1 |
24 |
jeremybenn |
/* Target-dependent code for Atmel AVR, for GDB.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
4 |
|
|
2006, 2007, 2008 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
/* Contributed by Theodore A. Roth, troth@openavr.org */
|
22 |
|
|
|
23 |
|
|
/* Portions of this file were taken from the original gdb-4.18 patch developed
|
24 |
|
|
by Denis Chertykov, denisc@overta.ru */
|
25 |
|
|
|
26 |
|
|
#include "defs.h"
|
27 |
|
|
#include "frame.h"
|
28 |
|
|
#include "frame-unwind.h"
|
29 |
|
|
#include "frame-base.h"
|
30 |
|
|
#include "trad-frame.h"
|
31 |
|
|
#include "gdbcmd.h"
|
32 |
|
|
#include "gdbcore.h"
|
33 |
|
|
#include "gdbtypes.h"
|
34 |
|
|
#include "inferior.h"
|
35 |
|
|
#include "symfile.h"
|
36 |
|
|
#include "arch-utils.h"
|
37 |
|
|
#include "regcache.h"
|
38 |
|
|
#include "gdb_string.h"
|
39 |
|
|
#include "dis-asm.h"
|
40 |
|
|
|
41 |
|
|
/* AVR Background:
|
42 |
|
|
|
43 |
|
|
(AVR micros are pure Harvard Architecture processors.)
|
44 |
|
|
|
45 |
|
|
The AVR family of microcontrollers have three distinctly different memory
|
46 |
|
|
spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
|
47 |
|
|
the most part to store program instructions. The sram is 8 bits wide and is
|
48 |
|
|
used for the stack and the heap. Some devices lack sram and some can have
|
49 |
|
|
an additional external sram added on as a peripheral.
|
50 |
|
|
|
51 |
|
|
The eeprom is 8 bits wide and is used to store data when the device is
|
52 |
|
|
powered down. Eeprom is not directly accessible, it can only be accessed
|
53 |
|
|
via io-registers using a special algorithm. Accessing eeprom via gdb's
|
54 |
|
|
remote serial protocol ('m' or 'M' packets) looks difficult to do and is
|
55 |
|
|
not included at this time.
|
56 |
|
|
|
57 |
|
|
[The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
|
58 |
|
|
written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
|
59 |
|
|
work, the remote target must be able to handle eeprom accesses and perform
|
60 |
|
|
the address translation.]
|
61 |
|
|
|
62 |
|
|
All three memory spaces have physical addresses beginning at 0x0. In
|
63 |
|
|
addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
|
64 |
|
|
bytes instead of the 16 bit wide words used by the real device for the
|
65 |
|
|
Program Counter.
|
66 |
|
|
|
67 |
|
|
In order for remote targets to work correctly, extra bits must be added to
|
68 |
|
|
addresses before they are send to the target or received from the target
|
69 |
|
|
via the remote serial protocol. The extra bits are the MSBs and are used to
|
70 |
|
|
decode which memory space the address is referring to. */
|
71 |
|
|
|
72 |
|
|
#undef XMALLOC
|
73 |
|
|
#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
|
74 |
|
|
|
75 |
|
|
#undef EXTRACT_INSN
|
76 |
|
|
#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
|
77 |
|
|
|
78 |
|
|
/* Constants: prefixed with AVR_ to avoid name space clashes */
|
79 |
|
|
|
80 |
|
|
enum
|
81 |
|
|
{
|
82 |
|
|
AVR_REG_W = 24,
|
83 |
|
|
AVR_REG_X = 26,
|
84 |
|
|
AVR_REG_Y = 28,
|
85 |
|
|
AVR_FP_REGNUM = 28,
|
86 |
|
|
AVR_REG_Z = 30,
|
87 |
|
|
|
88 |
|
|
AVR_SREG_REGNUM = 32,
|
89 |
|
|
AVR_SP_REGNUM = 33,
|
90 |
|
|
AVR_PC_REGNUM = 34,
|
91 |
|
|
|
92 |
|
|
AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
|
93 |
|
|
AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
|
94 |
|
|
|
95 |
|
|
AVR_PC_REG_INDEX = 35, /* index into array of registers */
|
96 |
|
|
|
97 |
|
|
AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
|
98 |
|
|
|
99 |
|
|
/* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
|
100 |
|
|
AVR_MAX_PUSHES = 18,
|
101 |
|
|
|
102 |
|
|
/* Number of the last pushed register. r17 for current avr-gcc */
|
103 |
|
|
AVR_LAST_PUSHED_REGNUM = 17,
|
104 |
|
|
|
105 |
|
|
AVR_ARG1_REGNUM = 24, /* Single byte argument */
|
106 |
|
|
AVR_ARGN_REGNUM = 25, /* Multi byte argments */
|
107 |
|
|
|
108 |
|
|
AVR_RET1_REGNUM = 24, /* Single byte return value */
|
109 |
|
|
AVR_RETN_REGNUM = 25, /* Multi byte return value */
|
110 |
|
|
|
111 |
|
|
/* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
|
112 |
|
|
bits? Do these have to match the bfd vma values?. It sure would make
|
113 |
|
|
things easier in the future if they didn't need to match.
|
114 |
|
|
|
115 |
|
|
Note: I chose these values so as to be consistent with bfd vma
|
116 |
|
|
addresses.
|
117 |
|
|
|
118 |
|
|
TRoth/2002-04-08: There is already a conflict with very large programs
|
119 |
|
|
in the mega128. The mega128 has 128K instruction bytes (64K words),
|
120 |
|
|
thus the Most Significant Bit is 0x10000 which gets masked off my
|
121 |
|
|
AVR_MEM_MASK.
|
122 |
|
|
|
123 |
|
|
The problem manifests itself when trying to set a breakpoint in a
|
124 |
|
|
function which resides in the upper half of the instruction space and
|
125 |
|
|
thus requires a 17-bit address.
|
126 |
|
|
|
127 |
|
|
For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
|
128 |
|
|
from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
|
129 |
|
|
but could be for some remote targets by just adding the correct offset
|
130 |
|
|
to the address and letting the remote target handle the low-level
|
131 |
|
|
details of actually accessing the eeprom. */
|
132 |
|
|
|
133 |
|
|
AVR_IMEM_START = 0x00000000, /* INSN memory */
|
134 |
|
|
AVR_SMEM_START = 0x00800000, /* SRAM memory */
|
135 |
|
|
#if 1
|
136 |
|
|
/* No eeprom mask defined */
|
137 |
|
|
AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
|
138 |
|
|
#else
|
139 |
|
|
AVR_EMEM_START = 0x00810000, /* EEPROM memory */
|
140 |
|
|
AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
|
141 |
|
|
#endif
|
142 |
|
|
};
|
143 |
|
|
|
144 |
|
|
/* Prologue types:
|
145 |
|
|
|
146 |
|
|
NORMAL and CALL are the typical types (the -mcall-prologues gcc option
|
147 |
|
|
causes the generation of the CALL type prologues). */
|
148 |
|
|
|
149 |
|
|
enum {
|
150 |
|
|
AVR_PROLOGUE_NONE, /* No prologue */
|
151 |
|
|
AVR_PROLOGUE_NORMAL,
|
152 |
|
|
AVR_PROLOGUE_CALL, /* -mcall-prologues */
|
153 |
|
|
AVR_PROLOGUE_MAIN,
|
154 |
|
|
AVR_PROLOGUE_INTR, /* interrupt handler */
|
155 |
|
|
AVR_PROLOGUE_SIG, /* signal handler */
|
156 |
|
|
};
|
157 |
|
|
|
158 |
|
|
/* Any function with a frame looks like this
|
159 |
|
|
....... <-SP POINTS HERE
|
160 |
|
|
LOCALS1 <-FP POINTS HERE
|
161 |
|
|
LOCALS0
|
162 |
|
|
SAVED FP
|
163 |
|
|
SAVED R3
|
164 |
|
|
SAVED R2
|
165 |
|
|
RET PC
|
166 |
|
|
FIRST ARG
|
167 |
|
|
SECOND ARG */
|
168 |
|
|
|
169 |
|
|
struct avr_unwind_cache
|
170 |
|
|
{
|
171 |
|
|
/* The previous frame's inner most stack address. Used as this
|
172 |
|
|
frame ID's stack_addr. */
|
173 |
|
|
CORE_ADDR prev_sp;
|
174 |
|
|
/* The frame's base, optionally used by the high-level debug info. */
|
175 |
|
|
CORE_ADDR base;
|
176 |
|
|
int size;
|
177 |
|
|
int prologue_type;
|
178 |
|
|
/* Table indicating the location of each and every register. */
|
179 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
180 |
|
|
};
|
181 |
|
|
|
182 |
|
|
struct gdbarch_tdep
|
183 |
|
|
{
|
184 |
|
|
/* FIXME: TRoth: is there anything to put here? */
|
185 |
|
|
int foo;
|
186 |
|
|
};
|
187 |
|
|
|
188 |
|
|
/* Lookup the name of a register given it's number. */
|
189 |
|
|
|
190 |
|
|
static const char *
|
191 |
|
|
avr_register_name (struct gdbarch *gdbarch, int regnum)
|
192 |
|
|
{
|
193 |
|
|
static char *register_names[] = {
|
194 |
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
195 |
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
196 |
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
197 |
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
198 |
|
|
"SREG", "SP", "PC"
|
199 |
|
|
};
|
200 |
|
|
if (regnum < 0)
|
201 |
|
|
return NULL;
|
202 |
|
|
if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
|
203 |
|
|
return NULL;
|
204 |
|
|
return register_names[regnum];
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
/* Return the GDB type object for the "standard" data type
|
208 |
|
|
of data in register N. */
|
209 |
|
|
|
210 |
|
|
static struct type *
|
211 |
|
|
avr_register_type (struct gdbarch *gdbarch, int reg_nr)
|
212 |
|
|
{
|
213 |
|
|
if (reg_nr == AVR_PC_REGNUM)
|
214 |
|
|
return builtin_type_uint32;
|
215 |
|
|
if (reg_nr == AVR_SP_REGNUM)
|
216 |
|
|
return builtin_type_void_data_ptr;
|
217 |
|
|
else
|
218 |
|
|
return builtin_type_uint8;
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
/* Instruction address checks and convertions. */
|
222 |
|
|
|
223 |
|
|
static CORE_ADDR
|
224 |
|
|
avr_make_iaddr (CORE_ADDR x)
|
225 |
|
|
{
|
226 |
|
|
return ((x) | AVR_IMEM_START);
|
227 |
|
|
}
|
228 |
|
|
|
229 |
|
|
/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
|
230 |
|
|
devices are already up to 128KBytes of flash space.
