| 1 |
24 |
jeremybenn |
/* Support for HPPA 64-bit ELF
|
| 2 |
|
|
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
| 6 |
|
|
|
| 7 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 8 |
|
|
it under the terms of the GNU General Public License as published by
|
| 9 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
| 10 |
|
|
(at your option) any later version.
|
| 11 |
|
|
|
| 12 |
|
|
This program is distributed in the hope that it will be useful,
|
| 13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
GNU General Public License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with this program; if not, write to the Free Software
|
| 19 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
| 20 |
|
|
MA 02110-1301, USA. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "sysdep.h"
|
| 23 |
|
|
#include "bfd.h"
|
| 24 |
|
|
#include "libbfd.h"
|
| 25 |
|
|
#include "elf-bfd.h"
|
| 26 |
|
|
#include "elf/hppa.h"
|
| 27 |
|
|
#include "libhppa.h"
|
| 28 |
|
|
#include "elf64-hppa.h"
|
| 29 |
|
|
|
| 30 |
|
|
/* This is the code recommended in the autoconf documentation, almost
|
| 31 |
|
|
verbatim. */
|
| 32 |
|
|
#ifndef __GNUC__
|
| 33 |
|
|
# if HAVE_ALLOCA_H
|
| 34 |
|
|
# include <alloca.h>
|
| 35 |
|
|
# else
|
| 36 |
|
|
# ifdef _AIX
|
| 37 |
|
|
/* Indented so that pre-ansi C compilers will ignore it, rather than
|
| 38 |
|
|
choke on it. Some versions of AIX require this to be the first
|
| 39 |
|
|
thing in the file. */
|
| 40 |
|
|
#pragma alloca
|
| 41 |
|
|
# else
|
| 42 |
|
|
# ifndef alloca /* predefined by HP cc +Olibcalls */
|
| 43 |
|
|
# if !defined (__STDC__) && !defined (__hpux)
|
| 44 |
|
|
extern char *alloca ();
|
| 45 |
|
|
# else
|
| 46 |
|
|
extern void *alloca ();
|
| 47 |
|
|
# endif /* __STDC__, __hpux */
|
| 48 |
|
|
# endif /* alloca */
|
| 49 |
|
|
# endif /* _AIX */
|
| 50 |
|
|
# endif /* HAVE_ALLOCA_H */
|
| 51 |
|
|
#else
|
| 52 |
|
|
extern void *alloca (size_t);
|
| 53 |
|
|
#endif /* __GNUC__ */
|
| 54 |
|
|
|
| 55 |
|
|
|
| 56 |
|
|
#define ARCH_SIZE 64
|
| 57 |
|
|
|
| 58 |
|
|
#define PLT_ENTRY_SIZE 0x10
|
| 59 |
|
|
#define DLT_ENTRY_SIZE 0x8
|
| 60 |
|
|
#define OPD_ENTRY_SIZE 0x20
|
| 61 |
|
|
|
| 62 |
|
|
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
|
| 63 |
|
|
|
| 64 |
|
|
/* The stub is supposed to load the target address and target's DP
|
| 65 |
|
|
value out of the PLT, then do an external branch to the target
|
| 66 |
|
|
address.
|
| 67 |
|
|
|
| 68 |
|
|
LDD PLTOFF(%r27),%r1
|
| 69 |
|
|
BVE (%r1)
|
| 70 |
|
|
LDD PLTOFF+8(%r27),%r27
|
| 71 |
|
|
|
| 72 |
|
|
Note that we must use the LDD with a 14 bit displacement, not the one
|
| 73 |
|
|
with a 5 bit displacement. */
|
| 74 |
|
|
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
|
| 75 |
|
|
0x53, 0x7b, 0x00, 0x00 };
|
| 76 |
|
|
|
| 77 |
|
|
struct elf64_hppa_dyn_hash_entry
|
| 78 |
|
|
{
|
| 79 |
|
|
struct bfd_hash_entry root;
|
| 80 |
|
|
|
| 81 |
|
|
/* Offsets for this symbol in various linker sections. */
|
| 82 |
|
|
bfd_vma dlt_offset;
|
| 83 |
|
|
bfd_vma plt_offset;
|
| 84 |
|
|
bfd_vma opd_offset;
|
| 85 |
|
|
bfd_vma stub_offset;
|
| 86 |
|
|
|
| 87 |
|
|
/* The symbol table entry, if any, that this was derived from. */
|
| 88 |
|
|
struct elf_link_hash_entry *h;
|
| 89 |
|
|
|
| 90 |
|
|
/* The index of the (possibly local) symbol in the input bfd and its
|
| 91 |
|
|
associated BFD. Needed so that we can have relocs against local
|
| 92 |
|
|
symbols in shared libraries. */
|
| 93 |
|
|
long sym_indx;
|
| 94 |
|
|
bfd *owner;
|
| 95 |
|
|
|
| 96 |
|
|
/* Dynamic symbols may need to have two different values. One for
|
| 97 |
|
|
the dynamic symbol table, one for the normal symbol table.
|
| 98 |
|
|
|
| 99 |
|
|
In such cases we store the symbol's real value and section
|
| 100 |
|
|
index here so we can restore the real value before we write
|
| 101 |
|
|
the normal symbol table. */
|
| 102 |
|
|
bfd_vma st_value;
|
| 103 |
|
|
int st_shndx;
|
| 104 |
|
|
|
| 105 |
|
|
/* Used to count non-got, non-plt relocations for delayed sizing
|
| 106 |
|
|
of relocation sections. */
|
| 107 |
|
|
struct elf64_hppa_dyn_reloc_entry
|
| 108 |
|
|
{
|
| 109 |
|
|
/* Next relocation in the chain. */
|
| 110 |
|
|
struct elf64_hppa_dyn_reloc_entry *next;
|
| 111 |
|
|
|
| 112 |
|
|
/* The type of the relocation. */
|
| 113 |
|
|
int type;
|
| 114 |
|
|
|
| 115 |
|
|
/* The input section of the relocation. */
|
| 116 |
|
|
asection *sec;
|
| 117 |
|
|
|
| 118 |
|
|
/* The index of the section symbol for the input section of
|
| 119 |
|
|
the relocation. Only needed when building shared libraries. */
|
| 120 |
|
|
int sec_symndx;
|
| 121 |
|
|
|
| 122 |
|
|
/* The offset within the input section of the relocation. */
|
| 123 |
|
|
bfd_vma offset;
|
| 124 |
|
|
|
| 125 |
|
|
/* The addend for the relocation. */
|
| 126 |
|
|
bfd_vma addend;
|
| 127 |
|
|
|
| 128 |
|
|
} *reloc_entries;
|
| 129 |
|
|
|
| 130 |
|
|
/* Nonzero if this symbol needs an entry in one of the linker
|
| 131 |
|
|
sections. */
|
| 132 |
|
|
unsigned want_dlt;
|
| 133 |
|
|
unsigned want_plt;
|
| 134 |
|
|
unsigned want_opd;
|
| 135 |
|
|
unsigned want_stub;
|
| 136 |
|
|
};
|
| 137 |
|
|
|
| 138 |
|
|
struct elf64_hppa_dyn_hash_table
|
| 139 |
|
|
{
|
| 140 |
|
|
struct bfd_hash_table root;
|
| 141 |
|
|
};
|
| 142 |
|
|
|
| 143 |
|
|
struct elf64_hppa_link_hash_table
|
| 144 |
|
|
{
|
| 145 |
|
|
struct elf_link_hash_table root;
|
| 146 |
|
|
|
| 147 |
|
|
/* Shortcuts to get to the various linker defined sections. */
|
| 148 |
|
|
asection *dlt_sec;
|
| 149 |
|
|
asection *dlt_rel_sec;
|
| 150 |
|
|
asection *plt_sec;
|
| 151 |
|
|
asection *plt_rel_sec;
|
| 152 |
|
|
asection *opd_sec;
|
| 153 |
|
|
asection *opd_rel_sec;
|
| 154 |
|
|
asection *other_rel_sec;
|
| 155 |
|
|
|
| 156 |
|
|
/* Offset of __gp within .plt section. When the PLT gets large we want
|
| 157 |
|
|
to slide __gp into the PLT section so that we can continue to use
|
| 158 |
|
|
single DP relative instructions to load values out of the PLT. */
|
| 159 |
|
|
bfd_vma gp_offset;
|
| 160 |
|
|
|
| 161 |
|
|
/* Note this is not strictly correct. We should create a stub section for
|
| 162 |
|
|
each input section with calls. The stub section should be placed before
|
| 163 |
|
|
the section with the call. */
|
| 164 |
|
|
asection *stub_sec;
|
| 165 |
|
|
|
| 166 |
|
|
bfd_vma text_segment_base;
|
| 167 |
|
|
bfd_vma data_segment_base;
|
| 168 |
|
|
|
| 169 |
|
|
struct elf64_hppa_dyn_hash_table dyn_hash_table;
|
| 170 |
|
|
|
| 171 |
|
|
/* We build tables to map from an input section back to its
|
| 172 |
|
|
symbol index. This is the BFD for which we currently have
|
| 173 |
|
|
a map. */
|
| 174 |
|
|
bfd *section_syms_bfd;
|
| 175 |
|
|
|
| 176 |
|
|
/* Array of symbol numbers for each input section attached to the
|
| 177 |
|
|
current BFD. */
|
| 178 |
|
|
int *section_syms;
|
| 179 |
|
|
};
|
| 180 |
|
|
|
| 181 |
|
|
#define elf64_hppa_hash_table(p) \
|
| 182 |
|
|
((struct elf64_hppa_link_hash_table *) ((p)->hash))
|
| 183 |
|
|
|
| 184 |
|
|
typedef struct bfd_hash_entry *(*new_hash_entry_func)
|
| 185 |
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
| 186 |
|
|
|
| 187 |
|
|
static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
|
| 188 |
|
|
PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
|
| 189 |
|
|
const char *string));
|
| 190 |
|
|
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
|
| 191 |
|
|
PARAMS ((bfd *abfd));
|
| 192 |
|
|
static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
|
| 193 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
|
| 194 |
|
|
bfd_boolean create, bfd_boolean copy));
|
| 195 |
|
|
static void elf64_hppa_dyn_hash_traverse
|
| 196 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_table *table,
|
| 197 |
|
|
bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
|
| 198 |
|
|
PTR info));
|
| 199 |
|
|
|
| 200 |
|
|
static const char *get_dyn_name
|
| 201 |
|
|
PARAMS ((bfd *, struct elf_link_hash_entry *,
|
| 202 |
|
|
const Elf_Internal_Rela *, char **, size_t *));
|
| 203 |
|
|
|
| 204 |
|
|
/* This must follow the definitions of the various derived linker
|
| 205 |
|
|
hash tables and shared functions. */
|
| 206 |
|
|
#include "elf-hppa.h"
|
| 207 |
|
|
|
| 208 |
|
|
static bfd_boolean elf64_hppa_object_p
|
| 209 |
|
|
PARAMS ((bfd *));
|
| 210 |
|
|
|
| 211 |
|
|
static void elf64_hppa_post_process_headers
|
| 212 |
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
| 213 |
|
|
|
| 214 |
|
|
static bfd_boolean elf64_hppa_create_dynamic_sections
|
| 215 |
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
| 216 |
|
|
|
| 217 |
|
|
static bfd_boolean elf64_hppa_adjust_dynamic_symbol
|
| 218 |
|
|
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
|
| 219 |
|
|
|
| 220 |
|
|
static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
|
| 221 |
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
| 222 |
|
|
|
| 223 |
|
|
static bfd_boolean elf64_hppa_size_dynamic_sections
|
| 224 |
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
| 225 |
|
|
|
| 226 |
|
|
static bfd_boolean elf64_hppa_link_output_symbol_hook
|
| 227 |
|
|
PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
|
| 228 |
|
|
asection *, struct elf_link_hash_entry *));
|
| 229 |
|
|
|
| 230 |
|
|
static bfd_boolean elf64_hppa_finish_dynamic_symbol
|
| 231 |
|
|
PARAMS ((bfd *, struct bfd_link_info *,
|
| 232 |
|
|
struct elf_link_hash_entry *, Elf_Internal_Sym *));
|
| 233 |
|
|
|
| 234 |
|
|
static enum elf_reloc_type_class elf64_hppa_reloc_type_class
|
| 235 |
|
|
PARAMS ((const Elf_Internal_Rela *));
|
| 236 |
|
|
|
| 237 |
|
|
static bfd_boolean elf64_hppa_finish_dynamic_sections
|
| 238 |
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
| 239 |
|
|
|
| 240 |
|
|
static bfd_boolean elf64_hppa_check_relocs
|
| 241 |
|
|
PARAMS ((bfd *, struct bfd_link_info *,
|
| 242 |
|
|
asection *, const Elf_Internal_Rela *));
|
| 243 |
|
|
|
| 244 |
|
|
static bfd_boolean elf64_hppa_dynamic_symbol_p
|
| 245 |
|
|
PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
|
| 246 |
|
|
|
| 247 |
|
|
static bfd_boolean elf64_hppa_mark_exported_functions
|
| 248 |
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
| 249 |
|
|
|
| 250 |
|
|
static bfd_boolean elf64_hppa_finalize_opd
|
| 251 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
| 252 |
|
|
|
| 253 |
|
|
static bfd_boolean elf64_hppa_finalize_dlt
|
| 254 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
| 255 |
|
|
|
| 256 |
|
|
static bfd_boolean allocate_global_data_dlt
|
| 257 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
| 258 |
|
|
|
| 259 |
|
|
static bfd_boolean allocate_global_data_plt
|
| 260 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
| 261 |
|
|
|
| 262 |
|
|
static bfd_boolean allocate_global_data_stub
|
| 263 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
| 264 |
|
|
|
| 265 |
|
|
static bfd_boolean allocate_global_data_opd
|
| 266 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
| 267 |
|
|
|
| 268 |
|
|
static bfd_boolean get_reloc_section
|
| 269 |
|
|
PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
|
| 270 |
|
|
|
| 271 |
|
|
static bfd_boolean count_dyn_reloc
|
| 272 |
|
|
PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
|
| 273 |
|
|
int, asection *, int, bfd_vma, bfd_vma));
|
| 274 |
|
|
|
| 275 |
|
|
static bfd_boolean allocate_dynrel_entries
|
| 276 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
| 277 |
|
|
|
| 278 |
|
|
static bfd_boolean elf64_hppa_finalize_dynreloc
|
| 279 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
| 280 |
|
|
|
| 281 |
|
|
static bfd_boolean get_opd
|
| 282 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
| 283 |
|
|
|
| 284 |
|
|
static bfd_boolean get_plt
|
| 285 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
| 286 |
|
|
|
| 287 |
|
|
static bfd_boolean get_dlt
|
| 288 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
| 289 |
|
|
|
| 290 |
|
|
static bfd_boolean get_stub
|
| 291 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
| 292 |
|
|
|
| 293 |
|
|
static int elf64_hppa_elf_get_symbol_type
|
| 294 |
|
|
PARAMS ((Elf_Internal_Sym *, int));
|
| 295 |
|
|
|
| 296 |
|
|
static bfd_boolean
|
| 297 |
|
|
elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
|
| 298 |
|
|
bfd *abfd ATTRIBUTE_UNUSED,
|
| 299 |
|
|
new_hash_entry_func new,
|
| 300 |
|
|
unsigned int entsize)
|
| 301 |
|
|
{
|
| 302 |
|
|
memset (ht, 0, sizeof (*ht));
|
| 303 |
|
|
return bfd_hash_table_init (&ht->root, new, entsize);
|
| 304 |
|
|
}
|
| 305 |
|
|
|
| 306 |
|
|
static struct bfd_hash_entry*
|
| 307 |
|
|
elf64_hppa_new_dyn_hash_entry (entry, table, string)
|
| 308 |
|
|
struct bfd_hash_entry *entry;
|
| 309 |
|
|
struct bfd_hash_table *table;
|
| 310 |
|
|
const char *string;
|
| 311 |
|
|
{
|
| 312 |
|
|
struct elf64_hppa_dyn_hash_entry *ret;
|
| 313 |
