1 |
24 |
jeremybenn |
/* Target-dependent code for AMD64.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
Contributed by Jiri Smid, SuSE Labs.
|
7 |
|
|
|
8 |
|
|
This file is part of GDB.
|
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify
|
11 |
|
|
it under the terms of the GNU General Public License as published by
|
12 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
13 |
|
|
(at your option) any later version.
|
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful,
|
16 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
18 |
|
|
GNU General Public License for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "defs.h"
|
24 |
|
|
#include "arch-utils.h"
|
25 |
|
|
#include "block.h"
|
26 |
|
|
#include "dummy-frame.h"
|
27 |
|
|
#include "frame.h"
|
28 |
|
|
#include "frame-base.h"
|
29 |
|
|
#include "frame-unwind.h"
|
30 |
|
|
#include "inferior.h"
|
31 |
|
|
#include "gdbcmd.h"
|
32 |
|
|
#include "gdbcore.h"
|
33 |
|
|
#include "objfiles.h"
|
34 |
|
|
#include "regcache.h"
|
35 |
|
|
#include "regset.h"
|
36 |
|
|
#include "symfile.h"
|
37 |
|
|
|
38 |
|
|
#include "gdb_assert.h"
|
39 |
|
|
|
40 |
|
|
#include "amd64-tdep.h"
|
41 |
|
|
#include "i387-tdep.h"
|
42 |
|
|
|
43 |
|
|
/* Note that the AMD64 architecture was previously known as x86-64.
|
44 |
|
|
The latter is (forever) engraved into the canonical system name as
|
45 |
|
|
returned by config.guess, and used as the name for the AMD64 port
|
46 |
|
|
of GNU/Linux. The BSD's have renamed their ports to amd64; they
|
47 |
|
|
don't like to shout. For GDB we prefer the amd64_-prefix over the
|
48 |
|
|
x86_64_-prefix since it's so much easier to type. */
|
49 |
|
|
|
50 |
|
|
/* Register information. */
|
51 |
|
|
|
52 |
|
|
static const char *amd64_register_names[] =
|
53 |
|
|
{
|
54 |
|
|
"rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
|
55 |
|
|
|
56 |
|
|
/* %r8 is indeed register number 8. */
|
57 |
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
58 |
|
|
"rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
|
59 |
|
|
|
60 |
|
|
/* %st0 is register number 24. */
|
61 |
|
|
"st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
|
62 |
|
|
"fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
|
63 |
|
|
|
64 |
|
|
/* %xmm0 is register number 40. */
|
65 |
|
|
"xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
|
66 |
|
|
"xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
|
67 |
|
|
"mxcsr",
|
68 |
|
|
};
|
69 |
|
|
|
70 |
|
|
/* Total number of registers. */
|
71 |
|
|
#define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names)
|
72 |
|
|
|
73 |
|
|
/* Return the name of register REGNUM. */
|
74 |
|
|
|
75 |
|
|
const char *
|
76 |
|
|
amd64_register_name (struct gdbarch *gdbarch, int regnum)
|
77 |
|
|
{
|
78 |
|
|
if (regnum >= 0 && regnum < AMD64_NUM_REGS)
|
79 |
|
|
return amd64_register_names[regnum];
|
80 |
|
|
|
81 |
|
|
return NULL;
|
82 |
|
|
}
|
83 |
|
|
|
84 |
|
|
/* Return the GDB type object for the "standard" data type of data in
|
85 |
|
|
register REGNUM. */
|
86 |
|
|
|
87 |
|
|
struct type *
|
88 |
|
|
amd64_register_type (struct gdbarch *gdbarch, int regnum)
|
89 |
|
|
{
|
90 |
|
|
if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
|
91 |
|
|
return builtin_type_int64;
|
92 |
|
|
if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
|
93 |
|
|
return builtin_type_void_data_ptr;
|
94 |
|
|
if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
|
95 |
|
|
return builtin_type_int64;
|
96 |
|
|
if (regnum == AMD64_RIP_REGNUM)
|
97 |
|
|
return builtin_type_void_func_ptr;
|
98 |
|
|
if (regnum == AMD64_EFLAGS_REGNUM)
|
99 |
|
|
return i386_eflags_type;
|
100 |
|
|
if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
|
101 |
|
|
return builtin_type_int32;
|
102 |
|
|
if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
|
103 |
|
|
return builtin_type_i387_ext;
|
104 |
|
|
if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
|
105 |
|
|
return builtin_type_int32;
|
106 |
|
|
if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
|
107 |
|
|
return i386_sse_type (gdbarch);
|
108 |
|
|
if (regnum == AMD64_MXCSR_REGNUM)
|
109 |
|
|
return i386_mxcsr_type;
|
110 |
|
|
|
111 |
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
112 |
|
|
}
|
113 |
|
|
|
114 |
|
|
/* DWARF Register Number Mapping as defined in the System V psABI,
|
115 |
|
|
section 3.6. */
|
116 |
|
|
|
117 |
|
|
static int amd64_dwarf_regmap[] =
|
118 |
|
|
{
|
119 |
|
|
/* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
|
120 |
|
|
AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
|
121 |
|
|
AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
|
122 |
|
|
AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
|
123 |
|
|
|
124 |
|
|
/* Frame Pointer Register RBP. */
|
125 |
|
|
AMD64_RBP_REGNUM,
|
126 |
|
|
|
127 |
|
|
/* Stack Pointer Register RSP. */
|
128 |
|
|
AMD64_RSP_REGNUM,
|
129 |
|
|
|
130 |
|
|
/* Extended Integer Registers 8 - 15. */
|
131 |
|
|
8, 9, 10, 11, 12, 13, 14, 15,
|
132 |
|
|
|
133 |
|
|
/* Return Address RA. Mapped to RIP. */
|
134 |
|
|
AMD64_RIP_REGNUM,
|
135 |
|
|
|
136 |
|
|
/* SSE Registers 0 - 7. */
|
137 |
|
|
AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
|
138 |
|
|
AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
|
139 |
|
|
AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
|
140 |
|
|
AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
|
141 |
|
|
|
142 |
|
|
/* Extended SSE Registers 8 - 15. */
|
143 |
|
|
AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
|
144 |
|
|
AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
|
145 |
|
|
AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
|
146 |
|
|
AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
|
147 |
|
|
|
148 |
|
|
/* Floating Point Registers 0-7. */
|
149 |
|
|
AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
