| 1 |
24 |
jeremybenn |
/* Floating point routines for GDB, the GNU debugger.
|
| 2 |
|
|
|
| 3 |
|
|
Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
| 4 |
|
|
1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007, 2008
|
| 5 |
|
|
Free Software Foundation, Inc.
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GDB.
|
| 8 |
|
|
|
| 9 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 10 |
|
|
it under the terms of the GNU General Public License as published by
|
| 11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
| 12 |
|
|
(at your option) any later version.
|
| 13 |
|
|
|
| 14 |
|
|
This program is distributed in the hope that it will be useful,
|
| 15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 17 |
|
|
GNU General Public License for more details.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License
|
| 20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
/* Support for converting target fp numbers into host DOUBLEST format. */
|
| 23 |
|
|
|
| 24 |
|
|
/* XXX - This code should really be in libiberty/floatformat.c,
|
| 25 |
|
|
however configuration issues with libiberty made this very
|
| 26 |
|
|
difficult to do in the available time. */
|
| 27 |
|
|
|
| 28 |
|
|
#include "defs.h"
|
| 29 |
|
|
#include "doublest.h"
|
| 30 |
|
|
#include "floatformat.h"
|
| 31 |
|
|
#include "gdb_assert.h"
|
| 32 |
|
|
#include "gdb_string.h"
|
| 33 |
|
|
#include "gdbtypes.h"
|
| 34 |
|
|
#include <math.h> /* ldexp */
|
| 35 |
|
|
|
| 36 |
|
|
/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
|
| 37 |
|
|
going to bother with trying to muck around with whether it is defined in
|
| 38 |
|
|
a system header, what we do if not, etc. */
|
| 39 |
|
|
#define FLOATFORMAT_CHAR_BIT 8
|
| 40 |
|
|
|
| 41 |
|
|
/* The number of bytes that the largest floating-point type that we
|
| 42 |
|
|
can convert to doublest will need. */
|
| 43 |
|
|
#define FLOATFORMAT_LARGEST_BYTES 16
|
| 44 |
|
|
|
| 45 |
|
|
/* Extract a field which starts at START and is LEN bytes long. DATA and
|
| 46 |
|
|
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
| 47 |
|
|
static unsigned long
|
| 48 |
|
|
get_field (const bfd_byte *data, enum floatformat_byteorders order,
|
| 49 |
|
|
unsigned int total_len, unsigned int start, unsigned int len)
|
| 50 |
|
|
{
|
| 51 |
|
|
unsigned long result;
|
| 52 |
|
|
unsigned int cur_byte;
|
| 53 |
|
|
int cur_bitshift;
|
| 54 |
|
|
|
| 55 |
|
|
/* Caller must byte-swap words before calling this routine. */
|
| 56 |
|
|
gdb_assert (order == floatformat_little || order == floatformat_big);
|
| 57 |
|
|
|
| 58 |
|
|
/* Start at the least significant part of the field. */
|
| 59 |
|
|
if (order == floatformat_little)
|
| 60 |
|
|
{
|
| 61 |
|
|
/* We start counting from the other end (i.e, from the high bytes
|
| 62 |
|
|
rather than the low bytes). As such, we need to be concerned
|
| 63 |
|
|
with what happens if bit 0 doesn't start on a byte boundary.
