OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [bfd/] [elf64-hppa.c] - Blame information for rev 178

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 24 jeremybenn
/* Support for HPPA 64-bit ELF
2
   Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3
   Free Software Foundation, Inc.
4
 
5
   This file is part of BFD, the Binary File Descriptor library.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20
   MA 02110-1301, USA.  */
21
 
22
#include "sysdep.h"
23
#include "bfd.h"
24
#include "libbfd.h"
25
#include "elf-bfd.h"
26
#include "elf/hppa.h"
27
#include "libhppa.h"
28
#include "elf64-hppa.h"
29
 
30
/* This is the code recommended in the autoconf documentation, almost
31
   verbatim.  */
32
#ifndef __GNUC__
33
# if HAVE_ALLOCA_H
34
#  include <alloca.h>
35
# else
36
#  ifdef _AIX
37
/* Indented so that pre-ansi C compilers will ignore it, rather than
38
   choke on it.  Some versions of AIX require this to be the first
39
   thing in the file.  */
40
 #pragma alloca
41
#  else
42
#   ifndef alloca /* predefined by HP cc +Olibcalls */
43
#    if !defined (__STDC__) && !defined (__hpux)
44
extern char *alloca ();
45
#    else
46
extern void *alloca ();
47
#    endif /* __STDC__, __hpux */
48
#   endif /* alloca */
49
#  endif /* _AIX */
50
# endif /* HAVE_ALLOCA_H */
51
#else
52
extern void *alloca (size_t);
53
#endif /* __GNUC__ */
54
 
55
 
56
#define ARCH_SIZE              64
57
 
58
#define PLT_ENTRY_SIZE 0x10
59
#define DLT_ENTRY_SIZE 0x8
60
#define OPD_ENTRY_SIZE 0x20
61
 
62
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
63
 
64
/* The stub is supposed to load the target address and target's DP
65
   value out of the PLT, then do an external branch to the target
66
   address.
67
 
68
   LDD PLTOFF(%r27),%r1
69
   BVE (%r1)
70
   LDD PLTOFF+8(%r27),%r27
71
 
72
   Note that we must use the LDD with a 14 bit displacement, not the one
73
   with a 5 bit displacement.  */
74
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
75
                          0x53, 0x7b, 0x00, 0x00 };
76
 
77
struct elf64_hppa_dyn_hash_entry
78
{
79
  struct bfd_hash_entry root;
80
 
81
  /* Offsets for this symbol in various linker sections.  */
82
  bfd_vma dlt_offset;
83
  bfd_vma plt_offset;
84
  bfd_vma opd_offset;
85
  bfd_vma stub_offset;
86
 
87
  /* The symbol table entry, if any, that this was derived from.  */
88
  struct elf_link_hash_entry *h;
89
 
90
  /* The index of the (possibly local) symbol in the input bfd and its
91
     associated BFD.  Needed so that we can have relocs against local
92
     symbols in shared libraries.  */
93
  long sym_indx;
94
  bfd *owner;
95
 
96
  /* Dynamic symbols may need to have two different values.  One for
97
     the dynamic symbol table, one for the normal symbol table.
98
 
99
     In such cases we store the symbol's real value and section
100
     index here so we can restore the real value before we write
101
     the normal symbol table.  */
102
  bfd_vma st_value;
103
  int st_shndx;
104
 
105
  /* Used to count non-got, non-plt relocations for delayed sizing
106
     of relocation sections.  */
107
  struct elf64_hppa_dyn_reloc_entry
108
  {
109
    /* Next relocation in the chain.  */
110
    struct elf64_hppa_dyn_reloc_entry *next;
111
 
112
    /* The type of the relocation.  */
113
    int type;
114
 
115
    /* The input section of the relocation.  */
116
    asection *sec;
117
 
118
    /* The index of the section symbol for the input section of
119
       the relocation.  Only needed when building shared libraries.  */
120
    int sec_symndx;
121
 
122
    /* The offset within the input section of the relocation.  */
123
    bfd_vma offset;
124
 
125
    /* The addend for the relocation.  */
126
    bfd_vma addend;
127
 
128
  } *reloc_entries;
129
 
130
  /* Nonzero if this symbol needs an entry in one of the linker
131
     sections.  */
132
  unsigned want_dlt;
133
  unsigned want_plt;
134
  unsigned want_opd;
135
  unsigned want_stub;
136
};
137
 
138
struct elf64_hppa_dyn_hash_table
139
{
140
  struct bfd_hash_table root;
141
};
142
 
143
struct elf64_hppa_link_hash_table
144
{
145
  struct elf_link_hash_table root;
146
 
147
  /* Shortcuts to get to the various linker defined sections.  */
148
  asection *dlt_sec;
149
  asection *dlt_rel_sec;
150
  asection *plt_sec;
151
  asection *plt_rel_sec;
152
  asection *opd_sec;
153
  asection *opd_rel_sec;
154
  asection *other_rel_sec;
155
 
156
  /* Offset of __gp within .plt section.  When the PLT gets large we want
157
     to slide __gp into the PLT section so that we can continue to use
158
     single DP relative instructions to load values out of the PLT.  */
159
  bfd_vma gp_offset;
160
 
161
  /* Note this is not strictly correct.  We should create a stub section for
162
     each input section with calls.  The stub section should be placed before
163
     the section with the call.  */
164
  asection *stub_sec;
165
 
166
  bfd_vma text_segment_base;
167
  bfd_vma data_segment_base;
168
 
169
  struct elf64_hppa_dyn_hash_table dyn_hash_table;
170
 
171
  /* We build tables to map from an input section back to its
172
     symbol index.  This is the BFD for which we currently have
173
     a map.  */
174
  bfd *section_syms_bfd;
175
 
176
  /* Array of symbol numbers for each input section attached to the
177
     current BFD.  */
178
  int *section_syms;
179
};
180
 
181
#define elf64_hppa_hash_table(p) \
182
  ((struct elf64_hppa_link_hash_table *) ((p)->hash))
183
 
184
typedef struct bfd_hash_entry *(*new_hash_entry_func)
185
  PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
186
 
187
static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
188
  PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
189
           const char *string));
190
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
191
  PARAMS ((bfd *abfd));
192
static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
193
  PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
194
           bfd_boolean create, bfd_boolean copy));
195
static void elf64_hppa_dyn_hash_traverse
196
  PARAMS ((struct elf64_hppa_dyn_hash_table *table,
197
           bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
198
           PTR info));
199
 
200
static const char *get_dyn_name
201
  PARAMS ((bfd *, struct elf_link_hash_entry *,
202
           const Elf_Internal_Rela *, char **, size_t *));
203
 
204
/* This must follow the definitions of the various derived linker
205
   hash tables and shared functions.  */
206
#include "elf-hppa.h"
207
 
208
static bfd_boolean elf64_hppa_object_p
209
  PARAMS ((bfd *));
210
 
211
static void elf64_hppa_post_process_headers
212
  PARAMS ((bfd *, struct bfd_link_info *));
213
 
214
static bfd_boolean elf64_hppa_create_dynamic_sections
215
  PARAMS ((bfd *, struct bfd_link_info *));
216
 
217
static bfd_boolean elf64_hppa_adjust_dynamic_symbol
218
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
219
 
220
static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
221
  PARAMS ((struct elf_link_hash_entry *, PTR));
222
 
223
static bfd_boolean elf64_hppa_size_dynamic_sections
224
  PARAMS ((bfd *, struct bfd_link_info *));
225
 
226
static bfd_boolean elf64_hppa_link_output_symbol_hook
227
  PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
228
           asection *, struct elf_link_hash_entry *));
229
 
230
static bfd_boolean elf64_hppa_finish_dynamic_symbol
231
  PARAMS ((bfd *, struct bfd_link_info *,
232
           struct elf_link_hash_entry *, Elf_Internal_Sym *));
233
 
234
static enum elf_reloc_type_class elf64_hppa_reloc_type_class
235
  PARAMS ((const Elf_Internal_Rela *));
236
 
237
static bfd_boolean elf64_hppa_finish_dynamic_sections
238
  PARAMS ((bfd *, struct bfd_link_info *));
239
 
240
static bfd_boolean elf64_hppa_check_relocs
241
  PARAMS ((bfd *, struct bfd_link_info *,
242
           asection *, const Elf_Internal_Rela *));
243
 
244
static bfd_boolean elf64_hppa_dynamic_symbol_p
245
  PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
246
 
247
static bfd_boolean elf64_hppa_mark_exported_functions
248
  PARAMS ((struct elf_link_hash_entry *, PTR));
249
 
250
static bfd_boolean elf64_hppa_finalize_opd
251
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
252
 
253
static bfd_boolean elf64_hppa_finalize_dlt
254
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
255
 
256
static bfd_boolean allocate_global_data_dlt
257
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
258
 
259
static bfd_boolean allocate_global_data_plt
260
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
261
 
262
static bfd_boolean allocate_global_data_stub
263
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
264
 
265
static bfd_boolean allocate_global_data_opd
266
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
267
 
268
static bfd_boolean get_reloc_section
269
  PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
270
 
271
static bfd_boolean count_dyn_reloc
272
  PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
273
           int, asection *, int, bfd_vma, bfd_vma));
274
 
275
static bfd_boolean allocate_dynrel_entries
276
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
277
 
278
static bfd_boolean elf64_hppa_finalize_dynreloc
279
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
280
 
281
static bfd_boolean get_opd
282
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
283
 
284
static bfd_boolean get_plt
285
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
286
 
287
static bfd_boolean get_dlt
288
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
289
 
290
static bfd_boolean get_stub
291
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
292
 
293
static int elf64_hppa_elf_get_symbol_type
294
  PARAMS ((Elf_Internal_Sym *, int));
295
 
296
static bfd_boolean
297
elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
298
                                bfd *abfd ATTRIBUTE_UNUSED,
299
                                new_hash_entry_func new,
300
                                unsigned int entsize)
301
{
302
  memset (ht, 0, sizeof (*ht));
303
  return bfd_hash_table_init (&ht->root, new, entsize);
304
}
305
 
306
static struct bfd_hash_entry*
307
elf64_hppa_new_dyn_hash_entry (entry, table, string)
308
     struct bfd_hash_entry *entry;
309
     struct bfd_hash_table *table;
310
     const char *string;
311
{
312
  struct elf64_hppa_dyn_hash_entry *ret;
313
  ret = (struct elf64_hppa_dyn_hash_entry *) entry;
314
 
315
  /* Allocate the structure if it has not already been allocated by a
316
     subclass.  */
317
  if (!ret)
318
    ret = bfd_hash_allocate (table, sizeof (*ret));
319
 
320
  if (!ret)
321
    return 0;
322
 
323
  /* Call the allocation method of the superclass.  */
324
  ret = ((struct elf64_hppa_dyn_hash_entry *)
325
         bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
326
 
327
  /* Initialize our local data.  All zeros.  */
328
  memset (&ret->dlt_offset, 0,
329
          (sizeof (struct elf64_hppa_dyn_hash_entry)
330
           - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
331
 
332
  return &ret->root;
333
}
334
 
335
/* Create the derived linker hash table.  The PA64 ELF port uses this
336
   derived hash table to keep information specific to the PA ElF
337
   linker (without using static variables).  */
338
 
339
static struct bfd_link_hash_table*
340
elf64_hppa_hash_table_create (abfd)
341
     bfd *abfd;
342
{
343
  struct elf64_hppa_link_hash_table *ret;
344
 
345
  ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
346
  if (!ret)
347
    return 0;
348
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
349
                                      _bfd_elf_link_hash_newfunc,
350
                                      sizeof (struct elf_link_hash_entry)))
351
    {
352
      bfd_release (abfd, ret);
353
      return 0;
354
    }
355
 
356
  if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
357
                                       elf64_hppa_new_dyn_hash_entry,
358
                                       sizeof (struct elf64_hppa_dyn_hash_entry)))
359
    return 0;
360
  return &ret->root.root;
361
}
362
 
363
/* Look up an entry in a PA64 ELF linker hash table.  */
364
 
365
static struct elf64_hppa_dyn_hash_entry *
366
elf64_hppa_dyn_hash_lookup(table, string, create, copy)
367
     struct elf64_hppa_dyn_hash_table *table;
368
     const char *string;
369
     bfd_boolean create, copy;
370
{
371
  return ((struct elf64_hppa_dyn_hash_entry *)
372
          bfd_hash_lookup (&table->root, string, create, copy));
373
}
374
 
375
/* Traverse a PA64 ELF linker hash table.  */
376
 
377
static void
378
elf64_hppa_dyn_hash_traverse (table, func, info)
379
     struct elf64_hppa_dyn_hash_table *table;
380
     bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
381
     PTR info;
382
{
383
  (bfd_hash_traverse
384
   (&table->root,
385
    (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
386
    info));
387
}
388
 