|
|
ret = (struct elf64_hppa_dyn_hash_entry *) entry;
|
| 314 |
|
|
|
| 315 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
| 316 |
|
|
subclass. */
|
| 317 |
|
|
if (!ret)
|
| 318 |
|
|
ret = bfd_hash_allocate (table, sizeof (*ret));
|
| 319 |
|
|
|
| 320 |
|
|
if (!ret)
|
| 321 |
|
|
return 0;
|
| 322 |
|
|
|
| 323 |
|
|
/* Call the allocation method of the superclass. */
|
| 324 |
|
|
ret = ((struct elf64_hppa_dyn_hash_entry *)
|
| 325 |
|
|
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
|
| 326 |
|
|
|
| 327 |
|
|
/* Initialize our local data. All zeros. */
|
| 328 |
|
|
memset (&ret->dlt_offset, 0,
|
| 329 |
|
|
(sizeof (struct elf64_hppa_dyn_hash_entry)
|
| 330 |
|
|
- offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
|
| 331 |
|
|
|
| 332 |
|
|
return &ret->root;
|
| 333 |
|
|
}
|
| 334 |
|
|
|
| 335 |
|
|
/* Create the derived linker hash table. The PA64 ELF port uses this
|
| 336 |
|
|
derived hash table to keep information specific to the PA ElF
|
| 337 |
|
|
linker (without using static variables). */
|
| 338 |
|
|
|
| 339 |
|
|
static struct bfd_link_hash_table*
|
| 340 |
|
|
elf64_hppa_hash_table_create (abfd)
|
| 341 |
|
|
bfd *abfd;
|
| 342 |
|
|
{
|
| 343 |
|
|
struct elf64_hppa_link_hash_table *ret;
|
| 344 |
|
|
|
| 345 |
|
|
ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
|
| 346 |
|
|
if (!ret)
|
| 347 |
|
|
return 0;
|
| 348 |
|
|
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
| 349 |
|
|
_bfd_elf_link_hash_newfunc,
|
| 350 |
|
|
sizeof (struct elf_link_hash_entry)))
|
| 351 |
|
|
{
|
| 352 |
|
|
bfd_release (abfd, ret);
|
| 353 |
|
|
return 0;
|
| 354 |
|
|
}
|
| 355 |
|
|
|
| 356 |
|
|
if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
|
| 357 |
|
|
elf64_hppa_new_dyn_hash_entry,
|
| 358 |
|
|
sizeof (struct elf64_hppa_dyn_hash_entry)))
|
| 359 |
|
|
return 0;
|
| 360 |
|
|
return &ret->root.root;
|
| 361 |
|
|
}
|
| 362 |
|
|
|
| 363 |
|
|
/* Look up an entry in a PA64 ELF linker hash table. */
|
| 364 |
|
|
|
| 365 |
|
|
static struct elf64_hppa_dyn_hash_entry *
|
| 366 |
|
|
elf64_hppa_dyn_hash_lookup(table, string, create, copy)
|
| 367 |
|
|
struct elf64_hppa_dyn_hash_table *table;
|
| 368 |
|
|
const char *string;
|
| 369 |
|
|
bfd_boolean create, copy;
|
| 370 |
|
|
{
|
| 371 |
|
|
return ((struct elf64_hppa_dyn_hash_entry *)
|
| 372 |
|
|
bfd_hash_lookup (&table->root, string, create, copy));
|
| 373 |
|
|
}
|
| 374 |
|
|
|
| 375 |
|
|
/* Traverse a PA64 ELF linker hash table. */
|
| 376 |
|
|
|
| 377 |
|
|
static void
|
| 378 |
|
|
elf64_hppa_dyn_hash_traverse (table, func, info)
|
| 379 |
|
|
struct elf64_hppa_dyn_hash_table *table;
|
| 380 |
|
|
bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
| 381 |
|
|
PTR info;
|
| 382 |
|
|
{
|
| 383 |
|
|
(bfd_hash_traverse
|
| 384 |
|
|
(&table->root,
|
| 385 |
|
|
(bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
|
| 386 |
|
|
info));
|
| 387 |
|
|
}
|
| 388 |
|
|
|
| 389 |
|
|
/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
|
| 390 |
|
|
|
| 391 |
|
|
Additionally we set the default architecture and machine. */
|
| 392 |
|
|
static bfd_boolean
|
| 393 |
|
|
elf64_hppa_object_p (abfd)
|
| 394 |
|
|
bfd *abfd;
|
| 395 |
|
|
{
|
| 396 |
|
|
Elf_Internal_Ehdr * i_ehdrp;
|
| 397 |
|
|
unsigned int flags;
|
| 398 |
|
|
|
| 399 |
|
|
i_ehdrp = elf_elfheader (abfd);
|
| 400 |
|
|
if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
|
| 401 |
|
|
{
|
| 402 |
|
|
/* GCC on hppa-linux produces binaries with OSABI=Linux,
|
| 403 |
|
|
but the kernel produces corefiles with OSABI=SysV. */
|
| 404 |
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
|
| 405 |
|
|
&& i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
|
| 406 |
|
|
return FALSE;
|
| 407 |
|
|
}
|
| 408 |
|
|
else
|
| 409 |
|
|
{
|
| 410 |
|
|
/* HPUX produces binaries with OSABI=HPUX,
|
| 411 |
|
|
but the kernel produces corefiles with OSABI=SysV. */
|
| 412 |
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
|
| 413 |
|
|
&& i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
|
| 414 |
|
|
return FALSE;
|
| 415 |
|
|
}
|
| 416 |
|
|
|
| 417 |
|
|
flags = i_ehdrp->e_flags;
|
| 418 |
|
|
switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
|
| 419 |
|
|
{
|
| 420 |
|
|
case EFA_PARISC_1_0:
|
| 421 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
|
| 422 |
|
|
case EFA_PARISC_1_1:
|
| 423 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
|
| 424 |
|
|
case EFA_PARISC_2_0:
|
| 425 |
|
|
if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
|
| 426 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
|
| 427 |
|
|
else
|
| 428 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
|
| 429 |
|
|
case EFA_PARISC_2_0 | EF_PARISC_WIDE:
|
| 430 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
|
| 431 |
|
|
}
|
| 432 |
|
|
/* Don't be fussy. */
|
| 433 |
|
|
return TRUE;
|
| 434 |
|
|
}
|
| 435 |
|
|
|
| 436 |
|
|
/* Given section type (hdr->sh_type), return a boolean indicating
|
| 437 |
|
|
whether or not the section is an elf64-hppa specific section. */
|
| 438 |
|
|
static bfd_boolean
|
| 439 |
|
|
elf64_hppa_section_from_shdr (bfd *abfd,
|
| 440 |
|
|
Elf_Internal_Shdr *hdr,
|
| 441 |
|
|
const char *name,
|
| 442 |
|
|
int shindex)
|
| 443 |
|
|
{
|
| 444 |
|
|
asection *newsect;
|
| 445 |
|
|
|
| 446 |
|
|
switch (hdr->sh_type)
|
| 447 |
|
|
{
|
| 448 |
|
|
case SHT_PARISC_EXT:
|
| 449 |
|
|
if (strcmp (name, ".PARISC.archext") != 0)
|
| 450 |
|
|
return FALSE;
|
| 451 |
|
|
break;
|
| 452 |
|
|
case SHT_PARISC_UNWIND:
|
| 453 |
|
|
if (strcmp (name, ".PARISC.unwind") != 0)
|
| 454 |
|
|
return FALSE;
|
| 455 |
|
|
break;
|
| 456 |
|
|
case SHT_PARISC_DOC:
|
| 457 |
|
|
case SHT_PARISC_ANNOT:
|
| 458 |
|
|
default:
|
| 459 |
|
|
return FALSE;
|
| 460 |
|
|
}
|
| 461 |
|
|
|
| 462 |
|
|
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
|
| 463 |
|
|
return FALSE;
|
| 464 |
|
|
newsect = hdr->bfd_section;
|
| 465 |
|
|
|
| 466 |
|
|
return TRUE;
|
| 467 |
|
|
}
|
| 468 |
|
|
|
| 469 |
|
|
/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
|
| 470 |
|
|
name describes what was once potentially anonymous memory. We
|
| 471 |
|
|
allocate memory as necessary, possibly reusing PBUF/PLEN. */
|
| 472 |
|
|
|
| 473 |
|
|
static const char *
|
| 474 |
|
|
get_dyn_name (abfd, h, rel, pbuf, plen)
|
| 475 |
|
|
bfd *abfd;
|
| 476 |
|
|
struct elf_link_hash_entry *h;
|
| 477 |
|
|
const Elf_Internal_Rela *rel;
|
| 478 |
|
|
char **pbuf;
|
| 479 |
|
|
size_t *plen;
|
| 480 |
|
|
{
|
| 481 |
|
|
asection *sec = abfd->sections;
|
| 482 |
|
|
size_t nlen, tlen;
|
| 483 |
|
|
char *buf;
|
| 484 |
|
|
size_t len;
|
| 485 |
|
|
|
| 486 |
|
|
if (h && rel->r_addend == 0)
|
| 487 |
|
|
return h->root.root.string;
|
| 488 |
|
|
|
| 489 |
|
|
if (h)
|
| 490 |
|
|
nlen = strlen (h->root.root.string);
|
| 491 |
|
|
else
|
| 492 |
|
|
nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
|
| 493 |
|
|
tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
|
| 494 |
|
|
|
| 495 |
|
|
len = *plen;
|
| 496 |
|
|
buf = *pbuf;
|
| 497 |
|
|
if (len < tlen)
|
| 498 |
|
|
{
|
| 499 |
|
|
if (buf)
|
| 500 |
|
|
free (buf);
|
| 501 |
|
|
*pbuf = buf = malloc (tlen);
|
| 502 |
|
|
*plen = len = tlen;
|
| 503 |
|
|
if (!buf)
|
| 504 |
|
|
return NULL;
|
| 505 |
|
|
}
|
| 506 |
|
|
|
| 507 |
|
|
if (h)
|
| 508 |
|
|
{
|
| 509 |
|
|
memcpy (buf, h->root.root.string, nlen);
|
| 510 |
|
|
buf[nlen++] = '+';
|
| 511 |
|
|
sprintf_vma (buf + nlen, rel->r_addend);
|
| 512 |
|
|
}
|
| 513 |
|
|
else
|
| 514 |
|
|
{
|
| 515 |
|
|
nlen = sprintf (buf, "%x:%lx",
|
| 516 |
|
|
sec->id & 0xffffffff,
|
| 517 |
|
|
(long) ELF64_R_SYM (rel->r_info));
|
| 518 |
|
|
if (rel->r_addend)
|
| 519 |
|
|
{
|
| 520 |
|
|
buf[nlen++] = '+';
|
| 521 |
|
|
sprintf_vma (buf + nlen, rel->r_addend);
|
| 522 |
|
|
}
|
| 523 |
|
|
}
|
| 524 |
|
|
|
| 525 |
|
|
return buf;
|
| 526 |
|
|
}
|
| 527 |
|
|
|
| 528 |
|
|
/* SEC is a section containing relocs for an input BFD when linking; return
|
| 529 |
|
|
a suitable section for holding relocs in the output BFD for a link. */
|
| 530 |
|
|
|
| 531 |
|
|
static bfd_boolean
|
| 532 |
|
|
get_reloc_section (abfd, hppa_info, sec)
|
| 533 |
|
|
bfd *abfd;
|
| 534 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 535 |
|
|
asection *sec;
|
| 536 |
|
|
{
|
| 537 |
|
|
const char *srel_name;
|
| 538 |
|
|
asection *srel;
|
| 539 |
|
|
bfd *dynobj;
|
| 540 |
|
|
|
| 541 |
|
|
srel_name = (bfd_elf_string_from_elf_section
|
| 542 |
|
|
(abfd, elf_elfheader(abfd)->e_shstrndx,
|
| 543 |
|
|
elf_section_data(sec)->rel_hdr.sh_name));
|
| 544 |
|
|
if (srel_name == NULL)
|
| 545 |
|
|
return FALSE;
|
| 546 |
|
|
|
| 547 |
|
|
BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
|
| 548 |
|
|
&& strcmp (bfd_get_section_name (abfd, sec),
|
| 549 |
|
|
srel_name + 5) == 0)
|
| 550 |
|
|
|| (CONST_STRNEQ (srel_name, ".rel")
|
| 551 |
|
|
&& strcmp (bfd_get_section_name (abfd, sec),
|
| 552 |
|
|
srel_name + 4) == 0));
|
| 553 |
|
|
|
| 554 |
|
|
dynobj = hppa_info->root.dynobj;
|
| 555 |
|
|
if (!dynobj)
|
| 556 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
| 557 |
|
|
|
| 558 |
|
|
srel = bfd_get_section_by_name (dynobj, srel_name);
|
| 559 |
|
|
if (srel == NULL)
|
| 560 |
|
|
{
|
| 561 |
|
|
srel = bfd_make_section_with_flags (dynobj, srel_name,
|
| 562 |
|
|
(SEC_ALLOC
|
| 563 |
|
|
| SEC_LOAD
|
| 564 |
|
|
| SEC_HAS_CONTENTS
|
| 565 |
|
|
| SEC_IN_MEMORY
|
| 566 |
|
|
| SEC_LINKER_CREATED
|
| 567 |
|
|
| SEC_READONLY));
|
| 568 |
|
|
if (srel == NULL
|
| 569 |
|
|
|| !bfd_set_section_alignment (dynobj, srel, 3))
|
| 570 |
|
|
return FALSE;
|
| 571 |
|
|
}
|
| 572 |
|
|
|
| 573 |
|
|
hppa_info->other_rel_sec = srel;
|
| 574 |
|
|
return TRUE;
|
| 575 |
|
|
}
|
| 576 |
|
|
|
| 577 |
|
|
/* Add a new entry to the list of dynamic relocations against DYN_H.
|
| 578 |
|
|
|
| 579 |
|
|
We use this to keep a record of all the FPTR relocations against a
|
| 580 |
|
|
particular symbol so that we can create FPTR relocations in the
|
| 581 |
|
|
output file. */
|
| 582 |
|
|
|
| 583 |
|
|
static bfd_boolean
|
| 584 |
|
|
count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
|
| 585 |
|
|
bfd *abfd;
|
| 586 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 587 |
|
|
int type;
|
| 588 |
|
|
asection *sec;
|
| 589 |
|
|
int sec_symndx;
|
| 590 |
|
|
bfd_vma offset;
|
| 591 |
|
|
bfd_vma addend;
|
| 592 |
|
|
{
|
| 593 |
|
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
| 594 |
|
|
|
| 595 |
|
|
rent = (struct elf64_hppa_dyn_reloc_entry *)
|
| 596 |
|
|
bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
|
| 597 |
|
|
if (!rent)
|
| 598 |
|
|
return FALSE;
|
| 599 |
|
|
|
| 600 |
|
|
rent->next = dyn_h->reloc_entries;
|
| 601 |
|
|
rent->type = type;
|
| 602 |
|
|
rent->sec = sec;
|
| 603 |
|
|
rent->sec_symndx = sec_symndx;
|
| 604 |
|
|
rent->offset = offset;
|
| 605 |
|
|
rent->addend = addend;
|
| 606 |
|
|
dyn_h->reloc_entries = rent;
|
| 607 |
|
|
|
| 608 |
|
|
return TRUE;
|
| 609 |
|
|
}
|
| 610 |
|
|
|
| 611 |
|
|
/* Scan the RELOCS and record the type of dynamic entries that each
|
| 612 |
|
|
referenced symbol needs. */
|
| 613 |
|
|
|
| 614 |
|
|
static bfd_boolean
|
| 615 |
|
|
elf64_hppa_check_relocs (abfd, info, sec, relocs)
|
| 616 |
|
|
bfd *abfd;
|
| 617 |
|
|
struct bfd_link_info *info;
|
| 618 |
|
|
asection *sec;
|
| 619 |
|
|
const Elf_Internal_Rela *relocs;
|
| 620 |
|
|
{
|
| 621 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 622 |
|
|
const Elf_Internal_Rela *relend;
|
| 623 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
| 624 |
|
|
const Elf_Internal_Rela *rel;
|
| 625 |
|
|
asection *dlt, *plt, *stubs;
|
| 626 |
|
|
char *buf;
|
| 627 |
|
|
size_t buf_len;
|
| 628 |
|
|
int sec_symndx;
|
| 629 |
|
|
|
| 630 |
|
|
if (info->relocatable)
|
| 631 |
|
|
return TRUE;
|
| 632 |
|
|
|
| 633 |
|
|
/* If this is the first dynamic object found in the link, create
|
| 634 |
|
|
the special sections required for dynamic linking. */
|
| 635 |
|
|
if (! elf_hash_table (info)->dynamic_sections_created)
|
| 636 |
|
|
{
|
| 637 |
|
|
if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
|
| 638 |
|
|
return FALSE;
|
| 639 |
|
|
}
|
| 640 |
|
|
|
| 641 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
| 642 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
| 643 |
|
|
|
| 644 |
|
|
/* If necessary, build a new table holding section symbols indices
|
| 645 |
|
|
for this BFD. */
|
| 646 |
|
|
|
| 647 |
|
|
if (info->shared && hppa_info->section_syms_bfd != abfd)
|
| 648 |
|
|
{
|
| 649 |
|
|
unsigned long i;
|
| 650 |
|
|
unsigned int highest_shndx;
|
| 651 |
|
|
Elf_Internal_Sym *local_syms = NULL;
|
| 652 |
|
|
Elf_Internal_Sym *isym, *isymend;
|
| 653 |
|
|
bfd_size_type amt;
|
| 654 |
|
|
|
| 655 |
|
|
/* We're done with the old cache of section index to section symbol
|
| 656 |
|
|
index information. Free it.