|
231 |
|
|
|
232 |
|
|
TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
|
233 |
|
|
|
234 |
|
|
static CORE_ADDR
|
235 |
|
|
avr_convert_iaddr_to_raw (CORE_ADDR x)
|
236 |
|
|
{
|
237 |
|
|
return ((x) & 0xffffffff);
|
238 |
|
|
}
|
239 |
|
|
|
240 |
|
|
/* SRAM address checks and convertions. */
|
241 |
|
|
|
242 |
|
|
static CORE_ADDR
|
243 |
|
|
avr_make_saddr (CORE_ADDR x)
|
244 |
|
|
{
|
245 |
|
|
return ((x) | AVR_SMEM_START);
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
static CORE_ADDR
|
249 |
|
|
avr_convert_saddr_to_raw (CORE_ADDR x)
|
250 |
|
|
{
|
251 |
|
|
return ((x) & 0xffffffff);
|
252 |
|
|
}
|
253 |
|
|
|
254 |
|
|
/* EEPROM address checks and convertions. I don't know if these will ever
|
255 |
|
|
actually be used, but I've added them just the same. TRoth */
|
256 |
|
|
|
257 |
|
|
/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
|
258 |
|
|
programs in the mega128. */
|
259 |
|
|
|
260 |
|
|
/* static CORE_ADDR */
|
261 |
|
|
/* avr_make_eaddr (CORE_ADDR x) */
|
262 |
|
|
/* { */
|
263 |
|
|
/* return ((x) | AVR_EMEM_START); */
|
264 |
|
|
/* } */
|
265 |
|
|
|
266 |
|
|
/* static int */
|
267 |
|
|
/* avr_eaddr_p (CORE_ADDR x) */
|
268 |
|
|
/* { */
|
269 |
|
|
/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
|
270 |
|
|
/* } */
|
271 |
|
|
|
272 |
|
|
/* static CORE_ADDR */
|
273 |
|
|
/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
|
274 |
|
|
/* { */
|
275 |
|
|
/* return ((x) & 0xffffffff); */
|
276 |
|
|
/* } */
|
277 |
|
|
|
278 |
|
|
/* Convert from address to pointer and vice-versa. */
|
279 |
|
|
|
280 |
|
|
static void
|
281 |
|
|
avr_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
|
282 |
|
|
{
|
283 |
|
|
/* Is it a code address? */
|
284 |
|
|
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
|
285 |
|
|
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
|
286 |
|
|
{
|
287 |
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type),
|
288 |
|
|
avr_convert_iaddr_to_raw (addr >> 1));
|
289 |
|
|
}
|
290 |
|
|
else
|
291 |
|
|
{
|
292 |
|
|
/* Strip off any upper segment bits. */
|
293 |
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type),
|
294 |
|
|
avr_convert_saddr_to_raw (addr));
|
295 |
|
|
}
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
static CORE_ADDR
|
299 |
|
|
avr_pointer_to_address (struct type *type, const gdb_byte *buf)
|
300 |
|
|
{
|
301 |
|
|
CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
|
302 |
|
|
|
303 |
|
|
/* Is it a code address? */
|
304 |
|
|
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
|
305 |
|
|
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
|
306 |
|
|
|| TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
|
307 |
|
|
return avr_make_iaddr (addr << 1);
|
308 |
|
|
else
|
309 |
|
|
return avr_make_saddr (addr);
|
310 |
|
|
}
|
311 |
|
|
|
312 |
|
|
static CORE_ADDR
|
313 |
|
|
avr_read_pc (struct regcache *regcache)
|
314 |
|
|
{
|
315 |
|
|
ULONGEST pc;
|
316 |
|
|
regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
|
317 |
|
|
return avr_make_iaddr (pc);
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
static void
|
321 |
|
|
avr_write_pc (struct regcache *regcache, CORE_ADDR val)
|
322 |
|
|
{
|
323 |
|
|
regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
|
324 |
|
|
avr_convert_iaddr_to_raw (val));
|
325 |
|
|
}
|
326 |
|
|
|
327 |
|
|
static int
|
328 |
|
|
avr_scan_arg_moves (int vpc, unsigned char *prologue)
|
329 |
|
|
{
|
330 |
|
|
unsigned short insn;
|
331 |
|
|
|
332 |
|
|
for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
|
333 |
|
|
{
|
334 |
|
|
insn = EXTRACT_INSN (&prologue[vpc]);
|
335 |
|
|
if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
|
336 |
|
|
continue;
|
337 |
|
|
else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
|
338 |
|
|
continue;
|
339 |
|
|
else
|
340 |
|
|
break;
|
341 |
|
|
}
|
342 |
|
|
|
343 |
|
|
return vpc;
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
/* Function: avr_scan_prologue
|
347 |
|
|
|
348 |
|
|
This function decodes an AVR function prologue to determine:
|
349 |
|
|
1) the size of the stack frame
|
350 |
|
|
2) which registers are saved on it
|
351 |
|
|
3) the offsets of saved regs
|
352 |
|
|
This information is stored in the avr_unwind_cache structure.
|
353 |
|
|
|
354 |
|
|
Some devices lack the sbiw instruction, so on those replace this:
|
355 |
|
|
sbiw r28, XX
|
356 |
|
|
with this:
|
357 |
|
|
subi r28,lo8(XX)
|
358 |
|
|
sbci r29,hi8(XX)
|
359 |
|
|
|
360 |
|
|
A typical AVR function prologue with a frame pointer might look like this:
|
361 |
|
|
push rXX ; saved regs
|
362 |
|
|
...
|
363 |
|
|
push r28
|
364 |
|
|
push r29
|
365 |
|
|
in r28,__SP_L__
|
366 |
|
|
in r29,__SP_H__
|
367 |
|
|
sbiw r28,<LOCALS_SIZE>
|
368 |
|
|
in __tmp_reg__,__SREG__
|
369 |
|
|
cli
|
370 |
|
|
out __SP_H__,r29
|
371 |
|
|
out __SREG__,__tmp_reg__
|
372 |
|
|
out __SP_L__,r28
|
373 |
|
|
|
374 |
|
|
A typical AVR function prologue without a frame pointer might look like
|
375 |
|
|
this:
|
376 |
|
|
push rXX ; saved regs
|
377 |
|
|
...
