1 |
24 |
jeremybenn |
/* Get info from stack frames; convert between frames, blocks,
|
2 |
|
|
functions and pc values.
|
3 |
|
|
|
4 |
|
|
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
5 |
|
|
1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
|
6 |
|
|
Free Software Foundation, Inc.
|
7 |
|
|
|
8 |
|
|
This file is part of GDB.
|
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify
|
11 |
|
|
it under the terms of the GNU General Public License as published by
|
12 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
13 |
|
|
(at your option) any later version.
|
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful,
|
16 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
18 |
|
|
GNU General Public License for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "defs.h"
|
24 |
|
|
#include "symtab.h"
|
25 |
|
|
#include "bfd.h"
|
26 |
|
|
#include "objfiles.h"
|
27 |
|
|
#include "frame.h"
|
28 |
|
|
#include "gdbcore.h"
|
29 |
|
|
#include "value.h"
|
30 |
|
|
#include "target.h"
|
31 |
|
|
#include "inferior.h"
|
32 |
|
|
#include "annotate.h"
|
33 |
|
|
#include "regcache.h"
|
34 |
|
|
#include "gdb_assert.h"
|
35 |
|
|
#include "dummy-frame.h"
|
36 |
|
|
#include "command.h"
|
37 |
|
|
#include "gdbcmd.h"
|
38 |
|
|
#include "block.h"
|
39 |
|
|
|
40 |
|
|
/* Prototypes for exported functions. */
|
41 |
|
|
|
42 |
|
|
void _initialize_blockframe (void);
|
43 |
|
|
|
44 |
|
|
/* Return the innermost lexical block in execution
|
45 |
|
|
in a specified stack frame. The frame address is assumed valid.
|
46 |
|
|
|
47 |
|
|
If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
|
48 |
|
|
address we used to choose the block. We use this to find a source
|
49 |
|
|
line, to decide which macro definitions are in scope.
|
50 |
|
|
|
51 |
|
|
The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
|
52 |
|
|
PC, and may not really be a valid PC at all. For example, in the
|
53 |
|
|
caller of a function declared to never return, the code at the
|
54 |
|
|
return address will never be reached, so the call instruction may
|
55 |
|
|
be the very last instruction in the block. So the address we use
|
56 |
|
|
to choose the block is actually one byte before the return address
|
57 |
|
|
--- hopefully pointing us at the call instruction, or its delay
|
58 |
|
|
slot instruction. */
|
59 |
|
|
|
60 |
|
|
struct block *
|
61 |
|
|
get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
|
62 |
|
|
{
|
63 |
|
|
const CORE_ADDR pc = get_frame_address_in_block (frame);
|
64 |
|
|
|
65 |
|
|
if (addr_in_block)
|
66 |
|
|
*addr_in_block = pc;
|
67 |
|
|
|
68 |
|
|
return block_for_pc (pc);
|
69 |
|
|
}
|
70 |
|
|
|
71 |
|
|
CORE_ADDR
|
72 |
|
|
get_pc_function_start (CORE_ADDR pc)
|
73 |
|
|
{
|
74 |
|
|
struct block *bl;
|
75 |
|
|
struct minimal_symbol *msymbol;
|
76 |
|
|
|
77 |
|
|
bl = block_for_pc (pc);
|
78 |
|
|
if (bl)
|
79 |
|
|
{
|
80 |
|
|
struct symbol *symbol = block_function (bl);
|
81 |
|
|
|
82 |
|
|
if (symbol)
|
83 |
|
|
{
|
84 |
|
|
bl = SYMBOL_BLOCK_VALUE (symbol);
|
85 |
|
|
return BLOCK_START (bl);
|
86 |
|
|
}
|
87 |
|
|
}
|
88 |
|
|
|
89 |
|
|
msymbol = lookup_minimal_symbol_by_pc (pc);
|
90 |
|
|
if (msymbol)
|
91 |
|
|
{
|
92 |
|
|
CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol);
|
93 |
|
|
|
94 |
|
|
if (find_pc_section (fstart))
|
95 |
|
|
return fstart;
|
96 |
|
|
}
|
97 |
|
|
|
98 |
|
|
return 0;
|
99 |
|
|
}
|
100 |
|
|
|
101 |
|
|
/* Return the symbol for the function executing in frame FRAME. */
|
102 |
|
|
|
103 |
|
|
struct symbol *
|
104 |
|
|
get_frame_function (struct frame_info *frame)
|
105 |
|
|
{
|
106 |
|
|
struct block *bl = get_frame_block (frame, 0);
|
107 |
|
|
if (bl == 0)
|
108 |
|
|
return 0;
|
109 |
|
|
return block_function (bl);
|
110 |
|
|
}
|
111 |
|
|
|
112 |
|
|
|
113 |
|
|
/* Return the function containing pc value PC in section SECTION.
