OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [bfd/] [elf32-hppa.c] - Blame information for rev 24

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 24 jeremybenn
/* BFD back-end for HP PA-RISC ELF files.
2
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3
   2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
 
5
   Original code by
6
        Center for Software Science
7
        Department of Computer Science
8
        University of Utah
9
   Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
   Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
11
   TLS support written by Randolph Chung <tausq@debian.org>
12
 
13
   This file is part of BFD, the Binary File Descriptor library.
14
 
15
   This program is free software; you can redistribute it and/or modify
16
   it under the terms of the GNU General Public License as published by
17
   the Free Software Foundation; either version 3 of the License, or
18
   (at your option) any later version.
19
 
20
   This program is distributed in the hope that it will be useful,
21
   but WITHOUT ANY WARRANTY; without even the implied warranty of
22
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23
   GNU General Public License for more details.
24
 
25
   You should have received a copy of the GNU General Public License
26
   along with this program; if not, write to the Free Software
27
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28
   MA 02110-1301, USA.  */
29
 
30
#include "sysdep.h"
31
#include "bfd.h"
32
#include "libbfd.h"
33
#include "elf-bfd.h"
34
#include "elf/hppa.h"
35
#include "libhppa.h"
36
#include "elf32-hppa.h"
37
#define ARCH_SIZE               32
38
#include "elf32-hppa.h"
39
#include "elf-hppa.h"
40
 
41
/* In order to gain some understanding of code in this file without
42
   knowing all the intricate details of the linker, note the
43
   following:
44
 
45
   Functions named elf32_hppa_* are called by external routines, other
46
   functions are only called locally.  elf32_hppa_* functions appear
47
   in this file more or less in the order in which they are called
48
   from external routines.  eg. elf32_hppa_check_relocs is called
49
   early in the link process, elf32_hppa_finish_dynamic_sections is
50
   one of the last functions.  */
51
 
52
/* We use two hash tables to hold information for linking PA ELF objects.
53
 
54
   The first is the elf32_hppa_link_hash_table which is derived
55
   from the standard ELF linker hash table.  We use this as a place to
56
   attach other hash tables and static information.
57
 
58
   The second is the stub hash table which is derived from the
59
   base BFD hash table.  The stub hash table holds the information
60
   necessary to build the linker stubs during a link.
61
 
62
   There are a number of different stubs generated by the linker.
63
 
64
   Long branch stub:
65
   :            ldil LR'X,%r1
66
   :            be,n RR'X(%sr4,%r1)
67
 
68
   PIC long branch stub:
69
   :            b,l .+8,%r1
70
   :            addil LR'X - ($PIC_pcrel$0 - 4),%r1
71
   :            be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
72
 
73
   Import stub to call shared library routine from normal object file
74
   (single sub-space version)
75
   :            addil LR'lt_ptr+ltoff,%dp       ; get procedure entry point
76
   :            ldw RR'lt_ptr+ltoff(%r1),%r21
77
   :            bv %r0(%r21)
78
   :            ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
79
 
80
   Import stub to call shared library routine from shared library
81
   (single sub-space version)
82
   :            addil LR'ltoff,%r19             ; get procedure entry point
83
   :            ldw RR'ltoff(%r1),%r21
84
   :            bv %r0(%r21)
85
   :            ldw RR'ltoff+4(%r1),%r19        ; get new dlt value.
86
 
87
   Import stub to call shared library routine from normal object file
88
   (multiple sub-space support)
89
   :            addil LR'lt_ptr+ltoff,%dp       ; get procedure entry point
90
   :            ldw RR'lt_ptr+ltoff(%r1),%r21
91
   :            ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
92
   :            ldsid (%r21),%r1
93
   :            mtsp %r1,%sr0
94
   :            be 0(%sr0,%r21)                 ; branch to target
95
   :            stw %rp,-24(%sp)                ; save rp
96
 
97
   Import stub to call shared library routine from shared library
98
   (multiple sub-space support)
99
   :            addil LR'ltoff,%r19             ; get procedure entry point
100
   :            ldw RR'ltoff(%r1),%r21
101
   :            ldw RR'ltoff+4(%r1),%r19        ; get new dlt value.
102
   :            ldsid (%r21),%r1
103
   :            mtsp %r1,%sr0
104
   :            be 0(%sr0,%r21)                 ; branch to target
105
   :            stw %rp,-24(%sp)                ; save rp
106
 
107
   Export stub to return from shared lib routine (multiple sub-space support)
108
   One of these is created for each exported procedure in a shared
109
   library (and stored in the shared lib).  Shared lib routines are
110
   called via the first instruction in the export stub so that we can
111
   do an inter-space return.  Not required for single sub-space.
112
   :            bl,n X,%rp                      ; trap the return
113
   :            nop
114
   :            ldw -24(%sp),%rp                ; restore the original rp
115
   :            ldsid (%rp),%r1
116
   :            mtsp %r1,%sr0
117
   :            be,n 0(%sr0,%rp)                ; inter-space return.  */
118
 
119
 
120
/* Variable names follow a coding style.
121
   Please follow this (Apps Hungarian) style:
122
 
123
   Structure/Variable                   Prefix
124
   elf_link_hash_table                  "etab"
125
   elf_link_hash_entry                  "eh"
126
 
127
   elf32_hppa_link_hash_table           "htab"
128
   elf32_hppa_link_hash_entry           "hh"
129
 
130
   bfd_hash_table                       "btab"
131
   bfd_hash_entry                       "bh"
132
 
133
   bfd_hash_table containing stubs      "bstab"
134
   elf32_hppa_stub_hash_entry           "hsh"
135
 
136
   elf32_hppa_dyn_reloc_entry           "hdh"
137
 
138
   Always remember to use GNU Coding Style. */
139
 
140
#define PLT_ENTRY_SIZE 8
141
#define GOT_ENTRY_SIZE 4
142
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
143
 
144
static const bfd_byte plt_stub[] =
145
{
146
  0x0e, 0x80, 0x10, 0x96,  /* 1: ldw    0(%r20),%r22            */
147
  0xea, 0xc0, 0xc0, 0x00,  /*    bv     %r0(%r22)               */
148
  0x0e, 0x88, 0x10, 0x95,  /*    ldw    4(%r20),%r21            */
149
#define PLT_STUB_ENTRY (3*4)
150
  0xea, 0x9f, 0x1f, 0xdd,  /*    b,l    1b,%r20                 */
151
  0xd6, 0x80, 0x1c, 0x1e,  /*    depi   0,31,2,%r20             */
152
  0x00, 0xc0, 0xff, 0xee,  /* 9: .word  fixup_func              */
153
  0xde, 0xad, 0xbe, 0xef   /*    .word  fixup_ltp               */
154
};
155
 
156
/* Section name for stubs is the associated section name plus this
157
   string.  */
158
#define STUB_SUFFIX ".stub"
159
 
160
/* We don't need to copy certain PC- or GP-relative dynamic relocs
161
   into a shared object's dynamic section.  All the relocs of the
162
   limited class we are interested in, are absolute.  */
163
#ifndef RELATIVE_DYNRELOCS
164
#define RELATIVE_DYNRELOCS 0
165
#define IS_ABSOLUTE_RELOC(r_type) 1
166
#endif
167
 
168
/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
169
   copying dynamic variables from a shared lib into an app's dynbss
170
   section, and instead use a dynamic relocation to point into the
171
   shared lib.  */
172
#define ELIMINATE_COPY_RELOCS 1
173
 
174
enum elf32_hppa_stub_type
175
{
176
  hppa_stub_long_branch,
177
  hppa_stub_long_branch_shared,
178
  hppa_stub_import,
179
  hppa_stub_import_shared,
180
  hppa_stub_export,
181
  hppa_stub_none
182
};
183
 
184
struct elf32_hppa_stub_hash_entry
185
{
186
  /* Base hash table entry structure.  */
187
  struct bfd_hash_entry bh_root;
188
 
189
  /* The stub section.  */
190
  asection *stub_sec;
191
 
192
  /* Offset within stub_sec of the beginning of this stub.  */
193
  bfd_vma stub_offset;
194
 
195
  /* Given the symbol's value and its section we can determine its final
196
     value when building the stubs (so the stub knows where to jump.  */
197
  bfd_vma target_value;
198
  asection *target_section;
199
 
200
  enum elf32_hppa_stub_type stub_type;
201
 
202
  /* The symbol table entry, if any, that this was derived from.  */
203
  struct elf32_hppa_link_hash_entry *hh;
204
 
205
  /* Where this stub is being called from, or, in the case of combined
206
     stub sections, the first input section in the group.  */
207
  asection *id_sec;
208
};
209
 
210
struct elf32_hppa_link_hash_entry
211
{
212
  struct elf_link_hash_entry eh;
213
 
214
  /* A pointer to the most recently used stub hash entry against this
215
     symbol.  */
216
  struct elf32_hppa_stub_hash_entry *hsh_cache;
217
 
218
  /* Used to count relocations for delayed sizing of relocation
219
     sections.  */
220
  struct elf32_hppa_dyn_reloc_entry
221
  {
222
    /* Next relocation in the chain.  */
223
    struct elf32_hppa_dyn_reloc_entry *hdh_next;
224
 
225
    /* The input section of the reloc.  */
226
    asection *sec;
227
 
228
    /* Number of relocs copied in this section.  */
229
    bfd_size_type count;
230
 
231
#if RELATIVE_DYNRELOCS
232
  /* Number of relative relocs copied for the input section.  */
233
    bfd_size_type relative_count;
234
#endif
235
  } *dyn_relocs;
236
 
237
  enum
238
  {
239
    GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
240
  } tls_type;
241
 
242
  /* Set if this symbol is used by a plabel reloc.  */
243
  unsigned int plabel:1;
244
};
245
 
246
struct elf32_hppa_link_hash_table
247
{
248
  /* The main hash table.  */
249
  struct elf_link_hash_table etab;
250
 
251
  /* The stub hash table.  */
252
  struct bfd_hash_table bstab;
253
 
254
  /* Linker stub bfd.  */
255
  bfd *stub_bfd;
256
 
257
  /* Linker call-backs.  */
258
  asection * (*add_stub_section) (const char *, asection *);
259
  void (*layout_sections_again) (void);
260
 
261
  /* Array to keep track of which stub sections have been created, and
262
     information on stub grouping.  */
263
  struct map_stub
264
  {
265
    /* This is the section to which stubs in the group will be
266
       attached.  */
267
    asection *link_sec;
268
    /* The stub section.  */
269
    asection *stub_sec;
270
  } *stub_group;
271
 
272
  /* Assorted information used by elf32_hppa_size_stubs.  */
273
  unsigned int bfd_count;
274
  int top_index;
275
  asection **input_list;
276
  Elf_Internal_Sym **all_local_syms;
277
 
278
  /* Short-cuts to get to dynamic linker sections.  */
279
  asection *sgot;
280
  asection *srelgot;
281
  asection *splt;
282
  asection *srelplt;
283
  asection *sdynbss;
284
  asection *srelbss;
285
 
286
  /* Used during a final link to store the base of the text and data
287
     segments so that we can perform SEGREL relocations.  */
288
  bfd_vma text_segment_base;
289
  bfd_vma data_segment_base;
290
 
291
  /* Whether we support multiple sub-spaces for shared libs.  */
292
  unsigned int multi_subspace:1;
293
 
294
  /* Flags set when various size branches are detected.  Used to
295
     select suitable defaults for the stub group size.  */
296
  unsigned int has_12bit_branch:1;
297
  unsigned int has_17bit_branch:1;
298
  unsigned int has_22bit_branch:1;
299
 
300
  /* Set if we need a .plt stub to support lazy dynamic linking.  */
301
  unsigned int need_plt_stub:1;
302
 
303
  /* Small local sym to section mapping cache.  */
304
  struct sym_sec_cache sym_sec;
305
 
306
  /* Data for LDM relocations.  */
307
  union
308
  {
309
    bfd_signed_vma refcount;
310
    bfd_vma offset;
311
  } tls_ldm_got;
312
};
313
 
314
/* Various hash macros and functions.  */
315
#define hppa_link_hash_table(p) \
316
  ((struct elf32_hppa_link_hash_table *) ((p)->hash))
317
 
318
#define hppa_elf_hash_entry(ent) \
319
  ((struct elf32_hppa_link_hash_entry *)(ent))
320
 
321
#define hppa_stub_hash_entry(ent) \
322
  ((struct elf32_hppa_stub_hash_entry *)(ent))
323
 
324
#define hppa_stub_hash_lookup(table, string, create, copy) \
325
  ((struct elf32_hppa_stub_hash_entry *) \
326
   bfd_hash_lookup ((table), (string), (create), (copy)))
327
 
328
#define hppa_elf_local_got_tls_type(abfd) \
329
  ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330
 
331
#define hh_name(hh) \
332
  (hh ? hh->eh.root.root.string : "<undef>")
333
 
334
#define eh_name(eh) \
335
  (eh ? eh->root.root.string : "<undef>")
336
 
337
/* Override the generic function because we want to mark our BFDs.  */
338
 
339
static bfd_boolean
340
elf32_hppa_mkobject (bfd *abfd)
341
{
342
  return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
343
                                  HPPA_ELF_TDATA);
344
}
345
 
346
/* Assorted hash table functions.  */
347
 
348
/* Initialize an entry in the stub hash table.  */
349
 
350
static struct bfd_hash_entry *
351
stub_hash_newfunc (struct bfd_hash_entry *entry,
352
                   struct bfd_hash_table *table,
353
                   const char *string)
354
{
355
  /* Allocate the structure if it has not already been allocated by a
356
     subclass.  */
357
  if (entry == NULL)
358
    {
359
      entry = bfd_hash_allocate (table,
360
                                 sizeof (struct elf32_hppa_stub_hash_entry));
361
      if (entry == NULL)
362
        return entry;
363
    }
364
 
365
  /* Call the allocation method of the superclass.  */
366
  entry = bfd_hash_newfunc (entry, table, string);
367
  if (entry != NULL)
368
    {
369
      struct elf32_hppa_stub_hash_entry *hsh;
370
 
371
      /* Initialize the local fields.  */
372
      hsh = hppa_stub_hash_entry (entry);
373
      hsh->stub_sec = NULL;
374
      hsh->stub_offset = 0;
375
      hsh->target_value = 0;
376
      hsh->target_section = NULL;
377
      hsh->stub_type = hppa_stub_long_branch;
378
      hsh->hh = NULL;
379
      hsh->id_sec = NULL;
380
    }
381
 
382
  return entry;
383
}
384
 
385
/* Initialize an entry in the link hash table.  */
386
 
387
static struct bfd_hash_entry *
388
hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
389
                        struct bfd_hash_table *table,
390
                        const char *string)
391
{
392
  /* Allocate the structure if it has not already been allocated by a
393
     subclass.  */
394
  if (entry == NULL)
395
    {
396
      entry = bfd_hash_allocate (table,
397
                                 sizeof (struct elf32_hppa_link_hash_entry));
398
      if (entry == NULL)
399
        return entry;
400
    }
401
 
402
  /* Call the allocation method of the superclass.  */
403
  entry = _bfd_elf_link_hash_newfunc (entry, table, string);
404
  if (entry != NULL)
405
    {
406
      struct elf32_hppa_link_hash_entry *hh;
407
 
408
      /* Initialize the local fields.  */
409
      hh = hppa_elf_hash_entry (entry);
410
      hh->hsh_cache = NULL;
411
      hh->dyn_relocs = NULL;
412
      hh->plabel = 0;
413
      hh->tls_type = GOT_UNKNOWN;
414
    }
415
 
416
  return entry;
417
}
418
 
419
/* Create the derived linker hash table.  The PA ELF port uses the derived
420
   hash table to keep information specific to the PA ELF linker (without
421
   using static variables).  */
422
 
423
static struct bfd_link_hash_table *
424
elf32_hppa_link_hash_table_create (bfd *abfd)
425
{
426
  struct elf32_hppa_link_hash_table *htab;
427
  bfd_size_type amt = sizeof (*htab);
428
 
429
  htab = bfd_malloc (amt);
430
  if (htab == NULL)
431
    return NULL;
432
 
433
  if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
434
                                      sizeof (struct elf32_hppa_link_hash_entry)))
435
    {
436
      free (htab);
437
      return NULL;
438
    }
439
 
440
  /* Init the stub hash table too.  */
441
  if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
442
                            sizeof (struct elf32_hppa_stub_hash_entry)))
443
    return NULL;
444
 
445
  htab->stub_bfd = NULL;
446
  htab->add_stub_section = NULL;
447
  htab->layout_sections_again = NULL;
448
  htab->stub_group = NULL;
449
  htab->sgot = NULL;
450
  htab->srelgot = NULL;
451
  htab->splt = NULL;
452
  htab->srelplt = NULL;
453
  htab->sdynbss = NULL;
454
  htab->srelbss = NULL;
455
  htab->text_segment_base = (bfd_vma) -1;
456
  htab->data_segment_base = (bfd_vma) -1;
457
  htab->multi_subspace = 0;
458
  htab->has_12bit_branch = 0;
459
  htab->has_17bit_branch = 0;
460
  htab->has_22bit_branch = 0;
461
  htab->need_plt_stub = 0;
462
  htab->sym_sec.abfd = NULL;
463
  htab->tls_ldm_got.refcount = 0;
464
 
465
  return &htab->etab.root;
466
}
467
 
468
/* Free the derived linker hash table.  */
469
 
470
static void
471
elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
472
{
473
  struct elf32_hppa_link_hash_table *htab
474
    = (struct elf32_hppa_link_hash_table *) btab;
475
 
476
  bfd_hash_table_free (&htab->bstab);
477
  _bfd_generic_link_hash_table_free (btab);
478
}
479
 
480
/* Build a name for an entry in the stub hash table.  */
481
 
482
static char *
483
hppa_stub_name (const asection *input_section,
484
                const asection *sym_sec,
485
                const struct elf32_hppa_link_hash_entry *hh,
486
                const Elf_Internal_Rela *rela)
487
{
488
  char *stub_name;
489
  bfd_size_type len;
490
 
491
  if (hh)
492
    {
493
      len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
494
      stub_name = bfd_malloc (len);
495
      if (stub_name != NULL)
496
        sprintf (stub_name, "%08x_%s+%x",
497
                 input_section->id & 0xffffffff,
498
                 hh_name (hh),
499
                 (int) rela->r_addend & 0xffffffff);
500
    }
501
  else
502
    {
503
      len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
504
      stub_name = bfd_malloc (len);
505
      if (stub_name != NULL)
506
        sprintf (stub_name, "%08x_%x:%x+%x",
507
                 input_section->id & 0xffffffff,
508
                 sym_sec->id & 0xffffffff,
509
                 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
510
                 (int) rela->r_addend & 0xffffffff);
511
    }
512
  return stub_name;
513
}
514
 
515
/* Look up an entry in the stub hash.  Stub entries are cached because
516
   creating the stub name takes a bit of time.  */
517
 
518
static struct elf32_hppa_stub_hash_entry *
519
hppa_get_stub_entry (const asection *input_section,
520
                     const asection *sym_sec,
521
                     struct elf32_hppa_link_hash_entry *hh,
522
                     const Elf_Internal_Rela *rela,
523
                     struct elf32_hppa_link_hash_table *htab)
524
{
525
  struct elf32_hppa_stub_hash_entry *hsh_entry;
526
  const asection *id_sec;
527
 
528
  /* If this input section is part of a group of sections sharing one
529
     stub section, then use the id of the first section in the group.
530
     Stub names need to include a section id, as there may well be
531
     more than one stub used to reach say, printf, and we need to
532
     distinguish between them.  */
533
  id_sec = htab->stub_group[input_section->id].link_sec;
534
 
535
  if (hh != NULL && hh->hsh_cache != NULL
536
      && hh->hsh_cache->hh == hh
537
      && hh->hsh_cache->id_sec == id_sec)
538
    {
539
      hsh_entry = hh->hsh_cache;
540
    }
541
  else
542
    {
543
      char *stub_name;
544
 
545
      stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
546
      if (stub_name == NULL)
547
        return NULL;
548
 
549
      hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
550
                                          stub_name, FALSE, FALSE);
551
      if (hh != NULL)
552
        hh->hsh_cache = hsh_entry;
553
 
554
      free (stub_name);
555
    }
556
 
557
  return hsh_entry;
558
}
559
 
560
/* Add a new stub entry to the stub hash.  Not all fields of the new
561
   stub entry are initialised.  */
562
 
563
static struct elf32_hppa_stub_hash_entry *
564
hppa_add_stub (const char *stub_name,
565
               asection *section,
566
               struct elf32_hppa_link_hash_table *htab)
567
{
568
  asection *link_sec;
569
  asection *stub_sec;
570
  struct elf32_hppa_stub_hash_entry *hsh;
571
 
572
  link_sec = htab->stub_group[section->id].link_sec;
573
  stub_sec = htab->stub_group[section->id].stub_sec;
574
  if (stub_sec == NULL)
575
    {
576
      stub_sec = htab->stub_group[link_sec->id].stub_sec;
577
      if (stub_sec == NULL)
578
        {
579
          size_t namelen;
580
          bfd_size_type len;
581
          char *s_name;
582
 