|
150 |
|
|
AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
|
151 |
|
|
AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
|
152 |
|
|
AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
|
153 |
|
|
|
154 |
|
|
/* Control and Status Flags Register. */
|
155 |
|
|
AMD64_EFLAGS_REGNUM,
|
156 |
|
|
|
157 |
|
|
/* Selector Registers. */
|
158 |
|
|
AMD64_ES_REGNUM,
|
159 |
|
|
AMD64_CS_REGNUM,
|
160 |
|
|
AMD64_SS_REGNUM,
|
161 |
|
|
AMD64_DS_REGNUM,
|
162 |
|
|
AMD64_FS_REGNUM,
|
163 |
|
|
AMD64_GS_REGNUM,
|
164 |
|
|
-1,
|
165 |
|
|
-1,
|
166 |
|
|
|
167 |
|
|
/* Segment Base Address Registers. */
|
168 |
|
|
-1,
|
169 |
|
|
-1,
|
170 |
|
|
-1,
|
171 |
|
|
-1,
|
172 |
|
|
|
173 |
|
|
/* Special Selector Registers. */
|
174 |
|
|
-1,
|
175 |
|
|
-1,
|
176 |
|
|
|
177 |
|
|
/* Floating Point Control Registers. */
|
178 |
|
|
AMD64_MXCSR_REGNUM,
|
179 |
|
|
AMD64_FCTRL_REGNUM,
|
180 |
|
|
AMD64_FSTAT_REGNUM
|
181 |
|
|
};
|
182 |
|
|
|
183 |
|
|
static const int amd64_dwarf_regmap_len =
|
184 |
|
|
(sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
|
185 |
|
|
|
186 |
|
|
/* Convert DWARF register number REG to the appropriate register
|
187 |
|
|
number used by GDB. */
|
188 |
|
|
|
189 |
|
|
static int
|
190 |
|
|
amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
191 |
|
|
{
|
192 |
|
|
int regnum = -1;
|
193 |
|
|
|
194 |
|
|
if (reg >= 0 && reg < amd64_dwarf_regmap_len)
|
195 |
|
|
regnum = amd64_dwarf_regmap[reg];
|
196 |
|
|
|
197 |
|
|
if (regnum == -1)
|
198 |
|
|
warning (_("Unmapped DWARF Register #%d encountered."), reg);
|
199 |
|
|
|
200 |
|
|
return regnum;
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
|
204 |
|
|
|
205 |
|
|
/* Register classes as defined in the psABI. */
|
206 |
|
|
|
207 |
|
|
enum amd64_reg_class
|
208 |
|
|
{
|
209 |
|
|
AMD64_INTEGER,
|
210 |
|
|
AMD64_SSE,
|
211 |
|
|
AMD64_SSEUP,
|
212 |
|
|
AMD64_X87,
|
213 |
|
|
AMD64_X87UP,
|
214 |
|
|
AMD64_COMPLEX_X87,
|
215 |
|
|
AMD64_NO_CLASS,
|
216 |
|
|
AMD64_MEMORY
|
217 |
|
|
};
|
218 |
|
|
|
219 |
|
|
/* Return the union class of CLASS1 and CLASS2. See the psABI for
|
220 |
|
|
details. */
|
221 |
|
|
|
222 |
|
|
static enum amd64_reg_class
|
223 |
|
|
amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
|
224 |
|
|
{
|
225 |
|
|
/* Rule (a): If both classes are equal, this is the resulting class. */
|
226 |
|
|
if (class1 == class2)
|
227 |
|
|
return class1;
|
228 |
|
|
|
229 |
|
|
/* Rule (b): If one of the classes is NO_CLASS, the resulting class
|
230 |
|
|
is the other class. */
|
231 |
|
|
if (class1 == AMD64_NO_CLASS)
|
232 |
|
|
return class2;
|
233 |
|
|
if (class2 == AMD64_NO_CLASS)
|
234 |
|
|
return class1;
|
235 |
|
|
|
236 |
|
|
/* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
|
237 |
|
|
if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
|
238 |
|
|
return AMD64_MEMORY;
|
239 |
|
|
|
240 |
|
|
/* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
|
241 |
|
|
if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
|
242 |
|
|
return AMD64_INTEGER;
|
243 |
|
|
|
244 |
|
|
/* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
|
245 |
|
|
MEMORY is used as class. */
|
246 |
|
|
if (class1 == AMD64_X87 || class1 == AMD64_X87UP
|
247 |
|
|
|| class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
|
248 |
|
|
|| class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
|
249 |
|
|
return AMD64_MEMORY;
|
250 |
|
|
|
251 |
|
|
/* Rule (f): Otherwise class SSE is used. */
|
252 |
|
|
return AMD64_SSE;
|
253 |
|
|
}
|
254 |
|
|
|
255 |
|
|
static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
|
256 |
|
|
|
257 |
|
|
/* Return non-zero if TYPE is a non-POD structure or union type. */
|
258 |
|
|
|
259 |
|
|
static int
|
260 |
|
|
amd64_non_pod_p (struct type *type)
|
261 |
|
|
{
|
262 |
|
|
/* ??? A class with a base class certainly isn't POD, but does this
|
263 |
|
|
catch all non-POD structure types? */
|
264 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
|
265 |
|
|
return 1;
|
266 |
|
|
|
267 |
|
|
return 0;
|
268 |
|
|
}
|
269 |
|
|
|
270 |
|
|
/* Classify TYPE according to the rules for aggregate (structures and
|
271 |
|
|
arrays) and union types, and store the result in CLASS. */
|
272 |
|
|
|
273 |
|
|
static void
|
274 |
|
|
amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
|
275 |
|
|
{
|
276 |
|
|
int len = TYPE_LENGTH (type);
|
277 |
|
|
|
278 |
|
|
/* 1. If the size of an object is larger than two eightbytes, or in
|
279 |
|
|
C++, is a non-POD structure or union type, or contains
|
280 |
|
|
unaligned fields, it has class memory. */
|
281 |
|
|
if (len > 16 || amd64_non_pod_p (type))
|
282 |
|
|
{
|
283 |
|
|
class[0] = class[1] = AMD64_MEMORY;
|
284 |
|
|
return;
|
285 |
|
|
}
|
286 |
|
|
|
287 |
|
|
/* 2. Both eightbytes get initialized to class NO_CLASS. */
|
288 |
|
|
class[0] = class[1] = AMD64_NO_CLASS;
|
289 |
|
|
|
290 |
|
|
/* 3. Each field of an object is classified recursively so that
|
291 |
|
|
always two fields are considered. The resulting class is
|
292 |
|
|
calculated according to the classes of the fields in the
|
293 |
|
|
eightbyte: */
|
294 |
|
|
|
295 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
296 |
|
|
{
|
297 |
|
|
struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
|
298 |
|
|
|
299 |
|
|
/* All fields in an array have the same type. */
|
300 |
|
|
amd64_classify (subtype, class);
|
301 |
|
|
if (len > 8 && class[1] == AMD64_NO_CLASS)
|
302 |
|
|
class[1] = class[0];
|
303 |
|
|
}
|
304 |
|
|
else
|
305 |
|
|
{
|
306 |
|
|
int i;
|
307 |
|
|
|
308 |
|
|
/* Structure or union. */
|
309 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
310 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION);
|
311 |
|
|
|
312 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
313 |
|
|
{
|
314 |
|
|
struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