|
| 657 |
|
|
|
| 658 |
|
|
?!? Note we leak the last section_syms array. Presumably we
|
| 659 |
|
|
could free it in one of the later routines in this file. */
|
| 660 |
|
|
if (hppa_info->section_syms)
|
| 661 |
|
|
free (hppa_info->section_syms);
|
| 662 |
|
|
|
| 663 |
|
|
/* Read this BFD's local symbols. */
|
| 664 |
|
|
if (symtab_hdr->sh_info != 0)
|
| 665 |
|
|
{
|
| 666 |
|
|
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
| 667 |
|
|
if (local_syms == NULL)
|
| 668 |
|
|
local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
| 669 |
|
|
symtab_hdr->sh_info, 0,
|
| 670 |
|
|
NULL, NULL, NULL);
|
| 671 |
|
|
if (local_syms == NULL)
|
| 672 |
|
|
return FALSE;
|
| 673 |
|
|
}
|
| 674 |
|
|
|
| 675 |
|
|
/* Record the highest section index referenced by the local symbols. */
|
| 676 |
|
|
highest_shndx = 0;
|
| 677 |
|
|
isymend = local_syms + symtab_hdr->sh_info;
|
| 678 |
|
|
for (isym = local_syms; isym < isymend; isym++)
|
| 679 |
|
|
{
|
| 680 |
|
|
if (isym->st_shndx > highest_shndx)
|
| 681 |
|
|
highest_shndx = isym->st_shndx;
|
| 682 |
|
|
}
|
| 683 |
|
|
|
| 684 |
|
|
/* Allocate an array to hold the section index to section symbol index
|
| 685 |
|
|
mapping. Bump by one since we start counting at zero. */
|
| 686 |
|
|
highest_shndx++;
|
| 687 |
|
|
amt = highest_shndx;
|
| 688 |
|
|
amt *= sizeof (int);
|
| 689 |
|
|
hppa_info->section_syms = (int *) bfd_malloc (amt);
|
| 690 |
|
|
|
| 691 |
|
|
/* Now walk the local symbols again. If we find a section symbol,
|
| 692 |
|
|
record the index of the symbol into the section_syms array. */
|
| 693 |
|
|
for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
|
| 694 |
|
|
{
|
| 695 |
|
|
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
| 696 |
|
|
hppa_info->section_syms[isym->st_shndx] = i;
|
| 697 |
|
|
}
|
| 698 |
|
|
|
| 699 |
|
|
/* We are finished with the local symbols. */
|
| 700 |
|
|
if (local_syms != NULL
|
| 701 |
|
|
&& symtab_hdr->contents != (unsigned char *) local_syms)
|
| 702 |
|
|
{
|
| 703 |
|
|
if (! info->keep_memory)
|
| 704 |
|
|
free (local_syms);
|
| 705 |
|
|
else
|
| 706 |
|
|
{
|
| 707 |
|
|
/* Cache the symbols for elf_link_input_bfd. */
|
| 708 |
|
|
symtab_hdr->contents = (unsigned char *) local_syms;
|
| 709 |
|
|
}
|
| 710 |
|
|
}
|
| 711 |
|
|
|
| 712 |
|
|
/* Record which BFD we built the section_syms mapping for. */
|
| 713 |
|
|
hppa_info->section_syms_bfd = abfd;
|
| 714 |
|
|
}
|
| 715 |
|
|
|
| 716 |
|
|
/* Record the symbol index for this input section. We may need it for
|
| 717 |
|
|
relocations when building shared libraries. When not building shared
|
| 718 |
|
|
libraries this value is never really used, but assign it to zero to
|
| 719 |
|
|
prevent out of bounds memory accesses in other routines. */
|
| 720 |
|
|
if (info->shared)
|
| 721 |
|
|
{
|
| 722 |
|
|
sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
| 723 |
|
|
|
| 724 |
|
|
/* If we did not find a section symbol for this section, then
|
| 725 |
|
|
something went terribly wrong above. */
|
| 726 |
|
|
if (sec_symndx == -1)
|
| 727 |
|
|
return FALSE;
|
| 728 |
|
|
|
| 729 |
|
|
sec_symndx = hppa_info->section_syms[sec_symndx];
|
| 730 |
|
|
}
|
| 731 |
|
|
else
|
| 732 |
|
|
sec_symndx = 0;
|
| 733 |
|
|
|
| 734 |
|
|
dlt = plt = stubs = NULL;
|
| 735 |
|
|
buf = NULL;
|
| 736 |
|
|
buf_len = 0;
|
| 737 |
|
|
|
| 738 |
|
|
relend = relocs + sec->reloc_count;
|
| 739 |
|
|
for (rel = relocs; rel < relend; ++rel)
|
| 740 |
|
|
{
|
| 741 |
|
|
enum
|
| 742 |
|
|
{
|
| 743 |
|
|
NEED_DLT = 1,
|
| 744 |
|
|
NEED_PLT = 2,
|
| 745 |
|
|
NEED_STUB = 4,
|
| 746 |
|
|
NEED_OPD = 8,
|
| 747 |
|
|
NEED_DYNREL = 16,
|
| 748 |
|
|
};
|
| 749 |
|
|
|
| 750 |
|
|
struct elf_link_hash_entry *h = NULL;
|
| 751 |
|
|
unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
|
| 752 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 753 |
|
|
int need_entry;
|
| 754 |
|
|
const char *addr_name;
|
| 755 |
|
|
bfd_boolean maybe_dynamic;
|
| 756 |
|
|
int dynrel_type = R_PARISC_NONE;
|
| 757 |
|
|
static reloc_howto_type *howto;
|
| 758 |
|
|
|
| 759 |
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
| 760 |
|
|
{
|
| 761 |
|
|
/* We're dealing with a global symbol -- find its hash entry
|
| 762 |
|
|
and mark it as being referenced. */
|
| 763 |
|
|
long indx = r_symndx - symtab_hdr->sh_info;
|
| 764 |
|
|
h = elf_sym_hashes (abfd)[indx];
|
| 765 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
| 766 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
| 767 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
| 768 |
|
|
|
| 769 |
|
|
h->ref_regular = 1;
|
| 770 |
|
|
}
|
| 771 |
|
|
|
| 772 |
|
|
/* We can only get preliminary data on whether a symbol is
|
| 773 |
|
|
locally or externally defined, as not all of the input files
|
| 774 |
|
|
have yet been processed. Do something with what we know, as
|
| 775 |
|
|
this may help reduce memory usage and processing time later. */
|
| 776 |
|
|
maybe_dynamic = FALSE;
|
| 777 |
|
|
if (h && ((info->shared
|
| 778 |
|
|
&& (!info->symbolic
|
| 779 |
|
|
|| info->unresolved_syms_in_shared_libs == RM_IGNORE))
|
| 780 |
|
|
|| !h->def_regular
|
| 781 |
|
|
|| h->root.type == bfd_link_hash_defweak))
|
| 782 |
|
|
maybe_dynamic = TRUE;
|
| 783 |
|
|
|
| 784 |
|
|
howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
|
| 785 |
|
|
need_entry = 0;
|
| 786 |
|
|
switch (howto->type)
|
| 787 |
|
|
{
|
| 788 |
|
|
/* These are simple indirect references to symbols through the
|
| 789 |
|
|
DLT. We need to create a DLT entry for any symbols which
|
| 790 |
|
|
appears in a DLTIND relocation. */
|
| 791 |
|
|
case R_PARISC_DLTIND21L:
|
| 792 |
|
|
case R_PARISC_DLTIND14R:
|
| 793 |
|
|
case R_PARISC_DLTIND14F:
|
| 794 |
|
|
case R_PARISC_DLTIND14WR:
|
| 795 |
|
|
case R_PARISC_DLTIND14DR:
|
| 796 |
|
|
need_entry = NEED_DLT;
|
| 797 |
|
|
break;
|
| 798 |
|
|
|
| 799 |
|
|
/* ?!? These need a DLT entry. But I have no idea what to do with
|
| 800 |
|
|
the "link time TP value. */
|
| 801 |
|
|
case R_PARISC_LTOFF_TP21L:
|
| 802 |
|
|
case R_PARISC_LTOFF_TP14R:
|
| 803 |
|
|
case R_PARISC_LTOFF_TP14F:
|
| 804 |
|
|
case R_PARISC_LTOFF_TP64:
|
| 805 |
|
|
case R_PARISC_LTOFF_TP14WR:
|
| 806 |
|
|
case R_PARISC_LTOFF_TP14DR:
|
| 807 |
|
|
case R_PARISC_LTOFF_TP16F:
|
| 808 |
|
|
case R_PARISC_LTOFF_TP16WF:
|
| 809 |
|
|
case R_PARISC_LTOFF_TP16DF:
|
| 810 |
|
|
need_entry = NEED_DLT;
|
| 811 |
|
|
break;
|
| 812 |
|
|
|
| 813 |
|
|
/* These are function calls. Depending on their precise target we
|
| 814 |
|
|
may need to make a stub for them. The stub uses the PLT, so we
|
| 815 |
|
|
need to create PLT entries for these symbols too. */
|
| 816 |
|
|
case R_PARISC_PCREL12F:
|
| 817 |
|
|
case R_PARISC_PCREL17F:
|
| 818 |
|
|
case R_PARISC_PCREL22F:
|
| 819 |
|
|
case R_PARISC_PCREL32:
|
| 820 |
|
|
case R_PARISC_PCREL64:
|
| 821 |
|
|
case R_PARISC_PCREL21L:
|
| 822 |
|
|
case R_PARISC_PCREL17R:
|
| 823 |
|
|
case R_PARISC_PCREL17C:
|
| 824 |
|
|
case R_PARISC_PCREL14R:
|
| 825 |
|
|
case R_PARISC_PCREL14F:
|
| 826 |
|
|
case R_PARISC_PCREL22C:
|
| 827 |
|
|
case R_PARISC_PCREL14WR:
|
| 828 |
|
|
case R_PARISC_PCREL14DR:
|
| 829 |
|
|
case R_PARISC_PCREL16F:
|
| 830 |
|
|
case R_PARISC_PCREL16WF:
|
| 831 |
|
|
case R_PARISC_PCREL16DF:
|
| 832 |
|
|
need_entry = (NEED_PLT | NEED_STUB);
|
| 833 |
|
|
break;
|
| 834 |
|
|
|
| 835 |
|
|
case R_PARISC_PLTOFF21L:
|
| 836 |
|
|
case R_PARISC_PLTOFF14R:
|
| 837 |
|
|
case R_PARISC_PLTOFF14F:
|
| 838 |
|
|
case R_PARISC_PLTOFF14WR:
|
| 839 |
|
|
case R_PARISC_PLTOFF14DR:
|
| 840 |
|
|
case R_PARISC_PLTOFF16F:
|
| 841 |
|
|
case R_PARISC_PLTOFF16WF:
|
| 842 |
|
|
case R_PARISC_PLTOFF16DF:
|
| 843 |
|
|
need_entry = (NEED_PLT);
|
| 844 |
|
|
break;
|
| 845 |
|
|
|
| 846 |
|
|
case R_PARISC_DIR64:
|
| 847 |
|
|
if (info->shared || maybe_dynamic)
|
| 848 |
|
|
need_entry = (NEED_DYNREL);
|
| 849 |
|
|
dynrel_type = R_PARISC_DIR64;
|
| 850 |
|
|
break;
|
| 851 |
|
|
|
| 852 |
|
|
/* This is an indirect reference through the DLT to get the address
|
| 853 |
|
|
of a OPD descriptor. Thus we need to make a DLT entry that points
|
| 854 |
|
|
to an OPD entry. */
|
| 855 |
|
|
case R_PARISC_LTOFF_FPTR21L:
|
| 856 |
|
|
case R_PARISC_LTOFF_FPTR14R:
|
| 857 |
|
|
case R_PARISC_LTOFF_FPTR14WR:
|
| 858 |
|
|
case R_PARISC_LTOFF_FPTR14DR:
|
| 859 |
|
|
case R_PARISC_LTOFF_FPTR32:
|
| 860 |
|
|
case R_PARISC_LTOFF_FPTR64:
|
| 861 |
|
|
case R_PARISC_LTOFF_FPTR16F:
|
| 862 |
|
|
case R_PARISC_LTOFF_FPTR16WF:
|
| 863 |
|
|
case R_PARISC_LTOFF_FPTR16DF:
|
| 864 |
|
|
if (info->shared || maybe_dynamic)
|
| 865 |
|
|
need_entry = (NEED_DLT | NEED_OPD);
|
| 866 |
|
|
else
|
| 867 |
|
|
need_entry = (NEED_DLT | NEED_OPD);
|
| 868 |
|
|
dynrel_type = R_PARISC_FPTR64;
|
| 869 |
|
|
break;
|
| 870 |
|
|
|
| 871 |
|
|
/* This is a simple OPD entry. */
|
| 872 |
|
|
case R_PARISC_FPTR64:
|
| 873 |
|
|
if (info->shared || maybe_dynamic)
|
| 874 |
|
|
need_entry = (NEED_OPD | NEED_DYNREL);
|
| 875 |
|
|
else
|
| 876 |
|
|
need_entry = (NEED_OPD);
|
| 877 |
|
|
dynrel_type = R_PARISC_FPTR64;
|
| 878 |
|
|
break;
|
| 879 |
|
|
|
| 880 |
|
|
/* Add more cases as needed. */
|
| 881 |
|
|
}
|
| 882 |
|
|
|
| 883 |
|
|
if (!need_entry)
|
| 884 |
|
|
continue;
|
| 885 |
|
|
|
| 886 |
|
|
/* Collect a canonical name for this address. */
|
| 887 |
|
|
addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
|
| 888 |
|
|
|
| 889 |
|
|
/* Collect the canonical entry data for this address. */
|
| 890 |
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
| 891 |
|
|
addr_name, TRUE, TRUE);
|
| 892 |
|
|
BFD_ASSERT (dyn_h);
|
| 893 |
|
|
|
| 894 |
|
|
/* Stash away enough information to be able to find this symbol
|
| 895 |
|
|
regardless of whether or not it is local or global. */
|
| 896 |
|
|
dyn_h->h = h;
|
| 897 |
|
|
dyn_h->owner = abfd;
|
| 898 |
|
|
dyn_h->sym_indx = r_symndx;
|
| 899 |
|
|
|
| 900 |
|
|
/* ?!? We may need to do some error checking in here. */
|
| 901 |
|
|
/* Create what's needed. */
|
| 902 |
|
|
if (need_entry & NEED_DLT)
|
| 903 |
|
|
{
|
| 904 |
|
|
if (! hppa_info->dlt_sec
|
| 905 |
|
|
&& ! get_dlt (abfd, info, hppa_info))
|
| 906 |
|
|
goto err_out;
|
| 907 |
|
|
dyn_h->want_dlt = 1;
|
| 908 |
|
|
}
|
| 909 |
|
|
|
| 910 |
|
|
if (need_entry & NEED_PLT)
|
| 911 |
|
|
{
|
| 912 |
|
|
if (! hppa_info->plt_sec
|
| 913 |
|
|
&& ! get_plt (abfd, info, hppa_info))
|
| 914 |
|
|
goto err_out;
|
| 915 |
|
|
dyn_h->want_plt = 1;
|
| 916 |
|
|
}
|
| 917 |
|
|
|
| 918 |
|
|
if (need_entry & NEED_STUB)
|
| 919 |
|
|
{
|
| 920 |
|
|
if (! hppa_info->stub_sec
|
| 921 |
|
|
&& ! get_stub (abfd, info, hppa_info))
|
| 922 |
|
|
goto err_out;
|
| 923 |
|
|
dyn_h->want_stub = 1;
|
| 924 |
|
|
}
|
| 925 |
|
|
|
| 926 |
|
|
if (need_entry & NEED_OPD)
|
| 927 |
|
|
{
|
| 928 |
|
|
if (! hppa_info->opd_sec
|
| 929 |
|
|
&& ! get_opd (abfd, info, hppa_info))
|
| 930 |
|
|
goto err_out;
|
| 931 |
|
|
|
| 932 |
|
|
dyn_h->want_opd = 1;
|
| 933 |
|
|
|
| 934 |
|
|
/* FPTRs are not allocated by the dynamic linker for PA64, though
|
| 935 |
|
|
it is possible that will change in the future. */
|
| 936 |
|
|
|
| 937 |
|
|
/* This could be a local function that had its address taken, in
|
| 938 |
|
|
which case H will be NULL. */
|
| 939 |
|
|
if (h)
|
| 940 |
|
|
h->needs_plt = 1;
|
| 941 |
|
|
}
|
| 942 |
|
|
|
| 943 |
|
|
/* Add a new dynamic relocation to the chain of dynamic
|
| 944 |
|
|
relocations for this symbol. */
|
| 945 |
|
|
if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
|
| 946 |
|
|
{
|
| 947 |
|
|
if (! hppa_info->other_rel_sec
|
| 948 |
|
|
&& ! get_reloc_section (abfd, hppa_info, sec))
|
| 949 |
|
|
goto err_out;
|
| 950 |
|
|
|
| 951 |
|
|
if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
|
| 952 |
|
|
sec_symndx, rel->r_offset, rel->r_addend))
|
| 953 |
|
|
goto err_out;
|
| 954 |
|
|
|
| 955 |
|
|
/* If we are building a shared library and we just recorded
|
| 956 |
|
|
a dynamic R_PARISC_FPTR64 relocation, then make sure the
|
| 957 |
|
|
section symbol for this section ends up in the dynamic
|
| 958 |
|
|
symbol table. */
|
| 959 |
|
|
if (info->shared && dynrel_type == R_PARISC_FPTR64
|
| 960 |
|
|
&& ! (bfd_elf_link_record_local_dynamic_symbol
|
| 961 |
|
|
(info, abfd, sec_symndx)))
|
| 962 |
|
|
return FALSE;
|
| 963 |
|
|
}
|
| 964 |
|
|
}
|
| 965 |
|
|
|
| 966 |
|
|
if (buf)
|
| 967 |
|
|
free (buf);
|
| 968 |
|
|
return TRUE;
|
| 969 |
|
|
|
| 970 |
|
|
err_out:
|
| 971 |
|
|
if (buf)
|
| 972 |
|
|
free (buf);
|
| 973 |
|
|
return FALSE;
|
| 974 |
|
|
}
|
| 975 |
|
|
|
| 976 |
|
|
struct elf64_hppa_allocate_data
|
| 977 |
|
|
{
|
| 978 |
|
|
struct bfd_link_info *info;
|
| 979 |
|
|
bfd_size_type ofs;
|
| 980 |
|
|
};
|
| 981 |
|
|
|
| 982 |
|
|
/* Should we do dynamic things to this symbol? */
|
| 983 |
|
|
|
| 984 |
|
|
static bfd_boolean
|
| 985 |
|
|
elf64_hppa_dynamic_symbol_p (h, info)
|
| 986 |
|
|
struct elf_link_hash_entry *h;
|
| 987 |
|
|
struct bfd_link_info *info;
|
| 988 |
|
|
{
|
| 989 |
|
|
/* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
|
| 990 |
|
|
and relocations that retrieve a function descriptor? Assume the
|
| 991 |
|
|
worst for now. */
|
| 992 |
|
|
if (_bfd_elf_dynamic_symbol_p (h, info, 1))
|
| 993 |
|
|
{
|
| 994 |
|
|
/* ??? Why is this here and not elsewhere is_local_label_name. */
|
| 995 |
|
|
if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
|
| 996 |
|
|
return FALSE;
|
| 997 |
|
|
|
| 998 |
|
|
return TRUE;
|
| 999 |
|
|
}
|
| 1000 |
|
|
else
|
| 1001 |
|
|
return FALSE;
|
| 1002 |
|
|
}
|
| 1003 |
|
|
|
| 1004 |
|
|
/* Mark all functions exported by this file so that we can later allocate
|
| 1005 |
|
|
entries in .opd for them. */
|
| 1006 |
|
|
|
| 1007 |
|
|
static bfd_boolean
|
| 1008 |
|
|
elf64_hppa_mark_exported_functions (h, data)
|
| 1009 |
|
|
struct elf_link_hash_entry *h;
|
| 1010 |
|
|
PTR data;
|
| 1011 |
|
|
{
|
| 1012 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
| 1013 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 1014 |
|
|
|
| 1015 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
| 1016 |
|
|
|
| 1017 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
| 1018 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
| 1019 |
|
|
|
| 1020 |
|
|
if (h
|
| 1021 |
|
|
&& (h->root.type == bfd_link_hash_defined
|
| 1022 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
| 1023 |
|
|
&& h->root.u.def.section->output_section != NULL
|
| 1024 |
|
|