|
378 |
|
|
|
379 |
|
|
A main function prologue looks like this:
|
380 |
|
|
ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
|
381 |
|
|
ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
|
382 |
|
|
out __SP_H__,r29
|
383 |
|
|
out __SP_L__,r28
|
384 |
|
|
|
385 |
|
|
A signal handler prologue looks like this:
|
386 |
|
|
push __zero_reg__
|
387 |
|
|
push __tmp_reg__
|
388 |
|
|
in __tmp_reg__, __SREG__
|
389 |
|
|
push __tmp_reg__
|
390 |
|
|
clr __zero_reg__
|
391 |
|
|
push rXX ; save registers r18:r27, r30:r31
|
392 |
|
|
...
|
393 |
|
|
push r28 ; save frame pointer
|
394 |
|
|
push r29
|
395 |
|
|
in r28, __SP_L__
|
396 |
|
|
in r29, __SP_H__
|
397 |
|
|
sbiw r28, <LOCALS_SIZE>
|
398 |
|
|
out __SP_H__, r29
|
399 |
|
|
out __SP_L__, r28
|
400 |
|
|
|
401 |
|
|
A interrupt handler prologue looks like this:
|
402 |
|
|
sei
|
403 |
|
|
push __zero_reg__
|
404 |
|
|
push __tmp_reg__
|
405 |
|
|
in __tmp_reg__, __SREG__
|
406 |
|
|
push __tmp_reg__
|
407 |
|
|
clr __zero_reg__
|
408 |
|
|
push rXX ; save registers r18:r27, r30:r31
|
409 |
|
|
...
|
410 |
|
|
push r28 ; save frame pointer
|
411 |
|
|
push r29
|
412 |
|
|
in r28, __SP_L__
|
413 |
|
|
in r29, __SP_H__
|
414 |
|
|
sbiw r28, <LOCALS_SIZE>
|
415 |
|
|
cli
|
416 |
|
|
out __SP_H__, r29
|
417 |
|
|
sei
|
418 |
|
|
out __SP_L__, r28
|
419 |
|
|
|
420 |
|
|
A `-mcall-prologues' prologue looks like this (Note that the megas use a
|
421 |
|
|
jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
|
422 |
|
|
32 bit insn and rjmp is a 16 bit insn):
|
423 |
|
|
ldi r26,lo8(<LOCALS_SIZE>)
|
424 |
|
|
ldi r27,hi8(<LOCALS_SIZE>)
|
425 |
|
|
ldi r30,pm_lo8(.L_foo_body)
|
426 |
|
|
ldi r31,pm_hi8(.L_foo_body)
|
427 |
|
|
rjmp __prologue_saves__+RRR
|
428 |
|
|
.L_foo_body: */
|
429 |
|
|
|
430 |
|
|
/* Not really part of a prologue, but still need to scan for it, is when a
|
431 |
|
|
function prologue moves values passed via registers as arguments to new
|
432 |
|
|
registers. In this case, all local variables live in registers, so there
|
433 |
|
|
may be some register saves. This is what it looks like:
|
434 |
|
|
movw rMM, rNN
|
435 |
|
|
...
|
436 |
|
|
|
437 |
|
|
There could be multiple movw's. If the target doesn't have a movw insn, it
|
438 |
|
|
will use two mov insns. This could be done after any of the above prologue
|
439 |
|
|
types. */
|
440 |
|
|
|
441 |
|
|
static CORE_ADDR
|
442 |
|
|
avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
|
443 |
|
|
{
|
444 |
|
|
int i;
|
445 |
|
|
unsigned short insn;
|
446 |
|
|
int scan_stage = 0;
|
447 |
|
|
struct minimal_symbol *msymbol;
|
448 |
|
|
unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
|
449 |
|
|
int vpc = 0;
|
450 |
|
|
|
451 |
|
|
/* FIXME: TRoth/2003-06-11: This could be made more efficient by only
|
452 |
|
|
reading in the bytes of the prologue. The problem is that the figuring
|
453 |
|
|
out where the end of the prologue is is a bit difficult. The old code
|
454 |
|
|
tried to do that, but failed quite often. */
|
455 |
|
|
read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
|
456 |
|
|
|
457 |
|
|
/* Scanning main()'s prologue
|
458 |
|
|
ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
|
459 |
|
|
ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
|
460 |
|
|
out __SP_H__,r29
|
461 |
|
|
out __SP_L__,r28 */
|
462 |
|
|
|
463 |
|
|
if (1)
|
464 |
|
|
{
|
465 |
|
|
CORE_ADDR locals;
|
466 |
|
|
unsigned char img[] = {
|
467 |
|
|
0xde, 0xbf, /* out __SP_H__,r29 */
|
468 |
|
|
0xcd, 0xbf /* out __SP_L__,r28 */
|
469 |
|
|
};
|
470 |
|
|
|
471 |
|
|
insn = EXTRACT_INSN (&prologue[vpc]);
|
472 |
|
|
/* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
|
473 |
|
|
if ((insn & 0xf0f0) == 0xe0c0)
|
474 |
|
|
{
|
475 |
|
|
locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
|
476 |
|
|
insn = EXTRACT_INSN (&prologue[vpc + 2]);
|
477 |
|
|
/* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
|
478 |
|
|
if ((insn & 0xf0f0) == 0xe0d0)
|
479 |
|
|
{
|
480 |
|
|
locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
|
481 |
|
|
if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
|
482 |
|
|
{
|
483 |
|
|
info->prologue_type = AVR_PROLOGUE_MAIN;
|
484 |
|
|
info->base = locals;
|
485 |
|
|
return pc + 4;
|
486 |
|
|
}
|
487 |
|
|
}
|
488 |
|
|
}
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
/* Scanning `-mcall-prologues' prologue
|
492 |
|
|
Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
|
493 |
|
|
|
494 |
|
|
while (1) /* Using a while to avoid many goto's */
|
495 |
|
|
{
|
496 |
|
|
int loc_size;
|
497 |
|
|
int body_addr;
|
498 |
|
|
unsigned num_pushes;
|
499 |
|
|
int pc_offset = 0;
|
500 |
|
|
|
501 |
|
|
insn = EXTRACT_INSN (&prologue[vpc]);
|
502 |
|
|
/* ldi r26,<LOCALS_SIZE> */
|
503 |
|
|
if ((insn & 0xf0f0) != 0xe0a0)
|
504 |
|
|
break;
|
505 |
|
|
loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
|
506 |
|
|
pc_offset += 2;
|
507 |
|
|
|
508 |
|
|
insn = EXTRACT_INSN (&prologue[vpc + 2]);
|
509 |
|
|
/* ldi r27,<LOCALS_SIZE> / 256 */
|
510 |
|
|
if ((insn & 0xf0f0) != 0xe0b0)
|
511 |
|
|
break;
|
512 |
|
|
loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
|
513 |
|
|
pc_offset += 2;
|
514 |
|
|
|
515 |
|
|
insn = EXTRACT_INSN (&prologue[vpc + 4]);
|
516 |
|
|
/* ldi r30,pm_lo8(.L_foo_body) */
|
517 |
|
|
if ((insn & 0xf0f0) != 0xe0e0)
|
518 |
|
|
break;
|
519 |
|
|
body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
|
520 |
|
|
pc_offset += 2;
|
521 |
|
|
|
522 |
|
|
insn = EXTRACT_INSN (&prologue[vpc + 6]);
|
523 |
|
|
/* ldi r31,pm_hi8(.L_foo_body) */
|
524 |
|
|
if ((insn & 0xf0f0) != 0xe0f0)
|
525 |
|
|
break;
|
526 |
|
|
body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
|
527 |
|
|
pc_offset += 2;
|
528 |
|
|
|
529 |
|
|
msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
|
530 |
|
|
if (!msymbol)
|
531 |
|
|
break;
|
532 |
|
|
|
533 |
|
|
insn = EXTRACT_INSN (&prologue[vpc + 8]);
|
534 |
|
|
/* rjmp __prologue_saves__+RRR */
|
535 |
|
|
if ((insn & 0xf000) == 0xc000)
|
536 |
|
|
{
|
537 |
|
|
/* Extract PC relative offset from RJMP */
|
538 |
|
|
i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
|
539 |
|
|
/* Convert offset to byte addressable mode */
|
540 |
|
|
i *= 2;
|
541 |
|
|
/* Destination address */
|
542 |
|
|
i += pc + 10;
|
543 |
|
|
|
544 |
|
|
if (body_addr != (pc + 10)/2)
|
545 |
|
|
break;
|
546 |
|
|
|
547 |
|
|
pc_offset += 2;
|
548 |
|
|
}
|
549 |
|
|
else if ((insn & 0xfe0e) == 0x940c)
|
550 |
|
|
{
|
551 |
|
|
/* Extract absolute PC address from JMP */
|
552 |
|
|
i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
|
553 |
|
|
| (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
|
554 |
|
|
/* Convert address to byte addressable mode */
|
555 |
|
|
i *= 2;
|
556 |
|
|
|
557 |
|
|
if (body_addr != (pc + 12)/2)
|
558 |
|
|
break;
|
559 |
|
|
|
560 |
|
|
pc_offset += 4;
|
561 |
|
|
}
|
562 |
|
|
else
|
563 |
|
|
break;
|
564 |
|
|
|
565 |
|
|
/* Resolve offset (in words) from __prologue_saves__ symbol.