583
          namelen = strlen (link_sec->name);
584
          len = namelen + sizeof (STUB_SUFFIX);
585
          s_name = bfd_alloc (htab->stub_bfd, len);
586
          if (s_name == NULL)
587
            return NULL;
588
 
589
          memcpy (s_name, link_sec->name, namelen);
590
          memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
591
          stub_sec = (*htab->add_stub_section) (s_name, link_sec);
592
          if (stub_sec == NULL)
593
            return NULL;
594
          htab->stub_group[link_sec->id].stub_sec = stub_sec;
595
        }
596
      htab->stub_group[section->id].stub_sec = stub_sec;
597
    }
598
 
599
  /* Enter this entry into the linker stub hash table.  */
600
  hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
601
                                      TRUE, FALSE);
602
  if (hsh == NULL)
603
    {
604
      (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
605
                             section->owner,
606
                             stub_name);
607
      return NULL;
608
    }
609
 
610
  hsh->stub_sec = stub_sec;
611
  hsh->stub_offset = 0;
612
  hsh->id_sec = link_sec;
613
  return hsh;
614
}
615
 
616
/* Determine the type of stub needed, if any, for a call.  */
617
 
618
static enum elf32_hppa_stub_type
619
hppa_type_of_stub (asection *input_sec,
620
                   const Elf_Internal_Rela *rela,
621
                   struct elf32_hppa_link_hash_entry *hh,
622
                   bfd_vma destination,
623
                   struct bfd_link_info *info)
624
{
625
  bfd_vma location;
626
  bfd_vma branch_offset;
627
  bfd_vma max_branch_offset;
628
  unsigned int r_type;
629
 
630
  if (hh != NULL
631
      && hh->eh.plt.offset != (bfd_vma) -1
632
      && hh->eh.dynindx != -1
633
      && !hh->plabel
634
      && (info->shared
635
          || !hh->eh.def_regular
636
          || hh->eh.root.type == bfd_link_hash_defweak))
637
    {
638
      /* We need an import stub.  Decide between hppa_stub_import
639
         and hppa_stub_import_shared later.  */
640
      return hppa_stub_import;
641
    }
642
 
643
  /* Determine where the call point is.  */
644
  location = (input_sec->output_offset
645
              + input_sec->output_section->vma
646
              + rela->r_offset);
647
 
648
  branch_offset = destination - location - 8;
649
  r_type = ELF32_R_TYPE (rela->r_info);
650
 
651
  /* Determine if a long branch stub is needed.  parisc branch offsets
652
     are relative to the second instruction past the branch, ie. +8
653
     bytes on from the branch instruction location.  The offset is
654
     signed and counts in units of 4 bytes.  */
655
  if (r_type == (unsigned int) R_PARISC_PCREL17F)
656
    max_branch_offset = (1 << (17 - 1)) << 2;
657
 
658
  else if (r_type == (unsigned int) R_PARISC_PCREL12F)
659
    max_branch_offset = (1 << (12 - 1)) << 2;
660
 
661
  else /* R_PARISC_PCREL22F.  */
662
    max_branch_offset = (1 << (22 - 1)) << 2;
663
 
664
  if (branch_offset + max_branch_offset >= 2*max_branch_offset)
665
    return hppa_stub_long_branch;
666
 
667
  return hppa_stub_none;
668
}
669
 
670
/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
671
   IN_ARG contains the link info pointer.  */
672
 
673
#define LDIL_R1         0x20200000      /* ldil  LR'XXX,%r1             */
674
#define BE_SR4_R1       0xe0202002      /* be,n  RR'XXX(%sr4,%r1)       */
675
 
676
#define BL_R1           0xe8200000      /* b,l   .+8,%r1                */
677
#define ADDIL_R1        0x28200000      /* addil LR'XXX,%r1,%r1         */
678
#define DEPI_R1         0xd4201c1e      /* depi  0,31,2,%r1             */
679
 
680
#define ADDIL_DP        0x2b600000      /* addil LR'XXX,%dp,%r1         */
681
#define LDW_R1_R21      0x48350000      /* ldw   RR'XXX(%sr0,%r1),%r21  */
682
#define BV_R0_R21       0xeaa0c000      /* bv    %r0(%r21)              */
683
#define LDW_R1_R19      0x48330000      /* ldw   RR'XXX(%sr0,%r1),%r19  */
684
 
685
#define ADDIL_R19       0x2a600000      /* addil LR'XXX,%r19,%r1        */
686
#define LDW_R1_DP       0x483b0000      /* ldw   RR'XXX(%sr0,%r1),%dp   */
687
 
688
#define LDSID_R21_R1    0x02a010a1      /* ldsid (%sr0,%r21),%r1        */
689
#define MTSP_R1         0x00011820      /* mtsp  %r1,%sr0               */
690
#define BE_SR0_R21      0xe2a00000      /* be    0(%sr0,%r21)           */
691
#define STW_RP          0x6bc23fd1      /* stw   %rp,-24(%sr0,%sp)      */
692
 
693
#define BL22_RP         0xe800a002      /* b,l,n XXX,%rp                */
694
#define BL_RP           0xe8400002      /* b,l,n XXX,%rp                */
695
#define NOP             0x08000240      /* nop                          */
696
#define LDW_RP          0x4bc23fd1      /* ldw   -24(%sr0,%sp),%rp      */
697
#define LDSID_RP_R1     0x004010a1      /* ldsid (%sr0,%rp),%r1         */
698
#define BE_SR0_RP       0xe0400002      /* be,n  0(%sr0,%rp)            */
699
 
700
#ifndef R19_STUBS
701
#define R19_STUBS 1
702
#endif
703
 
704
#if R19_STUBS
705
#define LDW_R1_DLT      LDW_R1_R19
706
#else
707
#define LDW_R1_DLT      LDW_R1_DP
708
#endif
709
 
710
static bfd_boolean
711
hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
712
{
713
  struct elf32_hppa_stub_hash_entry *hsh;
714
  struct bfd_link_info *info;
715
  struct elf32_hppa_link_hash_table *htab;
716
  asection *stub_sec;
717
  bfd *stub_bfd;
718
  bfd_byte *loc;
719
  bfd_vma sym_value;
720
  bfd_vma insn;
721
  bfd_vma off;
722
  int val;
723
  int size;
724
 
725
  /* Massage our args to the form they really have.  */
726
  hsh = hppa_stub_hash_entry (bh);
727
  info = (struct bfd_link_info *)in_arg;
728
 
729
  htab = hppa_link_hash_table (info);
730
  stub_sec = hsh->stub_sec;
731
 
732
  /* Make a note of the offset within the stubs for this entry.  */
733
  hsh->stub_offset = stub_sec->size;
734
  loc = stub_sec->contents + hsh->stub_offset;
735
 
736
  stub_bfd = stub_sec->owner;
737
 
738
  switch (hsh->stub_type)
739
    {
740
    case hppa_stub_long_branch:
741
      /* Create the long branch.  A long branch is formed with "ldil"
742
         loading the upper bits of the target address into a register,
743
         then branching with "be" which adds in the lower bits.
744
         The "be" has its delay slot nullified.  */
745
      sym_value = (hsh->target_value
746
                   + hsh->target_section->output_offset
747
                   + hsh->target_section->output_section->vma);
748
 
749
      val = hppa_field_adjust (sym_value, 0, e_lrsel);
750
      insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
751
      bfd_put_32 (stub_bfd, insn, loc);
752
 
753
      val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
754
      insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
755
      bfd_put_32 (stub_bfd, insn, loc + 4);
756
 
757
      size = 8;
758
      break;
759
 
760
    case hppa_stub_long_branch_shared:
761
      /* Branches are relative.  This is where we are going to.  */
762
      sym_value = (hsh->target_value
763
                   + hsh->target_section->output_offset
764
                   + hsh->target_section->output_section->vma);
765
 
766
      /* And this is where we are coming from, more or less.  */
767
      sym_value -= (hsh->stub_offset
768
                    + stub_sec->output_offset
769
                    + stub_sec->output_section->vma);
770
 
771
      bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
772
      val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
773
      insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
774
      bfd_put_32 (stub_bfd, insn, loc + 4);
775
 
776
      val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
777
      insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
778
      bfd_put_32 (stub_bfd, insn, loc + 8);
779
      size = 12;
780
      break;
781
 
782
    case hppa_stub_import:
783
    case hppa_stub_import_shared:
784
      off = hsh->hh->eh.plt.offset;
785
      if (off >= (bfd_vma) -2)
786
        abort ();
787
 
788
      off &= ~ (bfd_vma) 1;
789
      sym_value = (off
790
                   + htab->splt->output_offset
791
                   + htab->splt->output_section->vma
792
                   - elf_gp (htab->splt->output_section->owner));
793
 
794
      insn = ADDIL_DP;
795
#if R19_STUBS
796
      if (hsh->stub_type == hppa_stub_import_shared)
797
        insn = ADDIL_R19;
798
#endif
799
      val = hppa_field_adjust (sym_value, 0, e_lrsel),
800
      insn = hppa_rebuild_insn ((int) insn, val, 21);
801
      bfd_put_32 (stub_bfd, insn, loc);
802
 
803
      /* It is critical to use lrsel/rrsel here because we are using
804
         two different offsets (+0 and +4) from sym_value.  If we use
805
         lsel/rsel then with unfortunate sym_values we will round
806
         sym_value+4 up to the next 2k block leading to a mis-match
807
         between the lsel and rsel value.  */
808
      val = hppa_field_adjust (sym_value, 0, e_rrsel);
809
      insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
810
      bfd_put_32 (stub_bfd, insn, loc + 4);
811
 
812
      if (htab->multi_subspace)
813
        {
814
          val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
815
          insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
816
          bfd_put_32 (stub_bfd, insn, loc + 8);
817
 
818
          bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
819
          bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 16);
820
          bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 20);
821
          bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 24);
822
 
823
          size = 28;
824
        }
825
      else
826
        {
827
          bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
828
          val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
829
          insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
830
          bfd_put_32 (stub_bfd, insn, loc + 12);
831
 
832
          size = 16;
833
        }
834
 
835
      break;
836
 
837
    case hppa_stub_export:
838
      /* Branches are relative.  This is where we are going to.  */
839
      sym_value = (hsh->target_value
840
                   + hsh->target_section->output_offset
841
                   + hsh->target_section->output_section->vma);
842
 
843
      /* And this is where we are coming from.  */
844
      sym_value -= (hsh->stub_offset
845
                    + stub_sec->output_offset
846
                    + stub_sec->output_section->vma);
847
 
848
      if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
849
          && (!htab->has_22bit_branch
850
              || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
851
        {
852
          (*_bfd_error_handler)
853
            (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
854
             hsh->target_section->owner,
855
             stub_sec,
856
             (long) hsh->stub_offset,
857
             hsh->bh_root.string);
858
          bfd_set_error (bfd_error_bad_value);
859
          return FALSE;
860
        }
861
 
862
      val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
863
      if (!htab->has_22bit_branch)
864
        insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
865
      else
866
        insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
867
      bfd_put_32 (stub_bfd, insn, loc);
868
 
869
      bfd_put_32 (stub_bfd, (bfd_vma) NOP,         loc + 4);
870
      bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8);
871
      bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
872
      bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16);
873
      bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20);
874
 
875
      /* Point the function symbol at the stub.  */
876
      hsh->hh->eh.root.u.def.section = stub_sec;
877
      hsh->hh->eh.root.u.def.value = stub_sec->size;
878
 
879
      size = 24;
880
      break;
881
 
882
    default:
883
      BFD_FAIL ();
884
      return FALSE;
885
    }
886
 
887
  stub_sec->size += size;
888
  return TRUE;
889
}
890
 
891
#undef LDIL_R1
892
#undef BE_SR4_R1
893
#undef BL_R1
894
#undef ADDIL_R1
895
#undef DEPI_R1
896
#undef LDW_R1_R21
897
#undef LDW_R1_DLT
898
#undef LDW_R1_R19
899
#undef ADDIL_R19
900
#undef LDW_R1_DP
901
#undef LDSID_R21_R1
902
#undef MTSP_R1
903
#undef BE_SR0_R21
904
#undef STW_RP
905
#undef BV_R0_R21
906
#undef BL_RP
907
#undef NOP
908
#undef LDW_RP
909
#undef LDSID_RP_R1
910
#undef BE_SR0_RP
911
 
912
/* As above, but don't actually build the stub.  Just bump offset so
913
   we know stub section sizes.  */
914
 
915
static bfd_boolean
916
hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
917
{
918
  struct elf32_hppa_stub_hash_entry *hsh;
919
  struct elf32_hppa_link_hash_table *htab;
920
  int size;
921
 
922
  /* Massage our args to the form they really have.  */
923
  hsh = hppa_stub_hash_entry (bh);
924
  htab = in_arg;
925
 
926
  if (hsh->stub_type == hppa_stub_long_branch)
927
    size = 8;
928
  else if (hsh->stub_type == hppa_stub_long_branch_shared)
929
    size = 12;
930
  else if (hsh->stub_type == hppa_stub_export)
931
    size = 24;
932
  else /* hppa_stub_import or hppa_stub_import_shared.  */
933
    {
934
      if (htab->multi_subspace)
935
        size = 28;
936
      else
937
        size = 16;
938
    }
939
 
940
  hsh->stub_sec->size += size;
941
  return TRUE;
942
}
943
 
944
/* Return nonzero if ABFD represents an HPPA ELF32 file.
945
   Additionally we set the default architecture and machine.  */
946
 
947
static bfd_boolean
948
elf32_hppa_object_p (bfd *abfd)
949
{
950
  Elf_Internal_Ehdr * i_ehdrp;
951
  unsigned int flags;
952
 
953
  i_ehdrp = elf_elfheader (abfd);
954
  if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
955
    {
956
      /* GCC on hppa-linux produces binaries with OSABI=Linux,
957
         but the kernel produces corefiles with OSABI=SysV.  */
958
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
959
          i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
960
        return FALSE;
961
    }
962
  else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
963
    {
964
      /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
965
         but the kernel produces corefiles with OSABI=SysV.  */
966
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
967
          i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
968
        return FALSE;
969
    }
970
  else
971
    {
972
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
973
        return FALSE;
974
    }
975
 
976
  flags = i_ehdrp->e_flags;
977
  switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
978
    {
979
    case EFA_PARISC_1_0:
980
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
981
    case EFA_PARISC_1_1:
982
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
983
    case EFA_PARISC_2_0:
984
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
985
    case EFA_PARISC_2_0 | EF_PARISC_WIDE:
986
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
987
    }
988
  return TRUE;
989
}
990
 
991
/* Create the .plt and .got sections, and set up our hash table
992
   short-cuts to various dynamic sections.  */
993
 
994
static bfd_boolean
995
elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
996
{
997
  struct elf32_hppa_link_hash_table *htab;
998
  struct elf_link_hash_entry *eh;
999
 
1000
  /* Don't try to create the .plt and .got twice.  */
1001
  htab = hppa_link_hash_table (info);
1002
  if (htab->splt != NULL)
1003
    return TRUE;
1004
 
1005
  /* Call the generic code to do most of the work.  */
1006
  if (! _bfd_elf_create_dynamic_sections (abfd, info))
1007
    return FALSE;
1008
 
1009
  htab->splt = bfd_get_section_by_name (abfd, ".plt");
1010
  htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1011
 
1012
  htab->sgot = bfd_get_section_by_name (abfd, ".got");
1013
  htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
1014
                                               (SEC_ALLOC
1015
                                                | SEC_LOAD
1016
                                                | SEC_HAS_CONTENTS
1017
                                                | SEC_IN_MEMORY
1018
                                                | SEC_LINKER_CREATED
1019
                                                | SEC_READONLY));
1020
  if (htab->srelgot == NULL
1021
      || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1022
    return FALSE;
1023
 
1024
  htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1025
  htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1026
 
1027
  /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1028
     application, because __canonicalize_funcptr_for_compare needs it.  */
1029
  eh = elf_hash_table (info)->hgot;
1030
  eh->forced_local = 0;
1031
  eh->other = STV_DEFAULT;
1032
  return bfd_elf_link_record_dynamic_symbol (info, eh);
1033
}
1034
 
1035
/* Copy the extra info we tack onto an elf_link_hash_entry.  */
1036
 
1037
static void
1038
elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1039
                                 struct elf_link_hash_entry *eh_dir,
1040
                                 struct elf_link_hash_entry *eh_ind)
1041
{
1042
  struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1043
 
1044
  hh_dir = hppa_elf_hash_entry (eh_dir);
1045
  hh_ind = hppa_elf_hash_entry (eh_ind);
1046
 
1047
  if (hh_ind->dyn_relocs != NULL)
1048
    {
1049
      if (hh_dir->dyn_relocs != NULL)
1050
        {
1051
          struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1052
          struct elf32_hppa_dyn_reloc_entry *hdh_p;
1053
 
1054
          /* Add reloc counts against the indirect sym to the direct sym
1055
             list.  Merge any entries against the same section.  */
1056
          for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1057
            {
1058
              struct elf32_hppa_dyn_reloc_entry *hdh_q;
1059
 
1060
              for (hdh_q = hh_dir->dyn_relocs;
1061
                   hdh_q != NULL;
1062
                   hdh_q = hdh_q->hdh_next)
1063
                if (hdh_q->sec == hdh_p->sec)
1064
                  {
1065
#if RELATIVE_DYNRELOCS
1066
                    hdh_q->relative_count += hdh_p->relative_count;
1067
#endif
1068
                    hdh_q->count += hdh_p->count;
1069
                    *hdh_pp = hdh_p->hdh_next;
1070
                    break;
1071
                  }
1072
              if (hdh_q == NULL)
1073
                hdh_pp = &hdh_p->hdh_next;
1074
            }
1075
          *hdh_pp = hh_dir->dyn_relocs;
1076
        }
1077
 
1078
      hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1079
      hh_ind->dyn_relocs = NULL;
1080
    }
1081
 
1082
  if (ELIMINATE_COPY_RELOCS
1083
      && eh_ind->root.type != bfd_link_hash_indirect
1084
      && eh_dir->dynamic_adjusted)
1085
    {
1086
      /* If called to transfer flags for a weakdef during processing
1087
         of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1088
         We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
1089
      eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1090
      eh_dir->ref_regular |= eh_ind->ref_regular;
1091
      eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1092
      eh_dir->needs_plt |= eh_ind->needs_plt;
1093
    }
1094
  else
1095
    {
1096
      if (eh_ind->root.type == bfd_link_hash_indirect
1097
          && eh_dir->got.refcount <= 0)
1098
        {
1099
          hh_dir->tls_type = hh_ind->tls_type;
1100
          hh_ind->tls_type = GOT_UNKNOWN;
1101
        }
1102
 
1103
      _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1104
    }
1105
}
1106
 
1107
static int
1108
elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1109
                                int r_type, int is_local ATTRIBUTE_UNUSED)
1110
{
1111
  /* For now we don't support linker optimizations.  */
1112
  return r_type;
1113
}
1114
 
1115
/* Look through the relocs for a section during the first phase, and
1116
   calculate needed space in the global offset table, procedure linkage
1117
   table, and dynamic reloc sections.  At this point we haven't
1118
   necessarily read all the input files.  */
1119
 
1120
static bfd_boolean
1121
elf32_hppa_check_relocs (bfd *abfd,
1122
                         struct bfd_link_info *info,
1123
                         asection *sec,
1124
                         const Elf_Internal_Rela *relocs)
1125
{
1126
  Elf_Internal_Shdr *symtab_hdr;
1127
  struct elf_link_hash_entry **eh_syms;
1128
  const Elf_Internal_Rela *rela;
1129
  const Elf_Internal_Rela *rela_end;
1130
  struct elf32_hppa_link_hash_table *htab;
1131
  asection *sreloc;
1132
  asection *stubreloc;
1133
  int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1134
 
1135
  if (info->relocatable)
1136
    return TRUE;
1137
 
1138
  htab = hppa_link_hash_table (info);
1139
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1140
  eh_syms = elf_sym_hashes (abfd);
1141
  sreloc = NULL;
1142
  stubreloc = NULL;
1143
 
1144
  rela_end = relocs + sec->reloc_count;
1145
  for (rela = relocs; rela < rela_end; rela++)
1146
    {
1147
      enum {
1148
        NEED_GOT = 1,
1149
        NEED_PLT = 2,
1150
        NEED_DYNREL = 4,
1151
        PLT_PLABEL = 8
1152
      };
1153
 
1154
      unsigned int r_symndx, r_type;
1155
      struct elf32_hppa_link_hash_entry *hh;
1156
      int need_entry = 0;
1157
 
1158
      r_symndx = ELF32_R_SYM (rela->r_info);
1159
 
1160
      if (r_symndx < symtab_hdr->sh_info)
1161
        hh = NULL;
1162
      else
1163
        {
1164
          hh =  hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1165
          while (hh->eh.root.type == bfd_link_hash_indirect
1166
                 || hh->eh.root.type == bfd_link_hash_warning)
1167
            hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1168
        }
1169
 