&& h->type == STT_FUNC)
|
| 1025 |
|
|
{
|
| 1026 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 1027 |
|
|
|
| 1028 |
|
|
/* Add this symbol to the PA64 linker hash table. */
|
| 1029 |
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
| 1030 |
|
|
h->root.root.string, TRUE, TRUE);
|
| 1031 |
|
|
BFD_ASSERT (dyn_h);
|
| 1032 |
|
|
dyn_h->h = h;
|
| 1033 |
|
|
|
| 1034 |
|
|
if (! hppa_info->opd_sec
|
| 1035 |
|
|
&& ! get_opd (hppa_info->root.dynobj, info, hppa_info))
|
| 1036 |
|
|
return FALSE;
|
| 1037 |
|
|
|
| 1038 |
|
|
dyn_h->want_opd = 1;
|
| 1039 |
|
|
/* Put a flag here for output_symbol_hook. */
|
| 1040 |
|
|
dyn_h->st_shndx = -1;
|
| 1041 |
|
|
h->needs_plt = 1;
|
| 1042 |
|
|
}
|
| 1043 |
|
|
|
| 1044 |
|
|
return TRUE;
|
| 1045 |
|
|
}
|
| 1046 |
|
|
|
| 1047 |
|
|
/* Allocate space for a DLT entry. */
|
| 1048 |
|
|
|
| 1049 |
|
|
static bfd_boolean
|
| 1050 |
|
|
allocate_global_data_dlt (dyn_h, data)
|
| 1051 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 1052 |
|
|
PTR data;
|
| 1053 |
|
|
{
|
| 1054 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
| 1055 |
|
|
|
| 1056 |
|
|
if (dyn_h->want_dlt)
|
| 1057 |
|
|
{
|
| 1058 |
|
|
struct elf_link_hash_entry *h = dyn_h->h;
|
| 1059 |
|
|
|
| 1060 |
|
|
if (x->info->shared)
|
| 1061 |
|
|
{
|
| 1062 |
|
|
/* Possibly add the symbol to the local dynamic symbol
|
| 1063 |
|
|
table since we might need to create a dynamic relocation
|
| 1064 |
|
|
against it. */
|
| 1065 |
|
|
if (! h
|
| 1066 |
|
|
|| (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
|
| 1067 |
|
|
{
|
| 1068 |
|
|
bfd *owner;
|
| 1069 |
|
|
owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
|
| 1070 |
|
|
|
| 1071 |
|
|
if (! (bfd_elf_link_record_local_dynamic_symbol
|
| 1072 |
|
|
(x->info, owner, dyn_h->sym_indx)))
|
| 1073 |
|
|
return FALSE;
|
| 1074 |
|
|
}
|
| 1075 |
|
|
}
|
| 1076 |
|
|
|
| 1077 |
|
|
dyn_h->dlt_offset = x->ofs;
|
| 1078 |
|
|
x->ofs += DLT_ENTRY_SIZE;
|
| 1079 |
|
|
}
|
| 1080 |
|
|
return TRUE;
|
| 1081 |
|
|
}
|
| 1082 |
|
|
|
| 1083 |
|
|
/* Allocate space for a DLT.PLT entry. */
|
| 1084 |
|
|
|
| 1085 |
|
|
static bfd_boolean
|
| 1086 |
|
|
allocate_global_data_plt (dyn_h, data)
|
| 1087 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 1088 |
|
|
PTR data;
|
| 1089 |
|
|
{
|
| 1090 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
| 1091 |
|
|
|
| 1092 |
|
|
if (dyn_h->want_plt
|
| 1093 |
|
|
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
|
| 1094 |
|
|
&& !((dyn_h->h->root.type == bfd_link_hash_defined
|
| 1095 |
|
|
|| dyn_h->h->root.type == bfd_link_hash_defweak)
|
| 1096 |
|
|
&& dyn_h->h->root.u.def.section->output_section != NULL))
|
| 1097 |
|
|
{
|
| 1098 |
|
|
dyn_h->plt_offset = x->ofs;
|
| 1099 |
|
|
x->ofs += PLT_ENTRY_SIZE;
|
| 1100 |
|
|
if (dyn_h->plt_offset < 0x2000)
|
| 1101 |
|
|
elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
|
| 1102 |
|
|
}
|
| 1103 |
|
|
else
|
| 1104 |
|
|
dyn_h->want_plt = 0;
|
| 1105 |
|
|
|
| 1106 |
|
|
return TRUE;
|
| 1107 |
|
|
}
|
| 1108 |
|
|
|
| 1109 |
|
|
/* Allocate space for a STUB entry. */
|
| 1110 |
|
|
|
| 1111 |
|
|
static bfd_boolean
|
| 1112 |
|
|
allocate_global_data_stub (dyn_h, data)
|
| 1113 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 1114 |
|
|
PTR data;
|
| 1115 |
|
|
{
|
| 1116 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
| 1117 |
|
|
|
| 1118 |
|
|
if (dyn_h->want_stub
|
| 1119 |
|
|
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
|
| 1120 |
|
|
&& !((dyn_h->h->root.type == bfd_link_hash_defined
|
| 1121 |
|
|
|| dyn_h->h->root.type == bfd_link_hash_defweak)
|
| 1122 |
|
|
&& dyn_h->h->root.u.def.section->output_section != NULL))
|
| 1123 |
|
|
{
|
| 1124 |
|
|
dyn_h->stub_offset = x->ofs;
|
| 1125 |
|
|
x->ofs += sizeof (plt_stub);
|
| 1126 |
|
|
}
|
| 1127 |
|
|
else
|
| 1128 |
|
|
dyn_h->want_stub = 0;
|
| 1129 |
|
|
return TRUE;
|
| 1130 |
|
|
}
|
| 1131 |
|
|
|
| 1132 |
|
|
/* Allocate space for a FPTR entry. */
|
| 1133 |
|
|
|
| 1134 |
|
|
static bfd_boolean
|
| 1135 |
|
|
allocate_global_data_opd (dyn_h, data)
|
| 1136 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 1137 |
|
|
PTR data;
|
| 1138 |
|
|
{
|
| 1139 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
| 1140 |
|
|
|
| 1141 |
|
|
if (dyn_h->want_opd)
|
| 1142 |
|
|
{
|
| 1143 |
|
|
struct elf_link_hash_entry *h = dyn_h->h;
|
| 1144 |
|
|
|
| 1145 |
|
|
if (h)
|
| 1146 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
| 1147 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
| 1148 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
| 1149 |
|
|
|
| 1150 |
|
|
/* We never need an opd entry for a symbol which is not
|
| 1151 |
|
|
defined by this output file. */
|
| 1152 |
|
|
if (h && (h->root.type == bfd_link_hash_undefined
|
| 1153 |
|
|
|| h->root.type == bfd_link_hash_undefweak
|
| 1154 |
|
|
|| h->root.u.def.section->output_section == NULL))
|
| 1155 |
|
|
dyn_h->want_opd = 0;
|
| 1156 |
|
|
|
| 1157 |
|
|
/* If we are creating a shared library, took the address of a local
|
| 1158 |
|
|
function or might export this function from this object file, then
|
| 1159 |
|
|
we have to create an opd descriptor. */
|
| 1160 |
|
|
else if (x->info->shared
|
| 1161 |
|
|
|| h == NULL
|
| 1162 |
|
|
|| (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
|
| 1163 |
|
|
|| (h->root.type == bfd_link_hash_defined
|
| 1164 |
|
|
|| h->root.type == bfd_link_hash_defweak))
|
| 1165 |
|
|
{
|
| 1166 |
|
|
/* If we are creating a shared library, then we will have to
|
| 1167 |
|
|
create a runtime relocation for the symbol to properly
|
| 1168 |
|
|
initialize the .opd entry. Make sure the symbol gets
|
| 1169 |
|
|
added to the dynamic symbol table. */
|
| 1170 |
|
|
if (x->info->shared
|
| 1171 |
|
|
&& (h == NULL || (h->dynindx == -1)))
|
| 1172 |
|
|
{
|
| 1173 |
|
|
bfd *owner;
|
| 1174 |
|
|
owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
|
| 1175 |
|
|
|
| 1176 |
|
|
if (!bfd_elf_link_record_local_dynamic_symbol
|
| 1177 |
|
|
(x->info, owner, dyn_h->sym_indx))
|
| 1178 |
|
|
return FALSE;
|
| 1179 |
|
|
}
|
| 1180 |
|
|
|
| 1181 |
|
|
/* This may not be necessary or desirable anymore now that
|
| 1182 |
|
|
we have some support for dealing with section symbols
|
| 1183 |
|
|
in dynamic relocs. But name munging does make the result
|
| 1184 |
|
|
much easier to debug. ie, the EPLT reloc will reference
|
| 1185 |
|
|
a symbol like .foobar, instead of .text + offset. */
|
| 1186 |
|
|
if (x->info->shared && h)
|
| 1187 |
|
|
{
|
| 1188 |
|
|
char *new_name;
|
| 1189 |
|
|
struct elf_link_hash_entry *nh;
|
| 1190 |
|
|
|
| 1191 |
|
|
new_name = alloca (strlen (h->root.root.string) + 2);
|
| 1192 |
|
|
new_name[0] = '.';
|
| 1193 |
|
|
strcpy (new_name + 1, h->root.root.string);
|
| 1194 |
|
|
|
| 1195 |
|
|
nh = elf_link_hash_lookup (elf_hash_table (x->info),
|
| 1196 |
|
|
new_name, TRUE, TRUE, TRUE);
|
| 1197 |
|
|
|
| 1198 |
|
|
nh->root.type = h->root.type;
|
| 1199 |
|
|
nh->root.u.def.value = h->root.u.def.value;
|
| 1200 |
|
|
nh->root.u.def.section = h->root.u.def.section;
|
| 1201 |
|
|
|
| 1202 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
|
| 1203 |
|
|
return FALSE;
|
| 1204 |
|
|
|
| 1205 |
|
|
}
|
| 1206 |
|
|
dyn_h->opd_offset = x->ofs;
|
| 1207 |
|
|
x->ofs += OPD_ENTRY_SIZE;
|
| 1208 |
|
|
}
|
| 1209 |
|
|
|
| 1210 |
|
|
/* Otherwise we do not need an opd entry. */
|
| 1211 |
|
|
else
|
| 1212 |
|
|
dyn_h->want_opd = 0;
|
| 1213 |
|
|
}
|
| 1214 |
|
|
return TRUE;
|
| 1215 |
|
|
}
|
| 1216 |
|
|
|
| 1217 |
|
|
/* HP requires the EI_OSABI field to be filled in. The assignment to
|
| 1218 |
|
|
EI_ABIVERSION may not be strictly necessary. */
|
| 1219 |
|
|
|
| 1220 |
|
|
static void
|
| 1221 |
|
|
elf64_hppa_post_process_headers (abfd, link_info)
|
| 1222 |
|
|
bfd * abfd;
|
| 1223 |
|
|
struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
|
| 1224 |
|
|
{
|
| 1225 |
|
|
Elf_Internal_Ehdr * i_ehdrp;
|
| 1226 |
|
|
|
| 1227 |
|
|
i_ehdrp = elf_elfheader (abfd);
|
| 1228 |
|
|
|
| 1229 |
|
|
i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
|
| 1230 |
|
|
i_ehdrp->e_ident[EI_ABIVERSION] = 1;
|
| 1231 |
|
|
}
|
| 1232 |
|
|
|
| 1233 |
|
|
/* Create function descriptor section (.opd). This section is called .opd
|
| 1234 |
|
|
because it contains "official procedure descriptors". The "official"
|
| 1235 |
|
|
refers to the fact that these descriptors are used when taking the address
|
| 1236 |
|
|
of a procedure, thus ensuring a unique address for each procedure. */
|
| 1237 |
|
|
|
| 1238 |
|
|
static bfd_boolean
|
| 1239 |
|
|
get_opd (abfd, info, hppa_info)
|
| 1240 |
|
|
bfd *abfd;
|
| 1241 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
| 1242 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 1243 |
|
|
{
|
| 1244 |
|
|
asection *opd;
|
| 1245 |
|
|
bfd *dynobj;
|
| 1246 |
|
|
|
| 1247 |
|
|
opd = hppa_info->opd_sec;
|
| 1248 |
|
|
if (!opd)
|
| 1249 |
|
|
{
|
| 1250 |
|
|
dynobj = hppa_info->root.dynobj;
|
| 1251 |
|
|
if (!dynobj)
|
| 1252 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
| 1253 |
|
|
|
| 1254 |
|
|
opd = bfd_make_section_with_flags (dynobj, ".opd",
|
| 1255 |
|
|
(SEC_ALLOC
|
| 1256 |
|
|
| SEC_LOAD
|
| 1257 |
|
|
| SEC_HAS_CONTENTS
|
| 1258 |
|
|
| SEC_IN_MEMORY
|
| 1259 |
|
|
| SEC_LINKER_CREATED));
|
| 1260 |
|
|
if (!opd
|
| 1261 |
|
|
|| !bfd_set_section_alignment (abfd, opd, 3))
|
| 1262 |
|
|
{
|
| 1263 |
|
|
BFD_ASSERT (0);
|
| 1264 |
|
|
return FALSE;
|
| 1265 |
|
|
}
|
| 1266 |
|
|
|
| 1267 |
|
|
hppa_info->opd_sec = opd;
|
| 1268 |
|
|
}
|
| 1269 |
|
|
|
| 1270 |
|
|
return TRUE;
|
| 1271 |
|
|
}
|
| 1272 |
|
|
|
| 1273 |
|
|
/* Create the PLT section. */
|
| 1274 |
|
|
|
| 1275 |
|
|
static bfd_boolean
|
| 1276 |
|
|
get_plt (abfd, info, hppa_info)
|
| 1277 |
|
|
bfd *abfd;
|
| 1278 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
| 1279 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 1280 |
|
|
{
|
| 1281 |
|
|
asection *plt;
|
| 1282 |
|
|
bfd *dynobj;
|
| 1283 |
|
|
|
| 1284 |
|
|
plt = hppa_info->plt_sec;
|
| 1285 |
|
|
if (!plt)
|
| 1286 |
|
|
{
|
| 1287 |
|
|
dynobj = hppa_info->root.dynobj;
|
| 1288 |
|
|
if (!dynobj)
|
| 1289 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
| 1290 |
|
|
|
| 1291 |
|
|
plt = bfd_make_section_with_flags (dynobj, ".plt",
|
| 1292 |
|
|
(SEC_ALLOC
|
| 1293 |
|
|
| SEC_LOAD
|
| 1294 |
|
|
| SEC_HAS_CONTENTS
|
| 1295 |
|
|
| SEC_IN_MEMORY
|
| 1296 |
|
|
| SEC_LINKER_CREATED));
|
| 1297 |
|
|
if (!plt
|
| 1298 |
|
|
|| !bfd_set_section_alignment (abfd, plt, 3))
|
| 1299 |
|
|
{
|
| 1300 |
|
|
BFD_ASSERT (0);
|
| 1301 |
|
|
return FALSE;
|
| 1302 |
|
|
}
|
| 1303 |
|
|
|
| 1304 |
|
|
hppa_info->plt_sec = plt;
|
| 1305 |
|
|
}
|
| 1306 |
|
|
|
| 1307 |
|
|
return TRUE;
|
| 1308 |
|
|
}
|
| 1309 |
|
|
|
| 1310 |
|
|
/* Create the DLT section. */
|
| 1311 |
|
|
|
| 1312 |
|
|
static bfd_boolean
|
| 1313 |
|
|
get_dlt (abfd, info, hppa_info)
|
| 1314 |
|
|
bfd *abfd;
|
| 1315 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
| 1316 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 1317 |
|
|
{
|
| 1318 |
|
|
asection *dlt;
|
| 1319 |
|
|
bfd *dynobj;
|
| 1320 |
|
|
|
| 1321 |
|
|
dlt = hppa_info->dlt_sec;
|
| 1322 |
|
|
if (!dlt)
|
| 1323 |
|
|
{
|
| 1324 |
|
|
dynobj = hppa_info->root.dynobj;
|
| 1325 |
|
|
if (!dynobj)
|
| 1326 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
| 1327 |
|
|
|
| 1328 |
|
|
dlt = bfd_make_section_with_flags (dynobj, ".dlt",
|
| 1329 |
|
|
(SEC_ALLOC
|
| 1330 |
|
|
| SEC_LOAD
|
| 1331 |
|
|
| SEC_HAS_CONTENTS
|
| 1332 |
|
|
| SEC_IN_MEMORY
|
| 1333 |
|
|
| SEC_LINKER_CREATED));
|
| 1334 |
|
|
if (!dlt
|
| 1335 |
|
|
|| !bfd_set_section_alignment (abfd, dlt, 3))
|
| 1336 |
|
|
{
|
| 1337 |
|
|
BFD_ASSERT (0);
|
| 1338 |
|
|
return FALSE;
|
| 1339 |
|
|
}
|
| 1340 |
|
|
|
| 1341 |
|
|
hppa_info->dlt_sec = dlt;
|
| 1342 |
|
|
}
|
| 1343 |
|
|
|
| 1344 |
|
|
return TRUE;
|
| 1345 |
|
|
}
|
| 1346 |
|
|
|
| 1347 |
|
|
/* Create the stubs section. */
|
| 1348 |
|
|
|
| 1349 |
|
|
static bfd_boolean
|
| 1350 |
|
|
get_stub (abfd, info, hppa_info)
|
| 1351 |
|
|
bfd *abfd;
|
| 1352 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
| 1353 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 1354 |
|
|
{
|
| 1355 |
|
|
asection *stub;
|
| 1356 |
|
|
bfd *dynobj;
|
| 1357 |
|
|
|
| 1358 |
|
|
stub = hppa_info->stub_sec;
|
| 1359 |
|
|
if (!stub)
|
| 1360 |
|
|
{
|
| 1361 |
|
|
dynobj = hppa_info->root.dynobj;
|
| 1362 |
|
|
if (!dynobj)
|
| 1363 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
| 1364 |
|
|
|
| 1365 |
|
|
stub = bfd_make_section_with_flags (dynobj, ".stub",
|
| 1366 |
|
|
(SEC_ALLOC | SEC_LOAD
|
| 1367 |
|
|
| SEC_HAS_CONTENTS
|
| 1368 |
|
|
| SEC_IN_MEMORY
|
| 1369 |
|
|
| SEC_READONLY
|
| 1370 |
|
|
| SEC_LINKER_CREATED));
|
| 1371 |
|
|
if (!stub
|
| 1372 |
|
|
|| !bfd_set_section_alignment (abfd, stub, 3))
|
| 1373 |
|
|
{
|
| 1374 |
|
|
BFD_ASSERT (0);
|
| 1375 |
|
|
return FALSE;
|
| 1376 |
|
|
}
|
| 1377 |
|
|
|
| 1378 |
|
|
hppa_info->stub_sec = stub;
|
| 1379 |
|
|
}
|
| 1380 |
|
|
|
| 1381 |
|
|
return TRUE;
|
| 1382 |
|
|
}
|
| 1383 |
|
|
|
| 1384 |
|
|
/* Create sections necessary for dynamic linking. This is only a rough
|
| 1385 |
|
|
cut and will likely change as we learn more about the somewhat
|
| 1386 |
|
|
unusual dynamic linking scheme HP uses.
|
| 1387 |
|
|
|
| 1388 |
|
|
.stub:
|
| 1389 |
|
|
Contains code to implement cross-space calls. The first time one
|
| 1390 |
|
|
of the stubs is used it will call into the dynamic linker, later
|
| 1391 |
|
|
calls will go straight to the target.
|
| 1392 |
|
|
|
| 1393 |
|
|
The only stub we support right now looks like
|
| 1394 |
|
|
|
| 1395 |
|
|
ldd OFFSET(%dp),%r1
|
| 1396 |
|
|
bve %r0(%r1)
|
| 1397 |
|
|
ldd OFFSET+8(%dp),%dp
|
| 1398 |
|
|
|
| 1399 |
|
|
Other stubs may be needed in the future. We may want the remove
|
| 1400 |
|
|
the break/nop instruction. It is only used right now to keep the
|
| 1401 |
|
|
offset of a .plt entry and a .stub entry in sync.
|
| 1402 |
|
|
|
| 1403 |
|
|
.dlt:
|
| 1404 |
|
|
This is what most people call the .got. HP used a different name.
|
| 1405 |
|
|
Losers.
|
| 1406 |
|
|
|
| 1407 |
|
|
.rela.dlt:
|
| 1408 |
|
|
Relocations for the DLT.
|
| 1409 |
|
|
|
| 1410 |
|
|
.plt:
|
| 1411 |
|
|
Function pointers as address,gp pairs.
|
| 1412 |
|
|
|
| 1413 |
|
|
.rela.plt:
|
| 1414 |
|
|
Should contain dynamic IPLT (and EPLT?) relocations.
