
45
#define _BALLOC_ALIGN_BYTES 8
46
 
47
_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
48
 
49
  using std::size_t;
50
  using std::ptrdiff_t;
51
 
52
  namespace __detail
53
  {
54
    /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
55
     *
56
     *  @brief  __mini_vector<> is a stripped down version of the
57
     *  full-fledged std::vector<>.
58
     *
59
     *  It is to be used only for built-in types or PODs. Notable
60
     *  differences are:
61
     *
62
     *  @detail
63
     *  1. Not all accessor functions are present.
64
     *  2. Used ONLY for PODs.
65
     *  3. No Allocator template argument. Uses ::operator new() to get
66
     *  memory, and ::operator delete() to free it.
67
     *  Caveat: The dtor does NOT free the memory allocated, so this a
68
     *  memory-leaking vector!
69
     */
70
    template<typename _Tp>
71
      class __mini_vector
72
      {
73
        __mini_vector(const __mini_vector&);
74
        __mini_vector& operator=(const __mini_vector&);
75
 
76
      public:
77
        typedef _Tp value_type;
78
        typedef _Tp* pointer;
79
        typedef _Tp& reference;
80
        typedef const _Tp& const_reference;
81
        typedef size_t size_type;
82
        typedef ptrdiff_t difference_type;
83
        typedef pointer iterator;
84
 
85
      private:
86
        pointer _M_start;
87
        pointer _M_finish;
88
        pointer _M_end_of_storage;
89
 
90
        size_type
91
        _M_space_left() const throw()
92
        { return _M_end_of_storage - _M_finish; }
93
 
94
        pointer
95
        allocate(size_type __n)
96
        { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
97
 
98
        void
99
        deallocate(pointer __p, size_type)
100
        { ::operator delete(__p); }
101
 
102
      public:
103
        // Members used: size(), push_back(), pop_back(),
104
        // insert(iterator, const_reference), erase(iterator),
105
        // begin(), end(), back(), operator[].
106
 
107
        __mini_vector()
108
        : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
109
 
110
        size_type
111
        size() const throw()
112
        { return _M_finish - _M_start; }
113
 
114
        iterator
115
        begin() const throw()
116
        { return this->_M_start; }
117
 
118
        iterator
119
        end() const throw()
120
        { return this->_M_finish; }
121
 
122
        reference
123
        back() const throw()
124
        { return *(this->end() - 1); }
125
 
126
        reference
127
        operator[](const size_type __pos) const throw()
128
        { return this->_M_start[__pos]; }
129
 
130
        void
131
        insert(iterator __pos, const_reference __x);
132
 
133
        void
134
        push_back(const_reference __x)
135
        {
136
          if (this->_M_space_left())
137
            {
138
              *this->end() = __x;
139
              ++this->_M_finish;
140
            }
141
          else
142
            this->insert(this->end(), __x);
143
        }
144
 
145
        void
146
        pop_back() throw()
147
        { --this->_M_finish; }
148
 
149
        void
150
        erase(iterator __pos) throw();
151
 
152
        void
153
        clear() throw()
154
        { this->_M_finish = this->_M_start; }
155
      };
156
 
157
    // Out of line function definitions.
158
    template<typename _Tp>
159
      void __mini_vector<_Tp>::
160
      insert(iterator __pos, const_reference __x)
161
      {
162
        if (this->_M_space_left())
163
          {
164
            size_type __to_move = this->_M_finish - __pos;
165
            iterator __dest = this->end();
166
            iterator __src = this->end() - 1;
167
 
168
            ++this->_M_finish;
169
            while (__to_move)
170
              {
171
                *__dest = *__src;
172
                --__dest; --__src; --__to_move;
173
              }
174
            *__pos = __x;
175
          }
176
        else
177
          {
178
            size_type __new_size = this->size() ? this->size() * 2 : 1;
179
            iterator __new_start = this->allocate(__new_size);
180
            iterator __first = this->begin();
181
            iterator __start = __new_start;
182
            while (__first != __pos)
183
              {
184
                *__start = *__first;
185
                ++__start; ++__first;
186
              }
187
            *__start = __x;
188
            ++__start;
189
            while (__first != this->end())
190
              {
191
                *__start = *__first;
192
                ++__start; ++__first;
193
              }
194
            if (this->_M_start)
195
              this->deallocate(this->_M_start, this->size());
196
 