389
/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
390
 
391
   Additionally we set the default architecture and machine.  */
392
static bfd_boolean
393
elf64_hppa_object_p (abfd)
394
     bfd *abfd;
395
{
396
  Elf_Internal_Ehdr * i_ehdrp;
397
  unsigned int flags;
398
 
399
  i_ehdrp = elf_elfheader (abfd);
400
  if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
401
    {
402
      /* GCC on hppa-linux produces binaries with OSABI=Linux,
403
         but the kernel produces corefiles with OSABI=SysV.  */
404
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
405
          && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
406
        return FALSE;
407
    }
408
  else
409
    {
410
      /* HPUX produces binaries with OSABI=HPUX,
411
         but the kernel produces corefiles with OSABI=SysV.  */
412
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
413
          && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
414
        return FALSE;
415
    }
416
 
417
  flags = i_ehdrp->e_flags;
418
  switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
419
    {
420
    case EFA_PARISC_1_0:
421
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
422
    case EFA_PARISC_1_1:
423
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
424
    case EFA_PARISC_2_0:
425
      if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
426
        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
427
      else
428
        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
429
    case EFA_PARISC_2_0 | EF_PARISC_WIDE:
430
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
431
    }
432
  /* Don't be fussy.  */
433
  return TRUE;
434
}
435
 
436
/* Given section type (hdr->sh_type), return a boolean indicating
437
   whether or not the section is an elf64-hppa specific section.  */
438
static bfd_boolean
439
elf64_hppa_section_from_shdr (bfd *abfd,
440
                              Elf_Internal_Shdr *hdr,
441
                              const char *name,
442
                              int shindex)
443
{
444
  asection *newsect;
445
 
446
  switch (hdr->sh_type)
447
    {
448
    case SHT_PARISC_EXT:
449
      if (strcmp (name, ".PARISC.archext") != 0)
450
        return FALSE;
451
      break;
452
    case SHT_PARISC_UNWIND:
453
      if (strcmp (name, ".PARISC.unwind") != 0)
454
        return FALSE;
455
      break;
456
    case SHT_PARISC_DOC:
457
    case SHT_PARISC_ANNOT:
458
    default:
459
      return FALSE;
460
    }
461
 
462
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
463
    return FALSE;
464
  newsect = hdr->bfd_section;
465
 
466
  return TRUE;
467
}
468
 
469
/* Construct a string for use in the elf64_hppa_dyn_hash_table.  The
470
   name describes what was once potentially anonymous memory.  We
471
   allocate memory as necessary, possibly reusing PBUF/PLEN.  */
472
 
473
static const char *
474
get_dyn_name (abfd, h, rel, pbuf, plen)
475
     bfd *abfd;
476
     struct elf_link_hash_entry *h;
477
     const Elf_Internal_Rela *rel;
478
     char **pbuf;
479
     size_t *plen;
480
{
481
  asection *sec = abfd->sections;
482
  size_t nlen, tlen;
483
  char *buf;
484
  size_t len;
485
 
486
  if (h && rel->r_addend == 0)
487
    return h->root.root.string;
488
 
489
  if (h)
490
    nlen = strlen (h->root.root.string);
491
  else
492
    nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
493
  tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
494
 
495
  len = *plen;
496
  buf = *pbuf;
497
  if (len < tlen)
498
    {
499
      if (buf)
500
        free (buf);
501
      *pbuf = buf = malloc (tlen);
502
      *plen = len = tlen;
503
      if (!buf)
504
        return NULL;
505
    }
506
 
507
  if (h)
508
    {
509
      memcpy (buf, h->root.root.string, nlen);
510
      buf[nlen++] = '+';
511
      sprintf_vma (buf + nlen, rel->r_addend);
512
    }
513
  else
514
    {
515
      nlen = sprintf (buf, "%x:%lx",
516
                      sec->id & 0xffffffff,
517
                      (long) ELF64_R_SYM (rel->r_info));
518
      if (rel->r_addend)
519
        {
520
          buf[nlen++] = '+';
521
          sprintf_vma (buf + nlen, rel->r_addend);
522
        }
523
    }
524
 
525
  return buf;
526
}
527
 
528
/* SEC is a section containing relocs for an input BFD when linking; return
529
   a suitable section for holding relocs in the output BFD for a link.  */
530
 
531
static bfd_boolean
532
get_reloc_section (abfd, hppa_info, sec)
533
     bfd *abfd;
534
     struct elf64_hppa_link_hash_table *hppa_info;
535
     asection *sec;
536
{
537
  const char *srel_name;
538
  asection *srel;
539
  bfd *dynobj;
540
 
541
  srel_name = (bfd_elf_string_from_elf_section
542
               (abfd, elf_elfheader(abfd)->e_shstrndx,
543
                elf_section_data(sec)->rel_hdr.sh_name));
544
  if (srel_name == NULL)
545
    return FALSE;
546
 
547
  BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
548
               && strcmp (bfd_get_section_name (abfd, sec),
549
                          srel_name + 5) == 0)
550
              || (CONST_STRNEQ (srel_name, ".rel")
551
                  && strcmp (bfd_get_section_name (abfd, sec),
552
                             srel_name + 4) == 0));
553
 
554
  dynobj = hppa_info->root.dynobj;
555
  if (!dynobj)
556
    hppa_info->root.dynobj = dynobj = abfd;
557
 
558
  srel = bfd_get_section_by_name (dynobj, srel_name);
559
  if (srel == NULL)
560
    {
561
      srel = bfd_make_section_with_flags (dynobj, srel_name,
562
                                          (SEC_ALLOC
563
                                           | SEC_LOAD
564
                                           | SEC_HAS_CONTENTS
565
                                           | SEC_IN_MEMORY
566
                                           | SEC_LINKER_CREATED
567
                                           | SEC_READONLY));
568
      if (srel == NULL
569
          || !bfd_set_section_alignment (dynobj, srel, 3))
570
        return FALSE;
571
    }
572
 
573
  hppa_info->other_rel_sec = srel;
574
  return TRUE;
575
}
576
 
577
/* Add a new entry to the list of dynamic relocations against DYN_H.
578
 
579
   We use this to keep a record of all the FPTR relocations against a
580
   particular symbol so that we can create FPTR relocations in the
581
   output file.  */
582
 
583
static bfd_boolean
584
count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
585
     bfd *abfd;
586
     struct elf64_hppa_dyn_hash_entry *dyn_h;
587
     int type;
588
     asection *sec;
589
     int sec_symndx;
590
     bfd_vma offset;
591
     bfd_vma addend;
592
{
593
  struct elf64_hppa_dyn_reloc_entry *rent;
594
 
595
  rent = (struct elf64_hppa_dyn_reloc_entry *)
596
  bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
597
  if (!rent)
598
    return FALSE;
599
 
600
  rent->next = dyn_h->reloc_entries;
601
  rent->type = type;
602
  rent->sec = sec;
603
  rent->sec_symndx = sec_symndx;
604
  rent->offset = offset;
605
  rent->addend = addend;
606
  dyn_h->reloc_entries = rent;
607
 
608
  return TRUE;
609
}
610
 
611
/* Scan the RELOCS and record the type of dynamic entries that each
612
   referenced symbol needs.  */
613
 
614
static bfd_boolean
615
elf64_hppa_check_relocs (abfd, info, sec, relocs)
616
     bfd *abfd;
617
     struct bfd_link_info *info;
618
     asection *sec;
619
     const Elf_Internal_Rela *relocs;
620
{
621
  struct elf64_hppa_link_hash_table *hppa_info;
622
  const Elf_Internal_Rela *relend;
623
  Elf_Internal_Shdr *symtab_hdr;
624
  const Elf_Internal_Rela *rel;
625
  asection *dlt, *plt, *stubs;
626
  char *buf;
627
  size_t buf_len;
628
  int sec_symndx;
629
 
630
  if (info->relocatable)
631
    return TRUE;
632
 
633
  /* If this is the first dynamic object found in the link, create
634
     the special sections required for dynamic linking.  */
635
  if (! elf_hash_table (info)->dynamic_sections_created)
636
    {
637
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
638
        return FALSE;
639
    }
640
 
641
  hppa_info = elf64_hppa_hash_table (info);
642
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
643
 
644
  /* If necessary, build a new table holding section symbols indices
645
     for this BFD.  */
646
 
647
  if (info->shared && hppa_info->section_syms_bfd != abfd)
648
    {
649
      unsigned long i;
650
      unsigned int highest_shndx;
651
      Elf_Internal_Sym *local_syms = NULL;
652
      Elf_Internal_Sym *isym, *isymend;
653
      bfd_size_type amt;
654
 
655
      /* We're done with the old cache of section index to section symbol
656
         index information.  Free it.
657
 
658
         ?!? Note we leak the last section_syms array.  Presumably we
659
         could free it in one of the later routines in this file.  */
660
      if (hppa_info->section_syms)
661
        free (hppa_info->section_syms);
662
 
663
      /* Read this BFD's local symbols.  */
664
      if (symtab_hdr->sh_info != 0)
665
        {
666
          local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
667
          if (local_syms == NULL)
668
            local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
669
                                               symtab_hdr->sh_info, 0,
670
                                               NULL, NULL, NULL);
671
          if (local_syms == NULL)
672
            return FALSE;
673
        }
674
 
675
      /* Record the highest section index referenced by the local symbols.  */
676
      highest_shndx = 0;
677
      isymend = local_syms + symtab_hdr->sh_info;
678
      for (isym = local_syms; isym < isymend; isym++)
679
        {
680
          if (isym->st_shndx > highest_shndx)
681
            highest_shndx = isym->st_shndx;
682
        }
683
 
684
      /* Allocate an array to hold the section index to section symbol index
685
         mapping.  Bump by one since we start counting at zero.  */
686
      highest_shndx++;
687
      amt = highest_shndx;
688
      amt *= sizeof (int);
689
      hppa_info->section_syms = (int *) bfd_malloc (amt);
690
 
691
      /* Now walk the local symbols again.  If we find a section symbol,
692
         record the index of the symbol into the section_syms array.  */
693
      for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
694
        {
695
          if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
696
            hppa_info->section_syms[isym->st_shndx] = i;
697
        }
698
 
699
      /* We are finished with the local symbols.  */
700
      if (local_syms != NULL
701
          && symtab_hdr->contents != (unsigned char *) local_syms)
702
        {
703
          if (! info->keep_memory)
704
            free (local_syms);
705
          else
706
            {
707
              /* Cache the symbols for elf_link_input_bfd.  */
708
              symtab_hdr->contents = (unsigned char *) local_syms;
709
            }
710
        }
711
 
712
      /* Record which BFD we built the section_syms mapping for.  */
713
      hppa_info->section_syms_bfd = abfd;
714
    }
715
 
716
  /* Record the symbol index for this input section.  We may need it for
717
     relocations when building shared libraries.  When not building shared
718
     libraries this value is never really used, but assign it to zero to
719
     prevent out of bounds memory accesses in other routines.  */
720
  if (info->shared)
721
    {
722
      sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
723
 
724
      /* If we did not find a section symbol for this section, then
725
         something went terribly wrong above.  */
726
      if (sec_symndx == -1)
727
        return FALSE;
728
 
729
      sec_symndx = hppa_info->section_syms[sec_symndx];
730
    }
731
  else
732
    sec_symndx = 0;
733
 
734
  dlt = plt = stubs = NULL;
735
  buf = NULL;
736
  buf_len = 0;
737
 
738
  relend = relocs + sec->reloc_count;
739
  for (rel = relocs; rel < relend; ++rel)
740
    {
741
      enum
742
        {
743
          NEED_DLT = 1,
744
          NEED_PLT = 2,
745
          NEED_STUB = 4,
746
          NEED_OPD = 8,
747
          NEED_DYNREL = 16,
748
        };
749
 
750
      struct elf_link_hash_entry *h = NULL;
751
      unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
752
      struct elf64_hppa_dyn_hash_entry *dyn_h;
753
      int need_entry;
754
      const char *addr_name;
755
      bfd_boolean maybe_dynamic;
756
      int dynrel_type = R_PARISC_NONE;
757
      static reloc_howto_type *howto;
758
 
759
      if (r_symndx >= symtab_hdr->sh_info)
760
        {
761
          /* We're dealing with a global symbol -- find its hash entry
762
             and mark it as being referenced.  */
763
          long indx = r_symndx - symtab_hdr->sh_info;
764
          h = elf_sym_hashes (abfd)[indx];
765
          while (h->root.type == bfd_link_hash_indirect
766
                 || h->root.type == bfd_link_hash_warning)
767
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
768
 
769
          h->ref_regular = 1;
770
        }
771
 
772
      /* We can only get preliminary data on whether a symbol is
773
         locally or externally defined, as not all of the input files
774
         have yet been processed.  Do something with what we know, as
775
         this may help reduce memory usage and processing time later.  */
776
      maybe_dynamic = FALSE;
777
      if (h && ((info->shared
778
                 && (!info->symbolic
779
                     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
780
                || !h->def_regular
781
                || h->root.type == bfd_link_hash_defweak))
782
        maybe_dynamic = TRUE;
783
 