|
| 1415 |
|
|
|
| 1416 |
|
|
.opd:
|
| 1417 |
|
|
FPTRS
|
| 1418 |
|
|
|
| 1419 |
|
|
.rela.opd:
|
| 1420 |
|
|
EPLT relocations for symbols exported from shared libraries. */
|
| 1421 |
|
|
|
| 1422 |
|
|
static bfd_boolean
|
| 1423 |
|
|
elf64_hppa_create_dynamic_sections (abfd, info)
|
| 1424 |
|
|
bfd *abfd;
|
| 1425 |
|
|
struct bfd_link_info *info;
|
| 1426 |
|
|
{
|
| 1427 |
|
|
asection *s;
|
| 1428 |
|
|
|
| 1429 |
|
|
if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
|
| 1430 |
|
|
return FALSE;
|
| 1431 |
|
|
|
| 1432 |
|
|
if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
|
| 1433 |
|
|
return FALSE;
|
| 1434 |
|
|
|
| 1435 |
|
|
if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
|
| 1436 |
|
|
return FALSE;
|
| 1437 |
|
|
|
| 1438 |
|
|
if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
|
| 1439 |
|
|
return FALSE;
|
| 1440 |
|
|
|
| 1441 |
|
|
s = bfd_make_section_with_flags (abfd, ".rela.dlt",
|
| 1442 |
|
|
(SEC_ALLOC | SEC_LOAD
|
| 1443 |
|
|
| SEC_HAS_CONTENTS
|
| 1444 |
|
|
| SEC_IN_MEMORY
|
| 1445 |
|
|
| SEC_READONLY
|
| 1446 |
|
|
| SEC_LINKER_CREATED));
|
| 1447 |
|
|
if (s == NULL
|
| 1448 |
|
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
| 1449 |
|
|
return FALSE;
|
| 1450 |
|
|
elf64_hppa_hash_table (info)->dlt_rel_sec = s;
|
| 1451 |
|
|
|
| 1452 |
|
|
s = bfd_make_section_with_flags (abfd, ".rela.plt",
|
| 1453 |
|
|
(SEC_ALLOC | SEC_LOAD
|
| 1454 |
|
|
| SEC_HAS_CONTENTS
|
| 1455 |
|
|
| SEC_IN_MEMORY
|
| 1456 |
|
|
| SEC_READONLY
|
| 1457 |
|
|
| SEC_LINKER_CREATED));
|
| 1458 |
|
|
if (s == NULL
|
| 1459 |
|
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
| 1460 |
|
|
return FALSE;
|
| 1461 |
|
|
elf64_hppa_hash_table (info)->plt_rel_sec = s;
|
| 1462 |
|
|
|
| 1463 |
|
|
s = bfd_make_section_with_flags (abfd, ".rela.data",
|
| 1464 |
|
|
(SEC_ALLOC | SEC_LOAD
|
| 1465 |
|
|
| SEC_HAS_CONTENTS
|
| 1466 |
|
|
| SEC_IN_MEMORY
|
| 1467 |
|
|
| SEC_READONLY
|
| 1468 |
|
|
| SEC_LINKER_CREATED));
|
| 1469 |
|
|
if (s == NULL
|
| 1470 |
|
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
| 1471 |
|
|
return FALSE;
|
| 1472 |
|
|
elf64_hppa_hash_table (info)->other_rel_sec = s;
|
| 1473 |
|
|
|
| 1474 |
|
|
s = bfd_make_section_with_flags (abfd, ".rela.opd",
|
| 1475 |
|
|
(SEC_ALLOC | SEC_LOAD
|
| 1476 |
|
|
| SEC_HAS_CONTENTS
|
| 1477 |
|
|
| SEC_IN_MEMORY
|
| 1478 |
|
|
| SEC_READONLY
|
| 1479 |
|
|
| SEC_LINKER_CREATED));
|
| 1480 |
|
|
if (s == NULL
|
| 1481 |
|
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
| 1482 |
|
|
return FALSE;
|
| 1483 |
|
|
elf64_hppa_hash_table (info)->opd_rel_sec = s;
|
| 1484 |
|
|
|
| 1485 |
|
|
return TRUE;
|
| 1486 |
|
|
}
|
| 1487 |
|
|
|
| 1488 |
|
|
/* Allocate dynamic relocations for those symbols that turned out
|
| 1489 |
|
|
to be dynamic. */
|
| 1490 |
|
|
|
| 1491 |
|
|
static bfd_boolean
|
| 1492 |
|
|
allocate_dynrel_entries (dyn_h, data)
|
| 1493 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 1494 |
|
|
PTR data;
|
| 1495 |
|
|
{
|
| 1496 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
| 1497 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 1498 |
|
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
| 1499 |
|
|
bfd_boolean dynamic_symbol, shared;
|
| 1500 |
|
|
|
| 1501 |
|
|
hppa_info = elf64_hppa_hash_table (x->info);
|
| 1502 |
|
|
dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
|
| 1503 |
|
|
shared = x->info->shared;
|
| 1504 |
|
|
|
| 1505 |
|
|
/* We may need to allocate relocations for a non-dynamic symbol
|
| 1506 |
|
|
when creating a shared library. */
|
| 1507 |
|
|
if (!dynamic_symbol && !shared)
|
| 1508 |
|
|
return TRUE;
|
| 1509 |
|
|
|
| 1510 |
|
|
/* Take care of the normal data relocations. */
|
| 1511 |
|
|
|
| 1512 |
|
|
for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
|
| 1513 |
|
|
{
|
| 1514 |
|
|
/* Allocate one iff we are building a shared library, the relocation
|
| 1515 |
|
|
isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
|
| 1516 |
|
|
if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
|
| 1517 |
|
|
continue;
|
| 1518 |
|
|
|
| 1519 |
|
|
hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
|
| 1520 |
|
|
|
| 1521 |
|
|
/* Make sure this symbol gets into the dynamic symbol table if it is
|
| 1522 |
|
|
not already recorded. ?!? This should not be in the loop since
|
| 1523 |
|
|
the symbol need only be added once. */
|
| 1524 |
|
|
if (dyn_h->h == 0
|
| 1525 |
|
|
|| (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
|
| 1526 |
|
|
if (!bfd_elf_link_record_local_dynamic_symbol
|
| 1527 |
|
|
(x->info, rent->sec->owner, dyn_h->sym_indx))
|
| 1528 |
|
|
return FALSE;
|
| 1529 |
|
|
}
|
| 1530 |
|
|
|
| 1531 |
|
|
/* Take care of the GOT and PLT relocations. */
|
| 1532 |
|
|
|
| 1533 |
|
|
if ((dynamic_symbol || shared) && dyn_h->want_dlt)
|
| 1534 |
|
|
hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
|
| 1535 |
|
|
|
| 1536 |
|
|
/* If we are building a shared library, then every symbol that has an
|
| 1537 |
|
|
opd entry will need an EPLT relocation to relocate the symbol's address
|
| 1538 |
|
|
and __gp value based on the runtime load address. */
|
| 1539 |
|
|
if (shared && dyn_h->want_opd)
|
| 1540 |
|
|
hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
|
| 1541 |
|
|
|
| 1542 |
|
|
if (dyn_h->want_plt && dynamic_symbol)
|
| 1543 |
|
|
{
|
| 1544 |
|
|
bfd_size_type t = 0;
|
| 1545 |
|
|
|
| 1546 |
|
|
/* Dynamic symbols get one IPLT relocation. Local symbols in
|
| 1547 |
|
|
shared libraries get two REL relocations. Local symbols in
|
| 1548 |
|
|
main applications get nothing. */
|
| 1549 |
|
|
if (dynamic_symbol)
|
| 1550 |
|
|
t = sizeof (Elf64_External_Rela);
|
| 1551 |
|
|
else if (shared)
|
| 1552 |
|
|
t = 2 * sizeof (Elf64_External_Rela);
|
| 1553 |
|
|
|
| 1554 |
|
|
hppa_info->plt_rel_sec->size += t;
|
| 1555 |
|
|
}
|
| 1556 |
|
|
|
| 1557 |
|
|
return TRUE;
|
| 1558 |
|
|
}
|
| 1559 |
|
|
|
| 1560 |
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
| 1561 |
|
|
regular object. */
|
| 1562 |
|
|
|
| 1563 |
|
|
static bfd_boolean
|
| 1564 |
|
|
elf64_hppa_adjust_dynamic_symbol (info, h)
|
| 1565 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
| 1566 |
|
|
struct elf_link_hash_entry *h;
|
| 1567 |
|
|
{
|
| 1568 |
|
|
/* ??? Undefined symbols with PLT entries should be re-defined
|
| 1569 |
|
|
to be the PLT entry. */
|
| 1570 |
|
|
|
| 1571 |
|
|
/* If this is a weak symbol, and there is a real definition, the
|
| 1572 |
|
|
processor independent code will have arranged for us to see the
|
| 1573 |
|
|
real definition first, and we can just use the same value. */
|
| 1574 |
|
|
if (h->u.weakdef != NULL)
|
| 1575 |
|
|
{
|
| 1576 |
|
|
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|
| 1577 |
|
|
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
|
| 1578 |
|
|
h->root.u.def.section = h->u.weakdef->root.u.def.section;
|
| 1579 |
|
|
h->root.u.def.value = h->u.weakdef->root.u.def.value;
|
| 1580 |
|
|
return TRUE;
|
| 1581 |
|
|
}
|
| 1582 |
|
|
|
| 1583 |
|
|
/* If this is a reference to a symbol defined by a dynamic object which
|
| 1584 |
|
|
is not a function, we might allocate the symbol in our .dynbss section
|
| 1585 |
|
|
and allocate a COPY dynamic relocation.
|
| 1586 |
|
|
|
| 1587 |
|
|
But PA64 code is canonically PIC, so as a rule we can avoid this sort
|
| 1588 |
|
|
of hackery. */
|
| 1589 |
|
|
|
| 1590 |
|
|
return TRUE;
|
| 1591 |
|
|
}
|
| 1592 |
|
|
|
| 1593 |
|
|
/* This function is called via elf_link_hash_traverse to mark millicode
|
| 1594 |
|
|
symbols with a dynindx of -1 and to remove the string table reference
|
| 1595 |
|
|
from the dynamic symbol table. If the symbol is not a millicode symbol,
|
| 1596 |
|
|
elf64_hppa_mark_exported_functions is called. */
|
| 1597 |
|
|
|
| 1598 |
|
|
static bfd_boolean
|
| 1599 |
|
|
elf64_hppa_mark_milli_and_exported_functions (h, data)
|
| 1600 |
|
|
struct elf_link_hash_entry *h;
|
| 1601 |
|
|
PTR data;
|
| 1602 |
|
|
{
|
| 1603 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
| 1604 |
|
|
struct elf_link_hash_entry *elf = h;
|
| 1605 |
|
|
|
| 1606 |
|
|
if (elf->root.type == bfd_link_hash_warning)
|
| 1607 |
|
|
elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
|
| 1608 |
|
|
|
| 1609 |
|
|
if (elf->type == STT_PARISC_MILLI)
|
| 1610 |
|
|
{
|
| 1611 |
|
|
if (elf->dynindx != -1)
|
| 1612 |
|
|
{
|
| 1613 |
|
|
elf->dynindx = -1;
|
| 1614 |
|
|
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
|
| 1615 |
|
|
elf->dynstr_index);
|
| 1616 |
|
|
}
|
| 1617 |
|
|
return TRUE;
|
| 1618 |
|
|
}
|
| 1619 |
|
|
|
| 1620 |
|
|
return elf64_hppa_mark_exported_functions (h, data);
|
| 1621 |
|
|
}
|
| 1622 |
|
|
|
| 1623 |
|
|
/* Set the final sizes of the dynamic sections and allocate memory for
|
| 1624 |
|
|
the contents of our special sections. */
|
| 1625 |
|
|
|
| 1626 |
|
|
static bfd_boolean
|
| 1627 |
|
|
elf64_hppa_size_dynamic_sections (output_bfd, info)
|
| 1628 |
|
|
bfd *output_bfd;
|
| 1629 |
|
|
struct bfd_link_info *info;
|
| 1630 |
|
|
{
|
| 1631 |
|
|
bfd *dynobj;
|
| 1632 |
|
|
asection *s;
|
| 1633 |
|
|
bfd_boolean plt;
|
| 1634 |
|
|
bfd_boolean relocs;
|
| 1635 |
|
|
bfd_boolean reltext;
|
| 1636 |
|
|
struct elf64_hppa_allocate_data data;
|
| 1637 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 1638 |
|
|
|
| 1639 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
| 1640 |
|
|
|
| 1641 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
| 1642 |
|
|
BFD_ASSERT (dynobj != NULL);
|
| 1643 |
|
|
|
| 1644 |
|
|
/* Mark each function this program exports so that we will allocate
|
| 1645 |
|
|
space in the .opd section for each function's FPTR. If we are
|
| 1646 |
|
|
creating dynamic sections, change the dynamic index of millicode
|
| 1647 |
|
|
symbols to -1 and remove them from the string table for .dynstr.
|
| 1648 |
|
|
|
| 1649 |
|
|
We have to traverse the main linker hash table since we have to
|
| 1650 |
|
|
find functions which may not have been mentioned in any relocs. */
|
| 1651 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
| 1652 |
|
|
(elf_hash_table (info)->dynamic_sections_created
|
| 1653 |
|
|
? elf64_hppa_mark_milli_and_exported_functions
|
| 1654 |
|
|
: elf64_hppa_mark_exported_functions),
|
| 1655 |
|
|
info);
|
| 1656 |
|
|
|
| 1657 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
| 1658 |
|
|
{
|
| 1659 |
|
|
/* Set the contents of the .interp section to the interpreter. */
|
| 1660 |
|
|
if (info->executable)
|
| 1661 |
|
|
{
|
| 1662 |
|
|
s = bfd_get_section_by_name (dynobj, ".interp");
|
| 1663 |
|
|
BFD_ASSERT (s != NULL);
|
| 1664 |
|
|
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
| 1665 |
|
|
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
| 1666 |
|
|
}
|
| 1667 |
|
|
}
|
| 1668 |
|
|
else
|
| 1669 |
|
|
{
|
| 1670 |
|
|
/* We may have created entries in the .rela.got section.
|
| 1671 |
|
|
However, if we are not creating the dynamic sections, we will
|
| 1672 |
|
|
not actually use these entries. Reset the size of .rela.dlt,
|
| 1673 |
|
|
which will cause it to get stripped from the output file
|
| 1674 |
|
|
below. */
|
| 1675 |
|
|
s = bfd_get_section_by_name (dynobj, ".rela.dlt");
|
| 1676 |
|
|
if (s != NULL)
|
| 1677 |
|
|
s->size = 0;
|
| 1678 |
|
|
}
|
| 1679 |
|
|
|
| 1680 |
|
|
/* Allocate the GOT entries. */
|
| 1681 |
|
|
|
| 1682 |
|
|
data.info = info;
|
| 1683 |
|
|
if (elf64_hppa_hash_table (info)->dlt_sec)
|
| 1684 |
|
|
{
|
| 1685 |
|
|
data.ofs = 0x0;
|
| 1686 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
| 1687 |
|
|
allocate_global_data_dlt, &data);
|
| 1688 |
|
|
hppa_info->dlt_sec->size = data.ofs;
|
| 1689 |
|
|
|
| 1690 |
|
|
data.ofs = 0x0;
|
| 1691 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
| 1692 |
|
|
allocate_global_data_plt, &data);
|
| 1693 |
|
|
hppa_info->plt_sec->size = data.ofs;
|
| 1694 |
|
|
|
| 1695 |
|
|
data.ofs = 0x0;
|
| 1696 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
| 1697 |
|
|
allocate_global_data_stub, &data);
|
| 1698 |
|
|
hppa_info->stub_sec->size = data.ofs;
|
| 1699 |
|
|
}
|
| 1700 |
|
|
|
| 1701 |
|
|
/* Allocate space for entries in the .opd section. */
|
| 1702 |
|
|
if (elf64_hppa_hash_table (info)->opd_sec)
|
| 1703 |
|
|
{
|
| 1704 |
|
|
data.ofs = 0;
|
| 1705 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
| 1706 |
|
|
allocate_global_data_opd, &data);
|
| 1707 |
|
|
hppa_info->opd_sec->size = data.ofs;
|
| 1708 |
|
|
}
|
| 1709 |
|
|
|
| 1710 |
|
|
/* Now allocate space for dynamic relocations, if necessary. */
|
| 1711 |
|
|
if (hppa_info->root.dynamic_sections_created)
|
| 1712 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
| 1713 |
|
|
allocate_dynrel_entries, &data);
|
| 1714 |
|
|
|
| 1715 |
|
|
/* The sizes of all the sections are set. Allocate memory for them. */
|
| 1716 |
|
|
plt = FALSE;
|
| 1717 |
|
|
relocs = FALSE;
|
| 1718 |
|
|
reltext = FALSE;
|
| 1719 |
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
| 1720 |
|
|
{
|
| 1721 |
|
|
const char *name;
|
| 1722 |
|
|
|
| 1723 |
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
| 1724 |
|
|
continue;
|
| 1725 |
|
|
|
| 1726 |
|
|
/* It's OK to base decisions on the section name, because none
|
| 1727 |
|
|
of the dynobj section names depend upon the input files. */
|
| 1728 |
|
|
name = bfd_get_section_name (dynobj, s);
|
| 1729 |
|
|
|
| 1730 |
|
|
if (strcmp (name, ".plt") == 0)
|
| 1731 |
|
|
{
|
| 1732 |
|
|
/* Remember whether there is a PLT. */
|
| 1733 |
|
|
plt = s->size != 0;
|
| 1734 |
|
|
}
|
| 1735 |
|
|
else if (strcmp (name, ".opd") == 0
|
| 1736 |
|
|
|| CONST_STRNEQ (name, ".dlt")
|
| 1737 |
|
|
|| strcmp (name, ".stub") == 0
|
| 1738 |
|
|
|| strcmp (name, ".got") == 0)
|
| 1739 |
|
|
{
|
| 1740 |
|
|
/* Strip this section if we don't need it; see the comment below. */
|
| 1741 |
|
|
}
|
| 1742 |
|
|
else if (CONST_STRNEQ (name, ".rela"))
|
| 1743 |
|
|
{
|
| 1744 |
|
|
if (s->size != 0)
|
| 1745 |
|
|
{
|
| 1746 |
|
|
asection *target;
|
| 1747 |
|
|
|
| 1748 |
|
|
/* Remember whether there are any reloc sections other
|
| 1749 |
|
|
than .rela.plt. */
|
| 1750 |
|
|
if (strcmp (name, ".rela.plt") != 0)
|
| 1751 |
|
|
{
|
| 1752 |
|
|
const char *outname;
|
| 1753 |
|
|
|
| 1754 |
|
|
relocs = TRUE;
|
| 1755 |
|
|
|
| 1756 |
|
|
/* If this relocation section applies to a read only
|
| 1757 |
|
|
section, then we probably need a DT_TEXTREL
|
| 1758 |
|
|
entry. The entries in the .rela.plt section
|
| 1759 |
|
|
really apply to the .got section, which we
|
| 1760 |
|
|
created ourselves and so know is not readonly. */
|
| 1761 |
|
|
outname = bfd_get_section_name (output_bfd,
|
| 1762 |
|
|
s->output_section);
|
| 1763 |
|
|
target = bfd_get_section_by_name (output_bfd, outname + 4);
|
| 1764 |
|
|
if (target != NULL
|
| 1765 |
|
|
&& (target->flags & SEC_READONLY) != 0
|
| 1766 |
|
|
&& (target->flags & SEC_ALLOC) != 0)
|
| 1767 |
|
|
reltext = TRUE;
|
| 1768 |
|
|
}
|
| 1769 |
|
|
|
| 1770 |
|
|
/* We use the reloc_count field as a counter if we need
|
| 1771 |
|
|
to copy relocs into the output file. */
|
| 1772 |
|
|
s->reloc_count = 0;
|
| 1773 |
|
|
}
|
| 1774 |
|
|
}
|
| 1775 |
|
|
else
|
| 1776 |
|
|
{
|
| 1777 |
|
|
/* It's not one of our sections, so don't allocate space. */
|
| 1778 |
|
|
continue;
|
| 1779 |
|
|
}
|
| 1780 |
|
|
|
| 1781 |
|
|
if (s->size == 0)
|
| 1782 |
|
|
{
|
| 1783 |
|
|
/* If we don't need this section, strip it from the
|
| 1784 |
|
|
output file. This is mostly to handle .rela.bss and
|
| 1785 |
|
|
.rela.plt. We must create both sections in
|
| 1786 |
|
|
create_dynamic_sections, because they must be created
|
| 1787 |
|
|
before the linker maps input sections to output
|
| 1788 |
|
|
sections. The linker does that before
|
| 1789 |
|
|
adjust_dynamic_symbol is called, and it is that
|
| 1790 |
|
|
function which decides whether anything needs to go
|
| 1791 |
|
|
into these sections. */
|
| 1792 |
|
|
s->flags |= SEC_EXCLUDE;
|
| 1793 |
|
|
continue;
|
| 1794 |
|
|
}
|
| 1795 |
|
|
|
| 1796 |
|
|
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
| 1797 |
|
|
continue;
|
| 1798 |
|
|
|
| 1799 |
|
|
/* Allocate memory for the section contents if it has not
|
| 1800 |
|
|
been allocated already. We use bfd_zalloc here in case
|
| 1801 |
|
|
unused entries are not reclaimed before the section's
|
| 1802 |
|
|
contents are written out. This should not happen, but this
|
| 1803 |
|
|
way if it does, we get a R_PARISC_NONE reloc instead of
|
| 1804 |
|
|
garbage. */
|
| 1805 |
|
|
if (s->contents == NULL)
|
| 1806 |
|
|
{
|
| 1807 |
|
|
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
|
| 1808 |
|
|
if (s->contents == NULL)
|
| 1809 |
|
|
return FALSE;
|
| 1810 |
|
|
}
|
| 1811 |
|
|
}
|
| 1812 |
|
|
|
| 1813 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
| 1814 |
|
|
{
|
| 1815 |
|
|
/* Always create a DT_PLTGOT. It actually has nothing to do with
|
| 1816 |
|
|
the PLT, it is how we communicate the __gp value of a load
|
| 1817 |
|
|
module to the dynamic linker. */
|
| 1818 |
|
|
#define add_dynamic_entry(TAG, VAL) \
|
| 1819 |
|
|
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
| 1820 |
|
|
|
| 1821 |
|
|
if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
|
| 1822 |
|
|
|| !add_dynamic_entry (DT_PLTGOT, 0))
|
| 1823 |
|
|
return FALSE;
|
| 1824 |
|
|
|
| 1825 |
|
|
/* Add some entries to the .dynamic section. We fill in the
|
| 1826 |
|
|
values later, in elf64_hppa_finish_dynamic_sections, but we
|
| 1827 |
|
|
must add the entries now so that we get the correct size for
|
| 1828 |
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
| 1829 |
|
|
dynamic linker and used by the debugger. */
|
| 1830 |
|
|
if (! info->shared)
|
| 1831 |
|
|
{
|
| 1832 |
|
|
if (!add_dynamic_entry (DT_DEBUG, 0)
|
| 1833 |
|
|
|| !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
|
| 1834 |
|
|
|| !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
|
| 1835 |
|
|
return FALSE;
|
| 1836 |
|
|
}
|
| 1837 |
|
|
|
| 1838 |
|
|
/* Force DT_FLAGS to always be set.
