1 |
24 |
jeremybenn |
/* BFD back-end for Renesas Super-H COFF binaries.
|
2 |
|
|
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
|
3 |
225 |
jeremybenn |
2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
4 |
24 |
jeremybenn |
Contributed by Cygnus Support.
|
5 |
|
|
Written by Steve Chamberlain, <sac@cygnus.com>.
|
6 |
|
|
Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
|
7 |
|
|
|
8 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify
|
11 |
|
|
it under the terms of the GNU General Public License as published by
|
12 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
13 |
|
|
(at your option) any later version.
|
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful,
|
16 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
18 |
|
|
GNU General Public License for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with this program; if not, write to the Free Software
|
22 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
23 |
|
|
MA 02110-1301, USA. */
|
24 |
|
|
|
25 |
|
|
#include "sysdep.h"
|
26 |
|
|
#include "bfd.h"
|
27 |
|
|
#include "libiberty.h"
|
28 |
|
|
#include "libbfd.h"
|
29 |
|
|
#include "bfdlink.h"
|
30 |
|
|
#include "coff/sh.h"
|
31 |
|
|
#include "coff/internal.h"
|
32 |
|
|
|
33 |
225 |
jeremybenn |
#undef bfd_pe_print_pdata
|
34 |
|
|
|
35 |
24 |
jeremybenn |
#ifdef COFF_WITH_PE
|
36 |
|
|
#include "coff/pe.h"
|
37 |
|
|
|
38 |
|
|
#ifndef COFF_IMAGE_WITH_PE
|
39 |
|
|
static bfd_boolean sh_align_load_span
|
40 |
|
|
PARAMS ((bfd *, asection *, bfd_byte *,
|
41 |
|
|
bfd_boolean (*) (bfd *, asection *, PTR, bfd_byte *, bfd_vma),
|
42 |
|
|
PTR, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *));
|
43 |
|
|
|
44 |
|
|
#define _bfd_sh_align_load_span sh_align_load_span
|
45 |
|
|
#endif
|
46 |
|
|
|
47 |
225 |
jeremybenn |
#define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata
|
48 |
|
|
|
49 |
|
|
#else
|
50 |
|
|
|
51 |
|
|
#define bfd_pe_print_pdata NULL
|
52 |
|
|
|
53 |
|
|
#endif /* COFF_WITH_PE. */
|
54 |
|
|
|
55 |
24 |
jeremybenn |
#include "libcoff.h"
|
56 |
|
|
|
57 |
|
|
/* Internal functions. */
|
58 |
|
|
static bfd_reloc_status_type sh_reloc
|
59 |
|
|
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
|
60 |
|
|
static long get_symbol_value PARAMS ((asymbol *));
|
61 |
|
|
static bfd_boolean sh_relax_section
|
62 |
|
|
PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
|
63 |
|
|
static bfd_boolean sh_relax_delete_bytes
|
64 |
|
|
PARAMS ((bfd *, asection *, bfd_vma, int));
|
65 |
|
|
#ifndef COFF_IMAGE_WITH_PE
|
66 |
|
|
static const struct sh_opcode *sh_insn_info PARAMS ((unsigned int));
|
67 |
|
|
#endif
|
68 |
|
|
static bfd_boolean sh_align_loads
|
69 |
|
|
PARAMS ((bfd *, asection *, struct internal_reloc *, bfd_byte *,
|
70 |
|
|
bfd_boolean *));
|
71 |
|
|
static bfd_boolean sh_swap_insns
|
72 |
|
|
PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
|
73 |
|
|
static bfd_boolean sh_relocate_section
|
74 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
|
75 |
|
|
struct internal_reloc *, struct internal_syment *, asection **));
|
76 |
|
|
static bfd_byte *sh_coff_get_relocated_section_contents
|
77 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
|
78 |
|
|
bfd_byte *, bfd_boolean, asymbol **));
|
79 |
|
|
static reloc_howto_type * sh_coff_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type));
|
80 |
|
|
|
81 |
|
|
#ifdef COFF_WITH_PE
|
82 |
|
|
/* Can't build import tables with 2**4 alignment. */
|
83 |
|
|
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
|
84 |
|
|
#else
|
85 |
|
|
/* Default section alignment to 2**4. */
|
86 |
|
|
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
|
87 |
|
|
#endif
|
88 |
|
|
|
89 |
|
|
#ifdef COFF_IMAGE_WITH_PE
|
90 |
|
|
/* Align PE executables. */
|
91 |
|
|
#define COFF_PAGE_SIZE 0x1000
|
92 |
|
|
#endif
|
93 |
|
|
|
94 |
|
|
/* Generate long file names. */
|
95 |
|
|
#define COFF_LONG_FILENAMES
|
96 |
|
|
|
97 |
|
|
#ifdef COFF_WITH_PE
|
98 |
|
|
static bfd_boolean in_reloc_p PARAMS ((bfd *, reloc_howto_type *));
|
99 |
|
|
/* Return TRUE if this relocation should
|
100 |
|
|
appear in the output .reloc section. */
|
101 |
|
|
static bfd_boolean in_reloc_p (abfd, howto)
|
102 |
|
|
bfd * abfd ATTRIBUTE_UNUSED;
|
103 |
|
|
reloc_howto_type * howto;
|
104 |
|
|
{
|
105 |
|
|
return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
|
106 |
|
|
}
|
107 |
|
|
#endif
|
108 |
|
|
|
109 |
|
|
/* The supported relocations. There are a lot of relocations defined
|
110 |
|
|
in coff/internal.h which we do not expect to ever see. */
|
111 |
|
|
static reloc_howto_type sh_coff_howtos[] =
|
112 |
|
|
{
|
113 |
|
|
EMPTY_HOWTO (0),
|
114 |
|
|
EMPTY_HOWTO (1),
|
115 |
|
|
#ifdef COFF_WITH_PE
|
116 |
|
|
/* Windows CE */
|
117 |
|
|
HOWTO (R_SH_IMM32CE, /* type */
|
118 |
|
|
0, /* rightshift */
|
119 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
120 |
|
|
32, /* bitsize */
|
121 |
|
|
FALSE, /* pc_relative */
|
122 |
|
|
0, /* bitpos */
|
123 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
124 |
|
|
sh_reloc, /* special_function */
|
125 |
|
|
"r_imm32ce", /* name */
|
126 |
|
|
TRUE, /* partial_inplace */
|
127 |
|
|
0xffffffff, /* src_mask */
|
128 |
|
|
0xffffffff, /* dst_mask */
|
129 |
|
|
FALSE), /* pcrel_offset */
|
130 |
|
|
#else
|
131 |
|
|
EMPTY_HOWTO (2),
|
132 |
|
|
#endif
|
133 |
|
|
EMPTY_HOWTO (3), /* R_SH_PCREL8 */
|
134 |
|
|
EMPTY_HOWTO (4), /* R_SH_PCREL16 */
|
135 |
|
|
EMPTY_HOWTO (5), /* R_SH_HIGH8 */
|
136 |
|
|
EMPTY_HOWTO (6), /* R_SH_IMM24 */
|
137 |
|
|
EMPTY_HOWTO (7), /* R_SH_LOW16 */
|
138 |
|
|
EMPTY_HOWTO (8),
|
139 |
|
|
EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
|
140 |
|
|
|
141 |
|
|
HOWTO (R_SH_PCDISP8BY2, /* type */
|
142 |
|
|
1, /* rightshift */
|
143 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
144 |
|
|
8, /* bitsize */
|
145 |
|
|
TRUE, /* pc_relative */
|
146 |
|
|
0, /* bitpos */
|
147 |
|
|
complain_overflow_signed, /* complain_on_overflow */
|
148 |
|
|
sh_reloc, /* special_function */
|
149 |
|
|
"r_pcdisp8by2", /* name */
|
150 |
|
|
TRUE, /* partial_inplace */
|
151 |
|
|
0xff, /* src_mask */
|
152 |
|
|
0xff, /* dst_mask */
|
153 |
|
|
TRUE), /* pcrel_offset */
|
154 |
|
|
|
155 |
|
|
EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
|
156 |
|
|
|
157 |
|
|
HOWTO (R_SH_PCDISP, /* type */
|
158 |
|
|
1, /* rightshift */
|
159 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
160 |
|
|
12, /* bitsize */
|
161 |
|
|
TRUE, /* pc_relative */
|
162 |
|
|
0, /* bitpos */
|
163 |
|
|
complain_overflow_signed, /* complain_on_overflow */
|
164 |
|
|
sh_reloc, /* special_function */
|
165 |
|
|
"r_pcdisp12by2", /* name */
|
166 |
|
|
TRUE, /* partial_inplace */
|
167 |
|
|
0xfff, /* src_mask */
|
168 |
|
|
0xfff, /* dst_mask */
|
169 |
|
|
TRUE), /* pcrel_offset */
|
170 |
|
|
|
171 |
|
|
EMPTY_HOWTO (13),
|
172 |
|
|
|
173 |
|
|
HOWTO (R_SH_IMM32, /* type */
|
174 |
|
|
0, /* rightshift */
|
175 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
176 |
|
|
32, /* bitsize */
|
177 |
|
|
FALSE, /* pc_relative */
|
178 |
|
|
0, /* bitpos */
|
179 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
180 |
|
|
sh_reloc, /* special_function */
|
181 |
|
|
"r_imm32", /* name */
|
182 |
|
|
TRUE, /* partial_inplace */
|
183 |
|
|
0xffffffff, /* src_mask */
|
184 |
|
|
0xffffffff, /* dst_mask */
|
185 |
|
|
FALSE), /* pcrel_offset */
|
186 |
|
|
|
187 |
|
|
EMPTY_HOWTO (15),
|
188 |
|
|
#ifdef COFF_WITH_PE
|
189 |
|
|
HOWTO (R_SH_IMAGEBASE, /* type */
|
190 |
|
|
0, /* rightshift */
|
191 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
192 |
|
|
32, /* bitsize */
|
193 |
|
|
FALSE, /* pc_relative */
|
194 |
|
|
0, /* bitpos */
|
195 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
196 |
|
|
sh_reloc, /* special_function */
|
197 |
|
|
"rva32", /* name */
|
198 |
|
|
TRUE, /* partial_inplace */
|
199 |
|
|
0xffffffff, /* src_mask */
|
200 |
|
|
0xffffffff, /* dst_mask */
|
201 |
|
|
FALSE), /* pcrel_offset */
|
202 |
|
|
#else
|
203 |
|
|
EMPTY_HOWTO (16), /* R_SH_IMM8 */
|
204 |
|
|
#endif
|
205 |
|
|
EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
|
206 |
|
|
EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
|
207 |
|
|
EMPTY_HOWTO (19), /* R_SH_IMM4 */
|
208 |
|
|
EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
|
209 |
|
|
EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
|
210 |
|
|
|
211 |
|
|
HOWTO (R_SH_PCRELIMM8BY2, /* type */
|
212 |
|
|
1, /* rightshift */
|
213 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
214 |
|
|
8, /* bitsize */
|
215 |
|
|
TRUE, /* pc_relative */
|
216 |
|
|
0, /* bitpos */
|
217 |
|
|
complain_overflow_unsigned, /* complain_on_overflow */
|
218 |
|
|
sh_reloc, /* special_function */
|
219 |
|
|
"r_pcrelimm8by2", /* name */
|
220 |
|
|
TRUE, /* partial_inplace */
|
221 |
|
|
0xff, /* src_mask */
|
222 |
|
|
0xff, /* dst_mask */
|
223 |
|
|
TRUE), /* pcrel_offset */
|
224 |
|
|
|
225 |
|
|
HOWTO (R_SH_PCRELIMM8BY4, /* type */
|
226 |
|
|
2, /* rightshift */
|
227 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
228 |
|
|
8, /* bitsize */
|
229 |
|
|
TRUE, /* pc_relative */
|
230 |
|
|
0, /* bitpos */
|
231 |
|
|
complain_overflow_unsigned, /* complain_on_overflow */
|
232 |
|
|
sh_reloc, /* special_function */
|
233 |
|
|
"r_pcrelimm8by4", /* name */
|
234 |
|
|
TRUE, /* partial_inplace */
|
235 |
|
|
0xff, /* src_mask */
|
236 |
|
|
0xff, /* dst_mask */
|
237 |
|
|
TRUE), /* pcrel_offset */
|
238 |
|
|
|
239 |
|
|
HOWTO (R_SH_IMM16, /* type */
|
240 |
|
|
0, /* rightshift */
|
241 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
242 |
|
|
16, /* bitsize */
|
243 |
|
|
FALSE, /* pc_relative */
|
244 |
|
|
0, /* bitpos */
|
245 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
246 |
|
|
sh_reloc, /* special_function */
|
247 |
|
|
"r_imm16", /* name */
|
248 |
|
|
TRUE, /* partial_inplace */
|
249 |
|
|
0xffff, /* src_mask */
|
250 |
|
|
0xffff, /* dst_mask */
|
251 |
|
|
FALSE), /* pcrel_offset */
|
252 |
|
|
|
253 |
|
|
HOWTO (R_SH_SWITCH16, /* type */
|
254 |
|
|
0, /* rightshift */
|
255 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
256 |
|
|
16, /* bitsize */
|
257 |
|
|
FALSE, /* pc_relative */
|
258 |
|
|
0, /* bitpos */
|
259 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
260 |
|
|
sh_reloc, /* special_function */
|
261 |
|
|
"r_switch16", /* name */
|
262 |
|
|
TRUE, /* partial_inplace */
|
263 |
|
|
0xffff, /* src_mask */
|
264 |
|
|
0xffff, /* dst_mask */
|
265 |
|
|
FALSE), /* pcrel_offset */
|
266 |
|
|
|
267 |
|
|
HOWTO (R_SH_SWITCH32, /* type */
|
268 |
|
|
0, /* rightshift */
|
269 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
270 |
|
|
32, /* bitsize */
|
271 |
|
|
FALSE, /* pc_relative */
|
272 |
|
|
0, /* bitpos */
|
273 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
274 |
|
|
sh_reloc, /* special_function */
|
275 |
|
|
"r_switch32", /* name */
|
276 |
|
|
TRUE, /* partial_inplace */
|
277 |
|
|
0xffffffff, /* src_mask */
|
278 |
|
|
0xffffffff, /* dst_mask */
|
279 |
|
|
FALSE), /* pcrel_offset */
|
280 |
|
|
|
281 |
|
|
HOWTO (R_SH_USES, /* type */
|
282 |
|
|
0, /* rightshift */
|
283 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
284 |
|
|
16, /* bitsize */
|
285 |
|
|
FALSE, /* pc_relative */
|
286 |
|
|
0, /* bitpos */
|
287 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
288 |
|
|
sh_reloc, /* special_function */
|
289 |
|
|
"r_uses", /* name */
|
290 |
|
|
TRUE, /* partial_inplace */
|
291 |
|
|
0xffff, /* src_mask */
|
292 |
|
|
0xffff, /* dst_mask */
|
293 |
|
|
FALSE), /* pcrel_offset */
|
294 |
|
|
|
295 |
|
|
HOWTO (R_SH_COUNT, /* type */
|
296 |
|
|
0, /* rightshift */
|
297 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
298 |
|
|
32, /* bitsize */
|
299 |
|
|
FALSE, /* pc_relative */
|
300 |
|
|
0, /* bitpos */
|
301 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
302 |
|
|
sh_reloc, /* special_function */
|
303 |
|
|
"r_count", /* name */
|
304 |
|
|
TRUE, /* partial_inplace */
|
305 |
|
|
0xffffffff, /* src_mask */
|
306 |
|
|
0xffffffff, /* dst_mask */
|
307 |
|
|
FALSE), /* pcrel_offset */
|
308 |
|
|
|
309 |
|
|
HOWTO (R_SH_ALIGN, /* type */
|
310 |
|
|
0, /* rightshift */
|
311 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
312 |
|
|
32, /* bitsize */
|
313 |
|
|
FALSE, /* pc_relative */
|
314 |
|
|
0, /* bitpos */
|
315 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
316 |
|
|
sh_reloc, /* special_function */
|
317 |
|
|
"r_align", /* name */
|
318 |
|
|
TRUE, /* partial_inplace */
|
319 |
|
|
0xffffffff, /* src_mask */
|
320 |
|
|
0xffffffff, /* dst_mask */
|
321 |
|
|
FALSE), /* pcrel_offset */
|
322 |
|
|
|
323 |
|
|
HOWTO (R_SH_CODE, /* type */
|
324 |
|
|
0, /* rightshift */
|
325 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
326 |
|
|
32, /* bitsize */
|
327 |
|
|
FALSE, /* pc_relative */
|
328 |
|
|
0, /* bitpos */
|
329 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
330 |
|
|
sh_reloc, /* special_function */
|
331 |
|
|
"r_code", /* name */
|
332 |
|
|
TRUE, /* partial_inplace */
|
333 |
|
|
0xffffffff, /* src_mask */
|
334 |
|
|
0xffffffff, /* dst_mask */
|
335 |
|
|
FALSE), /* pcrel_offset */
|
336 |
|
|
|
337 |
|
|
HOWTO (R_SH_DATA, /* type */
|
338 |
|
|
0, /* rightshift */
|
339 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
340 |
|
|
32, /* bitsize */
|
341 |
|
|
FALSE, /* pc_relative */
|
342 |
|
|
0, /* bitpos */
|
343 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
344 |
|
|
sh_reloc, /* special_function */
|
345 |
|
|
"r_data", /* name */
|
346 |
|
|
TRUE, /* partial_inplace */
|
347 |
|
|
0xffffffff, /* src_mask */
|
348 |
|
|
0xffffffff, /* dst_mask */
|
349 |
|
|
FALSE), /* pcrel_offset */
|
350 |
|
|
|
351 |
|
|
HOWTO (R_SH_LABEL, /* type */
|
352 |
|
|
0, /* rightshift */
|
353 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
354 |
|
|
32, /* bitsize */
|
355 |
|
|
FALSE, /* pc_relative */
|
356 |
|
|
0, /* bitpos */
|
357 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
358 |
|
|
sh_reloc, /* special_function */
|
359 |
|
|
"r_label", /* name */
|
360 |
|
|
TRUE, /* partial_inplace */
|
361 |
|
|
0xffffffff, /* src_mask */
|
362 |
|
|
0xffffffff, /* dst_mask */
|
363 |
|
|
FALSE), /* pcrel_offset */
|
364 |
|
|
|
365 |
|
|
HOWTO (R_SH_SWITCH8, /* type */
|
366 |
|
|
0, /* rightshift */
|
367 |
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
368 |
|
|
8, /* bitsize */
|
369 |
|
|
FALSE, /* pc_relative */
|
370 |
|
|
0, /* bitpos */
|
371 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
372 |
|
|
sh_reloc, /* special_function */
|
373 |
|
|
"r_switch8", /* name */
|
374 |
|
|
TRUE, /* partial_inplace */
|
375 |
|
|
0xff, /* src_mask */
|
376 |
|
|
0xff, /* dst_mask */
|
377 |
|
|
FALSE) /* pcrel_offset */
|
378 |
|
|
};
|
379 |
|
|
|
380 |
|
|
#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
|
381 |
|
|
|
382 |
|
|
/* Check for a bad magic number. */
|
383 |
|
|
#define BADMAG(x) SHBADMAG(x)
|
384 |
|
|
|
385 |
|
|
/* Customize coffcode.h (this is not currently used). */
|
386 |
|
|
#define SH 1
|
387 |
|
|
|
388 |
|
|
/* FIXME: This should not be set here. */
|
389 |
|
|
#define __A_MAGIC_SET__
|
390 |
|
|
|
391 |
|
|
#ifndef COFF_WITH_PE
|
392 |
|
|
/* Swap the r_offset field in and out. */
|
393 |
|
|
#define SWAP_IN_RELOC_OFFSET H_GET_32
|
394 |
|
|
#define SWAP_OUT_RELOC_OFFSET H_PUT_32
|
395 |
|
|
|
396 |
|
|
/* Swap out extra information in the reloc structure. */
|
397 |
|
|
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
|
398 |
|
|
do \
|
399 |
|
|
{ \
|
400 |
|
|
dst->r_stuff[0] = 'S'; \
|
401 |
|
|
dst->r_stuff[1] = 'C'; \
|
402 |
|
|
} \
|
403 |
|
|
while (0)
|
404 |
|
|
#endif
|
405 |
|
|
|
406 |
|
|
/* Get the value of a symbol, when performing a relocation. */
|
407 |
|
|
|
408 |
|
|
static long
|
409 |
|
|
get_symbol_value (symbol)
|
410 |
|
|
asymbol *symbol;
|
411 |
|
|
{
|
412 |
|
|
bfd_vma relocation;
|
413 |
|
|
|
414 |
|
|
if (bfd_is_com_section (symbol->section))
|
415 |
|
|
relocation = 0;
|
416 |
|
|
else
|
417 |
|
|
relocation = (symbol->value +
|
418 |
|
|
symbol->section->output_section->vma +
|
419 |
|
|
symbol->section->output_offset);
|
420 |
|
|
|
421 |
|
|
return relocation;
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
#ifdef COFF_WITH_PE
|
425 |
|
|
/* Convert an rtype to howto for the COFF backend linker.