197
            this->_M_start = __new_start;
198
            this->_M_finish = __start;
199
            this->_M_end_of_storage = this->_M_start + __new_size;
200
          }
201
      }
202
 
203
    template<typename _Tp>
204
      void __mini_vector<_Tp>::
205
      erase(iterator __pos) throw()
206
      {
207
        while (__pos + 1 != this->end())
208
          {
209
            *__pos = __pos[1];
210
            ++__pos;
211
          }
212
        --this->_M_finish;
213
      }
214
 
215
 
216
    template<typename _Tp>
217
      struct __mv_iter_traits
218
      {
219
        typedef typename _Tp::value_type value_type;
220
        typedef typename _Tp::difference_type difference_type;
221
      };
222
 
223
    template<typename _Tp>
224
      struct __mv_iter_traits<_Tp*>
225
      {
226
        typedef _Tp value_type;
227
        typedef ptrdiff_t difference_type;
228
      };
229
 
230
    enum
231
      {
232
        bits_per_byte = 8,
233
        bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
234
      };
235
 
236
    template<typename _ForwardIterator, typename _Tp, typename _Compare>
237
      _ForwardIterator
238
      __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
239
                    const _Tp& __val, _Compare __comp)
240
      {
241
        typedef typename __mv_iter_traits<_ForwardIterator>::value_type
242
          _ValueType;
243
        typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
244
          _DistanceType;
245
 
246
        _DistanceType __len = __last - __first;
247
        _DistanceType __half;
248
        _ForwardIterator __middle;
249
 
250
        while (__len > 0)
251
          {
252
            __half = __len >> 1;
253
            __middle = __first;
254
            __middle += __half;
255
            if (__comp(*__middle, __val))
256
              {
257
                __first = __middle;
258
                ++__first;
259
                __len = __len - __half - 1;
260
              }
261
            else
262
              __len = __half;
263
          }
264
        return __first;
265
      }
266
 
267
    /** @brief The number of Blocks pointed to by the address pair
268
     *  passed to the function.
269
     */
270
    template<typename _AddrPair>
271
      inline size_t
272
      __num_blocks(_AddrPair __ap)
273
      { return (__ap.second - __ap.first) + 1; }
274
 
275
    /** @brief The number of Bit-maps pointed to by the address pair
276
     *  passed to the function.
277
     */
278
    template<typename _AddrPair>
279
      inline size_t
280
      __num_bitmaps(_AddrPair __ap)
281
      { return __num_blocks(__ap) / size_t(bits_per_block); }
282
 
283
    // _Tp should be a pointer type.
284
    template<typename _Tp>
285
      class _Inclusive_between
286
      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
287
      {
288
        typedef _Tp pointer;
289
        pointer _M_ptr_value;
290
        typedef typename std::pair<_Tp, _Tp> _Block_pair;
291
 
292
      public:
293
        _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
294
        { }
295
 
296
        bool
297
        operator()(_Block_pair __bp) const throw()
298
        {
299
          if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
300
              && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
301
            return true;
302
          else
303
            return false;
304
        }
305
      };
306
 
307
    // Used to pass a Functor to functions by reference.
308
    template<typename _Functor>
309
      class _Functor_Ref
310
      : public std::unary_function<typename _Functor::argument_type,
311
                                   typename _Functor::result_type>
312
      {
313
        _Functor& _M_fref;
314
 
315
      public:
316
        typedef typename _Functor::argument_type argument_type;
317
        typedef typename _Functor::result_type result_type;
318
 
319
        _Functor_Ref(_Functor& __fref) : _M_fref(__fref)
320
        { }
321
 
322
        result_type
323
        operator()(argument_type __arg)
324
        { return _M_fref(__arg); }
325
      };
326
 
327
    /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
328
     *
329
     *  @brief  The class which acts as a predicate for applying the
330
     *  first-fit memory allocation policy for the bitmap allocator.
331
     */
332
    // _Tp should be a pointer type, and _Alloc is the Allocator for
333
    // the vector.
334
    template<typename _Tp>
335
      class _Ffit_finder
336
      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
337
      {
338
        typedef typename std::pair<_Tp, _Tp> _Block_pair;
339
        typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
340
        typedef typename _BPVector::difference_type _Counter_type;
341
 