|
566 |
|
|
Which is a pushes count in `-mcall-prologues' mode */
|
567 |
|
|
num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
|
568 |
|
|
|
569 |
|
|
if (num_pushes > AVR_MAX_PUSHES)
|
570 |
|
|
{
|
571 |
|
|
fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
|
572 |
|
|
num_pushes);
|
573 |
|
|
num_pushes = 0;
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
if (num_pushes)
|
577 |
|
|
{
|
578 |
|
|
int from;
|
579 |
|
|
|
580 |
|
|
info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
|
581 |
|
|
if (num_pushes >= 2)
|
582 |
|
|
info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
|
583 |
|
|
|
584 |
|
|
i = 0;
|
585 |
|
|
for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
|
586 |
|
|
from <= AVR_LAST_PUSHED_REGNUM; ++from)
|
587 |
|
|
info->saved_regs [from].addr = ++i;
|
588 |
|
|
}
|
589 |
|
|
info->size = loc_size + num_pushes;
|
590 |
|
|
info->prologue_type = AVR_PROLOGUE_CALL;
|
591 |
|
|
|
592 |
|
|
return pc + pc_offset;
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
/* Scan for the beginning of the prologue for an interrupt or signal
|
596 |
|
|
function. Note that we have to set the prologue type here since the
|
597 |
|
|
third stage of the prologue may not be present (e.g. no saved registered
|
598 |
|
|
or changing of the SP register). */
|
599 |
|
|
|
600 |
|
|
if (1)
|
601 |
|
|
{
|
602 |
|
|
unsigned char img[] = {
|
603 |
|
|
0x78, 0x94, /* sei */
|
604 |
|
|
0x1f, 0x92, /* push r1 */
|
605 |
|
|
0x0f, 0x92, /* push r0 */
|
606 |
|
|
0x0f, 0xb6, /* in r0,0x3f SREG */
|
607 |
|
|
0x0f, 0x92, /* push r0 */
|
608 |
|
|
0x11, 0x24 /* clr r1 */
|
609 |
|
|
};
|
610 |
|
|
if (memcmp (prologue, img, sizeof (img)) == 0)
|
611 |
|
|
{
|
612 |
|
|
info->prologue_type = AVR_PROLOGUE_INTR;
|
613 |
|
|
vpc += sizeof (img);
|
614 |
|
|
info->saved_regs[AVR_SREG_REGNUM].addr = 3;
|
615 |
|
|
info->saved_regs[0].addr = 2;
|
616 |
|
|
info->saved_regs[1].addr = 1;
|
617 |
|
|
info->size += 3;
|
618 |
|
|
}
|
619 |
|
|
else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
|
620 |
|
|
{
|
621 |
|
|
info->prologue_type = AVR_PROLOGUE_SIG;
|
622 |
|
|
vpc += sizeof (img) - 2;
|
623 |
|
|
info->saved_regs[AVR_SREG_REGNUM].addr = 3;
|
624 |
|
|
info->saved_regs[0].addr = 2;
|
625 |
|
|
info->saved_regs[1].addr = 1;
|
626 |
|
|
info->size += 3;
|
627 |
|
|
}
|
628 |
|
|
}
|
629 |
|
|
|
630 |
|
|
/* First stage of the prologue scanning.
|
631 |
|
|
Scan pushes (saved registers) */
|
632 |
|
|
|
633 |
|
|
for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
|
634 |
|
|
{
|
635 |
|
|
insn = EXTRACT_INSN (&prologue[vpc]);
|
636 |
|
|
if ((insn & 0xfe0f) == 0x920f) /* push rXX */
|
637 |
|
|
{
|
638 |
|
|
/* Bits 4-9 contain a mask for registers R0-R32. */
|
639 |
|
|
int regno = (insn & 0x1f0) >> 4;
|
640 |
|
|
info->size++;
|
641 |
|
|
info->saved_regs[regno].addr = info->size;
|
642 |
|
|
scan_stage = 1;
|
643 |
|
|
}
|
644 |
|
|
else
|
645 |
|
|
break;
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
if (vpc >= AVR_MAX_PROLOGUE_SIZE)
|
649 |
|
|
fprintf_unfiltered (gdb_stderr,
|
650 |
|
|
_("Hit end of prologue while scanning pushes\n"));
|
651 |
|
|
|
652 |
|
|
/* Second stage of the prologue scanning.
|
653 |
|
|
Scan:
|
654 |
|
|
in r28,__SP_L__
|
655 |
|
|
in r29,__SP_H__ */
|
656 |
|
|
|
657 |
|
|
if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
|
658 |
|
|
{
|
659 |
|
|
unsigned char img[] = {
|
660 |
|
|
0xcd, 0xb7, /* in r28,__SP_L__ */
|
661 |
|
|
0xde, 0xb7 /* in r29,__SP_H__ */
|
662 |
|
|
};
|
663 |
|
|
unsigned short insn1;
|
664 |
|
|
|
665 |
|
|
if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
|
666 |
|
|
{
|
667 |
|
|
vpc += 4;
|
668 |
|
|
scan_stage = 2;
|
669 |
|
|
}
|
670 |
|
|
}
|
671 |
|
|
|
672 |
|
|
/* Third stage of the prologue scanning. (Really two stages)
|
673 |
|
|
Scan for:
|
674 |
|
|
sbiw r28,XX or subi r28,lo8(XX)
|
675 |
|
|
sbci r29,hi8(XX)
|
676 |
|
|
in __tmp_reg__,__SREG__
|
677 |
|
|
cli
|
678 |
|
|
out __SP_H__,r29
|
679 |
|
|
out __SREG__,__tmp_reg__
|
680 |
|
|
out __SP_L__,r28 */
|
681 |
|
|
|
682 |
|
|
if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
|
683 |
|
|
{
|
684 |
|
|
int locals_size = 0;
|
685 |
|
|
unsigned char img[] = {
|
686 |
|
|
0x0f, 0xb6, /* in r0,0x3f */
|
687 |
|
|
0xf8, 0x94, /* cli */
|
688 |
|
|
0xde, 0xbf, /* out 0x3e,r29 ; SPH */
|
689 |
|
|
0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
|
690 |
|
|
0xcd, 0xbf /* out 0x3d,r28 ; SPL */
|
691 |
|
|
};
|
692 |
|
|
unsigned char img_sig[] = {
|
693 |
|
|
0xde, 0xbf, /* out 0x3e,r29 ; SPH */
|
694 |
|
|
0xcd, 0xbf /* out 0x3d,r28 ; SPL */
|
695 |
|
|
};
|
696 |
|
|
unsigned char img_int[] = {
|
697 |
|
|
0xf8, 0x94, /* cli */
|
698 |
|
|
0xde, 0xbf, /* out 0x3e,r29 ; SPH */
|
699 |
|
|
0x78, 0x94, /* sei */
|
700 |
|
|
0xcd, 0xbf /* out 0x3d,r28 ; SPL */
|
701 |
|
|
};
|
702 |
|
|
|
703 |
|
|
insn = EXTRACT_INSN (&prologue[vpc]);
|
704 |
|
|
vpc += 2;
|
705 |
|
|
if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
|
706 |
|
|
locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
|
707 |
|
|
else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
|
708 |
|
|
{
|
709 |
|
|
locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
|
710 |
|
|
insn = EXTRACT_INSN (&prologue[vpc]);
|
711 |
|
|
vpc += 2;
|
712 |
|
|
locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
|
713 |
|
|
}
|
714 |
|
|
else
|
715 |
|
|
return pc + vpc;
|
716 |
|
|
|
717 |
|
|
/* Scan the last part of the prologue. May not be present for interrupt
|
718 |
|
|
or signal handler functions, which is why we set the prologue type
|
719 |
|
|
when we saw the beginning of the prologue previously. */
|
720 |
|
|
|
721 |
|
|
if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
|
722 |
|
|
{
|
723 |
|
|
vpc += sizeof (img_sig);
|
724 |
|
|
}
|
725 |
|
|
else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
|
726 |
|
|
{
|
727 |
|
|
vpc += sizeof (img_int);
|
728 |
|
|
}
|
729 |
|
|
if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
|
730 |
|
|
{
|
731 |
|
|
info->prologue_type = AVR_PROLOGUE_NORMAL;
|
732 |
|
|
vpc += sizeof (img);
|
733 |
|
|
}
|
734 |
|
|
|
735 |
|
|
info->size += locals_size;
|
736 |
|
|
|
737 |
|
|
return pc + avr_scan_arg_moves (vpc, prologue);
|
738 |
|
|
}
|
739 |
|
|
|
740 |
|
|
/* If we got this far, we could not scan the prologue, so just return the pc
|
741 |
|
|
of the frame plus an adjustment for argument move insns. */
|
742 |
|
|
|
743 |
|
|
return pc + avr_scan_arg_moves (vpc, prologue);;
|
744 |
|
|
}
|
745 |
|
|
|
746 |
|
|
static CORE_ADDR
|
747 |
|
|
avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
748 |
|
|
{
|
749 |
|
|
CORE_ADDR func_addr, func_end;
|
750 |
|
|
CORE_ADDR prologue_end = pc;
|
751 |
|
|
|
752 |
|
|
/* See what the symbol table says */
|
753 |
|
|
|
754 |
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
755 |
|
|
{
|
756 |
|
|
struct symtab_and_line sal;
|
757 |
|
|
struct avr_unwind_cache info = {0};
|
758 |
|
|
struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
|
759 |
|
|
|
760 |
|
|
info.saved_regs = saved_regs;
|
761 |
|
|
|
762 |
|
|