|
| 1839 |
|
|
Required by HPUX 11.00 patch PHSS_26559. */
|
| 1840 |
|
|
if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
|
| 1841 |
|
|
return FALSE;
|
| 1842 |
|
|
|
| 1843 |
|
|
if (plt)
|
| 1844 |
|
|
{
|
| 1845 |
|
|
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|
| 1846 |
|
|
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
| 1847 |
|
|
|| !add_dynamic_entry (DT_JMPREL, 0))
|
| 1848 |
|
|
return FALSE;
|
| 1849 |
|
|
}
|
| 1850 |
|
|
|
| 1851 |
|
|
if (relocs)
|
| 1852 |
|
|
{
|
| 1853 |
|
|
if (!add_dynamic_entry (DT_RELA, 0)
|
| 1854 |
|
|
|| !add_dynamic_entry (DT_RELASZ, 0)
|
| 1855 |
|
|
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
|
| 1856 |
|
|
return FALSE;
|
| 1857 |
|
|
}
|
| 1858 |
|
|
|
| 1859 |
|
|
if (reltext)
|
| 1860 |
|
|
{
|
| 1861 |
|
|
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
| 1862 |
|
|
return FALSE;
|
| 1863 |
|
|
info->flags |= DF_TEXTREL;
|
| 1864 |
|
|
}
|
| 1865 |
|
|
}
|
| 1866 |
|
|
#undef add_dynamic_entry
|
| 1867 |
|
|
|
| 1868 |
|
|
return TRUE;
|
| 1869 |
|
|
}
|
| 1870 |
|
|
|
| 1871 |
|
|
/* Called after we have output the symbol into the dynamic symbol
|
| 1872 |
|
|
table, but before we output the symbol into the normal symbol
|
| 1873 |
|
|
table.
|
| 1874 |
|
|
|
| 1875 |
|
|
For some symbols we had to change their address when outputting
|
| 1876 |
|
|
the dynamic symbol table. We undo that change here so that
|
| 1877 |
|
|
the symbols have their expected value in the normal symbol
|
| 1878 |
|
|
table. Ick. */
|
| 1879 |
|
|
|
| 1880 |
|
|
static bfd_boolean
|
| 1881 |
|
|
elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
|
| 1882 |
|
|
struct bfd_link_info *info;
|
| 1883 |
|
|
const char *name;
|
| 1884 |
|
|
Elf_Internal_Sym *sym;
|
| 1885 |
|
|
asection *input_sec ATTRIBUTE_UNUSED;
|
| 1886 |
|
|
struct elf_link_hash_entry *h;
|
| 1887 |
|
|
{
|
| 1888 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 1889 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 1890 |
|
|
|
| 1891 |
|
|
/* We may be called with the file symbol or section symbols.
|
| 1892 |
|
|
They never need munging, so it is safe to ignore them. */
|
| 1893 |
|
|
if (!name)
|
| 1894 |
|
|
return TRUE;
|
| 1895 |
|
|
|
| 1896 |
|
|
/* Get the PA dyn_symbol (if any) associated with NAME. */
|
| 1897 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
| 1898 |
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
| 1899 |
|
|
name, FALSE, FALSE);
|
| 1900 |
|
|
if (!dyn_h || dyn_h->h != h)
|
| 1901 |
|
|
return TRUE;
|
| 1902 |
|
|
|
| 1903 |
|
|
/* Function symbols for which we created .opd entries *may* have been
|
| 1904 |
|
|
munged by finish_dynamic_symbol and have to be un-munged here.
|
| 1905 |
|
|
|
| 1906 |
|
|
Note that finish_dynamic_symbol sometimes turns dynamic symbols
|
| 1907 |
|
|
into non-dynamic ones, so we initialize st_shndx to -1 in
|
| 1908 |
|
|
mark_exported_functions and check to see if it was overwritten
|
| 1909 |
|
|
here instead of just checking dyn_h->h->dynindx. */
|
| 1910 |
|
|
if (dyn_h->want_opd && dyn_h->st_shndx != -1)
|
| 1911 |
|
|
{
|
| 1912 |
|
|
/* Restore the saved value and section index. */
|
| 1913 |
|
|
sym->st_value = dyn_h->st_value;
|
| 1914 |
|
|
sym->st_shndx = dyn_h->st_shndx;
|
| 1915 |
|
|
}
|
| 1916 |
|
|
|
| 1917 |
|
|
return TRUE;
|
| 1918 |
|
|
}
|
| 1919 |
|
|
|
| 1920 |
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
| 1921 |
|
|
dynamic sections here. */
|
| 1922 |
|
|
|
| 1923 |
|
|
static bfd_boolean
|
| 1924 |
|
|
elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
|
| 1925 |
|
|
bfd *output_bfd;
|
| 1926 |
|
|
struct bfd_link_info *info;
|
| 1927 |
|
|
struct elf_link_hash_entry *h;
|
| 1928 |
|
|
Elf_Internal_Sym *sym;
|
| 1929 |
|
|
{
|
| 1930 |
|
|
asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
|
| 1931 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 1932 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 1933 |
|
|
|
| 1934 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
| 1935 |
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
| 1936 |
|
|
h->root.root.string, FALSE, FALSE);
|
| 1937 |
|
|
|
| 1938 |
|
|
stub = hppa_info->stub_sec;
|
| 1939 |
|
|
splt = hppa_info->plt_sec;
|
| 1940 |
|
|
sdlt = hppa_info->dlt_sec;
|
| 1941 |
|
|
sopd = hppa_info->opd_sec;
|
| 1942 |
|
|
spltrel = hppa_info->plt_rel_sec;
|
| 1943 |
|
|
sdltrel = hppa_info->dlt_rel_sec;
|
| 1944 |
|
|
|
| 1945 |
|
|
/* Incredible. It is actually necessary to NOT use the symbol's real
|
| 1946 |
|
|
value when building the dynamic symbol table for a shared library.
|
| 1947 |
|
|
At least for symbols that refer to functions.
|
| 1948 |
|
|
|
| 1949 |
|
|
We will store a new value and section index into the symbol long
|
| 1950 |
|
|
enough to output it into the dynamic symbol table, then we restore
|
| 1951 |
|
|
the original values (in elf64_hppa_link_output_symbol_hook). */
|
| 1952 |
|
|
if (dyn_h && dyn_h->want_opd)
|
| 1953 |
|
|
{
|
| 1954 |
|
|
BFD_ASSERT (sopd != NULL);
|
| 1955 |
|
|
|
| 1956 |
|
|
/* Save away the original value and section index so that we
|
| 1957 |
|
|
can restore them later. */
|
| 1958 |
|
|
dyn_h->st_value = sym->st_value;
|
| 1959 |
|
|
dyn_h->st_shndx = sym->st_shndx;
|
| 1960 |
|
|
|
| 1961 |
|
|
/* For the dynamic symbol table entry, we want the value to be
|
| 1962 |
|
|
address of this symbol's entry within the .opd section. */
|
| 1963 |
|
|
sym->st_value = (dyn_h->opd_offset
|
| 1964 |
|
|
+ sopd->output_offset
|
| 1965 |
|
|
+ sopd->output_section->vma);
|
| 1966 |
|
|
sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
|
| 1967 |
|
|
sopd->output_section);
|
| 1968 |
|
|
}
|
| 1969 |
|
|
|
| 1970 |
|
|
/* Initialize a .plt entry if requested. */
|
| 1971 |
|
|
if (dyn_h && dyn_h->want_plt
|
| 1972 |
|
|
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
|
| 1973 |
|
|
{
|
| 1974 |
|
|
bfd_vma value;
|
| 1975 |
|
|
Elf_Internal_Rela rel;
|
| 1976 |
|
|
bfd_byte *loc;
|
| 1977 |
|
|
|
| 1978 |
|
|
BFD_ASSERT (splt != NULL && spltrel != NULL);
|
| 1979 |
|
|
|
| 1980 |
|
|
/* We do not actually care about the value in the PLT entry
|
| 1981 |
|
|
if we are creating a shared library and the symbol is
|
| 1982 |
|
|
still undefined, we create a dynamic relocation to fill
|
| 1983 |
|
|
in the correct value. */
|
| 1984 |
|
|
if (info->shared && h->root.type == bfd_link_hash_undefined)
|
| 1985 |
|
|
value = 0;
|
| 1986 |
|
|
else
|
| 1987 |
|
|
value = (h->root.u.def.value + h->root.u.def.section->vma);
|
| 1988 |
|
|
|
| 1989 |
|
|
/* Fill in the entry in the procedure linkage table.
|
| 1990 |
|
|
|
| 1991 |
|
|
The format of a plt entry is
|
| 1992 |
|
|
<funcaddr> <__gp>.
|
| 1993 |
|
|
|
| 1994 |
|
|
plt_offset is the offset within the PLT section at which to
|
| 1995 |
|
|
install the PLT entry.
|
| 1996 |
|
|
|
| 1997 |
|
|
We are modifying the in-memory PLT contents here, so we do not add
|
| 1998 |
|
|
in the output_offset of the PLT section. */
|
| 1999 |
|
|
|
| 2000 |
|
|
bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
|
| 2001 |
|
|
value = _bfd_get_gp_value (splt->output_section->owner);
|
| 2002 |
|
|
bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
|
| 2003 |
|
|
|
| 2004 |
|
|
/* Create a dynamic IPLT relocation for this entry.
|
| 2005 |
|
|
|
| 2006 |
|
|
We are creating a relocation in the output file's PLT section,
|
| 2007 |
|
|
which is included within the DLT secton. So we do need to include
|
| 2008 |
|
|
the PLT's output_offset in the computation of the relocation's
|
| 2009 |
|
|
address. */
|
| 2010 |
|
|
rel.r_offset = (dyn_h->plt_offset + splt->output_offset
|
| 2011 |
|
|
+ splt->output_section->vma);
|
| 2012 |
|
|
rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
|
| 2013 |
|
|
rel.r_addend = 0;
|
| 2014 |
|
|
|
| 2015 |
|
|
loc = spltrel->contents;
|
| 2016 |
|
|
loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
|
| 2017 |
|
|
bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
|
| 2018 |
|
|
}
|
| 2019 |
|
|
|
| 2020 |
|
|
/* Initialize an external call stub entry if requested. */
|
| 2021 |
|
|
if (dyn_h && dyn_h->want_stub
|
| 2022 |
|
|
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
|
| 2023 |
|
|
{
|
| 2024 |
|
|
bfd_vma value;
|
| 2025 |
|
|
int insn;
|
| 2026 |
|
|
unsigned int max_offset;
|
| 2027 |
|
|
|
| 2028 |
|
|
BFD_ASSERT (stub != NULL);
|
| 2029 |
|
|
|
| 2030 |
|
|
/* Install the generic stub template.
|
| 2031 |
|
|
|
| 2032 |
|
|
We are modifying the contents of the stub section, so we do not
|
| 2033 |
|
|
need to include the stub section's output_offset here. */
|
| 2034 |
|
|
memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
|
| 2035 |
|
|
|
| 2036 |
|
|
/* Fix up the first ldd instruction.
|
| 2037 |
|
|
|
| 2038 |
|
|
We are modifying the contents of the STUB section in memory,
|
| 2039 |
|
|
so we do not need to include its output offset in this computation.
|
| 2040 |
|
|
|
| 2041 |
|
|
Note the plt_offset value is the value of the PLT entry relative to
|
| 2042 |
|
|
the start of the PLT section. These instructions will reference
|
| 2043 |
|
|
data relative to the value of __gp, which may not necessarily have
|
| 2044 |
|
|
the same address as the start of the PLT section.
|
| 2045 |
|
|
|
| 2046 |
|
|
gp_offset contains the offset of __gp within the PLT section. */
|
| 2047 |
|
|
value = dyn_h->plt_offset - hppa_info->gp_offset;
|
| 2048 |
|
|
|
| 2049 |
|
|
insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
|
| 2050 |
|
|
if (output_bfd->arch_info->mach >= 25)
|
| 2051 |
|
|
{
|
| 2052 |
|
|
/* Wide mode allows 16 bit offsets. */
|
| 2053 |
|
|
max_offset = 32768;
|
| 2054 |
|
|
insn &= ~ 0xfff1;
|
| 2055 |
|
|
insn |= re_assemble_16 ((int) value);
|
| 2056 |
|
|
}
|
| 2057 |
|
|
else
|
| 2058 |
|
|
{
|
| 2059 |
|
|
max_offset = 8192;
|
| 2060 |
|
|
insn &= ~ 0x3ff1;
|
| 2061 |
|
|
insn |= re_assemble_14 ((int) value);
|
| 2062 |
|
|
}
|
| 2063 |
|
|
|
| 2064 |
|
|
if ((value & 7) || value + max_offset >= 2*max_offset - 8)
|
| 2065 |
|
|
{
|
| 2066 |
|
|
(*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
|
| 2067 |
|
|
dyn_h->root.string,
|
| 2068 |
|
|
(long) value);
|
| 2069 |
|
|
return FALSE;
|
| 2070 |
|
|
}
|
| 2071 |
|
|
|
| 2072 |
|
|
bfd_put_32 (stub->owner, (bfd_vma) insn,
|
| 2073 |
|
|
stub->contents + dyn_h->stub_offset);
|
| 2074 |
|
|
|
| 2075 |
|
|
/* Fix up the second ldd instruction. */
|
| 2076 |
|
|
value += 8;
|
| 2077 |
|
|
insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
|
| 2078 |
|
|
if (output_bfd->arch_info->mach >= 25)
|
| 2079 |
|
|
{
|
| 2080 |
|
|
insn &= ~ 0xfff1;
|
| 2081 |
|
|
insn |= re_assemble_16 ((int) value);
|
| 2082 |
|
|
}
|
| 2083 |
|
|
else
|
| 2084 |
|
|
{
|
| 2085 |
|
|
insn &= ~ 0x3ff1;
|
| 2086 |
|
|
insn |= re_assemble_14 ((int) value);
|
| 2087 |
|
|
}
|
| 2088 |
|
|
bfd_put_32 (stub->owner, (bfd_vma) insn,
|
| 2089 |
|
|
stub->contents + dyn_h->stub_offset + 8);
|
| 2090 |
|
|
}
|
| 2091 |
|
|
|
| 2092 |
|
|
return TRUE;
|
| 2093 |
|
|
}
|
| 2094 |
|
|
|
| 2095 |
|
|
/* The .opd section contains FPTRs for each function this file
|
| 2096 |
|
|
exports. Initialize the FPTR entries. */
|
| 2097 |
|
|
|
| 2098 |
|
|
static bfd_boolean
|
| 2099 |
|
|
elf64_hppa_finalize_opd (dyn_h, data)
|
| 2100 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 2101 |
|
|
PTR data;
|
| 2102 |
|
|
{
|
| 2103 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
| 2104 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 2105 |
|
|
struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
|
| 2106 |
|
|
asection *sopd;
|
| 2107 |
|
|
asection *sopdrel;
|
| 2108 |
|
|
|
| 2109 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
| 2110 |
|
|
sopd = hppa_info->opd_sec;
|
| 2111 |
|
|
sopdrel = hppa_info->opd_rel_sec;
|
| 2112 |
|
|
|
| 2113 |
|
|
if (h && dyn_h->want_opd)
|
| 2114 |
|
|
{
|
| 2115 |
|
|
bfd_vma value;
|
| 2116 |
|
|
|
| 2117 |
|
|
/* The first two words of an .opd entry are zero.
|
| 2118 |
|
|
|
| 2119 |
|
|
We are modifying the contents of the OPD section in memory, so we
|
| 2120 |
|
|
do not need to include its output offset in this computation. */
|
| 2121 |
|
|
memset (sopd->contents + dyn_h->opd_offset, 0, 16);
|
| 2122 |
|
|
|
| 2123 |
|
|
value = (h->root.u.def.value
|
| 2124 |
|
|
+ h->root.u.def.section->output_section->vma
|
| 2125 |
|
|
+ h->root.u.def.section->output_offset);
|
| 2126 |
|
|
|
| 2127 |
|
|
/* The next word is the address of the function. */
|
| 2128 |
|
|
bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
|
| 2129 |
|
|
|
| 2130 |
|
|
/* The last word is our local __gp value. */
|
| 2131 |
|
|
value = _bfd_get_gp_value (sopd->output_section->owner);
|
| 2132 |
|
|
bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
|
| 2133 |
|
|
}
|
| 2134 |
|
|
|
| 2135 |
|
|
/* If we are generating a shared library, we must generate EPLT relocations
|
| 2136 |
|
|
for each entry in the .opd, even for static functions (they may have
|
| 2137 |
|
|
had their address taken). */
|
| 2138 |
|
|
if (info->shared && dyn_h && dyn_h->want_opd)
|
| 2139 |
|
|
{
|
| 2140 |
|
|
Elf_Internal_Rela rel;
|
| 2141 |
|
|
bfd_byte *loc;
|
| 2142 |
|
|
int dynindx;
|
| 2143 |
|
|
|
| 2144 |
|
|
/* We may need to do a relocation against a local symbol, in
|
| 2145 |
|
|
which case we have to look up it's dynamic symbol index off
|
| 2146 |
|
|
the local symbol hash table. */
|
| 2147 |
|
|
if (h && h->dynindx != -1)
|
| 2148 |
|
|
dynindx = h->dynindx;
|
| 2149 |
|
|
else
|
| 2150 |
|
|
dynindx
|
| 2151 |
|
|
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
|
| 2152 |
|
|
dyn_h->sym_indx);
|
| 2153 |
|
|
|
| 2154 |
|
|
/* The offset of this relocation is the absolute address of the
|
| 2155 |
|
|
.opd entry for this symbol. */
|
| 2156 |
|
|
rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
|
| 2157 |
|
|
+ sopd->output_section->vma);
|
| 2158 |
|
|
|
| 2159 |
|
|
/* If H is non-null, then we have an external symbol.
|
| 2160 |
|
|
|
| 2161 |
|
|
It is imperative that we use a different dynamic symbol for the
|
| 2162 |
|
|
EPLT relocation if the symbol has global scope.
|
| 2163 |
|
|
|
| 2164 |
|
|
In the dynamic symbol table, the function symbol will have a value
|
| 2165 |
|
|
which is address of the function's .opd entry.
|
| 2166 |
|
|
|
| 2167 |
|
|
Thus, we can not use that dynamic symbol for the EPLT relocation
|
| 2168 |
|
|
(if we did, the data in the .opd would reference itself rather
|
| 2169 |
|
|
than the actual address of the function). Instead we have to use
|
| 2170 |
|
|
a new dynamic symbol which has the same value as the original global
|
| 2171 |
|
|
function symbol.
|
| 2172 |
|
|
|
| 2173 |
|
|
We prefix the original symbol with a "." and use the new symbol in
|
| 2174 |
|
|
the EPLT relocation. This new symbol has already been recorded in
|
| 2175 |
|
|
the symbol table, we just have to look it up and use it.
|
| 2176 |
|
|
|
| 2177 |
|
|
We do not have such problems with static functions because we do
|
| 2178 |
|
|
not make their addresses in the dynamic symbol table point to
|
| 2179 |
|
|
the .opd entry. Ultimately this should be safe since a static
|
| 2180 |
|
|
function can not be directly referenced outside of its shared
|
| 2181 |
|
|
library.