1170
      r_type = ELF32_R_TYPE (rela->r_info);
1171
      r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1172
 
1173
      switch (r_type)
1174
        {
1175
        case R_PARISC_DLTIND14F:
1176
        case R_PARISC_DLTIND14R:
1177
        case R_PARISC_DLTIND21L:
1178
          /* This symbol requires a global offset table entry.  */
1179
          need_entry = NEED_GOT;
1180
          break;
1181
 
1182
        case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */
1183
        case R_PARISC_PLABEL21L:
1184
        case R_PARISC_PLABEL32:
1185
          /* If the addend is non-zero, we break badly.  */
1186
          if (rela->r_addend != 0)
1187
            abort ();
1188
 
1189
          /* If we are creating a shared library, then we need to
1190
             create a PLT entry for all PLABELs, because PLABELs with
1191
             local symbols may be passed via a pointer to another
1192
             object.  Additionally, output a dynamic relocation
1193
             pointing to the PLT entry.
1194
 
1195
             For executables, the original 32-bit ABI allowed two
1196
             different styles of PLABELs (function pointers):  For
1197
             global functions, the PLABEL word points into the .plt
1198
             two bytes past a (function address, gp) pair, and for
1199
             local functions the PLABEL points directly at the
1200
             function.  The magic +2 for the first type allows us to
1201
             differentiate between the two.  As you can imagine, this
1202
             is a real pain when it comes to generating code to call
1203
             functions indirectly or to compare function pointers.
1204
             We avoid the mess by always pointing a PLABEL into the
1205
             .plt, even for local functions.  */
1206
          need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1207
          break;
1208
 
1209
        case R_PARISC_PCREL12F:
1210
          htab->has_12bit_branch = 1;
1211
          goto branch_common;
1212
 
1213
        case R_PARISC_PCREL17C:
1214
        case R_PARISC_PCREL17F:
1215
          htab->has_17bit_branch = 1;
1216
          goto branch_common;
1217
 
1218
        case R_PARISC_PCREL22F:
1219
          htab->has_22bit_branch = 1;
1220
        branch_common:
1221
          /* Function calls might need to go through the .plt, and
1222
             might require long branch stubs.  */
1223
          if (hh == NULL)
1224
            {
1225
              /* We know local syms won't need a .plt entry, and if
1226
                 they need a long branch stub we can't guarantee that
1227
                 we can reach the stub.  So just flag an error later
1228
                 if we're doing a shared link and find we need a long
1229
                 branch stub.  */
1230
              continue;
1231
            }
1232
          else
1233
            {
1234
              /* Global symbols will need a .plt entry if they remain
1235
                 global, and in most cases won't need a long branch
1236
                 stub.  Unfortunately, we have to cater for the case
1237
                 where a symbol is forced local by versioning, or due
1238
                 to symbolic linking, and we lose the .plt entry.  */
1239
              need_entry = NEED_PLT;
1240
              if (hh->eh.type == STT_PARISC_MILLI)
1241
                need_entry = 0;
1242
            }
1243
          break;
1244
 
1245
        case R_PARISC_SEGBASE:  /* Used to set segment base.  */
1246
        case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */
1247
        case R_PARISC_PCREL14F: /* PC relative load/store.  */
1248
        case R_PARISC_PCREL14R:
1249
        case R_PARISC_PCREL17R: /* External branches.  */
1250
        case R_PARISC_PCREL21L: /* As above, and for load/store too.  */
1251
        case R_PARISC_PCREL32:
1252
          /* We don't need to propagate the relocation if linking a
1253
             shared object since these are section relative.  */
1254
          continue;
1255
 
1256
        case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */
1257
        case R_PARISC_DPREL14R:
1258
        case R_PARISC_DPREL21L:
1259
          if (info->shared)
1260
            {
1261
              (*_bfd_error_handler)
1262
                (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1263
                 abfd,
1264
                 elf_hppa_howto_table[r_type].name);
1265
              bfd_set_error (bfd_error_bad_value);
1266
              return FALSE;
1267
            }
1268
          /* Fall through.  */
1269
 
1270
        case R_PARISC_DIR17F: /* Used for external branches.  */
1271
        case R_PARISC_DIR17R:
1272
        case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */
1273
        case R_PARISC_DIR14R:
1274
        case R_PARISC_DIR21L: /* As above, and for ext branches too.  */
1275
        case R_PARISC_DIR32: /* .word relocs.  */
1276
          /* We may want to output a dynamic relocation later.  */
1277
          need_entry = NEED_DYNREL;
1278
          break;
1279
 
1280
          /* This relocation describes the C++ object vtable hierarchy.
1281
             Reconstruct it for later use during GC.  */
1282
        case R_PARISC_GNU_VTINHERIT:
1283
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1284
            return FALSE;
1285
          continue;
1286
 
1287
          /* This relocation describes which C++ vtable entries are actually
1288
             used.  Record for later use during GC.  */
1289
        case R_PARISC_GNU_VTENTRY:
1290
          BFD_ASSERT (hh != NULL);
1291
          if (hh != NULL
1292
              && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1293
            return FALSE;
1294
          continue;
1295
 
1296
        case R_PARISC_TLS_GD21L:
1297
        case R_PARISC_TLS_GD14R:
1298
        case R_PARISC_TLS_LDM21L:
1299
        case R_PARISC_TLS_LDM14R:
1300
          need_entry = NEED_GOT;
1301
          break;
1302
 
1303
        case R_PARISC_TLS_IE21L:
1304
        case R_PARISC_TLS_IE14R:
1305
          if (info->shared)
1306
            info->flags |= DF_STATIC_TLS;
1307
          need_entry = NEED_GOT;
1308
          break;
1309
 
1310
        default:
1311
          continue;
1312
        }
1313
 
1314
      /* Now carry out our orders.  */
1315
      if (need_entry & NEED_GOT)
1316
        {
1317
          switch (r_type)
1318
            {
1319
            default:
1320
              tls_type = GOT_NORMAL;
1321
              break;
1322
            case R_PARISC_TLS_GD21L:
1323
            case R_PARISC_TLS_GD14R:
1324
              tls_type |= GOT_TLS_GD;
1325
              break;
1326
            case R_PARISC_TLS_LDM21L:
1327
            case R_PARISC_TLS_LDM14R:
1328
              tls_type |= GOT_TLS_LDM;
1329
              break;
1330
            case R_PARISC_TLS_IE21L:
1331
            case R_PARISC_TLS_IE14R:
1332
              tls_type |= GOT_TLS_IE;
1333
              break;
1334
            }
1335
 
1336
          /* Allocate space for a GOT entry, as well as a dynamic
1337
             relocation for this entry.  */
1338
          if (htab->sgot == NULL)
1339
            {
1340
              if (htab->etab.dynobj == NULL)
1341
                htab->etab.dynobj = abfd;
1342
              if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1343
                return FALSE;
1344
            }
1345
 
1346
          if (r_type == R_PARISC_TLS_LDM21L
1347
              || r_type == R_PARISC_TLS_LDM14R)
1348
            hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1349
          else
1350
            {
1351
              if (hh != NULL)
1352
                {
1353
                  hh->eh.got.refcount += 1;
1354
                  old_tls_type = hh->tls_type;
1355
                }
1356
              else
1357
                {
1358
                  bfd_signed_vma *local_got_refcounts;
1359
 
1360
                  /* This is a global offset table entry for a local symbol.  */
1361
                  local_got_refcounts = elf_local_got_refcounts (abfd);
1362
                  if (local_got_refcounts == NULL)
1363
                    {
1364
                      bfd_size_type size;
1365
 
1366
                      /* Allocate space for local got offsets and local
1367
                         plt offsets.  Done this way to save polluting
1368
                         elf_obj_tdata with another target specific
1369
                         pointer.  */
1370
                      size = symtab_hdr->sh_info;
1371
                      size *= 2 * sizeof (bfd_signed_vma);
1372
                      /* Add in space to store the local GOT TLS types.  */
1373
                      size += symtab_hdr->sh_info;
1374
                      local_got_refcounts = bfd_zalloc (abfd, size);
1375
                      if (local_got_refcounts == NULL)
1376
                        return FALSE;
1377
                      elf_local_got_refcounts (abfd) = local_got_refcounts;
1378
                      memset (hppa_elf_local_got_tls_type (abfd),
1379
                          GOT_UNKNOWN, symtab_hdr->sh_info);
1380
                    }
1381
                  local_got_refcounts[r_symndx] += 1;
1382
 
1383
                  old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1384
                }
1385
 
1386
              tls_type |= old_tls_type;
1387
 
1388
              if (old_tls_type != tls_type)
1389
                {
1390
                  if (hh != NULL)
1391
                    hh->tls_type = tls_type;
1392
                  else
1393
                    hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1394
                }
1395
 
1396
            }
1397
        }
1398
 
1399
      if (need_entry & NEED_PLT)
1400
        {
1401
          /* If we are creating a shared library, and this is a reloc
1402
             against a weak symbol or a global symbol in a dynamic
1403
             object, then we will be creating an import stub and a
1404
             .plt entry for the symbol.  Similarly, on a normal link
1405
             to symbols defined in a dynamic object we'll need the
1406
             import stub and a .plt entry.  We don't know yet whether
1407
             the symbol is defined or not, so make an entry anyway and
1408
             clean up later in adjust_dynamic_symbol.  */
1409
          if ((sec->flags & SEC_ALLOC) != 0)
1410
            {
1411
              if (hh != NULL)
1412
                {
1413
                  hh->eh.needs_plt = 1;
1414
                  hh->eh.plt.refcount += 1;
1415
 
1416
                  /* If this .plt entry is for a plabel, mark it so
1417
                     that adjust_dynamic_symbol will keep the entry
1418
                     even if it appears to be local.  */
1419
                  if (need_entry & PLT_PLABEL)
1420
                    hh->plabel = 1;
1421
                }
1422
              else if (need_entry & PLT_PLABEL)
1423
                {
1424
                  bfd_signed_vma *local_got_refcounts;
1425
                  bfd_signed_vma *local_plt_refcounts;
1426
 
1427
                  local_got_refcounts = elf_local_got_refcounts (abfd);
1428
                  if (local_got_refcounts == NULL)
1429
                    {
1430
                      bfd_size_type size;
1431
 
1432
                      /* Allocate space for local got offsets and local
1433
                         plt offsets.  */
1434
                      size = symtab_hdr->sh_info;
1435
                      size *= 2 * sizeof (bfd_signed_vma);
1436
                      /* Add in space to store the local GOT TLS types.  */
1437
                      size += symtab_hdr->sh_info;
1438
                      local_got_refcounts = bfd_zalloc (abfd, size);
1439
                      if (local_got_refcounts == NULL)
1440
                        return FALSE;
1441
                      elf_local_got_refcounts (abfd) = local_got_refcounts;
1442
                    }
1443
                  local_plt_refcounts = (local_got_refcounts
1444
                                         + symtab_hdr->sh_info);
1445
                  local_plt_refcounts[r_symndx] += 1;
1446
                }
1447
            }
1448
        }
1449
 
1450
      if (need_entry & NEED_DYNREL)
1451
        {
1452
          /* Flag this symbol as having a non-got, non-plt reference
1453
             so that we generate copy relocs if it turns out to be
1454
             dynamic.  */
1455
          if (hh != NULL && !info->shared)
1456
            hh->eh.non_got_ref = 1;
1457
 
1458
          /* If we are creating a shared library then we need to copy
1459
             the reloc into the shared library.  However, if we are
1460
             linking with -Bsymbolic, we need only copy absolute
1461
             relocs or relocs against symbols that are not defined in
1462
             an object we are including in the link.  PC- or DP- or
1463
             DLT-relative relocs against any local sym or global sym
1464
             with DEF_REGULAR set, can be discarded.  At this point we
1465
             have not seen all the input files, so it is possible that
1466
             DEF_REGULAR is not set now but will be set later (it is
1467
             never cleared).  We account for that possibility below by
1468
             storing information in the dyn_relocs field of the
1469
             hash table entry.
1470
 
1471
             A similar situation to the -Bsymbolic case occurs when
1472
             creating shared libraries and symbol visibility changes
1473
             render the symbol local.
1474
 
1475
             As it turns out, all the relocs we will be creating here
1476
             are absolute, so we cannot remove them on -Bsymbolic
1477
             links or visibility changes anyway.  A STUB_REL reloc
1478
             is absolute too, as in that case it is the reloc in the
1479
             stub we will be creating, rather than copying the PCREL
1480
             reloc in the branch.
1481
 
1482
             If on the other hand, we are creating an executable, we
1483
             may need to keep relocations for symbols satisfied by a
1484
             dynamic library if we manage to avoid copy relocs for the
1485
             symbol.  */
1486
          if ((info->shared
1487
               && (sec->flags & SEC_ALLOC) != 0
1488
               && (IS_ABSOLUTE_RELOC (r_type)
1489
                   || (hh != NULL
1490
                       && (!info->symbolic
1491
                           || hh->eh.root.type == bfd_link_hash_defweak
1492
                           || !hh->eh.def_regular))))
1493
              || (ELIMINATE_COPY_RELOCS
1494
                  && !info->shared
1495
                  && (sec->flags & SEC_ALLOC) != 0
1496
                  && hh != NULL
1497
                  && (hh->eh.root.type == bfd_link_hash_defweak
1498
                      || !hh->eh.def_regular)))
1499
            {
1500
              struct elf32_hppa_dyn_reloc_entry *hdh_p;
1501
              struct elf32_hppa_dyn_reloc_entry **hdh_head;
1502
 
1503
              /* Create a reloc section in dynobj and make room for
1504
                 this reloc.  */
1505
              if (sreloc == NULL)
1506
                {
1507
                  char *name;
1508
                  bfd *dynobj;
1509
 
1510
                  name = (bfd_elf_string_from_elf_section
1511
                          (abfd,
1512
                           elf_elfheader (abfd)->e_shstrndx,
1513
                           elf_section_data (sec)->rel_hdr.sh_name));
1514
                  if (name == NULL)
1515
                    {
1516
                      (*_bfd_error_handler)
1517
                        (_("Could not find relocation section for %s"),
1518
                         sec->name);
1519
                      bfd_set_error (bfd_error_bad_value);
1520
                      return FALSE;
1521
                    }
1522
 
1523
                  if (htab->etab.dynobj == NULL)
1524
                    htab->etab.dynobj = abfd;
1525
 
1526
                  dynobj = htab->etab.dynobj;
1527
                  sreloc = bfd_get_section_by_name (dynobj, name);
1528
                  if (sreloc == NULL)
1529
                    {
1530
                      flagword flags;
1531
 
1532
                      flags = (SEC_HAS_CONTENTS | SEC_READONLY
1533
                               | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1534
                      if ((sec->flags & SEC_ALLOC) != 0)
1535
                        flags |= SEC_ALLOC | SEC_LOAD;
1536
                      sreloc = bfd_make_section_with_flags (dynobj,
1537
                                                            name,
1538
                                                            flags);
1539
                      if (sreloc == NULL
1540
                          || !bfd_set_section_alignment (dynobj, sreloc, 2))
1541
                        return FALSE;
1542
                    }
1543
 
1544
                  elf_section_data (sec)->sreloc = sreloc;
1545
                }
1546
 
1547
              /* If this is a global symbol, we count the number of
1548
                 relocations we need for this symbol.  */
1549
              if (hh != NULL)
1550
                {
1551
                  hdh_head = &hh->dyn_relocs;
1552
                }
1553
              else
1554
                {
1555
                  /* Track dynamic relocs needed for local syms too.
1556
                     We really need local syms available to do this
1557
                     easily.  Oh well.  */
1558
 
1559
                  asection *sr;
1560
                  void *vpp;
1561
 
1562
                  sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1563
                                                       sec, r_symndx);
1564
                  if (sr == NULL)
1565
                    return FALSE;
1566
 
1567
                  vpp = &elf_section_data (sr)->local_dynrel;
1568
                  hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1569
                }
1570
 
1571
              hdh_p = *hdh_head;
1572
              if (hdh_p == NULL || hdh_p->sec != sec)
1573
                {
1574
                  hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1575
                  if (hdh_p == NULL)
1576
                    return FALSE;
1577
                  hdh_p->hdh_next = *hdh_head;
1578
                  *hdh_head = hdh_p;
1579
                  hdh_p->sec = sec;
1580
                  hdh_p->count = 0;
1581
#if RELATIVE_DYNRELOCS
1582
                  hdh_p->relative_count = 0;
1583
#endif
1584
                }
1585
 
1586
              hdh_p->count += 1;
1587
#if RELATIVE_DYNRELOCS
1588
              if (!IS_ABSOLUTE_RELOC (rtype))
1589
                hdh_p->relative_count += 1;
1590
#endif
1591
            }
1592
        }
1593
    }
1594
 
1595
  return TRUE;
1596
}
1597
 
1598
/* Return the section that should be marked against garbage collection
1599
   for a given relocation.  */
1600
 
1601
static asection *
1602
elf32_hppa_gc_mark_hook (asection *sec,
1603
                         struct bfd_link_info *info,
1604
                         Elf_Internal_Rela *rela,
1605
                         struct elf_link_hash_entry *hh,
1606
                         Elf_Internal_Sym *sym)
1607
{
1608
  if (hh != NULL)
1609
    switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1610
      {
1611
      case R_PARISC_GNU_VTINHERIT:
1612
      case R_PARISC_GNU_VTENTRY:
1613
        return NULL;
1614
      }
1615
 
1616
  return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1617
}
1618
 
1619
/* Update the got and plt entry reference counts for the section being
1620
   removed.  */
1621
 
1622
static bfd_boolean
1623
elf32_hppa_gc_sweep_hook (bfd *abfd,
1624
                          struct bfd_link_info *info ATTRIBUTE_UNUSED,
1625
                          asection *sec,
1626
                          const Elf_Internal_Rela *relocs)
1627
{
1628
  Elf_Internal_Shdr *symtab_hdr;
1629
  struct elf_link_hash_entry **eh_syms;
1630
  bfd_signed_vma *local_got_refcounts;
1631
  bfd_signed_vma *local_plt_refcounts;
1632
  const Elf_Internal_Rela *rela, *relend;
1633
 
1634
  if (info->relocatable)
1635
    return TRUE;
1636
 
1637
  elf_section_data (sec)->local_dynrel = NULL;
1638
 
1639
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1640
  eh_syms = elf_sym_hashes (abfd);
1641
  local_got_refcounts = elf_local_got_refcounts (abfd);
1642
  local_plt_refcounts = local_got_refcounts;
1643
  if (local_plt_refcounts != NULL)
1644
    local_plt_refcounts += symtab_hdr->sh_info;
1645
 
1646
  relend = relocs + sec->reloc_count;
1647
  for (rela = relocs; rela < relend; rela++)
1648
    {
1649
      unsigned long r_symndx;
1650
      unsigned int r_type;
1651
      struct elf_link_hash_entry *eh = NULL;
1652
 
1653
      r_symndx = ELF32_R_SYM (rela->r_info);
1654
      if (r_symndx >= symtab_hdr->sh_info)
1655
        {
1656
          struct elf32_hppa_link_hash_entry *hh;
1657
          struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1658
          struct elf32_hppa_dyn_reloc_entry *hdh_p;
1659
 
1660
          eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1661
          while (eh->root.type == bfd_link_hash_indirect
1662
                 || eh->root.type == bfd_link_hash_warning)
1663
            eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1664
          hh = hppa_elf_hash_entry (eh);
1665
 
1666
          for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1667
            if (hdh_p->sec == sec)
1668
              {
1669
                /* Everything must go for SEC.  */
1670
                *hdh_pp = hdh_p->hdh_next;
1671
                break;
1672
              }
1673
        }
1674
 
1675
      r_type = ELF32_R_TYPE (rela->r_info);
1676
      r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1677
 
1678
      switch (r_type)
1679
        {
1680
        case R_PARISC_DLTIND14F:
1681
        case R_PARISC_DLTIND14R:
1682
        case R_PARISC_DLTIND21L:
1683
        case R_PARISC_TLS_GD21L:
1684
        case R_PARISC_TLS_GD14R:
1685
        case R_PARISC_TLS_IE21L:
1686
        case R_PARISC_TLS_IE14R:
1687
          if (eh != NULL)
1688
            {
1689
              if (eh->got.refcount > 0)
1690
                eh->got.refcount -= 1;
1691
            }
1692
          else if (local_got_refcounts != NULL)
1693
            {
1694
              if (local_got_refcounts[r_symndx] > 0)
1695
                local_got_refcounts[r_symndx] -= 1;
1696
            }
1697
          break;
1698
 
1699
        case R_PARISC_TLS_LDM21L:
1700
        case R_PARISC_TLS_LDM14R:
1701
          hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1702
          break;
1703
 
1704
        case R_PARISC_PCREL12F:
1705
        case R_PARISC_PCREL17C:
1706
        case R_PARISC_PCREL17F:
1707
        case R_PARISC_PCREL22F:
1708
          if (eh != NULL)
1709
            {
1710
              if (eh->plt.refcount > 0)
1711
                eh->plt.refcount -= 1;
1712
            }
1713
          break;
1714
 