784
      howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
785
      need_entry = 0;
786
      switch (howto->type)
787
        {
788
        /* These are simple indirect references to symbols through the
789
           DLT.  We need to create a DLT entry for any symbols which
790
           appears in a DLTIND relocation.  */
791
        case R_PARISC_DLTIND21L:
792
        case R_PARISC_DLTIND14R:
793
        case R_PARISC_DLTIND14F:
794
        case R_PARISC_DLTIND14WR:
795
        case R_PARISC_DLTIND14DR:
796
          need_entry = NEED_DLT;
797
          break;
798
 
799
        /* ?!?  These need a DLT entry.  But I have no idea what to do with
800
           the "link time TP value.  */
801
        case R_PARISC_LTOFF_TP21L:
802
        case R_PARISC_LTOFF_TP14R:
803
        case R_PARISC_LTOFF_TP14F:
804
        case R_PARISC_LTOFF_TP64:
805
        case R_PARISC_LTOFF_TP14WR:
806
        case R_PARISC_LTOFF_TP14DR:
807
        case R_PARISC_LTOFF_TP16F:
808
        case R_PARISC_LTOFF_TP16WF:
809
        case R_PARISC_LTOFF_TP16DF:
810
          need_entry = NEED_DLT;
811
          break;
812
 
813
        /* These are function calls.  Depending on their precise target we
814
           may need to make a stub for them.  The stub uses the PLT, so we
815
           need to create PLT entries for these symbols too.  */
816
        case R_PARISC_PCREL12F:
817
        case R_PARISC_PCREL17F:
818
        case R_PARISC_PCREL22F:
819
        case R_PARISC_PCREL32:
820
        case R_PARISC_PCREL64:
821
        case R_PARISC_PCREL21L:
822
        case R_PARISC_PCREL17R:
823
        case R_PARISC_PCREL17C:
824
        case R_PARISC_PCREL14R:
825
        case R_PARISC_PCREL14F:
826
        case R_PARISC_PCREL22C:
827
        case R_PARISC_PCREL14WR:
828
        case R_PARISC_PCREL14DR:
829
        case R_PARISC_PCREL16F:
830
        case R_PARISC_PCREL16WF:
831
        case R_PARISC_PCREL16DF:
832
          need_entry = (NEED_PLT | NEED_STUB);
833
          break;
834
 
835
        case R_PARISC_PLTOFF21L:
836
        case R_PARISC_PLTOFF14R:
837
        case R_PARISC_PLTOFF14F:
838
        case R_PARISC_PLTOFF14WR:
839
        case R_PARISC_PLTOFF14DR:
840
        case R_PARISC_PLTOFF16F:
841
        case R_PARISC_PLTOFF16WF:
842
        case R_PARISC_PLTOFF16DF:
843
          need_entry = (NEED_PLT);
844
          break;
845
 
846
        case R_PARISC_DIR64:
847
          if (info->shared || maybe_dynamic)
848
            need_entry = (NEED_DYNREL);
849
          dynrel_type = R_PARISC_DIR64;
850
          break;
851
 
852
        /* This is an indirect reference through the DLT to get the address
853
           of a OPD descriptor.  Thus we need to make a DLT entry that points
854
           to an OPD entry.  */
855
        case R_PARISC_LTOFF_FPTR21L:
856
        case R_PARISC_LTOFF_FPTR14R:
857
        case R_PARISC_LTOFF_FPTR14WR:
858
        case R_PARISC_LTOFF_FPTR14DR:
859
        case R_PARISC_LTOFF_FPTR32:
860
        case R_PARISC_LTOFF_FPTR64:
861
        case R_PARISC_LTOFF_FPTR16F:
862
        case R_PARISC_LTOFF_FPTR16WF:
863
        case R_PARISC_LTOFF_FPTR16DF:
864
          if (info->shared || maybe_dynamic)
865
            need_entry = (NEED_DLT | NEED_OPD);
866
          else
867
            need_entry = (NEED_DLT | NEED_OPD);
868
          dynrel_type = R_PARISC_FPTR64;
869
          break;
870
 
871
        /* This is a simple OPD entry.  */
872
        case R_PARISC_FPTR64:
873
          if (info->shared || maybe_dynamic)
874
            need_entry = (NEED_OPD | NEED_DYNREL);
875
          else
876
            need_entry = (NEED_OPD);
877
          dynrel_type = R_PARISC_FPTR64;
878
          break;
879
 
880
        /* Add more cases as needed.  */
881
        }
882
 
883
      if (!need_entry)
884
        continue;
885
 
886
      /* Collect a canonical name for this address.  */
887
      addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
888
 
889
      /* Collect the canonical entry data for this address.  */
890
      dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
891
                                          addr_name, TRUE, TRUE);
892
      BFD_ASSERT (dyn_h);
893
 
894
      /* Stash away enough information to be able to find this symbol
895
         regardless of whether or not it is local or global.  */
896
      dyn_h->h = h;
897
      dyn_h->owner = abfd;
898
      dyn_h->sym_indx = r_symndx;
899
 
900
      /* ?!? We may need to do some error checking in here.  */
901
      /* Create what's needed.  */
902
      if (need_entry & NEED_DLT)
903
        {
904
          if (! hppa_info->dlt_sec
905
              && ! get_dlt (abfd, info, hppa_info))
906
            goto err_out;
907
          dyn_h->want_dlt = 1;
908
        }
909
 
910
      if (need_entry & NEED_PLT)
911
        {
912
          if (! hppa_info->plt_sec
913
              && ! get_plt (abfd, info, hppa_info))
914
            goto err_out;
915
          dyn_h->want_plt = 1;
916
        }
917
 
918
      if (need_entry & NEED_STUB)
919
        {
920
          if (! hppa_info->stub_sec
921
              && ! get_stub (abfd, info, hppa_info))
922
            goto err_out;
923
          dyn_h->want_stub = 1;
924
        }
925
 
926
      if (need_entry & NEED_OPD)
927
        {
928
          if (! hppa_info->opd_sec
929
              && ! get_opd (abfd, info, hppa_info))
930
            goto err_out;
931
 
932
          dyn_h->want_opd = 1;
933
 
934
          /* FPTRs are not allocated by the dynamic linker for PA64, though
935
             it is possible that will change in the future.  */
936
 
937
          /* This could be a local function that had its address taken, in
938
             which case H will be NULL.  */
939
          if (h)
940
            h->needs_plt = 1;
941
        }
942
 
943
      /* Add a new dynamic relocation to the chain of dynamic
944
         relocations for this symbol.  */
945
      if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
946
        {
947
          if (! hppa_info->other_rel_sec
948
              && ! get_reloc_section (abfd, hppa_info, sec))
949
            goto err_out;
950
 
951
          if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
952
                                sec_symndx, rel->r_offset, rel->r_addend))
953
            goto err_out;
954
 
955
          /* If we are building a shared library and we just recorded
956
             a dynamic R_PARISC_FPTR64 relocation, then make sure the
957
             section symbol for this section ends up in the dynamic
958
             symbol table.  */
959
          if (info->shared && dynrel_type == R_PARISC_FPTR64
960
              && ! (bfd_elf_link_record_local_dynamic_symbol
961
                    (info, abfd, sec_symndx)))
962
            return FALSE;
963
        }
964
    }
965
 
966
  if (buf)
967
    free (buf);
968
  return TRUE;
969
 
970
 err_out:
971
  if (buf)
972
    free (buf);
973
  return FALSE;
974
}
975
 
976
struct elf64_hppa_allocate_data
977
{
978
  struct bfd_link_info *info;
979
  bfd_size_type ofs;
980
};
981
 
982
/* Should we do dynamic things to this symbol?  */
983
 
984
static bfd_boolean
985
elf64_hppa_dynamic_symbol_p (h, info)
986
     struct elf_link_hash_entry *h;
987
     struct bfd_link_info *info;
988
{
989
  /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
990
     and relocations that retrieve a function descriptor?  Assume the
991
     worst for now.  */
992
  if (_bfd_elf_dynamic_symbol_p (h, info, 1))
993
    {
994
      /* ??? Why is this here and not elsewhere is_local_label_name.  */
995
      if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
996
        return FALSE;
997
 
998
      return TRUE;
999
    }
1000
  else
1001
    return FALSE;
1002
}
1003
 
1004
/* Mark all functions exported by this file so that we can later allocate
1005
   entries in .opd for them.  */
1006
 
1007
static bfd_boolean
1008
elf64_hppa_mark_exported_functions (h, data)
1009
     struct elf_link_hash_entry *h;
1010
     PTR data;
1011
{
1012
  struct bfd_link_info *info = (struct bfd_link_info *)data;
1013
  struct elf64_hppa_link_hash_table *hppa_info;
1014
 
1015
  hppa_info = elf64_hppa_hash_table (info);
1016
 
1017
  if (h->root.type == bfd_link_hash_warning)
1018
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1019
 
1020
  if (h
1021
      && (h->root.type == bfd_link_hash_defined
1022
          || h->root.type == bfd_link_hash_defweak)
1023
      && h->root.u.def.section->output_section != NULL
1024
      && h->type == STT_FUNC)
1025
    {
1026
       struct elf64_hppa_dyn_hash_entry *dyn_h;
1027
 
1028
      /* Add this symbol to the PA64 linker hash table.  */
1029
      dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1030
                                          h->root.root.string, TRUE, TRUE);
1031
      BFD_ASSERT (dyn_h);
1032
      dyn_h->h = h;
1033
 
1034
      if (! hppa_info->opd_sec
1035
          && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1036
        return FALSE;
1037
 
1038
      dyn_h->want_opd = 1;
1039
      /* Put a flag here for output_symbol_hook.  */
1040
      dyn_h->st_shndx = -1;
1041
      h->needs_plt = 1;
1042
    }
1043
 
1044
  return TRUE;
1045
}
1046
 
1047
/* Allocate space for a DLT entry.  */
1048
 
1049
static bfd_boolean
1050
allocate_global_data_dlt (dyn_h, data)
1051
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1052
     PTR data;
1053
{
1054
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1055
 
1056
  if (dyn_h->want_dlt)
1057
    {
1058
      struct elf_link_hash_entry *h = dyn_h->h;
1059
 
1060
      if (x->info->shared)
1061
        {
1062
          /* Possibly add the symbol to the local dynamic symbol
1063
             table since we might need to create a dynamic relocation
1064
             against it.  */
1065
          if (! h
1066
              || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1067
            {
1068
              bfd *owner;
1069
              owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1070
 
1071
              if (! (bfd_elf_link_record_local_dynamic_symbol
1072
                     (x->info, owner, dyn_h->sym_indx)))
1073
                return FALSE;
1074
            }
1075
        }
1076
 
1077
      dyn_h->dlt_offset = x->ofs;
1078
      x->ofs += DLT_ENTRY_SIZE;
1079
    }
1080
  return TRUE;
1081
}
1082
 
1083
/* Allocate space for a DLT.PLT entry.  */
1084
 
1085
static bfd_boolean
1086
allocate_global_data_plt (dyn_h, data)
1087
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1088
     PTR data;
1089
{
1090
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1091
 
1092
  if (dyn_h->want_plt
1093
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1094
      && !((dyn_h->h->root.type == bfd_link_hash_defined
1095
            || dyn_h->h->root.type == bfd_link_hash_defweak)
1096
           && dyn_h->h->root.u.def.section->output_section != NULL))
1097
    {
1098
      dyn_h->plt_offset = x->ofs;
1099
      x->ofs += PLT_ENTRY_SIZE;
1100
      if (dyn_h->plt_offset < 0x2000)
1101
        elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1102
    }
1103
  else
1104
    dyn_h->want_plt = 0;
1105
 
1106
  return TRUE;
1107
}
1108
 
1109
/* Allocate space for a STUB entry.  */
1110
 
1111
static bfd_boolean
1112
allocate_global_data_stub (dyn_h, data)
1113
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1114
     PTR data;
1115
{
1116
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1117
 
1118
  if (dyn_h->want_stub
1119
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1120
      && !((dyn_h->h->root.type == bfd_link_hash_defined
1121
            || dyn_h->h->root.type == bfd_link_hash_defweak)
1122
           && dyn_h->h->root.u.def.section->output_section != NULL))
1123
    {
1124
      dyn_h->stub_offset = x->ofs;
1125
      x->ofs += sizeof (plt_stub);
1126
    }
1127
  else
1128
    dyn_h->want_stub = 0;
1129
  return TRUE;
1130
}
1131
 
1132
/* Allocate space for a FPTR entry.  */
1133
 
1134
static bfd_boolean
1135
allocate_global_data_opd (dyn_h, data)
1136
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1137
     PTR data;
1138
{
1139
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1140
 
1141
  if (dyn_h->want_opd)
1142
    {
1143
      struct elf_link_hash_entry *h = dyn_h->h;
1144
 