|
| 64 |
|
|
I.e, we need to properly handle the case where total_len is
|
| 65 |
|
|
not evenly divisible by 8. So we compute ``excess'' which
|
| 66 |
|
|
represents the number of bits from the end of our starting
|
| 67 |
|
|
byte needed to get to bit 0. */
|
| 68 |
|
|
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
|
| 69 |
|
|
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
|
| 70 |
|
|
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
|
| 71 |
|
|
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
|
| 72 |
|
|
- FLOATFORMAT_CHAR_BIT;
|
| 73 |
|
|
}
|
| 74 |
|
|
else
|
| 75 |
|
|
{
|
| 76 |
|
|
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
| 77 |
|
|
cur_bitshift =
|
| 78 |
|
|
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
| 79 |
|
|
}
|
| 80 |
|
|
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
|
| 81 |
|
|
result = *(data + cur_byte) >> (-cur_bitshift);
|
| 82 |
|
|
else
|
| 83 |
|
|
result = 0;
|
| 84 |
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
| 85 |
|
|
if (order == floatformat_little)
|
| 86 |
|
|
++cur_byte;
|
| 87 |
|
|
else
|
| 88 |
|
|
--cur_byte;
|
| 89 |
|
|
|
| 90 |
|
|
/* Move towards the most significant part of the field. */
|
| 91 |
|
|
while (cur_bitshift < len)
|
| 92 |
|
|
{
|
| 93 |
|
|
result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
|
| 94 |
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
| 95 |
|
|
switch (order)
|
| 96 |
|
|
{
|
| 97 |
|
|
case floatformat_little:
|
| 98 |
|
|
++cur_byte;
|
| 99 |
|
|
break;
|
| 100 |
|
|
case floatformat_big:
|
| 101 |
|
|
--cur_byte;
|
| 102 |
|
|
break;
|
| 103 |
|
|
}
|
| 104 |
|
|
}
|
| 105 |
|
|
if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
|
| 106 |
|
|
/* Mask out bits which are not part of the field */
|
| 107 |
|
|
result &= ((1UL << len) - 1);
|
| 108 |
|
|
return result;
|
| 109 |
|
|
}
|
| 110 |
|
|
|
| 111 |
|
|
/* Normalize the byte order of FROM into TO. If no normalization is
|
| 112 |
|
|
needed then FMT->byteorder is returned and TO is not changed;
|
| 113 |
|
|
otherwise the format of the normalized form in TO is returned. */
|
| 114 |
|
|
|
| 115 |
|
|
static enum floatformat_byteorders
|
| 116 |
|
|
floatformat_normalize_byteorder (const struct floatformat *fmt,
|
| 117 |
|
|
const void *from, void *to)
|
| 118 |
|
|
{
|
| 119 |
|
|
const unsigned char *swapin;
|
| 120 |
|
|
unsigned char *swapout;
|
| 121 |
|
|
int words;
|
| 122 |
|
|
|
| 123 |
|
|
if (fmt->byteorder == floatformat_little
|
| 124 |
|
|
|| fmt->byteorder == floatformat_big)
|
| 125 |
|
|
return fmt->byteorder;
|
| 126 |
|
|
|
| 127 |
|
|
words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
|
| 128 |
|
|
words >>= 2;
|
| 129 |
|
|
|
| 130 |
|
|
swapout = (unsigned char *)to;
|
| 131 |
|
|
swapin = (const unsigned char *)from;
|
| 132 |
|
|
|
| 133 |
|
|
if (fmt->byteorder == floatformat_vax)
|
| 134 |
|
|
{
|
| 135 |
|
|
while (words-- > 0)
|
| 136 |
|
|
{
|
| 137 |
|
|
*swapout++ = swapin[1];
|
| 138 |
|
|
*swapout++ = swapin[0];
|
| 139 |
|
|
*swapout++ = swapin[3];
|
| 140 |
|
|
*swapout++ = swapin[2];
|
| 141 |
|
|
swapin += 4;
|
| 142 |
|
|
}
|
| 143 |
|
|
/* This may look weird, since VAX is little-endian, but it is
|
| 144 |
|
|
easier to translate to big-endian than to little-endian. */
|
| 145 |
|
|
return floatformat_big;
|
| 146 |
|
|
}
|
| 147 |
|
|
else
|
| 148 |
|
|
{
|
| 149 |
|
|
gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
|
| 150 |
|
|
|
| 151 |
|
|
while (words-- > 0)
|
| 152 |
|
|
{
|
| 153 |
|
|
*swapout++ = swapin[3];
|
| 154 |
|
|
*swapout++ = swapin[2];
|
| 155 |
|
|
*swapout++ = swapin[1];
|
| 156 |
|
|
*swapout++ = swapin[0];
|
| 157 |
|
|
swapin += 4;
|
| 158 |
|
|
}
|
| 159 |
|
|
return floatformat_big;
|
| 160 |
|
|
}
|
| 161 |
|
|
}
|
| 162 |
|
|
|
| 163 |
|
|
/* Convert from FMT to a DOUBLEST.
|
| 164 |
|
|
FROM is the address of the extended float.