|
426 |
|
|
Copied from coff-i386. */
|
427 |
|
|
#define coff_rtype_to_howto coff_sh_rtype_to_howto
|
428 |
|
|
static reloc_howto_type * coff_sh_rtype_to_howto PARAMS ((bfd *, asection *, struct internal_reloc *, struct coff_link_hash_entry *, struct internal_syment *, bfd_vma *));
|
429 |
|
|
|
430 |
|
|
static reloc_howto_type *
|
431 |
|
|
coff_sh_rtype_to_howto (abfd, sec, rel, h, sym, addendp)
|
432 |
|
|
bfd * abfd ATTRIBUTE_UNUSED;
|
433 |
|
|
asection * sec;
|
434 |
|
|
struct internal_reloc * rel;
|
435 |
|
|
struct coff_link_hash_entry * h;
|
436 |
|
|
struct internal_syment * sym;
|
437 |
|
|
bfd_vma * addendp;
|
438 |
|
|
{
|
439 |
|
|
reloc_howto_type * howto;
|
440 |
|
|
|
441 |
|
|
howto = sh_coff_howtos + rel->r_type;
|
442 |
|
|
|
443 |
|
|
*addendp = 0;
|
444 |
|
|
|
445 |
|
|
if (howto->pc_relative)
|
446 |
|
|
*addendp += sec->vma;
|
447 |
|
|
|
448 |
|
|
if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
|
449 |
|
|
{
|
450 |
|
|
/* This is a common symbol. The section contents include the
|
451 |
|
|
size (sym->n_value) as an addend. The relocate_section
|
452 |
|
|
function will be adding in the final value of the symbol. We
|
453 |
|
|
need to subtract out the current size in order to get the
|
454 |
|
|
correct result. */
|
455 |
|
|
BFD_ASSERT (h != NULL);
|
456 |
|
|
}
|
457 |
|
|
|
458 |
|
|
if (howto->pc_relative)
|
459 |
|
|
{
|
460 |
|
|
*addendp -= 4;
|
461 |
|
|
|
462 |
|
|
/* If the symbol is defined, then the generic code is going to
|
463 |
|
|
add back the symbol value in order to cancel out an
|
464 |
|
|
adjustment it made to the addend. However, we set the addend
|
465 |
|
|
to 0 at the start of this function. We need to adjust here,
|
466 |
|
|
to avoid the adjustment the generic code will make. FIXME:
|
467 |
|
|
This is getting a bit hackish. */
|
468 |
|
|
if (sym != NULL && sym->n_scnum != 0)
|
469 |
|
|
*addendp -= sym->n_value;
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
if (rel->r_type == R_SH_IMAGEBASE)
|
473 |
|
|
*addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
|
474 |
|
|
|
475 |
|
|
return howto;
|
476 |
|
|
}
|
477 |
|
|
|
478 |
|
|
#endif /* COFF_WITH_PE */
|
479 |
|
|
|
480 |
|
|
/* This structure is used to map BFD reloc codes to SH PE relocs. */
|
481 |
|
|
struct shcoff_reloc_map
|
482 |
|
|
{
|
483 |
|
|
bfd_reloc_code_real_type bfd_reloc_val;
|
484 |
|
|
unsigned char shcoff_reloc_val;
|
485 |
|
|
};
|
486 |
|
|
|
487 |
|
|
#ifdef COFF_WITH_PE
|
488 |
|
|
/* An array mapping BFD reloc codes to SH PE relocs. */
|
489 |
|
|
static const struct shcoff_reloc_map sh_reloc_map[] =
|
490 |
|
|
{
|
491 |
|
|
{ BFD_RELOC_32, R_SH_IMM32CE },
|
492 |
|
|
{ BFD_RELOC_RVA, R_SH_IMAGEBASE },
|
493 |
|
|
{ BFD_RELOC_CTOR, R_SH_IMM32CE },
|
494 |
|
|
};
|
495 |
|
|
#else
|
496 |
|
|
/* An array mapping BFD reloc codes to SH PE relocs. */
|
497 |
|
|
static const struct shcoff_reloc_map sh_reloc_map[] =
|
498 |
|
|
{
|
499 |
|
|
{ BFD_RELOC_32, R_SH_IMM32 },
|
500 |
|
|
{ BFD_RELOC_CTOR, R_SH_IMM32 },
|
501 |
|
|
};
|
502 |
|
|
#endif
|
503 |
|
|
|
504 |
|
|
/* Given a BFD reloc code, return the howto structure for the
|
505 |
|
|
corresponding SH PE reloc. */
|
506 |
|
|
#define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
|
507 |
|
|
#define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
|
508 |
|
|
|
509 |
|
|
static reloc_howto_type *
|
510 |
|
|
sh_coff_reloc_type_lookup (abfd, code)
|
511 |
|
|
bfd * abfd ATTRIBUTE_UNUSED;
|
512 |
|
|
bfd_reloc_code_real_type code;
|
513 |
|
|
{
|
514 |
|
|
unsigned int i;
|
515 |
|
|
|
516 |
|
|
for (i = ARRAY_SIZE (sh_reloc_map); i--;)
|
517 |
|
|
if (sh_reloc_map[i].bfd_reloc_val == code)
|
518 |
|
|
return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
|
519 |
|
|
|
520 |
|
|
fprintf (stderr, "SH Error: unknown reloc type %d\n", code);
|
521 |
|
|
return NULL;
|
522 |
|
|
}
|
523 |
|
|
|
524 |
|
|
static reloc_howto_type *
|
525 |
|
|
sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
526 |
|
|
const char *r_name)
|
527 |
|
|
{
|
528 |
|
|
unsigned int i;
|
529 |
|
|
|
530 |
|
|
for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
|
531 |
|
|
if (sh_coff_howtos[i].name != NULL
|
532 |
|
|
&& strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
|
533 |
|
|
return &sh_coff_howtos[i];
|
534 |
|
|
|
535 |
|
|
return NULL;
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
/* This macro is used in coffcode.h to get the howto corresponding to
|
539 |
|
|
an internal reloc. */
|
540 |
|
|
|
541 |
|
|
#define RTYPE2HOWTO(relent, internal) \
|
542 |
|
|
((relent)->howto = \
|
543 |
|
|
((internal)->r_type < SH_COFF_HOWTO_COUNT \
|
544 |
|
|
? &sh_coff_howtos[(internal)->r_type] \
|
545 |
|
|
: (reloc_howto_type *) NULL))
|
546 |
|
|
|
547 |
|
|
/* This is the same as the macro in coffcode.h, except that it copies
|
548 |
|
|
r_offset into reloc_entry->addend for some relocs. */
|
549 |
|
|
#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
|
550 |
|
|
{ \
|
551 |
|
|
coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
|
552 |
|
|
if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
|
553 |
|
|
coffsym = (obj_symbols (abfd) \
|
554 |
|
|
+ (cache_ptr->sym_ptr_ptr - symbols)); \
|
555 |
|
|
else if (ptr) \
|
556 |
|
|
coffsym = coff_symbol_from (abfd, ptr); \
|
557 |
|
|
if (coffsym != (coff_symbol_type *) NULL \
|
558 |
|
|
&& coffsym->native->u.syment.n_scnum == 0) \
|
559 |
|
|
cache_ptr->addend = 0; \
|
560 |
|
|
else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
|
561 |
|
|
&& ptr->section != (asection *) NULL) \
|
562 |
|
|
cache_ptr->addend = - (ptr->section->vma + ptr->value); \
|
563 |
|
|
else \
|
564 |
|
|
cache_ptr->addend = 0; \
|
565 |
|
|
if ((reloc).r_type == R_SH_SWITCH8 \
|
566 |
|
|
|| (reloc).r_type == R_SH_SWITCH16 \
|
567 |
|
|
|| (reloc).r_type == R_SH_SWITCH32 \
|
568 |
|
|
|| (reloc).r_type == R_SH_USES \
|
569 |
|
|
|| (reloc).r_type == R_SH_COUNT \
|
570 |
|
|
|| (reloc).r_type == R_SH_ALIGN) \
|
571 |
|
|
cache_ptr->addend = (reloc).r_offset; \
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
/* This is the howto function for the SH relocations. */
|
575 |
|
|
|
576 |
|
|
static bfd_reloc_status_type
|
577 |
|
|
sh_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
|
578 |
|
|
error_message)
|
579 |
|
|
bfd *abfd;
|
580 |
|
|
arelent *reloc_entry;
|
581 |
|
|
asymbol *symbol_in;
|
582 |
|
|
PTR data;
|
583 |
|
|
asection *input_section;
|
584 |
|
|
bfd *output_bfd;
|
585 |
|
|
char **error_message ATTRIBUTE_UNUSED;
|
586 |
|
|
{
|
587 |
|
|
unsigned long insn;
|
588 |
|
|
bfd_vma sym_value;
|
589 |
|
|
unsigned short r_type;
|
590 |
|
|
bfd_vma addr = reloc_entry->address;
|
591 |
|
|
bfd_byte *hit_data = addr + (bfd_byte *) data;
|
592 |
|
|
|
593 |
|
|
r_type = reloc_entry->howto->type;
|
594 |
|
|
|
595 |
|
|
if (output_bfd != NULL)
|
596 |
|
|
{
|
597 |
|
|
/* Partial linking--do nothing. */
|
598 |
|
|
reloc_entry->address += input_section->output_offset;
|
599 |
|
|
return bfd_reloc_ok;
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
/* Almost all relocs have to do with relaxing. If any work must be
|
603 |
|
|
done for them, it has been done in sh_relax_section. */
|
604 |
|
|
if (r_type != R_SH_IMM32
|
605 |
|
|
#ifdef COFF_WITH_PE
|
606 |
|
|
&& r_type != R_SH_IMM32CE
|
607 |
|
|
&& r_type != R_SH_IMAGEBASE
|
608 |
|
|
#endif
|
609 |
|
|
&& (r_type != R_SH_PCDISP
|
610 |
|
|
|| (symbol_in->flags & BSF_LOCAL) != 0))
|
611 |
|
|
return bfd_reloc_ok;
|
612 |
|
|
|
613 |
|
|
if (symbol_in != NULL
|
614 |
|
|
&& bfd_is_und_section (symbol_in->section))
|
615 |
|
|
return bfd_reloc_undefined;
|
616 |
|
|
|
617 |
|
|
sym_value = get_symbol_value (symbol_in);
|
618 |
|
|
|
619 |
|
|
switch (r_type)
|
620 |
|
|
{
|
621 |
|
|
case R_SH_IMM32:
|
622 |
|
|
#ifdef COFF_WITH_PE
|
623 |
|
|
case R_SH_IMM32CE:
|
624 |
|
|
#endif
|
625 |
|
|
insn = bfd_get_32 (abfd, hit_data);
|
626 |
|
|
insn += sym_value + reloc_entry->addend;
|
627 |
|
|
bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
|
628 |
|
|
break;
|
629 |
|
|
#ifdef COFF_WITH_PE
|
630 |
|
|
case R_SH_IMAGEBASE:
|
631 |
|
|
insn = bfd_get_32 (abfd, hit_data);
|
632 |
|
|
insn += sym_value + reloc_entry->addend;
|
633 |
|
|
insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
|
634 |
|
|
bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
|
635 |
|
|
break;
|
636 |
|
|
#endif
|
637 |
|
|
case R_SH_PCDISP:
|
638 |
|
|
insn = bfd_get_16 (abfd, hit_data);
|
639 |
|
|
sym_value += reloc_entry->addend;
|
640 |
|
|
sym_value -= (input_section->output_section->vma
|
641 |
|
|
+ input_section->output_offset
|
642 |
|
|
+ addr
|
643 |
|
|
+ 4);
|
644 |
|
|
sym_value += (insn & 0xfff) << 1;
|
645 |
|
|
if (insn & 0x800)
|
646 |
|
|
sym_value -= 0x1000;
|
647 |
|
|
insn = (insn & 0xf000) | (sym_value & 0xfff);
|
648 |
|
|
bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
|
649 |
|
|
if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
|
650 |
|
|
return bfd_reloc_overflow;
|
651 |
|
|
break;
|
652 |
|
|
default:
|
653 |
|
|
abort ();
|
654 |
|
|
break;
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
return bfd_reloc_ok;
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
#define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
|
661 |
|
|
|
662 |
|
|
/* We can do relaxing. */
|
663 |
|
|
#define coff_bfd_relax_section sh_relax_section
|
664 |
|
|
|
665 |
|
|
/* We use the special COFF backend linker. */
|
666 |
|
|
#define coff_relocate_section sh_relocate_section
|
667 |
|
|
|
668 |
|
|
/* When relaxing, we need to use special code to get the relocated
|
669 |
|
|
section contents. */
|
670 |
|
|
#define coff_bfd_get_relocated_section_contents \
|
671 |
|
|
sh_coff_get_relocated_section_contents
|
672 |
|
|
|
673 |
|
|
#include "coffcode.h"
|
674 |
|
|
|
675 |
|
|
/* This function handles relaxing on the SH.
|
676 |
|
|
|
677 |
|
|
Function calls on the SH look like this:
|
678 |
|
|
|
679 |
|
|
movl L1,r0
|
680 |
|
|
...
|
681 |
|
|
jsr @r0
|
682 |
|
|
...
|
683 |
|
|
L1:
|
684 |
|
|
.long function
|
685 |
|
|
|
686 |
|
|
The compiler and assembler will cooperate to create R_SH_USES
|
687 |
|
|
relocs on the jsr instructions. The r_offset field of the
|
688 |
|
|
R_SH_USES reloc is the PC relative offset to the instruction which
|
689 |
|
|
loads the register (the r_offset field is computed as though it
|
690 |
|
|
were a jump instruction, so the offset value is actually from four
|
691 |
|
|
bytes past the instruction). The linker can use this reloc to
|
692 |
|
|
determine just which function is being called, and thus decide
|
693 |
|
|
whether it is possible to replace the jsr with a bsr.
|
694 |
|
|
|
695 |
|
|
If multiple function calls are all based on a single register load
|
696 |
|
|
(i.e., the same function is called multiple times), the compiler
|
697 |
|
|
guarantees that each function call will have an R_SH_USES reloc.
|
698 |
|
|
Therefore, if the linker is able to convert each R_SH_USES reloc
|
699 |
|
|
which refers to that address, it can safely eliminate the register
|
700 |
|
|
load.
|
701 |
|
|
|
702 |
|
|
When the assembler creates an R_SH_USES reloc, it examines it to
|
703 |
|
|
determine which address is being loaded (L1 in the above example).
|
704 |
|
|
It then counts the number of references to that address, and
|
705 |
|
|
creates an R_SH_COUNT reloc at that address. The r_offset field of
|
706 |
|
|
the R_SH_COUNT reloc will be the number of references. If the
|
707 |
|
|
linker is able to eliminate a register load, it can use the
|
708 |
|
|
R_SH_COUNT reloc to see whether it can also eliminate the function
|
709 |
|
|
address.
|
710 |
|
|
|
711 |
|
|
SH relaxing also handles another, unrelated, matter. On the SH, if
|
712 |
|
|
a load or store instruction is not aligned on a four byte boundary,
|
713 |
|
|
the memory cycle interferes with the 32 bit instruction fetch,
|
714 |
|
|
causing a one cycle bubble in the pipeline. Therefore, we try to
|
715 |
|
|
align load and store instructions on four byte boundaries if we
|
716 |
|
|
can, by swapping them with one of the adjacent instructions. */
|
717 |
|
|
|
718 |
|
|
static bfd_boolean
|
719 |
|
|
sh_relax_section (abfd, sec, link_info, again)
|
720 |
|
|
bfd *abfd;
|
721 |
|
|
asection *sec;
|
722 |
|
|
struct bfd_link_info *link_info;
|
723 |
|
|
bfd_boolean *again;
|
724 |
|
|
{
|
725 |
|
|
struct internal_reloc *internal_relocs;
|
726 |
|
|
bfd_boolean have_code;
|
727 |
|
|
struct internal_reloc *irel, *irelend;
|
728 |
|
|
bfd_byte *contents = NULL;
|
729 |
|
|
|
730 |
|
|
*again = FALSE;
|
731 |
|
|
|
732 |
|
|
if (link_info->relocatable
|
733 |
|
|
|| (sec->flags & SEC_RELOC) == 0
|
734 |
|
|
|| sec->reloc_count == 0)
|
735 |
|
|
return TRUE;
|
736 |
|
|
|
737 |
|
|
if (coff_section_data (abfd, sec) == NULL)
|
738 |
|
|
{
|
739 |
|
|
bfd_size_type amt = sizeof (struct coff_section_tdata);
|
740 |
|
|
sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
|
741 |
|
|
if (sec->used_by_bfd == NULL)
|
742 |
|
|
return FALSE;
|
743 |
|
|
}
|
744 |
|
|
|
745 |
|
|
internal_relocs = (_bfd_coff_read_internal_relocs
|
746 |
|
|
(abfd, sec, link_info->keep_memory,
|
747 |
|
|
(bfd_byte *) NULL, FALSE,
|
748 |
|
|
(struct internal_reloc *) NULL));
|
749 |
|
|
if (internal_relocs == NULL)
|
750 |
|
|
goto error_return;
|
751 |
|
|
|
752 |
|
|
have_code = FALSE;
|
753 |
|
|
|
754 |
|
|
irelend = internal_relocs + sec->reloc_count;
|
755 |
|
|
for (irel = internal_relocs; irel < irelend; irel++)
|
756 |
|
|
{
|
757 |
|
|
bfd_vma laddr, paddr, symval;
|
758 |
|
|
unsigned short insn;
|
759 |
|
|
struct internal_reloc *irelfn, *irelscan, *irelcount;
|
760 |
|
|
struct internal_syment sym;
|
761 |
|
|
bfd_signed_vma foff;
|
762 |
|
|
|
763 |
|
|
if (irel->r_type == R_SH_CODE)
|
764 |
|
|
have_code = TRUE;
|
765 |
|
|
|
766 |
|
|
if (irel->r_type != R_SH_USES)
|
767 |
|
|
continue;
|
768 |
|
|
|
769 |
|
|
/* Get the section contents. */
|
770 |
|
|
if (contents == NULL)
|
771 |
|
|
{
|
772 |
|
|
if (coff_section_data (abfd, sec)->contents != NULL)
|
773 |
|
|
contents = coff_section_data (abfd, sec)->contents;
|
774 |
|
|
else
|
775 |
|
|
{
|
776 |
|
|
if (!bfd_malloc_and_get_section (abfd, sec, &contents))
|
777 |
|
|
goto error_return;
|
778 |
|
|
}
|
779 |
|
|
}
|
780 |
|
|
|
781 |
|
|
/* The r_offset field of the R_SH_USES reloc will point us to
|
782 |
|
|
the register load. The 4 is because the r_offset field is
|
783 |
|
|
computed as though it were a jump offset, which are based
|
784 |
|
|
from 4 bytes after the jump instruction. */
|
785 |
|
|
laddr = irel->r_vaddr - sec->vma + 4;
|
786 |
|
|
/* Careful to sign extend the 32-bit offset. */
|
787 |
|
|
laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
|
788 |
|
|
if (laddr >= sec->size)
|
789 |
|
|
{
|
790 |
|
|
(*_bfd_error_handler) ("%B: 0x%lx: warning: bad R_SH_USES offset",
|
791 |
|
|
abfd, (unsigned long) irel->r_vaddr);
|
792 |
|
|
continue;
|
793 |
|
|
}
|
794 |
|
|
insn = bfd_get_16 (abfd, contents + laddr);
|
795 |
|
|
|
796 |
|
|
/* If the instruction is not mov.l NN,rN, we don't know what to do. */
|
797 |
|
|
if ((insn & 0xf000) != 0xd000)
|
798 |
|
|
{
|
799 |
|
|
((*_bfd_error_handler)
|
800 |
|
|
("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
|
801 |
|
|
abfd, (unsigned long) irel->r_vaddr, insn));
|
802 |
|
|
continue;
|
803 |
|
|
}
|
804 |
|
|
|
805 |
|
|
/* Get the address from which the register is being loaded. The
|
806 |
|
|
displacement in the mov.l instruction is quadrupled. It is a
|
807 |
|
|
displacement from four bytes after the movl instruction, but,
|
808 |
|
|
before adding in the PC address, two least significant bits
|
809 |
|
|
of the PC are cleared. We assume that the section is aligned
|
810 |
|
|
on a four byte boundary. */
|
811 |
|
|
paddr = insn & 0xff;
|
812 |
|
|
paddr *= 4;
|
813 |
|
|
paddr += (laddr + 4) &~ (bfd_vma) 3;
|
814 |
|
|
if (paddr >= sec->size)
|
815 |
|
|
{
|
816 |
|
|
((*_bfd_error_handler)
|
817 |
|
|
("%B: 0x%lx: warning: bad R_SH_USES load offset",
|
818 |
|
|
abfd, (unsigned long) irel->r_vaddr));
|
819 |
|
|
continue;
|
820 |
|
|
}
|
821 |
|
|
|
822 |
|
|
/* Get the reloc for the address from which the register is
|
823 |
|
|
being loaded. This reloc will tell us which function is
|
824 |
|
|
actually being called. */
|
825 |
|
|
paddr += sec->vma;
|
826 |
|
|
for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
|
827 |
|
|
if (irelfn->r_vaddr == paddr
|
828 |
|
|
#ifdef COFF_WITH_PE
|
829 |
|
|
&& (irelfn->r_type == R_SH_IMM32
|
830 |
|
|
|| irelfn->r_type == R_SH_IMM32CE
|
831 |
|
|
|| irelfn->r_type == R_SH_IMAGEBASE)
|
832 |
|
|
|
833 |
|
|
#else
|
834 |
|
|
&& irelfn->r_type == R_SH_IMM32
|
835 |
|
|
#endif
|
836 |
|
|
)
|
837 |
|
|
break;
|
838 |
|
|
if (irelfn >= irelend)
|
839 |
|
|
{
|
840 |
|
|
((*_bfd_error_handler)
|
841 |
|
|
("%B: 0x%lx: warning: could not find expected reloc",
|
842 |
|
|
abfd, (unsigned long) paddr));
|
843 |
|
|
continue;
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
/* Get the value of the symbol referred to by the reloc. */
|
847 |
|
|
if (! _bfd_coff_get_external_symbols (abfd))
|
848 |
|
|
goto error_return;
|
849 |
|
|
bfd_coff_swap_sym_in (abfd,
|
850 |
|
|
((bfd_byte *) obj_coff_external_syms (abfd)
|
851 |
|
|
+ (irelfn->r_symndx
|
852 |
|
|
* bfd_coff_symesz (abfd))),
|
853 |
|
|
&sym);
|
854 |
|
|
if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
|
855 |
|
|
{
|
856 |
|
|
((*_bfd_error_handler)
|
857 |
|
|
("%B: 0x%lx: warning: symbol in unexpected section",
|
858 |
|
|
abfd, (unsigned long) paddr));
|
859 |
|
|
continue;
|
860 |
|
|
}
|
861 |
|
|
|
862 |
|
|
if (sym.n_sclass != C_EXT)
|
863 |
|
|
{
|
864 |
|
|
symval = (sym.n_value
|
865 |
|
|
- sec->vma
|
866 |
|
|
+ sec->output_section->vma
|
867 |
|
|
+ sec->output_offset);
|
868 |
|
|
}
|
869 |
|
|
else
|
870 |
|
|
{
|
871 |
|
|
struct coff_link_hash_entry *h;
|
872 |
|
|
|
873 |
|
|
h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
|
874 |
|
|
BFD_ASSERT (h != NULL);
|
875 |
|
|
if (h->root.type != bfd_link_hash_defined
|
876 |
|
|
&& h->root.type != bfd_link_hash_defweak)
|
877 |
|
|
{
|
878 |
|
|
/* This appears to be a reference to an undefined
|
879 |
|
|
symbol. Just ignore it--it will be caught by the
|
880 |
|
|
regular reloc processing. */
|
881 |
|
|
continue;
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
symval = (h->root.u.def.value
|
885 |
|
|
+ h->root.u.def.section->output_section->vma
|
886 |
|
|
+ h->root.u.def.section->output_offset);
|
887 |
|
|
}
|
888 |
|
|
|
889 |
|
|
symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
|
890 |
|
|
|
891 |
|
|
/* See if this function call can be shortened. */
|
892 |
|
|
foff = (symval
|
893 |
|
|
- (irel->r_vaddr
|
894 |
|
|
- sec->vma
|
895 |
|
|
+ sec->output_section->vma
|
896 |
|
|
+ sec->output_offset
|
897 |
|
|
+ 4));
|
898 |
|
|
if (foff < -0x1000 || foff >= 0x1000)
|
899 |
|
|
{
|
900 |
|
|
/* After all that work, we can't shorten this function call. */
|
901 |
|
|
continue;
|
902 |
|
|
}
|
903 |
|
|
|
904 |
|
|
/* Shorten the function call. */
|
905 |
|
|
|
906 |
|
|
/* For simplicity of coding, we are going to modify the section
|
907 |
|
|
contents, the section relocs, and the BFD symbol table. We
|
908 |
|
|
must tell the rest of the code not to free up this
|
909 |
|
|
information. It would be possible to instead create a table
|
910 |
|
|
of changes which have to be made, as is done in coff-mips.c;
|
911 |
|
|
that would be more work, but would require less memory when
|
912 |
|
|
the linker is run. */
|
913 |
|
|
|
914 |
|
|
coff_section_data (abfd, sec)->relocs = internal_relocs;
|
915 |
|
|
coff_section_data (abfd, sec)->keep_relocs = TRUE;
|
916 |
|
|
|
917 |
|
|
coff_section_data (abfd, sec)->contents = contents;
|
918 |
|
|
coff_section_data (abfd, sec)->keep_contents = TRUE;
|
919 |
|
|
|
920 |
|
|
obj_coff_keep_syms (abfd) = TRUE;
|
921 |
|
|
|
922 |
|
|
/* Replace the jsr with a bsr. */
|
923 |
|
|
|
924 |
|
|
/* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
|
925 |
|
|
replace the jsr with a bsr. */
|
926 |
|
|
irel->r_type = R_SH_PCDISP;
|
927 |
|
|
irel->r_symndx = irelfn->r_symndx;
|
928 |
|
|
if (sym.n_sclass != C_EXT)
|
929 |
|
|
{
|
930 |
|
|
/* If this needs to be changed because of future relaxing,
|
931 |
|
|
it will be handled here like other internal PCDISP
|
932 |
|
|
relocs. */
|
933 |
|
|
bfd_put_16 (abfd,
|
934 |
|
|
(bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
|
935 |
|
|
contents + irel->r_vaddr - sec->vma);
|
936 |
|
|
}
|
937 |
|
|
else
|
938 |
|
|
{
|
939 |
|
|
/* We can't fully resolve this yet, because the external
|
940 |
|
|
symbol value may be changed by future relaxing. We let
|
941 |
|
|
the final link phase handle it. */
|
942 |
|
|
bfd_put_16 (abfd, (bfd_vma) 0xb000,
|
943 |
|
|
contents + irel->r_vaddr - sec->vma);
|
944 |
|
|
}
|
945 |
|
|
|
946 |
|
|
/* See if there is another R_SH_USES reloc referring to the same
|
947 |
|
|
register load. */
|
948 |
|
|
for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
|
949 |
|
|
if (irelscan->r_type == R_SH_USES
|
950 |
|
|
&& laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
|
951 |
|
|
break;
|
952 |
|
|
if (irelscan < irelend)
|
953 |
|
|
{
|
954 |
|
|
/* Some other function call depends upon this register load,
|
955 |
|
|
and we have not yet converted that function call.