342
        size_t* _M_pbitmap;
343
        _Counter_type _M_data_offset;
344
 
345
      public:
346
        _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
347
        { }
348
 
349
        bool
350
        operator()(_Block_pair __bp) throw()
351
        {
352
          // Set the _rover to the last physical location bitmap,
353
          // which is the bitmap which belongs to the first free
354
          // block. Thus, the bitmaps are in exact reverse order of
355
          // the actual memory layout. So, we count down the bitmaps,
356
          // which is the same as moving up the memory.
357
 
358
          // If the used count stored at the start of the Bit Map headers
359
          // is equal to the number of Objects that the current Block can
360
          // store, then there is definitely no space for another single
361
          // object, so just return false.
362
          _Counter_type __diff = __detail::__num_bitmaps(__bp);
363
 
364
          if (*(reinterpret_cast<size_t*>
365
                (__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
366
            return false;
367
 
368
          size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
369
 
370
          for (_Counter_type __i = 0; __i < __diff; ++__i)
371
            {
372
              _M_data_offset = __i;
373
              if (*__rover)
374
                {
375
                  _M_pbitmap = __rover;
376
                  return true;
377
                }
378
              --__rover;
379
            }
380
          return false;
381
        }
382
 
383
        size_t*
384
        _M_get() const throw()
385
        { return _M_pbitmap; }
386
 
387
        _Counter_type
388
        _M_offset() const throw()
389
        { return _M_data_offset * size_t(bits_per_block); }
390
      };
391
 
392
    /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
393
     *
394
     *  @brief  The bitmap counter which acts as the bitmap
395
     *  manipulator, and manages the bit-manipulation functions and
396
     *  the searching and identification functions on the bit-map.
397
     */
398
    // _Tp should be a pointer type.
399
    template<typename _Tp>
400
      class _Bitmap_counter
401
      {
402
        typedef typename
403
        __detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
404
        typedef typename _BPVector::size_type _Index_type;
405
        typedef _Tp pointer;
406
 
407
        _BPVector& _M_vbp;
408
        size_t* _M_curr_bmap;
409
        size_t* _M_last_bmap_in_block;
410
        _Index_type _M_curr_index;
411
 
412
      public:
413
        // Use the 2nd parameter with care. Make sure that such an
414
        // entry exists in the vector before passing that particular
415
        // index to this ctor.
416
        _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
417
        { this->_M_reset(__index); }
418
 
419
        void
420
        _M_reset(long __index = -1) throw()
421
        {
422
          if (__index == -1)
423
            {
424
              _M_curr_bmap = 0;
425
              _M_curr_index = static_cast<_Index_type>(-1);
426
              return;
427
            }
428
 
429
          _M_curr_index = __index;
430
          _M_curr_bmap = reinterpret_cast<size_t*>
431
            (_M_vbp[_M_curr_index].first) - 1;
432
 
433
          _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
434
 
435
          _M_last_bmap_in_block = _M_curr_bmap
436
            - ((_M_vbp[_M_curr_index].second
437
                - _M_vbp[_M_curr_index].first + 1)
438
               / size_t(bits_per_block) - 1);
439
        }
440
 
441
        // Dangerous Function! Use with extreme care. Pass to this
442
        // function ONLY those values that are known to be correct,
443
        // otherwise this will mess up big time.
444
        void
445
        _M_set_internal_bitmap(size_t* __new_internal_marker) throw()
446
        { _M_curr_bmap = __new_internal_marker; }
447
 
448
        bool
449
        _M_finished() const throw()
450
        { return(_M_curr_bmap == 0); }
451
 
452
        _Bitmap_counter&
453
        operator++() throw()
454
        {
455
          if (_M_curr_bmap == _M_last_bmap_in_block)
456
            {
457
              if (++_M_curr_index == _M_vbp.size())
458
                _M_curr_bmap = 0;
459
              else
460
                this->_M_reset(_M_curr_index);
461
            }
462
          else
463
            --_M_curr_bmap;
464
          return *this;
465
        }
466
 
467
        size_t*
468
        _M_get() const throw()
469
        { return _M_curr_bmap; }
470
 