|
| 2182 |
|
|
|
| 2183 |
|
|
We do have to play similar games for FPTR relocations in shared
|
| 2184 |
|
|
libraries, including those for static symbols. See the FPTR
|
| 2185 |
|
|
handling in elf64_hppa_finalize_dynreloc. */
|
| 2186 |
|
|
if (h)
|
| 2187 |
|
|
{
|
| 2188 |
|
|
char *new_name;
|
| 2189 |
|
|
struct elf_link_hash_entry *nh;
|
| 2190 |
|
|
|
| 2191 |
|
|
new_name = alloca (strlen (h->root.root.string) + 2);
|
| 2192 |
|
|
new_name[0] = '.';
|
| 2193 |
|
|
strcpy (new_name + 1, h->root.root.string);
|
| 2194 |
|
|
|
| 2195 |
|
|
nh = elf_link_hash_lookup (elf_hash_table (info),
|
| 2196 |
|
|
new_name, FALSE, FALSE, FALSE);
|
| 2197 |
|
|
|
| 2198 |
|
|
/* All we really want from the new symbol is its dynamic
|
| 2199 |
|
|
symbol index. */
|
| 2200 |
|
|
dynindx = nh->dynindx;
|
| 2201 |
|
|
}
|
| 2202 |
|
|
|
| 2203 |
|
|
rel.r_addend = 0;
|
| 2204 |
|
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
|
| 2205 |
|
|
|
| 2206 |
|
|
loc = sopdrel->contents;
|
| 2207 |
|
|
loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
|
| 2208 |
|
|
bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
|
| 2209 |
|
|
}
|
| 2210 |
|
|
return TRUE;
|
| 2211 |
|
|
}
|
| 2212 |
|
|
|
| 2213 |
|
|
/* The .dlt section contains addresses for items referenced through the
|
| 2214 |
|
|
dlt. Note that we can have a DLTIND relocation for a local symbol, thus
|
| 2215 |
|
|
we can not depend on finish_dynamic_symbol to initialize the .dlt. */
|
| 2216 |
|
|
|
| 2217 |
|
|
static bfd_boolean
|
| 2218 |
|
|
elf64_hppa_finalize_dlt (dyn_h, data)
|
| 2219 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 2220 |
|
|
PTR data;
|
| 2221 |
|
|
{
|
| 2222 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
| 2223 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 2224 |
|
|
asection *sdlt, *sdltrel;
|
| 2225 |
|
|
struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
|
| 2226 |
|
|
|
| 2227 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
| 2228 |
|
|
|
| 2229 |
|
|
sdlt = hppa_info->dlt_sec;
|
| 2230 |
|
|
sdltrel = hppa_info->dlt_rel_sec;
|
| 2231 |
|
|
|
| 2232 |
|
|
/* H/DYN_H may refer to a local variable and we know it's
|
| 2233 |
|
|
address, so there is no need to create a relocation. Just install
|
| 2234 |
|
|
the proper value into the DLT, note this shortcut can not be
|
| 2235 |
|
|
skipped when building a shared library. */
|
| 2236 |
|
|
if (! info->shared && h && dyn_h->want_dlt)
|
| 2237 |
|
|
{
|
| 2238 |
|
|
bfd_vma value;
|
| 2239 |
|
|
|
| 2240 |
|
|
/* If we had an LTOFF_FPTR style relocation we want the DLT entry
|
| 2241 |
|
|
to point to the FPTR entry in the .opd section.
|
| 2242 |
|
|
|
| 2243 |
|
|
We include the OPD's output offset in this computation as
|
| 2244 |
|
|
we are referring to an absolute address in the resulting
|
| 2245 |
|
|
object file. */
|
| 2246 |
|
|
if (dyn_h->want_opd)
|
| 2247 |
|
|
{
|
| 2248 |
|
|
value = (dyn_h->opd_offset
|
| 2249 |
|
|
+ hppa_info->opd_sec->output_offset
|
| 2250 |
|
|
+ hppa_info->opd_sec->output_section->vma);
|
| 2251 |
|
|
}
|
| 2252 |
|
|
else if ((h->root.type == bfd_link_hash_defined
|
| 2253 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
| 2254 |
|
|
&& h->root.u.def.section)
|
| 2255 |
|
|
{
|
| 2256 |
|
|
value = h->root.u.def.value + h->root.u.def.section->output_offset;
|
| 2257 |
|
|
if (h->root.u.def.section->output_section)
|
| 2258 |
|
|
value += h->root.u.def.section->output_section->vma;
|
| 2259 |
|
|
else
|
| 2260 |
|
|
value += h->root.u.def.section->vma;
|
| 2261 |
|
|
}
|
| 2262 |
|
|
else
|
| 2263 |
|
|
/* We have an undefined function reference. */
|
| 2264 |
|
|
value = 0;
|
| 2265 |
|
|
|
| 2266 |
|
|
/* We do not need to include the output offset of the DLT section
|
| 2267 |
|
|
here because we are modifying the in-memory contents. */
|
| 2268 |
|
|
bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
|
| 2269 |
|
|
}
|
| 2270 |
|
|
|
| 2271 |
|
|
/* Create a relocation for the DLT entry associated with this symbol.
|
| 2272 |
|
|
When building a shared library the symbol does not have to be dynamic. */
|
| 2273 |
|
|
if (dyn_h->want_dlt
|
| 2274 |
|
|
&& (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
|
| 2275 |
|
|
{
|
| 2276 |
|
|
Elf_Internal_Rela rel;
|
| 2277 |
|
|
bfd_byte *loc;
|
| 2278 |
|
|
int dynindx;
|
| 2279 |
|
|
|
| 2280 |
|
|
/* We may need to do a relocation against a local symbol, in
|
| 2281 |
|
|
which case we have to look up it's dynamic symbol index off
|
| 2282 |
|
|
the local symbol hash table. */
|
| 2283 |
|
|
if (h && h->dynindx != -1)
|
| 2284 |
|
|
dynindx = h->dynindx;
|
| 2285 |
|
|
else
|
| 2286 |
|
|
dynindx
|
| 2287 |
|
|
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
|
| 2288 |
|
|
dyn_h->sym_indx);
|
| 2289 |
|
|
|
| 2290 |
|
|
/* Create a dynamic relocation for this entry. Do include the output
|
| 2291 |
|
|
offset of the DLT entry since we need an absolute address in the
|
| 2292 |
|
|
resulting object file. */
|
| 2293 |
|
|
rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
|
| 2294 |
|
|
+ sdlt->output_section->vma);
|
| 2295 |
|
|
if (h && h->type == STT_FUNC)
|
| 2296 |
|
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
|
| 2297 |
|
|
else
|
| 2298 |
|
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
|
| 2299 |
|
|
rel.r_addend = 0;
|
| 2300 |
|
|
|
| 2301 |
|
|
loc = sdltrel->contents;
|
| 2302 |
|
|
loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
|
| 2303 |
|
|
bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
|
| 2304 |
|
|
}
|
| 2305 |
|
|
return TRUE;
|
| 2306 |
|
|
}
|
| 2307 |
|
|
|
| 2308 |
|
|
/* Finalize the dynamic relocations. Specifically the FPTR relocations
|
| 2309 |
|
|
for dynamic functions used to initialize static data. */
|
| 2310 |
|
|
|
| 2311 |
|
|
static bfd_boolean
|
| 2312 |
|
|
elf64_hppa_finalize_dynreloc (dyn_h, data)
|
| 2313 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
| 2314 |
|
|
PTR data;
|
| 2315 |
|
|
{
|
| 2316 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
| 2317 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 2318 |
|
|
struct elf_link_hash_entry *h;
|
| 2319 |
|
|
int dynamic_symbol;
|
| 2320 |
|
|
|
| 2321 |
|
|
dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
|
| 2322 |
|
|
|
| 2323 |
|
|
if (!dynamic_symbol && !info->shared)
|
| 2324 |
|
|
return TRUE;
|
| 2325 |
|
|
|
| 2326 |
|
|
if (dyn_h->reloc_entries)
|
| 2327 |
|
|
{
|
| 2328 |
|
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
| 2329 |
|
|
int dynindx;
|
| 2330 |
|
|
|
| 2331 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
| 2332 |
|
|
h = dyn_h->h;
|
| 2333 |
|
|
|
| 2334 |
|
|
/* We may need to do a relocation against a local symbol, in
|
| 2335 |
|
|
which case we have to look up it's dynamic symbol index off
|
| 2336 |
|
|
the local symbol hash table. */
|
| 2337 |
|
|
if (h && h->dynindx != -1)
|
| 2338 |
|
|
dynindx = h->dynindx;
|
| 2339 |
|
|
else
|
| 2340 |
|
|
dynindx
|
| 2341 |
|
|
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
|
| 2342 |
|
|
dyn_h->sym_indx);
|
| 2343 |
|
|
|
| 2344 |
|
|
for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
|
| 2345 |
|
|
{
|
| 2346 |
|
|
Elf_Internal_Rela rel;
|
| 2347 |
|
|
bfd_byte *loc;
|
| 2348 |
|
|
|
| 2349 |
|
|
/* Allocate one iff we are building a shared library, the relocation
|
| 2350 |
|
|
isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
|
| 2351 |
|
|
if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
|
| 2352 |
|
|
continue;
|
| 2353 |
|
|
|
| 2354 |
|
|
/* Create a dynamic relocation for this entry.
|
| 2355 |
|
|
|
| 2356 |
|
|
We need the output offset for the reloc's section because
|
| 2357 |
|
|
we are creating an absolute address in the resulting object
|
| 2358 |
|
|
file. */
|
| 2359 |
|
|
rel.r_offset = (rent->offset + rent->sec->output_offset
|
| 2360 |
|
|
+ rent->sec->output_section->vma);
|
| 2361 |
|
|
|
| 2362 |
|
|
/* An FPTR64 relocation implies that we took the address of
|
| 2363 |
|
|
a function and that the function has an entry in the .opd
|
| 2364 |
|
|
section. We want the FPTR64 relocation to reference the
|
| 2365 |
|
|
entry in .opd.
|
| 2366 |
|
|
|
| 2367 |
|
|
We could munge the symbol value in the dynamic symbol table
|
| 2368 |
|
|
(in fact we already do for functions with global scope) to point
|
| 2369 |
|
|
to the .opd entry. Then we could use that dynamic symbol in
|
| 2370 |
|
|
this relocation.
|
| 2371 |
|
|
|
| 2372 |
|
|
Or we could do something sensible, not munge the symbol's
|
| 2373 |
|
|
address and instead just use a different symbol to reference
|
| 2374 |
|
|
the .opd entry. At least that seems sensible until you
|
| 2375 |
|
|
realize there's no local dynamic symbols we can use for that
|
| 2376 |
|
|
purpose. Thus the hair in the check_relocs routine.
|
| 2377 |
|
|
|
| 2378 |
|
|
We use a section symbol recorded by check_relocs as the
|
| 2379 |
|
|
base symbol for the relocation. The addend is the difference
|
| 2380 |
|
|
between the section symbol and the address of the .opd entry. */
|
| 2381 |
|
|
if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
|
| 2382 |
|
|
{
|
| 2383 |
|
|
bfd_vma value, value2;
|
| 2384 |
|
|
|
| 2385 |
|
|
/* First compute the address of the opd entry for this symbol. */
|
| 2386 |
|
|
value = (dyn_h->opd_offset
|
| 2387 |
|
|
+ hppa_info->opd_sec->output_section->vma
|
| 2388 |
|
|
+ hppa_info->opd_sec->output_offset);
|
| 2389 |
|
|
|
| 2390 |
|
|
/* Compute the value of the start of the section with
|
| 2391 |
|
|
the relocation. */
|
| 2392 |
|
|
value2 = (rent->sec->output_section->vma
|
| 2393 |
|
|
+ rent->sec->output_offset);
|
| 2394 |
|
|
|
| 2395 |
|
|
/* Compute the difference between the start of the section
|
| 2396 |
|
|
with the relocation and the opd entry. */
|
| 2397 |
|
|
value -= value2;
|
| 2398 |
|
|
|
| 2399 |
|
|
/* The result becomes the addend of the relocation. */
|
| 2400 |
|
|
rel.r_addend = value;
|
| 2401 |
|
|
|
| 2402 |
|
|
/* The section symbol becomes the symbol for the dynamic
|
| 2403 |
|
|
relocation. */
|
| 2404 |
|
|
dynindx
|
| 2405 |
|
|
= _bfd_elf_link_lookup_local_dynindx (info,
|
| 2406 |
|
|
rent->sec->owner,
|
| 2407 |
|
|
rent->sec_symndx);
|
| 2408 |
|
|
}
|
| 2409 |
|
|
else
|
| 2410 |
|
|
rel.r_addend = rent->addend;
|
| 2411 |
|
|
|
| 2412 |
|
|
rel.r_info = ELF64_R_INFO (dynindx, rent->type);
|
| 2413 |
|
|
|
| 2414 |
|
|
loc = hppa_info->other_rel_sec->contents;
|
| 2415 |
|
|
loc += (hppa_info->other_rel_sec->reloc_count++
|
| 2416 |
|
|
* sizeof (Elf64_External_Rela));
|
| 2417 |
|
|
bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
|
| 2418 |
|
|
&rel, loc);
|
| 2419 |
|
|
}
|
| 2420 |
|
|
}
|
| 2421 |
|
|
|
| 2422 |
|
|
return TRUE;
|
| 2423 |
|
|
}
|
| 2424 |
|
|
|
| 2425 |
|
|
/* Used to decide how to sort relocs in an optimal manner for the
|
| 2426 |
|
|
dynamic linker, before writing them out. */
|
| 2427 |
|
|
|
| 2428 |
|
|
static enum elf_reloc_type_class
|
| 2429 |
|
|
elf64_hppa_reloc_type_class (rela)
|
| 2430 |
|
|
const Elf_Internal_Rela *rela;
|
| 2431 |
|
|
{
|
| 2432 |
|
|
if (ELF64_R_SYM (rela->r_info) == 0)
|
| 2433 |
|
|
return reloc_class_relative;
|
| 2434 |
|
|
|
| 2435 |
|
|
switch ((int) ELF64_R_TYPE (rela->r_info))
|
| 2436 |
|
|
{
|
| 2437 |
|
|
case R_PARISC_IPLT:
|
| 2438 |
|
|
return reloc_class_plt;
|
| 2439 |
|
|
case R_PARISC_COPY:
|
| 2440 |
|
|
return reloc_class_copy;
|
| 2441 |
|
|
default:
|
| 2442 |
|
|
return reloc_class_normal;
|
| 2443 |
|
|
}
|
| 2444 |
|
|
}
|
| 2445 |
|
|
|
| 2446 |
|
|
/* Finish up the dynamic sections. */
|
| 2447 |
|
|
|
| 2448 |
|
|
static bfd_boolean
|
| 2449 |
|
|
elf64_hppa_finish_dynamic_sections (output_bfd, info)
|
| 2450 |
|
|
bfd *output_bfd;
|
| 2451 |
|
|
struct bfd_link_info *info;
|
| 2452 |
|
|
{
|
| 2453 |
|
|
bfd *dynobj;
|
| 2454 |
|
|
asection *sdyn;
|
| 2455 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
| 2456 |
|
|
|
| 2457 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
| 2458 |
|
|
|
| 2459 |
|
|
/* Finalize the contents of the .opd section. */
|
| 2460 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
| 2461 |
|
|
elf64_hppa_finalize_opd,
|
| 2462 |
|
|
info);
|
| 2463 |
|
|
|
| 2464 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
| 2465 |
|
|
elf64_hppa_finalize_dynreloc,
|
| 2466 |
|
|
info);
|
| 2467 |
|
|
|
| 2468 |
|
|
/* Finalize the contents of the .dlt section. */
|
| 2469 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
| 2470 |
|
|
/* Finalize the contents of the .dlt section. */
|
| 2471 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
| 2472 |
|
|
elf64_hppa_finalize_dlt,
|
| 2473 |
|
|
info);
|
| 2474 |
|
|
|
| 2475 |
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
| 2476 |
|
|
|
| 2477 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
| 2478 |
|
|
{
|
| 2479 |
|
|
Elf64_External_Dyn *dyncon, *dynconend;
|
| 2480 |
|
|
|
| 2481 |
|
|
BFD_ASSERT (sdyn != NULL);
|
| 2482 |
|
|
|
| 2483 |
|
|
dyncon = (Elf64_External_Dyn *) sdyn->contents;
|
| 2484 |
|
|
dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
|
| 2485 |
|
|
for (; dyncon < dynconend; dyncon++)
|
| 2486 |
|
|
{
|
| 2487 |
|
|
Elf_Internal_Dyn dyn;
|
| 2488 |
|
|
asection *s;
|
| 2489 |
|
|
|
| 2490 |
|
|
bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
|
| 2491 |
|
|
|
| 2492 |
|
|
switch (dyn.d_tag)
|
| 2493 |
|
|
{
|
| 2494 |
|
|
default:
|
| 2495 |
|
|
break;
|
| 2496 |
|
|
|
| 2497 |
|
|
case DT_HP_LOAD_MAP:
|
| 2498 |
|
|
/* Compute the absolute address of 16byte scratchpad area
|
| 2499 |
|
|
for the dynamic linker.
|
| 2500 |
|
|
|
| 2501 |
|
|
By convention the linker script will allocate the scratchpad
|
| 2502 |
|
|
area at the start of the .data section. So all we have to
|
| 2503 |
|
|
to is find the start of the .data section. */
|
| 2504 |
|
|
s = bfd_get_section_by_name (output_bfd, ".data");
|
| 2505 |
|
|
dyn.d_un.d_ptr = s->vma;
|
| 2506 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
| 2507 |
|
|
break;
|
| 2508 |
|
|
|
| 2509 |
|
|
case DT_PLTGOT:
|
| 2510 |
|
|
/* HP's use PLTGOT to set the GOT register. */
|
| 2511 |
|
|
dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
|
| 2512 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
| 2513 |
|
|
break;
|
| 2514 |
|
|
|
| 2515 |
|
|
case DT_JMPREL:
|
| 2516 |
|
|
s = hppa_info->plt_rel_sec;
|
| 2517 |
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
| 2518 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
| 2519 |
|
|
break;
|
| 2520 |
|
|
|
| 2521 |
|
|
case DT_PLTRELSZ:
|
| 2522 |
|
|
s = hppa_info->plt_rel_sec;
|
| 2523 |
|
|
dyn.d_un.d_val = s->size;
|
| 2524 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
| 2525 |
|
|
break;
|
| 2526 |
|
|
|
| 2527 |
|
|
case DT_RELA:
|
| 2528 |
|
|
s = hppa_info->other_rel_sec;
|
| 2529 |
|
|
if (! s || ! s->size)
|
| 2530 |
|
|
s = hppa_info->dlt_rel_sec;
|
| 2531 |
|
|
if (! s || ! s->size)
|
| 2532 |
|
|
s = hppa_info->opd_rel_sec;
|
| 2533 |
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
| 2534 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
| 2535 |
|
|
break;
|
| 2536 |
|
|
|
| 2537 |
|
|
case DT_RELASZ:
|
| 2538 |
|
|
s = hppa_info->other_rel_sec;
|
| 2539 |
|
|
dyn.d_un.d_val = s->size;
|
| 2540 |
|
|
s = hppa_info->dlt_rel_sec;
|
| 2541 |
|
|
dyn.d_un.d_val += s->size;
|
| 2542 |
|
|
s = hppa_info->opd_rel_sec;
|
| 2543 |
|
|
dyn.d_un.d_val += s->size;
|
| 2544 |
|
|
/* There is some question about whether or not the size of
|
| 2545 |
|
|
the PLT relocs should be included here. HP's tools do
|
| 2546 |
|
|
it, so we'll emulate them. */
|
| 2547 |
|
|
s = hppa_info->plt_rel_sec;
|
| 2548 |
|
|
dyn.d_un.d_val += s->size;
|
| 2549 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
| 2550 |
|
|
break;
|
| 2551 |
|
|
|
| 2552 |
|
|
}
|
| 2553 |
|
|
}
|
| 2554 |
|
|
}
|
| 2555 |
|
|
|
| 2556 |
|
|
return TRUE;
|
| 2557 |
|
|
}
|
| 2558 |
|
|
|
| 2559 |
|
|
/* Support for core dump NOTE sections. */
|
| 2560 |
|
|
|
| 2561 |
|
|
static bfd_boolean
|
| 2562 |
|
|
elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
| 2563 |
|
|
{
|
| 2564 |
|
|
int offset;
|
| 2565 |
|
|
size_t size;
|
| 2566 |
|
|
|
| 2567 |
|
|
switch (note->descsz)
|
| 2568 |
|
|
{
|
| 2569 |
|
|
default:
|
| 2570 |
|
|
return FALSE;
|
| 2571 |
|
|
|
| 2572 |
|
|
case 760: /* Linux/hppa */
|
| 2573 |
|
|
/* pr_cursig */
|
| 2574 |
|
|
elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
|
| 2575 |
|
|
|
| 2576 |
|
|
/* pr_pid */
|
| 2577 |
|
|
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
|
| 2578 |
|
|
|
| 2579 |
|
|
/* pr_reg */
|
| 2580 |
|
|
offset = 112;
|
| 2581 |
|
|
size = 640;
|
| 2582 |
|
|
|
| 2583 |
|
|
break;
|
| 2584 |
|
|
}
|
| 2585 |
|
|
|
| 2586 |
|
|
/* Make a ".reg/999" section. */
|
| 2587 |
|
|
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
| 2588 |
|
|
size, note->descpos + offset);
|
| 2589 |
|
|
}
|
| 2590 |
|
|
|
| 2591 |
|
|
static bfd_boolean
|
| 2592 |
|
|
elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
| 2593 |
|
|
{
|
| 2594 |
|
|
char * command;
|
| 2595 |
|
|
int n;
|
| 2596 |
|
|
|
| 2597 |
|
|
switch (note->descsz)
|
| 2598 |
|
|
{
|
| 2599 |
|
|
default:
|
| 2600 |
|
|
return FALSE;
|
| 2601 |
|
|
|
| 2602 |
|
|
case 136: /* Linux/hppa elf_prpsinfo. */
|
| 2603 |
|
|
elf_tdata (abfd)->core_program
|
| 2604 |
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
|
| 2605 |
|
|
elf_tdata (abfd)->core_command
|
| 2606 |
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
|
| 2607 |
|
|
}
|
| 2608 |
|
|
|
| 2609 |
|
|
/* Note that for some reason, a spurious space is tacked
|
| 2610 |
|
|
onto the end of the args in some (at least one anyway)
|
| 2611 |
|
|
implementations, so strip it off if it exists. */
|
| 2612 |
|
|
command = elf_tdata (abfd)->core_command;
|
| 2613 |
|
|
n = strlen (command);
|
| 2614 |
|
|
|
| 2615 |
|
|
if (0 < n && command[n - 1] == ' ')
|
| 2616 |
|
|
command[n - 1] = '\0';
|
| 2617 |
|
|
|
| 2618 |
|
|
return TRUE;
|
| 2619 |
|
|
}
|
| 2620 |
|
|
|
| 2621 |
|
|
/* Return the number of additional phdrs we will need.