/* Need to run the prologue scanner to figure out if the function has a
|
763 |
|
|
prologue and possibly skip over moving arguments passed via registers
|
764 |
|
|
to other registers. */
|
765 |
|
|
|
766 |
|
|
prologue_end = avr_scan_prologue (pc, &info);
|
767 |
|
|
|
768 |
|
|
if (info.prologue_type == AVR_PROLOGUE_NONE)
|
769 |
|
|
return pc;
|
770 |
|
|
else
|
771 |
|
|
{
|
772 |
|
|
sal = find_pc_line (func_addr, 0);
|
773 |
|
|
|
774 |
|
|
if (sal.line != 0 && sal.end < func_end)
|
775 |
|
|
return sal.end;
|
776 |
|
|
}
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
/* Either we didn't find the start of this function (nothing we can do),
|
780 |
|
|
or there's no line info, or the line after the prologue is after
|
781 |
|
|
the end of the function (there probably isn't a prologue). */
|
782 |
|
|
|
783 |
|
|
return prologue_end;
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
/* Not all avr devices support the BREAK insn. Those that don't should treat
|
787 |
|
|
it as a NOP. Thus, it should be ok. Since the avr is currently a remote
|
788 |
|
|
only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
|
789 |
|
|
|
790 |
|
|
static const unsigned char *
|
791 |
|
|
avr_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
|
792 |
|
|
{
|
793 |
|
|
static unsigned char avr_break_insn [] = { 0x98, 0x95 };
|
794 |
|
|
*lenptr = sizeof (avr_break_insn);
|
795 |
|
|
return avr_break_insn;
|
796 |
|
|
}
|
797 |
|
|
|
798 |
|
|
/* Given a return value in `regbuf' with a type `valtype',
|
799 |
|
|
extract and copy its value into `valbuf'.
|
800 |
|
|
|
801 |
|
|
Return values are always passed via registers r25:r24:... */
|
802 |
|
|
|
803 |
|
|
static void
|
804 |
|
|
avr_extract_return_value (struct type *type, struct regcache *regcache,
|
805 |
|
|
gdb_byte *valbuf)
|
806 |
|
|
{
|
807 |
|
|
ULONGEST r24, r25;
|
808 |
|
|
ULONGEST c;
|
809 |
|
|
int len;
|
810 |
|
|
if (TYPE_LENGTH (type) == 1)
|
811 |
|
|
{
|
812 |
|
|
regcache_cooked_read_unsigned (regcache, 24, &c);
|
813 |
|
|
store_unsigned_integer (valbuf, 1, c);
|
814 |
|
|
}
|
815 |
|
|
else
|
816 |
|
|
{
|
817 |
|
|
int i;
|
818 |
|
|
/* The MSB of the return value is always in r25, calculate which
|
819 |
|
|
register holds the LSB. */
|
820 |
|
|
int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
|
821 |
|
|
|
822 |
|
|
for (i=0; i< TYPE_LENGTH (type); i++)
|
823 |
|
|
{
|
824 |
|
|
regcache_cooked_read (regcache, lsb_reg + i,
|
825 |
|
|
(bfd_byte *) valbuf + i);
|
826 |
|
|
}
|
827 |
|
|
}
|
828 |
|
|
}
|
829 |
|
|
|
830 |
|
|
/* Determine, for architecture GDBARCH, how a return value of TYPE
|
831 |
|
|
should be returned. If it is supposed to be returned in registers,
|
832 |
|
|
and READBUF is non-zero, read the appropriate value from REGCACHE,
|
833 |
|
|
and copy it into READBUF. If WRITEBUF is non-zero, write the value
|
834 |
|
|
from WRITEBUF into REGCACHE. */
|
835 |
|
|
|
836 |
|
|
enum return_value_convention
|
837 |
|
|
avr_return_value (struct gdbarch *gdbarch, struct type *valtype,
|
838 |
|
|
struct regcache *regcache, gdb_byte *readbuf,
|
839 |
|
|
const gdb_byte *writebuf)
|
840 |
|
|
{
|
841 |
|
|
int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
842 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|
843 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
|
844 |
|
|
&& !(TYPE_LENGTH (valtype) == 1
|
845 |
|
|
|| TYPE_LENGTH (valtype) == 2
|
846 |
|
|
|| TYPE_LENGTH (valtype) == 4
|
847 |
|
|
|| TYPE_LENGTH (valtype) == 8));
|
848 |
|
|
|
849 |
|
|
if (writebuf != NULL)
|
850 |
|
|
{
|
851 |
|
|
gdb_assert (!struct_return);
|
852 |
|
|
error (_("Cannot store return value."));
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
if (readbuf != NULL)
|
856 |
|
|
{
|
857 |
|
|
gdb_assert (!struct_return);
|
858 |
|
|
avr_extract_return_value (valtype, regcache, readbuf);
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
if (struct_return)
|
862 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
863 |
|
|
else
|
864 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
|
868 |
|
|
/* Put here the code to store, into fi->saved_regs, the addresses of
|
869 |
|
|
the saved registers of frame described by FRAME_INFO. This
|
870 |
|
|
includes special registers such as pc and fp saved in special ways
|
871 |
|
|
in the stack frame. sp is even more special: the address we return
|
872 |
|
|
for it IS the sp for the next frame. */
|
873 |
|
|
|
874 |
|
|
struct avr_unwind_cache *
|
875 |
|
|
avr_frame_unwind_cache (struct frame_info *next_frame,
|
876 |
|
|
void **this_prologue_cache)
|
877 |
|
|
{
|
878 |
|
|
CORE_ADDR pc;
|
879 |
|
|
ULONGEST prev_sp;
|
880 |
|
|
ULONGEST this_base;
|
881 |
|
|
struct avr_unwind_cache *info;
|
882 |
|
|
int i;
|
883 |
|
|
|
884 |
|
|
if ((*this_prologue_cache))
|
885 |
|
|
return (*this_prologue_cache);
|
886 |
|
|
|
887 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
|
888 |
|
|
(*this_prologue_cache) = info;
|
889 |
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
890 |
|
|
|
891 |
|
|
info->size = 0;
|
892 |
|
|
info->prologue_type = AVR_PROLOGUE_NONE;
|
893 |
|
|
|
894 |
|
|
pc = frame_func_unwind (next_frame, NORMAL_FRAME);
|
895 |
|
|
|
896 |
|
|
if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
|
897 |
|
|
avr_scan_prologue (pc, info);
|
898 |
|
|
|
899 |
|
|
if ((info->prologue_type != AVR_PROLOGUE_NONE)
|
900 |
|
|
&& (info->prologue_type != AVR_PROLOGUE_MAIN))
|
901 |
|
|
{
|
902 |
|
|
ULONGEST high_base; /* High byte of FP */
|
903 |
|
|
|
904 |
|
|
/* The SP was moved to the FP. This indicates that a new frame
|
905 |
|
|
was created. Get THIS frame's FP value by unwinding it from
|
906 |
|
|
the next frame. */
|
907 |
|
|
this_base = frame_unwind_register_unsigned (next_frame, AVR_FP_REGNUM);
|
908 |
|
|
high_base = frame_unwind_register_unsigned (next_frame, AVR_FP_REGNUM+1);
|
909 |
|
|
this_base += (high_base << 8);
|
910 |
|
|
|
911 |
|
|
/* The FP points at the last saved register. Adjust the FP back
|
912 |
|
|
to before the first saved register giving the SP. */
|
913 |
|
|
prev_sp = this_base + info->size;
|
914 |
|
|
}
|
915 |
|
|
else
|
916 |
|
|
{
|
917 |
|
|
/* Assume that the FP is this frame's SP but with that pushed
|
918 |
|
|
stack space added back. */
|
919 |
|
|
this_base = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
|
920 |
|
|
prev_sp = this_base + info->size;
|
921 |
|
|
}
|
922 |
|
|
|
923 |
|
|
/* Add 1 here to adjust for the post-decrement nature of the push
|
924 |
|
|
instruction.*/
|
925 |
|
|
info->prev_sp = avr_make_saddr (prev_sp+1);
|
926 |
|
|
|
927 |
|
|
info->base = avr_make_saddr (this_base);
|
928 |
|
|
|
929 |
|
|
/* Adjust all the saved registers so that they contain addresses and not
|
930 |
|
|
offsets. */
|
931 |
|
|
for (i = 0; i < gdbarch_num_regs (get_frame_arch (next_frame)) - 1; i++)
|
932 |
|
|
if (info->saved_regs[i].addr)
|
933 |
|
|
{
|
934 |
|
|
info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
|
935 |
|
|
}
|
936 |
|
|
|
937 |
|
|
/* Except for the main and startup code, the return PC is always saved on
|
938 |
|
|