471
        pointer
472
        _M_base() const throw()
473
        { return _M_vbp[_M_curr_index].first; }
474
 
475
        _Index_type
476
        _M_offset() const throw()
477
        {
478
          return size_t(bits_per_block)
479
            * ((reinterpret_cast<size_t*>(this->_M_base())
480
                - _M_curr_bmap) - 1);
481
        }
482
 
483
        _Index_type
484
        _M_where() const throw()
485
        { return _M_curr_index; }
486
      };
487
 
488
    /** @brief  Mark a memory address as allocated by re-setting the
489
     *  corresponding bit in the bit-map.
490
     */
491
    inline void
492
    __bit_allocate(size_t* __pbmap, size_t __pos) throw()
493
    {
494
      size_t __mask = 1 << __pos;
495
      __mask = ~__mask;
496
      *__pbmap &= __mask;
497
    }
498
 
499
    /** @brief  Mark a memory address as free by setting the
500
     *  corresponding bit in the bit-map.
501
     */
502
    inline void
503
    __bit_free(size_t* __pbmap, size_t __pos) throw()
504
    {
505
      size_t __mask = 1 << __pos;
506
      *__pbmap |= __mask;
507
    }
508
  } // namespace __detail
509
 
510
  /** @brief  Generic Version of the bsf instruction.
511
   */
512
  inline size_t
513
  _Bit_scan_forward(size_t __num)
514
  { return static_cast<size_t>(__builtin_ctzl(__num)); }
515
 
516
  /** @class  free_list bitmap_allocator.h bitmap_allocator.h
517
   *
518
   *  @brief  The free list class for managing chunks of memory to be
519
   *  given to and returned by the bitmap_allocator.
520
   */
521
  class free_list
522
  {
523
  public:
524
    typedef size_t*                             value_type;
525
    typedef __detail::__mini_vector<value_type> vector_type;
526
    typedef vector_type::iterator               iterator;
527
    typedef __mutex                             __mutex_type;
528
 
529
  private:
530
    struct _LT_pointer_compare
531
    {
532
      bool
533
      operator()(const size_t* __pui,
534
                 const size_t __cui) const throw()
535
      { return *__pui < __cui; }
536
    };
537
 
538
#if defined __GTHREADS
539
    __mutex_type&
540
    _M_get_mutex()
541
    {
542
      static __mutex_type _S_mutex;
543
      return _S_mutex;
544
    }
545
#endif
546
 
547
    vector_type&
548
    _M_get_free_list()
549
    {
550
      static vector_type _S_free_list;
551
      return _S_free_list;
552
    }
553
 
554
    /** @brief  Performs validation of memory based on their size.
555
     *
556
     *  @param  __addr The pointer to the memory block to be
557
     *  validated.
558
     *
559
     *  @detail  Validates the memory block passed to this function and
560
     *  appropriately performs the action of managing the free list of
561
     *  blocks by adding this block to the free list or deleting this
562
     *  or larger blocks from the free list.
563
     */
564
    void
565
    _M_validate(size_t* __addr) throw()
566
    {
567
      vector_type& __free_list = _M_get_free_list();
568
      const vector_type::size_type __max_size = 64;
569
      if (__free_list.size() >= __max_size)
570
        {
571
          // Ok, the threshold value has been reached.  We determine
572
          // which block to remove from the list of free blocks.
573
          if (*__addr >= *__free_list.back())
574
            {
575
              // Ok, the new block is greater than or equal to the
576
              // last block in the list of free blocks. We just free
577
              // the new block.
578
              ::operator delete(static_cast<void*>(__addr));
579
              return;
580
            }
581
          else
582
            {
583
              // Deallocate the last block in the list of free lists,
584
              // and insert the new one in its correct position.
585
              ::operator delete(static_cast<void*>(__free_list.back()));
586
              __free_list.pop_back();
587
            }
588
        }
589
 
590
      // Just add the block to the list of free lists unconditionally.
591
      iterator __temp = __detail::__lower_bound
592
        (__free_list.begin(), __free_list.end(),
593
         *__addr, _LT_pointer_compare());
594
 
595
      // We may insert the new free list before _temp;
596
      __free_list.insert(__temp, __addr);
597
    }
598
 