|
| 165 |
|
|
Store the DOUBLEST in *TO. */
|
| 166 |
|
|
|
| 167 |
|
|
static void
|
| 168 |
|
|
convert_floatformat_to_doublest (const struct floatformat *fmt,
|
| 169 |
|
|
const void *from,
|
| 170 |
|
|
DOUBLEST *to)
|
| 171 |
|
|
{
|
| 172 |
|
|
unsigned char *ufrom = (unsigned char *) from;
|
| 173 |
|
|
DOUBLEST dto;
|
| 174 |
|
|
long exponent;
|
| 175 |
|
|
unsigned long mant;
|
| 176 |
|
|
unsigned int mant_bits, mant_off;
|
| 177 |
|
|
int mant_bits_left;
|
| 178 |
|
|
int special_exponent; /* It's a NaN, denorm or zero */
|
| 179 |
|
|
enum floatformat_byteorders order;
|
| 180 |
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
| 181 |
|
|
enum float_kind kind;
|
| 182 |
|
|
|
| 183 |
|
|
gdb_assert (fmt->totalsize
|
| 184 |
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
| 185 |
|
|
|
| 186 |
|
|
/* For non-numbers, reuse libiberty's logic to find the correct
|
| 187 |
|
|
format. We do not lose any precision in this case by passing
|
| 188 |
|
|
through a double. */
|
| 189 |
|
|
kind = floatformat_classify (fmt, from);
|
| 190 |
|
|
if (kind == float_infinite || kind == float_nan)
|
| 191 |
|
|
{
|
| 192 |
|
|
double dto;
|
| 193 |
|
|
floatformat_to_double (fmt, from, &dto);
|
| 194 |
|
|
*to = (DOUBLEST) dto;
|
| 195 |
|
|
return;
|
| 196 |
|
|
}
|
| 197 |
|
|
|
| 198 |
|
|
order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
|
| 199 |
|
|
|
| 200 |
|
|
if (order != fmt->byteorder)
|
| 201 |
|
|
ufrom = newfrom;
|
| 202 |
|
|
|
| 203 |
|
|
if (fmt->split_half)
|
| 204 |
|
|
{
|
| 205 |
|
|
DOUBLEST dtop, dbot;
|
| 206 |
|
|
floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
|
| 207 |
|
|
/* Preserve the sign of 0, which is the sign of the top
|
| 208 |
|
|
half. */
|
| 209 |
|
|
if (dtop == 0.0)
|
| 210 |
|
|
{
|
| 211 |
|
|
*to = dtop;
|
| 212 |
|
|
return;
|
| 213 |
|
|
}
|
| 214 |
|
|
floatformat_to_doublest (fmt->split_half,
|
| 215 |
|
|
ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
|
| 216 |
|
|
&dbot);
|
| 217 |
|
|
*to = dtop + dbot;
|
| 218 |
|
|
return;
|
| 219 |
|
|
}
|
| 220 |
|
|
|
| 221 |
|
|
exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
|
| 222 |
|
|
fmt->exp_len);
|
| 223 |
|
|
/* Note that if exponent indicates a NaN, we can't really do anything useful
|
| 224 |
|
|
(not knowing if the host has NaN's, or how to build one). So it will
|
| 225 |
|
|
end up as an infinity or something close; that is OK. */
|
| 226 |
|
|
|
| 227 |
|
|
mant_bits_left = fmt->man_len;
|
| 228 |
|
|
mant_off = fmt->man_start;
|
| 229 |
|
|
dto = 0.0;
|
| 230 |
|
|
|
| 231 |
|
|
special_exponent = exponent == 0 || exponent == fmt->exp_nan;
|
| 232 |
|
|
|
| 233 |
|
|
/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
|
| 234 |
|
|
we don't check for zero as the exponent doesn't matter. Note the cast
|
| 235 |
|
|
to int; exp_bias is unsigned, so it's important to make sure the
|
| 236 |
|
|
operation is done in signed arithmetic. */
|
| 237 |
|
|
if (!special_exponent)
|
| 238 |
|
|
exponent -= fmt->exp_bias;
|
| 239 |
|
|
else if (exponent == 0)
|
| 240 |
|
|
exponent = 1 - fmt->exp_bias;
|
| 241 |
|
|
|
| 242 |
|
|
/* Build the result algebraically. Might go infinite, underflow, etc;