1715
        case R_PARISC_PLABEL14R:
1716
        case R_PARISC_PLABEL21L:
1717
        case R_PARISC_PLABEL32:
1718
          if (eh != NULL)
1719
            {
1720
              if (eh->plt.refcount > 0)
1721
                eh->plt.refcount -= 1;
1722
            }
1723
          else if (local_plt_refcounts != NULL)
1724
            {
1725
              if (local_plt_refcounts[r_symndx] > 0)
1726
                local_plt_refcounts[r_symndx] -= 1;
1727
            }
1728
          break;
1729
 
1730
        default:
1731
          break;
1732
        }
1733
    }
1734
 
1735
  return TRUE;
1736
}
1737
 
1738
/* Support for core dump NOTE sections.  */
1739
 
1740
static bfd_boolean
1741
elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1742
{
1743
  int offset;
1744
  size_t size;
1745
 
1746
  switch (note->descsz)
1747
    {
1748
      default:
1749
        return FALSE;
1750
 
1751
      case 396:         /* Linux/hppa */
1752
        /* pr_cursig */
1753
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1754
 
1755
        /* pr_pid */
1756
        elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1757
 
1758
        /* pr_reg */
1759
        offset = 72;
1760
        size = 320;
1761
 
1762
        break;
1763
    }
1764
 
1765
  /* Make a ".reg/999" section.  */
1766
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1767
                                          size, note->descpos + offset);
1768
}
1769
 
1770
static bfd_boolean
1771
elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1772
{
1773
  switch (note->descsz)
1774
    {
1775
      default:
1776
        return FALSE;
1777
 
1778
      case 124:         /* Linux/hppa elf_prpsinfo.  */
1779
        elf_tdata (abfd)->core_program
1780
          = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1781
        elf_tdata (abfd)->core_command
1782
          = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1783
    }
1784
 
1785
  /* Note that for some reason, a spurious space is tacked
1786
     onto the end of the args in some (at least one anyway)
1787
     implementations, so strip it off if it exists.  */
1788
  {
1789
    char *command = elf_tdata (abfd)->core_command;
1790
    int n = strlen (command);
1791
 
1792
    if (0 < n && command[n - 1] == ' ')
1793
      command[n - 1] = '\0';
1794
  }
1795
 
1796
  return TRUE;
1797
}
1798
 
1799
/* Our own version of hide_symbol, so that we can keep plt entries for
1800
   plabels.  */
1801
 
1802
static void
1803
elf32_hppa_hide_symbol (struct bfd_link_info *info,
1804
                        struct elf_link_hash_entry *eh,
1805
                        bfd_boolean force_local)
1806
{
1807
  if (force_local)
1808
    {
1809
      eh->forced_local = 1;
1810
      if (eh->dynindx != -1)
1811
        {
1812
          eh->dynindx = -1;
1813
          _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1814
                                  eh->dynstr_index);
1815
        }
1816
    }
1817
 
1818
  if (! hppa_elf_hash_entry (eh)->plabel)
1819
    {
1820
      eh->needs_plt = 0;
1821
      eh->plt = elf_hash_table (info)->init_plt_refcount;
1822
    }
1823
}
1824
 
1825
/* Adjust a symbol defined by a dynamic object and referenced by a
1826
   regular object.  The current definition is in some section of the
1827
   dynamic object, but we're not including those sections.  We have to
1828
   change the definition to something the rest of the link can
1829
   understand.  */
1830
 
1831
static bfd_boolean
1832
elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1833
                                  struct elf_link_hash_entry *eh)
1834
{
1835
  struct elf32_hppa_link_hash_table *htab;
1836
  asection *sec;
1837
 
1838
  /* If this is a function, put it in the procedure linkage table.  We
1839
     will fill in the contents of the procedure linkage table later.  */
1840
  if (eh->type == STT_FUNC
1841
      || eh->needs_plt)
1842
    {
1843
      if (eh->plt.refcount <= 0
1844
          || (eh->def_regular
1845
              && eh->root.type != bfd_link_hash_defweak
1846
              && ! hppa_elf_hash_entry (eh)->plabel
1847
              && (!info->shared || info->symbolic)))
1848
        {
1849
          /* The .plt entry is not needed when:
1850
             a) Garbage collection has removed all references to the
1851
             symbol, or
1852
             b) We know for certain the symbol is defined in this
1853
             object, and it's not a weak definition, nor is the symbol
1854
             used by a plabel relocation.  Either this object is the
1855
             application or we are doing a shared symbolic link.  */
1856
 
1857
          eh->plt.offset = (bfd_vma) -1;
1858
          eh->needs_plt = 0;
1859
        }
1860
 
1861
      return TRUE;
1862
    }
1863
  else
1864
    eh->plt.offset = (bfd_vma) -1;
1865
 
1866
  /* If this is a weak symbol, and there is a real definition, the
1867
     processor independent code will have arranged for us to see the
1868
     real definition first, and we can just use the same value.  */
1869
  if (eh->u.weakdef != NULL)
1870
    {
1871
      if (eh->u.weakdef->root.type != bfd_link_hash_defined
1872
          && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1873
        abort ();
1874
      eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1875
      eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1876
      if (ELIMINATE_COPY_RELOCS)
1877
        eh->non_got_ref = eh->u.weakdef->non_got_ref;
1878
      return TRUE;
1879
    }
1880
 
1881
  /* This is a reference to a symbol defined by a dynamic object which
1882
     is not a function.  */
1883
 
1884
  /* If we are creating a shared library, we must presume that the
1885
     only references to the symbol are via the global offset table.
1886
     For such cases we need not do anything here; the relocations will
1887
     be handled correctly by relocate_section.  */
1888
  if (info->shared)
1889
    return TRUE;
1890
 
1891
  /* If there are no references to this symbol that do not use the
1892
     GOT, we don't need to generate a copy reloc.  */
1893
  if (!eh->non_got_ref)
1894
    return TRUE;
1895
 
1896
  if (ELIMINATE_COPY_RELOCS)
1897
    {
1898
      struct elf32_hppa_link_hash_entry *hh;
1899
      struct elf32_hppa_dyn_reloc_entry *hdh_p;
1900
 
1901
      hh = hppa_elf_hash_entry (eh);
1902
      for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1903
        {
1904
          sec = hdh_p->sec->output_section;
1905
          if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1906
            break;
1907
        }
1908
 
1909
      /* If we didn't find any dynamic relocs in read-only sections, then
1910
         we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
1911
      if (hdh_p == NULL)
1912
        {
1913
          eh->non_got_ref = 0;
1914
          return TRUE;
1915
        }
1916
    }
1917
 
1918
  if (eh->size == 0)
1919
    {
1920
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1921
                             eh->root.root.string);
1922
      return TRUE;
1923
    }
1924
 
1925
  /* We must allocate the symbol in our .dynbss section, which will
1926
     become part of the .bss section of the executable.  There will be
1927
     an entry for this symbol in the .dynsym section.  The dynamic
1928
     object will contain position independent code, so all references
1929
     from the dynamic object to this symbol will go through the global
1930
     offset table.  The dynamic linker will use the .dynsym entry to
1931
     determine the address it must put in the global offset table, so
1932
     both the dynamic object and the regular object will refer to the
1933
     same memory location for the variable.  */
1934
 
1935
  htab = hppa_link_hash_table (info);
1936
 
1937
  /* We must generate a COPY reloc to tell the dynamic linker to
1938
     copy the initial value out of the dynamic object and into the
1939
     runtime process image.  */
1940
  if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1941
    {
1942
      htab->srelbss->size += sizeof (Elf32_External_Rela);
1943
      eh->needs_copy = 1;
1944
    }
1945
 
1946
  sec = htab->sdynbss;
1947
 
1948
  return _bfd_elf_adjust_dynamic_copy (eh, sec);
1949
}
1950
 
1951
/* Allocate space in the .plt for entries that won't have relocations.
1952
   ie. plabel entries.  */
1953
 
1954
static bfd_boolean
1955
allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1956
{
1957
  struct bfd_link_info *info;
1958
  struct elf32_hppa_link_hash_table *htab;
1959
  struct elf32_hppa_link_hash_entry *hh;
1960
  asection *sec;
1961
 
1962
  if (eh->root.type == bfd_link_hash_indirect)
1963
    return TRUE;
1964
 
1965
  if (eh->root.type == bfd_link_hash_warning)
1966
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1967
 
1968
  info = (struct bfd_link_info *) inf;
1969
  hh = hppa_elf_hash_entry (eh);
1970
  htab = hppa_link_hash_table (info);
1971
  if (htab->etab.dynamic_sections_created
1972
      && eh->plt.refcount > 0)
1973
    {
1974
      /* Make sure this symbol is output as a dynamic symbol.
1975
         Undefined weak syms won't yet be marked as dynamic.  */
1976
      if (eh->dynindx == -1
1977
          && !eh->forced_local
1978
          && eh->type != STT_PARISC_MILLI)
1979
        {
1980
          if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1981
            return FALSE;
1982
        }
1983
 
1984
      if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1985
        {
1986
          /* Allocate these later.  From this point on, h->plabel
1987
             means that the plt entry is only used by a plabel.
1988
             We'll be using a normal plt entry for this symbol, so
1989
             clear the plabel indicator.  */
1990
 
1991
          hh->plabel = 0;
1992
        }
1993
      else if (hh->plabel)
1994
        {
1995
          /* Make an entry in the .plt section for plabel references
1996
             that won't have a .plt entry for other reasons.  */
1997
          sec = htab->splt;
1998
          eh->plt.offset = sec->size;
1999
          sec->size += PLT_ENTRY_SIZE;
2000
        }
2001
      else
2002
        {
2003
          /* No .plt entry needed.  */
2004
          eh->plt.offset = (bfd_vma) -1;
2005
          eh->needs_plt = 0;
2006
        }
2007
    }
2008
  else
2009
    {
2010
      eh->plt.offset = (bfd_vma) -1;
2011
      eh->needs_plt = 0;
2012
    }
2013
 
2014
  return TRUE;
2015
}
2016
 
2017
/* Allocate space in .plt, .got and associated reloc sections for
2018
   global syms.  */
2019
 
2020
static bfd_boolean
2021
allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2022
{
2023
  struct bfd_link_info *info;
2024
  struct elf32_hppa_link_hash_table *htab;
2025
  asection *sec;
2026
  struct elf32_hppa_link_hash_entry *hh;
2027
  struct elf32_hppa_dyn_reloc_entry *hdh_p;
2028
 
2029
  if (eh->root.type == bfd_link_hash_indirect)
2030
    return TRUE;
2031
 
2032
  if (eh->root.type == bfd_link_hash_warning)
2033
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2034
 
2035
  info = inf;
2036
  htab = hppa_link_hash_table (info);
2037
  hh = hppa_elf_hash_entry (eh);
2038
 
2039
  if (htab->etab.dynamic_sections_created
2040
      && eh->plt.offset != (bfd_vma) -1
2041
      && !hh->plabel
2042
      && eh->plt.refcount > 0)
2043
    {
2044
      /* Make an entry in the .plt section.  */
2045
      sec = htab->splt;
2046
      eh->plt.offset = sec->size;
2047
      sec->size += PLT_ENTRY_SIZE;
2048
 
2049
      /* We also need to make an entry in the .rela.plt section.  */
2050
      htab->srelplt->size += sizeof (Elf32_External_Rela);
2051
      htab->need_plt_stub = 1;
2052
    }
2053
 
2054
  if (eh->got.refcount > 0)
2055
    {
2056
      /* Make sure this symbol is output as a dynamic symbol.
2057
         Undefined weak syms won't yet be marked as dynamic.  */
2058
      if (eh->dynindx == -1
2059
          && !eh->forced_local
2060
          && eh->type != STT_PARISC_MILLI)
2061
        {
2062
          if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2063
            return FALSE;
2064
        }
2065
 
2066
      sec = htab->sgot;
2067
      eh->got.offset = sec->size;
2068
      sec->size += GOT_ENTRY_SIZE;
2069
      /* R_PARISC_TLS_GD* needs two GOT entries */
2070
      if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2071
        sec->size += GOT_ENTRY_SIZE * 2;
2072
      else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2073
        sec->size += GOT_ENTRY_SIZE;
2074
      if (htab->etab.dynamic_sections_created
2075
          && (info->shared
2076
              || (eh->dynindx != -1
2077
                  && !eh->forced_local)))
2078
        {
2079
          htab->srelgot->size += sizeof (Elf32_External_Rela);
2080
          if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2081
            htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2082
          else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2083
            htab->srelgot->size += sizeof (Elf32_External_Rela);
2084
        }
2085
    }
2086
  else
2087
    eh->got.offset = (bfd_vma) -1;
2088
 
2089
  if (hh->dyn_relocs == NULL)
2090
    return TRUE;
2091
 
2092
  /* If this is a -Bsymbolic shared link, then we need to discard all
2093
     space allocated for dynamic pc-relative relocs against symbols
2094
     defined in a regular object.  For the normal shared case, discard
2095
     space for relocs that have become local due to symbol visibility
2096
     changes.  */
2097
  if (info->shared)
2098
    {
2099
#if RELATIVE_DYNRELOCS
2100
      if (SYMBOL_CALLS_LOCAL (info, eh))
2101
        {
2102
          struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2103
 
2104
          for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2105
            {
2106
              hdh_p->count -= hdh_p->relative_count;
2107
              hdh_p->relative_count = 0;
2108
              if (hdh_p->count == 0)
2109
                *hdh_pp = hdh_p->hdh_next;
2110
              else
2111
                hdh_pp = &hdh_p->hdh_next;
2112
            }
2113
        }
2114
#endif
2115
 
2116
      /* Also discard relocs on undefined weak syms with non-default
2117
         visibility.  */
2118
      if (hh->dyn_relocs != NULL
2119
          && eh->root.type == bfd_link_hash_undefweak)
2120
        {
2121
          if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2122
            hh->dyn_relocs = NULL;
2123
 
2124
          /* Make sure undefined weak symbols are output as a dynamic
2125
             symbol in PIEs.  */
2126
          else if (eh->dynindx == -1
2127
                   && !eh->forced_local)
2128
            {
2129
              if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2130
                return FALSE;
2131
            }
2132
        }
2133
    }
2134
  else
2135
    {
2136
      /* For the non-shared case, discard space for relocs against
2137
         symbols which turn out to need copy relocs or are not
2138
         dynamic.  */
2139
 
2140
      if (!eh->non_got_ref
2141
          && ((ELIMINATE_COPY_RELOCS
2142
               && eh->def_dynamic
2143
               && !eh->def_regular)
2144
               || (htab->etab.dynamic_sections_created
2145
                   && (eh->root.type == bfd_link_hash_undefweak
2146
                       || eh->root.type == bfd_link_hash_undefined))))
2147
        {
2148
          /* Make sure this symbol is output as a dynamic symbol.
2149
             Undefined weak syms won't yet be marked as dynamic.  */
2150
          if (eh->dynindx == -1
2151
              && !eh->forced_local
2152
              && eh->type != STT_PARISC_MILLI)
2153
            {
2154
              if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2155
                return FALSE;
2156
            }
2157
 
2158
          /* If that succeeded, we know we'll be keeping all the
2159
             relocs.  */
2160
          if (eh->dynindx != -1)
2161
            goto keep;
2162
        }
2163
 
2164
      hh->dyn_relocs = NULL;
2165
      return TRUE;
2166
 
2167
    keep: ;
2168
    }
2169
 
2170
  /* Finally, allocate space.  */
2171
  for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2172
    {
2173
      asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2174
      sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2175
    }
2176
 
2177
  return TRUE;
2178
}
2179
 
2180
/* This function is called via elf_link_hash_traverse to force
2181
   millicode symbols local so they do not end up as globals in the
2182
   dynamic symbol table.  We ought to be able to do this in
2183
   adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2184
   for all dynamic symbols.  Arguably, this is a bug in
2185
   elf_adjust_dynamic_symbol.  */
2186
 
2187
static bfd_boolean
2188
clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2189
                           struct bfd_link_info *info)
2190
{
2191
  if (eh->root.type == bfd_link_hash_warning)
2192
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2193
 
2194
  if (eh->type == STT_PARISC_MILLI
2195
      && !eh->forced_local)
2196
    {
2197
      elf32_hppa_hide_symbol (info, eh, TRUE);
2198
    }
2199
  return TRUE;
2200
}
2201
 
2202
/* Find any dynamic relocs that apply to read-only sections.  */
2203
 
2204
static bfd_boolean
2205
readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2206
{
2207
  struct elf32_hppa_link_hash_entry *hh;
2208
  struct elf32_hppa_dyn_reloc_entry *hdh_p;
2209
 
2210
  if (eh->root.type == bfd_link_hash_warning)
2211
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2212
 
2213
  hh = hppa_elf_hash_entry (eh);
2214
  for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2215
    {
2216
      asection *sec = hdh_p->sec->output_section;
2217
 
2218
      if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2219
        {
2220
          struct bfd_link_info *info = inf;
2221
 
2222
          info->flags |= DF_TEXTREL;
2223
 
2224
          /* Not an error, just cut short the traversal.  */
2225
          return FALSE;
2226
        }
2227
    }
2228
  return TRUE;
2229
}
2230
 
2231
/* Set the sizes of the dynamic sections.  */
2232
 
2233
static bfd_boolean
2234
elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2235
                                  struct bfd_link_info *info)
2236
{
2237
  struct elf32_hppa_link_hash_table *htab;
2238
  bfd *dynobj;
2239
  bfd *ibfd;
2240
  asection *sec;
2241
  bfd_boolean relocs;
2242
 
2243
  htab = hppa_link_hash_table (info);
2244
  dynobj = htab->etab.dynobj;
2245
  if (dynobj == NULL)
2246
    abort ();
2247
 
2248
  if (htab->etab.dynamic_sections_created)
2249
    {
2250
      /* Set the contents of the .interp section to the interpreter.  */
2251
      if (info->executable)
2252
        {
2253
          sec = bfd_get_section_by_name (dynobj, ".interp");
2254
          if (sec == NULL)
2255
            abort ();
2256
          sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2257
          sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2258
        }
2259
 
2260
      /* Force millicode symbols local.  */
2261
      elf_link_hash_traverse (&htab->etab,
2262
                              clobber_millicode_symbols,
2263
                              info);
2264
    }
2265
 
2266
  /* Set up .got and .plt offsets for local syms, and space for local
2267
     dynamic relocs.  */
2268
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2269
    {
2270
      bfd_signed_vma *local_got;
2271
      bfd_signed_vma *end_local_got;
2272
      bfd_signed_vma *local_plt;
2273
      bfd_signed_vma *end_local_plt;
2274
      bfd_size_type locsymcount;
2275
      Elf_Internal_Shdr *symtab_hdr;
2276
      asection *srel;
2277
      char *local_tls_type;
2278
 
2279
      if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2280
        continue;
2281
 
2282
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2283
        {
2284
          struct elf32_hppa_dyn_reloc_entry *hdh_p;
2285
 
2286
          for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2287
                    elf_section_data (sec)->local_dynrel);
2288
               hdh_p != NULL;
2289
               hdh_p = hdh_p->hdh_next)
2290
            {
2291
              if (!bfd_is_abs_section (hdh_p->sec)
2292
                  && bfd_is_abs_section (hdh_p->sec->output_section))
2293
                {
2294
                  /* Input section has been discarded, either because
2295
                     it is a copy of a linkonce section or due to
2296
                     linker script /DISCARD/, so we'll be discarding
2297
                     the relocs too.  */
2298
                }
2299
              else if (hdh_p->count != 0)
2300
                {
2301
                  srel = elf_section_data (hdh_p->sec)->sreloc;
2302
                  srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2303
                  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2304
                    info->flags |= DF_TEXTREL;
2305
                }
2306
            }
2307
        }
2308
 
2309
      local_got = elf_local_got_refcounts (ibfd);
2310
      if (!local_got)
2311
        continue;
2312
 
2313
      symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2314
      locsymcount = symtab_hdr->sh_info;
2315
      end_local_got = local_got + locsymcount;
2316
      local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2317
      sec = htab->sgot;
2318
      srel = htab->srelgot;
2319
      for (; local_got < end_local_got; ++local_got)
2320
        {
2321
          if (*local_got > 0)
2322
            {
2323
              *local_got = sec->size;
2324
              sec->size += GOT_ENTRY_SIZE;
2325
              if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2326
                sec->size += 2 * GOT_ENTRY_SIZE;
2327
              else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2328
                sec->size += GOT_ENTRY_SIZE;
2329
              if (info->shared)
2330
                {
2331
                  srel->size += sizeof (Elf32_External_Rela);
2332
                  if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2333
                    srel->size += 2 * sizeof (Elf32_External_Rela);
2334
                  else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2335
                    srel->size += sizeof (Elf32_External_Rela);
2336
                }
2337
            }
2338
          else
2339
            *local_got = (bfd_vma) -1;
2340
 