599
    /** @brief  Decides whether the wastage of memory is acceptable for
600
     *  the current memory request and returns accordingly.
601
     *
602
     *  @param __block_size The size of the block available in the free
603
     *  list.
604
     *
605
     *  @param __required_size The required size of the memory block.
606
     *
607
     *  @return true if the wastage incurred is acceptable, else returns
608
     *  false.
609
     */
610
    bool
611
    _M_should_i_give(size_t __block_size,
612
                     size_t __required_size) throw()
613
    {
614
      const size_t __max_wastage_percentage = 36;
615
      if (__block_size >= __required_size &&
616
          (((__block_size - __required_size) * 100 / __block_size)
617
           < __max_wastage_percentage))
618
        return true;
619
      else
620
        return false;
621
    }
622
 
623
  public:
624
    /** @brief This function returns the block of memory to the
625
     *  internal free list.
626
     *
627
     *  @param  __addr The pointer to the memory block that was given
628
     *  by a call to the _M_get function.
629
     */
630
    inline void
631
    _M_insert(size_t* __addr) throw()
632
    {
633
#if defined __GTHREADS
634
      __scoped_lock __bfl_lock(_M_get_mutex());
635
#endif
636
      // Call _M_validate to decide what should be done with
637
      // this particular free list.
638
      this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
639
      // See discussion as to why this is 1!
640
    }
641
 
642
    /** @brief  This function gets a block of memory of the specified
643
     *  size from the free list.
644
     *
645
     *  @param  __sz The size in bytes of the memory required.
646
     *
647
     *  @return  A pointer to the new memory block of size at least
648
     *  equal to that requested.
649
     */
650
    size_t*
651
    _M_get(size_t __sz) throw(std::bad_alloc);
652
 
653
    /** @brief  This function just clears the internal Free List, and
654
     *  gives back all the memory to the OS.
655
     */
656
    void
657
    _M_clear();
658
  };
659
 
660
 
661
  // Forward declare the class.
662
  template<typename _Tp>
663
    class bitmap_allocator;
664
 
665
  // Specialize for void:
666
  template<>
667
    class bitmap_allocator<void>
668
    {
669
    public:
670
      typedef void*       pointer;
671
      typedef const void* const_pointer;
672
 
673
      // Reference-to-void members are impossible.
674
      typedef void  value_type;
675
      template<typename _Tp1>
676
        struct rebind
677
        {
678
          typedef bitmap_allocator<_Tp1> other;
679
        };
680
    };
681
 
682
  /**
683
   * @brief Bitmap Allocator, primary template.
684
   * @ingroup allocators
685
   */
686
  template<typename _Tp>
687
    class bitmap_allocator : private free_list
688
    {
689
    public:
690
      typedef size_t                    size_type;
691
      typedef ptrdiff_t                 difference_type;
692
      typedef _Tp*                      pointer;
693
      typedef const _Tp*                const_pointer;
694
      typedef _Tp&                      reference;
695
      typedef const _Tp&                const_reference;
696
      typedef _Tp                       value_type;
697
      typedef free_list::__mutex_type   __mutex_type;
698
 
699
      template<typename _Tp1>
700
        struct rebind
701
        {
702
          typedef bitmap_allocator<_Tp1> other;
703
        };
704
 
705
    private:
706
      template<size_t _BSize, size_t _AlignSize>
707
        struct aligned_size
708
        {
709
          enum
710
            {
711
              modulus = _BSize % _AlignSize,
712
              value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
713
            };
714
        };
715
 
716
      struct _Alloc_block
717
      {
718
        char __M_unused[aligned_size<sizeof(value_type),
719
                        _BALLOC_ALIGN_BYTES>::value];
720
      };
721
 
722
 
723
      typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
724
 
725
      typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
726
      typedef typename _BPVector::iterator _BPiter;
727
 
728
      template<typename _Predicate>
729
        static _BPiter
730
        _S_find(_Predicate __p)
731
        {
732
          _BPiter __first = _S_mem_blocks.begin();
733
          while (__first != _S_mem_blocks.end() && !__p(*__first))
734
            ++__first;
735
          return __first;
736
        }
737
 
738
#if defined _GLIBCXX_DEBUG
739
      // Complexity: O(lg(N)). Where, N is the number of block of size
740
      // sizeof(value_type).
741
      void
742
      _S_check_for_free_blocks() throw()
743
      {
744
        typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
745
        _BPiter __bpi = _S_find(_FFF());
746
 