|
315 |
|
|
int pos = TYPE_FIELD_BITPOS (type, i) / 64;
|
316 |
|
|
enum amd64_reg_class subclass[2];
|
317 |
|
|
|
318 |
|
|
/* Ignore static fields. */
|
319 |
|
|
if (TYPE_FIELD_STATIC (type, i))
|
320 |
|
|
continue;
|
321 |
|
|
|
322 |
|
|
gdb_assert (pos == 0 || pos == 1);
|
323 |
|
|
|
324 |
|
|
amd64_classify (subtype, subclass);
|
325 |
|
|
class[pos] = amd64_merge_classes (class[pos], subclass[0]);
|
326 |
|
|
if (pos == 0)
|
327 |
|
|
class[1] = amd64_merge_classes (class[1], subclass[1]);
|
328 |
|
|
}
|
329 |
|
|
}
|
330 |
|
|
|
331 |
|
|
/* 4. Then a post merger cleanup is done: */
|
332 |
|
|
|
333 |
|
|
/* Rule (a): If one of the classes is MEMORY, the whole argument is
|
334 |
|
|
passed in memory. */
|
335 |
|
|
if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
|
336 |
|
|
class[0] = class[1] = AMD64_MEMORY;
|
337 |
|
|
|
338 |
|
|
/* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
|
339 |
|
|
SSE. */
|
340 |
|
|
if (class[0] == AMD64_SSEUP)
|
341 |
|
|
class[0] = AMD64_SSE;
|
342 |
|
|
if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
|
343 |
|
|
class[1] = AMD64_SSE;
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
/* Classify TYPE, and store the result in CLASS. */
|
347 |
|
|
|
348 |
|
|
static void
|
349 |
|
|
amd64_classify (struct type *type, enum amd64_reg_class class[2])
|
350 |
|
|
{
|
351 |
|
|
enum type_code code = TYPE_CODE (type);
|
352 |
|
|
int len = TYPE_LENGTH (type);
|
353 |
|
|
|
354 |
|
|
class[0] = class[1] = AMD64_NO_CLASS;
|
355 |
|
|
|
356 |
|
|
/* Arguments of types (signed and unsigned) _Bool, char, short, int,
|
357 |
|
|
long, long long, and pointers are in the INTEGER class. Similarly,
|
358 |
|
|
range types, used by languages such as Ada, are also in the INTEGER
|
359 |
|
|
class. */
|
360 |
|
|
if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
|
361 |
|
|
|| code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
|
362 |
|
|
|| code == TYPE_CODE_CHAR
|
363 |
|
|
|| code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
|
364 |
|
|
&& (len == 1 || len == 2 || len == 4 || len == 8))
|
365 |
|
|
class[0] = AMD64_INTEGER;
|
366 |
|
|
|
367 |
|
|
/* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
|
368 |
|
|
are in class SSE. */
|
369 |
|
|
else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
|
370 |
|
|
&& (len == 4 || len == 8))
|
371 |
|
|
/* FIXME: __m64 . */
|
372 |
|
|
class[0] = AMD64_SSE;
|
373 |
|
|
|
374 |
|
|
/* Arguments of types __float128, _Decimal128 and __m128 are split into
|
375 |
|
|
two halves. The least significant ones belong to class SSE, the most
|
376 |
|
|
significant one to class SSEUP. */
|
377 |
|
|
else if (code == TYPE_CODE_DECFLOAT && len == 16)
|
378 |
|
|
/* FIXME: __float128, __m128. */
|
379 |
|
|
class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
|
380 |
|
|
|
381 |
|
|
/* The 64-bit mantissa of arguments of type long double belongs to
|
382 |
|
|
class X87, the 16-bit exponent plus 6 bytes of padding belongs to
|
383 |
|
|
class X87UP. */
|
384 |
|
|
else if (code == TYPE_CODE_FLT && len == 16)
|
385 |
|
|
/* Class X87 and X87UP. */
|
386 |
|
|
class[0] = AMD64_X87, class[1] = AMD64_X87UP;
|
387 |
|
|
|
388 |
|
|
/* Aggregates. */
|
389 |
|
|
else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
|
390 |
|
|
|| code == TYPE_CODE_UNION)
|
391 |
|
|
amd64_classify_aggregate (type, class);
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
static enum return_value_convention
|
395 |
|
|
amd64_return_value (struct gdbarch *gdbarch, struct type *type,
|
396 |
|
|
struct regcache *regcache,
|
397 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
398 |
|
|
{
|
399 |
|
|
enum amd64_reg_class class[2];
|
400 |
|
|
int len = TYPE_LENGTH (type);
|
401 |
|
|
static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
|
402 |
|
|
static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
|
403 |
|
|
int integer_reg = 0;
|
404 |
|
|
int sse_reg = 0;
|
405 |
|
|
int i;
|
406 |
|
|
|
407 |
|
|
gdb_assert (!(readbuf && writebuf));
|
408 |
|
|
|
409 |
|
|
/* 1. Classify the return type with the classification algorithm. */
|
410 |
|
|
amd64_classify (type, class);
|
411 |
|
|
|
412 |
|
|
/* 2. If the type has class MEMORY, then the caller provides space
|
413 |
|
|
for the return value and passes the address of this storage in
|
414 |
|
|
%rdi as if it were the first argument to the function. In effect,
|
415 |
|
|
this address becomes a hidden first argument.
|
416 |
|
|
|
417 |
|
|
On return %rax will contain the address that has been passed in
|
418 |
|
|
by the caller in %rdi. */
|
419 |
|
|
if (class[0] == AMD64_MEMORY)
|
420 |
|
|
{
|
421 |
|
|
/* As indicated by the comment above, the ABI guarantees that we
|
422 |
|
|
can always find the return value just after the function has
|
423 |
|
|
returned. */
|
424 |
|
|
|
425 |
|
|
if (readbuf)
|
426 |
|
|
{
|
427 |
|
|
ULONGEST addr;
|
428 |
|
|
|
429 |
|
|
regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
|
430 |
|
|
read_memory (addr, readbuf, TYPE_LENGTH (type));
|
431 |
|
|
}
|
432 |
|
|
|
433 |
|
|
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
434 |
|
|
}
|
435 |
|
|
|
436 |
|
|
gdb_assert (class[1] != AMD64_MEMORY);
|
437 |
|
|
gdb_assert (len <= 16);
|
438 |
|
|
|
439 |
|
|
for (i = 0; len > 0; i++, len -= 8)
|
440 |
|
|
{
|
441 |
|
|
int regnum = -1;
|
442 |
|
|
int offset = 0;
|
443 |
|
|
|
444 |
|
|
switch (class[i])
|
445 |
|
|
{
|
446 |
|
|
case AMD64_INTEGER:
|
447 |
|
|
/* 3. If the class is INTEGER, the next available register
|
448 |
|
|
of the sequence %rax, %rdx is used. */
|
449 |
|
|
regnum = integer_regnum[integer_reg++];
|
450 |
|
|
break;
|
451 |
|
|
|
452 |
|
|
case AMD64_SSE:
|
453 |
|
|
/* 4. If the class is SSE, the next available SSE register
|
454 |
|
|
of the sequence %xmm0, %xmm1 is used. */
|
455 |
|
|