2341
          ++local_tls_type;
2342
        }
2343
 
2344
      local_plt = end_local_got;
2345
      end_local_plt = local_plt + locsymcount;
2346
      if (! htab->etab.dynamic_sections_created)
2347
        {
2348
          /* Won't be used, but be safe.  */
2349
          for (; local_plt < end_local_plt; ++local_plt)
2350
            *local_plt = (bfd_vma) -1;
2351
        }
2352
      else
2353
        {
2354
          sec = htab->splt;
2355
          srel = htab->srelplt;
2356
          for (; local_plt < end_local_plt; ++local_plt)
2357
            {
2358
              if (*local_plt > 0)
2359
                {
2360
                  *local_plt = sec->size;
2361
                  sec->size += PLT_ENTRY_SIZE;
2362
                  if (info->shared)
2363
                    srel->size += sizeof (Elf32_External_Rela);
2364
                }
2365
              else
2366
                *local_plt = (bfd_vma) -1;
2367
            }
2368
        }
2369
    }
2370
 
2371
  if (htab->tls_ldm_got.refcount > 0)
2372
    {
2373
      /* Allocate 2 got entries and 1 dynamic reloc for
2374
         R_PARISC_TLS_DTPMOD32 relocs.  */
2375
      htab->tls_ldm_got.offset = htab->sgot->size;
2376
      htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2377
      htab->srelgot->size += sizeof (Elf32_External_Rela);
2378
    }
2379
  else
2380
    htab->tls_ldm_got.offset = -1;
2381
 
2382
  /* Do all the .plt entries without relocs first.  The dynamic linker
2383
     uses the last .plt reloc to find the end of the .plt (and hence
2384
     the start of the .got) for lazy linking.  */
2385
  elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2386
 
2387
  /* Allocate global sym .plt and .got entries, and space for global
2388
     sym dynamic relocs.  */
2389
  elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2390
 
2391
  /* The check_relocs and adjust_dynamic_symbol entry points have
2392
     determined the sizes of the various dynamic sections.  Allocate
2393
     memory for them.  */
2394
  relocs = FALSE;
2395
  for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2396
    {
2397
      if ((sec->flags & SEC_LINKER_CREATED) == 0)
2398
        continue;
2399
 
2400
      if (sec == htab->splt)
2401
        {
2402
          if (htab->need_plt_stub)
2403
            {
2404
              /* Make space for the plt stub at the end of the .plt
2405
                 section.  We want this stub right at the end, up
2406
                 against the .got section.  */
2407
              int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2408
              int pltalign = bfd_section_alignment (dynobj, sec);
2409
              bfd_size_type mask;
2410
 
2411
              if (gotalign > pltalign)
2412
                bfd_set_section_alignment (dynobj, sec, gotalign);
2413
              mask = ((bfd_size_type) 1 << gotalign) - 1;
2414
              sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2415
            }
2416
        }
2417
      else if (sec == htab->sgot
2418
               || sec == htab->sdynbss)
2419
        ;
2420
      else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2421
        {
2422
          if (sec->size != 0)
2423
            {
2424
              /* Remember whether there are any reloc sections other
2425
                 than .rela.plt.  */
2426
              if (sec != htab->srelplt)
2427
                relocs = TRUE;
2428
 
2429
              /* We use the reloc_count field as a counter if we need
2430
                 to copy relocs into the output file.  */
2431
              sec->reloc_count = 0;
2432
            }
2433
        }
2434
      else
2435
        {
2436
          /* It's not one of our sections, so don't allocate space.  */
2437
          continue;
2438
        }
2439
 
2440
      if (sec->size == 0)
2441
        {
2442
          /* If we don't need this section, strip it from the
2443
             output file.  This is mostly to handle .rela.bss and
2444
             .rela.plt.  We must create both sections in
2445
             create_dynamic_sections, because they must be created
2446
             before the linker maps input sections to output
2447
             sections.  The linker does that before
2448
             adjust_dynamic_symbol is called, and it is that
2449
             function which decides whether anything needs to go
2450
             into these sections.  */
2451
          sec->flags |= SEC_EXCLUDE;
2452
          continue;
2453
        }
2454
 
2455
      if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2456
        continue;
2457
 
2458
      /* Allocate memory for the section contents.  Zero it, because
2459
         we may not fill in all the reloc sections.  */
2460
      sec->contents = bfd_zalloc (dynobj, sec->size);
2461
      if (sec->contents == NULL)
2462
        return FALSE;
2463
    }
2464
 
2465
  if (htab->etab.dynamic_sections_created)
2466
    {
2467
      /* Like IA-64 and HPPA64, always create a DT_PLTGOT.  It
2468
         actually has nothing to do with the PLT, it is how we
2469
         communicate the LTP value of a load module to the dynamic
2470
         linker.  */
2471
#define add_dynamic_entry(TAG, VAL) \
2472
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2473
 
2474
      if (!add_dynamic_entry (DT_PLTGOT, 0))
2475
        return FALSE;
2476
 
2477
      /* Add some entries to the .dynamic section.  We fill in the
2478
         values later, in elf32_hppa_finish_dynamic_sections, but we
2479
         must add the entries now so that we get the correct size for
2480
         the .dynamic section.  The DT_DEBUG entry is filled in by the
2481
         dynamic linker and used by the debugger.  */
2482
      if (info->executable)
2483
        {
2484
          if (!add_dynamic_entry (DT_DEBUG, 0))
2485
            return FALSE;
2486
        }
2487
 
2488
      if (htab->srelplt->size != 0)
2489
        {
2490
          if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2491
              || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2492
              || !add_dynamic_entry (DT_JMPREL, 0))
2493
            return FALSE;
2494
        }
2495
 
2496
      if (relocs)
2497
        {
2498
          if (!add_dynamic_entry (DT_RELA, 0)
2499
              || !add_dynamic_entry (DT_RELASZ, 0)
2500
              || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2501
            return FALSE;
2502
 
2503
          /* If any dynamic relocs apply to a read-only section,
2504
             then we need a DT_TEXTREL entry.  */
2505
          if ((info->flags & DF_TEXTREL) == 0)
2506
            elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2507
 
2508
          if ((info->flags & DF_TEXTREL) != 0)
2509
            {
2510
              if (!add_dynamic_entry (DT_TEXTREL, 0))
2511
                return FALSE;
2512
            }
2513
        }
2514
    }
2515
#undef add_dynamic_entry
2516
 
2517
  return TRUE;
2518
}
2519
 
2520
/* External entry points for sizing and building linker stubs.  */
2521
 
2522
/* Set up various things so that we can make a list of input sections
2523
   for each output section included in the link.  Returns -1 on error,
2524
 
2525
 
2526
int
2527
elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2528
{
2529
  bfd *input_bfd;
2530
  unsigned int bfd_count;
2531
  int top_id, top_index;
2532
  asection *section;
2533
  asection **input_list, **list;
2534
  bfd_size_type amt;
2535
  struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2536
 
2537
  /* Count the number of input BFDs and find the top input section id.  */
2538
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2539
       input_bfd != NULL;
2540
       input_bfd = input_bfd->link_next)
2541
    {
2542
      bfd_count += 1;
2543
      for (section = input_bfd->sections;
2544
           section != NULL;
2545
           section = section->next)
2546
        {
2547
          if (top_id < section->id)
2548
            top_id = section->id;
2549
        }
2550
    }
2551
  htab->bfd_count = bfd_count;
2552
 
2553
  amt = sizeof (struct map_stub) * (top_id + 1);
2554
  htab->stub_group = bfd_zmalloc (amt);
2555
  if (htab->stub_group == NULL)
2556
    return -1;
2557
 
2558
  /* We can't use output_bfd->section_count here to find the top output
2559
     section index as some sections may have been removed, and
2560
     strip_excluded_output_sections doesn't renumber the indices.  */
2561
  for (section = output_bfd->sections, top_index = 0;
2562
       section != NULL;
2563
       section = section->next)
2564
    {
2565
      if (top_index < section->index)
2566
        top_index = section->index;
2567
    }
2568
 
2569
  htab->top_index = top_index;
2570
  amt = sizeof (asection *) * (top_index + 1);
2571
  input_list = bfd_malloc (amt);
2572
  htab->input_list = input_list;
2573
  if (input_list == NULL)
2574
    return -1;
2575
 
2576
  /* For sections we aren't interested in, mark their entries with a
2577
     value we can check later.  */
2578
  list = input_list + top_index;
2579
  do
2580
    *list = bfd_abs_section_ptr;
2581
  while (list-- != input_list);
2582
 
2583
  for (section = output_bfd->sections;
2584
       section != NULL;
2585
       section = section->next)
2586
    {
2587
      if ((section->flags & SEC_CODE) != 0)
2588
        input_list[section->index] = NULL;
2589
    }
2590
 
2591
  return 1;
2592
}
2593
 
2594
/* The linker repeatedly calls this function for each input section,
2595
   in the order that input sections are linked into output sections.
2596
   Build lists of input sections to determine groupings between which
2597
   we may insert linker stubs.  */
2598
 
2599
void
2600
elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2601
{
2602
  struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2603
 
2604
  if (isec->output_section->index <= htab->top_index)
2605
    {
2606
      asection **list = htab->input_list + isec->output_section->index;
2607
      if (*list != bfd_abs_section_ptr)
2608
        {
2609
          /* Steal the link_sec pointer for our list.  */
2610
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2611
          /* This happens to make the list in reverse order,
2612
             which is what we want.  */
2613
          PREV_SEC (isec) = *list;
2614
          *list = isec;
2615
        }
2616
    }
2617
}
2618
 
2619
/* See whether we can group stub sections together.  Grouping stub
2620
   sections may result in fewer stubs.  More importantly, we need to
2621
   put all .init* and .fini* stubs at the beginning of the .init or
2622
   .fini output sections respectively, because glibc splits the
2623
   _init and _fini functions into multiple parts.  Putting a stub in
2624
   the middle of a function is not a good idea.  */
2625
 
2626
static void
2627
group_sections (struct elf32_hppa_link_hash_table *htab,
2628
                bfd_size_type stub_group_size,
2629
                bfd_boolean stubs_always_before_branch)
2630
{
2631
  asection **list = htab->input_list + htab->top_index;
2632
  do
2633
    {
2634
      asection *tail = *list;
2635
      if (tail == bfd_abs_section_ptr)
2636
        continue;
2637
      while (tail != NULL)
2638
        {
2639
          asection *curr;
2640
          asection *prev;
2641
          bfd_size_type total;
2642
          bfd_boolean big_sec;
2643
 
2644
          curr = tail;
2645
          total = tail->size;
2646
          big_sec = total >= stub_group_size;
2647
 
2648
          while ((prev = PREV_SEC (curr)) != NULL
2649
                 && ((total += curr->output_offset - prev->output_offset)
2650
                     < stub_group_size))
2651
            curr = prev;
2652
 
2653
          /* OK, the size from the start of CURR to the end is less
2654
             than 240000 bytes and thus can be handled by one stub
2655
             section.  (or the tail section is itself larger than
2656
             240000 bytes, in which case we may be toast.)
2657
             We should really be keeping track of the total size of
2658
             stubs added here, as stubs contribute to the final output
2659
             section size.  That's a little tricky, and this way will
2660
             only break if stubs added total more than 22144 bytes, or
2661
             2768 long branch stubs.  It seems unlikely for more than
2662
             2768 different functions to be called, especially from
2663
             code only 240000 bytes long.  This limit used to be
2664
             250000, but c++ code tends to generate lots of little
2665
             functions, and sometimes violated the assumption.  */
2666
          do
2667
            {
2668
              prev = PREV_SEC (tail);
2669
              /* Set up this stub group.  */
2670
              htab->stub_group[tail->id].link_sec = curr;
2671
            }
2672
          while (tail != curr && (tail = prev) != NULL);
2673
 
2674
          /* But wait, there's more!  Input sections up to 240000
2675
             bytes before the stub section can be handled by it too.
2676
             Don't do this if we have a really large section after the
2677
             stubs, as adding more stubs increases the chance that
2678
             branches may not reach into the stub section.  */
2679
          if (!stubs_always_before_branch && !big_sec)
2680
            {
2681
              total = 0;
2682
              while (prev != NULL
2683
                     && ((total += tail->output_offset - prev->output_offset)
2684
                         < stub_group_size))
2685
                {
2686
                  tail = prev;
2687
                  prev = PREV_SEC (tail);
2688
                  htab->stub_group[tail->id].link_sec = curr;
2689
                }
2690
            }
2691
          tail = prev;
2692
        }
2693
    }
2694
  while (list-- != htab->input_list);
2695
  free (htab->input_list);
2696
#undef PREV_SEC
2697
}
2698
 
2699
/* Read in all local syms for all input bfds, and create hash entries
2700
   for export stubs if we are building a multi-subspace shared lib.
2701
   Returns -1 on error, 1 if export stubs created, 0 otherwise.  */
2702
 
2703
static int
2704
get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2705
{
2706
  unsigned int bfd_indx;
2707
  Elf_Internal_Sym *local_syms, **all_local_syms;
2708
  int stub_changed = 0;
2709
  struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2710
 
2711
  /* We want to read in symbol extension records only once.  To do this
2712
     we need to read in the local symbols in parallel and save them for
2713
     later use; so hold pointers to the local symbols in an array.  */
2714
  bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2715
  all_local_syms = bfd_zmalloc (amt);
2716
  htab->all_local_syms = all_local_syms;
2717
  if (all_local_syms == NULL)
2718
    return -1;
2719
 
2720
  /* Walk over all the input BFDs, swapping in local symbols.
2721
     If we are creating a shared library, create hash entries for the
2722
     export stubs.  */
2723
  for (bfd_indx = 0;
2724
       input_bfd != NULL;
2725
       input_bfd = input_bfd->link_next, bfd_indx++)
2726
    {
2727
      Elf_Internal_Shdr *symtab_hdr;
2728
 
2729
      /* We'll need the symbol table in a second.  */
2730
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2731
      if (symtab_hdr->sh_info == 0)
2732
        continue;
2733
 
2734
      /* We need an array of the local symbols attached to the input bfd.  */
2735
      local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2736
      if (local_syms == NULL)
2737
        {
2738
          local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2739
                                             symtab_hdr->sh_info, 0,
2740
                                             NULL, NULL, NULL);
2741
          /* Cache them for elf_link_input_bfd.  */
2742
          symtab_hdr->contents = (unsigned char *) local_syms;
2743
        }
2744
      if (local_syms == NULL)
2745
        return -1;
2746
 
2747
      all_local_syms[bfd_indx] = local_syms;
2748
 
2749
      if (info->shared && htab->multi_subspace)
2750
        {
2751
          struct elf_link_hash_entry **eh_syms;
2752
          struct elf_link_hash_entry **eh_symend;
2753
          unsigned int symcount;
2754
 
2755
          symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2756
                      - symtab_hdr->sh_info);
2757
          eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2758
          eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2759
 
2760
          /* Look through the global syms for functions;  We need to
2761
             build export stubs for all globally visible functions.  */
2762
          for (; eh_syms < eh_symend; eh_syms++)
2763
            {
2764
              struct elf32_hppa_link_hash_entry *hh;
2765
 
2766
              hh = hppa_elf_hash_entry (*eh_syms);
2767
 
2768
              while (hh->eh.root.type == bfd_link_hash_indirect
2769
                     || hh->eh.root.type == bfd_link_hash_warning)
2770
                   hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2771
 
2772
              /* At this point in the link, undefined syms have been
2773
                 resolved, so we need to check that the symbol was
2774
                 defined in this BFD.  */
2775
              if ((hh->eh.root.type == bfd_link_hash_defined
2776
                   || hh->eh.root.type == bfd_link_hash_defweak)
2777
                  && hh->eh.type == STT_FUNC
2778
                  && hh->eh.root.u.def.section->output_section != NULL
2779
                  && (hh->eh.root.u.def.section->output_section->owner
2780
                      == output_bfd)
2781
                  && hh->eh.root.u.def.section->owner == input_bfd
2782
                  && hh->eh.def_regular
2783
                  && !hh->eh.forced_local
2784
                  && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2785
                {
2786
                  asection *sec;
2787
                  const char *stub_name;
2788
                  struct elf32_hppa_stub_hash_entry *hsh;
2789
 
2790
                  sec = hh->eh.root.u.def.section;
2791
                  stub_name = hh_name (hh);
2792
                  hsh = hppa_stub_hash_lookup (&htab->bstab,
2793
                                                      stub_name,
2794
                                                      FALSE, FALSE);
2795
                  if (hsh == NULL)
2796
                    {
2797
                      hsh = hppa_add_stub (stub_name, sec, htab);
2798
                      if (!hsh)
2799
                        return -1;
2800
 
2801
                      hsh->target_value = hh->eh.root.u.def.value;
2802
                      hsh->target_section = hh->eh.root.u.def.section;
2803
                      hsh->stub_type = hppa_stub_export;
2804
                      hsh->hh = hh;
2805
                      stub_changed = 1;
2806
                    }
2807
                  else
2808
                    {
2809
                      (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2810
                                             input_bfd,
2811
                                             stub_name);
2812
                    }
2813
                }
2814
            }
2815
        }
2816
    }
2817
 
2818
  return stub_changed;
2819
}
2820
 
2821
/* Determine and set the size of the stub section for a final link.
2822
 
2823
   The basic idea here is to examine all the relocations looking for
2824
   PC-relative calls to a target that is unreachable with a "bl"
2825
   instruction.  */
2826
 
2827
bfd_boolean
2828
elf32_hppa_size_stubs
2829
  (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2830
   bfd_boolean multi_subspace, bfd_signed_vma group_size,
2831
   asection * (*add_stub_section) (const char *, asection *),
2832
   void (*layout_sections_again) (void))
2833
{
2834
  bfd_size_type stub_group_size;
2835
  bfd_boolean stubs_always_before_branch;
2836
  bfd_boolean stub_changed;
2837
  struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2838
 
2839
  /* Stash our params away.  */
2840
  htab->stub_bfd = stub_bfd;
2841
  htab->multi_subspace = multi_subspace;
2842
  htab->add_stub_section = add_stub_section;
2843
  htab->layout_sections_again = layout_sections_again;
2844
  stubs_always_before_branch = group_size < 0;
2845
  if (group_size < 0)
2846
    stub_group_size = -group_size;
2847
  else
2848
    stub_group_size = group_size;
2849
  if (stub_group_size == 1)
2850
    {
2851
      /* Default values.  */
2852
      if (stubs_always_before_branch)
2853
        {
2854
          stub_group_size = 7680000;
2855
          if (htab->has_17bit_branch || htab->multi_subspace)
2856
            stub_group_size = 240000;
2857
          if (htab->has_12bit_branch)
2858
            stub_group_size = 7500;
2859
        }
2860
      else
2861
        {
2862
          stub_group_size = 6971392;
2863
          if (htab->has_17bit_branch || htab->multi_subspace)
2864
            stub_group_size = 217856;
2865
          if (htab->has_12bit_branch)
2866
            stub_group_size = 6808;
2867
        }
2868
    }
2869
 
2870
  group_sections (htab, stub_group_size, stubs_always_before_branch);
2871
 
2872
  switch (get_local_syms (output_bfd, info->input_bfds, info))
2873
    {
2874
    default:
2875
      if (htab->all_local_syms)
2876
        goto error_ret_free_local;
2877
      return FALSE;
2878
 
2879
    case 0:
2880
      stub_changed = FALSE;
2881
      break;
2882
 
2883
    case 1:
2884
      stub_changed = TRUE;
2885
      break;
2886
    }
2887
 
2888
  while (1)
2889
    {
2890
      bfd *input_bfd;
2891
      unsigned int bfd_indx;
2892
      asection *stub_sec;
2893
 
2894
      for (input_bfd = info->input_bfds, bfd_indx = 0;
2895
           input_bfd != NULL;
2896
           input_bfd = input_bfd->link_next, bfd_indx++)
2897
        {
2898
          Elf_Internal_Shdr *symtab_hdr;
2899
          asection *section;
2900
          Elf_Internal_Sym *local_syms;
2901
 
2902
          /* We'll need the symbol table in a second.  */
2903
          symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2904
          if (symtab_hdr->sh_info == 0)
2905
            continue;
2906
 
2907
          local_syms = htab->all_local_syms[bfd_indx];
2908
 
2909
          /* Walk over each section attached to the input bfd.  */
2910
          for (section = input_bfd->sections;
2911
               section != NULL;
2912
               section = section->next)
2913
            {
2914
              Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2915
 
2916
              /* If there aren't any relocs, then there's nothing more
2917
                 to do.  */
2918
              if ((section->flags & SEC_RELOC) == 0
2919
                  || section->reloc_count == 0)
2920
                continue;
2921
 
2922
              /* If this section is a link-once section that will be
2923
                 discarded, then don't create any stubs.  */
2924
              if (section->output_section == NULL
2925
                  || section->output_section->owner != output_bfd)
2926
                continue;
2927
 
2928
              /* Get the relocs.  */
2929
              internal_relocs
2930
                = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2931
                                             info->keep_memory);
2932
              if (internal_relocs == NULL)
2933
                goto error_ret_free_local;
2934
 