1145
      if (h)
1146
        while (h->root.type == bfd_link_hash_indirect
1147
               || h->root.type == bfd_link_hash_warning)
1148
          h = (struct elf_link_hash_entry *) h->root.u.i.link;
1149
 
1150
      /* We never need an opd entry for a symbol which is not
1151
         defined by this output file.  */
1152
      if (h && (h->root.type == bfd_link_hash_undefined
1153
                || h->root.type == bfd_link_hash_undefweak
1154
                || h->root.u.def.section->output_section == NULL))
1155
        dyn_h->want_opd = 0;
1156
 
1157
      /* If we are creating a shared library, took the address of a local
1158
         function or might export this function from this object file, then
1159
         we have to create an opd descriptor.  */
1160
      else if (x->info->shared
1161
               || h == NULL
1162
               || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1163
               || (h->root.type == bfd_link_hash_defined
1164
                   || h->root.type == bfd_link_hash_defweak))
1165
        {
1166
          /* If we are creating a shared library, then we will have to
1167
             create a runtime relocation for the symbol to properly
1168
             initialize the .opd entry.  Make sure the symbol gets
1169
             added to the dynamic symbol table.  */
1170
          if (x->info->shared
1171
              && (h == NULL || (h->dynindx == -1)))
1172
            {
1173
              bfd *owner;
1174
              owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1175
 
1176
              if (!bfd_elf_link_record_local_dynamic_symbol
1177
                    (x->info, owner, dyn_h->sym_indx))
1178
                return FALSE;
1179
            }
1180
 
1181
          /* This may not be necessary or desirable anymore now that
1182
             we have some support for dealing with section symbols
1183
             in dynamic relocs.  But name munging does make the result
1184
             much easier to debug.  ie, the EPLT reloc will reference
1185
             a symbol like .foobar, instead of .text + offset.  */
1186
          if (x->info->shared && h)
1187
            {
1188
              char *new_name;
1189
              struct elf_link_hash_entry *nh;
1190
 
1191
              new_name = alloca (strlen (h->root.root.string) + 2);
1192
              new_name[0] = '.';
1193
              strcpy (new_name + 1, h->root.root.string);
1194
 
1195
              nh = elf_link_hash_lookup (elf_hash_table (x->info),
1196
                                         new_name, TRUE, TRUE, TRUE);
1197
 
1198
              nh->root.type = h->root.type;
1199
              nh->root.u.def.value = h->root.u.def.value;
1200
              nh->root.u.def.section = h->root.u.def.section;
1201
 
1202
              if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1203
                return FALSE;
1204
 
1205
             }
1206
          dyn_h->opd_offset = x->ofs;
1207
          x->ofs += OPD_ENTRY_SIZE;
1208
        }
1209
 
1210
      /* Otherwise we do not need an opd entry.  */
1211
      else
1212
        dyn_h->want_opd = 0;
1213
    }
1214
  return TRUE;
1215
}
1216
 
1217
/* HP requires the EI_OSABI field to be filled in.  The assignment to
1218
   EI_ABIVERSION may not be strictly necessary.  */
1219
 
1220
static void
1221
elf64_hppa_post_process_headers (abfd, link_info)
1222
     bfd * abfd;
1223
     struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1224
{
1225
  Elf_Internal_Ehdr * i_ehdrp;
1226
 
1227
  i_ehdrp = elf_elfheader (abfd);
1228
 
1229
  i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1230
  i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1231
}
1232
 
1233
/* Create function descriptor section (.opd).  This section is called .opd
1234
   because it contains "official procedure descriptors".  The "official"
1235
   refers to the fact that these descriptors are used when taking the address
1236
   of a procedure, thus ensuring a unique address for each procedure.  */
1237
 
1238
static bfd_boolean
1239
get_opd (abfd, info, hppa_info)
1240
     bfd *abfd;
1241
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1242
     struct elf64_hppa_link_hash_table *hppa_info;
1243
{
1244
  asection *opd;
1245
  bfd *dynobj;
1246
 
1247
  opd = hppa_info->opd_sec;
1248
  if (!opd)
1249
    {
1250
      dynobj = hppa_info->root.dynobj;
1251
      if (!dynobj)
1252
        hppa_info->root.dynobj = dynobj = abfd;
1253
 
1254
      opd = bfd_make_section_with_flags (dynobj, ".opd",
1255
                                         (SEC_ALLOC
1256
                                          | SEC_LOAD
1257
                                          | SEC_HAS_CONTENTS
1258
                                          | SEC_IN_MEMORY
1259
                                          | SEC_LINKER_CREATED));
1260
      if (!opd
1261
          || !bfd_set_section_alignment (abfd, opd, 3))
1262
        {
1263
          BFD_ASSERT (0);
1264
          return FALSE;
1265
        }
1266
 
1267
      hppa_info->opd_sec = opd;
1268
    }
1269
 
1270
  return TRUE;
1271
}
1272
 
1273
/* Create the PLT section.  */
1274
 
1275
static bfd_boolean
1276
get_plt (abfd, info, hppa_info)
1277
     bfd *abfd;
1278
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1279
     struct elf64_hppa_link_hash_table *hppa_info;
1280
{
1281
  asection *plt;
1282
  bfd *dynobj;
1283
 
1284
  plt = hppa_info->plt_sec;
1285
  if (!plt)
1286
    {
1287
      dynobj = hppa_info->root.dynobj;
1288
      if (!dynobj)
1289
        hppa_info->root.dynobj = dynobj = abfd;
1290
 
1291
      plt = bfd_make_section_with_flags (dynobj, ".plt",
1292
                                         (SEC_ALLOC
1293
                                          | SEC_LOAD
1294
                                          | SEC_HAS_CONTENTS
1295
                                          | SEC_IN_MEMORY
1296
                                          | SEC_LINKER_CREATED));
1297
      if (!plt
1298
          || !bfd_set_section_alignment (abfd, plt, 3))
1299
        {
1300
          BFD_ASSERT (0);
1301
          return FALSE;
1302
        }
1303
 
1304
      hppa_info->plt_sec = plt;
1305
    }
1306
 
1307
  return TRUE;
1308
}
1309
 
1310
/* Create the DLT section.  */
1311
 
1312
static bfd_boolean
1313
get_dlt (abfd, info, hppa_info)
1314
     bfd *abfd;
1315
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1316
     struct elf64_hppa_link_hash_table *hppa_info;
1317
{
1318
  asection *dlt;
1319
  bfd *dynobj;
1320
 
1321
  dlt = hppa_info->dlt_sec;
1322
  if (!dlt)
1323
    {
1324
      dynobj = hppa_info->root.dynobj;
1325
      if (!dynobj)
1326
        hppa_info->root.dynobj = dynobj = abfd;
1327
 
1328
      dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1329
                                         (SEC_ALLOC
1330
                                          | SEC_LOAD
1331
                                          | SEC_HAS_CONTENTS
1332
                                          | SEC_IN_MEMORY
1333
                                          | SEC_LINKER_CREATED));
1334
      if (!dlt
1335
          || !bfd_set_section_alignment (abfd, dlt, 3))
1336
        {
1337
          BFD_ASSERT (0);
1338
          return FALSE;
1339
        }
1340
 
1341
      hppa_info->dlt_sec = dlt;
1342
    }
1343
 
1344
  return TRUE;
1345
}
1346
 
1347
/* Create the stubs section.  */
1348
 
1349
static bfd_boolean
1350
get_stub (abfd, info, hppa_info)
1351
     bfd *abfd;
1352
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1353
     struct elf64_hppa_link_hash_table *hppa_info;
1354
{
1355
  asection *stub;
1356
  bfd *dynobj;
1357
 
1358
  stub = hppa_info->stub_sec;
1359
  if (!stub)
1360
    {
1361
      dynobj = hppa_info->root.dynobj;
1362
      if (!dynobj)
1363
        hppa_info->root.dynobj = dynobj = abfd;
1364
 
1365
      stub = bfd_make_section_with_flags (dynobj, ".stub",
1366
                                          (SEC_ALLOC | SEC_LOAD
1367
                                           | SEC_HAS_CONTENTS
1368
                                           | SEC_IN_MEMORY
1369
                                           | SEC_READONLY
1370
                                           | SEC_LINKER_CREATED));
1371
      if (!stub
1372
          || !bfd_set_section_alignment (abfd, stub, 3))
1373
        {
1374
          BFD_ASSERT (0);
1375
          return FALSE;
1376
        }
1377
 
1378
      hppa_info->stub_sec = stub;
1379
    }
1380
 
1381
  return TRUE;
1382
}
1383
 
1384
/* Create sections necessary for dynamic linking.  This is only a rough
1385
   cut and will likely change as we learn more about the somewhat
1386
   unusual dynamic linking scheme HP uses.
1387
 
1388
   .stub:
1389
        Contains code to implement cross-space calls.  The first time one
1390
        of the stubs is used it will call into the dynamic linker, later
1391
        calls will go straight to the target.
1392
 
1393
        The only stub we support right now looks like
1394
 
1395
        ldd OFFSET(%dp),%r1
1396
        bve %r0(%r1)
1397
        ldd OFFSET+8(%dp),%dp
1398
 
1399
        Other stubs may be needed in the future.  We may want the remove
1400
        the break/nop instruction.  It is only used right now to keep the
1401
        offset of a .plt entry and a .stub entry in sync.
1402
 
1403
   .dlt:
1404
        This is what most people call the .got.  HP used a different name.
1405
        Losers.
1406
 
1407
   .rela.dlt:
1408
        Relocations for the DLT.
1409
 
1410
   .plt:
1411
        Function pointers as address,gp pairs.
1412
 
1413
   .rela.plt:
1414
        Should contain dynamic IPLT (and EPLT?) relocations.
1415
 
1416
   .opd:
1417
        FPTRS
1418
 
1419
   .rela.opd:
1420
        EPLT relocations for symbols exported from shared libraries.  */
1421
 
1422
static bfd_boolean
1423
elf64_hppa_create_dynamic_sections (abfd, info)
1424
     bfd *abfd;
1425
     struct bfd_link_info *info;
1426
{
1427
  asection *s;
1428
 
1429
  if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1430
    return FALSE;
1431
 
1432
  if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1433
    return FALSE;
1434
 
1435
  if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1436
    return FALSE;
1437
 
1438
  if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1439
    return FALSE;
1440
 
1441
  s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1442
                                   (SEC_ALLOC | SEC_LOAD
1443
                                    | SEC_HAS_CONTENTS
1444
                                    | SEC_IN_MEMORY
1445
                                    | SEC_READONLY
1446
                                    | SEC_LINKER_CREATED));
1447
  if (s == NULL
1448
      || !bfd_set_section_alignment (abfd, s, 3))
1449
    return FALSE;
1450
  elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1451
 
1452
  s = bfd_make_section_with_flags (abfd, ".rela.plt",
1453
                                   (SEC_ALLOC | SEC_LOAD
1454
                                    | SEC_HAS_CONTENTS
1455
                                    | SEC_IN_MEMORY
1456
                                    | SEC_READONLY
1457
                                    | SEC_LINKER_CREATED));
1458
  if (s == NULL
1459
      || !bfd_set_section_alignment (abfd, s, 3))
1460
    return FALSE;
1461
  elf64_hppa_hash_table (info)->plt_rel_sec = s;
1462
 
1463
  s = bfd_make_section_with_flags (abfd, ".rela.data",
1464
                                   (SEC_ALLOC | SEC_LOAD
1465
                                    | SEC_HAS_CONTENTS
1466
                                    | SEC_IN_MEMORY
1467
                                    | SEC_READONLY
1468
                                    | SEC_LINKER_CREATED));
1469
  if (s == NULL
1470
      || !bfd_set_section_alignment (abfd, s, 3))
1471
    return FALSE;
1472
  elf64_hppa_hash_table (info)->other_rel_sec = s;
1473
 
1474
  s = bfd_make_section_with_flags (abfd, ".rela.opd",
1475
                                   (SEC_ALLOC | SEC_LOAD
1476
                                    | SEC_HAS_CONTENTS
1477
                                    | SEC_IN_MEMORY
1478
                                    | SEC_READONLY
1479
                                    | SEC_LINKER_CREATED));
1480
  if (s == NULL
1481
      || !bfd_set_section_alignment (abfd, s, 3))
1482
    return FALSE;
1483
  elf64_hppa_hash_table (info)->opd_rel_sec = s;
1484
 
1485
  return TRUE;
1486
}
1487
 
1488
/* Allocate dynamic relocations for those symbols that turned out
1489
   to be dynamic.  */
1490
 
1491
static bfd_boolean
1492
allocate_dynrel_entries (dyn_h, data)
1493
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1494
     PTR data;
1495
{
1496
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1497
  struct elf64_hppa_link_hash_table *hppa_info;
1498
  struct elf64_hppa_dyn_reloc_entry *rent;
1499
  bfd_boolean dynamic_symbol, shared;
1500
 