747
        _GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
748
      }
749
#endif
750
 
751
      /** @brief  Responsible for exponentially growing the internal
752
       *  memory pool.
753
       *
754
       *  @throw  std::bad_alloc. If memory can not be allocated.
755
       *
756
       *  @detail  Complexity: O(1), but internally depends upon the
757
       *  complexity of the function free_list::_M_get. The part where
758
       *  the bitmap headers are written has complexity: O(X),where X
759
       *  is the number of blocks of size sizeof(value_type) within
760
       *  the newly acquired block. Having a tight bound.
761
       */
762
      void
763
      _S_refill_pool() throw(std::bad_alloc)
764
      {
765
#if defined _GLIBCXX_DEBUG
766
        _S_check_for_free_blocks();
767
#endif
768
 
769
        const size_t __num_bitmaps = (_S_block_size
770
                                      / size_t(__detail::bits_per_block));
771
        const size_t __size_to_allocate = sizeof(size_t)
772
          + _S_block_size * sizeof(_Alloc_block)
773
          + __num_bitmaps * sizeof(size_t);
774
 
775
        size_t* __temp =
776
          reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
777
        *__temp = 0;
778
        ++__temp;
779
 
780
        // The Header information goes at the Beginning of the Block.
781
        _Block_pair __bp =
782
          std::make_pair(reinterpret_cast<_Alloc_block*>
783
                         (__temp + __num_bitmaps),
784
                         reinterpret_cast<_Alloc_block*>
785
                         (__temp + __num_bitmaps)
786
                         + _S_block_size - 1);
787
 
788
        // Fill the Vector with this information.
789
        _S_mem_blocks.push_back(__bp);
790
 
791
        for (size_t __i = 0; __i < __num_bitmaps; ++__i)
792
          __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
793
 
794
        _S_block_size *= 2;
795
      }
796
 
797
      static _BPVector _S_mem_blocks;
798
      static size_t _S_block_size;
799
      static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
800
      static typename _BPVector::size_type _S_last_dealloc_index;
801
#if defined __GTHREADS
802
      static __mutex_type _S_mut;
803
#endif
804
 
805
    public:
806
 
807
      /** @brief  Allocates memory for a single object of size
808
       *  sizeof(_Tp).
809
       *
810
       *  @throw  std::bad_alloc. If memory can not be allocated.
811
       *
812
       *  @detail  Complexity: Worst case complexity is O(N), but that
813
       *  is hardly ever hit. If and when this particular case is
814
       *  encountered, the next few cases are guaranteed to have a
815
       *  worst case complexity of O(1)!  That's why this function
816
       *  performs very well on average. You can consider this
817
       *  function to have a complexity referred to commonly as:
818
       *  Amortized Constant time.
819
       */
820
      pointer
821
      _M_allocate_single_object() throw(std::bad_alloc)
822
      {
823
#if defined __GTHREADS
824
        __scoped_lock __bit_lock(_S_mut);
825
#endif
826
 
827
        // The algorithm is something like this: The last_request
828
        // variable points to the last accessed Bit Map. When such a
829
        // condition occurs, we try to find a free block in the
830
        // current bitmap, or succeeding bitmaps until the last bitmap
831
        // is reached. If no free block turns up, we resort to First
832
        // Fit method.
833
 
834
        // WARNING: Do not re-order the condition in the while
835
        // statement below, because it relies on C++'s short-circuit
836
        // evaluation. The return from _S_last_request->_M_get() will
837
        // NOT be dereference able if _S_last_request->_M_finished()
838
        // returns true. This would inevitably lead to a NULL pointer
839
        // dereference if tinkered with.
840
        while (_S_last_request._M_finished() == false
841
               && (*(_S_last_request._M_get()) == 0))
842
          _S_last_request.operator++();
843
 
844
        if (__builtin_expect(_S_last_request._M_finished() == true, false))
845
          {
846
            // Fall Back to First Fit algorithm.
847
            typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
848
            _FFF __fff;
849
            _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
850
 
851
            if (__bpi != _S_mem_blocks.end())
852
              {
853
                // Search was successful. Ok, now mark the first bit from
854
                // the right as 0, meaning Allocated. This bit is obtained
855
                // by calling _M_get() on __fff.
856
                size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
857
                __detail::__bit_allocate(__fff._M_get(), __nz_bit);
858
 