the stack and is at the base of the frame. */
|
939 |
|
|
|
940 |
|
|
if (info->prologue_type != AVR_PROLOGUE_MAIN)
|
941 |
|
|
{
|
942 |
|
|
info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
|
943 |
|
|
}
|
944 |
|
|
|
945 |
|
|
/* The previous frame's SP needed to be computed. Save the computed
|
946 |
|
|
value. */
|
947 |
|
|
trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, info->prev_sp+1);
|
948 |
|
|
|
949 |
|
|
return info;
|
950 |
|
|
}
|
951 |
|
|
|
952 |
|
|
static CORE_ADDR
|
953 |
|
|
avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
954 |
|
|
{
|
955 |
|
|
ULONGEST pc;
|
956 |
|
|
|
957 |
|
|
pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
|
958 |
|
|
|
959 |
|
|
return avr_make_iaddr (pc);
|
960 |
|
|
}
|
961 |
|
|
|
962 |
|
|
static CORE_ADDR
|
963 |
|
|
avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
964 |
|
|
{
|
965 |
|
|
ULONGEST sp;
|
966 |
|
|
|
967 |
|
|
sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
|
968 |
|
|
|
969 |
|
|
return avr_make_saddr (sp);
|
970 |
|
|
}
|
971 |
|
|
|
972 |
|
|
/* Given a GDB frame, determine the address of the calling function's
|
973 |
|
|
frame. This will be used to create a new GDB frame struct. */
|
974 |
|
|
|
975 |
|
|
static void
|
976 |
|
|
avr_frame_this_id (struct frame_info *next_frame,
|
977 |
|
|
void **this_prologue_cache,
|
978 |
|
|
struct frame_id *this_id)
|
979 |
|
|
{
|
980 |
|
|
struct avr_unwind_cache *info
|
981 |
|
|
= avr_frame_unwind_cache (next_frame, this_prologue_cache);
|
982 |
|
|
CORE_ADDR base;
|
983 |
|
|
CORE_ADDR func;
|
984 |
|
|
struct frame_id id;
|
985 |
|
|
|
986 |
|
|
/* The FUNC is easy. */
|
987 |
|
|
func = frame_func_unwind (next_frame, NORMAL_FRAME);
|
988 |
|
|
|
989 |
|
|
/* Hopefully the prologue analysis either correctly determined the
|
990 |
|
|
frame's base (which is the SP from the previous frame), or set
|
991 |
|
|
that base to "NULL". */
|
992 |
|
|
base = info->prev_sp;
|
993 |
|
|
if (base == 0)
|
994 |
|
|
return;
|
995 |
|
|
|
996 |
|
|
id = frame_id_build (base, func);
|
997 |
|
|
(*this_id) = id;
|
998 |
|
|
}
|
999 |
|
|
|
1000 |
|
|
static void
|
1001 |
|
|
avr_frame_prev_register (struct frame_info *next_frame,
|
1002 |
|
|
void **this_prologue_cache,
|
1003 |
|
|
int regnum, int *optimizedp,
|
1004 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
1005 |
|
|
int *realnump, gdb_byte *bufferp)
|
1006 |
|
|
{
|
1007 |
|
|
struct avr_unwind_cache *info
|
1008 |
|
|
= avr_frame_unwind_cache (next_frame, this_prologue_cache);
|
1009 |
|
|
|
1010 |
|
|
if (regnum == AVR_PC_REGNUM)
|
1011 |
|
|
{
|
1012 |
|
|
if (trad_frame_addr_p (info->saved_regs, regnum))
|
1013 |
|
|
{
|
1014 |
|
|
*optimizedp = 0;
|
1015 |
|
|
*lvalp = lval_memory;
|
1016 |
|
|
*addrp = info->saved_regs[regnum].addr;
|
1017 |
|
|
*realnump = -1;
|
1018 |
|
|
if (bufferp != NULL)
|
1019 |
|
|
{
|
1020 |
|
|
/* Reading the return PC from the PC register is slightly
|
1021 |
|
|
abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
|
1022 |
|
|
but in reality, only two bytes (3 in upcoming mega256) are
|
1023 |
|
|
stored on the stack.
|
1024 |
|
|
|
1025 |
|
|
Also, note that the value on the stack is an addr to a word
|
1026 |
|
|
not a byte, so we will need to multiply it by two at some
|
1027 |
|
|
point.
|
1028 |
|
|
|
1029 |
|
|
And to confuse matters even more, the return address stored
|
1030 |
|
|
on the stack is in big endian byte order, even though most
|
1031 |
|
|
everything else about the avr is little endian. Ick! */
|
1032 |
|
|
|
1033 |
|
|
/* FIXME: number of bytes read here will need updated for the
|
1034 |
|
|
mega256 when it is available. */
|
1035 |
|
|
|
1036 |
|
|
ULONGEST pc;
|
1037 |
|
|
unsigned char tmp;
|
1038 |
|
|
unsigned char buf[2];
|
1039 |
|
|
|
1040 |
|
|
read_memory (info->saved_regs[regnum].addr, buf, 2);
|
1041 |
|
|
|
1042 |
|
|
/* Convert the PC read from memory as a big-endian to
|
1043 |
|
|
little-endian order. */
|
1044 |
|
|
tmp = buf[0];
|
1045 |
|
|
buf[0] = buf[1];
|
1046 |
|
|
buf[1] = tmp;
|
1047 |
|
|
|
1048 |
|
|
pc = (extract_unsigned_integer (buf, 2) * 2);
|
1049 |
|
|
store_unsigned_integer
|
1050 |
|
|
(bufferp, register_size (get_frame_arch (next_frame), regnum),
|
1051 |
|
|
pc);
|
1052 |
|
|
}
|
1053 |
|
|
}
|
1054 |
|
|
}
|
1055 |
|
|
else
|
1056 |
|
|
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
|
1057 |
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
1058 |
|
|
}
|
1059 |
|
|
|
1060 |
|
|
static const struct frame_unwind avr_frame_unwind = {
|
1061 |
|
|
NORMAL_FRAME,
|
1062 |
|
|
avr_frame_this_id,
|
1063 |
|
|
avr_frame_prev_register
|
1064 |
|
|
};
|
1065 |
|
|
|
1066 |
|
|
const struct frame_unwind *
|
1067 |
|
|
avr_frame_sniffer (struct frame_info *next_frame)
|
1068 |
|
|
{
|
1069 |
|
|
return &avr_frame_unwind;
|
1070 |
|
|
}
|
1071 |
|
|
|
1072 |
|
|
static CORE_ADDR
|
1073 |
|
|
avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
1074 |
|
|
{
|
1075 |
|
|
struct avr_unwind_cache *info
|
1076 |
|
|
= avr_frame_unwind_cache (next_frame, this_cache);
|
1077 |
|
|
|
1078 |
|
|
return info->base;
|
1079 |
|
|
}
|
1080 |
|
|
|
1081 |
|
|
static const struct frame_base avr_frame_base = {
|
1082 |
|
|
&avr_frame_unwind,
|
1083 |
|
|
avr_frame_base_address,
|
1084 |
|
|
avr_frame_base_address,
|
1085 |
|
|
avr_frame_base_address
|
1086 |
|
|
};
|
1087 |
|
|
|
1088 |
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
1089 |
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
1090 |
|
|
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
|
1091 |
|
|
breakpoint. */
|
1092 |
|
|
|
1093 |
|
|
static struct frame_id
|
1094 |
|
|
avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1095 |
|
|
{
|
1096 |
|
|
ULONGEST base;
|
1097 |
|
|
|
1098 |
|
|
base = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
|
1099 |
|
|
return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
|
1100 |
|
|
}
|
1101 |
|
|
|
1102 |
|
|
/* When arguments must be pushed onto the stack, they go on in reverse
|
1103 |
|
|
order. The below implements a FILO (stack) to do this. */
|
1104 |
|
|
|
1105 |
|
|
struct stack_item
|
1106 |
|
|
{
|
1107 |
|
|
int len;
|
1108 |
|
|
struct stack_item *prev;
|
1109 |
|
|
void *data;
|
1110 |
|
|
};
|
1111 |
|
|
|
1112 |
|
|
static struct stack_item *
|
1113 |
|
|
push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
|
1114 |
|
|
{
|
1115 |
|
|
struct stack_item *si;
|
1116 |
|
|
si = xmalloc (sizeof (struct stack_item));
|
1117 |
|
|
si->data = xmalloc (len);
|
1118 |
|
|
si->len = len;
|
1119 |
|
|
si->prev = prev;
|
1120 |
|
|
memcpy (si->data, contents, len);
|
1121 |
|
|
return si;
|
1122 |
|
|
}
|
1123 |
|
|
|
1124 |
|
|
static struct stack_item *pop_stack_item (struct stack_item *si);
|
1125 |
|
|
static struct stack_item *
|
1126 |
|
|
pop_stack_item (struct stack_item *si)
|
1127 |
|
|
{
|
1128 |
|
|
struct stack_item *dead = si;
|
1129 |
|
|
si = si->prev;
|
1130 |
|
|
xfree (dead->data);
|
1131 |
|
|
xfree (dead);
|
1132 |
|
|
return si;
|
1133 |
|
|
}
|
1134 |
|
|
|
1135 |
|
|
/* Setup the function arguments for calling a function in the inferior.