1501
  hppa_info = elf64_hppa_hash_table (x->info);
1502
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1503
  shared = x->info->shared;
1504
 
1505
  /* We may need to allocate relocations for a non-dynamic symbol
1506
     when creating a shared library.  */
1507
  if (!dynamic_symbol && !shared)
1508
    return TRUE;
1509
 
1510
  /* Take care of the normal data relocations.  */
1511
 
1512
  for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1513
    {
1514
      /* Allocate one iff we are building a shared library, the relocation
1515
         isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
1516
      if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1517
        continue;
1518
 
1519
      hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1520
 
1521
      /* Make sure this symbol gets into the dynamic symbol table if it is
1522
         not already recorded.  ?!? This should not be in the loop since
1523
         the symbol need only be added once.  */
1524
      if (dyn_h->h == 0
1525
          || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1526
        if (!bfd_elf_link_record_local_dynamic_symbol
1527
            (x->info, rent->sec->owner, dyn_h->sym_indx))
1528
          return FALSE;
1529
    }
1530
 
1531
  /* Take care of the GOT and PLT relocations.  */
1532
 
1533
  if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1534
    hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1535
 
1536
  /* If we are building a shared library, then every symbol that has an
1537
     opd entry will need an EPLT relocation to relocate the symbol's address
1538
     and __gp value based on the runtime load address.  */
1539
  if (shared && dyn_h->want_opd)
1540
    hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1541
 
1542
  if (dyn_h->want_plt && dynamic_symbol)
1543
    {
1544
      bfd_size_type t = 0;
1545
 
1546
      /* Dynamic symbols get one IPLT relocation.  Local symbols in
1547
         shared libraries get two REL relocations.  Local symbols in
1548
         main applications get nothing.  */
1549
      if (dynamic_symbol)
1550
        t = sizeof (Elf64_External_Rela);
1551
      else if (shared)
1552
        t = 2 * sizeof (Elf64_External_Rela);
1553
 
1554
      hppa_info->plt_rel_sec->size += t;
1555
    }
1556
 
1557
  return TRUE;
1558
}
1559
 
1560
/* Adjust a symbol defined by a dynamic object and referenced by a
1561
   regular object.  */
1562
 
1563
static bfd_boolean
1564
elf64_hppa_adjust_dynamic_symbol (info, h)
1565
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1566
     struct elf_link_hash_entry *h;
1567
{
1568
  /* ??? Undefined symbols with PLT entries should be re-defined
1569
     to be the PLT entry.  */
1570
 
1571
  /* If this is a weak symbol, and there is a real definition, the
1572
     processor independent code will have arranged for us to see the
1573
     real definition first, and we can just use the same value.  */
1574
  if (h->u.weakdef != NULL)
1575
    {
1576
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1577
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
1578
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
1579
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
1580
      return TRUE;
1581
    }
1582
 
1583
  /* If this is a reference to a symbol defined by a dynamic object which
1584
     is not a function, we might allocate the symbol in our .dynbss section
1585
     and allocate a COPY dynamic relocation.
1586
 
1587
     But PA64 code is canonically PIC, so as a rule we can avoid this sort
1588
     of hackery.  */
1589
 
1590
  return TRUE;
1591
}
1592
 
1593
/* This function is called via elf_link_hash_traverse to mark millicode
1594
   symbols with a dynindx of -1 and to remove the string table reference
1595
   from the dynamic symbol table.  If the symbol is not a millicode symbol,
1596
   elf64_hppa_mark_exported_functions is called.  */
1597
 
1598
static bfd_boolean
1599
elf64_hppa_mark_milli_and_exported_functions (h, data)
1600
     struct elf_link_hash_entry *h;
1601
     PTR data;
1602
{
1603
  struct bfd_link_info *info = (struct bfd_link_info *)data;
1604
  struct elf_link_hash_entry *elf = h;
1605
 
1606
  if (elf->root.type == bfd_link_hash_warning)
1607
    elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1608
 
1609
  if (elf->type == STT_PARISC_MILLI)
1610
    {
1611
      if (elf->dynindx != -1)
1612
        {
1613
          elf->dynindx = -1;
1614
          _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1615
                                  elf->dynstr_index);
1616
        }
1617
      return TRUE;
1618
    }
1619
 
1620
  return elf64_hppa_mark_exported_functions (h, data);
1621
}
1622
 
1623
/* Set the final sizes of the dynamic sections and allocate memory for
1624
   the contents of our special sections.  */
1625
 
1626
static bfd_boolean
1627
elf64_hppa_size_dynamic_sections (output_bfd, info)
1628
     bfd *output_bfd;
1629
     struct bfd_link_info *info;
1630
{
1631
  bfd *dynobj;
1632
  asection *s;
1633
  bfd_boolean plt;
1634
  bfd_boolean relocs;
1635
  bfd_boolean reltext;
1636
  struct elf64_hppa_allocate_data data;
1637
  struct elf64_hppa_link_hash_table *hppa_info;
1638
 
1639
  hppa_info = elf64_hppa_hash_table (info);
1640
 
1641
  dynobj = elf_hash_table (info)->dynobj;
1642
  BFD_ASSERT (dynobj != NULL);
1643
 
1644
  /* Mark each function this program exports so that we will allocate
1645
     space in the .opd section for each function's FPTR.  If we are
1646
     creating dynamic sections, change the dynamic index of millicode
1647
     symbols to -1 and remove them from the string table for .dynstr.
1648
 
1649
     We have to traverse the main linker hash table since we have to
1650
     find functions which may not have been mentioned in any relocs.  */
1651
  elf_link_hash_traverse (elf_hash_table (info),
1652
                          (elf_hash_table (info)->dynamic_sections_created
1653
                           ? elf64_hppa_mark_milli_and_exported_functions
1654
                           : elf64_hppa_mark_exported_functions),
1655
                          info);
1656
 
1657
  if (elf_hash_table (info)->dynamic_sections_created)
1658
    {
1659
      /* Set the contents of the .interp section to the interpreter.  */
1660
      if (info->executable)
1661
        {
1662
          s = bfd_get_section_by_name (dynobj, ".interp");
1663
          BFD_ASSERT (s != NULL);
1664
          s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1665
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1666
        }
1667
    }
1668
  else
1669
    {
1670
      /* We may have created entries in the .rela.got section.
1671
         However, if we are not creating the dynamic sections, we will
1672
         not actually use these entries.  Reset the size of .rela.dlt,
1673
         which will cause it to get stripped from the output file
1674
         below.  */
1675
      s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1676
      if (s != NULL)
1677
        s->size = 0;
1678
    }
1679
 
1680
  /* Allocate the GOT entries.  */
1681
 
1682
  data.info = info;
1683
  if (elf64_hppa_hash_table (info)->dlt_sec)
1684
    {
1685
      data.ofs = 0x0;
1686
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1687
                                    allocate_global_data_dlt, &data);
1688
      hppa_info->dlt_sec->size = data.ofs;
1689
 
1690
      data.ofs = 0x0;
1691
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1692
                                    allocate_global_data_plt, &data);
1693
      hppa_info->plt_sec->size = data.ofs;
1694
 
1695
      data.ofs = 0x0;
1696
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1697
                                    allocate_global_data_stub, &data);
1698
      hppa_info->stub_sec->size = data.ofs;
1699
    }
1700
 
1701
  /* Allocate space for entries in the .opd section.  */
1702
  if (elf64_hppa_hash_table (info)->opd_sec)
1703
    {
1704
      data.ofs = 0;
1705
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1706
                                    allocate_global_data_opd, &data);
1707
      hppa_info->opd_sec->size = data.ofs;
1708
    }
1709
 
1710
  /* Now allocate space for dynamic relocations, if necessary.  */
1711
  if (hppa_info->root.dynamic_sections_created)
1712
    elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1713
                                  allocate_dynrel_entries, &data);
1714
 
1715
  /* The sizes of all the sections are set.  Allocate memory for them.  */
1716
  plt = FALSE;
1717
  relocs = FALSE;
1718
  reltext = FALSE;
1719
  for (s = dynobj->sections; s != NULL; s = s->next)
1720
    {
1721
      const char *name;
1722
 
1723
      if ((s->flags & SEC_LINKER_CREATED) == 0)
1724
        continue;
1725
 
1726
      /* It's OK to base decisions on the section name, because none
1727
         of the dynobj section names depend upon the input files.  */
1728
      name = bfd_get_section_name (dynobj, s);
1729
 
1730
      if (strcmp (name, ".plt") == 0)
1731
        {
1732
          /* Remember whether there is a PLT.  */
1733
          plt = s->size != 0;
1734
        }
1735
      else if (strcmp (name, ".opd") == 0
1736
               || CONST_STRNEQ (name, ".dlt")
1737
               || strcmp (name, ".stub") == 0
1738
               || strcmp (name, ".got") == 0)
1739
        {
1740
          /* Strip this section if we don't need it; see the comment below.  */
1741
        }
1742
      else if (CONST_STRNEQ (name, ".rela"))
1743
        {
1744
          if (s->size != 0)
1745
            {
1746
              asection *target;
1747
 
1748
              /* Remember whether there are any reloc sections other
1749
                 than .rela.plt.  */
1750
              if (strcmp (name, ".rela.plt") != 0)
1751
                {
1752
                  const char *outname;
1753
 
1754
                  relocs = TRUE;
1755
 
1756
                  /* If this relocation section applies to a read only
1757
                     section, then we probably need a DT_TEXTREL
1758
                     entry.  The entries in the .rela.plt section
1759
                     really apply to the .got section, which we
1760
                     created ourselves and so know is not readonly.  */
1761
                  outname = bfd_get_section_name (output_bfd,
1762
                                                  s->output_section);
1763
                  target = bfd_get_section_by_name (output_bfd, outname + 4);
1764
                  if (target != NULL
1765
                      && (target->flags & SEC_READONLY) != 0
1766
                      && (target->flags & SEC_ALLOC) != 0)
1767
                    reltext = TRUE;
1768
                }
1769
 
1770
              /* We use the reloc_count field as a counter if we need
1771
                 to copy relocs into the output file.  */
1772
              s->reloc_count = 0;
1773
            }
1774
        }
1775
      else
1776
        {
1777
          /* It's not one of our sections, so don't allocate space.  */
1778
          continue;
1779
        }
1780
 
1781
      if (s->size == 0)
1782
        {
1783
          /* If we don't need this section, strip it from the
1784
             output file.  This is mostly to handle .rela.bss and
1785
             .rela.plt.  We must create both sections in
1786
             create_dynamic_sections, because they must be created
1787
             before the linker maps input sections to output
1788
             sections.  The linker does that before
1789
             adjust_dynamic_symbol is called, and it is that
1790
             function which decides whether anything needs to go
1791
             into these sections.  */
1792
          s->flags |= SEC_EXCLUDE;
1793
          continue;
1794
        }
1795
 
1796
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
1797
        continue;
1798
 
1799
      /* Allocate memory for the section contents if it has not
1800
         been allocated already.  We use bfd_zalloc here in case
1801
         unused entries are not reclaimed before the section's
1802
         contents are written out.  This should not happen, but this
1803
         way if it does, we get a R_PARISC_NONE reloc instead of
1804
         garbage.  */
1805
      if (s->contents == NULL)
1806
        {
1807
          s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1808
          if (s->contents == NULL)
1809
            return FALSE;
1810
        }
1811
    }
1812
 
1813
  if (elf_hash_table (info)->dynamic_sections_created)
1814
    {
1815
      /* Always create a DT_PLTGOT.  It actually has nothing to do with
1816
         the PLT, it is how we communicate the __gp value of a load
1817
         module to the dynamic linker.  */
1818
#define add_dynamic_entry(TAG, VAL) \
1819
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1820
 
1821
      if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1822
          || !add_dynamic_entry (DT_PLTGOT, 0))
1823
        return FALSE;
1824
 
1825
      /* Add some entries to the .dynamic section.  We fill in the
1826
         values later, in elf64_hppa_finish_dynamic_sections, but we
1827
         must add the entries now so that we get the correct size for
1828
         the .dynamic section.  The DT_DEBUG entry is filled in by the
1829
         dynamic linker and used by the debugger.  */
1830
      if (! info->shared)
1831
        {
1832
          if (!add_dynamic_entry (DT_DEBUG, 0)
1833
              || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1834
              || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1835
            return FALSE;
1836
        }
1837
 
1838
      /* Force DT_FLAGS to always be set.
1839
         Required by HPUX 11.00 patch PHSS_26559.  */
1840
      if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1841
        return FALSE;
1842
 
1843
      if (plt)
1844
        {
1845
          if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1846
              || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1847
              || !add_dynamic_entry (DT_JMPREL, 0))
1848
            return FALSE;
1849
        }
1850
 