|
956 |
|
|
Indeed, we may never be able to convert it. There is
|
957 |
|
|
nothing else we can do at this point. */
|
958 |
|
|
continue;
|
959 |
|
|
}
|
960 |
|
|
|
961 |
|
|
/* Look for a R_SH_COUNT reloc on the location where the
|
962 |
|
|
function address is stored. Do this before deleting any
|
963 |
|
|
bytes, to avoid confusion about the address. */
|
964 |
|
|
for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
|
965 |
|
|
if (irelcount->r_vaddr == paddr
|
966 |
|
|
&& irelcount->r_type == R_SH_COUNT)
|
967 |
|
|
break;
|
968 |
|
|
|
969 |
|
|
/* Delete the register load. */
|
970 |
|
|
if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
|
971 |
|
|
goto error_return;
|
972 |
|
|
|
973 |
|
|
/* That will change things, so, just in case it permits some
|
974 |
|
|
other function call to come within range, we should relax
|
975 |
|
|
again. Note that this is not required, and it may be slow. */
|
976 |
|
|
*again = TRUE;
|
977 |
|
|
|
978 |
|
|
/* Now check whether we got a COUNT reloc. */
|
979 |
|
|
if (irelcount >= irelend)
|
980 |
|
|
{
|
981 |
|
|
((*_bfd_error_handler)
|
982 |
|
|
("%B: 0x%lx: warning: could not find expected COUNT reloc",
|
983 |
|
|
abfd, (unsigned long) paddr));
|
984 |
|
|
continue;
|
985 |
|
|
}
|
986 |
|
|
|
987 |
|
|
/* The number of uses is stored in the r_offset field. We've
|
988 |
|
|
just deleted one. */
|
989 |
|
|
if (irelcount->r_offset == 0)
|
990 |
|
|
{
|
991 |
|
|
((*_bfd_error_handler) ("%B: 0x%lx: warning: bad count",
|
992 |
|
|
abfd, (unsigned long) paddr));
|
993 |
|
|
continue;
|
994 |
|
|
}
|
995 |
|
|
|
996 |
|
|
--irelcount->r_offset;
|
997 |
|
|
|
998 |
|
|
/* If there are no more uses, we can delete the address. Reload
|
999 |
|
|
the address from irelfn, in case it was changed by the
|
1000 |
|
|
previous call to sh_relax_delete_bytes. */
|
1001 |
|
|
if (irelcount->r_offset == 0)
|
1002 |
|
|
{
|
1003 |
|
|
if (! sh_relax_delete_bytes (abfd, sec,
|
1004 |
|
|
irelfn->r_vaddr - sec->vma, 4))
|
1005 |
|
|
goto error_return;
|
1006 |
|
|
}
|
1007 |
|
|
|
1008 |
|
|
/* We've done all we can with that function call. */
|
1009 |
|
|
}
|
1010 |
|
|
|
1011 |
|
|
/* Look for load and store instructions that we can align on four
|
1012 |
|
|
byte boundaries. */
|
1013 |
|
|
if (have_code)
|
1014 |
|
|
{
|
1015 |
|
|
bfd_boolean swapped;
|
1016 |
|
|
|
1017 |
|
|
/* Get the section contents. */
|
1018 |
|
|
if (contents == NULL)
|
1019 |
|
|
{
|
1020 |
|
|
if (coff_section_data (abfd, sec)->contents != NULL)
|
1021 |
|
|
contents = coff_section_data (abfd, sec)->contents;
|
1022 |
|
|
else
|
1023 |
|
|
{
|
1024 |
|
|
if (!bfd_malloc_and_get_section (abfd, sec, &contents))
|
1025 |
|
|
goto error_return;
|
1026 |
|
|
}
|
1027 |
|
|
}
|
1028 |
|
|
|
1029 |
|
|
if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
|
1030 |
|
|
goto error_return;
|
1031 |
|
|
|
1032 |
|
|
if (swapped)
|
1033 |
|
|
{
|
1034 |
|
|
coff_section_data (abfd, sec)->relocs = internal_relocs;
|
1035 |
|
|
coff_section_data (abfd, sec)->keep_relocs = TRUE;
|
1036 |
|
|
|
1037 |
|
|
coff_section_data (abfd, sec)->contents = contents;
|
1038 |
|
|
coff_section_data (abfd, sec)->keep_contents = TRUE;
|
1039 |
|
|
|
1040 |
|
|
obj_coff_keep_syms (abfd) = TRUE;
|
1041 |
|
|
}
|
1042 |
|
|
}
|
1043 |
|
|
|
1044 |
|
|
if (internal_relocs != NULL
|
1045 |
|
|
&& internal_relocs != coff_section_data (abfd, sec)->relocs)
|
1046 |
|
|
{
|
1047 |
|
|
if (! link_info->keep_memory)
|
1048 |
|
|
free (internal_relocs);
|
1049 |
|
|
else
|
1050 |
|
|
coff_section_data (abfd, sec)->relocs = internal_relocs;
|
1051 |
|
|
}
|
1052 |
|
|
|
1053 |
|
|
if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
|
1054 |
|
|
{
|
1055 |
|
|
if (! link_info->keep_memory)
|
1056 |
|
|
free (contents);
|
1057 |
|
|
else
|
1058 |
|
|
/* Cache the section contents for coff_link_input_bfd. */
|
1059 |
|
|
coff_section_data (abfd, sec)->contents = contents;
|
1060 |
|
|
}
|
1061 |
|
|
|
1062 |
|
|
return TRUE;
|
1063 |
|
|
|
1064 |
|
|
error_return:
|
1065 |
|
|
if (internal_relocs != NULL
|
1066 |
|
|
&& internal_relocs != coff_section_data (abfd, sec)->relocs)
|
1067 |
|
|
free (internal_relocs);
|
1068 |
|
|
if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
|
1069 |
|
|
free (contents);
|
1070 |
|
|
return FALSE;
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
/* Delete some bytes from a section while relaxing. */
|
1074 |
|
|
|
1075 |
|
|
static bfd_boolean
|
1076 |
|
|
sh_relax_delete_bytes (abfd, sec, addr, count)
|
1077 |
|
|
bfd *abfd;
|
1078 |
|
|
asection *sec;
|
1079 |
|
|
bfd_vma addr;
|
1080 |
|
|
int count;
|
1081 |
|
|
{
|
1082 |
|
|
bfd_byte *contents;
|
1083 |
|
|
struct internal_reloc *irel, *irelend;
|
1084 |
|
|
struct internal_reloc *irelalign;
|
1085 |
|
|
bfd_vma toaddr;
|
1086 |
|
|
bfd_byte *esym, *esymend;
|
1087 |
|
|
bfd_size_type symesz;
|
1088 |
|
|
struct coff_link_hash_entry **sym_hash;
|
1089 |
|
|
asection *o;
|
1090 |
|
|
|
1091 |
|
|
contents = coff_section_data (abfd, sec)->contents;
|
1092 |
|
|
|
1093 |
|
|
/* The deletion must stop at the next ALIGN reloc for an aligment
|
1094 |
|
|
power larger than the number of bytes we are deleting. */
|
1095 |
|
|
|
1096 |
|
|
irelalign = NULL;
|
1097 |
|
|
toaddr = sec->size;
|
1098 |
|
|
|
1099 |
|
|
irel = coff_section_data (abfd, sec)->relocs;
|
1100 |
|
|
irelend = irel + sec->reloc_count;
|
1101 |
|
|
for (; irel < irelend; irel++)
|
1102 |
|
|
{
|
1103 |
|
|
if (irel->r_type == R_SH_ALIGN
|
1104 |
|
|
&& irel->r_vaddr - sec->vma > addr
|
1105 |
|
|
&& count < (1 << irel->r_offset))
|
1106 |
|
|
{
|
1107 |
|
|
irelalign = irel;
|
1108 |
|
|
toaddr = irel->r_vaddr - sec->vma;
|
1109 |
|
|
break;
|
1110 |
|
|
}
|
1111 |
|
|
}
|
1112 |
|
|
|
1113 |
|
|
/* Actually delete the bytes. */
|
1114 |
|
|
memmove (contents + addr, contents + addr + count,
|
1115 |
|
|
(size_t) (toaddr - addr - count));
|
1116 |
|
|
if (irelalign == NULL)
|
1117 |
|
|
sec->size -= count;
|
1118 |
|
|
else
|
1119 |
|
|
{
|
1120 |
|
|
int i;
|
1121 |
|
|
|
1122 |
|
|
#define NOP_OPCODE (0x0009)
|
1123 |
|
|
|
1124 |
|
|
BFD_ASSERT ((count & 1) == 0);
|
1125 |
|
|
for (i = 0; i < count; i += 2)
|
1126 |
|
|
bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
|
1127 |
|
|
}
|
1128 |
|
|
|
1129 |
|
|
/* Adjust all the relocs. */
|
1130 |
|
|
for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
|
1131 |
|
|
{
|
1132 |
|
|
bfd_vma nraddr, stop;
|
1133 |
|
|
bfd_vma start = 0;
|
1134 |
|
|
int insn = 0;
|
1135 |
|
|
struct internal_syment sym;
|
1136 |
|
|
int off, adjust, oinsn;
|
1137 |
|
|
bfd_signed_vma voff = 0;
|
1138 |
|
|
bfd_boolean overflow;
|
1139 |
|
|
|
1140 |
|
|
/* Get the new reloc address. */
|
1141 |
|
|
nraddr = irel->r_vaddr - sec->vma;
|
1142 |
|
|
if ((irel->r_vaddr - sec->vma > addr
|
1143 |
|
|
&& irel->r_vaddr - sec->vma < toaddr)
|
1144 |
|
|
|| (irel->r_type == R_SH_ALIGN
|
1145 |
|
|
&& irel->r_vaddr - sec->vma == toaddr))
|
1146 |
|
|
nraddr -= count;
|
1147 |
|
|
|
1148 |
|
|
/* See if this reloc was for the bytes we have deleted, in which
|
1149 |
|
|
case we no longer care about it. Don't delete relocs which
|
1150 |
|
|
represent addresses, though. */
|
1151 |
|
|
if (irel->r_vaddr - sec->vma >= addr
|
1152 |
|
|
&& irel->r_vaddr - sec->vma < addr + count
|
1153 |
|
|
&& irel->r_type != R_SH_ALIGN
|
1154 |
|
|
&& irel->r_type != R_SH_CODE
|
1155 |
|
|
&& irel->r_type != R_SH_DATA
|
1156 |
|
|
&& irel->r_type != R_SH_LABEL)
|
1157 |
|
|
irel->r_type = R_SH_UNUSED;
|
1158 |
|
|
|
1159 |
|
|
/* If this is a PC relative reloc, see if the range it covers
|
1160 |
|
|
includes the bytes we have deleted. */
|
1161 |
|
|
switch (irel->r_type)
|
1162 |
|
|
{
|
1163 |
|
|
default:
|
1164 |
|
|
break;
|
1165 |
|
|
|
1166 |
|
|
case R_SH_PCDISP8BY2:
|
1167 |
|
|
case R_SH_PCDISP:
|
1168 |
|
|
case R_SH_PCRELIMM8BY2:
|
1169 |
|
|
case R_SH_PCRELIMM8BY4:
|
1170 |
|
|
start = irel->r_vaddr - sec->vma;
|
1171 |
|
|
insn = bfd_get_16 (abfd, contents + nraddr);
|
1172 |
|
|
break;
|
1173 |
|
|
}
|
1174 |
|
|
|
1175 |
|
|
switch (irel->r_type)
|
1176 |
|
|
{
|
1177 |
|
|
default:
|
1178 |
|
|
start = stop = addr;
|
1179 |
|
|
break;
|
1180 |
|
|
|
1181 |
|
|
case R_SH_IMM32:
|
1182 |
|
|
#ifdef COFF_WITH_PE
|
1183 |
|
|
case R_SH_IMM32CE:
|
1184 |
|
|
case R_SH_IMAGEBASE:
|
1185 |
|
|
#endif
|
1186 |
|
|
/* If this reloc is against a symbol defined in this
|
1187 |
|
|
section, and the symbol will not be adjusted below, we
|
1188 |
|
|
must check the addend to see it will put the value in
|
1189 |
|
|
range to be adjusted, and hence must be changed. */
|
1190 |
|
|
bfd_coff_swap_sym_in (abfd,
|
1191 |
|
|
((bfd_byte *) obj_coff_external_syms (abfd)
|
1192 |
|
|
+ (irel->r_symndx
|
1193 |
|
|
* bfd_coff_symesz (abfd))),
|
1194 |
|
|
&sym);
|
1195 |
|
|
if (sym.n_sclass != C_EXT
|
1196 |
|
|
&& sym.n_scnum == sec->target_index
|
1197 |
|
|
&& ((bfd_vma) sym.n_value <= addr
|
1198 |
|
|
|| (bfd_vma) sym.n_value >= toaddr))
|
1199 |
|
|
{
|
1200 |
|
|
bfd_vma val;
|
1201 |
|
|
|
1202 |
|
|
val = bfd_get_32 (abfd, contents + nraddr);
|
1203 |
|
|
val += sym.n_value;
|
1204 |
|
|
if (val > addr && val < toaddr)
|
1205 |
|
|
bfd_put_32 (abfd, val - count, contents + nraddr);
|
1206 |
|
|
}
|
1207 |
|
|
start = stop = addr;
|
1208 |
|
|
break;
|
1209 |
|
|
|
1210 |
|
|
case R_SH_PCDISP8BY2:
|
1211 |
|
|
off = insn & 0xff;
|
1212 |
|
|
if (off & 0x80)
|
1213 |
|
|
off -= 0x100;
|
1214 |
|
|
stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
|
1215 |
|
|
break;
|
1216 |
|
|
|
1217 |
|
|
case R_SH_PCDISP:
|
1218 |
|
|
bfd_coff_swap_sym_in (abfd,
|
1219 |
|
|
((bfd_byte *) obj_coff_external_syms (abfd)
|
1220 |
|
|
+ (irel->r_symndx
|
1221 |
|
|
* bfd_coff_symesz (abfd))),
|
1222 |
|
|
&sym);
|
1223 |
|
|
if (sym.n_sclass == C_EXT)
|
1224 |
|
|
start = stop = addr;
|
1225 |
|
|
else
|
1226 |
|
|
{
|
1227 |
|
|
off = insn & 0xfff;
|
1228 |
|
|
if (off & 0x800)
|
1229 |
|
|
off -= 0x1000;
|
1230 |
|
|
stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
|
1231 |
|
|
}
|
1232 |
|
|
break;
|
1233 |
|
|
|
1234 |
|
|
case R_SH_PCRELIMM8BY2:
|
1235 |
|
|
off = insn & 0xff;
|
1236 |
|
|
stop = start + 4 + off * 2;
|
1237 |
|
|
break;
|
1238 |
|
|
|
1239 |
|
|
case R_SH_PCRELIMM8BY4:
|
1240 |
|
|
off = insn & 0xff;
|
1241 |
|
|
stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
|
1242 |
|
|
break;
|
1243 |
|
|
|
1244 |
|
|
case R_SH_SWITCH8:
|
1245 |
|
|
case R_SH_SWITCH16:
|
1246 |
|
|
case R_SH_SWITCH32:
|
1247 |
|
|
/* These relocs types represent
|
1248 |
|
|
.word L2-L1
|
1249 |
|
|
The r_offset field holds the difference between the reloc
|
1250 |
|
|
address and L1. That is the start of the reloc, and
|
1251 |
|
|
adding in the contents gives us the top. We must adjust
|
1252 |
|
|
both the r_offset field and the section contents. */
|
1253 |
|
|
|
1254 |
|
|
start = irel->r_vaddr - sec->vma;
|
1255 |
|
|
stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
|
1256 |
|
|
|
1257 |
|
|
if (start > addr
|
1258 |
|
|
&& start < toaddr
|
1259 |
|
|
&& (stop <= addr || stop >= toaddr))
|
1260 |
|
|
irel->r_offset += count;
|
1261 |
|
|
else if (stop > addr
|
1262 |
|
|
&& stop < toaddr
|
1263 |
|
|
&& (start <= addr || start >= toaddr))
|
1264 |
|
|
irel->r_offset -= count;
|
1265 |
|
|
|
1266 |
|
|
start = stop;
|
1267 |
|
|
|
1268 |
|
|
if (irel->r_type == R_SH_SWITCH16)
|
1269 |
|
|
voff = bfd_get_signed_16 (abfd, contents + nraddr);
|
1270 |
|
|
else if (irel->r_type == R_SH_SWITCH8)
|
1271 |
|
|
voff = bfd_get_8 (abfd, contents + nraddr);
|
1272 |
|
|
else
|
1273 |
|
|
voff = bfd_get_signed_32 (abfd, contents + nraddr);
|
1274 |
|
|
stop = (bfd_vma) ((bfd_signed_vma) start + voff);
|
1275 |
|
|
|
1276 |
|
|
break;
|
1277 |
|
|
|
1278 |
|
|
case R_SH_USES:
|
1279 |
|
|
start = irel->r_vaddr - sec->vma;
|
1280 |
|
|
stop = (bfd_vma) ((bfd_signed_vma) start
|
1281 |
|
|
+ (long) irel->r_offset
|
1282 |
|
|
+ 4);
|
1283 |
|
|
break;
|
1284 |
|
|
}
|
1285 |
|
|
|
1286 |
|
|
if (start > addr
|
1287 |
|
|
&& start < toaddr
|
1288 |
|
|
&& (stop <= addr || stop >= toaddr))
|
1289 |
|
|
adjust = count;
|
1290 |
|
|
else if (stop > addr
|
1291 |
|
|
&& stop < toaddr
|
1292 |
|
|
&& (start <= addr || start >= toaddr))
|
1293 |
|
|
adjust = - count;
|
1294 |
|
|
else
|
1295 |
|
|
adjust = 0;
|
1296 |
|
|
|
1297 |
|
|
if (adjust != 0)
|
1298 |
|
|
{
|
1299 |
|
|
oinsn = insn;
|
1300 |
|
|
overflow = FALSE;
|
1301 |
|
|
switch (irel->r_type)
|
1302 |
|
|
{
|
1303 |
|
|
default:
|
1304 |
|
|
abort ();
|
1305 |
|
|
break;
|
1306 |
|
|
|
1307 |
|
|
case R_SH_PCDISP8BY2:
|
1308 |
|
|
case R_SH_PCRELIMM8BY2:
|
1309 |
|
|
insn += adjust / 2;
|
1310 |
|
|
if ((oinsn & 0xff00) != (insn & 0xff00))
|
1311 |
|
|
overflow = TRUE;
|
1312 |
|
|
bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
|
1313 |
|
|
break;
|
1314 |
|
|
|
1315 |
|
|
case R_SH_PCDISP:
|
1316 |
|
|
insn += adjust / 2;
|
1317 |
|
|
if ((oinsn & 0xf000) != (insn & 0xf000))
|
1318 |
|
|
overflow = TRUE;
|
1319 |
|
|
bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
|
1320 |
|
|
break;
|
1321 |
|
|
|
1322 |
|
|
case R_SH_PCRELIMM8BY4:
|
1323 |
|
|
BFD_ASSERT (adjust == count || count >= 4);
|
1324 |
|
|
if (count >= 4)
|
1325 |
|
|
insn += adjust / 4;
|
1326 |
|
|
else
|
1327 |
|
|
{
|
1328 |
|
|
if ((irel->r_vaddr & 3) == 0)
|
1329 |
|
|
++insn;
|
1330 |
|
|
}
|
1331 |
|
|
if ((oinsn & 0xff00) != (insn & 0xff00))
|
1332 |
|
|
overflow = TRUE;
|
1333 |
|
|
bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
|
1334 |
|
|
break;
|
1335 |
|
|
|
1336 |
|
|
case R_SH_SWITCH8:
|
1337 |
|
|
voff += adjust;
|
1338 |
|
|
if (voff < 0 || voff >= 0xff)
|
1339 |
|
|
overflow = TRUE;
|
1340 |
|
|
bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
|
1341 |
|
|
break;
|
1342 |
|
|
|
1343 |
|
|
case R_SH_SWITCH16:
|
1344 |
|
|
voff += adjust;
|
1345 |
|
|
if (voff < - 0x8000 || voff >= 0x8000)
|
1346 |
|
|
overflow = TRUE;
|
1347 |
|
|
bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
|
1348 |
|
|
break;
|
1349 |
|
|
|
1350 |