|
114 |
|
|
Returns 0 if function is not known. */
|
115 |
|
|
|
116 |
|
|
struct symbol *
|
117 |
|
|
find_pc_sect_function (CORE_ADDR pc, struct bfd_section *section)
|
118 |
|
|
{
|
119 |
|
|
struct block *b = block_for_pc_sect (pc, section);
|
120 |
|
|
if (b == 0)
|
121 |
|
|
return 0;
|
122 |
|
|
return block_function (b);
|
123 |
|
|
}
|
124 |
|
|
|
125 |
|
|
/* Return the function containing pc value PC.
|
126 |
|
|
Returns 0 if function is not known. Backward compatibility, no section */
|
127 |
|
|
|
128 |
|
|
struct symbol *
|
129 |
|
|
find_pc_function (CORE_ADDR pc)
|
130 |
|
|
{
|
131 |
|
|
return find_pc_sect_function (pc, find_pc_mapped_section (pc));
|
132 |
|
|
}
|
133 |
|
|
|
134 |
|
|
/* These variables are used to cache the most recent result
|
135 |
|
|
* of find_pc_partial_function. */
|
136 |
|
|
|
137 |
|
|
static CORE_ADDR cache_pc_function_low = 0;
|
138 |
|
|
static CORE_ADDR cache_pc_function_high = 0;
|
139 |
|
|
static char *cache_pc_function_name = 0;
|
140 |
|
|
static struct bfd_section *cache_pc_function_section = NULL;
|
141 |
|
|
|
142 |
|
|
/* Clear cache, e.g. when symbol table is discarded. */
|
143 |
|
|
|
144 |
|
|
void
|
145 |
|
|
clear_pc_function_cache (void)
|
146 |
|
|
{
|
147 |
|
|
cache_pc_function_low = 0;
|
148 |
|
|
cache_pc_function_high = 0;
|
149 |
|
|
cache_pc_function_name = (char *) 0;
|
150 |
|
|
cache_pc_function_section = NULL;
|
151 |
|
|
}
|
152 |
|
|
|
153 |
|
|
/* Finds the "function" (text symbol) that is smaller than PC but
|
154 |
|
|
greatest of all of the potential text symbols in SECTION. Sets
|
155 |
|
|
*NAME and/or *ADDRESS conditionally if that pointer is non-null.
|
156 |
|
|
If ENDADDR is non-null, then set *ENDADDR to be the end of the
|
157 |
|
|
function (exclusive), but passing ENDADDR as non-null means that
|
158 |
|
|
the function might cause symbols to be read. This function either
|
159 |
|
|
succeeds or fails (not halfway succeeds). If it succeeds, it sets
|
160 |
|
|
*NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
|
161 |
|
|
If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
|
162 |
|
|
returns 0. */
|
163 |
|
|
|
164 |
|
|
/* Backward compatibility, no section argument. */
|
165 |
|
|
|
166 |
|
|
int
|
167 |
|
|
find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
|
168 |
|
|
CORE_ADDR *endaddr)
|
169 |
|
|
{
|
170 |
|
|
struct bfd_section *section;
|
171 |
|
|
struct partial_symtab *pst;
|
172 |
|
|
struct symbol *f;
|
173 |
|
|
struct minimal_symbol *msymbol;
|
174 |
|
|
struct partial_symbol *psb;
|
175 |
|
|
struct obj_section *osect;
|
176 |
|
|
int i;
|
177 |
|
|
CORE_ADDR mapped_pc;
|
178 |
|
|
|
179 |
|
|
/* To ensure that the symbol returned belongs to the correct setion
|
180 |
|
|
(and that the last [random] symbol from the previous section
|
181 |
|
|
isn't returned) try to find the section containing PC. First try
|
182 |
|
|
the overlay code (which by default returns NULL); and second try
|
183 |
|
|
the normal section code (which almost always succeeds). */
|
184 |
|
|
section = find_pc_overlay (pc);
|
185 |
|
|
if (section == NULL)
|
186 |
|
|
{
|
187 |
|
|
struct obj_section *obj_section = find_pc_section (pc);
|
188 |
|
|
if (obj_section == NULL)
|
189 |
|
|
section = NULL;
|
190 |
|
|
else
|
191 |
|
|
section = obj_section->the_bfd_section;
|
192 |
|
|
}
|
193 |
|
|
|
194 |
|
|
mapped_pc = overlay_mapped_address (pc, section);
|