|
1136 |
|
|
|
1137 |
|
|
On the AVR architecture, there are 18 registers (R25 to R8) which are
|
1138 |
|
|
dedicated for passing function arguments. Up to the first 18 arguments
|
1139 |
|
|
(depending on size) may go into these registers. The rest go on the stack.
|
1140 |
|
|
|
1141 |
|
|
All arguments are aligned to start in even-numbered registers (odd-sized
|
1142 |
|
|
arguments, including char, have one free register above them). For example,
|
1143 |
|
|
an int in arg1 and a char in arg2 would be passed as such:
|
1144 |
|
|
|
1145 |
|
|
arg1 -> r25:r24
|
1146 |
|
|
arg2 -> r22
|
1147 |
|
|
|
1148 |
|
|
Arguments that are larger than 2 bytes will be split between two or more
|
1149 |
|
|
registers as available, but will NOT be split between a register and the
|
1150 |
|
|
stack. Arguments that go onto the stack are pushed last arg first (this is
|
1151 |
|
|
similar to the d10v). */
|
1152 |
|
|
|
1153 |
|
|
/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
|
1154 |
|
|
inaccurate.
|
1155 |
|
|
|
1156 |
|
|
An exceptional case exists for struct arguments (and possibly other
|
1157 |
|
|
aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
|
1158 |
|
|
not a multiple of WORDSIZE bytes. In this case the argument is never split
|
1159 |
|
|
between the registers and the stack, but instead is copied in its entirety
|
1160 |
|
|
onto the stack, AND also copied into as many registers as there is room
|
1161 |
|
|
for. In other words, space in registers permitting, two copies of the same
|
1162 |
|
|
argument are passed in. As far as I can tell, only the one on the stack is
|
1163 |
|
|
used, although that may be a function of the level of compiler
|
1164 |
|
|
optimization. I suspect this is a compiler bug. Arguments of these odd
|
1165 |
|
|
sizes are left-justified within the word (as opposed to arguments smaller
|
1166 |
|
|
than WORDSIZE bytes, which are right-justified).
|
1167 |
|
|
|
1168 |
|
|
If the function is to return an aggregate type such as a struct, the caller
|
1169 |
|
|
must allocate space into which the callee will copy the return value. In
|
1170 |
|
|
this case, a pointer to the return value location is passed into the callee
|
1171 |
|
|
in register R0, which displaces one of the other arguments passed in via
|
1172 |
|
|
registers R0 to R2. */
|
1173 |
|
|
|
1174 |
|
|
static CORE_ADDR
|
1175 |
|
|
avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
1176 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
1177 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
1178 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
1179 |
|
|
{
|
1180 |
|
|
int i;
|
1181 |
|
|
unsigned char buf[2];
|
1182 |
|
|
CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
|
1183 |
|
|
int regnum = AVR_ARGN_REGNUM;
|
1184 |
|
|
struct stack_item *si = NULL;
|
1185 |
|
|
|
1186 |
|
|
#if 0
|
1187 |
|
|
/* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
|
1188 |
|
|
if (struct_return)
|
1189 |
|
|
{
|
1190 |
|
|
fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
|
1191 |
|
|
regcache_cooked_write_unsigned (regcache, argreg--, struct_addr & 0xff);
|
1192 |
|
|
regcache_cooked_write_unsigned (regcache, argreg--, (struct_addr >>8) & 0xff);
|
1193 |
|
|
}
|
1194 |
|
|
#endif
|
1195 |
|
|
|
1196 |
|
|
for (i = 0; i < nargs; i++)
|
1197 |
|
|
{
|
1198 |
|
|
int last_regnum;
|
1199 |
|
|
int j;
|
1200 |
|
|
struct value *arg = args[i];
|
1201 |
|
|
struct type *type = check_typedef (value_type (arg));
|
1202 |
|
|
const bfd_byte *contents = value_contents (arg);
|
1203 |
|
|
int len = TYPE_LENGTH (type);
|
1204 |
|
|
|
1205 |
|
|
/* Calculate the potential last register needed. */
|
1206 |
|
|
last_regnum = regnum - (len + (len & 1));
|
1207 |
|
|
|
1208 |
|
|
/* If there are registers available, use them. Once we start putting
|
1209 |
|
|
stuff on the stack, all subsequent args go on stack. */
|
1210 |
|
|
if ((si == NULL) && (last_regnum >= 8))
|
1211 |
|
|
{
|
1212 |
|
|
ULONGEST val;
|
1213 |
|
|
|
1214 |
|
|
/* Skip a register for odd length args. */
|
1215 |
|
|
if (len & 1)
|
1216 |
|
|
regnum--;
|
1217 |
|
|
|
1218 |
|
|
val = extract_unsigned_integer (contents, len);
|
1219 |
|
|
for (j=0; j<len; j++)
|
1220 |
|
|
{
|
1221 |
|
|
regcache_cooked_write_unsigned (regcache, regnum--,
|
1222 |
|
|
val >> (8*(len-j-1)));
|
1223 |
|
|
}
|
1224 |
|
|
}
|
1225 |
|
|
/* No registers available, push the args onto the stack. */
|
1226 |
|
|
else
|
1227 |
|
|
{
|
1228 |
|
|
/* From here on, we don't care about regnum. */
|
1229 |
|
|
si = push_stack_item (si, contents, len);
|
1230 |
|
|
}
|
1231 |
|
|
}
|
1232 |
|
|
|
1233 |
|
|
/* Push args onto the stack. */
|
1234 |
|
|
while (si)
|
1235 |
|
|
{
|
1236 |
|
|
sp -= si->len;
|
1237 |
|
|
/* Add 1 to sp here to account for post decr nature of pushes. */
|
1238 |
|
|
write_memory (sp+1, si->data, si->len);
|
1239 |
|
|
si = pop_stack_item (si);
|
1240 |
|
|
}
|
1241 |
|
|
|
1242 |
|
|
/* Set the return address. For the avr, the return address is the BP_ADDR.