859
                _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
860
 
861
                // Now, get the address of the bit we marked as allocated.
862
                pointer __ret = reinterpret_cast<pointer>
863
                  (__bpi->first + __fff._M_offset() + __nz_bit);
864
                size_t* __puse_count =
865
                  reinterpret_cast<size_t*>
866
                  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
867
 
868
                ++(*__puse_count);
869
                return __ret;
870
              }
871
            else
872
              {
873
                // Search was unsuccessful. We Add more memory to the
874
                // pool by calling _S_refill_pool().
875
                _S_refill_pool();
876
 
877
                // _M_Reset the _S_last_request structure to the first
878
                // free block's bit map.
879
                _S_last_request._M_reset(_S_mem_blocks.size() - 1);
880
 
881
                // Now, mark that bit as allocated.
882
              }
883
          }
884
 
885
        // _S_last_request holds a pointer to a valid bit map, that
886
        // points to a free block in memory.
887
        size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
888
        __detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
889
 
890
        pointer __ret = reinterpret_cast<pointer>
891
          (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
892
 
893
        size_t* __puse_count = reinterpret_cast<size_t*>
894
          (_S_mem_blocks[_S_last_request._M_where()].first)
895
          - (__detail::
896
             __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
897
 
898
        ++(*__puse_count);
899
        return __ret;
900
      }
901
 
902
      /** @brief  Deallocates memory that belongs to a single object of
903
       *  size sizeof(_Tp).
904
       *
905
       *  @detail  Complexity: O(lg(N)), but the worst case is not hit
906
       *  often!  This is because containers usually deallocate memory
907
       *  close to each other and this case is handled in O(1) time by
908
       *  the deallocate function.
909
       */
910
      void
911
      _M_deallocate_single_object(pointer __p) throw()
912
      {
913
#if defined __GTHREADS
914
        __scoped_lock __bit_lock(_S_mut);
915
#endif
916
        _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
917
 
918
        typedef typename _BPVector::iterator _Iterator;
919
        typedef typename _BPVector::difference_type _Difference_type;
920
 
921
        _Difference_type __diff;
922
        long __displacement;
923
 
924
        _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
925
 
926
        __detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
927
        if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
928
          {
929
            _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
930
                                  <= _S_mem_blocks.size() - 1);
931
 
932
            // Initial Assumption was correct!
933
            __diff = _S_last_dealloc_index;
934
            __displacement = __real_p - _S_mem_blocks[__diff].first;
935
          }
936
        else
937
          {
938
            _Iterator _iter = _S_find(__ibt);
939
 
940
            _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
941
 
942
            __diff = _iter - _S_mem_blocks.begin();
943
            __displacement = __real_p - _S_mem_blocks[__diff].first;
944
            _S_last_dealloc_index = __diff;
945
          }
946
 
947
        // Get the position of the iterator that has been found.
948
        const size_t __rotate = (__displacement
949
                                 % size_t(__detail::bits_per_block));
950
        size_t* __bitmapC =
951
          reinterpret_cast<size_t*>
952
          (_S_mem_blocks[__diff].first) - 1;
953
        __bitmapC -= (__displacement / size_t(__detail::bits_per_block));
954
 
955
        __detail::__bit_free(__bitmapC, __rotate);
956
        size_t* __puse_count = reinterpret_cast<size_t*>
957
          (_S_mem_blocks[__diff].first)
958
          - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
959
 
960
        _GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
961
 
962
        --(*__puse_count);
963
 
964
        if (__builtin_expect(*__puse_count == 0, false))
965
          {
966
            _S_block_size /= 2;
967
 
968
            // We can safely remove this block.
969
            // _Block_pair __bp = _S_mem_blocks[__diff];
970
            this->_M_insert(__puse_count);
971
            _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
972
 
973
            // Reset the _S_last_request variable to reflect the
974
            // erased block. We do this to protect future requests
975
            // after the last block has been removed from a particular
976
            // memory Chunk, which in turn has been returned to the
977
            // free list, and hence had been erased from the vector,
978
            // so the size of the vector gets reduced by 1.
979
            if ((_Difference_type)_S_last_request._M_where() >= __diff--)
980
              _S_last_request._M_reset(__diff);
981
 