195 |
|
|
|
196 |
|
|
if (mapped_pc >= cache_pc_function_low
|
197 |
|
|
&& mapped_pc < cache_pc_function_high
|
198 |
|
|
&& section == cache_pc_function_section)
|
199 |
|
|
goto return_cached_value;
|
200 |
|
|
|
201 |
|
|
msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
|
202 |
|
|
pst = find_pc_sect_psymtab (mapped_pc, section);
|
203 |
|
|
if (pst)
|
204 |
|
|
{
|
205 |
|
|
/* Need to read the symbols to get a good value for the end address. */
|
206 |
|
|
if (endaddr != NULL && !pst->readin)
|
207 |
|
|
{
|
208 |
|
|
/* Need to get the terminal in case symbol-reading produces
|
209 |
|
|
output. */
|
210 |
|
|
target_terminal_ours_for_output ();
|
211 |
|
|
PSYMTAB_TO_SYMTAB (pst);
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
if (pst->readin)
|
215 |
|
|
{
|
216 |
|
|
/* Checking whether the msymbol has a larger value is for the
|
217 |
|
|
"pathological" case mentioned in print_frame_info. */
|
218 |
|
|
f = find_pc_sect_function (mapped_pc, section);
|
219 |
|
|
if (f != NULL
|
220 |
|
|
&& (msymbol == NULL
|
221 |
|
|
|| (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
|
222 |
|
|
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
223 |
|
|
{
|
224 |
|
|
cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
|
225 |
|
|
cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
|
226 |
|
|
cache_pc_function_name = DEPRECATED_SYMBOL_NAME (f);
|
227 |
|
|
cache_pc_function_section = section;
|
228 |
|
|
goto return_cached_value;
|
229 |
|
|
}
|
230 |
|
|
}
|
231 |
|
|
else
|
232 |
|
|
{
|
233 |
|
|
/* Now that static symbols go in the minimal symbol table, perhaps
|
234 |
|
|
we could just ignore the partial symbols. But at least for now
|
235 |
|
|
we use the partial or minimal symbol, whichever is larger. */
|
236 |
|
|
psb = find_pc_sect_psymbol (pst, mapped_pc, section);
|
237 |
|
|
|
238 |
|
|
if (psb
|
239 |
|
|
&& (msymbol == NULL ||
|
240 |
|
|
(SYMBOL_VALUE_ADDRESS (psb)
|
241 |
|
|
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
242 |
|
|
{
|
243 |
|
|
/* This case isn't being cached currently. */
|
244 |
|
|
if (address)
|
245 |
|
|
*address = SYMBOL_VALUE_ADDRESS (psb);
|
246 |
|
|
if (name)
|
247 |
|
|
*name = DEPRECATED_SYMBOL_NAME (psb);
|
248 |
|
|
/* endaddr non-NULL can't happen here. */
|
249 |
|
|
return 1;
|
250 |
|
|
}
|
251 |
|
|
}
|
252 |
|
|
}
|
253 |
|
|
|
254 |
|
|
/* Not in the normal symbol tables, see if the pc is in a known section.
|
255 |
|
|
If it's not, then give up. This ensures that anything beyond the end
|
256 |
|
|
of the text seg doesn't appear to be part of the last function in the
|
257 |
|
|
text segment. */
|
258 |
|
|
|
259 |
|
|
osect = find_pc_sect_section (mapped_pc, section);
|
260 |
|
|
|
261 |
|
|
if (!osect)
|
262 |
|
|
msymbol = NULL;
|
263 |
|
|
|
264 |
|
|
/* Must be in the minimal symbol table. */
|
265 |
|
|
if (msymbol == NULL)
|
266 |
|
|
{
|
267 |
|
|
/* No available symbol. */
|
268 |
|
|
if (name != NULL)
|
269 |
|
|
*name = 0;
|
270 |
|
|
if (address != NULL)
|
271 |
|
|
*address = 0;
|
272 |
|
|
if (endaddr != NULL)
|
273 |
|
|
*endaddr = 0;
|
274 |
|
|
return 0;
|
275 |
|
|
}
|
276 |
|
|
|
277 |
|
|
cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
|
278 |
|
|
cache_pc_function_name = DEPRECATED_SYMBOL_NAME (msymbol);
|
279 |
|
|
cache_pc_function_section = section;
|
280 |
|
|
|
281 |
|
|
/* If the minimal symbol has a size, use it for the cache.