|
|
case R_SH_SWITCH32:
|
1351 |
|
|
voff += adjust;
|
1352 |
|
|
bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
|
1353 |
|
|
break;
|
1354 |
|
|
|
1355 |
|
|
case R_SH_USES:
|
1356 |
|
|
irel->r_offset += adjust;
|
1357 |
|
|
break;
|
1358 |
|
|
}
|
1359 |
|
|
|
1360 |
|
|
if (overflow)
|
1361 |
|
|
{
|
1362 |
|
|
((*_bfd_error_handler)
|
1363 |
|
|
("%B: 0x%lx: fatal: reloc overflow while relaxing",
|
1364 |
|
|
abfd, (unsigned long) irel->r_vaddr));
|
1365 |
|
|
bfd_set_error (bfd_error_bad_value);
|
1366 |
|
|
return FALSE;
|
1367 |
|
|
}
|
1368 |
|
|
}
|
1369 |
|
|
|
1370 |
|
|
irel->r_vaddr = nraddr + sec->vma;
|
1371 |
|
|
}
|
1372 |
|
|
|
1373 |
|
|
/* Look through all the other sections. If there contain any IMM32
|
1374 |
|
|
relocs against internal symbols which we are not going to adjust
|
1375 |
|
|
below, we may need to adjust the addends. */
|
1376 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
1377 |
|
|
{
|
1378 |
|
|
struct internal_reloc *internal_relocs;
|
1379 |
|
|
struct internal_reloc *irelscan, *irelscanend;
|
1380 |
|
|
bfd_byte *ocontents;
|
1381 |
|
|
|
1382 |
|
|
if (o == sec
|
1383 |
|
|
|| (o->flags & SEC_RELOC) == 0
|
1384 |
|
|
|| o->reloc_count == 0)
|
1385 |
|
|
continue;
|
1386 |
|
|
|
1387 |
|
|
/* We always cache the relocs. Perhaps, if info->keep_memory is
|
1388 |
|
|
FALSE, we should free them, if we are permitted to, when we
|
1389 |
|
|
leave sh_coff_relax_section. */
|
1390 |
|
|
internal_relocs = (_bfd_coff_read_internal_relocs
|
1391 |
|
|
(abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
|
1392 |
|
|
(struct internal_reloc *) NULL));
|
1393 |
|
|
if (internal_relocs == NULL)
|
1394 |
|
|
return FALSE;
|
1395 |
|
|
|
1396 |
|
|
ocontents = NULL;
|
1397 |
|
|
irelscanend = internal_relocs + o->reloc_count;
|
1398 |
|
|
for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
|
1399 |
|
|
{
|
1400 |
|
|
struct internal_syment sym;
|
1401 |
|
|
|
1402 |
|
|
#ifdef COFF_WITH_PE
|
1403 |
|
|
if (irelscan->r_type != R_SH_IMM32
|
1404 |
|
|
&& irelscan->r_type != R_SH_IMAGEBASE
|
1405 |
|
|
&& irelscan->r_type != R_SH_IMM32CE)
|
1406 |
|
|
#else
|
1407 |
|
|
if (irelscan->r_type != R_SH_IMM32)
|
1408 |
|
|
#endif
|
1409 |
|
|
continue;
|
1410 |
|
|
|
1411 |
|
|
bfd_coff_swap_sym_in (abfd,
|
1412 |
|
|
((bfd_byte *) obj_coff_external_syms (abfd)
|
1413 |
|
|
+ (irelscan->r_symndx
|
1414 |
|
|
* bfd_coff_symesz (abfd))),
|
1415 |
|
|
&sym);
|
1416 |
|
|
if (sym.n_sclass != C_EXT
|
1417 |
|
|
&& sym.n_scnum == sec->target_index
|
1418 |
|
|
&& ((bfd_vma) sym.n_value <= addr
|
1419 |
|
|
|| (bfd_vma) sym.n_value >= toaddr))
|
1420 |
|
|
{
|
1421 |
|
|
bfd_vma val;
|
1422 |
|
|
|
1423 |
|
|
if (ocontents == NULL)
|
1424 |
|
|
{
|
1425 |
|
|
if (coff_section_data (abfd, o)->contents != NULL)
|
1426 |
|
|
ocontents = coff_section_data (abfd, o)->contents;
|
1427 |
|
|
else
|
1428 |
|
|
{
|
1429 |
|
|
if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
|
1430 |
|
|
return FALSE;
|
1431 |
|
|
/* We always cache the section contents.
|
1432 |
|
|
Perhaps, if info->keep_memory is FALSE, we
|
1433 |
|
|
should free them, if we are permitted to,
|
1434 |
|
|
when we leave sh_coff_relax_section. */
|
1435 |
|
|
coff_section_data (abfd, o)->contents = ocontents;
|
1436 |
|
|
}
|
1437 |
|
|
}
|
1438 |
|
|
|
1439 |
|
|
val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
|
1440 |
|
|
val += sym.n_value;
|
1441 |
|
|
if (val > addr && val < toaddr)
|
1442 |
|
|
bfd_put_32 (abfd, val - count,
|
1443 |
|
|
ocontents + irelscan->r_vaddr - o->vma);
|
1444 |
|
|
|
1445 |
|
|
coff_section_data (abfd, o)->keep_contents = TRUE;
|
1446 |
|
|
}
|
1447 |
|
|
}
|
1448 |
|
|
}
|
1449 |
|
|
|
1450 |
|
|
/* Adjusting the internal symbols will not work if something has
|
1451 |
|
|
already retrieved the generic symbols. It would be possible to
|
1452 |
|
|
make this work by adjusting the generic symbols at the same time.
|
1453 |
|
|
However, this case should not arise in normal usage. */
|
1454 |
|
|
if (obj_symbols (abfd) != NULL
|
1455 |
|
|
|| obj_raw_syments (abfd) != NULL)
|
1456 |
|
|
{
|
1457 |
|
|
((*_bfd_error_handler)
|
1458 |
|
|
("%B: fatal: generic symbols retrieved before relaxing", abfd));
|
1459 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
1460 |
|
|
return FALSE;
|
1461 |
|
|
}
|
1462 |
|
|
|
1463 |
|
|
/* Adjust all the symbols. */
|
1464 |
|
|
sym_hash = obj_coff_sym_hashes (abfd);
|
1465 |
|
|
symesz = bfd_coff_symesz (abfd);
|
1466 |
|
|
esym = (bfd_byte *) obj_coff_external_syms (abfd);
|
1467 |
|
|
esymend = esym + obj_raw_syment_count (abfd) * symesz;
|
1468 |
|
|
while (esym < esymend)
|
1469 |
|
|
{
|
1470 |
|
|
struct internal_syment isym;
|
1471 |
|
|
|
1472 |
|
|
bfd_coff_swap_sym_in (abfd, (PTR) esym, (PTR) &isym);
|
1473 |
|
|
|
1474 |
|
|
if (isym.n_scnum == sec->target_index
|
1475 |
|
|
&& (bfd_vma) isym.n_value > addr
|
1476 |
|
|
&& (bfd_vma) isym.n_value < toaddr)
|
1477 |
|
|
{
|
1478 |
|
|
isym.n_value -= count;
|
1479 |
|
|
|
1480 |
|
|
bfd_coff_swap_sym_out (abfd, (PTR) &isym, (PTR) esym);
|
1481 |
|
|
|
1482 |
|
|
if (*sym_hash != NULL)
|
1483 |
|
|
{
|
1484 |
|
|
BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
|
1485 |
|
|
|| (*sym_hash)->root.type == bfd_link_hash_defweak);
|
1486 |
|
|
BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
|
1487 |
|
|
&& (*sym_hash)->root.u.def.value < toaddr);
|
1488 |
|
|
(*sym_hash)->root.u.def.value -= count;
|
1489 |
|
|
}
|
1490 |
|
|
}
|
1491 |
|
|
|
1492 |
|
|
esym += (isym.n_numaux + 1) * symesz;
|
1493 |
|
|
sym_hash += isym.n_numaux + 1;
|
1494 |
|
|
}
|
1495 |
|
|
|
1496 |
|
|
/* See if we can move the ALIGN reloc forward. We have adjusted
|
1497 |
|
|
r_vaddr for it already. */
|
1498 |
|
|
if (irelalign != NULL)
|
1499 |
|
|
{
|
1500 |
|
|
bfd_vma alignto, alignaddr;
|
1501 |
|
|
|
1502 |
|
|
alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
|
1503 |
|
|
alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
|
1504 |
|
|
1 << irelalign->r_offset);
|
1505 |
|
|
if (alignto != alignaddr)
|
1506 |
|
|
{
|
1507 |
|
|
/* Tail recursion. */
|
1508 |
|
|
return sh_relax_delete_bytes (abfd, sec, alignaddr,
|
1509 |
|
|
(int) (alignto - alignaddr));
|
1510 |
|
|
}
|
1511 |
|
|
}
|
1512 |
|
|
|
1513 |
|
|
return TRUE;
|
1514 |
|
|
}
|
1515 |
|
|
|
1516 |
|
|
/* This is yet another version of the SH opcode table, used to rapidly
|
1517 |
|
|
get information about a particular instruction. */
|
1518 |
|
|
|
1519 |
|
|
/* The opcode map is represented by an array of these structures. The
|
1520 |
|
|
array is indexed by the high order four bits in the instruction. */
|
1521 |
|
|
|
1522 |
|
|
struct sh_major_opcode
|
1523 |
|
|
{
|
1524 |
|
|
/* A pointer to the instruction list. This is an array which
|
1525 |
|
|
contains all the instructions with this major opcode. */
|
1526 |
|
|
const struct sh_minor_opcode *minor_opcodes;
|
1527 |
|
|
/* The number of elements in minor_opcodes. */
|
1528 |
|
|
unsigned short count;
|
1529 |
|
|
};
|
1530 |
|
|
|
1531 |
|
|
/* This structure holds information for a set of SH opcodes. The
|
1532 |
|
|
instruction code is anded with the mask value, and the resulting
|
1533 |
|
|
value is used to search the order opcode list. */
|
1534 |
|
|
|
1535 |
|
|
struct sh_minor_opcode
|
1536 |
|
|
{
|
1537 |
|
|
/* The sorted opcode list. */
|
1538 |
|
|
const struct sh_opcode *opcodes;
|
1539 |
|
|
/* The number of elements in opcodes. */
|
1540 |
|
|
unsigned short count;
|
1541 |
|
|
/* The mask value to use when searching the opcode list. */
|
1542 |
|
|
unsigned short mask;
|
1543 |
|
|
};
|
1544 |
|
|
|
1545 |
|
|
/* This structure holds information for an SH instruction. An array
|
1546 |
|
|
of these structures is sorted in order by opcode. */
|
1547 |
|
|
|
1548 |
|
|
struct sh_opcode
|
1549 |
|
|
{
|
1550 |
|
|
/* The code for this instruction, after it has been anded with the
|
1551 |
|
|
mask value in the sh_major_opcode structure. */
|
1552 |
|
|
unsigned short opcode;
|
1553 |
|
|
/* Flags for this instruction. */
|
1554 |
|
|
unsigned long flags;
|
1555 |
|
|
};
|
1556 |
|
|
|
1557 |
|
|
/* Flag which appear in the sh_opcode structure. */
|
1558 |
|
|
|
1559 |
|
|
/* This instruction loads a value from memory. */
|
1560 |
|
|
#define LOAD (0x1)
|
1561 |
|
|
|
1562 |
|
|
/* This instruction stores a value to memory. */
|
1563 |
|
|
#define STORE (0x2)
|
1564 |
|
|
|
1565 |
|
|
/* This instruction is a branch. */
|
1566 |
|
|
#define BRANCH (0x4)
|
1567 |
|
|
|
1568 |
|
|
/* This instruction has a delay slot. */
|
1569 |
|
|
#define DELAY (0x8)
|
1570 |
|
|
|
1571 |
|
|
/* This instruction uses the value in the register in the field at
|
1572 |
|
|
mask 0x0f00 of the instruction. */
|
1573 |
|
|
#define USES1 (0x10)
|
1574 |
|
|
#define USES1_REG(x) ((x & 0x0f00) >> 8)
|
1575 |
|
|
|
1576 |
|
|
/* This instruction uses the value in the register in the field at
|
1577 |
|
|
mask 0x00f0 of the instruction. */
|
1578 |
|
|
#define USES2 (0x20)
|
1579 |
|
|
#define USES2_REG(x) ((x & 0x00f0) >> 4)
|
1580 |
|
|
|
1581 |
|
|
/* This instruction uses the value in register 0. */
|
1582 |
|
|
#define USESR0 (0x40)
|
1583 |
|
|
|
1584 |
|
|
/* This instruction sets the value in the register in the field at
|
1585 |
|
|
mask 0x0f00 of the instruction. */
|
1586 |
|
|
#define SETS1 (0x80)
|
1587 |
|
|
#define SETS1_REG(x) ((x & 0x0f00) >> 8)
|
1588 |
|
|
|
1589 |
|
|
/* This instruction sets the value in the register in the field at
|
1590 |
|
|
mask 0x00f0 of the instruction. */
|
1591 |
|
|
#define SETS2 (0x100)
|
1592 |
|
|
#define SETS2_REG(x) ((x & 0x00f0) >> 4)
|
1593 |
|
|
|
1594 |
|
|
/* This instruction sets register 0. */
|
1595 |
|
|
#define SETSR0 (0x200)
|
1596 |
|
|
|
1597 |
|
|
/* This instruction sets a special register. */
|
1598 |
|
|
#define SETSSP (0x400)
|
1599 |
|
|
|
1600 |
|
|
/* This instruction uses a special register. */
|
1601 |
|
|
#define USESSP (0x800)
|
1602 |
|
|
|
1603 |
|
|
/* This instruction uses the floating point register in the field at
|
1604 |
|
|
mask 0x0f00 of the instruction. */
|
1605 |
|
|
#define USESF1 (0x1000)
|
1606 |
|
|
#define USESF1_REG(x) ((x & 0x0f00) >> 8)
|
1607 |
|
|
|
1608 |
|
|
/* This instruction uses the floating point register in the field at
|
1609 |
|
|
mask 0x00f0 of the instruction. */
|
1610 |
|
|
#define USESF2 (0x2000)
|
1611 |
|
|
#define USESF2_REG(x) ((x & 0x00f0) >> 4)
|
1612 |
|
|
|
1613 |
|
|
/* This instruction uses floating point register 0. */
|
1614 |
|
|
#define USESF0 (0x4000)
|
1615 |
|
|
|
1616 |
|
|
/* This instruction sets the floating point register in the field at
|
1617 |
|
|
mask 0x0f00 of the instruction. */
|
1618 |
|
|
#define SETSF1 (0x8000)
|
1619 |
|
|
#define SETSF1_REG(x) ((x & 0x0f00) >> 8)
|
1620 |
|
|
|
1621 |
|
|
#define USESAS (0x10000)
|
1622 |
|
|
#define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
|
1623 |
|
|
#define USESR8 (0x20000)
|
1624 |
|
|
#define SETSAS (0x40000)
|
1625 |
|
|
#define SETSAS_REG(x) USESAS_REG (x)
|
1626 |
|
|
|
1627 |
|
|
#define MAP(a) a, sizeof a / sizeof a[0]
|
1628 |
|
|
|
1629 |
|
|
#ifndef COFF_IMAGE_WITH_PE
|
1630 |
|
|
static bfd_boolean sh_insn_uses_reg
|
1631 |
|
|
PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
|
1632 |
|
|
static bfd_boolean sh_insn_sets_reg
|
1633 |
|
|
PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
|
1634 |
|
|
static bfd_boolean sh_insn_uses_or_sets_reg
|
1635 |
|
|
PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
|
1636 |
|
|
static bfd_boolean sh_insn_uses_freg
|
1637 |
|
|
PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
|
1638 |
|
|
static bfd_boolean sh_insn_sets_freg
|
1639 |
|
|
PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
|
1640 |
|
|
static bfd_boolean sh_insn_uses_or_sets_freg
|
1641 |
|
|
PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
|
1642 |
|
|
static bfd_boolean sh_insns_conflict
|
1643 |
|
|
PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
|
1644 |
|
|
const struct sh_opcode *));
|
1645 |
|
|
static bfd_boolean sh_load_use
|
1646 |
|
|
PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
|
1647 |
|
|
const struct sh_opcode *));
|
1648 |
|
|
|
1649 |
|
|
/* The opcode maps. */
|
1650 |
|
|
|
1651 |
|
|
static const struct sh_opcode sh_opcode00[] =
|
1652 |
|
|
{
|
1653 |
|
|
{ 0x0008, SETSSP }, /* clrt */
|
1654 |
|
|
{ 0x0009, 0 }, /* nop */
|
1655 |
|
|
{ 0x000b, BRANCH | DELAY | USESSP }, /* rts */
|
1656 |
|
|
{ 0x0018, SETSSP }, /* sett */
|
1657 |
|
|
{ 0x0019, SETSSP }, /* div0u */
|
1658 |
|
|
{ 0x001b, 0 }, /* sleep */
|
1659 |
|
|
{ 0x0028, SETSSP }, /* clrmac */
|
1660 |
|
|
{ 0x002b, BRANCH | DELAY | SETSSP }, /* rte */
|
1661 |
|
|
{ 0x0038, USESSP | SETSSP }, /* ldtlb */
|
1662 |
|
|
{ 0x0048, SETSSP }, /* clrs */
|
1663 |
|
|
{ 0x0058, SETSSP } /* sets */
|
1664 |
|
|
};
|
1665 |
|
|
|
1666 |
|
|
static const struct sh_opcode sh_opcode01[] =
|
1667 |
|
|
{
|
1668 |
|
|
{ 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */
|
1669 |
|
|
{ 0x000a, SETS1 | USESSP }, /* sts mach,rn */
|
1670 |
|
|
{ 0x001a, SETS1 | USESSP }, /* sts macl,rn */
|
1671 |
|
|
{ 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */
|
1672 |
|
|
{ 0x0029, SETS1 | USESSP }, /* movt rn */
|
1673 |
|
|
{ 0x002a, SETS1 | USESSP }, /* sts pr,rn */
|
1674 |
|
|
{ 0x005a, SETS1 | USESSP }, /* sts fpul,rn */
|
1675 |
|
|
{ 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */
|
1676 |
|
|
{ 0x0083, LOAD | USES1 }, /* pref @rn */
|
1677 |
|
|
{ 0x007a, SETS1 | USESSP }, /* sts a0,rn */
|
1678 |
|
|
{ 0x008a, SETS1 | USESSP }, /* sts x0,rn */
|
1679 |
|
|
{ 0x009a, SETS1 | USESSP }, /* sts x1,rn */
|
1680 |
|
|
{ 0x00aa, SETS1 | USESSP }, /* sts y0,rn */
|
1681 |
|
|
{ 0x00ba, SETS1 | USESSP } /* sts y1,rn */
|
1682 |
|
|
};
|
1683 |
|
|
|
1684 |
|
|
static const struct sh_opcode sh_opcode02[] =
|
1685 |
|
|
{
|
1686 |
|
|
{ 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */
|
1687 |
|
|
{ 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
|
1688 |
|