2935
              /* Now examine each relocation.  */
2936
              irela = internal_relocs;
2937
              irelaend = irela + section->reloc_count;
2938
              for (; irela < irelaend; irela++)
2939
                {
2940
                  unsigned int r_type, r_indx;
2941
                  enum elf32_hppa_stub_type stub_type;
2942
                  struct elf32_hppa_stub_hash_entry *hsh;
2943
                  asection *sym_sec;
2944
                  bfd_vma sym_value;
2945
                  bfd_vma destination;
2946
                  struct elf32_hppa_link_hash_entry *hh;
2947
                  char *stub_name;
2948
                  const asection *id_sec;
2949
 
2950
                  r_type = ELF32_R_TYPE (irela->r_info);
2951
                  r_indx = ELF32_R_SYM (irela->r_info);
2952
 
2953
                  if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2954
                    {
2955
                      bfd_set_error (bfd_error_bad_value);
2956
                    error_ret_free_internal:
2957
                      if (elf_section_data (section)->relocs == NULL)
2958
                        free (internal_relocs);
2959
                      goto error_ret_free_local;
2960
                    }
2961
 
2962
                  /* Only look for stubs on call instructions.  */
2963
                  if (r_type != (unsigned int) R_PARISC_PCREL12F
2964
                      && r_type != (unsigned int) R_PARISC_PCREL17F
2965
                      && r_type != (unsigned int) R_PARISC_PCREL22F)
2966
                    continue;
2967
 
2968
                  /* Now determine the call target, its name, value,
2969
                     section.  */
2970
                  sym_sec = NULL;
2971
                  sym_value = 0;
2972
                  destination = 0;
2973
                  hh = NULL;
2974
                  if (r_indx < symtab_hdr->sh_info)
2975
                    {
2976
                      /* It's a local symbol.  */
2977
                      Elf_Internal_Sym *sym;
2978
                      Elf_Internal_Shdr *hdr;
2979
 
2980
                      sym = local_syms + r_indx;
2981
                      hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2982
                      sym_sec = hdr->bfd_section;
2983
                      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2984
                        sym_value = sym->st_value;
2985
                      destination = (sym_value + irela->r_addend
2986
                                     + sym_sec->output_offset
2987
                                     + sym_sec->output_section->vma);
2988
                    }
2989
                  else
2990
                    {
2991
                      /* It's an external symbol.  */
2992
                      int e_indx;
2993
 
2994
                      e_indx = r_indx - symtab_hdr->sh_info;
2995
                      hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2996
 
2997
                      while (hh->eh.root.type == bfd_link_hash_indirect
2998
                             || hh->eh.root.type == bfd_link_hash_warning)
2999
                        hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
3000
 
3001
                      if (hh->eh.root.type == bfd_link_hash_defined
3002
                          || hh->eh.root.type == bfd_link_hash_defweak)
3003
                        {
3004
                          sym_sec = hh->eh.root.u.def.section;
3005
                          sym_value = hh->eh.root.u.def.value;
3006
                          if (sym_sec->output_section != NULL)
3007
                            destination = (sym_value + irela->r_addend
3008
                                           + sym_sec->output_offset
3009
                                           + sym_sec->output_section->vma);
3010
                        }
3011
                      else if (hh->eh.root.type == bfd_link_hash_undefweak)
3012
                        {
3013
                          if (! info->shared)
3014
                            continue;
3015
                        }
3016
                      else if (hh->eh.root.type == bfd_link_hash_undefined)
3017
                        {
3018
                          if (! (info->unresolved_syms_in_objects == RM_IGNORE
3019
                                 && (ELF_ST_VISIBILITY (hh->eh.other)
3020
                                     == STV_DEFAULT)
3021
                                 && hh->eh.type != STT_PARISC_MILLI))
3022
                            continue;
3023
                        }
3024
                      else
3025
                        {
3026
                          bfd_set_error (bfd_error_bad_value);
3027
                          goto error_ret_free_internal;
3028
                        }
3029
                    }
3030
 
3031
                  /* Determine what (if any) linker stub is needed.  */
3032
                  stub_type = hppa_type_of_stub (section, irela, hh,
3033
                                                 destination, info);
3034
                  if (stub_type == hppa_stub_none)
3035
                    continue;
3036
 
3037
                  /* Support for grouping stub sections.  */
3038
                  id_sec = htab->stub_group[section->id].link_sec;
3039
 
3040
                  /* Get the name of this stub.  */
3041
                  stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3042
                  if (!stub_name)
3043
                    goto error_ret_free_internal;
3044
 
3045
                  hsh = hppa_stub_hash_lookup (&htab->bstab,
3046
                                                      stub_name,
3047
                                                      FALSE, FALSE);
3048
                  if (hsh != NULL)
3049
                    {
3050
                      /* The proper stub has already been created.  */
3051
                      free (stub_name);
3052
                      continue;
3053
                    }
3054
 
3055
                  hsh = hppa_add_stub (stub_name, section, htab);
3056
                  if (hsh == NULL)
3057
                    {
3058
                      free (stub_name);
3059
                      goto error_ret_free_internal;
3060
                    }
3061
 
3062
                  hsh->target_value = sym_value;
3063
                  hsh->target_section = sym_sec;
3064
                  hsh->stub_type = stub_type;
3065
                  if (info->shared)
3066
                    {
3067
                      if (stub_type == hppa_stub_import)
3068
                        hsh->stub_type = hppa_stub_import_shared;
3069
                      else if (stub_type == hppa_stub_long_branch)
3070
                        hsh->stub_type = hppa_stub_long_branch_shared;
3071
                    }
3072
                  hsh->hh = hh;
3073
                  stub_changed = TRUE;
3074
                }
3075
 
3076
              /* We're done with the internal relocs, free them.  */
3077
              if (elf_section_data (section)->relocs == NULL)
3078
                free (internal_relocs);
3079
            }
3080
        }
3081
 
3082
      if (!stub_changed)
3083
        break;
3084
 
3085
      /* OK, we've added some stubs.  Find out the new size of the
3086
         stub sections.  */
3087
      for (stub_sec = htab->stub_bfd->sections;
3088
           stub_sec != NULL;
3089
           stub_sec = stub_sec->next)
3090
        stub_sec->size = 0;
3091
 
3092
      bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3093
 
3094
      /* Ask the linker to do its stuff.  */
3095
      (*htab->layout_sections_again) ();
3096
      stub_changed = FALSE;
3097
    }
3098
 
3099
  free (htab->all_local_syms);
3100
  return TRUE;
3101
 
3102
 error_ret_free_local:
3103
  free (htab->all_local_syms);
3104
  return FALSE;
3105
}
3106
 
3107
/* For a final link, this function is called after we have sized the
3108
   stubs to provide a value for __gp.  */
3109
 
3110
bfd_boolean
3111
elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3112
{
3113
  struct bfd_link_hash_entry *h;
3114
  asection *sec = NULL;
3115
  bfd_vma gp_val = 0;
3116
  struct elf32_hppa_link_hash_table *htab;
3117
 
3118
  htab = hppa_link_hash_table (info);
3119
  h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3120
 
3121
  if (h != NULL
3122
      && (h->type == bfd_link_hash_defined
3123
          || h->type == bfd_link_hash_defweak))
3124
    {
3125
      gp_val = h->u.def.value;
3126
      sec = h->u.def.section;
3127
    }
3128
  else
3129
    {
3130
      asection *splt = bfd_get_section_by_name (abfd, ".plt");
3131
      asection *sgot = bfd_get_section_by_name (abfd, ".got");
3132
 
3133
      /* Choose to point our LTP at, in this order, one of .plt, .got,
3134
         or .data, if these sections exist.  In the case of choosing
3135
         .plt try to make the LTP ideal for addressing anywhere in the
3136
         .plt or .got with a 14 bit signed offset.  Typically, the end
3137
         of the .plt is the start of the .got, so choose .plt + 0x2000
3138
         if either the .plt or .got is larger than 0x2000.  If both
3139
         the .plt and .got are smaller than 0x2000, choose the end of
3140
         the .plt section.  */
3141
      sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3142
          ? NULL : splt;
3143
      if (sec != NULL)
3144
        {
3145
          gp_val = sec->size;
3146
          if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3147
            {
3148
              gp_val = 0x2000;
3149
            }
3150
        }
3151
      else
3152
        {
3153
          sec = sgot;
3154
          if (sec != NULL)
3155
            {
3156
              if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3157
                {
3158
                  /* We know we don't have a .plt.  If .got is large,
3159
                     offset our LTP.  */
3160
                  if (sec->size > 0x2000)
3161
                    gp_val = 0x2000;
3162
                }
3163
            }
3164
          else
3165
            {
3166
              /* No .plt or .got.  Who cares what the LTP is?  */
3167
              sec = bfd_get_section_by_name (abfd, ".data");
3168
            }
3169
        }
3170
 
3171
      if (h != NULL)
3172
        {
3173
          h->type = bfd_link_hash_defined;
3174
          h->u.def.value = gp_val;
3175
          if (sec != NULL)
3176
            h->u.def.section = sec;
3177
          else
3178
            h->u.def.section = bfd_abs_section_ptr;
3179
        }
3180
    }
3181
 
3182
  if (sec != NULL && sec->output_section != NULL)
3183
    gp_val += sec->output_section->vma + sec->output_offset;
3184
 
3185
  elf_gp (abfd) = gp_val;
3186
  return TRUE;
3187
}
3188
 
3189
/* Build all the stubs associated with the current output file.  The
3190
   stubs are kept in a hash table attached to the main linker hash
3191
   table.  We also set up the .plt entries for statically linked PIC
3192
   functions here.  This function is called via hppaelf_finish in the
3193
   linker.  */
3194
 
3195
bfd_boolean
3196
elf32_hppa_build_stubs (struct bfd_link_info *info)
3197
{
3198
  asection *stub_sec;
3199
  struct bfd_hash_table *table;
3200
  struct elf32_hppa_link_hash_table *htab;
3201
 
3202
  htab = hppa_link_hash_table (info);
3203
 
3204
  for (stub_sec = htab->stub_bfd->sections;
3205
       stub_sec != NULL;
3206
       stub_sec = stub_sec->next)
3207
    {
3208
      bfd_size_type size;
3209
 
3210
      /* Allocate memory to hold the linker stubs.  */
3211
      size = stub_sec->size;
3212
      stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3213
      if (stub_sec->contents == NULL && size != 0)
3214
        return FALSE;
3215
      stub_sec->size = 0;
3216
    }
3217
 
3218
  /* Build the stubs as directed by the stub hash table.  */
3219
  table = &htab->bstab;
3220
  bfd_hash_traverse (table, hppa_build_one_stub, info);
3221
 
3222
  return TRUE;
3223
}
3224
 
3225
/* Return the base vma address which should be subtracted from the real
3226
   address when resolving a dtpoff relocation.
3227
   This is PT_TLS segment p_vaddr.  */
3228
 
3229
static bfd_vma
3230
dtpoff_base (struct bfd_link_info *info)
3231
{
3232
  /* If tls_sec is NULL, we should have signalled an error already.  */
3233
  if (elf_hash_table (info)->tls_sec == NULL)
3234
    return 0;
3235
  return elf_hash_table (info)->tls_sec->vma;
3236
}
3237
 
3238
/* Return the relocation value for R_PARISC_TLS_TPOFF*..  */
3239
 
3240
static bfd_vma
3241
tpoff (struct bfd_link_info *info, bfd_vma address)
3242
{
3243
  struct elf_link_hash_table *htab = elf_hash_table (info);
3244
 
3245
  /* If tls_sec is NULL, we should have signalled an error already.  */
3246
  if (htab->tls_sec == NULL)
3247
    return 0;
3248
  /* hppa TLS ABI is variant I and static TLS block start just after
3249
     tcbhead structure which has 2 pointer fields.  */
3250
  return (address - htab->tls_sec->vma
3251
          + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3252
}
3253
 
3254
/* Perform a final link.  */
3255
 
3256
static bfd_boolean
3257
elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3258
{
3259
  /* Invoke the regular ELF linker to do all the work.  */
3260
  if (!bfd_elf_final_link (abfd, info))
3261
    return FALSE;
3262
 
3263
  /* If we're producing a final executable, sort the contents of the
3264
     unwind section.  */
3265
  return elf_hppa_sort_unwind (abfd);
3266
}
3267
 
3268
/* Record the lowest address for the data and text segments.  */
3269
 
3270
static void
3271
hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3272
{
3273
  struct elf32_hppa_link_hash_table *htab;
3274
 
3275
  htab = (struct elf32_hppa_link_hash_table*) data;
3276
 
3277
  if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3278
    {
3279
      bfd_vma value;
3280
      Elf_Internal_Phdr *p;
3281
 
3282
      p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3283
      BFD_ASSERT (p != NULL);
3284
      value = p->p_vaddr;
3285
 
3286
      if ((section->flags & SEC_READONLY) != 0)
3287
        {
3288
          if (value < htab->text_segment_base)
3289
            htab->text_segment_base = value;
3290
        }
3291
      else
3292
        {
3293
          if (value < htab->data_segment_base)
3294
            htab->data_segment_base = value;
3295
        }
3296
    }
3297
}
3298
 
3299
/* Perform a relocation as part of a final link.  */
3300
 
3301
static bfd_reloc_status_type
3302
final_link_relocate (asection *input_section,
3303
                     bfd_byte *contents,
3304
                     const Elf_Internal_Rela *rela,
3305
                     bfd_vma value,
3306
                     struct elf32_hppa_link_hash_table *htab,
3307
                     asection *sym_sec,
3308
                     struct elf32_hppa_link_hash_entry *hh,
3309
                     struct bfd_link_info *info)
3310
{
3311
  int insn;
3312
  unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3313
  unsigned int orig_r_type = r_type;
3314
  reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3315
  int r_format = howto->bitsize;
3316
  enum hppa_reloc_field_selector_type_alt r_field;
3317
  bfd *input_bfd = input_section->owner;
3318
  bfd_vma offset = rela->r_offset;
3319
  bfd_vma max_branch_offset = 0;
3320
  bfd_byte *hit_data = contents + offset;
3321
  bfd_signed_vma addend = rela->r_addend;
3322
  bfd_vma location;
3323
  struct elf32_hppa_stub_hash_entry *hsh = NULL;
3324
  int val;
3325
 
3326
  if (r_type == R_PARISC_NONE)
3327
    return bfd_reloc_ok;
3328
 
3329
  insn = bfd_get_32 (input_bfd, hit_data);
3330
 
3331
  /* Find out where we are and where we're going.  */
3332
  location = (offset +
3333
              input_section->output_offset +
3334
              input_section->output_section->vma);
3335
 
3336
  /* If we are not building a shared library, convert DLTIND relocs to
3337
     DPREL relocs.  */
3338
  if (!info->shared)
3339
    {
3340
      switch (r_type)
3341
        {
3342
          case R_PARISC_DLTIND21L:
3343
            r_type = R_PARISC_DPREL21L;
3344
            break;
3345
 
3346
          case R_PARISC_DLTIND14R:
3347
            r_type = R_PARISC_DPREL14R;
3348
            break;
3349
 
3350
          case R_PARISC_DLTIND14F:
3351
            r_type = R_PARISC_DPREL14F;
3352
            break;
3353
        }
3354
    }
3355
 
3356
  switch (r_type)
3357
    {
3358
    case R_PARISC_PCREL12F:
3359
    case R_PARISC_PCREL17F:
3360
    case R_PARISC_PCREL22F:
3361
      /* If this call should go via the plt, find the import stub in
3362
         the stub hash.  */
3363
      if (sym_sec == NULL
3364
          || sym_sec->output_section == NULL
3365
          || (hh != NULL
3366
              && hh->eh.plt.offset != (bfd_vma) -1
3367
              && hh->eh.dynindx != -1
3368
              && !hh->plabel
3369
              && (info->shared
3370
                  || !hh->eh.def_regular
3371
                  || hh->eh.root.type == bfd_link_hash_defweak)))
3372
        {
3373
          hsh = hppa_get_stub_entry (input_section, sym_sec,
3374
                                            hh, rela, htab);
3375
          if (hsh != NULL)
3376
            {
3377
              value = (hsh->stub_offset
3378
                       + hsh->stub_sec->output_offset
3379
                       + hsh->stub_sec->output_section->vma);
3380
              addend = 0;
3381
            }
3382
          else if (sym_sec == NULL && hh != NULL
3383
                   && hh->eh.root.type == bfd_link_hash_undefweak)
3384
            {
3385
              /* It's OK if undefined weak.  Calls to undefined weak
3386
                 symbols behave as if the "called" function
3387
                 immediately returns.  We can thus call to a weak
3388
                 function without first checking whether the function
3389
                 is defined.  */
3390
              value = location;
3391
              addend = 8;
3392
            }
3393
          else
3394
            return bfd_reloc_undefined;
3395
        }
3396
      /* Fall thru.  */
3397
 
3398
    case R_PARISC_PCREL21L:
3399
    case R_PARISC_PCREL17C:
3400
    case R_PARISC_PCREL17R:
3401
    case R_PARISC_PCREL14R:
3402
    case R_PARISC_PCREL14F:
3403
    case R_PARISC_PCREL32:
3404
      /* Make it a pc relative offset.  */
3405
      value -= location;
3406
      addend -= 8;
3407
      break;
3408
 
3409
    case R_PARISC_DPREL21L:
3410
    case R_PARISC_DPREL14R:
3411
    case R_PARISC_DPREL14F:
3412
      /* Convert instructions that use the linkage table pointer (r19) to
3413
         instructions that use the global data pointer (dp).  This is the
3414
         most efficient way of using PIC code in an incomplete executable,
3415
         but the user must follow the standard runtime conventions for
3416
         accessing data for this to work.  */
3417
      if (orig_r_type == R_PARISC_DLTIND21L)
3418
        {
3419
          /* Convert addil instructions if the original reloc was a
3420
             DLTIND21L.  GCC sometimes uses a register other than r19 for
3421
             the operation, so we must convert any addil instruction
3422
             that uses this relocation.  */
3423
          if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3424
            insn = ADDIL_DP;
3425
          else
3426
            /* We must have a ldil instruction.  It's too hard to find
3427
               and convert the associated add instruction, so issue an
3428
               error.  */
3429
            (*_bfd_error_handler)
3430
              (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3431
               input_bfd,
3432
               input_section,
3433
               offset,
3434
               howto->name,
3435
               insn);
3436
        }
3437
      else if (orig_r_type == R_PARISC_DLTIND14F)
3438
        {
3439
          /* This must be a format 1 load/store.  Change the base
3440
             register to dp.  */
3441
          insn = (insn & 0xfc1ffff) | (27 << 21);
3442
        }
3443
 
3444
    /* For all the DP relative relocations, we need to examine the symbol's
3445
       section.  If it has no section or if it's a code section, then
3446
       "data pointer relative" makes no sense.  In that case we don't
3447
       adjust the "value", and for 21 bit addil instructions, we change the
3448
       source addend register from %dp to %r0.  This situation commonly
3449
       arises for undefined weak symbols and when a variable's "constness"
3450
       is declared differently from the way the variable is defined.  For
3451
       instance: "extern int foo" with foo defined as "const int foo".  */
3452
      if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3453
        {
3454
          if ((insn & ((0x3f << 26) | (0x1f << 21)))
3455
              == (((int) OP_ADDIL << 26) | (27 << 21)))
3456
            {
3457
              insn &= ~ (0x1f << 21);
3458
            }
3459
          /* Now try to make things easy for the dynamic linker.  */
3460
 
3461
          break;
3462
        }
3463
      /* Fall thru.  */
3464
 
3465
    case R_PARISC_DLTIND21L:
3466
    case R_PARISC_DLTIND14R:
3467
    case R_PARISC_DLTIND14F:
3468
    case R_PARISC_TLS_GD21L:
3469
    case R_PARISC_TLS_GD14R:
3470
    case R_PARISC_TLS_LDM21L:
3471
    case R_PARISC_TLS_LDM14R:
3472
    case R_PARISC_TLS_IE21L:
3473
    case R_PARISC_TLS_IE14R:
3474
      value -= elf_gp (input_section->output_section->owner);
3475
      break;
3476
 
3477
    case R_PARISC_SEGREL32:
3478
      if ((sym_sec->flags & SEC_CODE) != 0)
3479
        value -= htab->text_segment_base;
3480
      else
3481
        value -= htab->data_segment_base;
3482
      break;
3483
 
3484
    default:
3485
      break;
3486
    }
3487
 
3488
  switch (r_type)
3489
    {
3490
    case R_PARISC_DIR32:
3491
    case R_PARISC_DIR14F:
3492
    case R_PARISC_DIR17F:
3493
    case R_PARISC_PCREL17C:
3494
    case R_PARISC_PCREL14F:
3495
    case R_PARISC_PCREL32:
3496
    case R_PARISC_DPREL14F:
3497
    case R_PARISC_PLABEL32:
3498
    case R_PARISC_DLTIND14F:
3499
    case R_PARISC_SEGBASE:
3500
    case R_PARISC_SEGREL32:
3501
    case R_PARISC_TLS_DTPMOD32:
3502
    case R_PARISC_TLS_DTPOFF32:
3503
    case R_PARISC_TLS_TPREL32:
3504
      r_field = e_fsel;
3505
      break;
3506
 