|
282 |
|
|
Otherwise use the lesser of the next minimal symbol in the same
|
283 |
|
|
section, or the end of the section, as the end of the
|
284 |
|
|
function. */
|
285 |
|
|
|
286 |
|
|
if (MSYMBOL_SIZE (msymbol) != 0)
|
287 |
|
|
cache_pc_function_high = cache_pc_function_low + MSYMBOL_SIZE (msymbol);
|
288 |
|
|
else
|
289 |
|
|
{
|
290 |
|
|
/* Step over other symbols at this same address, and symbols in
|
291 |
|
|
other sections, to find the next symbol in this section with
|
292 |
|
|
a different address. */
|
293 |
|
|
|
294 |
|
|
for (i = 1; DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL; i++)
|
295 |
|
|
{
|
296 |
|
|
if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
|
297 |
|
|
&& SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
|
298 |
|
|
break;
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
if (DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL
|
302 |
|
|
&& SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
|
303 |
|
|
cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
|
304 |
|
|
else
|
305 |
|
|
/* We got the start address from the last msymbol in the objfile.
|
306 |
|
|
So the end address is the end of the section. */
|
307 |
|
|
cache_pc_function_high = osect->endaddr;
|
308 |
|
|
}
|
309 |
|
|
|
310 |
|
|
return_cached_value:
|
311 |
|
|
|
312 |
|
|
if (address)
|
313 |
|
|
{
|
314 |
|
|
if (pc_in_unmapped_range (pc, section))
|
315 |
|
|
*address = overlay_unmapped_address (cache_pc_function_low, section);
|
316 |
|
|
else
|
317 |
|
|
*address = cache_pc_function_low;
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
if (name)
|
321 |
|
|
*name = cache_pc_function_name;
|
322 |
|
|
|
323 |
|
|
if (endaddr)
|
324 |
|
|
{
|
325 |
|
|
if (pc_in_unmapped_range (pc, section))
|
326 |
|
|
{
|
327 |
|
|
/* Because the high address is actually beyond the end of
|
328 |
|
|
the function (and therefore possibly beyond the end of
|
329 |
|
|
the overlay), we must actually convert (high - 1) and
|
330 |
|
|
then add one to that. */
|
331 |
|
|
|
332 |
|
|
*endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
|
333 |
|
|
section);
|
334 |
|
|
}
|
335 |
|
|
else
|
336 |
|
|
*endaddr = cache_pc_function_high;
|
337 |
|
|
}
|
338 |
|
|
|
339 |
|
|
return 1;
|
340 |
|
|
}
|
341 |
|
|
|
342 |
|
|
/* Return the innermost stack frame executing inside of BLOCK,
|
343 |
|
|
or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
|
344 |
|
|
|
345 |
|
|
struct frame_info *
|
346 |
|
|
block_innermost_frame (struct block *block)
|
347 |
|
|
{
|
348 |
|
|
struct frame_info *frame;
|
349 |
|
|
CORE_ADDR start;
|
350 |
|
|
CORE_ADDR end;
|
351 |
|
|
CORE_ADDR calling_pc;
|
352 |
|
|
|
353 |
|
|
if (block == NULL)
|
354 |
|
|
return NULL;
|
355 |
|
|
|
356 |
|
|
start = BLOCK_START (block);
|
357 |
|
|
end = BLOCK_END (block);
|
358 |
|
|
|
359 |
|
|
frame = get_current_frame ();
|
360 |
|
|
while (frame != NULL)
|
361 |
|
|
{
|
362 |
|
|
calling_pc = get_frame_address_in_block (frame);
|
363 |
|
|
if (calling_pc >= start && calling_pc < end)
|
364 |
|
|
return frame;
|
365 |
|
|
|
366 |
|
|
frame = get_prev_frame (frame);
|
367 |
|
|
}
|
368 |
|
|
|
369 |
|
|
return NULL;
|
370 |
|
|
}
|