|
{ 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
|
1689 |
|
|
{ 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
|
1690 |
|
|
{ 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */
|
1691 |
|
|
{ 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */
|
1692 |
|
|
{ 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */
|
1693 |
|
|
{ 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */
|
1694 |
|
|
{ 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
|
1695 |
|
|
};
|
1696 |
|
|
|
1697 |
|
|
static const struct sh_minor_opcode sh_opcode0[] =
|
1698 |
|
|
{
|
1699 |
|
|
{ MAP (sh_opcode00), 0xffff },
|
1700 |
|
|
{ MAP (sh_opcode01), 0xf0ff },
|
1701 |
|
|
{ MAP (sh_opcode02), 0xf00f }
|
1702 |
|
|
};
|
1703 |
|
|
|
1704 |
|
|
static const struct sh_opcode sh_opcode10[] =
|
1705 |
|
|
{
|
1706 |
|
|
{ 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
|
1707 |
|
|
};
|
1708 |
|
|
|
1709 |
|
|
static const struct sh_minor_opcode sh_opcode1[] =
|
1710 |
|
|
{
|
1711 |
|
|
{ MAP (sh_opcode10), 0xf000 }
|
1712 |
|
|
};
|
1713 |
|
|
|
1714 |
|
|
static const struct sh_opcode sh_opcode20[] =
|
1715 |
|
|
{
|
1716 |
|
|
{ 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */
|
1717 |
|
|
{ 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */
|
1718 |
|
|
{ 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */
|
1719 |
|
|
{ 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */
|
1720 |
|
|
{ 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */
|
1721 |
|
|
{ 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */
|
1722 |
|
|
{ 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */
|
1723 |
|
|
{ 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */
|
1724 |
|
|
{ 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */
|
1725 |
|
|
{ 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */
|
1726 |
|
|
{ 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */
|
1727 |
|
|
{ 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */
|
1728 |
|
|
{ 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */
|
1729 |
|
|
{ 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */
|
1730 |
|
|
{ 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */
|
1731 |
|
|
};
|
1732 |
|
|
|
1733 |
|
|
static const struct sh_minor_opcode sh_opcode2[] =
|
1734 |
|
|
{
|
1735 |
|
|
{ MAP (sh_opcode20), 0xf00f }
|
1736 |
|
|
};
|
1737 |
|
|
|
1738 |
|
|
static const struct sh_opcode sh_opcode30[] =
|
1739 |
|
|
{
|
1740 |
|
|
{ 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */
|
1741 |
|
|
{ 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */
|
1742 |
|
|
{ 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */
|
1743 |
|
|
{ 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */
|
1744 |
|
|
{ 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */
|
1745 |
|
|
{ 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */
|
1746 |
|
|
{ 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */
|
1747 |
|
|
{ 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */
|
1748 |
|
|
{ 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
|
1749 |
|
|
{ 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
|
1750 |
|
|
{ 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */
|
1751 |
|
|
{ 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */
|
1752 |
|
|
{ 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
|
1753 |
|
|
{ 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */
|
1754 |
|
|
};
|
1755 |
|
|
|
1756 |
|
|
static const struct sh_minor_opcode sh_opcode3[] =
|
1757 |
|
|
{
|
1758 |
|
|
{ MAP (sh_opcode30), 0xf00f }
|
1759 |
|
|
};
|
1760 |
|
|
|
1761 |
|
|
static const struct sh_opcode sh_opcode40[] =
|
1762 |
|
|
{
|
1763 |
|
|
{ 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */
|
1764 |
|
|
{ 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */
|
1765 |
|
|
{ 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
|
1766 |
|
|
{ 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */
|
1767 |
|
|
{ 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */
|
1768 |
|
|
{ 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */
|
1769 |
|
|
{ 0x4008, SETS1 | USES1 }, /* shll2 rn */
|
1770 |
|
|
{ 0x4009, SETS1 | USES1 }, /* shlr2 rn */
|
1771 |
|
|
{ 0x400a, SETSSP | USES1 }, /* lds rm,mach */
|
1772 |
|
|
{ 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */
|
1773 |
|
|
{ 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */
|
1774 |
|
|
{ 0x4011, SETSSP | USES1 }, /* cmp/pz rn */
|
1775 |
|
|
{ 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
|
1776 |
|
|
{ 0x4014, SETSSP | USES1 }, /* setrc rm */
|
1777 |
|
|
{ 0x4015, SETSSP | USES1 }, /* cmp/pl rn */
|
1778 |
|
|
{ 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */
|
1779 |
|
|
{ 0x4018, SETS1 | USES1 }, /* shll8 rn */
|
1780 |
|
|
{ 0x4019, SETS1 | USES1 }, /* shlr8 rn */
|
1781 |
|
|
{ 0x401a, SETSSP | USES1 }, /* lds rm,macl */
|
1782 |
|
|
{ 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */
|
1783 |
|
|
{ 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */
|
1784 |
|
|
{ 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */
|
1785 |
|
|
{ 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
|
1786 |
|
|
{ 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */
|
1787 |
|
|
{ 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */
|
1788 |
|
|
{ 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */
|
1789 |
|
|
{ 0x4028, SETS1 | USES1 }, /* shll16 rn */
|
1790 |
|
|
{ 0x4029, SETS1 | USES1 }, /* shlr16 rn */
|
1791 |
|
|
{ 0x402a, SETSSP | USES1 }, /* lds rm,pr */
|
1792 |
|
|
{ 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */
|
1793 |
|
|
{ 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
|
1794 |
|
|
{ 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */
|
1795 |
|
|
{ 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */
|
1796 |
|
|
{ 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
|
1797 |
|
|
{ 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */
|
1798 |
|
|
{ 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */
|
1799 |
|
|
{ 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
|
1800 |
|
|
{ 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */
|
1801 |
|
|
{ 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */
|
1802 |
|
|
{ 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
|
1803 |
|
|
{ 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */
|
1804 |
|
|
{ 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */
|
1805 |
|
|
{ 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
|
1806 |
|
|
{ 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */
|
1807 |
|
|
{ 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */
|
1808 |
|
|
{ 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
|
1809 |
|
|
{ 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */
|
1810 |
|
|
{ 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */
|
1811 |
|
|
{ 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
|
1812 |
|
|
{ 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */
|
1813 |
|
|
{ 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */
|
1814 |
|
|
};
|
1815 |
|
|
|
1816 |
|
|
static const struct sh_opcode sh_opcode41[] =
|
1817 |
|
|
{
|
1818 |
|
|
{ 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
|
1819 |
|
|
{ 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */
|
1820 |
|
|
{ 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */
|
1821 |
|
|
{ 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */
|
1822 |
|
|
{ 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */
|
1823 |
|
|
{ 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
|
1824 |
|
|
};
|
1825 |
|
|
|
1826 |
|
|
static const struct sh_minor_opcode sh_opcode4[] =
|
1827 |
|
|
{
|
1828 |
|
|
{ MAP (sh_opcode40), 0xf0ff },
|
1829 |
|
|
{ MAP (sh_opcode41), 0xf00f }
|
1830 |
|
|
};
|
1831 |
|
|
|
1832 |
|
|
static const struct sh_opcode sh_opcode50[] =
|
1833 |
|
|
{
|
1834 |
|
|
{ 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */
|
1835 |
|
|
};
|
1836 |
|
|
|
1837 |
|
|
static const struct sh_minor_opcode sh_opcode5[] =
|
1838 |
|
|
{
|
1839 |
|
|
{ MAP (sh_opcode50), 0xf000 }
|
1840 |
|
|
};
|
1841 |
|
|
|
1842 |
|
|
static const struct sh_opcode sh_opcode60[] =
|
1843 |
|
|
{
|
1844 |
|
|
{ 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */
|
1845 |
|
|
{ 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */
|
1846 |
|
|
{ 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */
|
1847 |
|
|
{ 0x6003, SETS1 | USES2 }, /* mov rm,rn */
|
1848 |
|
|
{ 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
|
1849 |
|
|
{ 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
|
1850 |
|
|
{ 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
|
1851 |
|
|
{ 0x6007, SETS1 | USES2 }, /* not rm,rn */
|
1852 |
|
|
{ 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */
|
1853 |
|
|
{ 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */
|
1854 |
|
|
{ 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */
|
1855 |
|
|
{ 0x600b, SETS1 | USES2 }, /* neg rm,rn */
|
1856 |
|
|
{ 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */
|
1857 |
|
|
{ 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */
|
1858 |
|
|
{ 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */
|
1859 |
|
|
{ 0x600f, SETS1 | USES2 } /* exts.w rm,rn */
|
1860 |
|
|
};
|
1861 |
|
|
|
1862 |
|
|
static const struct sh_minor_opcode sh_opcode6[] =
|
1863 |
|
|
{
|
1864 |
|
|
{ MAP (sh_opcode60), 0xf00f }
|
1865 |
|
|
};
|
1866 |
|
|
|
1867 |
|
|
static const struct sh_opcode sh_opcode70[] =
|
1868 |
|
|
{
|
1869 |
|
|
{ 0x7000, SETS1 | USES1 } /* add #imm,rn */
|
1870 |
|
|
};
|
1871 |
|
|
|
1872 |
|
|
static const struct sh_minor_opcode sh_opcode7[] =
|
1873 |
|
|
{
|
1874 |
|
|
{ MAP (sh_opcode70), 0xf000 }
|
1875 |
|
|
};
|
1876 |
|
|
|
1877 |
|
|
static const struct sh_opcode sh_opcode80[] =
|
1878 |
|
|
{
|
1879 |
|
|
{ 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
|
1880 |
|
|
{ 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
|
1881 |
|
|
{ 0x8200, SETSSP }, /* setrc #imm */
|
1882 |
|
|
{ 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */
|
1883 |
|
|
{ 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */
|
1884 |
|
|
{ 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */
|
1885 |
|
|
{ 0x8900, BRANCH | USESSP }, /* bt label */
|
1886 |
|
|
{ 0x8b00, BRANCH | USESSP }, /* bf label */
|
1887 |
|
|
{ 0x8c00, SETSSP }, /* ldrs @(disp,pc) */
|
1888 |
|
|
{ 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */
|
1889 |
|
|
{ 0x8e00, SETSSP }, /* ldre @(disp,pc) */
|
1890 |
|
|
{ 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
|
1891 |
|
|
};
|
1892 |
|
|
|
1893 |
|
|
static const struct sh_minor_opcode sh_opcode8[] =
|
1894 |
|
|
{
|
1895 |
|
|
{ MAP (sh_opcode80), 0xff00 }
|
1896 |
|
|
};
|
1897 |
|
|
|
1898 |
|
|
static const struct sh_opcode sh_opcode90[] =
|
1899 |
|
|
{
|
1900 |
|
|
{ 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */
|
1901 |
|
|
};
|
1902 |
|
|
|
1903 |
|
|
static const struct sh_minor_opcode sh_opcode9[] =
|
1904 |
|
|
{
|
1905 |
|
|
{ MAP (sh_opcode90), 0xf000 }
|
1906 |
|
|
};
|
1907 |
|
|
|
1908 |
|
|
static const struct sh_opcode sh_opcodea0[] =
|
1909 |
|
|
{
|
1910 |
|
|
{ 0xa000, BRANCH | DELAY } /* bra label */
|
1911 |
|
|
};
|
1912 |
|
|
|
1913 |
|
|
static const struct sh_minor_opcode sh_opcodea[] =
|
1914 |
|
|
{
|
1915 |
|
|
{ MAP (sh_opcodea0), 0xf000 }
|
1916 |
|
|
};
|
1917 |
|
|
|
1918 |
|
|
static const struct sh_opcode sh_opcodeb0[] =
|
1919 |
|
|
{
|
1920 |
|
|
{ 0xb000, BRANCH | DELAY } /* bsr label */
|
1921 |
|
|
};
|
1922 |
|
|
|
1923 |
|
|
static const struct sh_minor_opcode sh_opcodeb[] =
|
1924 |
|
|
{
|
1925 |
|
|
{ MAP (sh_opcodeb0), 0xf000 }
|
1926 |
|
|
};
|
1927 |
|
|
|
1928 |
|
|
static const struct sh_opcode sh_opcodec0[] =
|
1929 |
|
|
{
|
1930 |
|
|
{ 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */
|
1931 |
|
|
{ 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */
|
1932 |
|
|
{ 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */
|
1933 |
|
|
{ 0xc300, BRANCH | USESSP }, /* trapa #imm */
|
1934 |
|
|
{ 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */
|
1935 |
|
|
{ 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */
|
1936 |
|
|
{ 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */
|
1937 |
|
|
{ 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */
|
1938 |
|
|
{ 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */
|
1939 |
|
|
{ 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */
|
1940 |
|
|
{ 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */
|
1941 |
|
|
{ 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */
|
1942 |
|
|
{ 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */
|
1943 |
|
|
{ 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
|
1944 |
|
|
{ 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
|
1945 |
|
|
{ 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */
|
1946 |
|
|
};
|
1947 |
|
|
|
1948 |
|
|
static const struct sh_minor_opcode sh_opcodec[] =
|
1949 |
|
|
{
|
1950 |
|
|
{ MAP (sh_opcodec0), 0xff00 }
|
1951 |
|
|
};
|
1952 |
|
|
|
1953 |
|
|
static const struct sh_opcode sh_opcoded0[] =
|
1954 |
|
|
{
|
1955 |
|
|
{ 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */
|
1956 |
|
|
};
|
1957 |
|
|
|
1958 |
|
|
static const struct sh_minor_opcode sh_opcoded[] =
|
1959 |
|
|
{
|
1960 |
|
|
{ MAP (sh_opcoded0), 0xf000 }
|
1961 |
|
|
};
|
1962 |
|
|
|
1963 |
|
|
static const struct sh_opcode sh_opcodee0[] =
|
1964 |
|
|
{
|
1965 |
|
|
{ 0xe000, SETS1 } /* mov #imm,rn */
|
1966 |
|
|
};
|
1967 |
|
|
|
1968 |
|
|
static const struct sh_minor_opcode sh_opcodee[] =
|
1969 |
|
|
{
|
1970 |
|
|
{ MAP (sh_opcodee0), 0xf000 }
|
1971 |
|
|
};
|
1972 |
|
|
|
1973 |
|
|
static const struct sh_opcode sh_opcodef0[] =
|
1974 |
|
|
{
|
1975 |
|
|
{ 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */
|
1976 |
|
|
{ 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */
|
1977 |
|
|
{ 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */
|
1978 |
|
|
{ 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */
|
1979 |
|
|
{ 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */
|
1980 |
|
|
{ 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */
|
1981 |
|
|
{ 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
|
1982 |
|
|
{ 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */
|
1983 |
|
|
{ 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */
|
1984 |
|
|
{ 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */
|
1985 |
|
|
{ 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */
|
1986 |
|
|
{ 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
|
1987 |
|
|
{ 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */
|
1988 |
|
|
{ 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
|
1989 |
|
|
};
|
1990 |
|
|
|
1991 |
|
|
static const struct sh_opcode sh_opcodef1[] =
|
1992 |
|
|
{
|
1993 |
|
|
{ 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */
|
1994 |
|
|
{ 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */
|
1995 |
|
|
{ 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */
|
1996 |
|
|
{ 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */
|
1997 |
|
|
{ 0xf04d, SETSF1 | USESF1 }, /* fneg fn */
|
1998 |
|
|
{ 0xf05d, SETSF1 | USESF1 }, /* fabs fn */
|
1999 |
|
|
{ 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */
|
2000 |
|
|
{ 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */
|
2001 |
|
|
{ 0xf08d, SETSF1 }, /* fldi0 fn */
|
2002 |
|
|
{ 0xf09d, SETSF1 } /* fldi1 fn */
|
2003 |
|
|
};
|
2004 |
|
|
|
2005 |
|
|
static const struct sh_minor_opcode sh_opcodef[] =
|
2006 |
|
|
{
|
2007 |
|
|
{ MAP (sh_opcodef0), 0xf00f },
|
2008 |
|
|
{ MAP (sh_opcodef1), 0xf0ff }
|
2009 |
|
|
};
|
2010 |
|
|
|
2011 |
|
|
static struct sh_major_opcode sh_opcodes[] =
|
2012 |
|
|
{
|
2013 |
|
|
{ MAP (sh_opcode0) },
|
2014 |
|
|
{ MAP (sh_opcode1) },
|
2015 |
|
|
{ MAP (sh_opcode2) },
|
2016 |
|
|
{ MAP (sh_opcode3) },
|
2017 |
|
|
{ MAP (sh_opcode4) },
|
2018 |
|
|
{ MAP (sh_opcode5) },
|
2019 |
|
|
{ MAP (sh_opcode6) },
|
2020 |
|
|
{ MAP (sh_opcode7) },
|
2021 |
|
|
{ MAP (sh_opcode8) },
|
2022 |
|
|
{ MAP (sh_opcode9) },
|
2023 |
|
|
{ MAP (sh_opcodea) },
|
2024 |
|
|
{ MAP (sh_opcodeb) },
|
2025 |
|
|
{ MAP (sh_opcodec) },
|
2026 |
|
|
{ MAP (sh_opcoded) },
|
2027 |
|
|
{ MAP (sh_opcodee) },
|
2028 |
|
|
{ MAP (sh_opcodef) }
|
2029 |
|
|
};
|
2030 |
|
|
|
2031 |
|
|
/* The double data transfer / parallel processing insns are not
|
2032 |
|
|
described here. This will cause sh_align_load_span to leave them alone. */
|
2033 |
|
|
|
2034 |
|
|
static const struct sh_opcode sh_dsp_opcodef0[] =
|
2035 |
|
|
{
|
2036 |
|
|
{ 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */
|
2037 |
|
|
{ 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
|
2038 |
|
|
{ 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */
|
2039 |
|
|
{ 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */
|
2040 |
|
|
{ 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */
|
2041 |
|
|
{ 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
|
2042 |
|
|
{ 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
|
2043 |
|
|
{ 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
|
2044 |
|
|
};
|
2045 |
|
|
|
2046 |
|
|
static const struct sh_minor_opcode sh_dsp_opcodef[] =
|
2047 |
|
|
{
|
2048 |
|
|
{ MAP (sh_dsp_opcodef0), 0xfc0d }
|
2049 |
|
|
};
|
2050 |
|
|
|
2051 |
|
|
/* Given an instruction, return a pointer to the corresponding
|
2052 |
|
|
sh_opcode structure. Return NULL if the instruction is not
|
2053 |
|
|
recognized. */
|
2054 |
|
|
|
2055 |
|
|
static const struct sh_opcode *
|
2056 |
|
|
sh_insn_info (insn)
|
2057 |
|
|
unsigned int insn;
|
2058 |
|
|
{
|
2059 |
|
|
const struct sh_major_opcode *maj;
|
2060 |
|
|
const struct sh_minor_opcode *min, *minend;
|
2061 |
|
|
|
2062 |
|
|
maj = &sh_opcodes[(insn & 0xf000) >> 12];
|
2063 |
|
|
min = maj->minor_opcodes;
|
2064 |
|
|
minend = min + maj->count;
|
2065 |
|
|
for (; min < minend; min++)
|
2066 |
|
|
{
|
2067 |
|
|
unsigned int l;
|
2068 |
|
|
const struct sh_opcode *op, *opend;
|
2069 |
|
|
|
2070 |
|
|
l = insn & min->mask;
|
2071 |
|
|
op = min->opcodes;
|
2072 |
|
|
opend = op + min->count;
|
2073 |
|
|
|
2074 |
|
|
/* Since the opcodes tables are sorted, we could use a binary
|
2075 |
|
|
search here if the count were above some cutoff value. */
|
2076 |
|
|
for (; op < opend; op++)
|
2077 |
|
|
if (op->opcode == l)
|
2078 |
|
|
return op;
|
2079 |
|
|
}
|
2080 |
|
|
|
2081 |
|
|
return NULL;
|
2082 |
|
|
}
|
2083 |
|
|
|
2084 |
|
|
/* See whether an instruction uses or sets a general purpose register */
|
2085 |
|
|
|
2086 |
|
|
static bfd_boolean
|
2087 |
|
|
sh_insn_uses_or_sets_reg (insn, op, reg)
|
2088 |
|
|
unsigned int insn;
|
2089 |
|
|
const struct sh_opcode *op;
|
2090 |
|
|
unsigned int reg;
|
2091 |
|
|
{
|
2092 |
|
|
if (sh_insn_uses_reg (insn, op, reg))
|
2093 |
|
|
return TRUE;
|
2094 |
|
|
|
2095 |
|
|
return sh_insn_sets_reg (insn, op, reg);
|
2096 |
|
|
}
|
2097 |
|
|
|
2098 |
|
|
/* See whether an instruction uses a general purpose register. */
|
2099 |
|
|
|
2100 |
|
|
static bfd_boolean
|
2101 |
|
|
sh_insn_uses_reg (insn, op, reg)
|
2102 |
|
|
unsigned int insn;
|
2103 |
|
|
const struct sh_opcode *op;
|
2104 |
|
|
unsigned int reg;
|
2105 |
|
|
{
|
2106 |
|
|
unsigned int f;
|
2107 |
|
|
|
2108 |
|
|
f = op->flags;
|
2109 |
|
|
|
2110 |
|
|
if ((f & USES1) != 0
|
2111 |
|
|
&& USES1_REG (insn) == reg)
|
2112 |
|
|
return TRUE;
|
2113 |
|
|
if ((f & USES2) != 0
|
2114 |
|
|
&& USES2_REG (insn) == reg)
|
2115 |
|
|
return TRUE;
|
2116 |
|
|
if ((f & USESR0) != 0
|
2117 |
|
|
&& reg == 0)
|
2118 |
|
|
return TRUE;
|
2119 |
|
|
if ((f & USESAS) && reg == USESAS_REG (insn))
|
2120 |
|
|
return TRUE;
|
2121 |
|
|
if ((f & USESR8) && reg == 8)
|
2122 |
|
|
return TRUE;
|
2123 |
|
|
|
2124 |
|
|
return FALSE;
|
2125 |
|
|
}
|
2126 |
|
|
|
2127 |
|
|
/* See whether an instruction sets a general purpose register. */
|
2128 |
|
|
|
2129 |
|
|
static bfd_boolean
|
2130 |
|
|
sh_insn_sets_reg (insn, op, reg)
|
2131 |
|
|
unsigned int insn;
|
2132 |
|
|
const struct sh_opcode *op;
|
2133 |
|
|
unsigned int reg;
|
2134 |
|
|
{
|
2135 |
|
|
unsigned int f;
|
2136 |
|
|
|
2137 |
|
|
f = op->flags;
|
2138 |
|
|
|
2139 |
|
|
if ((f & SETS1) != 0
|
2140 |
|
|
&& SETS1_REG (insn) == reg)
|
2141 |
|
|
return TRUE;
|
2142 |
|
|
if ((f & SETS2) != 0
|
2143 |
|
|
&& SETS2_REG (insn) == reg)
|
2144 |
|
|
return TRUE;
|
2145 |
|
|
if ((f & SETSR0) != 0
|
2146 |
|
|
&& reg == 0)
|
2147 |
|
|
return TRUE;
|
2148 |
|
|
if ((f & SETSAS) && reg == SETSAS_REG (insn))
|
2149 |
|
|
return TRUE;
|
2150 |
|
|
|
2151 |
|
|
return FALSE;
|
2152 |
|
|
}
|
2153 |
|
|
|
2154 |
|
|
/* See whether an instruction uses or sets a floating point register */
|
2155 |
|
|
|
2156 |
|
|
static bfd_boolean
|
2157 |
|
|
sh_insn_uses_or_sets_freg (insn, op, reg)
|
2158 |
|
|
unsigned int insn;
|
2159 |
|
|
const struct sh_opcode *op;
|
2160 |
|
|
unsigned int reg;
|
2161 |
|
|
{
|
2162 |
|
|
if (sh_insn_uses_freg (insn, op, reg))
|
2163 |
|
|
return TRUE;
|
2164 |
|
|
|
2165 |
|
|
return sh_insn_sets_freg (insn, op, reg);
|
2166 |
|
|
}
|
2167 |
|
|
|
2168 |
|
|
/* See whether an instruction uses a floating point register. */
|
2169 |
|
|
|
2170 |
|
|
static bfd_boolean
|
2171 |
|
|
sh_insn_uses_freg (insn, op, freg)
|
2172 |
|
|
unsigned int insn;
|
2173 |
|
|
const struct sh_opcode *op;
|
2174 |
|
|
unsigned int freg;
|
2175 |
|
|
{
|
2176 |
|
|
unsigned int f;
|
2177 |
|
|
|
2178 |
|
|
f = op->flags;
|
2179 |
|
|
|
2180 |
|
|
/* We can't tell if this is a double-precision insn, so just play safe
|
2181 |
|
|
and assume that it might be. So not only have we test FREG against
|
2182 |
|
|
itself, but also even FREG against FREG+1 - if the using insn uses
|
2183 |
|
|
just the low part of a double precision value - but also an odd
|
2184 |
|
|
FREG against FREG-1 - if the setting insn sets just the low part
|
2185 |
|
|
of a double precision value.
|
2186 |
|
|
So what this all boils down to is that we have to ignore the lowest
|
2187 |
|
|
bit of the register number. */
|
2188 |
|
|
|
2189 |
|
|
if ((f & USESF1) != 0
|
2190 |
|
|
&& (USESF1_REG (insn) & 0xe) == (freg & 0xe))
|
2191 |
|
|
return TRUE;
|
2192 |
|
|
if ((f & USESF2) != 0
|
2193 |
|
|
&& (USESF2_REG (insn) & 0xe) == (freg & 0xe))
|
2194 |
|
|
return TRUE;
|
2195 |
|
|
if ((f & USESF0) != 0
|
2196 |
|
|
&& freg == 0)
|
2197 |
|
|
return TRUE;
|
2198 |
|
|
|
2199 |
|
|
return FALSE;
|
2200 |
|
|
}
|
2201 |
|
|
|
2202 |
|
|
/* See whether an instruction sets a floating point register. */
|
2203 |
|
|
|
2204 |
|
|
static bfd_boolean
|
2205 |
|
|
sh_insn_sets_freg (insn, op, freg)
|
2206 |
|
|
unsigned int insn;
|
2207 |
|
|
const struct sh_opcode *op;
|
2208 |
|
|
unsigned int freg;
|
2209 |
|
|
{
|
2210 |
|
|
unsigned int f;
|
2211 |
|
|
|
2212 |
|
|
f = op->flags;
|
2213 |
|
|
|
2214 |
|
|
/* We can't tell if this is a double-precision insn, so just play safe
|
2215 |
|
|
and assume that it might be. So not only have we test FREG against
|
2216 |
|
|
itself, but also even FREG against FREG+1 - if the using insn uses
|
2217 |
|
|
just the low part of a double precision value - but also an odd
|
2218 |
|
|
FREG against FREG-1 - if the setting insn sets just the low part
|
2219 |
|
|
of a double precision value.
|
2220 |
|
|
So what this all boils down to is that we have to ignore the lowest
|
2221 |
|
|
bit of the register number. */
|
2222 |
|
|
|
2223 |
|
|
if ((f & SETSF1) != 0
|
2224 |
|
|
&& (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
|
2225 |
|
|
return TRUE;
|
2226 |
|
|
|
2227 |
|
|
return FALSE;
|
2228 |
|
|
}
|
2229 |
|
|
|
2230 |
|
|
/* See whether instructions I1 and I2 conflict, assuming I1 comes
|
2231 |
|
|
before I2. OP1 and OP2 are the corresponding sh_opcode structures.
|
2232 |
|
|
This should return TRUE if there is a conflict, or FALSE if the
|
2233 |
|
|
instructions can be swapped safely. */
|
2234 |
|
|
|
2235 |
|
|
static bfd_boolean
|
2236 |
|
|
sh_insns_conflict (i1, op1, i2, op2)
|
2237 |
|
|
unsigned int i1;
|
2238 |
|
|
const struct sh_opcode *op1;
|
2239 |
|
|
unsigned int i2;
|
2240 |
|
|
const struct sh_opcode *op2;
|
2241 |
|
|
{
|
2242 |
|
|
unsigned int f1, f2;
|
2243 |
|
|
|
2244 |
|
|
f1 = op1->flags;
|
2245 |
|
|
f2 = op2->flags;
|
2246 |
|
|
|
2247 |
|
|
/* Load of fpscr conflicts with floating point operations.
|
2248 |
|
|
FIXME: shouldn't test raw opcodes here. */
|
2249 |
|
|
if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
|
2250 |
|
|
|| ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
|
2251 |
|
|
return TRUE;
|
2252 |
|
|
|
2253 |
|
|
if ((f1 & (BRANCH | DELAY)) != 0
|
2254 |
|
|
|| (f2 & (BRANCH | DELAY)) != 0)
|
2255 |
|
|
return TRUE;
|
2256 |
|
|
|
2257 |
|
|
if (((f1 | f2) & SETSSP)
|
2258 |
|
|
&& (f1 & (SETSSP | USESSP))
|
2259 |
|
|
&& (f2 & (SETSSP | USESSP)))
|
2260 |
|
|
return TRUE;
|
2261 |
|
|
|
2262 |
|
|
if ((f1 & SETS1) != 0
|
2263 |
|
|
&& sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
|
2264 |
|
|
return TRUE;
|
2265 |
|
|
if ((f1 & SETS2) != 0
|
2266 |
|
|
&& sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
|
2267 |
|
|
return TRUE;
|
2268 |
|
|
if ((f1 & SETSR0) != 0
|
2269 |
|
|
&& sh_insn_uses_or_sets_reg (i2, op2, 0))
|
2270 |
|
|
return TRUE;
|
2271 |
|
|
if ((f1 & SETSAS)
|
2272 |
|
|
&& sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
|
2273 |
|
|
return TRUE;
|
2274 |
|
|
if ((f1 & SETSF1) != 0
|
2275 |
|
|
&& sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
|
2276 |
|
|
return TRUE;
|
2277 |
|
|
|
2278 |
|
|
if ((f2 & SETS1) != 0
|
2279 |
|
|
&& sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
|
2280 |
|
|
return TRUE;
|
2281 |
|
|
if ((f2 & SETS2) != 0
|
2282 |
|
|
&& sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
|
2283 |
|
|
return TRUE;
|
2284 |
|
|
if ((f2 & SETSR0) != 0
|
2285 |
|
|
&& sh_insn_uses_or_sets_reg (i1, op1, 0))
|
2286 |
|
|
return TRUE;
|
2287 |
|
|
if ((f2 & SETSAS)
|
2288 |
|
|
&& sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
|
2289 |
|
|
return TRUE;
|
2290 |
|
|
if ((f2 & SETSF1) != 0
|
2291 |
|
|
&& sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
|
2292 |
|
|
return TRUE;
|
2293 |
|
|
|
2294 |
|
|
/* The instructions do not conflict. */
|
2295 |
|
|
return FALSE;
|
2296 |
|
|
}
|
2297 |
|
|
|
2298 |
|
|
/* I1 is a load instruction, and I2 is some other instruction. Return
|
2299 |
|
|
TRUE if I1 loads a register which I2 uses. */
|
2300 |
|
|
|
2301 |
|
|
static bfd_boolean
|
2302 |
|
|
sh_load_use (i1, op1, i2, op2)
|
2303 |
|
|
unsigned int i1;
|
2304 |
|
|
const struct sh_opcode *op1;
|
2305 |
|
|
unsigned int i2;
|
2306 |
|
|
const struct sh_opcode *op2;
|
2307 |
|
|
{
|
2308 |
|
|
unsigned int f1;
|
2309 |
|
|
|
2310 |
|
|
f1 = op1->flags;
|
2311 |
|
|
|
2312 |
|
|
if ((f1 & LOAD) == 0)
|
2313 |
|
|
return FALSE;
|
2314 |
|
|
|
2315 |
|
|
/* If both SETS1 and SETSSP are set, that means a load to a special
|
2316 |
|
|
register using postincrement addressing mode, which we don't care
|
2317 |
|
|
about here. */
|
2318 |
|
|
if ((f1 & SETS1) != 0
|
2319 |
|
|
&& (f1 & SETSSP) == 0
|
2320 |
|
|
&& sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
|
2321 |
|
|
return TRUE;
|
2322 |
|
|
|
2323 |
|
|
if ((f1 & SETSR0) != 0
|
2324 |
|
|
&& sh_insn_uses_reg (i2, op2, 0))
|
2325 |
|
|
return TRUE;
|
2326 |
|
|
|
2327 |
|
|
if ((f1 & SETSF1) != 0
|
2328 |
|
|
&& sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
|
2329 |
|
|
return TRUE;
|
2330 |
|
|
|
2331 |
|
|
return FALSE;
|
2332 |
|
|
}
|
2333 |
|
|
|
2334 |
|
|
/* Try to align loads and stores within a span of memory. This is
|
2335 |
|
|
called by both the ELF and the COFF sh targets. ABFD and SEC are
|
2336 |
|
|
the BFD and section we are examining. CONTENTS is the contents of
|
2337 |
|
|
the section. SWAP is the routine to call to swap two instructions.