|
| 243 |
|
|
who cares. */
|
| 244 |
|
|
|
| 245 |
|
|
/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
|
| 246 |
|
|
increment the exponent by one to account for the integer bit. */
|
| 247 |
|
|
|
| 248 |
|
|
if (!special_exponent)
|
| 249 |
|
|
{
|
| 250 |
|
|
if (fmt->intbit == floatformat_intbit_no)
|
| 251 |
|
|
dto = ldexp (1.0, exponent);
|
| 252 |
|
|
else
|
| 253 |
|
|
exponent++;
|
| 254 |
|
|
}
|
| 255 |
|
|
|
| 256 |
|
|
while (mant_bits_left > 0)
|
| 257 |
|
|
{
|
| 258 |
|
|
mant_bits = min (mant_bits_left, 32);
|
| 259 |
|
|
|
| 260 |
|
|
mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
|
| 261 |
|
|
|
| 262 |
|
|
dto += ldexp ((double) mant, exponent - mant_bits);
|
| 263 |
|
|
exponent -= mant_bits;
|
| 264 |
|
|
mant_off += mant_bits;
|
| 265 |
|
|
mant_bits_left -= mant_bits;
|
| 266 |
|
|
}
|
| 267 |
|
|
|
| 268 |
|
|
/* Negate it if negative. */
|
| 269 |
|
|
if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
|
| 270 |
|
|
dto = -dto;
|
| 271 |
|
|
*to = dto;
|
| 272 |
|
|
}
|
| 273 |
|
|
|
| 274 |
|
|
static void put_field (unsigned char *, enum floatformat_byteorders,
|
| 275 |
|
|
unsigned int,
|
| 276 |
|
|
unsigned int, unsigned int, unsigned long);
|
| 277 |
|
|
|
| 278 |
|
|
/* Set a field which starts at START and is LEN bytes long. DATA and
|
| 279 |
|
|
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
| 280 |
|
|
static void
|
| 281 |
|
|
put_field (unsigned char *data, enum floatformat_byteorders order,
|
| 282 |
|
|
unsigned int total_len, unsigned int start, unsigned int len,
|
| 283 |
|
|
unsigned long stuff_to_put)
|
| 284 |
|
|
{
|
| 285 |
|
|
unsigned int cur_byte;
|
| 286 |
|
|
int cur_bitshift;
|
| 287 |
|
|
|
| 288 |
|
|
/* Caller must byte-swap words before calling this routine. */
|
| 289 |
|
|
gdb_assert (order == floatformat_little || order == floatformat_big);
|
| 290 |
|
|
|
| 291 |
|
|
/* Start at the least significant part of the field. */
|
| 292 |
|
|
if (order == floatformat_little)
|
| 293 |
|
|
{
|
| 294 |
|
|
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
|
| 295 |
|
|
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
|
| 296 |
|
|
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
|
| 297 |
|
|
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
|
| 298 |
|
|
- FLOATFORMAT_CHAR_BIT;
|
| 299 |
|
|
}
|
| 300 |
|
|
else
|
| 301 |
|
|
{
|
| 302 |
|
|
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
| 303 |
|
|
cur_bitshift =
|
| 304 |
|
|
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
| 305 |
|
|
}
|
| 306 |
|
|
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
|
| 307 |
|
|
{
|
| 308 |
|
|
*(data + cur_byte) &=
|
| 309 |
|
|
~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
|
| 310 |
|
|
<< (-cur_bitshift));
|
| 311 |
|
|
*(data + cur_byte) |=
|
| 312 |
|
|
(stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
|
| 313 |
|
|
}
|
| 314 |
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
| 315 |
|
|
if (order == floatformat_little)
|
| 316 |
|
|
++cur_byte;
|
| 317 |
|
|
else
|
| 318 |
|
|
--cur_byte;
|
| 319 |
|
|
|
| 320 |
|
|
/* Move towards the most significant part of the field. */