3507
    case R_PARISC_DLTIND21L:
3508
    case R_PARISC_PCREL21L:
3509
    case R_PARISC_PLABEL21L:
3510
      r_field = e_lsel;
3511
      break;
3512
 
3513
    case R_PARISC_DIR21L:
3514
    case R_PARISC_DPREL21L:
3515
    case R_PARISC_TLS_GD21L:
3516
    case R_PARISC_TLS_LDM21L:
3517
    case R_PARISC_TLS_LDO21L:
3518
    case R_PARISC_TLS_IE21L:
3519
    case R_PARISC_TLS_LE21L:
3520
      r_field = e_lrsel;
3521
      break;
3522
 
3523
    case R_PARISC_PCREL17R:
3524
    case R_PARISC_PCREL14R:
3525
    case R_PARISC_PLABEL14R:
3526
    case R_PARISC_DLTIND14R:
3527
      r_field = e_rsel;
3528
      break;
3529
 
3530
    case R_PARISC_DIR17R:
3531
    case R_PARISC_DIR14R:
3532
    case R_PARISC_DPREL14R:
3533
    case R_PARISC_TLS_GD14R:
3534
    case R_PARISC_TLS_LDM14R:
3535
    case R_PARISC_TLS_LDO14R:
3536
    case R_PARISC_TLS_IE14R:
3537
    case R_PARISC_TLS_LE14R:
3538
      r_field = e_rrsel;
3539
      break;
3540
 
3541
    case R_PARISC_PCREL12F:
3542
    case R_PARISC_PCREL17F:
3543
    case R_PARISC_PCREL22F:
3544
      r_field = e_fsel;
3545
 
3546
      if (r_type == (unsigned int) R_PARISC_PCREL17F)
3547
        {
3548
          max_branch_offset = (1 << (17-1)) << 2;
3549
        }
3550
      else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3551
        {
3552
          max_branch_offset = (1 << (12-1)) << 2;
3553
        }
3554
      else
3555
        {
3556
          max_branch_offset = (1 << (22-1)) << 2;
3557
        }
3558
 
3559
      /* sym_sec is NULL on undefined weak syms or when shared on
3560
         undefined syms.  We've already checked for a stub for the
3561
         shared undefined case.  */
3562
      if (sym_sec == NULL)
3563
        break;
3564
 
3565
      /* If the branch is out of reach, then redirect the
3566
         call to the local stub for this function.  */
3567
      if (value + addend + max_branch_offset >= 2*max_branch_offset)
3568
        {
3569
          hsh = hppa_get_stub_entry (input_section, sym_sec,
3570
                                            hh, rela, htab);
3571
          if (hsh == NULL)
3572
            return bfd_reloc_undefined;
3573
 
3574
          /* Munge up the value and addend so that we call the stub
3575
             rather than the procedure directly.  */
3576
          value = (hsh->stub_offset
3577
                   + hsh->stub_sec->output_offset
3578
                   + hsh->stub_sec->output_section->vma
3579
                   - location);
3580
          addend = -8;
3581
        }
3582
      break;
3583
 
3584
    /* Something we don't know how to handle.  */
3585
    default:
3586
      return bfd_reloc_notsupported;
3587
    }
3588
 
3589
  /* Make sure we can reach the stub.  */
3590
  if (max_branch_offset != 0
3591
      && value + addend + max_branch_offset >= 2*max_branch_offset)
3592
    {
3593
      (*_bfd_error_handler)
3594
        (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3595
         input_bfd,
3596
         input_section,
3597
         offset,
3598
         hsh->bh_root.string);
3599
      bfd_set_error (bfd_error_bad_value);
3600
      return bfd_reloc_notsupported;
3601
    }
3602
 
3603
  val = hppa_field_adjust (value, addend, r_field);
3604
 
3605
  switch (r_type)
3606
    {
3607
    case R_PARISC_PCREL12F:
3608
    case R_PARISC_PCREL17C:
3609
    case R_PARISC_PCREL17F:
3610
    case R_PARISC_PCREL17R:
3611
    case R_PARISC_PCREL22F:
3612
    case R_PARISC_DIR17F:
3613
    case R_PARISC_DIR17R:
3614
      /* This is a branch.  Divide the offset by four.
3615
         Note that we need to decide whether it's a branch or
3616
         otherwise by inspecting the reloc.  Inspecting insn won't
3617
         work as insn might be from a .word directive.  */
3618
      val >>= 2;
3619
      break;
3620
 
3621
    default:
3622
      break;
3623
    }
3624
 
3625
  insn = hppa_rebuild_insn (insn, val, r_format);
3626
 
3627
  /* Update the instruction word.  */
3628
  bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3629
  return bfd_reloc_ok;
3630
}
3631
 
3632
/* Relocate an HPPA ELF section.  */
3633
 
3634
static bfd_boolean
3635
elf32_hppa_relocate_section (bfd *output_bfd,
3636
                             struct bfd_link_info *info,
3637
                             bfd *input_bfd,
3638
                             asection *input_section,
3639
                             bfd_byte *contents,
3640
                             Elf_Internal_Rela *relocs,
3641
                             Elf_Internal_Sym *local_syms,
3642
                             asection **local_sections)
3643
{
3644
  bfd_vma *local_got_offsets;
3645
  struct elf32_hppa_link_hash_table *htab;
3646
  Elf_Internal_Shdr *symtab_hdr;
3647
  Elf_Internal_Rela *rela;
3648
  Elf_Internal_Rela *relend;
3649
 
3650
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3651
 
3652
  htab = hppa_link_hash_table (info);
3653
  local_got_offsets = elf_local_got_offsets (input_bfd);
3654
 
3655
  rela = relocs;
3656
  relend = relocs + input_section->reloc_count;
3657
  for (; rela < relend; rela++)
3658
    {
3659
      unsigned int r_type;
3660
      reloc_howto_type *howto;
3661
      unsigned int r_symndx;
3662
      struct elf32_hppa_link_hash_entry *hh;
3663
      Elf_Internal_Sym *sym;
3664
      asection *sym_sec;
3665
      bfd_vma relocation;
3666
      bfd_reloc_status_type rstatus;
3667
      const char *sym_name;
3668
      bfd_boolean plabel;
3669
      bfd_boolean warned_undef;
3670
 
3671
      r_type = ELF32_R_TYPE (rela->r_info);
3672
      if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3673
        {
3674
          bfd_set_error (bfd_error_bad_value);
3675
          return FALSE;
3676
        }
3677
      if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3678
          || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3679
        continue;
3680
 
3681
      r_symndx = ELF32_R_SYM (rela->r_info);
3682
      hh = NULL;
3683
      sym = NULL;
3684
      sym_sec = NULL;
3685
      warned_undef = FALSE;
3686
      if (r_symndx < symtab_hdr->sh_info)
3687
        {
3688
          /* This is a local symbol, h defaults to NULL.  */
3689
          sym = local_syms + r_symndx;
3690
          sym_sec = local_sections[r_symndx];
3691
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3692
        }
3693
      else
3694
        {
3695
          struct elf_link_hash_entry *eh;
3696
          bfd_boolean unresolved_reloc;
3697
          struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3698
 
3699
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3700
                                   r_symndx, symtab_hdr, sym_hashes,
3701
                                   eh, sym_sec, relocation,
3702
                                   unresolved_reloc, warned_undef);
3703
 
3704
          if (!info->relocatable
3705
              && relocation == 0
3706
              && eh->root.type != bfd_link_hash_defined
3707
              && eh->root.type != bfd_link_hash_defweak
3708
              && eh->root.type != bfd_link_hash_undefweak)
3709
            {
3710
              if (info->unresolved_syms_in_objects == RM_IGNORE
3711
                  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3712
                  && eh->type == STT_PARISC_MILLI)
3713
                {
3714
                  if (! info->callbacks->undefined_symbol
3715
                      (info, eh_name (eh), input_bfd,
3716
                       input_section, rela->r_offset, FALSE))
3717
                    return FALSE;
3718
                  warned_undef = TRUE;
3719
                }
3720
            }
3721
          hh = hppa_elf_hash_entry (eh);
3722
        }
3723
 
3724
      if (sym_sec != NULL && elf_discarded_section (sym_sec))
3725
        {
3726
          /* For relocs against symbols from removed linkonce
3727
             sections, or sections discarded by a linker script,
3728
             we just want the section contents zeroed.  Avoid any
3729
             special processing.  */
3730
          _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3731
                               contents + rela->r_offset);
3732
          rela->r_info = 0;
3733
          rela->r_addend = 0;
3734
          continue;
3735
        }
3736
 
3737
      if (info->relocatable)
3738
        continue;
3739
 
3740
      /* Do any required modifications to the relocation value, and
3741
         determine what types of dynamic info we need to output, if
3742
         any.  */
3743
      plabel = 0;
3744
      switch (r_type)
3745
        {
3746
        case R_PARISC_DLTIND14F:
3747
        case R_PARISC_DLTIND14R:
3748
        case R_PARISC_DLTIND21L:
3749
          {
3750
            bfd_vma off;
3751
            bfd_boolean do_got = 0;
3752
 
3753
            /* Relocation is to the entry for this symbol in the
3754
               global offset table.  */
3755
            if (hh != NULL)
3756
              {
3757
                bfd_boolean dyn;
3758
 
3759
                off = hh->eh.got.offset;
3760
                dyn = htab->etab.dynamic_sections_created;
3761
                if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3762
                                                       &hh->eh))
3763
                  {
3764
                    /* If we aren't going to call finish_dynamic_symbol,
3765
                       then we need to handle initialisation of the .got
3766
                       entry and create needed relocs here.  Since the
3767
                       offset must always be a multiple of 4, we use the
3768
                       least significant bit to record whether we have
3769
                       initialised it already.  */
3770
                    if ((off & 1) != 0)
3771
                      off &= ~1;
3772
                    else
3773
                      {
3774
                        hh->eh.got.offset |= 1;
3775
                        do_got = 1;
3776
                      }
3777
                  }
3778
              }
3779
            else
3780
              {
3781
                /* Local symbol case.  */
3782
                if (local_got_offsets == NULL)
3783
                  abort ();
3784
 
3785
                off = local_got_offsets[r_symndx];
3786
 
3787
                /* The offset must always be a multiple of 4.  We use
3788
                   the least significant bit to record whether we have
3789
                   already generated the necessary reloc.  */
3790
                if ((off & 1) != 0)
3791
                  off &= ~1;
3792
                else
3793
                  {
3794
                    local_got_offsets[r_symndx] |= 1;
3795
                    do_got = 1;
3796
                  }
3797
              }
3798
 
3799
            if (do_got)
3800
              {
3801
                if (info->shared)
3802
                  {
3803
                    /* Output a dynamic relocation for this GOT entry.
3804
                       In this case it is relative to the base of the
3805
                       object because the symbol index is zero.  */
3806
                    Elf_Internal_Rela outrel;
3807
                    bfd_byte *loc;
3808
                    asection *sec = htab->srelgot;
3809
 
3810
                    outrel.r_offset = (off
3811
                                       + htab->sgot->output_offset
3812
                                       + htab->sgot->output_section->vma);
3813
                    outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3814
                    outrel.r_addend = relocation;
3815
                    loc = sec->contents;
3816
                    loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3817
                    bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3818
                  }
3819
                else
3820
                  bfd_put_32 (output_bfd, relocation,
3821
                              htab->sgot->contents + off);
3822
              }
3823
 
3824
            if (off >= (bfd_vma) -2)
3825
              abort ();
3826
 
3827
            /* Add the base of the GOT to the relocation value.  */
3828
            relocation = (off
3829
                          + htab->sgot->output_offset
3830
                          + htab->sgot->output_section->vma);
3831
          }
3832
          break;
3833
 
3834
        case R_PARISC_SEGREL32:
3835
          /* If this is the first SEGREL relocation, then initialize
3836
             the segment base values.  */
3837
          if (htab->text_segment_base == (bfd_vma) -1)
3838
            bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3839
          break;
3840
 
3841
        case R_PARISC_PLABEL14R:
3842
        case R_PARISC_PLABEL21L:
3843
        case R_PARISC_PLABEL32:
3844
          if (htab->etab.dynamic_sections_created)
3845
            {
3846
              bfd_vma off;
3847
              bfd_boolean do_plt = 0;
3848
              /* If we have a global symbol with a PLT slot, then
3849
                 redirect this relocation to it.  */
3850
              if (hh != NULL)
3851
                {
3852
                  off = hh->eh.plt.offset;
3853
                  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3854
                                                         &hh->eh))
3855
                    {
3856
                      /* In a non-shared link, adjust_dynamic_symbols
3857
                         isn't called for symbols forced local.  We
3858
                         need to write out the plt entry here.  */
3859
                      if ((off & 1) != 0)
3860
                        off &= ~1;
3861
                      else
3862
                        {
3863
                          hh->eh.plt.offset |= 1;
3864
                          do_plt = 1;
3865
                        }
3866
                    }
3867
                }
3868
              else
3869
                {
3870
                  bfd_vma *local_plt_offsets;
3871
 
3872
                  if (local_got_offsets == NULL)
3873
                    abort ();
3874
 
3875
                  local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3876
                  off = local_plt_offsets[r_symndx];
3877
 
3878
                  /* As for the local .got entry case, we use the last
3879
                     bit to record whether we've already initialised
3880
                     this local .plt entry.  */
3881
                  if ((off & 1) != 0)
3882
                    off &= ~1;
3883
                  else
3884
                    {
3885
                      local_plt_offsets[r_symndx] |= 1;
3886
                      do_plt = 1;
3887
                    }
3888
                }
3889
 
3890
              if (do_plt)
3891
                {
3892
                  if (info->shared)
3893
                    {
3894
                      /* Output a dynamic IPLT relocation for this
3895
                         PLT entry.  */
3896
                      Elf_Internal_Rela outrel;
3897
                      bfd_byte *loc;
3898
                      asection *s = htab->srelplt;
3899
 
3900
                      outrel.r_offset = (off
3901
                                         + htab->splt->output_offset
3902
                                         + htab->splt->output_section->vma);
3903
                      outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3904
                      outrel.r_addend = relocation;
3905
                      loc = s->contents;
3906
                      loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3907
                      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3908
                    }
3909
                  else
3910
                    {
3911
                      bfd_put_32 (output_bfd,
3912
                                  relocation,
3913
                                  htab->splt->contents + off);
3914
                      bfd_put_32 (output_bfd,
3915
                                  elf_gp (htab->splt->output_section->owner),
3916
                                  htab->splt->contents + off + 4);
3917
                    }
3918
                }
3919
 
3920
              if (off >= (bfd_vma) -2)
3921
                abort ();
3922
 
3923
              /* PLABELs contain function pointers.  Relocation is to
3924
                 the entry for the function in the .plt.  The magic +2
3925
                 offset signals to $$dyncall that the function pointer
3926
                 is in the .plt and thus has a gp pointer too.
3927
                 Exception:  Undefined PLABELs should have a value of
3928
                 zero.  */
3929
              if (hh == NULL
3930
                  || (hh->eh.root.type != bfd_link_hash_undefweak
3931
                      && hh->eh.root.type != bfd_link_hash_undefined))
3932
                {
3933
                  relocation = (off
3934
                                + htab->splt->output_offset
3935
                                + htab->splt->output_section->vma
3936
                                + 2);
3937
                }
3938
              plabel = 1;
3939
            }
3940
          /* Fall through and possibly emit a dynamic relocation.  */
3941
 
3942
        case R_PARISC_DIR17F:
3943
        case R_PARISC_DIR17R:
3944
        case R_PARISC_DIR14F:
3945
        case R_PARISC_DIR14R:
3946
        case R_PARISC_DIR21L:
3947
        case R_PARISC_DPREL14F:
3948
        case R_PARISC_DPREL14R:
3949
        case R_PARISC_DPREL21L:
3950
        case R_PARISC_DIR32:
3951
          if ((input_section->flags & SEC_ALLOC) == 0)
3952
            break;
3953
 
3954
          /* The reloc types handled here and this conditional
3955
             expression must match the code in ..check_relocs and
3956
             allocate_dynrelocs.  ie. We need exactly the same condition
3957
             as in ..check_relocs, with some extra conditions (dynindx
3958
             test in this case) to cater for relocs removed by
3959
             allocate_dynrelocs.  If you squint, the non-shared test
3960
             here does indeed match the one in ..check_relocs, the
3961
             difference being that here we test DEF_DYNAMIC as well as
3962
             !DEF_REGULAR.  All common syms end up with !DEF_REGULAR,
3963
             which is why we can't use just that test here.
3964
             Conversely, DEF_DYNAMIC can't be used in check_relocs as
3965
             there all files have not been loaded.  */
3966
          if ((info->shared
3967
               && (hh == NULL
3968
                   || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3969
                   || hh->eh.root.type != bfd_link_hash_undefweak)
3970
               && (IS_ABSOLUTE_RELOC (r_type)
3971
                   || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3972
              || (!info->shared
3973
                  && hh != NULL
3974
                  && hh->eh.dynindx != -1
3975
                  && !hh->eh.non_got_ref
3976
                  && ((ELIMINATE_COPY_RELOCS
3977
                       && hh->eh.def_dynamic
3978
                       && !hh->eh.def_regular)
3979
                      || hh->eh.root.type == bfd_link_hash_undefweak
3980
                      || hh->eh.root.type == bfd_link_hash_undefined)))
3981
            {
3982
              Elf_Internal_Rela outrel;
3983
              bfd_boolean skip;
3984
              asection *sreloc;
3985
              bfd_byte *loc;
3986
 
3987
              /* When generating a shared object, these relocations
3988
                 are copied into the output file to be resolved at run
3989
                 time.  */
3990
 
3991
              outrel.r_addend = rela->r_addend;
3992
              outrel.r_offset =
3993
                _bfd_elf_section_offset (output_bfd, info, input_section,
3994
                                         rela->r_offset);
3995
              skip = (outrel.r_offset == (bfd_vma) -1
3996
                      || outrel.r_offset == (bfd_vma) -2);
3997
              outrel.r_offset += (input_section->output_offset
3998
                                  + input_section->output_section->vma);
3999
 
4000
              if (skip)
4001
                {
4002
                  memset (&outrel, 0, sizeof (outrel));
4003
                }
4004
              else if (hh != NULL
4005
                       && hh->eh.dynindx != -1
4006
                       && (plabel
4007
                           || !IS_ABSOLUTE_RELOC (r_type)
4008
                           || !info->shared
4009
                           || !info->symbolic
4010
                           || !hh->eh.def_regular))
4011
                {
4012
                  outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4013
                }
4014
              else /* It's a local symbol, or one marked to become local.  */
4015
                {
4016
                  int indx = 0;
4017
 
4018
                  /* Add the absolute offset of the symbol.  */
4019
                  outrel.r_addend += relocation;
4020
 
4021
                  /* Global plabels need to be processed by the
4022
                     dynamic linker so that functions have at most one
4023
                     fptr.  For this reason, we need to differentiate
4024
                     between global and local plabels, which we do by
4025
                     providing the function symbol for a global plabel
4026
                     reloc, and no symbol for local plabels.  */
4027
                  if (! plabel
4028
                      && sym_sec != NULL
4029
                      && sym_sec->output_section != NULL
4030
                      && ! bfd_is_abs_section (sym_sec))
4031
                    {
4032
                      asection *osec;
4033
 
4034
                      osec = sym_sec->output_section;
4035
                      indx = elf_section_data (osec)->dynindx;
4036
                      if (indx == 0)
4037
                        {
4038
                          osec = htab->etab.text_index_section;
4039
                          indx = elf_section_data (osec)->dynindx;
4040
                        }
4041
                      BFD_ASSERT (indx != 0);
4042
 
4043
                      /* We are turning this relocation into one
4044
                         against a section symbol, so subtract out the
4045
                         output section's address but not the offset
4046
                         of the input section in the output section.  */
4047
                      outrel.r_addend -= osec->vma;
4048
                    }
4049
 
4050
                  outrel.r_info = ELF32_R_INFO (indx, r_type);
4051
                }
4052
              sreloc = elf_section_data (input_section)->sreloc;
4053
              if (sreloc == NULL)
4054
                abort ();
4055
 
4056
              loc = sreloc->contents;
4057
              loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4058
              bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4059
            }
4060
          break;
4061
 
4062
        case R_PARISC_TLS_LDM21L:
4063
        case R_PARISC_TLS_LDM14R:
4064
          {
4065
            bfd_vma off;
4066
 
4067
            off = htab->tls_ldm_got.offset;
4068
            if (off & 1)
4069
              off &= ~1;
4070
            else
4071
              {
4072
                Elf_Internal_Rela outrel;
4073
                bfd_byte *loc;
4074
 
4075
                outrel.r_offset = (off
4076
                                   + htab->sgot->output_section->vma
4077
                                   + htab->sgot->output_offset);
4078
                outrel.r_addend = 0;
4079
                outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4080
                loc = htab->srelgot->contents;
4081
                loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4082
 