|
1243 |
|
|
Need to push the return address onto the stack noting that it needs to be
|
1244 |
|
|
in big-endian order on the stack. */
|
1245 |
|
|
buf[0] = (return_pc >> 8) & 0xff;
|
1246 |
|
|
buf[1] = return_pc & 0xff;
|
1247 |
|
|
|
1248 |
|
|
sp -= 2;
|
1249 |
|
|
write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */
|
1250 |
|
|
|
1251 |
|
|
/* Finally, update the SP register. */
|
1252 |
|
|
regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
|
1253 |
|
|
avr_convert_saddr_to_raw (sp));
|
1254 |
|
|
|
1255 |
|
|
return sp;
|
1256 |
|
|
}
|
1257 |
|
|
|
1258 |
|
|
/* Initialize the gdbarch structure for the AVR's. */
|
1259 |
|
|
|
1260 |
|
|
static struct gdbarch *
|
1261 |
|
|
avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
1262 |
|
|
{
|
1263 |
|
|
struct gdbarch *gdbarch;
|
1264 |
|
|
struct gdbarch_tdep *tdep;
|
1265 |
|
|
|
1266 |
|
|
/* Find a candidate among the list of pre-declared architectures. */
|
1267 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
1268 |
|
|
if (arches != NULL)
|
1269 |
|
|
return arches->gdbarch;
|
1270 |
|
|
|
1271 |
|
|
/* None found, create a new architecture from the information provided. */
|
1272 |
|
|
tdep = XMALLOC (struct gdbarch_tdep);
|
1273 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
1274 |
|
|
|
1275 |
|
|
/* If we ever need to differentiate the device types, do it here. */
|
1276 |
|
|
switch (info.bfd_arch_info->mach)
|
1277 |
|
|
{
|
1278 |
|
|
case bfd_mach_avr1:
|
1279 |
|
|
case bfd_mach_avr2:
|
1280 |
|
|
case bfd_mach_avr3:
|
1281 |
|
|
case bfd_mach_avr4:
|
1282 |
|
|
case bfd_mach_avr5:
|
1283 |
|
|
break;
|
1284 |
|
|
}
|
1285 |
|
|
|
1286 |
|
|
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
1287 |
|
|
set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
1288 |
|
|
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
1289 |
|
|
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
1290 |
|
|
set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
1291 |
|
|
set_gdbarch_addr_bit (gdbarch, 32);
|
1292 |
|
|
|
1293 |
|
|
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
1294 |
|
|
set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
1295 |
|
|
set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
1296 |
|
|
|
1297 |
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
1298 |
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
|
1299 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
|
1300 |
|
|
|
1301 |
|
|
set_gdbarch_read_pc (gdbarch, avr_read_pc);
|
1302 |
|
|
set_gdbarch_write_pc (gdbarch, avr_write_pc);
|
1303 |
|
|
|
1304 |
|
|
set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
|
1305 |
|
|
|
1306 |
|
|
set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
|
1307 |
|
|
set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
|
1308 |
|
|
|
1309 |
|
|
set_gdbarch_register_name (gdbarch, avr_register_name);
|
1310 |
|
|
set_gdbarch_register_type (gdbarch, avr_register_type);
|
1311 |
|
|
|
1312 |
|
|
set_gdbarch_return_value (gdbarch, avr_return_value);
|
1313 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_avr);
|
1314 |
|
|
|
1315 |
|
|
set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
|
1316 |
|
|
|
1317 |
|
|
set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
|
1318 |
|
|
set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
|
1319 |
|
|
|
1320 |
|
|
set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
|
1321 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
1322 |
|
|
|
1323 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
|
1324 |
|
|
|
1325 |
|
|
frame_unwind_append_sniffer (gdbarch, avr_frame_sniffer);
|
1326 |
|
|
frame_base_set_default (gdbarch, &avr_frame_base);
|
1327 |
|
|
|
1328 |
|
|
set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
|
1329 |
|
|
|
1330 |
|
|
set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
|
1331 |
|
|
set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
|
1332 |
|
|
|
1333 |
|
|
return gdbarch;
|
1334 |
|
|
}
|
1335 |
|
|
|
1336 |
|
|
/* Send a query request to the avr remote target asking for values of the io
|
1337 |
|
|
registers. If args parameter is not NULL, then the user has requested info
|
1338 |
|
|
on a specific io register [This still needs implemented and is ignored for
|
1339 |
|
|
now]. The query string should be one of these forms:
|
1340 |
|
|
|
1341 |
|
|
"Ravr.io_reg" -> reply is "NN" number of io registers
|
1342 |
|
|
|
1343 |
|
|
"Ravr.io_reg:addr,len" where addr is first register and len is number of
|
1344 |
|
|
registers to be read. The reply should be "<NAME>,VV;" for each io register
|
1345 |
|
|
where, <NAME> is a string, and VV is the hex value of the register.
|
1346 |
|
|
|
1347 |
|
|
All io registers are 8-bit. */
|
1348 |
|
|
|
1349 |
|
|
static void
|
1350 |
|
|
avr_io_reg_read_command (char *args, int from_tty)
|
1351 |
|
|
{
|
1352 |
|
|
LONGEST bufsiz = 0;
|
1353 |
|
|
gdb_byte *buf;
|
1354 |
|
|
char query[400];
|
1355 |
|
|
char *p;
|
1356 |
|
|
unsigned int nreg = 0;
|
1357 |
|
|
unsigned int val;
|
1358 |
|
|
int i, j, k, step;
|
1359 |
|
|
|
1360 |
|
|
/* Find out how many io registers the target has. */
|
1361 |
|
|
bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR,
|
1362 |
|
|
"avr.io_reg", &buf);
|
1363 |
|
|
|
1364 |
|
|
if (bufsiz <= 0)
|
1365 |
|
|
{
|
1366 |
|
|
fprintf_unfiltered (gdb_stderr,
|
1367 |
|
|
_("ERR: info io_registers NOT supported "
|
1368 |
|
|
"by current target\n"));
|
1369 |
|
|
return;
|
1370 |
|
|
}
|
1371 |
|
|
|
1372 |
|
|
if (sscanf (buf, "%x", &nreg) != 1)
|
1373 |
|
|
{
|
1374 |
|
|
fprintf_unfiltered (gdb_stderr,
|
1375 |
|
|
_("Error fetching number of io registers\n"));
|
1376 |
|
|
xfree (buf);
|
1377 |
|
|
return;
|
1378 |
|
|
}
|
1379 |
|
|
|
1380 |
|
|
xfree (buf);
|
1381 |
|
|
|
1382 |
|
|
reinitialize_more_filter ();
|
1383 |
|
|
|
1384 |
|
|
printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
|
1385 |
|
|
|
1386 |
|
|
/* only fetch up to 8 registers at a time to keep the buffer small */
|
1387 |
|
|
step = 8;
|
1388 |
|
|
|
1389 |
|
|
for (i = 0; i < nreg; i += step)
|
1390 |
|
|
{
|
1391 |
|
|
/* how many registers this round? */
|
1392 |
|
|
j = step;
|
1393 |
|
|
if ((i+j) >= nreg)
|
1394 |
|
|
j = nreg - i; /* last block is less than 8 registers */
|
1395 |
|
|
|
1396 |
|
|
snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
|
1397 |
|
|
bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR,
|
1398 |
|
|
query, &buf);
|
1399 |
|
|
|
1400 |
|
|
p = buf;
|
1401 |
|
|
for (k = i; k < (i + j); k++)
|
1402 |
|
|
{
|
1403 |
|
|
if (sscanf (p, "%[^,],%x;", query, &val) == 2)
|
1404 |
|
|
{
|
1405 |
|
|
printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
|
1406 |
|
|
while ((*p != ';') && (*p != '\0'))
|
1407 |
|
|
p++;
|
1408 |
|
|
p++; /* skip over ';' */
|
1409 |
|
|
if (*p == '\0')
|
1410 |
|
|
break;
|
1411 |
|
|
}
|
1412 |
|
|
}
|
1413 |
|
|
|
1414 |
|
|
xfree (buf);
|
1415 |
|
|
}
|
1416 |
|
|
}
|
1417 |
|
|
|
1418 |
|
|
extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
|
1419 |
|
|
|
1420 |
|
|
void
|
1421 |
|
|
_initialize_avr_tdep (void)
|
1422 |
|
|
{
|
1423 |
|
|
register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
|
1424 |
|
|
|
1425 |
|
|
/* Add a new command to allow the user to query the avr remote target for
|
1426 |
|
|
the values of the io space registers in a saner way than just using
|
1427 |
|
|
`x/NNNb ADDR`. */
|
1428 |
|
|
|
1429 |
|
|
/* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
|
1430 |
|
|
io_registers' to signify it is not available on other platforms. */
|
1431 |
|
|
|
1432 |
|
|
add_cmd ("io_registers", class_info, avr_io_reg_read_command,
|
1433 |
|
|
_("query remote avr target for io space register values"),
|
1434 |
|
|
&infolist);
|
1435 |
|
|
}
|