1851
      if (relocs)
1852
        {
1853
          if (!add_dynamic_entry (DT_RELA, 0)
1854
              || !add_dynamic_entry (DT_RELASZ, 0)
1855
              || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1856
            return FALSE;
1857
        }
1858
 
1859
      if (reltext)
1860
        {
1861
          if (!add_dynamic_entry (DT_TEXTREL, 0))
1862
            return FALSE;
1863
          info->flags |= DF_TEXTREL;
1864
        }
1865
    }
1866
#undef add_dynamic_entry
1867
 
1868
  return TRUE;
1869
}
1870
 
1871
/* Called after we have output the symbol into the dynamic symbol
1872
   table, but before we output the symbol into the normal symbol
1873
   table.
1874
 
1875
   For some symbols we had to change their address when outputting
1876
   the dynamic symbol table.  We undo that change here so that
1877
   the symbols have their expected value in the normal symbol
1878
   table.  Ick.  */
1879
 
1880
static bfd_boolean
1881
elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1882
     struct bfd_link_info *info;
1883
     const char *name;
1884
     Elf_Internal_Sym *sym;
1885
     asection *input_sec ATTRIBUTE_UNUSED;
1886
     struct elf_link_hash_entry *h;
1887
{
1888
  struct elf64_hppa_link_hash_table *hppa_info;
1889
  struct elf64_hppa_dyn_hash_entry *dyn_h;
1890
 
1891
  /* We may be called with the file symbol or section symbols.
1892
     They never need munging, so it is safe to ignore them.  */
1893
  if (!name)
1894
    return TRUE;
1895
 
1896
  /* Get the PA dyn_symbol (if any) associated with NAME.  */
1897
  hppa_info = elf64_hppa_hash_table (info);
1898
  dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1899
                                      name, FALSE, FALSE);
1900
  if (!dyn_h || dyn_h->h != h)
1901
    return TRUE;
1902
 
1903
  /* Function symbols for which we created .opd entries *may* have been
1904
     munged by finish_dynamic_symbol and have to be un-munged here.
1905
 
1906
     Note that finish_dynamic_symbol sometimes turns dynamic symbols
1907
     into non-dynamic ones, so we initialize st_shndx to -1 in
1908
     mark_exported_functions and check to see if it was overwritten
1909
     here instead of just checking dyn_h->h->dynindx.  */
1910
  if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1911
    {
1912
      /* Restore the saved value and section index.  */
1913
      sym->st_value = dyn_h->st_value;
1914
      sym->st_shndx = dyn_h->st_shndx;
1915
    }
1916
 
1917
  return TRUE;
1918
}
1919
 
1920
/* Finish up dynamic symbol handling.  We set the contents of various
1921
   dynamic sections here.  */
1922
 
1923
static bfd_boolean
1924
elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1925
     bfd *output_bfd;
1926
     struct bfd_link_info *info;
1927
     struct elf_link_hash_entry *h;
1928
     Elf_Internal_Sym *sym;
1929
{
1930
  asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1931
  struct elf64_hppa_link_hash_table *hppa_info;
1932
  struct elf64_hppa_dyn_hash_entry *dyn_h;
1933
 
1934
  hppa_info = elf64_hppa_hash_table (info);
1935
  dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1936
                                      h->root.root.string, FALSE, FALSE);
1937
 
1938
  stub = hppa_info->stub_sec;
1939
  splt = hppa_info->plt_sec;
1940
  sdlt = hppa_info->dlt_sec;
1941
  sopd = hppa_info->opd_sec;
1942
  spltrel = hppa_info->plt_rel_sec;
1943
  sdltrel = hppa_info->dlt_rel_sec;
1944
 
1945
  /* Incredible.  It is actually necessary to NOT use the symbol's real
1946
     value when building the dynamic symbol table for a shared library.
1947
     At least for symbols that refer to functions.
1948
 
1949
     We will store a new value and section index into the symbol long
1950
     enough to output it into the dynamic symbol table, then we restore
1951
     the original values (in elf64_hppa_link_output_symbol_hook).  */
1952
  if (dyn_h && dyn_h->want_opd)
1953
    {
1954
      BFD_ASSERT (sopd != NULL);
1955
 
1956
      /* Save away the original value and section index so that we
1957
         can restore them later.  */
1958
      dyn_h->st_value = sym->st_value;
1959
      dyn_h->st_shndx = sym->st_shndx;
1960
 
1961
      /* For the dynamic symbol table entry, we want the value to be
1962
         address of this symbol's entry within the .opd section.  */
1963
      sym->st_value = (dyn_h->opd_offset
1964
                       + sopd->output_offset
1965
                       + sopd->output_section->vma);
1966
      sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1967
                                                         sopd->output_section);
1968
    }
1969
 
1970
  /* Initialize a .plt entry if requested.  */
1971
  if (dyn_h && dyn_h->want_plt
1972
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1973
    {
1974
      bfd_vma value;
1975
      Elf_Internal_Rela rel;
1976
      bfd_byte *loc;
1977
 
1978
      BFD_ASSERT (splt != NULL && spltrel != NULL);
1979
 
1980
      /* We do not actually care about the value in the PLT entry
1981
         if we are creating a shared library and the symbol is
1982
         still undefined, we create a dynamic relocation to fill
1983
         in the correct value.  */
1984
      if (info->shared && h->root.type == bfd_link_hash_undefined)
1985
        value = 0;
1986
      else
1987
        value = (h->root.u.def.value + h->root.u.def.section->vma);
1988
 
1989
      /* Fill in the entry in the procedure linkage table.
1990
 
1991
         The format of a plt entry is
1992
         <funcaddr> <__gp>.
1993
 
1994
         plt_offset is the offset within the PLT section at which to
1995
         install the PLT entry.
1996
 
1997
         We are modifying the in-memory PLT contents here, so we do not add
1998
         in the output_offset of the PLT section.  */
1999
 
2000
      bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2001
      value = _bfd_get_gp_value (splt->output_section->owner);
2002
      bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2003
 
2004
      /* Create a dynamic IPLT relocation for this entry.
2005
 
2006
         We are creating a relocation in the output file's PLT section,
2007
         which is included within the DLT secton.  So we do need to include
2008
         the PLT's output_offset in the computation of the relocation's
2009
         address.  */
2010
      rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2011
                      + splt->output_section->vma);
2012
      rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2013
      rel.r_addend = 0;
2014
 
2015
      loc = spltrel->contents;
2016
      loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2017
      bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2018
    }
2019
 
2020
  /* Initialize an external call stub entry if requested.  */
2021
  if (dyn_h && dyn_h->want_stub
2022
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2023
    {
2024
      bfd_vma value;
2025
      int insn;
2026
      unsigned int max_offset;
2027
 
2028
      BFD_ASSERT (stub != NULL);
2029
 
2030
      /* Install the generic stub template.
2031
 
2032
         We are modifying the contents of the stub section, so we do not
2033
         need to include the stub section's output_offset here.  */
2034
      memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2035
 
2036
      /* Fix up the first ldd instruction.
2037
 
2038
         We are modifying the contents of the STUB section in memory,
2039
         so we do not need to include its output offset in this computation.
2040
 
2041
         Note the plt_offset value is the value of the PLT entry relative to
2042
         the start of the PLT section.  These instructions will reference
2043
         data relative to the value of __gp, which may not necessarily have
2044
         the same address as the start of the PLT section.
2045
 
2046
         gp_offset contains the offset of __gp within the PLT section.  */
2047
      value = dyn_h->plt_offset - hppa_info->gp_offset;
2048
 
2049
      insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2050
      if (output_bfd->arch_info->mach >= 25)
2051
        {
2052
          /* Wide mode allows 16 bit offsets.  */
2053
          max_offset = 32768;
2054
          insn &= ~ 0xfff1;
2055
          insn |= re_assemble_16 ((int) value);
2056
        }
2057
      else
2058
        {
2059
          max_offset = 8192;
2060
          insn &= ~ 0x3ff1;
2061
          insn |= re_assemble_14 ((int) value);
2062
        }
2063
 
2064
      if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2065
        {
2066
          (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2067
                                 dyn_h->root.string,
2068
                                 (long) value);
2069
          return FALSE;
2070
        }
2071
 
2072
      bfd_put_32 (stub->owner, (bfd_vma) insn,
2073
                  stub->contents + dyn_h->stub_offset);
2074
 
2075
      /* Fix up the second ldd instruction.  */
2076
      value += 8;
2077
      insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2078
      if (output_bfd->arch_info->mach >= 25)
2079
        {
2080
          insn &= ~ 0xfff1;
2081
          insn |= re_assemble_16 ((int) value);
2082
        }
2083
      else
2084
        {
2085
          insn &= ~ 0x3ff1;
2086
          insn |= re_assemble_14 ((int) value);
2087
        }
2088
      bfd_put_32 (stub->owner, (bfd_vma) insn,
2089
                  stub->contents + dyn_h->stub_offset + 8);
2090
    }
2091
 
2092
  return TRUE;
2093
}
2094
 
2095
/* The .opd section contains FPTRs for each function this file
2096
   exports.  Initialize the FPTR entries.  */
2097
 
2098
static bfd_boolean
2099
elf64_hppa_finalize_opd (dyn_h, data)
2100
     struct elf64_hppa_dyn_hash_entry *dyn_h;
2101
     PTR data;
2102
{
2103
  struct bfd_link_info *info = (struct bfd_link_info *)data;
2104
  struct elf64_hppa_link_hash_table *hppa_info;
2105
  struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2106
  asection *sopd;
2107
  asection *sopdrel;
2108
 
2109
  hppa_info = elf64_hppa_hash_table (info);
2110
  sopd = hppa_info->opd_sec;
2111
  sopdrel = hppa_info->opd_rel_sec;
2112
 
2113
  if (h && dyn_h->want_opd)
2114
    {
2115
      bfd_vma value;
2116
 
2117
      /* The first two words of an .opd entry are zero.
2118
 
2119
         We are modifying the contents of the OPD section in memory, so we
2120
         do not need to include its output offset in this computation.  */
2121
      memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2122
 
2123
      value = (h->root.u.def.value
2124
               + h->root.u.def.section->output_section->vma
2125
               + h->root.u.def.section->output_offset);
2126
 
2127
      /* The next word is the address of the function.  */
2128
      bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2129
 
2130
      /* The last word is our local __gp value.  */
2131
      value = _bfd_get_gp_value (sopd->output_section->owner);
2132
      bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2133
    }
2134
 
2135
  /* If we are generating a shared library, we must generate EPLT relocations
2136
     for each entry in the .opd, even for static functions (they may have
2137
     had their address taken).  */
2138
  if (info->shared && dyn_h && dyn_h->want_opd)
2139
    {
2140
      Elf_Internal_Rela rel;
2141
      bfd_byte *loc;
2142
      int dynindx;
2143
 
2144
      /* We may need to do a relocation against a local symbol, in
2145
         which case we have to look up it's dynamic symbol index off
2146
         the local symbol hash table.  */
2147
      if (h && h->dynindx != -1)
2148
        dynindx = h->dynindx;
2149
      else
2150
        dynindx
2151
          = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2152
                                                dyn_h->sym_indx);
2153
 
2154
      /* The offset of this relocation is the absolute address of the
2155
         .opd entry for this symbol.  */
2156
      rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2157
                      + sopd->output_section->vma);
2158
 
2159
      /* If H is non-null, then we have an external symbol.
2160
 
2161
         It is imperative that we use a different dynamic symbol for the
2162
         EPLT relocation if the symbol has global scope.
2163
 
2164
         In the dynamic symbol table, the function symbol will have a value
2165
         which is address of the function's .opd entry.
2166
 
2167
         Thus, we can not use that dynamic symbol for the EPLT relocation
2168
         (if we did, the data in the .opd would reference itself rather
2169
         than the actual address of the function).  Instead we have to use
2170
         a new dynamic symbol which has the same value as the original global
2171
         function symbol.
2172
 
2173
         We prefix the original symbol with a "." and use the new symbol in
2174
         the EPLT relocation.  This new symbol has already been recorded in
2175
         the symbol table, we just have to look it up and use it.
2176
 
2177
         We do not have such problems with static functions because we do
2178
         not make their addresses in the dynamic symbol table point to
2179
         the .opd entry.  Ultimately this should be safe since a static
2180
         function can not be directly referenced outside of its shared
2181
         library.
2182
 
2183
         We do have to play similar games for FPTR relocations in shared
2184
         libraries, including those for static symbols.  See the FPTR
2185
         handling in elf64_hppa_finalize_dynreloc.  */
2186
      if (h)
2187
        {
2188
          char *new_name;
2189
          struct elf_link_hash_entry *nh;
2190
 
2191
          new_name = alloca (strlen (h->root.root.string) + 2);
2192
          new_name[0] = '.';
2193
          strcpy (new_name + 1, h->root.root.string);
2194
 
2195
          nh = elf_link_hash_lookup (elf_hash_table (info),
2196
                                     new_name, FALSE, FALSE, FALSE);
2197
 