|
| 321 |
|
|
while (cur_bitshift < len)
|
| 322 |
|
|
{
|
| 323 |
|
|
if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
|
| 324 |
|
|
{
|
| 325 |
|
|
/* This is the last byte. */
|
| 326 |
|
|
*(data + cur_byte) &=
|
| 327 |
|
|
~((1 << (len - cur_bitshift)) - 1);
|
| 328 |
|
|
*(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
|
| 329 |
|
|
}
|
| 330 |
|
|
else
|
| 331 |
|
|
*(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
|
| 332 |
|
|
& ((1 << FLOATFORMAT_CHAR_BIT) - 1));
|
| 333 |
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
| 334 |
|
|
if (order == floatformat_little)
|
| 335 |
|
|
++cur_byte;
|
| 336 |
|
|
else
|
| 337 |
|
|
--cur_byte;
|
| 338 |
|
|
}
|
| 339 |
|
|
}
|
| 340 |
|
|
|
| 341 |
|
|
#ifdef HAVE_LONG_DOUBLE
|
| 342 |
|
|
/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
|
| 343 |
|
|
The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
|
| 344 |
|
|
frexp, but operates on the long double data type. */
|
| 345 |
|
|
|
| 346 |
|
|
static long double ldfrexp (long double value, int *eptr);
|
| 347 |
|
|
|
| 348 |
|
|
static long double
|
| 349 |
|
|
ldfrexp (long double value, int *eptr)
|
| 350 |
|
|
{
|
| 351 |
|
|
long double tmp;
|
| 352 |
|
|
int exp;
|
| 353 |
|
|
|
| 354 |
|
|
/* Unfortunately, there are no portable functions for extracting the exponent
|
| 355 |
|
|
of a long double, so we have to do it iteratively by multiplying or dividing
|
| 356 |
|
|
by two until the fraction is between 0.5 and 1.0. */
|
| 357 |
|
|
|
| 358 |
|
|
if (value < 0.0l)
|
| 359 |
|
|
value = -value;
|
| 360 |
|
|
|
| 361 |
|
|
tmp = 1.0l;
|
| 362 |
|
|
exp = 0;
|
| 363 |
|
|
|
| 364 |
|
|
if (value >= tmp) /* Value >= 1.0 */
|
| 365 |
|
|
while (value >= tmp)
|
| 366 |
|
|
{
|
| 367 |
|
|
tmp *= 2.0l;
|
| 368 |
|
|
exp++;
|
| 369 |
|
|
}
|
| 370 |
|
|
else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
|
| 371 |
|
|
{
|
| 372 |
|
|
while (value < tmp)
|
| 373 |
|
|
{
|
| 374 |
|
|
tmp /= 2.0l;
|
| 375 |
|
|
exp--;
|
| 376 |
|
|
}
|
| 377 |
|
|
tmp *= 2.0l;
|
| 378 |
|
|
exp++;
|
| 379 |
|
|
}
|
| 380 |
|
|
|
| 381 |
|
|
*eptr = exp;
|
| 382 |
|
|
return value / tmp;
|
| 383 |
|
|
}
|
| 384 |
|
|
#endif /* HAVE_LONG_DOUBLE */
|
| 385 |
|
|
|
| 386 |
|
|
|
| 387 |
|
|
/* The converse: convert the DOUBLEST *FROM to an extended float and
|
| 388 |
|
|
store where TO points. Neither FROM nor TO have any alignment
|
| 389 |
|
|
restrictions. */
|
| 390 |
|
|
|
| 391 |
|
|
static void
|
| 392 |
|
|
convert_doublest_to_floatformat (CONST struct floatformat *fmt,
|
| 393 |
|
|
const DOUBLEST *from, void *to)
|
| 394 |
|
|
{
|
| 395 |
|
|
DOUBLEST dfrom;
|
| 396 |
|
|
int exponent;
|
| 397 |
|
|
DOUBLEST mant;
|
| 398 |
|
|
unsigned int mant_bits, mant_off;
|
| 399 |
|
|
int mant_bits_left;
|
| 400 |
|
|
unsigned char *uto = (unsigned char *) to;
|
| 401 |
|
|
enum floatformat_byteorders order = fmt->byteorder;
|
| 402 |
|
|
unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
|
| 403 |
|
|
|
| 404 |
|
|
if (order != floatformat_little)
|
| 405 |
|
|
order = floatformat_big;
|
| 406 |
|
|
|
| 407 |
|
|
if (order != fmt->byteorder)
|
| 408 |
|
|
uto = newto;
|
| 409 |