4083
                bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4084
                htab->tls_ldm_got.offset |= 1;
4085
              }
4086
 
4087
            /* Add the base of the GOT to the relocation value.  */
4088
            relocation = (off
4089
                          + htab->sgot->output_offset
4090
                          + htab->sgot->output_section->vma);
4091
 
4092
            break;
4093
          }
4094
 
4095
        case R_PARISC_TLS_LDO21L:
4096
        case R_PARISC_TLS_LDO14R:
4097
          relocation -= dtpoff_base (info);
4098
          break;
4099
 
4100
        case R_PARISC_TLS_GD21L:
4101
        case R_PARISC_TLS_GD14R:
4102
        case R_PARISC_TLS_IE21L:
4103
        case R_PARISC_TLS_IE14R:
4104
          {
4105
            bfd_vma off;
4106
            int indx;
4107
            char tls_type;
4108
 
4109
            indx = 0;
4110
            if (hh != NULL)
4111
              {
4112
                bfd_boolean dyn;
4113
                dyn = htab->etab.dynamic_sections_created;
4114
 
4115
                if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4116
                    && (!info->shared
4117
                        || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4118
                  {
4119
                    indx = hh->eh.dynindx;
4120
                  }
4121
                off = hh->eh.got.offset;
4122
                tls_type = hh->tls_type;
4123
              }
4124
            else
4125
              {
4126
                off = local_got_offsets[r_symndx];
4127
                tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4128
              }
4129
 
4130
            if (tls_type == GOT_UNKNOWN)
4131
              abort ();
4132
 
4133
            if ((off & 1) != 0)
4134
              off &= ~1;
4135
            else
4136
              {
4137
                bfd_boolean need_relocs = FALSE;
4138
                Elf_Internal_Rela outrel;
4139
                bfd_byte *loc = NULL;
4140
                int cur_off = off;
4141
 
4142
                /* The GOT entries have not been initialized yet.  Do it
4143
                   now, and emit any relocations.  If both an IE GOT and a
4144
                   GD GOT are necessary, we emit the GD first.  */
4145
 
4146
                if ((info->shared || indx != 0)
4147
                    && (hh == NULL
4148
                        || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4149
                        || hh->eh.root.type != bfd_link_hash_undefweak))
4150
                  {
4151
                    need_relocs = TRUE;
4152
                    loc = htab->srelgot->contents;
4153
                    /* FIXME (CAO): Should this be reloc_count++ ? */
4154
                    loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4155
                  }
4156
 
4157
                if (tls_type & GOT_TLS_GD)
4158
                  {
4159
                    if (need_relocs)
4160
                      {
4161
                        outrel.r_offset = (cur_off
4162
                                           + htab->sgot->output_section->vma
4163
                                           + htab->sgot->output_offset);
4164
                        outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4165
                        outrel.r_addend = 0;
4166
                        bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4167
                        bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4168
                        htab->srelgot->reloc_count++;
4169
                        loc += sizeof (Elf32_External_Rela);
4170
 
4171
                        if (indx == 0)
4172
                          bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4173
                                      htab->sgot->contents + cur_off + 4);
4174
                        else
4175
                          {
4176
                            bfd_put_32 (output_bfd, 0,
4177
                                        htab->sgot->contents + cur_off + 4);
4178
                            outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4179
                            outrel.r_offset += 4;
4180
                            bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4181
                            htab->srelgot->reloc_count++;
4182
                            loc += sizeof (Elf32_External_Rela);
4183
                          }
4184
                      }
4185
                    else
4186
                      {
4187
                        /* If we are not emitting relocations for a
4188
                           general dynamic reference, then we must be in a
4189
                           static link or an executable link with the
4190
                           symbol binding locally.  Mark it as belonging
4191
                           to module 1, the executable.  */
4192
                        bfd_put_32 (output_bfd, 1,
4193
                                    htab->sgot->contents + cur_off);
4194
                        bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4195
                                    htab->sgot->contents + cur_off + 4);
4196
                      }
4197
 
4198
 
4199
                    cur_off += 8;
4200
                  }
4201
 
4202
                if (tls_type & GOT_TLS_IE)
4203
                  {
4204
                    if (need_relocs)
4205
                      {
4206
                        outrel.r_offset = (cur_off
4207
                                           + htab->sgot->output_section->vma
4208
                                           + htab->sgot->output_offset);
4209
                        outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4210
 
4211
                        if (indx == 0)
4212
                          outrel.r_addend = relocation - dtpoff_base (info);
4213
                        else
4214
                          outrel.r_addend = 0;
4215
 
4216
                        bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4217
                        htab->srelgot->reloc_count++;
4218
                        loc += sizeof (Elf32_External_Rela);
4219
                      }
4220
                    else
4221
                      bfd_put_32 (output_bfd, tpoff (info, relocation),
4222
                                  htab->sgot->contents + cur_off);
4223
 
4224
                    cur_off += 4;
4225
                  }
4226
 
4227
                if (hh != NULL)
4228
                  hh->eh.got.offset |= 1;
4229
                else
4230
                  local_got_offsets[r_symndx] |= 1;
4231
              }
4232
 
4233
            if ((tls_type & GOT_TLS_GD)
4234
                && r_type != R_PARISC_TLS_GD21L
4235
                && r_type != R_PARISC_TLS_GD14R)
4236
              off += 2 * GOT_ENTRY_SIZE;
4237
 
4238
            /* Add the base of the GOT to the relocation value.  */
4239
            relocation = (off
4240
                          + htab->sgot->output_offset
4241
                          + htab->sgot->output_section->vma);
4242
 
4243
            break;
4244
          }
4245
 
4246
        case R_PARISC_TLS_LE21L:
4247
        case R_PARISC_TLS_LE14R:
4248
          {
4249
            relocation = tpoff (info, relocation);
4250
            break;
4251
          }
4252
          break;
4253
 
4254
        default:
4255
          break;
4256
        }
4257
 
4258
      rstatus = final_link_relocate (input_section, contents, rela, relocation,
4259
                               htab, sym_sec, hh, info);
4260
 
4261
      if (rstatus == bfd_reloc_ok)
4262
        continue;
4263
 
4264
      if (hh != NULL)
4265
        sym_name = hh_name (hh);
4266
      else
4267
        {
4268
          sym_name = bfd_elf_string_from_elf_section (input_bfd,
4269
                                                      symtab_hdr->sh_link,
4270
                                                      sym->st_name);
4271
          if (sym_name == NULL)
4272
            return FALSE;
4273
          if (*sym_name == '\0')
4274
            sym_name = bfd_section_name (input_bfd, sym_sec);
4275
        }
4276
 
4277
      howto = elf_hppa_howto_table + r_type;
4278
 
4279
      if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4280
        {
4281
          if (rstatus == bfd_reloc_notsupported || !warned_undef)
4282
            {
4283
              (*_bfd_error_handler)
4284
                (_("%B(%A+0x%lx): cannot handle %s for %s"),
4285
                 input_bfd,
4286
                 input_section,
4287
                 (long) rela->r_offset,
4288
                 howto->name,
4289
                 sym_name);
4290
              bfd_set_error (bfd_error_bad_value);
4291
              return FALSE;
4292
            }
4293
        }
4294
      else
4295
        {
4296
          if (!((*info->callbacks->reloc_overflow)
4297
                (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4298
                 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4299
            return FALSE;
4300
        }
4301
    }
4302
 
4303
  return TRUE;
4304
}
4305
 
4306
/* Finish up dynamic symbol handling.  We set the contents of various
4307
   dynamic sections here.  */
4308
 
4309
static bfd_boolean
4310
elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4311
                                  struct bfd_link_info *info,
4312
                                  struct elf_link_hash_entry *eh,
4313
                                  Elf_Internal_Sym *sym)
4314
{
4315
  struct elf32_hppa_link_hash_table *htab;
4316
  Elf_Internal_Rela rela;
4317
  bfd_byte *loc;
4318
 
4319
  htab = hppa_link_hash_table (info);
4320
 
4321
  if (eh->plt.offset != (bfd_vma) -1)
4322
    {
4323
      bfd_vma value;
4324
 
4325
      if (eh->plt.offset & 1)
4326
        abort ();
4327
 
4328
      /* This symbol has an entry in the procedure linkage table.  Set
4329
         it up.
4330
 
4331
         The format of a plt entry is
4332
         <funcaddr>
4333
         <__gp>
4334
      */
4335
      value = 0;
4336
      if (eh->root.type == bfd_link_hash_defined
4337
          || eh->root.type == bfd_link_hash_defweak)
4338
        {
4339
          value = eh->root.u.def.value;
4340
          if (eh->root.u.def.section->output_section != NULL)
4341
            value += (eh->root.u.def.section->output_offset
4342
                      + eh->root.u.def.section->output_section->vma);
4343
        }
4344
 
4345
      /* Create a dynamic IPLT relocation for this entry.  */
4346
      rela.r_offset = (eh->plt.offset
4347
                      + htab->splt->output_offset
4348
                      + htab->splt->output_section->vma);
4349
      if (eh->dynindx != -1)
4350
        {
4351
          rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4352
          rela.r_addend = 0;
4353
        }
4354
      else
4355
        {
4356
          /* This symbol has been marked to become local, and is
4357
             used by a plabel so must be kept in the .plt.  */
4358
          rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4359
          rela.r_addend = value;
4360
        }
4361
 
4362
      loc = htab->srelplt->contents;
4363
      loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4364
      bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4365
 
4366
      if (!eh->def_regular)
4367
        {
4368
          /* Mark the symbol as undefined, rather than as defined in
4369
             the .plt section.  Leave the value alone.  */
4370
          sym->st_shndx = SHN_UNDEF;
4371
        }
4372
    }
4373
 
4374
  if (eh->got.offset != (bfd_vma) -1
4375
      && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4376
      && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4377
    {
4378
      /* This symbol has an entry in the global offset table.  Set it
4379
         up.  */
4380
 
4381
      rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4382
                      + htab->sgot->output_offset
4383
                      + htab->sgot->output_section->vma);
4384
 
4385
      /* If this is a -Bsymbolic link and the symbol is defined
4386
         locally or was forced to be local because of a version file,
4387
         we just want to emit a RELATIVE reloc.  The entry in the
4388
         global offset table will already have been initialized in the
4389
         relocate_section function.  */
4390
      if (info->shared
4391
          && (info->symbolic || eh->dynindx == -1)
4392
          && eh->def_regular)
4393
        {
4394
          rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4395
          rela.r_addend = (eh->root.u.def.value
4396
                          + eh->root.u.def.section->output_offset
4397
                          + eh->root.u.def.section->output_section->vma);
4398
        }
4399
      else
4400
        {
4401
          if ((eh->got.offset & 1) != 0)
4402
            abort ();
4403
 
4404
          bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4405
          rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4406
          rela.r_addend = 0;
4407
        }
4408
 
4409
      loc = htab->srelgot->contents;
4410
      loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4411
      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4412
    }
4413
 
4414
  if (eh->needs_copy)
4415
    {
4416
      asection *sec;
4417
 
4418
      /* This symbol needs a copy reloc.  Set it up.  */
4419
 
4420
      if (! (eh->dynindx != -1
4421
             && (eh->root.type == bfd_link_hash_defined
4422
                 || eh->root.type == bfd_link_hash_defweak)))
4423
        abort ();
4424
 
4425
      sec = htab->srelbss;
4426
 
4427
      rela.r_offset = (eh->root.u.def.value
4428
                      + eh->root.u.def.section->output_offset
4429
                      + eh->root.u.def.section->output_section->vma);
4430
      rela.r_addend = 0;
4431
      rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4432
      loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4433
      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4434
    }
4435
 
4436
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
4437
  if (eh_name (eh)[0] == '_'
4438
      && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4439
          || eh == htab->etab.hgot))
4440
    {
4441
      sym->st_shndx = SHN_ABS;
4442
    }
4443
 
4444
  return TRUE;
4445
}
4446
 
4447
/* Used to decide how to sort relocs in an optimal manner for the
4448
   dynamic linker, before writing them out.  */
4449
 
4450
static enum elf_reloc_type_class
4451
elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4452
{
4453
  /* Handle TLS relocs first; we don't want them to be marked
4454
     relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4455
     check below.  */
4456
  switch ((int) ELF32_R_TYPE (rela->r_info))
4457
    {
4458
      case R_PARISC_TLS_DTPMOD32:
4459
      case R_PARISC_TLS_DTPOFF32:
4460
      case R_PARISC_TLS_TPREL32:
4461
        return reloc_class_normal;
4462
    }
4463
 
4464
  if (ELF32_R_SYM (rela->r_info) == 0)
4465
    return reloc_class_relative;
4466
 
4467
  switch ((int) ELF32_R_TYPE (rela->r_info))
4468
    {
4469
    case R_PARISC_IPLT:
4470
      return reloc_class_plt;
4471
    case R_PARISC_COPY:
4472
      return reloc_class_copy;
4473
    default:
4474
      return reloc_class_normal;
4475
    }
4476
}
4477
 
4478
/* Finish up the dynamic sections.  */
4479
 
4480
static bfd_boolean
4481
elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4482
                                    struct bfd_link_info *info)
4483
{
4484
  bfd *dynobj;
4485
  struct elf32_hppa_link_hash_table *htab;
4486
  asection *sdyn;
4487
 
4488
  htab = hppa_link_hash_table (info);
4489
  dynobj = htab->etab.dynobj;
4490
 
4491
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4492
 
4493
  if (htab->etab.dynamic_sections_created)
4494
    {
4495
      Elf32_External_Dyn *dyncon, *dynconend;
4496
 
4497
      if (sdyn == NULL)
4498
        abort ();
4499
 
4500
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
4501
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4502
      for (; dyncon < dynconend; dyncon++)
4503
        {
4504
          Elf_Internal_Dyn dyn;
4505
          asection *s;
4506
 
4507
          bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4508
 
4509
          switch (dyn.d_tag)
4510
            {
4511
            default:
4512
              continue;
4513
 
4514
            case DT_PLTGOT:
4515
              /* Use PLTGOT to set the GOT register.  */
4516
              dyn.d_un.d_ptr = elf_gp (output_bfd);
4517
              break;
4518
 
4519
            case DT_JMPREL:
4520
              s = htab->srelplt;
4521
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4522
              break;
4523
 
4524
            case DT_PLTRELSZ:
4525
              s = htab->srelplt;
4526
              dyn.d_un.d_val = s->size;
4527
              break;
4528
 
4529
            case DT_RELASZ:
4530
              /* Don't count procedure linkage table relocs in the
4531
                 overall reloc count.  */
4532
              s = htab->srelplt;
4533
              if (s == NULL)
4534
                continue;
4535
              dyn.d_un.d_val -= s->size;
4536
              break;
4537
 
4538
            case DT_RELA:
4539
              /* We may not be using the standard ELF linker script.
4540
                 If .rela.plt is the first .rela section, we adjust
4541
                 DT_RELA to not include it.  */
4542
              s = htab->srelplt;
4543
              if (s == NULL)
4544
                continue;
4545
              if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4546
                continue;
4547
              dyn.d_un.d_ptr += s->size;
4548
              break;
4549
            }
4550
 
4551
          bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4552
        }
4553
    }
4554
 
4555
  if (htab->sgot != NULL && htab->sgot->size != 0)
4556
    {
4557
      /* Fill in the first entry in the global offset table.
4558
         We use it to point to our dynamic section, if we have one.  */
4559
      bfd_put_32 (output_bfd,
4560
                  sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4561
                  htab->sgot->contents);
4562
 
4563
      /* The second entry is reserved for use by the dynamic linker.  */
4564
      memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4565
 
4566
      /* Set .got entry size.  */
4567
      elf_section_data (htab->sgot->output_section)
4568
        ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4569
    }
4570
 
4571
  if (htab->splt != NULL && htab->splt->size != 0)
4572
    {
4573
      /* Set plt entry size.  */
4574
      elf_section_data (htab->splt->output_section)
4575
        ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4576
 
4577
      if (htab->need_plt_stub)
4578
        {
4579
          /* Set up the .plt stub.  */
4580
          memcpy (htab->splt->contents
4581
                  + htab->splt->size - sizeof (plt_stub),
4582
                  plt_stub, sizeof (plt_stub));
4583
 
4584
          if ((htab->splt->output_offset
4585
               + htab->splt->output_section->vma
4586
               + htab->splt->size)
4587
              != (htab->sgot->output_offset
4588
                  + htab->sgot->output_section->vma))
4589
            {
4590
              (*_bfd_error_handler)
4591
                (_(".got section not immediately after .plt section"));
4592
              return FALSE;
4593
            }
4594
        }
4595
    }
4596
 
4597
  return TRUE;
4598
}
4599
 
4600
/* Called when writing out an object file to decide the type of a
4601
   symbol.  */
4602
static int
4603
elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4604
{
4605
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4606
    return STT_PARISC_MILLI;
4607
  else
4608
    return type;
4609
}
4610
 
4611
/* Misc BFD support code.  */
4612
#define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name
4613
#define bfd_elf32_bfd_reloc_type_lookup      elf_hppa_reloc_type_lookup
4614
#define bfd_elf32_bfd_reloc_name_lookup      elf_hppa_reloc_name_lookup
4615
#define elf_info_to_howto                    elf_hppa_info_to_howto
4616
#define elf_info_to_howto_rel                elf_hppa_info_to_howto_rel
4617
 
4618
/* Stuff for the BFD linker.  */
4619
#define bfd_elf32_mkobject                   elf32_hppa_mkobject
4620
#define bfd_elf32_bfd_final_link             elf32_hppa_final_link
4621
#define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4622
#define bfd_elf32_bfd_link_hash_table_free   elf32_hppa_link_hash_table_free
4623
#define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol
4624
#define elf_backend_copy_indirect_symbol     elf32_hppa_copy_indirect_symbol
4625
#define elf_backend_check_relocs             elf32_hppa_check_relocs
4626
#define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections
4627
#define elf_backend_fake_sections            elf_hppa_fake_sections
4628
#define elf_backend_relocate_section         elf32_hppa_relocate_section
4629
#define elf_backend_hide_symbol              elf32_hppa_hide_symbol
4630
#define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol
4631
#define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections
4632
#define elf_backend_size_dynamic_sections    elf32_hppa_size_dynamic_sections
4633
#define elf_backend_init_index_section       _bfd_elf_init_1_index_section
4634
#define elf_backend_gc_mark_hook             elf32_hppa_gc_mark_hook
4635
#define elf_backend_gc_sweep_hook            elf32_hppa_gc_sweep_hook
4636
#define elf_backend_grok_prstatus            elf32_hppa_grok_prstatus
4637
#define elf_backend_grok_psinfo              elf32_hppa_grok_psinfo
4638
#define elf_backend_object_p                 elf32_hppa_object_p
4639
#define elf_backend_final_write_processing   elf_hppa_final_write_processing
4640
#define elf_backend_post_process_headers     _bfd_elf_set_osabi
4641
#define elf_backend_get_symbol_type          elf32_hppa_elf_get_symbol_type
4642
#define elf_backend_reloc_type_class         elf32_hppa_reloc_type_class
4643
#define elf_backend_action_discarded         elf_hppa_action_discarded
4644
 
4645
#define elf_backend_can_gc_sections          1
4646
#define elf_backend_can_refcount             1
4647
#define elf_backend_plt_alignment            2
4648
#define elf_backend_want_got_plt             0
4649
#define elf_backend_plt_readonly             0
4650
#define elf_backend_want_plt_sym             0
4651
#define elf_backend_got_header_size          8
4652
#define elf_backend_rela_normal              1
4653
 
4654
#define TARGET_BIG_SYM          bfd_elf32_hppa_vec
4655
#define TARGET_BIG_NAME         "elf32-hppa"
4656
#define ELF_ARCH                bfd_arch_hppa
4657
#define ELF_MACHINE_CODE        EM_PARISC
4658
#define ELF_MAXPAGESIZE         0x1000
4659
#define ELF_OSABI               ELFOSABI_HPUX
4660
#define elf32_bed               elf32_hppa_hpux_bed
4661
 
4662
#include "elf32-target.h"
4663
 
4664
#undef TARGET_BIG_SYM
4665
#define TARGET_BIG_SYM          bfd_elf32_hppa_linux_vec
4666
#undef TARGET_BIG_NAME
4667
#define TARGET_BIG_NAME         "elf32-hppa-linux"
4668
#undef ELF_OSABI
4669
#define ELF_OSABI               ELFOSABI_LINUX
4670
#undef elf32_bed
4671
#define elf32_bed               elf32_hppa_linux_bed
4672
 
4673
#include "elf32-target.h"
4674
 
4675
#undef TARGET_BIG_SYM
4676
#define TARGET_BIG_SYM          bfd_elf32_hppa_nbsd_vec
4677
#undef TARGET_BIG_NAME
4678
#define TARGET_BIG_NAME         "elf32-hppa-netbsd"
4679
#undef ELF_OSABI
4680
#define ELF_OSABI               ELFOSABI_NETBSD
4681
#undef elf32_bed
4682
#define elf32_bed               elf32_hppa_netbsd_bed
4683
 
4684
#include "elf32-target.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.