2198
          /* All we really want from the new symbol is its dynamic
2199
             symbol index.  */
2200
          dynindx = nh->dynindx;
2201
        }
2202
 
2203
      rel.r_addend = 0;
2204
      rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2205
 
2206
      loc = sopdrel->contents;
2207
      loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2208
      bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2209
    }
2210
  return TRUE;
2211
}
2212
 
2213
/* The .dlt section contains addresses for items referenced through the
2214
   dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
2215
   we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
2216
 
2217
static bfd_boolean
2218
elf64_hppa_finalize_dlt (dyn_h, data)
2219
     struct elf64_hppa_dyn_hash_entry *dyn_h;
2220
     PTR data;
2221
{
2222
  struct bfd_link_info *info = (struct bfd_link_info *)data;
2223
  struct elf64_hppa_link_hash_table *hppa_info;
2224
  asection *sdlt, *sdltrel;
2225
  struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2226
 
2227
  hppa_info = elf64_hppa_hash_table (info);
2228
 
2229
  sdlt = hppa_info->dlt_sec;
2230
  sdltrel = hppa_info->dlt_rel_sec;
2231
 
2232
  /* H/DYN_H may refer to a local variable and we know it's
2233
     address, so there is no need to create a relocation.  Just install
2234
     the proper value into the DLT, note this shortcut can not be
2235
     skipped when building a shared library.  */
2236
  if (! info->shared && h && dyn_h->want_dlt)
2237
    {
2238
      bfd_vma value;
2239
 
2240
      /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2241
         to point to the FPTR entry in the .opd section.
2242
 
2243
         We include the OPD's output offset in this computation as
2244
         we are referring to an absolute address in the resulting
2245
         object file.  */
2246
      if (dyn_h->want_opd)
2247
        {
2248
          value = (dyn_h->opd_offset
2249
                   + hppa_info->opd_sec->output_offset
2250
                   + hppa_info->opd_sec->output_section->vma);
2251
        }
2252
      else if ((h->root.type == bfd_link_hash_defined
2253
                || h->root.type == bfd_link_hash_defweak)
2254
               && h->root.u.def.section)
2255
        {
2256
          value = h->root.u.def.value + h->root.u.def.section->output_offset;
2257
          if (h->root.u.def.section->output_section)
2258
            value += h->root.u.def.section->output_section->vma;
2259
          else
2260
            value += h->root.u.def.section->vma;
2261
        }
2262
      else
2263
        /* We have an undefined function reference.  */
2264
        value = 0;
2265
 
2266
      /* We do not need to include the output offset of the DLT section
2267
         here because we are modifying the in-memory contents.  */
2268
      bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2269
    }
2270
 
2271
  /* Create a relocation for the DLT entry associated with this symbol.
2272
     When building a shared library the symbol does not have to be dynamic.  */
2273
  if (dyn_h->want_dlt
2274
      && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2275
    {
2276
      Elf_Internal_Rela rel;
2277
      bfd_byte *loc;
2278
      int dynindx;
2279
 
2280
      /* We may need to do a relocation against a local symbol, in
2281
         which case we have to look up it's dynamic symbol index off
2282
         the local symbol hash table.  */
2283
      if (h && h->dynindx != -1)
2284
        dynindx = h->dynindx;
2285
      else
2286
        dynindx
2287
          = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2288
                                                dyn_h->sym_indx);
2289
 
2290
      /* Create a dynamic relocation for this entry.  Do include the output
2291
         offset of the DLT entry since we need an absolute address in the
2292
         resulting object file.  */
2293
      rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2294
                      + sdlt->output_section->vma);
2295
      if (h && h->type == STT_FUNC)
2296
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2297
      else
2298
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2299
      rel.r_addend = 0;
2300
 
2301
      loc = sdltrel->contents;
2302
      loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2303
      bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2304
    }
2305
  return TRUE;
2306
}
2307
 
2308
/* Finalize the dynamic relocations.  Specifically the FPTR relocations
2309
   for dynamic functions used to initialize static data.  */
2310
 
2311
static bfd_boolean
2312
elf64_hppa_finalize_dynreloc (dyn_h, data)
2313
     struct elf64_hppa_dyn_hash_entry *dyn_h;
2314
     PTR data;
2315
{
2316
  struct bfd_link_info *info = (struct bfd_link_info *)data;
2317
  struct elf64_hppa_link_hash_table *hppa_info;
2318
  struct elf_link_hash_entry *h;
2319
  int dynamic_symbol;
2320
 
2321
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2322
 
2323
  if (!dynamic_symbol && !info->shared)
2324
    return TRUE;
2325
 
2326
  if (dyn_h->reloc_entries)
2327
    {
2328
      struct elf64_hppa_dyn_reloc_entry *rent;
2329
      int dynindx;
2330
 
2331
      hppa_info = elf64_hppa_hash_table (info);
2332
      h = dyn_h->h;
2333
 
2334
      /* We may need to do a relocation against a local symbol, in
2335
         which case we have to look up it's dynamic symbol index off
2336
         the local symbol hash table.  */
2337
      if (h && h->dynindx != -1)
2338
        dynindx = h->dynindx;
2339
      else
2340
        dynindx
2341
          = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2342
                                                dyn_h->sym_indx);
2343
 
2344
      for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2345
        {
2346
          Elf_Internal_Rela rel;
2347
          bfd_byte *loc;
2348
 
2349
          /* Allocate one iff we are building a shared library, the relocation
2350
             isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
2351
          if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2352
            continue;
2353
 
2354
          /* Create a dynamic relocation for this entry.
2355
 
2356
             We need the output offset for the reloc's section because
2357
             we are creating an absolute address in the resulting object
2358
             file.  */
2359
          rel.r_offset = (rent->offset + rent->sec->output_offset
2360
                          + rent->sec->output_section->vma);
2361
 
2362
          /* An FPTR64 relocation implies that we took the address of
2363
             a function and that the function has an entry in the .opd
2364
             section.  We want the FPTR64 relocation to reference the
2365
             entry in .opd.
2366
 
2367
             We could munge the symbol value in the dynamic symbol table
2368
             (in fact we already do for functions with global scope) to point
2369
             to the .opd entry.  Then we could use that dynamic symbol in
2370
             this relocation.
2371
 
2372
             Or we could do something sensible, not munge the symbol's
2373
             address and instead just use a different symbol to reference
2374
             the .opd entry.  At least that seems sensible until you
2375
             realize there's no local dynamic symbols we can use for that
2376
             purpose.  Thus the hair in the check_relocs routine.
2377
 
2378
             We use a section symbol recorded by check_relocs as the
2379
             base symbol for the relocation.  The addend is the difference
2380
             between the section symbol and the address of the .opd entry.  */
2381
          if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2382
            {
2383
              bfd_vma value, value2;
2384
 
2385
              /* First compute the address of the opd entry for this symbol.  */
2386
              value = (dyn_h->opd_offset
2387
                       + hppa_info->opd_sec->output_section->vma
2388
                       + hppa_info->opd_sec->output_offset);
2389
 
2390
              /* Compute the value of the start of the section with
2391
                 the relocation.  */
2392
              value2 = (rent->sec->output_section->vma
2393
                        + rent->sec->output_offset);
2394
 
2395
              /* Compute the difference between the start of the section
2396
                 with the relocation and the opd entry.  */
2397
              value -= value2;
2398
 
2399
              /* The result becomes the addend of the relocation.  */
2400
              rel.r_addend = value;
2401
 
2402
              /* The section symbol becomes the symbol for the dynamic
2403
                 relocation.  */
2404
              dynindx
2405
                = _bfd_elf_link_lookup_local_dynindx (info,
2406
                                                      rent->sec->owner,
2407
                                                      rent->sec_symndx);
2408
            }
2409
          else
2410
            rel.r_addend = rent->addend;
2411
 
2412
          rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2413
 
2414
          loc = hppa_info->other_rel_sec->contents;
2415
          loc += (hppa_info->other_rel_sec->reloc_count++
2416
                  * sizeof (Elf64_External_Rela));
2417
          bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2418
                                     &rel, loc);
2419
        }
2420
    }
2421
 
2422
  return TRUE;
2423
}
2424
 
2425
/* Used to decide how to sort relocs in an optimal manner for the
2426
   dynamic linker, before writing them out.  */
2427
 
2428
static enum elf_reloc_type_class
2429
elf64_hppa_reloc_type_class (rela)
2430
     const Elf_Internal_Rela *rela;
2431
{
2432
  if (ELF64_R_SYM (rela->r_info) == 0)
2433
    return reloc_class_relative;
2434
 
2435
  switch ((int) ELF64_R_TYPE (rela->r_info))
2436
    {
2437
    case R_PARISC_IPLT:
2438
      return reloc_class_plt;
2439
    case R_PARISC_COPY:
2440
      return reloc_class_copy;
2441
    default:
2442
      return reloc_class_normal;
2443
    }
2444
}
2445
 
2446
/* Finish up the dynamic sections.  */
2447
 
2448
static bfd_boolean
2449
elf64_hppa_finish_dynamic_sections (output_bfd, info)
2450
     bfd *output_bfd;
2451
     struct bfd_link_info *info;
2452
{
2453
  bfd *dynobj;
2454
  asection *sdyn;
2455
  struct elf64_hppa_link_hash_table *hppa_info;
2456
 
2457
  hppa_info = elf64_hppa_hash_table (info);
2458
 
2459
  /* Finalize the contents of the .opd section.  */
2460
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2461
                                elf64_hppa_finalize_opd,
2462
                                info);
2463
 
2464
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2465
                                elf64_hppa_finalize_dynreloc,
2466
                                info);
2467
 
2468
  /* Finalize the contents of the .dlt section.  */
2469
  dynobj = elf_hash_table (info)->dynobj;
2470
  /* Finalize the contents of the .dlt section.  */
2471
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2472
                                elf64_hppa_finalize_dlt,
2473
                                info);
2474
 
2475
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2476
 
2477
  if (elf_hash_table (info)->dynamic_sections_created)
2478
    {
2479
      Elf64_External_Dyn *dyncon, *dynconend;
2480
 
2481
      BFD_ASSERT (sdyn != NULL);
2482
 
2483
      dyncon = (Elf64_External_Dyn *) sdyn->contents;
2484
      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2485
      for (; dyncon < dynconend; dyncon++)
2486
        {
2487
          Elf_Internal_Dyn dyn;
2488
          asection *s;
2489
 
2490
          bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2491
 
2492
          switch (dyn.d_tag)
2493
            {
2494
            default:
2495
              break;
2496
 
2497
            case DT_HP_LOAD_MAP:
2498
              /* Compute the absolute address of 16byte scratchpad area
2499
                 for the dynamic linker.
2500
 
2501
                 By convention the linker script will allocate the scratchpad
2502
                 area at the start of the .data section.  So all we have to
2503
                 to is find the start of the .data section.  */
2504
              s = bfd_get_section_by_name (output_bfd, ".data");
2505
              dyn.d_un.d_ptr = s->vma;
2506
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2507
              break;
2508
 
2509
            case DT_PLTGOT:
2510
              /* HP's use PLTGOT to set the GOT register.  */
2511
              dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2512
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2513
              break;
2514
 
2515
            case DT_JMPREL:
2516
              s = hppa_info->plt_rel_sec;
2517
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2518
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2519
              break;
2520
 
2521
            case DT_PLTRELSZ:
2522
              s = hppa_info->plt_rel_sec;
2523
              dyn.d_un.d_val = s->size;
2524
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2525
              break;
2526
 
2527
            case DT_RELA:
2528
              s = hppa_info->other_rel_sec;
2529
              if (! s || ! s->size)
2530
                s = hppa_info->dlt_rel_sec;
2531
              if (! s || ! s->size)
2532
                s = hppa_info->opd_rel_sec;
2533
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2534
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2535
              break;
2536
 
2537
            case DT_RELASZ:
2538
              s = hppa_info->other_rel_sec;
2539
              dyn.d_un.d_val = s->size;
2540
              s = hppa_info->dlt_rel_sec;
2541
              dyn.d_un.d_val += s->size;
2542
              s = hppa_info->opd_rel_sec;
2543
              dyn.d_un.d_val += s->size;
2544
              /* There is some question about whether or not the size of
2545
                 the PLT relocs should be included here.  HP's tools do
2546
                 it, so we'll emulate them.  */
2547
              s = hppa_info->plt_rel_sec;
2548
              dyn.d_un.d_val += s->size;
2549
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2550
              break;
2551
 
2552
            }
2553
        }
2554
    }
2555
 
2556
  return TRUE;
2557
}
2558
 
2559
/* Support for core dump NOTE sections.  */
2560
 
2561
static bfd_boolean
2562
elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2563
{
2564
  int offset;
2565
  size_t size;
2566
 
2567
  switch (note->descsz)
2568
    {
2569
      default:
2570
        return FALSE;
2571
 