|
|
|
| 410 |
|
|
memcpy (&dfrom, from, sizeof (dfrom));
|
| 411 |
|
|
memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
|
| 412 |
|
|
/ FLOATFORMAT_CHAR_BIT);
|
| 413 |
|
|
|
| 414 |
|
|
if (fmt->split_half)
|
| 415 |
|
|
{
|
| 416 |
|
|
/* Use static volatile to ensure that any excess precision is
|
| 417 |
|
|
removed via storing in memory, and so the top half really is
|
| 418 |
|
|
the result of converting to double. */
|
| 419 |
|
|
static volatile double dtop, dbot;
|
| 420 |
|
|
DOUBLEST dtopnv, dbotnv;
|
| 421 |
|
|
dtop = (double) dfrom;
|
| 422 |
|
|
/* If the rounded top half is Inf, the bottom must be 0 not NaN
|
| 423 |
|
|
or Inf. */
|
| 424 |
|
|
if (dtop + dtop == dtop && dtop != 0.0)
|
| 425 |
|
|
dbot = 0.0;
|
| 426 |
|
|
else
|
| 427 |
|
|
dbot = (double) (dfrom - (DOUBLEST) dtop);
|
| 428 |
|
|
dtopnv = dtop;
|
| 429 |
|
|
dbotnv = dbot;
|
| 430 |
|
|
floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
|
| 431 |
|
|
floatformat_from_doublest (fmt->split_half, &dbotnv,
|
| 432 |
|
|
(uto
|
| 433 |
|
|
+ fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
|
| 434 |
|
|
return;
|
| 435 |
|
|
}
|
| 436 |
|
|
|
| 437 |
|
|
if (dfrom == 0)
|
| 438 |
|
|
return; /* Result is zero */
|
| 439 |
|
|
if (dfrom != dfrom) /* Result is NaN */
|
| 440 |
|
|
{
|
| 441 |
|
|
/* From is NaN */
|
| 442 |
|
|
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
| 443 |
|
|
fmt->exp_len, fmt->exp_nan);
|
| 444 |
|
|
/* Be sure it's not infinity, but NaN value is irrel */
|
| 445 |
|
|
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
| 446 |
|
|
32, 1);
|
| 447 |
|
|
goto finalize_byteorder;
|
| 448 |
|
|
}
|
| 449 |
|
|
|
| 450 |
|
|
/* If negative, set the sign bit. */
|
| 451 |
|
|
if (dfrom < 0)
|
| 452 |
|
|
{
|
| 453 |
|
|
put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
|
| 454 |
|
|
dfrom = -dfrom;
|
| 455 |
|
|
}
|
| 456 |
|
|
|
| 457 |
|
|
if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
|
| 458 |
|
|
{
|
| 459 |
|
|
/* Infinity exponent is same as NaN's. */
|
| 460 |
|
|
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
| 461 |
|
|
fmt->exp_len, fmt->exp_nan);
|
| 462 |
|
|
/* Infinity mantissa is all zeroes. */
|
| 463 |
|
|
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
| 464 |
|
|
fmt->man_len, 0);
|
| 465 |
|
|
goto finalize_byteorder;
|
| 466 |
|
|
}
|
| 467 |
|
|
|
| 468 |
|
|
#ifdef HAVE_LONG_DOUBLE
|
| 469 |
|
|
mant = ldfrexp (dfrom, &exponent);
|
| 470 |
|
|
#else
|
| 471 |
|
|
mant = frexp (dfrom, &exponent);
|
| 472 |
|
|
#endif
|
| 473 |
|
|
|
| 474 |
|
|
put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
|
| 475 |
|
|
exponent + fmt->exp_bias - 1);
|
| 476 |
|
|
|
| 477 |
|
|
mant_bits_left = fmt->man_len;
|
| 478 |
|
|
mant_off = fmt->man_start;
|
| 479 |
|
|
while (mant_bits_left > 0)
|
| 480 |
|
|
{
|
| 481 |
|
|
unsigned long mant_long;
|
| 482 |
|
|
mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
|
| 483 |
|
|
|
| 484 |
|
|
mant *= 4294967296.0;
|
| 485 |
|
|
mant_long = ((unsigned long) mant) & 0xffffffffL;
|
| 486 |
|
|
mant -= mant_long;
|
| 487 |
|
|
|
| 488 |
|
|
/* If the integer bit is implicit, then we need to discard it.