regnum = sse_regnum[sse_reg++];
|
456 |
|
|
break;
|
457 |
|
|
|
458 |
|
|
case AMD64_SSEUP:
|
459 |
|
|
/* 5. If the class is SSEUP, the eightbyte is passed in the
|
460 |
|
|
upper half of the last used SSE register. */
|
461 |
|
|
gdb_assert (sse_reg > 0);
|
462 |
|
|
regnum = sse_regnum[sse_reg - 1];
|
463 |
|
|
offset = 8;
|
464 |
|
|
break;
|
465 |
|
|
|
466 |
|
|
case AMD64_X87:
|
467 |
|
|
/* 6. If the class is X87, the value is returned on the X87
|
468 |
|
|
stack in %st0 as 80-bit x87 number. */
|
469 |
|
|
regnum = AMD64_ST0_REGNUM;
|
470 |
|
|
if (writebuf)
|
471 |
|
|
i387_return_value (gdbarch, regcache);
|
472 |
|
|
break;
|
473 |
|
|
|
474 |
|
|
case AMD64_X87UP:
|
475 |
|
|
/* 7. If the class is X87UP, the value is returned together
|
476 |
|
|
with the previous X87 value in %st0. */
|
477 |
|
|
gdb_assert (i > 0 && class[0] == AMD64_X87);
|
478 |
|
|
regnum = AMD64_ST0_REGNUM;
|
479 |
|
|
offset = 8;
|
480 |
|
|
len = 2;
|
481 |
|
|
break;
|
482 |
|
|
|
483 |
|
|
case AMD64_NO_CLASS:
|
484 |
|
|
continue;
|
485 |
|
|
|
486 |
|
|
default:
|
487 |
|
|
gdb_assert (!"Unexpected register class.");
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
gdb_assert (regnum != -1);
|
491 |
|
|
|
492 |
|
|
if (readbuf)
|
493 |
|
|
regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
|
494 |
|
|
readbuf + i * 8);
|
495 |
|
|
if (writebuf)
|
496 |
|
|
regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
|
497 |
|
|
writebuf + i * 8);
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
501 |
|
|
}
|
502 |
|
|
|
503 |
|
|
|
504 |
|
|
static CORE_ADDR
|
505 |
|
|
amd64_push_arguments (struct regcache *regcache, int nargs,
|
506 |
|
|
struct value **args, CORE_ADDR sp, int struct_return)
|
507 |
|
|
{
|
508 |
|
|
static int integer_regnum[] =
|
509 |
|
|
{
|
510 |
|
|
AMD64_RDI_REGNUM, /* %rdi */
|
511 |
|
|
AMD64_RSI_REGNUM, /* %rsi */
|
512 |
|
|
AMD64_RDX_REGNUM, /* %rdx */
|
513 |
|
|
AMD64_RCX_REGNUM, /* %rcx */
|
514 |
|
|
8, /* %r8 */
|
515 |
|
|
9 /* %r9 */
|
516 |
|
|
};
|
517 |
|
|
static int sse_regnum[] =
|
518 |
|
|
{
|
519 |
|
|
/* %xmm0 ... %xmm7 */
|
520 |
|
|
AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
|
521 |
|
|
AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
|
522 |
|
|
AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
|
523 |
|
|
AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
|
524 |
|
|
};
|
525 |
|
|
struct value **stack_args = alloca (nargs * sizeof (struct value *));
|
526 |
|
|
int num_stack_args = 0;
|
527 |
|
|
int num_elements = 0;
|
528 |
|
|
int element = 0;
|
529 |
|
|
int integer_reg = 0;
|
530 |
|
|
int sse_reg = 0;
|
531 |
|
|
int i;
|
532 |
|
|
|
533 |
|
|
/* Reserve a register for the "hidden" argument. */
|
534 |
|
|
if (struct_return)
|
535 |
|
|
integer_reg++;
|
536 |
|
|
|
537 |
|
|
for (i = 0; i < nargs; i++)
|
538 |
|
|
{
|
539 |
|
|
struct type *type = value_type (args[i]);
|
540 |
|
|
int len = TYPE_LENGTH (type);
|
541 |
|
|
enum amd64_reg_class class[2];
|
542 |
|
|
int needed_integer_regs = 0;
|
543 |
|
|
int needed_sse_regs = 0;
|
544 |
|
|
int j;
|
545 |
|
|
|
546 |
|
|
/* Classify argument. */
|
547 |
|
|
amd64_classify (type, class);
|
548 |
|
|
|
549 |
|
|
/* Calculate the number of integer and SSE registers needed for
|
550 |
|
|
this argument. */
|
551 |
|
|
for (j = 0; j < 2; j++)
|
552 |
|
|
{
|
553 |
|
|
if (class[j] == AMD64_INTEGER)
|
554 |
|
|
needed_integer_regs++;
|
555 |
|
|
else if (class[j] == AMD64_SSE)
|
556 |
|
|
needed_sse_regs++;
|
557 |
|
|
}
|
558 |
|
|
|
559 |
|
|
/* Check whether enough registers are available, and if the
|
560 |
|
|
argument should be passed in registers at all. */
|
561 |
|
|
if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
|
562 |
|
|
|| sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
|
563 |
|
|
|| (needed_integer_regs == 0 && needed_sse_regs == 0))
|
564 |
|
|
{
|
565 |
|
|
/* The argument will be passed on the stack. */
|
566 |
|
|
num_elements += ((len + 7) / 8);
|
567 |
|
|
stack_args[num_stack_args++] = args[i];
|
568 |
|
|
}
|
569 |
|
|
else
|
570 |
|
|
{
|
571 |
|
|
/* The argument will be passed in registers. */
|
572 |
|
|
const gdb_byte *valbuf = value_contents (args[i]);
|
573 |
|
|
gdb_byte buf[8];
|
574 |
|
|
|
575 |
|
|
gdb_assert (len <= 16);
|
576 |
|
|
|
577 |
|
|
for (j = 0; len > 0; j++, len -= 8)
|
578 |
|
|
{
|
579 |
|
|
int regnum = -1;
|
580 |
|
|
int offset = 0;
|
581 |
|
|
|
582 |
|
|
switch (class[j])
|
583 |
|
|
{
|
584 |
|
|
case AMD64_INTEGER:
|
585 |
|
|
regnum = integer_regnum[integer_reg++];
|
586 |
|
|
break;
|
587 |
|
|
|
588 |
|
|
case AMD64_SSE:
|
589 |
|
|
regnum = sse_regnum[sse_reg++];
|
590 |
|
|
break;
|
591 |
|
|
|
592 |
|
|
case AMD64_SSEUP:
|
593 |
|
|
gdb_assert (sse_reg > 0);
|
594 |
|
|
regnum = sse_regnum[sse_reg - 1];
|
595 |
|
|
offset = 8;
|
596 |
|
|
break;
|
597 |
|
|
|
598 |
|
|
default:
|
599 |
|
|
gdb_assert (!"Unexpected register class.");
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
gdb_assert (regnum != -1);
|
603 |
|
|
memset (buf, 0, sizeof buf);
|
604 |
|
|
memcpy (buf, valbuf + j * 8, min (len, 8));
|
605 |
|
|
regcache_raw_write_part (regcache, regnum, offset, 8, buf);
|
606 |
|
|
}
|
607 |
|
|
}
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
/* Allocate space for the arguments on the stack. */
|
611 |
|
|
sp -= num_elements * 8;
|
612 |
|
|
|
613 |
|
|
/* The psABI says that "The end of the input argument area shall be
|
614 |
|
|
aligned on a 16 byte boundary." */
|
615 |
|
|
sp &= ~0xf;
|
616 |
|
|
|
617 |
|
|
/* Write out the arguments to the stack. */
|
618 |
|
|
for (i = 0; i < num_stack_args; i++)
|
619 |
|
|
{
|
620 |
|
|
struct type *type = value_type (stack_args[i]);
|
621 |
|
|
const gdb_byte *valbuf = value_contents (stack_args[i]);
|
622 |
|
|
int len = TYPE_LENGTH (type);
|
623 |
|
|
|
624 |
|
|
write_memory (sp + element * 8, valbuf, len);