2572
      case 760:         /* Linux/hppa */
2573
        /* pr_cursig */
2574
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2575
 
2576
        /* pr_pid */
2577
        elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2578
 
2579
        /* pr_reg */
2580
        offset = 112;
2581
        size = 640;
2582
 
2583
        break;
2584
    }
2585
 
2586
  /* Make a ".reg/999" section.  */
2587
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2588
                                          size, note->descpos + offset);
2589
}
2590
 
2591
static bfd_boolean
2592
elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2593
{
2594
  char * command;
2595
  int n;
2596
 
2597
  switch (note->descsz)
2598
    {
2599
    default:
2600
      return FALSE;
2601
 
2602
    case 136:           /* Linux/hppa elf_prpsinfo.  */
2603
      elf_tdata (abfd)->core_program
2604
        = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2605
      elf_tdata (abfd)->core_command
2606
        = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2607
    }
2608
 
2609
  /* Note that for some reason, a spurious space is tacked
2610
     onto the end of the args in some (at least one anyway)
2611
     implementations, so strip it off if it exists.  */
2612
  command = elf_tdata (abfd)->core_command;
2613
  n = strlen (command);
2614
 
2615
  if (0 < n && command[n - 1] == ' ')
2616
    command[n - 1] = '\0';
2617
 
2618
  return TRUE;
2619
}
2620
 
2621
/* Return the number of additional phdrs we will need.
2622
 
2623
   The generic ELF code only creates PT_PHDRs for executables.  The HP
2624
   dynamic linker requires PT_PHDRs for dynamic libraries too.
2625
 
2626
   This routine indicates that the backend needs one additional program
2627
   header for that case.
2628
 
2629
   Note we do not have access to the link info structure here, so we have
2630
   to guess whether or not we are building a shared library based on the
2631
   existence of a .interp section.  */
2632
 
2633
static int
2634
elf64_hppa_additional_program_headers (bfd *abfd,
2635
                                       struct bfd_link_info *info ATTRIBUTE_UNUSED)
2636
{
2637
  asection *s;
2638
 
2639
  /* If we are creating a shared library, then we have to create a
2640
     PT_PHDR segment.  HP's dynamic linker chokes without it.  */
2641
  s = bfd_get_section_by_name (abfd, ".interp");
2642
  if (! s)
2643
    return 1;
2644
  return 0;
2645
}
2646
 
2647
/* Allocate and initialize any program headers required by this
2648
   specific backend.
2649
 
2650
   The generic ELF code only creates PT_PHDRs for executables.  The HP
2651
   dynamic linker requires PT_PHDRs for dynamic libraries too.
2652
 
2653
   This allocates the PT_PHDR and initializes it in a manner suitable
2654
   for the HP linker.
2655
 
2656
   Note we do not have access to the link info structure here, so we have
2657
   to guess whether or not we are building a shared library based on the
2658
   existence of a .interp section.  */
2659
 
2660
static bfd_boolean
2661
elf64_hppa_modify_segment_map (bfd *abfd,
2662
                               struct bfd_link_info *info ATTRIBUTE_UNUSED)
2663
{
2664
  struct elf_segment_map *m;
2665
  asection *s;
2666
 
2667
  s = bfd_get_section_by_name (abfd, ".interp");
2668
  if (! s)
2669
    {
2670
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2671
        if (m->p_type == PT_PHDR)
2672
          break;
2673
      if (m == NULL)
2674
        {
2675
          m = ((struct elf_segment_map *)
2676
               bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2677
          if (m == NULL)
2678
            return FALSE;
2679
 
2680
          m->p_type = PT_PHDR;
2681
          m->p_flags = PF_R | PF_X;
2682
          m->p_flags_valid = 1;
2683
          m->p_paddr_valid = 1;
2684
          m->includes_phdrs = 1;
2685
 
2686
          m->next = elf_tdata (abfd)->segment_map;
2687
          elf_tdata (abfd)->segment_map = m;
2688
        }
2689
    }
2690
 
2691
  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2692
    if (m->p_type == PT_LOAD)
2693
      {
2694
        unsigned int i;
2695
 
2696
        for (i = 0; i < m->count; i++)
2697
          {
2698
            /* The code "hint" is not really a hint.  It is a requirement
2699
               for certain versions of the HP dynamic linker.  Worse yet,
2700
               it must be set even if the shared library does not have
2701
               any code in its "text" segment (thus the check for .hash
2702
               to catch this situation).  */
2703
            if (m->sections[i]->flags & SEC_CODE
2704
                || (strcmp (m->sections[i]->name, ".hash") == 0))
2705
              m->p_flags |= (PF_X | PF_HP_CODE);
2706
          }
2707
      }
2708
 
2709
  return TRUE;
2710
}
2711
 
2712
/* Called when writing out an object file to decide the type of a
2713
   symbol.  */
2714
static int
2715
elf64_hppa_elf_get_symbol_type (elf_sym, type)
2716
     Elf_Internal_Sym *elf_sym;
2717
     int type;
2718
{
2719
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2720
    return STT_PARISC_MILLI;
2721
  else
2722
    return type;
2723
}
2724
 
2725
/* Support HP specific sections for core files.  */
2726
static bfd_boolean
2727
elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2728
                              const char *typename)
2729
{
2730
  if (hdr->p_type == PT_HP_CORE_KERNEL)
2731
    {
2732
      asection *sect;
2733
 
2734
      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2735
        return FALSE;
2736
 
2737
      sect = bfd_make_section_anyway (abfd, ".kernel");
2738
      if (sect == NULL)
2739
        return FALSE;
2740
      sect->size = hdr->p_filesz;
2741
      sect->filepos = hdr->p_offset;
2742
      sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2743
      return TRUE;
2744
    }
2745
 
2746
  if (hdr->p_type == PT_HP_CORE_PROC)
2747
    {
2748
      int sig;
2749
 
2750
      if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2751
        return FALSE;
2752
      if (bfd_bread (&sig, 4, abfd) != 4)
2753
        return FALSE;
2754
 
2755
      elf_tdata (abfd)->core_signal = sig;
2756
 
2757
      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2758
        return FALSE;
2759
 
2760
      /* GDB uses the ".reg" section to read register contents.  */
2761
      return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2762
                                              hdr->p_offset);
2763
    }
2764
 
2765
  if (hdr->p_type == PT_HP_CORE_LOADABLE
2766
      || hdr->p_type == PT_HP_CORE_STACK
2767
      || hdr->p_type == PT_HP_CORE_MMF)
2768
    hdr->p_type = PT_LOAD;
2769
 
2770
  return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2771
}
2772
 
2773
static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2774
{
2775
  { STRING_COMMA_LEN (".fini"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2776
  { STRING_COMMA_LEN (".init"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2777
  { STRING_COMMA_LEN (".plt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2778
  { STRING_COMMA_LEN (".dlt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2779
  { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2780
  { STRING_COMMA_LEN (".sbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2781
  { STRING_COMMA_LEN (".tbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
2782
  { NULL,                    0,  0, 0,            0 }
2783
};
2784
 
2785
/* The hash bucket size is the standard one, namely 4.  */
2786
 
2787
const struct elf_size_info hppa64_elf_size_info =
2788
{
2789
  sizeof (Elf64_External_Ehdr),
2790
  sizeof (Elf64_External_Phdr),
2791
  sizeof (Elf64_External_Shdr),
2792
  sizeof (Elf64_External_Rel),
2793
  sizeof (Elf64_External_Rela),
2794
  sizeof (Elf64_External_Sym),
2795
  sizeof (Elf64_External_Dyn),
2796
  sizeof (Elf_External_Note),
2797
  4,
2798
  1,
2799
  64, 3,
2800
  ELFCLASS64, EV_CURRENT,
2801
  bfd_elf64_write_out_phdrs,
2802
  bfd_elf64_write_shdrs_and_ehdr,
2803
  bfd_elf64_checksum_contents,
2804
  bfd_elf64_write_relocs,
2805
  bfd_elf64_swap_symbol_in,
2806
  bfd_elf64_swap_symbol_out,
2807
  bfd_elf64_slurp_reloc_table,
2808
  bfd_elf64_slurp_symbol_table,
2809
  bfd_elf64_swap_dyn_in,
2810
  bfd_elf64_swap_dyn_out,
2811
  bfd_elf64_swap_reloc_in,
2812
  bfd_elf64_swap_reloc_out,
2813
  bfd_elf64_swap_reloca_in,
2814
  bfd_elf64_swap_reloca_out
2815
};
2816
 
2817
#define TARGET_BIG_SYM                  bfd_elf64_hppa_vec
2818
#define TARGET_BIG_NAME                 "elf64-hppa"
2819
#define ELF_ARCH                        bfd_arch_hppa
2820
#define ELF_MACHINE_CODE                EM_PARISC
2821
/* This is not strictly correct.  The maximum page size for PA2.0 is
2822
   64M.  But everything still uses 4k.  */
2823
#define ELF_MAXPAGESIZE                 0x1000
2824
#define ELF_OSABI                       ELFOSABI_HPUX
2825
 
2826
#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2827
#define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
2828
#define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name
2829
#define elf_info_to_howto               elf_hppa_info_to_howto
2830
#define elf_info_to_howto_rel           elf_hppa_info_to_howto_rel
2831
 
2832
#define elf_backend_section_from_shdr   elf64_hppa_section_from_shdr
2833
#define elf_backend_object_p            elf64_hppa_object_p
2834
#define elf_backend_final_write_processing \
2835
                                        elf_hppa_final_write_processing
2836
#define elf_backend_fake_sections       elf_hppa_fake_sections
2837
#define elf_backend_add_symbol_hook     elf_hppa_add_symbol_hook
2838
 
2839
#define elf_backend_relocate_section    elf_hppa_relocate_section
2840
 
2841
#define bfd_elf64_bfd_final_link        elf_hppa_final_link
2842
 
2843
#define elf_backend_create_dynamic_sections \
2844
                                        elf64_hppa_create_dynamic_sections
2845
#define elf_backend_post_process_headers        elf64_hppa_post_process_headers
2846
 
2847
#define elf_backend_omit_section_dynsym \
2848
  ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2849
#define elf_backend_adjust_dynamic_symbol \
2850
                                        elf64_hppa_adjust_dynamic_symbol
2851
 
2852
#define elf_backend_size_dynamic_sections \
2853
                                        elf64_hppa_size_dynamic_sections
2854
 
2855
#define elf_backend_finish_dynamic_symbol \
2856
                                        elf64_hppa_finish_dynamic_symbol
2857
#define elf_backend_finish_dynamic_sections \
2858
                                        elf64_hppa_finish_dynamic_sections
2859
#define elf_backend_grok_prstatus       elf64_hppa_grok_prstatus
2860
#define elf_backend_grok_psinfo         elf64_hppa_grok_psinfo
2861
 
2862
/* Stuff for the BFD linker: */
2863
#define bfd_elf64_bfd_link_hash_table_create \
2864
        elf64_hppa_hash_table_create
2865
 
2866
#define elf_backend_check_relocs \
2867
        elf64_hppa_check_relocs
2868
 
2869
#define elf_backend_size_info \
2870
  hppa64_elf_size_info
2871
 
2872
#define elf_backend_additional_program_headers \
2873
        elf64_hppa_additional_program_headers
2874
 
2875
#define elf_backend_modify_segment_map \
2876
        elf64_hppa_modify_segment_map
2877
 
2878
#define elf_backend_link_output_symbol_hook \
2879
        elf64_hppa_link_output_symbol_hook
2880
 
2881
#define elf_backend_want_got_plt        0
2882
#define elf_backend_plt_readonly        0
2883
#define elf_backend_want_plt_sym        0
2884
#define elf_backend_got_header_size     0
2885
#define elf_backend_type_change_ok      TRUE
2886
#define elf_backend_get_symbol_type     elf64_hppa_elf_get_symbol_type
2887
#define elf_backend_reloc_type_class    elf64_hppa_reloc_type_class
2888
#define elf_backend_rela_normal         1
2889
#define elf_backend_special_sections    elf64_hppa_special_sections
2890
#define elf_backend_action_discarded    elf_hppa_action_discarded
2891
#define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr
2892
 
2893
#define elf64_bed                       elf64_hppa_hpux_bed
2894
 
2895
#include "elf64-target.h"
2896
 
2897
#undef TARGET_BIG_SYM
2898
#define TARGET_BIG_SYM                  bfd_elf64_hppa_linux_vec
2899
#undef TARGET_BIG_NAME
2900
#define TARGET_BIG_NAME                 "elf64-hppa-linux"
2901
#undef ELF_OSABI
2902
#define ELF_OSABI                       ELFOSABI_LINUX
2903
#undef elf_backend_post_process_headers
2904
#define elf_backend_post_process_headers _bfd_elf_set_osabi
2905
#undef elf64_bed
2906
#define elf64_bed                       elf64_hppa_linux_bed
2907
 
2908
#include "elf64-target.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.