982
            // If the Index into the vector of the region of memory
983
            // that might hold the next address that will be passed to
984
            // deallocated may have been invalidated due to the above
985
            // erase procedure being called on the vector, hence we
986
            // try to restore this invariant too.
987
            if (_S_last_dealloc_index >= _S_mem_blocks.size())
988
              {
989
                _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
990
                _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
991
              }
992
          }
993
      }
994
 
995
    public:
996
      bitmap_allocator() throw()
997
      { }
998
 
999
      bitmap_allocator(const bitmap_allocator&)
1000
      { }
1001
 
1002
      template<typename _Tp1>
1003
        bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
1004
        { }
1005
 
1006
      ~bitmap_allocator() throw()
1007
      { }
1008
 
1009
      pointer
1010
      allocate(size_type __n)
1011
      {
1012
        if (__n > this->max_size())
1013
          std::__throw_bad_alloc();
1014
 
1015
        if (__builtin_expect(__n == 1, true))
1016
          return this->_M_allocate_single_object();
1017
        else
1018
          {
1019
            const size_type __b = __n * sizeof(value_type);
1020
            return reinterpret_cast<pointer>(::operator new(__b));
1021
          }
1022
      }
1023
 
1024
      pointer
1025
      allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1026
      { return allocate(__n); }
1027
 
1028
      void
1029
      deallocate(pointer __p, size_type __n) throw()
1030
      {
1031
        if (__builtin_expect(__p != 0, true))
1032
          {
1033
            if (__builtin_expect(__n == 1, true))
1034
              this->_M_deallocate_single_object(__p);
1035
            else
1036
              ::operator delete(__p);
1037
          }
1038
      }
1039
 
1040
      pointer
1041
      address(reference __r) const
1042
      { return &__r; }
1043
 
1044
      const_pointer
1045
      address(const_reference __r) const
1046
      { return &__r; }
1047
 
1048
      size_type
1049
      max_size() const throw()
1050
      { return size_type(-1) / sizeof(value_type); }
1051
 
1052
      void
1053
      construct(pointer __p, const_reference __data)
1054
      { ::new((void *)__p) value_type(__data); }
1055
 
1056
#ifdef __GXX_EXPERIMENTAL_CXX0X__
1057
      template<typename... _Args>
1058
        void
1059
        construct(pointer __p, _Args&&... __args)
1060
        { ::new((void *)__p) _Tp(std::forward<_Args>(__args)...); }
1061
#endif
1062
 
1063
      void
1064
      destroy(pointer __p)
1065
      { __p->~value_type(); }
1066
    };
1067
 
1068
  template<typename _Tp1, typename _Tp2>
1069
    bool
1070
    operator==(const bitmap_allocator<_Tp1>&,
1071
               const bitmap_allocator<_Tp2>&) throw()
1072
    { return true; }
1073
 
1074
  template<typename _Tp1, typename _Tp2>
1075
    bool
1076
    operator!=(const bitmap_allocator<_Tp1>&,
1077
               const bitmap_allocator<_Tp2>&) throw()
1078
  { return false; }
1079
 
1080
  // Static member definitions.
1081
  template<typename _Tp>
1082
    typename bitmap_allocator<_Tp>::_BPVector
1083
    bitmap_allocator<_Tp>::_S_mem_blocks;
1084
 
1085
  template<typename _Tp>
1086
    size_t bitmap_allocator<_Tp>::_S_block_size =
1087
    2 * size_t(__detail::bits_per_block);
1088
 
1089
  template<typename _Tp>
1090
    typename bitmap_allocator<_Tp>::_BPVector::size_type
1091
    bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1092
 
1093
  template<typename _Tp>
1094
    __detail::_Bitmap_counter
1095
      <typename bitmap_allocator<_Tp>::_Alloc_block*>
1096
    bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1097
 
1098
#if defined __GTHREADS
1099
  template<typename _Tp>
1100
    typename bitmap_allocator<_Tp>::__mutex_type
1101
    bitmap_allocator<_Tp>::_S_mut;
1102
#endif
1103
 
1104
_GLIBCXX_END_NAMESPACE
1105
 
1106
#endif 
1107
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.