|
625 |
|
|
element += ((len + 7) / 8);
|
626 |
|
|
}
|
627 |
|
|
|
628 |
|
|
/* The psABI says that "For calls that may call functions that use
|
629 |
|
|
varargs or stdargs (prototype-less calls or calls to functions
|
630 |
|
|
containing ellipsis (...) in the declaration) %al is used as
|
631 |
|
|
hidden argument to specify the number of SSE registers used. */
|
632 |
|
|
regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
|
633 |
|
|
return sp;
|
634 |
|
|
}
|
635 |
|
|
|
636 |
|
|
static CORE_ADDR
|
637 |
|
|
amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
638 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
639 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
640 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
641 |
|
|
{
|
642 |
|
|
gdb_byte buf[8];
|
643 |
|
|
|
644 |
|
|
/* Pass arguments. */
|
645 |
|
|
sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
|
646 |
|
|
|
647 |
|
|
/* Pass "hidden" argument". */
|
648 |
|
|
if (struct_return)
|
649 |
|
|
{
|
650 |
|
|
store_unsigned_integer (buf, 8, struct_addr);
|
651 |
|
|
regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
|
652 |
|
|
}
|
653 |
|
|
|
654 |
|
|
/* Store return address. */
|
655 |
|
|
sp -= 8;
|
656 |
|
|
store_unsigned_integer (buf, 8, bp_addr);
|
657 |
|
|
write_memory (sp, buf, 8);
|
658 |
|
|
|
659 |
|
|
/* Finally, update the stack pointer... */
|
660 |
|
|
store_unsigned_integer (buf, 8, sp);
|
661 |
|
|
regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
|
662 |
|
|
|
663 |
|
|
/* ...and fake a frame pointer. */
|
664 |
|
|
regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
|
665 |
|
|
|
666 |
|
|
return sp + 16;
|
667 |
|
|
}
|
668 |
|
|
|
669 |
|
|
|
670 |
|
|
/* The maximum number of saved registers. This should include %rip. */
|
671 |
|
|
#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
|
672 |
|
|
|
673 |
|
|
struct amd64_frame_cache
|
674 |
|
|
{
|
675 |
|
|
/* Base address. */
|
676 |
|
|
CORE_ADDR base;
|
677 |
|
|
CORE_ADDR sp_offset;
|
678 |
|
|
CORE_ADDR pc;
|
679 |
|
|
|
680 |
|
|
/* Saved registers. */
|
681 |
|
|
CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
|
682 |
|
|
CORE_ADDR saved_sp;
|
683 |
|
|
|
684 |
|
|
/* Do we have a frame? */
|
685 |
|
|
int frameless_p;
|
686 |
|
|
};
|
687 |
|
|
|
688 |
|
|
/* Initialize a frame cache. */
|
689 |
|
|
|
690 |
|
|
static void
|
691 |
|
|
amd64_init_frame_cache (struct amd64_frame_cache *cache)
|
692 |
|
|
{
|
693 |
|
|
int i;
|
694 |
|
|
|
695 |
|
|
/* Base address. */
|
696 |
|
|
cache->base = 0;
|
697 |
|
|
cache->sp_offset = -8;
|
698 |
|
|
cache->pc = 0;
|
699 |
|
|
|
700 |
|
|
/* Saved registers. We initialize these to -1 since zero is a valid
|
701 |
|
|
offset (that's where %rbp is supposed to be stored). */
|
702 |
|
|
for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
|
703 |
|
|
cache->saved_regs[i] = -1;
|
704 |
|
|
cache->saved_sp = 0;
|
705 |
|
|
|
706 |
|
|
/* Frameless until proven otherwise. */
|
707 |
|
|
cache->frameless_p = 1;
|
708 |
|
|
}
|
709 |
|
|
|
710 |
|
|
/* Allocate and initialize a frame cache. */
|
711 |
|
|
|
712 |
|
|
static struct amd64_frame_cache *
|
713 |
|
|
amd64_alloc_frame_cache (void)
|
714 |
|
|
{
|
715 |
|
|
struct amd64_frame_cache *cache;
|
716 |
|
|
|
717 |
|
|
cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
|
718 |
|
|
amd64_init_frame_cache (cache);
|
719 |
|
|
return cache;
|
720 |
|
|
}
|
721 |
|
|
|
722 |
|
|
/* Do a limited analysis of the prologue at PC and update CACHE
|
723 |
|
|
accordingly. Bail out early if CURRENT_PC is reached. Return the
|
724 |
|
|
address where the analysis stopped.
|
725 |
|
|
|
726 |
|
|
We will handle only functions beginning with:
|
727 |
|
|
|
728 |
|
|
pushq %rbp 0x55
|
729 |
|
|
movq %rsp, %rbp 0x48 0x89 0xe5
|
730 |
|
|
|
731 |
|
|
Any function that doesn't start with this sequence will be assumed
|
732 |
|
|
to have no prologue and thus no valid frame pointer in %rbp. */
|
733 |
|
|
|
734 |
|
|
static CORE_ADDR
|
735 |
|
|
amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
|
736 |
|
|
struct amd64_frame_cache *cache)
|
737 |
|
|
{
|
738 |
|
|
static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
|
739 |
|
|
gdb_byte buf[3];
|
740 |
|
|
gdb_byte op;
|
741 |
|
|
|
742 |
|
|
if (current_pc <= pc)
|
743 |
|
|
return current_pc;
|
744 |
|
|
|
745 |
|
|
op = read_memory_unsigned_integer (pc, 1);
|
746 |
|
|
|
747 |
|
|
if (op == 0x55) /* pushq %rbp */
|
748 |
|
|
{
|
749 |
|
|
/* Take into account that we've executed the `pushq %rbp' that
|
750 |
|
|
starts this instruction sequence. */
|
751 |
|
|
cache->saved_regs[AMD64_RBP_REGNUM] = 0;
|
752 |
|
|
cache->sp_offset += 8;
|
753 |
|
|
|
754 |
|
|
/* If that's all, return now. */
|
755 |
|
|
if (current_pc <= pc + 1)
|
756 |
|
|
return current_pc;
|
757 |
|
|
|
758 |
|
|
/* Check for `movq %rsp, %rbp'. */
|
759 |
|
|
read_memory (pc + 1, buf, 3);
|
760 |
|
|
if (memcmp (buf, proto, 3) != 0)
|
761 |
|
|
return pc + 1;
|
762 |
|
|
|
763 |
|
|
/* OK, we actually have a frame. */
|
764 |
|
|
cache->frameless_p = 0;
|
765 |
|
|
return pc + 4;
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
return pc;
|
769 |
|
|
}
|
770 |
|
|
|
771 |
|
|
/* Return PC of first real instruction. */
|
772 |
|
|
|
773 |
|
|
static CORE_ADDR
|
774 |
|
|
amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
|
775 |
|
|
{
|
776 |
|
|
struct amd64_frame_cache cache;
|
777 |
|
|
CORE_ADDR pc;
|
778 |
|
|
|
779 |
|
|
amd64_init_frame_cache (&cache);
|
780 |
|
|
pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache);
|
781 |
|
|
if (cache.frameless_p)
|
782 |
|
|
return start_pc;
|
783 |
|
|
|
784 |
|
|
return pc;
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
|
788 |
|
|
/* Normal frames. */
|
789 |
|
|
|
790 |
|
|
static struct amd64_frame_cache *
|
791 |
|
|
amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