|
2338 |
|
|
RELOCS is a pointer to the internal relocation information, to be
|
2339 |
|
|
passed to SWAP. PLABEL is a pointer to the current label in a
|
2340 |
|
|
sorted list of labels; LABEL_END is the end of the list. START and
|
2341 |
|
|
STOP are the range of memory to examine. If a swap is made,
|
2342 |
|
|
*PSWAPPED is set to TRUE. */
|
2343 |
|
|
|
2344 |
|
|
#ifdef COFF_WITH_PE
|
2345 |
|
|
static
|
2346 |
|
|
#endif
|
2347 |
|
|
bfd_boolean
|
2348 |
|
|
_bfd_sh_align_load_span (abfd, sec, contents, swap, relocs,
|
2349 |
|
|
plabel, label_end, start, stop, pswapped)
|
2350 |
|
|
bfd *abfd;
|
2351 |
|
|
asection *sec;
|
2352 |
|
|
bfd_byte *contents;
|
2353 |
|
|
bfd_boolean (*swap) PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
|
2354 |
|
|
PTR relocs;
|
2355 |
|
|
bfd_vma **plabel;
|
2356 |
|
|
bfd_vma *label_end;
|
2357 |
|
|
bfd_vma start;
|
2358 |
|
|
bfd_vma stop;
|
2359 |
|
|
bfd_boolean *pswapped;
|
2360 |
|
|
{
|
2361 |
|
|
int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
|
2362 |
|
|
|| abfd->arch_info->mach == bfd_mach_sh3_dsp);
|
2363 |
|
|
bfd_vma i;
|
2364 |
|
|
|
2365 |
|
|
/* The SH4 has a Harvard architecture, hence aligning loads is not
|
2366 |
|
|
desirable. In fact, it is counter-productive, since it interferes
|
2367 |
|
|
with the schedules generated by the compiler. */
|
2368 |
|
|
if (abfd->arch_info->mach == bfd_mach_sh4)
|
2369 |
|
|
return TRUE;
|
2370 |
|
|
|
2371 |
|
|
/* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
|
2372 |
|
|
instructions. */
|
2373 |
|
|
if (dsp)
|
2374 |
|
|
{
|
2375 |
|
|
sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
|
2376 |
|
|
sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef;
|
2377 |
|
|
}
|
2378 |
|
|
|
2379 |
|
|
/* Instructions should be aligned on 2 byte boundaries. */
|
2380 |
|
|
if ((start & 1) == 1)
|
2381 |
|
|
++start;
|
2382 |
|
|
|
2383 |
|
|
/* Now look through the unaligned addresses. */
|
2384 |
|
|
i = start;
|
2385 |
|
|
if ((i & 2) == 0)
|
2386 |
|
|
i += 2;
|
2387 |
|
|
for (; i < stop; i += 4)
|
2388 |
|
|
{
|
2389 |
|
|
unsigned int insn;
|
2390 |
|
|
const struct sh_opcode *op;
|
2391 |
|
|
unsigned int prev_insn = 0;
|
2392 |
|
|
const struct sh_opcode *prev_op = NULL;
|
2393 |
|
|
|
2394 |
|
|
insn = bfd_get_16 (abfd, contents + i);
|
2395 |
|
|
op = sh_insn_info (insn);
|
2396 |
|
|
if (op == NULL
|
2397 |
|
|
|| (op->flags & (LOAD | STORE)) == 0)
|
2398 |
|
|
continue;
|
2399 |
|
|
|
2400 |
|
|
/* This is a load or store which is not on a four byte boundary. */
|
2401 |
|
|
|
2402 |
|
|
while (*plabel < label_end && **plabel < i)
|
2403 |
|
|
++*plabel;
|
2404 |
|
|
|
2405 |
|
|
if (i > start)
|
2406 |
|
|
{
|
2407 |
|
|
prev_insn = bfd_get_16 (abfd, contents + i - 2);
|
2408 |
|
|
/* If INSN is the field b of a parallel processing insn, it is not
|
2409 |
|
|
a load / store after all. Note that the test here might mistake
|
2410 |
|
|
the field_b of a pcopy insn for the starting code of a parallel
|
2411 |
|
|
processing insn; this might miss a swapping opportunity, but at
|
2412 |
|
|
least we're on the safe side. */
|
2413 |
|
|
if (dsp && (prev_insn & 0xfc00) == 0xf800)
|
2414 |
|
|
continue;
|
2415 |
|
|
|
2416 |
|
|
/* Check if prev_insn is actually the field b of a parallel
|
2417 |
|
|
processing insn. Again, this can give a spurious match
|
2418 |
|
|
after a pcopy. */
|
2419 |
|
|
if (dsp && i - 2 > start)
|
2420 |
|
|
{
|
2421 |
|
|
unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
|
2422 |
|
|
|
2423 |
|
|
if ((pprev_insn & 0xfc00) == 0xf800)
|
2424 |
|
|
prev_op = NULL;
|
2425 |
|
|
else
|
2426 |
|
|
prev_op = sh_insn_info (prev_insn);
|
2427 |
|
|
}
|
2428 |
|
|
else
|
2429 |
|
|
prev_op = sh_insn_info (prev_insn);
|
2430 |
|
|
|
2431 |
|
|
/* If the load/store instruction is in a delay slot, we
|
2432 |
|
|
can't swap. */
|
2433 |
|
|
if (prev_op == NULL
|
2434 |
|
|
|| (prev_op->flags & DELAY) != 0)
|
2435 |
|
|
continue;
|
2436 |
|
|
}
|
2437 |
|
|
if (i > start
|
2438 |
|
|
&& (*plabel >= label_end || **plabel != i)
|
2439 |
|
|
&& prev_op != NULL
|
2440 |
|
|
&& (prev_op->flags & (LOAD | STORE)) == 0
|
2441 |
|
|
&& ! sh_insns_conflict (prev_insn, prev_op, insn, op))
|
2442 |
|
|
{
|
2443 |
|
|
bfd_boolean ok;
|
2444 |
|
|
|
2445 |
|
|
/* The load/store instruction does not have a label, and
|
2446 |
|
|
there is a previous instruction; PREV_INSN is not
|
2447 |
|
|
itself a load/store instruction, and PREV_INSN and
|
2448 |
|
|
INSN do not conflict. */
|
2449 |
|
|
|
2450 |
|
|
ok = TRUE;
|
2451 |
|
|
|
2452 |
|
|
if (i >= start + 4)
|
2453 |
|
|
{
|
2454 |
|
|
unsigned int prev2_insn;
|
2455 |
|
|
const struct sh_opcode *prev2_op;
|
2456 |
|
|
|
2457 |
|
|
prev2_insn = bfd_get_16 (abfd, contents + i - 4);
|
2458 |
|
|
prev2_op = sh_insn_info (prev2_insn);
|
2459 |
|
|
|
2460 |
|
|
/* If the instruction before PREV_INSN has a delay
|
2461 |
|
|
slot--that is, PREV_INSN is in a delay slot--we
|
2462 |
|
|
can not swap. */
|
2463 |
|
|
if (prev2_op == NULL
|
2464 |
|
|
|| (prev2_op->flags & DELAY) != 0)
|
2465 |
|
|
ok = FALSE;
|
2466 |
|
|
|
2467 |
|
|
/* If the instruction before PREV_INSN is a load,
|
2468 |
|
|
and it sets a register which INSN uses, then
|
2469 |
|
|
putting INSN immediately after PREV_INSN will
|
2470 |
|
|
cause a pipeline bubble, so there is no point to
|
2471 |
|
|
making the swap. */
|
2472 |
|
|
if (ok
|
2473 |
|
|
&& (prev2_op->flags & LOAD) != 0
|
2474 |
|
|
&& sh_load_use (prev2_insn, prev2_op, insn, op))
|
2475 |
|
|
ok = FALSE;
|
2476 |
|
|
}
|
2477 |
|
|
|
2478 |
|
|
if (ok)
|
2479 |
|
|
{
|
2480 |
|
|
if (! (*swap) (abfd, sec, relocs, contents, i - 2))
|
2481 |
|
|
return FALSE;
|
2482 |
|
|
*pswapped = TRUE;
|
2483 |
|
|
continue;
|
2484 |
|
|
}
|
2485 |
|
|
}
|
2486 |
|
|
|
2487 |
|
|
while (*plabel < label_end && **plabel < i + 2)
|
2488 |
|
|
++*plabel;
|
2489 |
|
|
|
2490 |
|
|
if (i + 2 < stop
|
2491 |
|
|
&& (*plabel >= label_end || **plabel != i + 2))
|
2492 |
|
|
{
|
2493 |
|
|
unsigned int next_insn;
|
2494 |
|
|
const struct sh_opcode *next_op;
|
2495 |
|
|
|
2496 |
|
|
/* There is an instruction after the load/store
|
2497 |
|
|
instruction, and it does not have a label. */
|
2498 |
|
|
next_insn = bfd_get_16 (abfd, contents + i + 2);
|
2499 |
|
|
next_op = sh_insn_info (next_insn);
|
2500 |
|
|
if (next_op != NULL
|
2501 |
|
|
&& (next_op->flags & (LOAD | STORE)) == 0
|
2502 |
|
|
&& ! sh_insns_conflict (insn, op, next_insn, next_op))
|
2503 |
|
|
{
|
2504 |
|
|
bfd_boolean ok;
|
2505 |
|
|
|
2506 |
|
|
/* NEXT_INSN is not itself a load/store instruction,
|
2507 |
|
|
and it does not conflict with INSN. */
|
2508 |
|
|
|
2509 |
|
|
ok = TRUE;
|
2510 |
|
|
|
2511 |
|
|
/* If PREV_INSN is a load, and it sets a register
|
2512 |
|
|
which NEXT_INSN uses, then putting NEXT_INSN
|
2513 |
|
|
immediately after PREV_INSN will cause a pipeline
|
2514 |
|
|
bubble, so there is no reason to make this swap. */
|
2515 |
|
|
if (prev_op != NULL
|
2516 |
|
|
&& (prev_op->flags & LOAD) != 0
|
2517 |
|
|
&& sh_load_use (prev_insn, prev_op, next_insn, next_op))
|
2518 |
|
|
ok = FALSE;
|
2519 |
|
|
|
2520 |
|
|
/* If INSN is a load, and it sets a register which
|
2521 |
|
|
the insn after NEXT_INSN uses, then doing the
|
2522 |
|
|
swap will cause a pipeline bubble, so there is no
|
2523 |
|
|
reason to make the swap. However, if the insn
|
2524 |
|
|
after NEXT_INSN is itself a load or store
|
2525 |
|
|
instruction, then it is misaligned, so
|
2526 |
|
|
optimistically hope that it will be swapped
|
2527 |
|
|
itself, and just live with the pipeline bubble if
|
2528 |
|
|
it isn't. */
|
2529 |
|
|
if (ok
|
2530 |
|
|
&& i + 4 < stop
|
2531 |
|
|
&& (op->flags & LOAD) != 0)
|
2532 |
|
|
{
|
2533 |
|
|
unsigned int next2_insn;
|
2534 |
|
|
const struct sh_opcode *next2_op;
|
2535 |
|
|
|
2536 |
|
|
next2_insn = bfd_get_16 (abfd, contents + i + 4);
|
2537 |
|
|
next2_op = sh_insn_info (next2_insn);
|
2538 |
|
|
if (next2_op == NULL
|
2539 |
|
|
|| ((next2_op->flags & (LOAD | STORE)) == 0
|
2540 |
|
|
&& sh_load_use (insn, op, next2_insn, next2_op)))
|
2541 |
|
|
ok = FALSE;
|
2542 |
|
|
}
|
2543 |
|
|
|
2544 |
|
|
if (ok)
|
2545 |
|
|
{
|
2546 |
|
|
if (! (*swap) (abfd, sec, relocs, contents, i))
|
2547 |
|
|
return FALSE;
|
2548 |
|
|
*pswapped = TRUE;
|
2549 |
|
|
continue;
|
2550 |
|
|
}
|
2551 |
|
|
}
|
2552 |
|
|
}
|
2553 |
|
|
}
|
2554 |
|
|
|
2555 |
|
|
return TRUE;
|
2556 |
|
|
}
|
2557 |
|
|
#endif /* not COFF_IMAGE_WITH_PE */
|
2558 |
|
|
|
2559 |
|
|
/* Look for loads and stores which we can align to four byte
|
2560 |
|
|
boundaries. See the longer comment above sh_relax_section for why
|
2561 |
|
|
this is desirable. This sets *PSWAPPED if some instruction was
|
2562 |
|
|
swapped. */
|
2563 |
|
|
|
2564 |
|
|
static bfd_boolean
|
2565 |
|
|
sh_align_loads (abfd, sec, internal_relocs, contents, pswapped)
|
2566 |
|
|
bfd *abfd;
|
2567 |
|
|
asection *sec;
|
2568 |
|
|
struct internal_reloc *internal_relocs;
|
2569 |
|
|
bfd_byte *contents;
|
2570 |
|
|
bfd_boolean *pswapped;
|
2571 |
|
|
{
|
2572 |
|
|
struct internal_reloc *irel, *irelend;
|
2573 |
|
|
bfd_vma *labels = NULL;
|
2574 |
|
|
bfd_vma *label, *label_end;
|
2575 |
|
|
bfd_size_type amt;
|
2576 |
|
|
|
2577 |
|
|
*pswapped = FALSE;
|
2578 |
|
|
|
2579 |
|
|
irelend = internal_relocs + sec->reloc_count;
|
2580 |
|
|
|
2581 |
|
|
/* Get all the addresses with labels on them. */
|
2582 |
|
|
amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
|
2583 |
|
|
labels = (bfd_vma *) bfd_malloc (amt);
|
2584 |
|
|
if (labels == NULL)
|
2585 |
|
|
goto error_return;
|
2586 |
|
|
label_end = labels;
|
2587 |
|
|
for (irel = internal_relocs; irel < irelend; irel++)
|
2588 |
|
|
{
|
2589 |
|
|
if (irel->r_type == R_SH_LABEL)
|
2590 |
|
|
{
|
2591 |
|
|
*label_end = irel->r_vaddr - sec->vma;
|
2592 |
|
|
++label_end;
|
2593 |
|
|
}
|
2594 |
|
|
}
|
2595 |
|
|
|
2596 |
|
|
/* Note that the assembler currently always outputs relocs in
|
2597 |
|
|
address order. If that ever changes, this code will need to sort
|
2598 |
|
|
the label values and the relocs. */
|
2599 |
|
|
|
2600 |
|
|
label = labels;
|
2601 |
|
|
|
2602 |
|
|
for (irel = internal_relocs; irel < irelend; irel++)
|
2603 |
|
|
{
|
2604 |
|
|
bfd_vma start, stop;
|
2605 |
|
|
|
2606 |
|
|
if (irel->r_type != R_SH_CODE)
|
2607 |
|
|
continue;
|
2608 |
|
|
|
2609 |
|
|
start = irel->r_vaddr - sec->vma;
|
2610 |
|
|
|
2611 |
|
|
for (irel++; irel < irelend; irel++)
|
2612 |
|
|
if (irel->r_type == R_SH_DATA)
|
2613 |
|
|
break;
|
2614 |
|
|
if (irel < irelend)
|
2615 |
|
|
stop = irel->r_vaddr - sec->vma;
|
2616 |
|
|
else
|
2617 |
|
|
stop = sec->size;
|
2618 |
|
|
|
2619 |
|
|
if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
|
2620 |
|
|
(PTR) internal_relocs, &label,
|
2621 |
|
|
label_end, start, stop, pswapped))
|
2622 |
|
|
goto error_return;
|
2623 |
|
|
}
|
2624 |
|
|
|
2625 |
|
|
free (labels);
|
2626 |
|
|
|
2627 |
|
|
return TRUE;
|
2628 |
|
|
|
2629 |
|
|
error_return:
|
2630 |
|
|
if (labels != NULL)
|
2631 |
|
|
free (labels);
|
2632 |
|
|
return FALSE;
|
2633 |
|
|
}
|
2634 |
|
|
|
2635 |
|
|
/* Swap two SH instructions. */
|
2636 |
|
|
|
2637 |
|
|
static bfd_boolean
|
2638 |
|
|
sh_swap_insns (abfd, sec, relocs, contents, addr)
|
2639 |
|
|
bfd *abfd;
|
2640 |
|
|
asection *sec;
|
2641 |
|
|
PTR relocs;
|
2642 |
|
|
bfd_byte *contents;
|
2643 |
|
|
bfd_vma addr;
|
2644 |
|
|
{
|
2645 |
|
|
struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
|
2646 |
|
|
unsigned short i1, i2;
|
2647 |
|
|
struct internal_reloc *irel, *irelend;
|
2648 |
|
|
|
2649 |
|
|
/* Swap the instructions themselves. */
|
2650 |
|
|
i1 = bfd_get_16 (abfd, contents + addr);
|
2651 |
|
|
i2 = bfd_get_16 (abfd, contents + addr + 2);
|
2652 |
|
|
bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
|
2653 |
|
|
bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
|
2654 |
|
|
|
2655 |
|
|
/* Adjust all reloc addresses. */
|
2656 |
|
|
irelend = internal_relocs + sec->reloc_count;
|
2657 |
|
|
for (irel = internal_relocs; irel < irelend; irel++)
|
2658 |
|
|
{
|
2659 |
|
|
int type, add;
|
2660 |
|
|
|
2661 |
|
|
/* There are a few special types of relocs that we don't want to
|
2662 |
|
|
adjust. These relocs do not apply to the instruction itself,
|
2663 |
|
|
but are only associated with the address. */
|
2664 |
|
|
type = irel->r_type;
|
2665 |
|
|
if (type == R_SH_ALIGN
|
2666 |
|
|
|| type == R_SH_CODE
|
2667 |
|
|
|| type == R_SH_DATA
|
2668 |
|
|
|| type == R_SH_LABEL)
|
2669 |
|
|
continue;
|
2670 |
|
|
|
2671 |
|
|
/* If an R_SH_USES reloc points to one of the addresses being
|
2672 |
|
|
swapped, we must adjust it. It would be incorrect to do this
|
2673 |
|
|
for a jump, though, since we want to execute both
|
2674 |
|
|
instructions after the jump. (We have avoided swapping
|
2675 |
|
|
around a label, so the jump will not wind up executing an
|
2676 |
|
|
instruction it shouldn't). */
|
2677 |
|
|
if (type == R_SH_USES)
|
2678 |
|
|
{
|
2679 |
|
|
bfd_vma off;
|
2680 |
|
|
|
2681 |
|
|
off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
|
2682 |
|
|
if (off == addr)
|
2683 |
|
|
irel->r_offset += 2;
|
2684 |
|
|
else if (off == addr + 2)
|
2685 |
|
|
irel->r_offset -= 2;
|
2686 |
|
|
}
|
2687 |
|
|
|
2688 |
|
|
if (irel->r_vaddr - sec->vma == addr)
|
2689 |
|
|
{
|
2690 |
|
|
irel->r_vaddr += 2;
|
2691 |
|
|
add = -2;
|
2692 |
|
|
}
|
2693 |
|
|
else if (irel->r_vaddr - sec->vma == addr + 2)
|
2694 |
|
|
{
|
2695 |
|
|
irel->r_vaddr -= 2;
|
2696 |
|
|
add = 2;
|
2697 |
|
|
}
|
2698 |
|
|
else
|
2699 |
|
|
add = 0;
|
2700 |
|
|
|
2701 |
|
|
if (add != 0)
|
2702 |
|
|
{
|
2703 |
|
|
bfd_byte *loc;
|
2704 |
|
|
unsigned short insn, oinsn;
|
2705 |
|
|
bfd_boolean overflow;
|
2706 |
|
|
|
2707 |
|
|
loc = contents + irel->r_vaddr - sec->vma;
|
2708 |
|
|
overflow = FALSE;
|
2709 |
|
|
switch (type)
|
2710 |
|
|
{
|
2711 |
|
|
default:
|
2712 |
|
|
break;
|
2713 |
|
|
|
2714 |
|
|
case R_SH_PCDISP8BY2:
|
2715 |
|
|
case R_SH_PCRELIMM8BY2:
|
2716 |
|
|
insn = bfd_get_16 (abfd, loc);
|
2717 |
|
|
oinsn = insn;
|
2718 |
|
|
insn += add / 2;
|
2719 |
|
|
if ((oinsn & 0xff00) != (insn & 0xff00))
|
2720 |
|
|
overflow = TRUE;
|
2721 |
|
|
bfd_put_16 (abfd, (bfd_vma) insn, loc);
|
2722 |
|
|
break;
|
2723 |
|
|
|
2724 |
|
|
case R_SH_PCDISP:
|
2725 |
|
|
insn = bfd_get_16 (abfd, loc);
|
2726 |
|
|
oinsn = insn;
|
2727 |
|
|
insn += add / 2;
|
2728 |
|
|
if ((oinsn & 0xf000) != (insn & 0xf000))
|
2729 |
|
|
overflow = TRUE;
|
2730 |
|
|
bfd_put_16 (abfd, (bfd_vma) insn, loc);
|
2731 |
|
|
break;
|
2732 |
|
|
|
2733 |
|
|
case R_SH_PCRELIMM8BY4:
|
2734 |
|
|
/* This reloc ignores the least significant 3 bits of
|
2735 |
|
|
the program counter before adding in the offset.