|
| 2622 |
|
|
|
| 2623 |
|
|
The generic ELF code only creates PT_PHDRs for executables. The HP
|
| 2624 |
|
|
dynamic linker requires PT_PHDRs for dynamic libraries too.
|
| 2625 |
|
|
|
| 2626 |
|
|
This routine indicates that the backend needs one additional program
|
| 2627 |
|
|
header for that case.
|
| 2628 |
|
|
|
| 2629 |
|
|
Note we do not have access to the link info structure here, so we have
|
| 2630 |
|
|
to guess whether or not we are building a shared library based on the
|
| 2631 |
|
|
existence of a .interp section. */
|
| 2632 |
|
|
|
| 2633 |
|
|
static int
|
| 2634 |
|
|
elf64_hppa_additional_program_headers (bfd *abfd,
|
| 2635 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
| 2636 |
|
|
{
|
| 2637 |
|
|
asection *s;
|
| 2638 |
|
|
|
| 2639 |
|
|
/* If we are creating a shared library, then we have to create a
|
| 2640 |
|
|
PT_PHDR segment. HP's dynamic linker chokes without it. */
|
| 2641 |
|
|
s = bfd_get_section_by_name (abfd, ".interp");
|
| 2642 |
|
|
if (! s)
|
| 2643 |
|
|
return 1;
|
| 2644 |
|
|
return 0;
|
| 2645 |
|
|
}
|
| 2646 |
|
|
|
| 2647 |
|
|
/* Allocate and initialize any program headers required by this
|
| 2648 |
|
|
specific backend.
|
| 2649 |
|
|
|
| 2650 |
|
|
The generic ELF code only creates PT_PHDRs for executables. The HP
|
| 2651 |
|
|
dynamic linker requires PT_PHDRs for dynamic libraries too.
|
| 2652 |
|
|
|
| 2653 |
|
|
This allocates the PT_PHDR and initializes it in a manner suitable
|
| 2654 |
|
|
for the HP linker.
|
| 2655 |
|
|
|
| 2656 |
|
|
Note we do not have access to the link info structure here, so we have
|
| 2657 |
|
|
to guess whether or not we are building a shared library based on the
|
| 2658 |
|
|
existence of a .interp section. */
|
| 2659 |
|
|
|
| 2660 |
|
|
static bfd_boolean
|
| 2661 |
|
|
elf64_hppa_modify_segment_map (bfd *abfd,
|
| 2662 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
| 2663 |
|
|
{
|
| 2664 |
|
|
struct elf_segment_map *m;
|
| 2665 |
|
|
asection *s;
|
| 2666 |
|
|
|
| 2667 |
|
|
s = bfd_get_section_by_name (abfd, ".interp");
|
| 2668 |
|
|
if (! s)
|
| 2669 |
|
|
{
|
| 2670 |
|
|
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
| 2671 |
|
|
if (m->p_type == PT_PHDR)
|
| 2672 |
|
|
break;
|
| 2673 |
|
|
if (m == NULL)
|
| 2674 |
|
|
{
|
| 2675 |
|
|
m = ((struct elf_segment_map *)
|
| 2676 |
|
|
bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
|
| 2677 |
|
|
if (m == NULL)
|
| 2678 |
|
|
return FALSE;
|
| 2679 |
|
|
|
| 2680 |
|
|
m->p_type = PT_PHDR;
|
| 2681 |
|
|
m->p_flags = PF_R | PF_X;
|
| 2682 |
|
|
m->p_flags_valid = 1;
|
| 2683 |
|
|
m->p_paddr_valid = 1;
|
| 2684 |
|
|
m->includes_phdrs = 1;
|
| 2685 |
|
|
|
| 2686 |
|
|
m->next = elf_tdata (abfd)->segment_map;
|
| 2687 |
|
|
elf_tdata (abfd)->segment_map = m;
|
| 2688 |
|
|
}
|
| 2689 |
|
|
}
|
| 2690 |
|
|
|
| 2691 |
|
|
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
| 2692 |
|
|
if (m->p_type == PT_LOAD)
|
| 2693 |
|
|
{
|
| 2694 |
|
|
unsigned int i;
|
| 2695 |
|
|
|
| 2696 |
|
|
for (i = 0; i < m->count; i++)
|
| 2697 |
|
|
{
|
| 2698 |
|
|
/* The code "hint" is not really a hint. It is a requirement
|
| 2699 |
|
|
for certain versions of the HP dynamic linker. Worse yet,
|
| 2700 |
|
|
it must be set even if the shared library does not have
|
| 2701 |
|
|
any code in its "text" segment (thus the check for .hash
|
| 2702 |
|
|
to catch this situation). */
|
| 2703 |
|
|
if (m->sections[i]->flags & SEC_CODE
|
| 2704 |
|
|
|| (strcmp (m->sections[i]->name, ".hash") == 0))
|
| 2705 |
|
|
m->p_flags |= (PF_X | PF_HP_CODE);
|
| 2706 |
|
|
}
|
| 2707 |
|
|
}
|
| 2708 |
|
|
|
| 2709 |
|
|
return TRUE;
|
| 2710 |
|
|
}
|
| 2711 |
|
|
|
| 2712 |
|
|
/* Called when writing out an object file to decide the type of a
|
| 2713 |
|
|
symbol. */
|
| 2714 |
|
|
static int
|
| 2715 |
|
|
elf64_hppa_elf_get_symbol_type (elf_sym, type)
|
| 2716 |
|
|
Elf_Internal_Sym *elf_sym;
|
| 2717 |
|
|
int type;
|
| 2718 |
|
|
{
|
| 2719 |
|
|
if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
|
| 2720 |
|
|
return STT_PARISC_MILLI;
|
| 2721 |
|
|
else
|
| 2722 |
|
|
return type;
|
| 2723 |
|
|
}
|
| 2724 |
|
|
|
| 2725 |
|
|
/* Support HP specific sections for core files. */
|
| 2726 |
|
|
static bfd_boolean
|
| 2727 |
|
|
elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
|
| 2728 |
|
|
const char *typename)
|
| 2729 |
|
|
{
|
| 2730 |
|
|
if (hdr->p_type == PT_HP_CORE_KERNEL)
|
| 2731 |
|
|
{
|
| 2732 |
|
|
asection *sect;
|
| 2733 |
|
|
|
| 2734 |
|
|
if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
|
| 2735 |
|
|
return FALSE;
|
| 2736 |
|
|
|
| 2737 |
|
|
sect = bfd_make_section_anyway (abfd, ".kernel");
|
| 2738 |
|
|
if (sect == NULL)
|
| 2739 |
|
|
return FALSE;
|
| 2740 |
|
|
sect->size = hdr->p_filesz;
|
| 2741 |
|
|
sect->filepos = hdr->p_offset;
|
| 2742 |
|
|
sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
|
| 2743 |
|
|
return TRUE;
|
| 2744 |
|
|
}
|
| 2745 |
|
|
|
| 2746 |
|
|
if (hdr->p_type == PT_HP_CORE_PROC)
|
| 2747 |
|
|
{
|
| 2748 |
|
|
int sig;
|
| 2749 |
|
|
|
| 2750 |
|
|
if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
|
| 2751 |
|
|
return FALSE;
|
| 2752 |
|
|
if (bfd_bread (&sig, 4, abfd) != 4)
|
| 2753 |
|
|
return FALSE;
|
| 2754 |
|
|
|
| 2755 |
|
|
elf_tdata (abfd)->core_signal = sig;
|
| 2756 |
|
|
|
| 2757 |
|
|
if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
|
| 2758 |
|
|
return FALSE;
|
| 2759 |
|
|
|
| 2760 |
|
|
/* GDB uses the ".reg" section to read register contents. */
|
| 2761 |
|
|
return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
|
| 2762 |
|
|
hdr->p_offset);
|
| 2763 |
|
|
}
|
| 2764 |
|
|
|
| 2765 |
|
|
if (hdr->p_type == PT_HP_CORE_LOADABLE
|
| 2766 |
|
|
|| hdr->p_type == PT_HP_CORE_STACK
|
| 2767 |
|
|
|| hdr->p_type == PT_HP_CORE_MMF)
|
| 2768 |
|
|
hdr->p_type = PT_LOAD;
|
| 2769 |
|
|
|
| 2770 |
|
|
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
|
| 2771 |
|
|
}
|
| 2772 |
|
|
|
| 2773 |
|
|
static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
|
| 2774 |
|
|
{
|
| 2775 |
|
|
{ STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
| 2776 |
|
|
{ STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
| 2777 |
|
|
{ STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
|
| 2778 |
|
|
{ STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
|
| 2779 |
|
|
{ STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
|
| 2780 |
|
|
{ STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
|
| 2781 |
|
|
{ STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
|
| 2782 |
|
|
{ NULL, 0, 0, 0, 0 }
|
| 2783 |
|
|
};
|
| 2784 |
|
|
|
| 2785 |
|
|
/* The hash bucket size is the standard one, namely 4. */
|
| 2786 |
|
|
|
| 2787 |
|
|
const struct elf_size_info hppa64_elf_size_info =
|
| 2788 |
|
|
{
|
| 2789 |
|
|
sizeof (Elf64_External_Ehdr),
|
| 2790 |
|
|
sizeof (Elf64_External_Phdr),
|
| 2791 |
|
|
sizeof (Elf64_External_Shdr),
|
| 2792 |
|
|
sizeof (Elf64_External_Rel),
|
| 2793 |
|
|
sizeof (Elf64_External_Rela),
|
| 2794 |
|
|
sizeof (Elf64_External_Sym),
|
| 2795 |
|
|
sizeof (Elf64_External_Dyn),
|
| 2796 |
|
|
sizeof (Elf_External_Note),
|
| 2797 |
|
|
4,
|
| 2798 |
|
|
1,
|
| 2799 |
|
|
64, 3,
|
| 2800 |
|
|
ELFCLASS64, EV_CURRENT,
|
| 2801 |
|
|
bfd_elf64_write_out_phdrs,
|
| 2802 |
|
|
bfd_elf64_write_shdrs_and_ehdr,
|
| 2803 |
|
|
bfd_elf64_checksum_contents,
|
| 2804 |
|
|
bfd_elf64_write_relocs,
|
| 2805 |
|
|
bfd_elf64_swap_symbol_in,
|
| 2806 |
|
|
bfd_elf64_swap_symbol_out,
|
| 2807 |
|
|
bfd_elf64_slurp_reloc_table,
|
| 2808 |
|
|
bfd_elf64_slurp_symbol_table,
|
| 2809 |
|
|
bfd_elf64_swap_dyn_in,
|
| 2810 |
|
|
bfd_elf64_swap_dyn_out,
|
| 2811 |
|
|
bfd_elf64_swap_reloc_in,
|
| 2812 |
|
|
bfd_elf64_swap_reloc_out,
|
| 2813 |
|
|
bfd_elf64_swap_reloca_in,
|
| 2814 |
|
|
bfd_elf64_swap_reloca_out
|
| 2815 |
|
|
};
|
| 2816 |
|
|
|
| 2817 |
|
|
#define TARGET_BIG_SYM bfd_elf64_hppa_vec
|
| 2818 |
|
|
#define TARGET_BIG_NAME "elf64-hppa"
|
| 2819 |
|
|
#define ELF_ARCH bfd_arch_hppa
|
| 2820 |
|
|
#define ELF_MACHINE_CODE EM_PARISC
|
| 2821 |
|
|
/* This is not strictly correct. The maximum page size for PA2.0 is
|
| 2822 |
|
|
64M. But everything still uses 4k. */
|
| 2823 |
|
|
#define ELF_MAXPAGESIZE 0x1000
|
| 2824 |
|
|
#define ELF_OSABI ELFOSABI_HPUX
|
| 2825 |
|
|
|
| 2826 |
|
|
#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
|
| 2827 |
|
|
#define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
|
| 2828 |
|
|
#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
|
| 2829 |
|
|
#define elf_info_to_howto elf_hppa_info_to_howto
|
| 2830 |
|
|
#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
|
| 2831 |
|
|
|
| 2832 |
|
|
#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
|
| 2833 |
|
|
#define elf_backend_object_p elf64_hppa_object_p
|
| 2834 |
|
|
#define elf_backend_final_write_processing \
|
| 2835 |
|
|
elf_hppa_final_write_processing
|
| 2836 |
|
|
#define elf_backend_fake_sections elf_hppa_fake_sections
|
| 2837 |
|
|
#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
|
| 2838 |
|
|
|
| 2839 |
|
|
#define elf_backend_relocate_section elf_hppa_relocate_section
|
| 2840 |
|
|
|
| 2841 |
|
|
#define bfd_elf64_bfd_final_link elf_hppa_final_link
|
| 2842 |
|
|
|
| 2843 |
|
|
#define elf_backend_create_dynamic_sections \
|
| 2844 |
|
|
elf64_hppa_create_dynamic_sections
|
| 2845 |
|
|
#define elf_backend_post_process_headers elf64_hppa_post_process_headers
|
| 2846 |
|
|
|
| 2847 |
|
|
#define elf_backend_omit_section_dynsym \
|
| 2848 |
|
|
((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
|
| 2849 |
|
|
#define elf_backend_adjust_dynamic_symbol \
|
| 2850 |
|
|
elf64_hppa_adjust_dynamic_symbol
|
| 2851 |
|
|
|
| 2852 |
|
|
#define elf_backend_size_dynamic_sections \
|
| 2853 |
|
|
elf64_hppa_size_dynamic_sections
|
| 2854 |
|
|
|
| 2855 |
|
|
#define elf_backend_finish_dynamic_symbol \
|
| 2856 |
|
|
elf64_hppa_finish_dynamic_symbol
|
| 2857 |
|
|
#define elf_backend_finish_dynamic_sections \
|
| 2858 |
|
|
elf64_hppa_finish_dynamic_sections
|
| 2859 |
|
|
#define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
|
| 2860 |
|
|
#define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
|
| 2861 |
|
|
|
| 2862 |
|
|
/* Stuff for the BFD linker: */
|
| 2863 |
|
|
#define bfd_elf64_bfd_link_hash_table_create \
|
| 2864 |
|
|
elf64_hppa_hash_table_create
|
| 2865 |
|
|
|
| 2866 |
|
|
#define elf_backend_check_relocs \
|
| 2867 |
|
|
elf64_hppa_check_relocs
|
| 2868 |
|
|
|
| 2869 |
|
|
#define elf_backend_size_info \
|
| 2870 |
|
|
hppa64_elf_size_info
|
| 2871 |
|
|
|
| 2872 |
|
|
#define elf_backend_additional_program_headers \
|
| 2873 |
|
|
elf64_hppa_additional_program_headers
|
| 2874 |
|
|
|
| 2875 |
|
|
#define elf_backend_modify_segment_map \
|
| 2876 |
|
|
elf64_hppa_modify_segment_map
|
| 2877 |
|
|
|
| 2878 |
|
|
#define elf_backend_link_output_symbol_hook \
|
| 2879 |
|
|
elf64_hppa_link_output_symbol_hook
|
| 2880 |
|
|
|
| 2881 |
|
|
#define elf_backend_want_got_plt 0
|
| 2882 |
|
|
#define elf_backend_plt_readonly 0
|
| 2883 |
|
|
#define elf_backend_want_plt_sym 0
|
| 2884 |
|
|
#define elf_backend_got_header_size 0
|
| 2885 |
|
|
#define elf_backend_type_change_ok TRUE
|
| 2886 |
|
|
#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
|
| 2887 |
|
|
#define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
|
| 2888 |
|
|
#define elf_backend_rela_normal 1
|
| 2889 |
|
|
#define elf_backend_special_sections elf64_hppa_special_sections
|
| 2890 |
|
|
#define elf_backend_action_discarded elf_hppa_action_discarded
|
| 2891 |
|
|
#define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
|
| 2892 |
|
|
|
| 2893 |
|
|
#define elf64_bed elf64_hppa_hpux_bed
|
| 2894 |
|
|
|
| 2895 |
|
|
#include "elf64-target.h"
|
| 2896 |
|
|
|
| 2897 |
|
|
#undef TARGET_BIG_SYM
|
| 2898 |
|
|
#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
|
| 2899 |
|
|
#undef TARGET_BIG_NAME
|
| 2900 |
|
|
#define TARGET_BIG_NAME "elf64-hppa-linux"
|
| 2901 |
|
|
#undef ELF_OSABI
|
| 2902 |
|
|
#define ELF_OSABI ELFOSABI_LINUX
|
| 2903 |
|
|
#undef elf_backend_post_process_headers
|
| 2904 |
|
|
#define elf_backend_post_process_headers _bfd_elf_set_osabi
|
| 2905 |
|
|
#undef elf64_bed
|
| 2906 |
|
|
#define elf64_bed elf64_hppa_linux_bed
|
| 2907 |
|
|
|
| 2908 |
|
|
#include "elf64-target.h"
|