|
792 |
|
|
{
|
793 |
|
|
struct amd64_frame_cache *cache;
|
794 |
|
|
gdb_byte buf[8];
|
795 |
|
|
int i;
|
796 |
|
|
|
797 |
|
|
if (*this_cache)
|
798 |
|
|
return *this_cache;
|
799 |
|
|
|
800 |
|
|
cache = amd64_alloc_frame_cache ();
|
801 |
|
|
*this_cache = cache;
|
802 |
|
|
|
803 |
|
|
cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
|
804 |
|
|
if (cache->pc != 0)
|
805 |
|
|
amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
|
806 |
|
|
|
807 |
|
|
if (cache->frameless_p)
|
808 |
|
|
{
|
809 |
|
|
/* We didn't find a valid frame. If we're at the start of a
|
810 |
|
|
function, or somewhere half-way its prologue, the function's
|
811 |
|
|
frame probably hasn't been fully setup yet. Try to
|
812 |
|
|
reconstruct the base address for the stack frame by looking
|
813 |
|
|
at the stack pointer. For truly "frameless" functions this
|
814 |
|
|
might work too. */
|
815 |
|
|
|
816 |
|
|
frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
|
817 |
|
|
cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
|
818 |
|
|
}
|
819 |
|
|
else
|
820 |
|
|
{
|
821 |
|
|
frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
|
822 |
|
|
cache->base = extract_unsigned_integer (buf, 8);
|
823 |
|
|
}
|
824 |
|
|
|
825 |
|
|
/* Now that we have the base address for the stack frame we can
|
826 |
|
|
calculate the value of %rsp in the calling frame. */
|
827 |
|
|
cache->saved_sp = cache->base + 16;
|
828 |
|
|
|
829 |
|
|
/* For normal frames, %rip is stored at 8(%rbp). If we don't have a
|
830 |
|
|
frame we find it at the same offset from the reconstructed base
|
831 |
|
|
address. */
|
832 |
|
|
cache->saved_regs[AMD64_RIP_REGNUM] = 8;
|
833 |
|
|
|
834 |
|
|
/* Adjust all the saved registers such that they contain addresses
|
835 |
|
|
instead of offsets. */
|
836 |
|
|
for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
|
837 |
|
|
if (cache->saved_regs[i] != -1)
|
838 |
|
|
cache->saved_regs[i] += cache->base;
|
839 |
|
|
|
840 |
|
|
return cache;
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
static void
|
844 |
|
|
amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
|
845 |
|
|
struct frame_id *this_id)
|
846 |
|
|
{
|
847 |
|
|
struct amd64_frame_cache *cache =
|
848 |
|
|
amd64_frame_cache (next_frame, this_cache);
|
849 |
|
|
|
850 |
|
|
/* This marks the outermost frame. */
|
851 |
|
|
if (cache->base == 0)
|
852 |
|
|
return;
|
853 |
|
|
|
854 |
|
|
(*this_id) = frame_id_build (cache->base + 16, cache->pc);
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
static void
|
858 |
|
|
amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
|
859 |
|
|
int regnum, int *optimizedp,
|
860 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
861 |
|
|
int *realnump, gdb_byte *valuep)
|
862 |
|
|
{
|
863 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
864 |
|
|
struct amd64_frame_cache *cache =
|
865 |
|
|
amd64_frame_cache (next_frame, this_cache);
|
866 |
|
|
|
867 |
|
|
gdb_assert (regnum >= 0);
|
868 |
|
|
|
869 |
|
|
if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
|
870 |
|
|
{
|
871 |
|
|
*optimizedp = 0;
|
872 |
|
|
*lvalp = not_lval;
|
873 |
|
|
*addrp = 0;
|
874 |
|
|
*realnump = -1;
|
875 |
|
|
if (valuep)
|
876 |
|
|
{
|
877 |
|
|
/* Store the value. */
|
878 |
|
|
store_unsigned_integer (valuep, 8, cache->saved_sp);
|
879 |
|
|
}
|
880 |
|
|
return;
|
881 |
|
|
}
|
882 |
|
|
|
883 |
|
|
if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
|
884 |
|
|
{
|
885 |
|
|
*optimizedp = 0;
|
886 |
|
|
*lvalp = lval_memory;
|
887 |
|
|
*addrp = cache->saved_regs[regnum];
|
888 |
|
|
*realnump = -1;
|
889 |
|
|
if (valuep)
|
890 |
|
|
{
|
891 |
|
|
/* Read the value in from memory. */
|
892 |
|
|
read_memory (*addrp, valuep,
|
893 |
|
|
register_size (gdbarch, regnum));
|
894 |
|
|
}
|
895 |
|
|
return;
|
896 |
|
|
}
|
897 |
|
|
|
898 |
|
|
*optimizedp = 0;
|
899 |
|
|
*lvalp = lval_register;
|
900 |
|
|
*addrp = 0;
|
901 |
|
|
*realnump = regnum;
|
902 |
|
|
if (valuep)
|
903 |
|
|
frame_unwind_register (next_frame, (*realnump), valuep);
|
904 |
|
|
}
|
905 |
|
|
|
906 |
|
|
static const struct frame_unwind amd64_frame_unwind =
|
907 |
|
|
{
|
908 |
|
|
NORMAL_FRAME,
|
909 |
|
|
amd64_frame_this_id,
|
910 |
|
|
amd64_frame_prev_register
|
911 |
|
|
};
|
912 |
|
|
|
913 |
|
|
static const struct frame_unwind *
|
914 |
|
|
amd64_frame_sniffer (struct frame_info *next_frame)
|
915 |
|
|
{
|
916 |
|
|
return &amd64_frame_unwind;
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
|
920 |
|
|
/* Signal trampolines. */
|
921 |
|
|
|
922 |
|
|
/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
|
923 |
|
|
64-bit variants. This would require using identical frame caches
|
924 |
|
|
on both platforms. */
|
925 |
|
|
|
926 |
|
|
static struct amd64_frame_cache *
|
927 |
|
|
amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
|
928 |
|
|
{
|
929 |
|
|
struct amd64_frame_cache *cache;
|
930 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
|
931 |
|
|
CORE_ADDR addr;
|
932 |
|
|
gdb_byte buf[8];
|
933 |
|
|
int i;
|
934 |
|
|
|
935 |
|
|
if (*this_cache)
|
936 |
|
|
return *this_cache;
|
937 |
|
|
|
938 |
|
|
cache = amd64_alloc_frame_cache ();
|
939 |
|
|
|
940 |
|
|
frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
|
941 |
|
|
cache->base = extract_unsigned_integer (buf, 8) - 8;
|
942 |
|
|
|
943 |
|
|
addr = tdep->sigcontext_addr (next_frame);
|
944 |
|
|
gdb_assert (tdep->sc_reg_offset);
|
945 |
|
|
gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
|
946 |
|
|
for (i = 0; i < tdep->sc_num_regs; i++)
|
947 |
|
|
if (tdep->sc_reg_offset[i] != -1)
|
948 |
|
|
cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
|
949 |
|
|
|
950 |
|
|
*this_cache = cache;
|
951 |
|
|
return cache;
|
952 |
|
|
}
|
953 |
|
|
|
954 |
|
|
static void
|
955 |
|
|
amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