|
2736 |
|
|
This means that if ADDR is at an even address, the
|
2737 |
|
|
swap will not affect the offset. If ADDR is an at an
|
2738 |
|
|
odd address, then the instruction will be crossing a
|
2739 |
|
|
four byte boundary, and must be adjusted. */
|
2740 |
|
|
if ((addr & 3) != 0)
|
2741 |
|
|
{
|
2742 |
|
|
insn = bfd_get_16 (abfd, loc);
|
2743 |
|
|
oinsn = insn;
|
2744 |
|
|
insn += add / 2;
|
2745 |
|
|
if ((oinsn & 0xff00) != (insn & 0xff00))
|
2746 |
|
|
overflow = TRUE;
|
2747 |
|
|
bfd_put_16 (abfd, (bfd_vma) insn, loc);
|
2748 |
|
|
}
|
2749 |
|
|
|
2750 |
|
|
break;
|
2751 |
|
|
}
|
2752 |
|
|
|
2753 |
|
|
if (overflow)
|
2754 |
|
|
{
|
2755 |
|
|
((*_bfd_error_handler)
|
2756 |
|
|
("%B: 0x%lx: fatal: reloc overflow while relaxing",
|
2757 |
|
|
abfd, (unsigned long) irel->r_vaddr));
|
2758 |
|
|
bfd_set_error (bfd_error_bad_value);
|
2759 |
|
|
return FALSE;
|
2760 |
|
|
}
|
2761 |
|
|
}
|
2762 |
|
|
}
|
2763 |
|
|
|
2764 |
|
|
return TRUE;
|
2765 |
|
|
}
|
2766 |
|
|
|
2767 |
|
|
/* This is a modification of _bfd_coff_generic_relocate_section, which
|
2768 |
|
|
will handle SH relaxing. */
|
2769 |
|
|
|
2770 |
|
|
static bfd_boolean
|
2771 |
|
|
sh_relocate_section (output_bfd, info, input_bfd, input_section, contents,
|
2772 |
|
|
relocs, syms, sections)
|
2773 |
|
|
bfd *output_bfd ATTRIBUTE_UNUSED;
|
2774 |
|
|
struct bfd_link_info *info;
|
2775 |
|
|
bfd *input_bfd;
|
2776 |
|
|
asection *input_section;
|
2777 |
|
|
bfd_byte *contents;
|
2778 |
|
|
struct internal_reloc *relocs;
|
2779 |
|
|
struct internal_syment *syms;
|
2780 |
|
|
asection **sections;
|
2781 |
|
|
{
|
2782 |
|
|
struct internal_reloc *rel;
|
2783 |
|
|
struct internal_reloc *relend;
|
2784 |
|
|
|
2785 |
|
|
rel = relocs;
|
2786 |
|
|
relend = rel + input_section->reloc_count;
|
2787 |
|
|
for (; rel < relend; rel++)
|
2788 |
|
|
{
|
2789 |
|
|
long symndx;
|
2790 |
|
|
struct coff_link_hash_entry *h;
|
2791 |
|
|
struct internal_syment *sym;
|
2792 |
|
|
bfd_vma addend;
|
2793 |
|
|
bfd_vma val;
|
2794 |
|
|
reloc_howto_type *howto;
|
2795 |
|
|
bfd_reloc_status_type rstat;
|
2796 |
|
|
|
2797 |
|
|
/* Almost all relocs have to do with relaxing. If any work must
|
2798 |
|
|
be done for them, it has been done in sh_relax_section. */
|
2799 |
|
|
if (rel->r_type != R_SH_IMM32
|
2800 |
|
|
#ifdef COFF_WITH_PE
|
2801 |
|
|
&& rel->r_type != R_SH_IMM32CE
|
2802 |
|
|
&& rel->r_type != R_SH_IMAGEBASE
|
2803 |
|
|
#endif
|
2804 |
|
|
&& rel->r_type != R_SH_PCDISP)
|
2805 |
|
|
continue;
|
2806 |
|
|
|
2807 |
|
|
symndx = rel->r_symndx;
|
2808 |
|
|
|
2809 |
|
|
if (symndx == -1)
|
2810 |
|
|
{
|
2811 |
|
|
h = NULL;
|
2812 |
|
|
sym = NULL;
|
2813 |
|
|
}
|
2814 |
|
|
else
|
2815 |
|
|
{
|
2816 |
|
|
if (symndx < 0
|
2817 |
|
|
|| (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
|
2818 |
|
|
{
|
2819 |
|
|
(*_bfd_error_handler)
|
2820 |
|
|
("%B: illegal symbol index %ld in relocs",
|
2821 |
|
|
input_bfd, symndx);
|
2822 |
|
|
bfd_set_error (bfd_error_bad_value);
|
2823 |
|
|
return FALSE;
|
2824 |
|
|
}
|
2825 |
|
|
h = obj_coff_sym_hashes (input_bfd)[symndx];
|
2826 |
|
|
sym = syms + symndx;
|
2827 |
|
|
}
|
2828 |
|
|
|
2829 |
|
|
if (sym != NULL && sym->n_scnum != 0)
|
2830 |
|
|
addend = - sym->n_value;
|
2831 |
|
|
else
|
2832 |
|
|
addend = 0;
|
2833 |
|
|
|
2834 |
|
|
if (rel->r_type == R_SH_PCDISP)
|
2835 |
|
|
addend -= 4;
|
2836 |
|
|
|
2837 |
|
|
if (rel->r_type >= SH_COFF_HOWTO_COUNT)
|
2838 |
|
|
howto = NULL;
|
2839 |
|
|
else
|
2840 |
|
|
howto = &sh_coff_howtos[rel->r_type];
|
2841 |
|
|
|
2842 |
|
|
if (howto == NULL)
|
2843 |
|
|
{
|
2844 |
|
|
bfd_set_error (bfd_error_bad_value);
|
2845 |
|
|
return FALSE;
|
2846 |
|
|
}
|
2847 |
|
|
|
2848 |
|
|
#ifdef COFF_WITH_PE
|
2849 |
|
|
if (rel->r_type == R_SH_IMAGEBASE)
|
2850 |
|
|
addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
|
2851 |
|
|
#endif
|
2852 |
|
|
|
2853 |
|
|
val = 0;
|
2854 |
|
|
|
2855 |
|
|
if (h == NULL)
|
2856 |
|
|
{
|
2857 |
|
|
asection *sec;
|
2858 |
|
|
|
2859 |
|
|
/* There is nothing to do for an internal PCDISP reloc. */
|
2860 |
|
|
if (rel->r_type == R_SH_PCDISP)
|
2861 |
|
|
continue;
|
2862 |
|
|
|
2863 |
|
|
if (symndx == -1)
|
2864 |
|
|
{
|
2865 |
|
|
sec = bfd_abs_section_ptr;
|
2866 |
|
|
val = 0;
|
2867 |
|
|
}
|
2868 |
|
|
else
|
2869 |
|
|
{
|
2870 |
|
|
sec = sections[symndx];
|
2871 |
|
|
val = (sec->output_section->vma
|
2872 |
|
|
+ sec->output_offset
|
2873 |
|
|
+ sym->n_value
|
2874 |
|
|
- sec->vma);
|
2875 |
|
|
}
|
2876 |
|
|
}
|
2877 |
|
|
else
|
2878 |
|
|
{
|
2879 |
|
|
if (h->root.type == bfd_link_hash_defined
|
2880 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
2881 |
|
|
{
|
2882 |
|
|
asection *sec;
|
2883 |
|
|
|
2884 |
|
|
sec = h->root.u.def.section;
|
2885 |
|
|
val = (h->root.u.def.value
|
2886 |
|
|
+ sec->output_section->vma
|
2887 |
|
|
+ sec->output_offset);
|
2888 |
|
|
}
|
2889 |
|
|
else if (! info->relocatable)
|
2890 |
|
|
{
|
2891 |
|
|
if (! ((*info->callbacks->undefined_symbol)
|
2892 |
|
|
(info, h->root.root.string, input_bfd, input_section,
|
2893 |
|
|
rel->r_vaddr - input_section->vma, TRUE)))
|
2894 |
|
|
return FALSE;
|
2895 |
|
|
}
|
2896 |
|
|
}
|
2897 |
|
|
|
2898 |
|
|
rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
2899 |
|
|
contents,
|
2900 |
|
|
rel->r_vaddr - input_section->vma,
|
2901 |
|
|
val, addend);
|
2902 |
|
|
|
2903 |
|
|
switch (rstat)
|
2904 |
|
|
{
|
2905 |
|
|
default:
|
2906 |
|
|
abort ();
|
2907 |
|
|
case bfd_reloc_ok:
|
2908 |
|
|
break;
|
2909 |
|
|
case bfd_reloc_overflow:
|
2910 |
|
|
{
|
2911 |
|
|
const char *name;
|
2912 |
|
|
char buf[SYMNMLEN + 1];
|
2913 |
|
|
|
2914 |
|
|
if (symndx == -1)
|
2915 |
|
|
name = "*ABS*";
|
2916 |
|
|
else if (h != NULL)
|
2917 |
|
|
name = NULL;
|
2918 |
|
|
else if (sym->_n._n_n._n_zeroes == 0
|
2919 |
|
|
&& sym->_n._n_n._n_offset != 0)
|
2920 |
|
|
name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
|
2921 |
|
|
else
|
2922 |
|
|
{
|
2923 |
|
|
strncpy (buf, sym->_n._n_name, SYMNMLEN);
|
2924 |
|
|
buf[SYMNMLEN] = '\0';
|
2925 |
|
|
name = buf;
|
2926 |
|
|
}
|
2927 |
|
|
|
2928 |
|
|
if (! ((*info->callbacks->reloc_overflow)
|
2929 |
|
|
(info, (h ? &h->root : NULL), name, howto->name,
|
2930 |
|
|
(bfd_vma) 0, input_bfd, input_section,
|
2931 |
|
|
rel->r_vaddr - input_section->vma)))
|
2932 |
|
|
return FALSE;
|
2933 |
|
|
}
|
2934 |
|
|
}
|
2935 |
|
|
}
|
2936 |
|
|
|
2937 |
|
|
return TRUE;
|
2938 |
|
|
}
|
2939 |
|
|
|
2940 |
|
|
/* This is a version of bfd_generic_get_relocated_section_contents
|
2941 |
|
|
which uses sh_relocate_section. */
|
2942 |
|
|
|
2943 |
|
|
static bfd_byte *
|
2944 |
|
|
sh_coff_get_relocated_section_contents (output_bfd, link_info, link_order,
|
2945 |
|
|
data, relocatable, symbols)
|
2946 |
|
|
bfd *output_bfd;
|
2947 |
|
|
struct bfd_link_info *link_info;
|
2948 |
|
|
struct bfd_link_order *link_order;
|
2949 |
|
|
bfd_byte *data;
|
2950 |
|
|
bfd_boolean relocatable;
|
2951 |
|
|
asymbol **symbols;
|
2952 |
|
|
{
|
2953 |
|
|
asection *input_section = link_order->u.indirect.section;
|
2954 |
|
|
bfd *input_bfd = input_section->owner;
|
2955 |
|
|
asection **sections = NULL;
|
2956 |
|
|
struct internal_reloc *internal_relocs = NULL;
|
2957 |
|
|
struct internal_syment *internal_syms = NULL;
|
2958 |
|
|
|
2959 |
|
|
/* We only need to handle the case of relaxing, or of having a
|
2960 |
|
|
particular set of section contents, specially. */
|
2961 |
|
|
if (relocatable
|
2962 |
|
|
|| coff_section_data (input_bfd, input_section) == NULL
|
2963 |
|
|
|| coff_section_data (input_bfd, input_section)->contents == NULL)
|
2964 |
|
|
return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
|
2965 |
|
|
link_order, data,
|
2966 |
|
|
relocatable,
|
2967 |
|
|
symbols);
|
2968 |
|
|
|
2969 |
|
|
memcpy (data, coff_section_data (input_bfd, input_section)->contents,
|
2970 |
|
|
(size_t) input_section->size);
|
2971 |
|
|
|
2972 |
|
|
if ((input_section->flags & SEC_RELOC) != 0
|
2973 |
|
|
&& input_section->reloc_count > 0)
|
2974 |
|
|
{
|
2975 |
|
|
bfd_size_type symesz = bfd_coff_symesz (input_bfd);
|
2976 |
|
|
bfd_byte *esym, *esymend;
|
2977 |
|
|
struct internal_syment *isymp;
|
2978 |
|
|
asection **secpp;
|
2979 |
|
|
bfd_size_type amt;
|
2980 |
|
|
|
2981 |
|
|
if (! _bfd_coff_get_external_symbols (input_bfd))
|
2982 |
|
|
goto error_return;
|
2983 |
|
|
|
2984 |
|
|
internal_relocs = (_bfd_coff_read_internal_relocs
|
2985 |
|
|
(input_bfd, input_section, FALSE, (bfd_byte *) NULL,
|
2986 |
|
|
FALSE, (struct internal_reloc *) NULL));
|
2987 |
|
|
if (internal_relocs == NULL)
|
2988 |
|
|
goto error_return;
|
2989 |
|
|
|
2990 |
|
|
amt = obj_raw_syment_count (input_bfd);
|
2991 |
|
|
amt *= sizeof (struct internal_syment);
|
2992 |
|
|
internal_syms = (struct internal_syment *) bfd_malloc (amt);
|
2993 |
|
|
if (internal_syms == NULL)
|
2994 |
|
|
goto error_return;
|
2995 |
|
|
|
2996 |
|
|
amt = obj_raw_syment_count (input_bfd);
|
2997 |
|
|
amt *= sizeof (asection *);
|
2998 |
|
|
sections = (asection **) bfd_malloc (amt);
|
2999 |
|
|
if (sections == NULL)
|
3000 |
|
|
goto error_return;
|
3001 |
|
|
|
3002 |
|
|
isymp = internal_syms;
|
3003 |
|
|
secpp = sections;
|
3004 |
|
|
esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
|
3005 |
|
|
esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
|
3006 |
|
|
while (esym < esymend)
|
3007 |
|
|
{
|
3008 |
|
|
bfd_coff_swap_sym_in (input_bfd, (PTR) esym, (PTR) isymp);
|
3009 |
|
|
|
3010 |
|
|
if (isymp->n_scnum != 0)
|
3011 |
|
|
*secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
|
3012 |
|
|
else
|
3013 |
|
|
{
|
3014 |
|
|
if (isymp->n_value == 0)
|
3015 |
|
|
*secpp = bfd_und_section_ptr;
|
3016 |
|
|
else
|
3017 |
|
|
*secpp = bfd_com_section_ptr;
|
3018 |
|
|
}
|
3019 |
|
|
|
3020 |
|
|
esym += (isymp->n_numaux + 1) * symesz;
|
3021 |
|
|
secpp += isymp->n_numaux + 1;
|
3022 |
|
|
isymp += isymp->n_numaux + 1;
|
3023 |
|
|
}
|
3024 |
|
|
|
3025 |
|
|
if (! sh_relocate_section (output_bfd, link_info, input_bfd,
|
3026 |
|
|
input_section, data, internal_relocs,
|
3027 |
|
|
internal_syms, sections))
|
3028 |
|
|
goto error_return;
|
3029 |
|
|
|
3030 |
|
|
free (sections);
|
3031 |
|
|
sections = NULL;
|
3032 |
|
|
free (internal_syms);
|
3033 |
|
|
internal_syms = NULL;
|
3034 |
|
|
free (internal_relocs);
|
3035 |
|
|
internal_relocs = NULL;
|
3036 |
|
|
}
|
3037 |
|
|
|
3038 |
|
|
return data;
|
3039 |
|
|
|
3040 |
|
|
error_return:
|
3041 |
|
|
if (internal_relocs != NULL)
|
3042 |
|
|
free (internal_relocs);
|
3043 |
|
|
if (internal_syms != NULL)
|
3044 |
|
|
free (internal_syms);
|
3045 |
|
|
if (sections != NULL)
|
3046 |
|
|
free (sections);
|
3047 |
|
|
return NULL;
|
3048 |
|
|
}
|
3049 |
|
|
|
3050 |
|
|
/* The target vectors. */
|
3051 |
|
|
|
3052 |
|
|
#ifndef TARGET_SHL_SYM
|
3053 |
|
|
CREATE_BIG_COFF_TARGET_VEC (shcoff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
|
3054 |
|
|
#endif
|
3055 |
|
|
|
3056 |
|
|
#ifdef TARGET_SHL_SYM
|
3057 |
|
|
#define TARGET_SYM TARGET_SHL_SYM
|
3058 |
|
|
#else
|
3059 |
|
|
#define TARGET_SYM shlcoff_vec
|
3060 |
|
|
#endif
|
3061 |
|
|
|
3062 |
|
|
#ifndef TARGET_SHL_NAME
|
3063 |
|
|
#define TARGET_SHL_NAME "coff-shl"
|
3064 |
|
|
#endif
|
3065 |
|
|
|
3066 |
|
|
#ifdef COFF_WITH_PE
|
3067 |
|
|
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
|
3068 |
|
|
SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
|
3069 |
|
|
#else
|
3070 |
|
|
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
|
3071 |
|
|
0, '_', NULL, COFF_SWAP_TABLE)
|
3072 |
|
|
#endif
|
3073 |
|
|
|
3074 |
|
|
#ifndef TARGET_SHL_SYM
|
3075 |
|
|
static const bfd_target * coff_small_object_p PARAMS ((bfd *));
|
3076 |
|
|
static bfd_boolean coff_small_new_section_hook PARAMS ((bfd *, asection *));
|
3077 |
|
|
/* Some people want versions of the SH COFF target which do not align
|
3078 |
|
|
to 16 byte boundaries. We implement that by adding a couple of new
|
3079 |
|
|
target vectors. These are just like the ones above, but they
|
3080 |
|
|
change the default section alignment. To generate them in the
|
3081 |
|
|
assembler, use -small. To use them in the linker, use -b
|
3082 |
|
|
coff-sh{l}-small and -oformat coff-sh{l}-small.
|
3083 |
|
|
|
3084 |
|
|
Yes, this is a horrible hack. A general solution for setting
|
3085 |
|
|
section alignment in COFF is rather complex. ELF handles this
|
3086 |
|
|
correctly. */
|
3087 |
|
|
|
3088 |
|
|
/* Only recognize the small versions if the target was not defaulted.
|
3089 |
|
|
Otherwise we won't recognize the non default endianness. */
|
3090 |
|
|
|
3091 |
|
|
static const bfd_target *
|
3092 |
|
|
coff_small_object_p (abfd)
|
3093 |
|
|
bfd *abfd;
|
3094 |
|
|
{
|
3095 |
|
|
if (abfd->target_defaulted)
|
3096 |
|
|
{
|
3097 |
|
|
bfd_set_error (bfd_error_wrong_format);
|
3098 |
|
|
return NULL;
|
3099 |
|
|
}
|
3100 |
|
|
return coff_object_p (abfd);
|
3101 |
|
|
}
|
3102 |
|
|
|
3103 |
|
|
/* Set the section alignment for the small versions. */
|
3104 |
|
|
|
3105 |
|
|
static bfd_boolean
|
3106 |
|
|
coff_small_new_section_hook (abfd, section)
|
3107 |
|
|
bfd *abfd;
|
3108 |
|
|
asection *section;
|
3109 |
|
|
{
|
3110 |
|
|
if (! coff_new_section_hook (abfd, section))
|
3111 |
|
|
return FALSE;
|
3112 |
|
|
|
3113 |
|
|
/* We must align to at least a four byte boundary, because longword
|
3114 |
|
|
accesses must be on a four byte boundary. */
|
3115 |
|
|
if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
|
3116 |
|
|
section->alignment_power = 2;
|
3117 |
|
|
|
3118 |
|
|
return TRUE;
|
3119 |
|
|
}
|
3120 |
|
|
|
3121 |
|
|
/* This is copied from bfd_coff_std_swap_table so that we can change
|
3122 |
|
|
the default section alignment power. */
|
3123 |
|
|
|
3124 |
225 |
jeremybenn |
static bfd_coff_backend_data bfd_coff_small_swap_table =
|
3125 |
24 |
jeremybenn |
{
|
3126 |
|
|
coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
|
3127 |
|
|
coff_swap_aux_out, coff_swap_sym_out,
|
3128 |
|
|
coff_swap_lineno_out, coff_swap_reloc_out,
|
3129 |
|
|
coff_swap_filehdr_out, coff_swap_aouthdr_out,
|
3130 |
|
|
coff_swap_scnhdr_out,
|
3131 |
|
|
FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
|
3132 |
|
|
#ifdef COFF_LONG_FILENAMES
|
3133 |
|
|
TRUE,
|
3134 |
|
|
#else
|
3135 |
|
|
FALSE,
|
3136 |
|
|
#endif
|
3137 |
225 |
jeremybenn |
COFF_DEFAULT_LONG_SECTION_NAMES,
|
3138 |
24 |
jeremybenn |
2,
|
3139 |
|
|
#ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
|
3140 |
|
|
TRUE,
|
3141 |
|
|
#else
|
3142 |
|
|
FALSE,
|
3143 |
|
|
#endif
|
3144 |
|
|
#ifdef COFF_DEBUG_STRING_WIDE_PREFIX
|
3145 |
|
|
4,
|
3146 |
|
|
#else
|
3147 |
|
|
2,
|
3148 |
|
|
#endif
|
3149 |
|
|
coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
|
3150 |
|
|
coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
|
3151 |
|
|
coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
|
3152 |
|
|
coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
|
3153 |
|
|
coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
|
3154 |
|
|
coff_classify_symbol, coff_compute_section_file_positions,
|
3155 |
|
|
coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
|
3156 |
|
|
coff_adjust_symndx, coff_link_add_one_symbol,
|
3157 |
225 |
jeremybenn |
coff_link_output_has_begun, coff_final_link_postscript,
|
3158 |
|
|
bfd_pe_print_pdata
|
3159 |
24 |
jeremybenn |
};
|
3160 |
|
|
|
3161 |
|
|
#define coff_small_close_and_cleanup \
|
3162 |
|
|
coff_close_and_cleanup
|
3163 |
|
|
#define coff_small_bfd_free_cached_info \
|
3164 |
|
|
coff_bfd_free_cached_info
|
3165 |
|
|
#define coff_small_get_section_contents \
|
3166 |
|
|
coff_get_section_contents
|
3167 |
|
|
#define coff_small_get_section_contents_in_window \
|
3168 |
|
|
coff_get_section_contents_in_window
|
3169 |
|
|
|
3170 |
|
|
extern const bfd_target shlcoff_small_vec;
|
3171 |
|
|
|
3172 |
|
|
const bfd_target shcoff_small_vec =
|
3173 |
|
|
{
|
3174 |
|
|
"coff-sh-small", /* name */
|
3175 |
|
|
bfd_target_coff_flavour,
|
3176 |
|
|
BFD_ENDIAN_BIG, /* data byte order is big */
|
3177 |
|
|
BFD_ENDIAN_BIG, /* header byte order is big */
|
3178 |
|
|
|
3179 |
|
|
(HAS_RELOC | EXEC_P | /* object flags */
|
3180 |
|
|
HAS_LINENO | HAS_DEBUG |
|
3181 |
|
|
HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
|
3182 |
|
|
|
3183 |
|
|
(SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
|
3184 |
|
|
'_', /* leading symbol underscore */
|
3185 |
|
|
'/', /* ar_pad_char */
|
3186 |
|
|
15, /* ar_max_namelen */
|
3187 |
|
|
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
|
3188 |
|
|
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
|
3189 |
|
|
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
|
3190 |
|
|
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
|
3191 |
|
|
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
|
3192 |
|
|
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
|
3193 |
|
|
|
3194 |
|
|
{_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
|
3195 |
|
|
bfd_generic_archive_p, _bfd_dummy_target},
|
3196 |
|
|
{bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
|
3197 |
|
|
bfd_false},
|
3198 |
|
|
{bfd_false, coff_write_object_contents, /* bfd_write_contents */
|
3199 |
|
|
_bfd_write_archive_contents, bfd_false},
|
3200 |
|
|
|
3201 |
|
|
BFD_JUMP_TABLE_GENERIC (coff_small),
|
3202 |
|
|
BFD_JUMP_TABLE_COPY (coff),
|
3203 |
|
|
BFD_JUMP_TABLE_CORE (_bfd_nocore),
|
3204 |
|
|
BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
|
3205 |
|
|
BFD_JUMP_TABLE_SYMBOLS (coff),
|
3206 |
|
|
BFD_JUMP_TABLE_RELOCS (coff),
|
3207 |
|
|
BFD_JUMP_TABLE_WRITE (coff),
|
3208 |
|
|
BFD_JUMP_TABLE_LINK (coff),
|
3209 |
|
|
BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
|
3210 |
|
|
|
3211 |
|
|
& shlcoff_small_vec,
|
3212 |
|
|
|
3213 |
|
|
(PTR) &bfd_coff_small_swap_table
|
3214 |
|
|
};
|
3215 |
|
|
|
3216 |
|
|
const bfd_target shlcoff_small_vec =
|
3217 |
|
|
{
|
3218 |
|
|
"coff-shl-small", /* name */
|
3219 |
|
|
bfd_target_coff_flavour,
|
3220 |
|
|
BFD_ENDIAN_LITTLE, /* data byte order is little */
|
3221 |
|
|
BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/
|
3222 |
|
|
|
3223 |
|
|
(HAS_RELOC | EXEC_P | /* object flags */
|
3224 |
|
|
HAS_LINENO | HAS_DEBUG |
|
3225 |
|
|
HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
|
3226 |
|
|
|
3227 |
|
|
(SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
|
3228 |
|
|
'_', /* leading symbol underscore */
|
3229 |
|
|
'/', /* ar_pad_char */
|
3230 |
|
|
15, /* ar_max_namelen */
|
3231 |
|
|
bfd_getl64, bfd_getl_signed_64, bfd_putl64,
|
3232 |
|
|
bfd_getl32, bfd_getl_signed_32, bfd_putl32,
|
3233 |
|
|
bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
|
3234 |
|
|
bfd_getl64, bfd_getl_signed_64, bfd_putl64,
|
3235 |
|
|
bfd_getl32, bfd_getl_signed_32, bfd_putl32,
|
3236 |
|
|
bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
|
3237 |
|
|
|
3238 |
|
|
{_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
|
3239 |
|
|
bfd_generic_archive_p, _bfd_dummy_target},
|
3240 |
|
|
{bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
|
3241 |
|
|
bfd_false},
|
3242 |
|
|
{bfd_false, coff_write_object_contents, /* bfd_write_contents */
|
3243 |
|
|
_bfd_write_archive_contents, bfd_false},
|
3244 |
|
|
|
3245 |
|
|
BFD_JUMP_TABLE_GENERIC (coff_small),
|
3246 |
|
|
BFD_JUMP_TABLE_COPY (coff),
|
3247 |
|
|
BFD_JUMP_TABLE_CORE (_bfd_nocore),
|
3248 |
|
|
BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
|
3249 |
|
|
BFD_JUMP_TABLE_SYMBOLS (coff),
|
3250 |
|
|
BFD_JUMP_TABLE_RELOCS (coff),
|
3251 |
|
|
BFD_JUMP_TABLE_WRITE (coff),
|
3252 |
|
|
BFD_JUMP_TABLE_LINK (coff),
|
3253 |
|
|
BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
|
3254 |
|
|
|
3255 |
|
|
& shcoff_small_vec,
|
3256 |
|
|
|
3257 |
|
|
(PTR) &bfd_coff_small_swap_table
|
3258 |
|
|
};
|
3259 |
|
|
#endif
|