|
956 |
|
|
void **this_cache, struct frame_id *this_id)
|
957 |
|
|
{
|
958 |
|
|
struct amd64_frame_cache *cache =
|
959 |
|
|
amd64_sigtramp_frame_cache (next_frame, this_cache);
|
960 |
|
|
|
961 |
|
|
(*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
|
962 |
|
|
}
|
963 |
|
|
|
964 |
|
|
static void
|
965 |
|
|
amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
|
966 |
|
|
void **this_cache,
|
967 |
|
|
int regnum, int *optimizedp,
|
968 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
969 |
|
|
int *realnump, gdb_byte *valuep)
|
970 |
|
|
{
|
971 |
|
|
/* Make sure we've initialized the cache. */
|
972 |
|
|
amd64_sigtramp_frame_cache (next_frame, this_cache);
|
973 |
|
|
|
974 |
|
|
amd64_frame_prev_register (next_frame, this_cache, regnum,
|
975 |
|
|
optimizedp, lvalp, addrp, realnump, valuep);
|
976 |
|
|
}
|
977 |
|
|
|
978 |
|
|
static const struct frame_unwind amd64_sigtramp_frame_unwind =
|
979 |
|
|
{
|
980 |
|
|
SIGTRAMP_FRAME,
|
981 |
|
|
amd64_sigtramp_frame_this_id,
|
982 |
|
|
amd64_sigtramp_frame_prev_register
|
983 |
|
|
};
|
984 |
|
|
|
985 |
|
|
static const struct frame_unwind *
|
986 |
|
|
amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
|
987 |
|
|
{
|
988 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
|
989 |
|
|
|
990 |
|
|
/* We shouldn't even bother if we don't have a sigcontext_addr
|
991 |
|
|
handler. */
|
992 |
|
|
if (tdep->sigcontext_addr == NULL)
|
993 |
|
|
return NULL;
|
994 |
|
|
|
995 |
|
|
if (tdep->sigtramp_p != NULL)
|
996 |
|
|
{
|
997 |
|
|
if (tdep->sigtramp_p (next_frame))
|
998 |
|
|
return &amd64_sigtramp_frame_unwind;
|
999 |
|
|
}
|
1000 |
|
|
|
1001 |
|
|
if (tdep->sigtramp_start != 0)
|
1002 |
|
|
{
|
1003 |
|
|
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
1004 |
|
|
|
1005 |
|
|
gdb_assert (tdep->sigtramp_end != 0);
|
1006 |
|
|
if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
|
1007 |
|
|
return &amd64_sigtramp_frame_unwind;
|
1008 |
|
|
}
|
1009 |
|
|
|
1010 |
|
|
return NULL;
|
1011 |
|
|
}
|
1012 |
|
|
|
1013 |
|
|
|
1014 |
|
|
static CORE_ADDR
|
1015 |
|
|
amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
1016 |
|
|
{
|
1017 |
|
|
struct amd64_frame_cache *cache =
|
1018 |
|
|
amd64_frame_cache (next_frame, this_cache);
|
1019 |
|
|
|
1020 |
|
|
return cache->base;
|
1021 |
|
|
}
|
1022 |
|
|
|
1023 |
|
|
static const struct frame_base amd64_frame_base =
|
1024 |
|
|
{
|
1025 |
|
|
&amd64_frame_unwind,
|
1026 |
|
|
amd64_frame_base_address,
|
1027 |
|
|
amd64_frame_base_address,
|
1028 |
|
|
amd64_frame_base_address
|
1029 |
|
|
};
|
1030 |
|
|
|
1031 |
|
|
static struct frame_id
|
1032 |
|
|
amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1033 |
|
|
{
|
1034 |
|
|
gdb_byte buf[8];
|
1035 |
|
|
CORE_ADDR fp;
|
1036 |
|
|
|
1037 |
|
|
frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
|
1038 |
|
|
fp = extract_unsigned_integer (buf, 8);
|
1039 |
|
|
|
1040 |
|
|
return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
|
1041 |
|
|
}
|
1042 |
|
|
|
1043 |
|
|
/* 16 byte align the SP per frame requirements. */
|
1044 |
|
|
|
1045 |
|
|
static CORE_ADDR
|
1046 |
|
|
amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
1047 |
|
|
{
|
1048 |
|
|
return sp & -(CORE_ADDR)16;
|
1049 |
|
|
}
|
1050 |
|
|
|
1051 |
|
|
|
1052 |
|
|
/* Supply register REGNUM from the buffer specified by FPREGS and LEN
|
1053 |
|
|
in the floating-point register set REGSET to register cache
|
1054 |
|
|
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
1055 |
|
|
|
1056 |
|
|
static void
|
1057 |
|
|
amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
|
1058 |
|
|
int regnum, const void *fpregs, size_t len)
|
1059 |
|
|
{
|
1060 |
|
|
const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
|
1061 |
|
|
|
1062 |
|
|
gdb_assert (len == tdep->sizeof_fpregset);
|
1063 |
|
|
amd64_supply_fxsave (regcache, regnum, fpregs);
|
1064 |
|
|
}
|
1065 |
|
|
|
1066 |
|
|
/* Collect register REGNUM from the register cache REGCACHE and store
|
1067 |
|
|
it in the buffer specified by FPREGS and LEN as described by the
|
1068 |
|
|
floating-point register set REGSET. If REGNUM is -1, do this for
|
1069 |
|
|
all registers in REGSET. */
|
1070 |
|
|
|
1071 |
|
|
static void
|
1072 |
|
|
amd64_collect_fpregset (const struct regset *regset,
|
1073 |
|
|
const struct regcache *regcache,
|
1074 |
|
|
int regnum, void *fpregs, size_t len)
|
1075 |
|
|
{
|
1076 |
|
|
const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
|
1077 |
|
|
|
1078 |
|
|
gdb_assert (len == tdep->sizeof_fpregset);
|
1079 |
|
|
amd64_collect_fxsave (regcache, regnum, fpregs);
|
1080 |
|
|
}
|
1081 |
|
|
|
1082 |
|
|
/* Return the appropriate register set for the core section identified
|
1083 |
|
|
by SECT_NAME and SECT_SIZE. */
|
1084 |
|
|
|
1085 |
|
|
static const struct regset *
|
1086 |
|
|
amd64_regset_from_core_section (struct gdbarch *gdbarch,
|
1087 |
|
|
const char *sect_name, size_t sect_size)
|
1088 |
|
|
{
|
1089 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1090 |
|
|
|
1091 |
|
|
if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
|
1092 |
|
|
{
|
1093 |
|
|
if (tdep->fpregset == NULL)
|
1094 |
|
|
tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
|
1095 |
|
|
amd64_collect_fpregset);
|
1096 |
|
|
|
1097 |
|
|
return tdep->fpregset;
|
1098 |
|
|
}
|
1099 |
|
|
|
1100 |
|
|
return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
|
1101 |
|
|
}
|
1102 |
|
|
|
1103 |
|
|
|
1104 |
|
|
void
|
1105 |
|
|
amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
1106 |
|
|
{
|
1107 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1108 |
|
|
|
1109 |
|
|
/* AMD64 generally uses `fxsave' instead of `fsave' for saving its
|
1110 |
|
|
floating-point registers. */
|
1111 |
|
|
tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
|
1112 |
|
|
|
1113 |
|
|
/* AMD64 has an FPU and 16 SSE registers. */
|
1114 |
|
|
tdep->st0_regnum = AMD64_ST0_REGNUM;
|
1115 |
|
|
tdep->num_xmm_regs = 16;
|
1116 |
|
|
|
1117 |
|
|
/* This is what all the fuss is about. */
|
1118 |
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
1119 |
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
1120 |
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
1121 |
|
|
|
1122 |
|
|
/* In contrast to the i386, on AMD64 a `long double' actually takes
|
1123 |
|
|
up 128 bits, even though it's still based on the i387 extended
|
1124 |
|
|
floating-point format which has only 80 significant bits. */
|
1125 |
|
|
set_gdbarch_long_double_bit (gdbarch, 128);
|
1126 |
|
|
|
1127 |
|
|
set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
|
1128 |
|
|
set_gdbarch_register_name (gdbarch, amd64_register_name);
|
1129 |
|
|
set_gdbarch_register_type (gdbarch, amd64_register_type);
|
1130 |
|
|
|
1131 |
|
|
/* Register numbers of various important registers. */
|
1132 |
|
|
set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
|
1133 |
|
|
set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
|
1134 |
|
|
set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
|
1135 |
|
|
set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
|
1136 |
|
|
|
1137 |
|
|
/* The "default" register numbering scheme for AMD64 is referred to
|
1138 |
|
|
as the "DWARF Register Number Mapping" in the System V psABI.
|
1139 |
|
|
The preferred debugging format for all known AMD64 targets is
|
1140 |
|
|
actually DWARF2, and GCC doesn't seem to support DWARF (that is
|
1141 |
|
|
DWARF-1), but we provide the same mapping just in case. This
|
1142 |
|
|
mapping is also used for stabs, which GCC does support. */
|
1143 |
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
|
1144 |
|
|
set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
|
1145 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
|
1146 |
|
|
|
1147 |
|
|
/* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
|
1148 |
|
|
be in use on any of the supported AMD64 targets. */
|
1149 |
|
|
|
1150 |
|
|
/* Call dummy code. */
|
1151 |
|
|
set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
|
1152 |
|
|
set_gdbarch_frame_align (gdbarch, amd64_frame_align);
|
1153 |
|
|
set_gdbarch_frame_red_zone_size (gdbarch, 128);
|
1154 |
|
|
|
1155 |
|
|
set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
|
1156 |
|
|
set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
|
1157 |
|
|
set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
|
1158 |
|
|
|
1159 |
|
|
set_gdbarch_return_value (gdbarch, amd64_return_value);
|
1160 |
|
|
|
1161 |
|
|
set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
|
1162 |
|
|
|
1163 |
|
|
/* Avoid wiring in the MMX registers for now. */
|
1164 |
|
|
set_gdbarch_num_pseudo_regs (gdbarch, 0);
|
1165 |
|
|
tdep->mm0_regnum = -1;
|
1166 |
|
|
|
1167 |
|
|
set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
|
1168 |
|
|
|
1169 |
|
|
frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
|
1170 |
|
|
frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
|
1171 |
|
|
frame_base_set_default (gdbarch, &amd64_frame_base);
|
1172 |
|
|
|
1173 |
|
|
/* If we have a register mapping, enable the generic core file support. */
|
1174 |
|
|
if (tdep->gregset_reg_offset)
|
1175 |
|
|
set_gdbarch_regset_from_core_section (gdbarch,
|
1176 |
|
|
amd64_regset_from_core_section);
|
1177 |
|
|
}
|
1178 |
|
|
|
1179 |
|
|
|
1180 |
|
|
#define I387_ST0_REGNUM AMD64_ST0_REGNUM
|
1181 |
|
|
|
1182 |
|
|
/* The 64-bit FXSAVE format differs from the 32-bit format in the
|
1183 |
|
|
sense that the instruction pointer and data pointer are simply
|
1184 |
|
|
64-bit offsets into the code segment and the data segment instead
|
1185 |
|
|
of a selector offset pair. The functions below store the upper 32
|
1186 |
|
|
bits of these pointers (instead of just the 16-bits of the segment
|
1187 |
|
|
selector). */
|
1188 |
|
|
|
1189 |
|
|
/* Fill register REGNUM in REGCACHE with the appropriate
|
1190 |
|
|
floating-point or SSE register value from *FXSAVE. If REGNUM is
|
1191 |
|
|
-1, do this for all registers. This function masks off any of the
|
1192 |
|
|
reserved bits in *FXSAVE. */
|
1193 |
|
|
|
1194 |
|
|
void
|
1195 |
|
|
amd64_supply_fxsave (struct regcache *regcache, int regnum,
|
1196 |
|
|
const void *fxsave)
|
1197 |
|
|
{
|
1198 |
|
|
i387_supply_fxsave (regcache, regnum, fxsave);
|
1199 |
|
|
|
1200 |
|
|
if (fxsave && gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
|
1201 |
|
|
{
|
1202 |
|
|
const gdb_byte *regs = fxsave;
|
1203 |
|
|
|
1204 |
|
|
if (regnum == -1 || regnum == I387_FISEG_REGNUM)
|
1205 |
|
|
regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
|
1206 |
|
|
if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
|
1207 |
|
|
regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
|
1208 |
|
|
}
|
1209 |
|
|
}
|
1210 |
|
|
|
1211 |
|
|
/* Fill register REGNUM (if it is a floating-point or SSE register) in
|
1212 |
|
|
*FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
|
1213 |
|
|
all registers. This function doesn't touch any of the reserved
|
1214 |
|
|
bits in *FXSAVE. */
|
1215 |
|
|
|
1216 |
|
|
void
|
1217 |
|
|
amd64_collect_fxsave (const struct regcache *regcache, int regnum,
|
1218 |
|
|
void *fxsave)
|
1219 |
|
|
{
|
1220 |
|
|
gdb_byte *regs = fxsave;
|
1221 |
|
|
|
1222 |
|
|
i387_collect_fxsave (regcache, regnum, fxsave);
|
1223 |
|
|
|
1224 |
|
|
if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
|
1225 |
|
|
{
|
1226 |
|
|
if (regnum == -1 || regnum == I387_FISEG_REGNUM)
|
1227 |
|
|
regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12);
|
1228 |
|
|
if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
|
1229 |
|
|
regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20);
|
1230 |
|
|
}
|
1231 |
|
|
}
|