|
| 489 |
|
|
If we are discarding a zero, we should be (but are not) creating
|
| 490 |
|
|
a denormalized number which means adjusting the exponent
|
| 491 |
|
|
(I think). */
|
| 492 |
|
|
if (mant_bits_left == fmt->man_len
|
| 493 |
|
|
&& fmt->intbit == floatformat_intbit_no)
|
| 494 |
|
|
{
|
| 495 |
|
|
mant_long <<= 1;
|
| 496 |
|
|
mant_long &= 0xffffffffL;
|
| 497 |
|
|
/* If we are processing the top 32 mantissa bits of a doublest
|
| 498 |
|
|
so as to convert to a float value with implied integer bit,
|
| 499 |
|
|
we will only be putting 31 of those 32 bits into the
|
| 500 |
|
|
final value due to the discarding of the top bit. In the
|
| 501 |
|
|
case of a small float value where the number of mantissa
|
| 502 |
|
|
bits is less than 32, discarding the top bit does not alter
|
| 503 |
|
|
the number of bits we will be adding to the result. */
|
| 504 |
|
|
if (mant_bits == 32)
|
| 505 |
|
|
mant_bits -= 1;
|
| 506 |
|
|
}
|
| 507 |
|
|
|
| 508 |
|
|
if (mant_bits < 32)
|
| 509 |
|
|
{
|
| 510 |
|
|
/* The bits we want are in the most significant MANT_BITS bits of
|
| 511 |
|
|
mant_long. Move them to the least significant. */
|
| 512 |
|
|
mant_long >>= 32 - mant_bits;
|
| 513 |
|
|
}
|
| 514 |
|
|
|
| 515 |
|
|
put_field (uto, order, fmt->totalsize,
|
| 516 |
|
|
mant_off, mant_bits, mant_long);
|
| 517 |
|
|
mant_off += mant_bits;
|
| 518 |
|
|
mant_bits_left -= mant_bits;
|
| 519 |
|
|
}
|
| 520 |
|
|
|
| 521 |
|
|
finalize_byteorder:
|
| 522 |
|
|
/* Do we need to byte-swap the words in the result? */
|
| 523 |
|
|
if (order != fmt->byteorder)
|
| 524 |
|
|
floatformat_normalize_byteorder (fmt, newto, to);
|
| 525 |
|
|
}
|
| 526 |
|
|
|
| 527 |
|
|
/* Check if VAL (which is assumed to be a floating point number whose
|
| 528 |
|
|
format is described by FMT) is negative. */
|
| 529 |
|
|
|
| 530 |
|
|
int
|
| 531 |
|
|
floatformat_is_negative (const struct floatformat *fmt,
|
| 532 |
|
|
const bfd_byte *uval)
|
| 533 |
|
|
{
|
| 534 |
|
|
enum floatformat_byteorders order;
|
| 535 |
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
| 536 |
|
|
|
| 537 |
|
|
gdb_assert (fmt != NULL);
|
| 538 |
|
|
gdb_assert (fmt->totalsize
|
| 539 |
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
| 540 |
|
|
|
| 541 |
|
|
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
| 542 |
|
|
|
| 543 |
|
|
if (order != fmt->byteorder)
|
| 544 |
|
|
uval = newfrom;
|
| 545 |
|
|
|
| 546 |
|
|
return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
|
| 547 |
|
|
}
|
| 548 |
|
|
|
| 549 |
|
|
/* Check if VAL is "not a number" (NaN) for FMT. */
|
| 550 |
|
|
|
| 551 |
|
|
enum float_kind
|
| 552 |
|
|
floatformat_classify (const struct floatformat *fmt,
|
| 553 |
|
|
const bfd_byte *uval)
|
| 554 |
|
|
{
|
| 555 |
|
|
long exponent;
|
| 556 |
|
|
unsigned long mant;
|
| 557 |
|
|
unsigned int mant_bits, mant_off;
|
| 558 |
|
|
int mant_bits_left;
|
| 559 |
|
|
enum floatformat_byteorders order;
|
| 560 |
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
| 561 |
|
|
int mant_zero;
|
| 562 |
|
|
|
| 563 |
|
|
gdb_assert (fmt != NULL);
|
| 564 |
|
|
gdb_assert (fmt->totalsize
|
| 565 |
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
| 566 |
|
|
|
| 567 |
|
|
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
| 568 |
|
|
|
| 569 |
|
|
if (order != fmt->byteorder)
|
| 570 |
|
|
uval = newfrom;
|
| 571 |
|
|
|
| 572 |
|
|
exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
|
| 573 |
|
|
fmt->exp_len);
|
| 574 |
|
|
|
| 575 |
|
|
mant_bits_left = fmt->man_len;
|
| 576 |
|
|
mant_off = fmt->man_start;
|
| 577 |
|
|
|
| 578 |
|
|
mant_zero = 1;
|
| 579 |
|
|
while (mant_bits_left > 0)
|
| 580 |
|
|
{
|
| 581 |
|
|
mant_bits = min (mant_bits_left, 32);
|
| 582 |
|
|
|
| 583 |
|
|
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
|
| 584 |
|
|
|
| 585 |
|
|
/* If there is an explicit integer bit, mask it off. */
|
| 586 |
|
|
if (mant_off == fmt->man_start
|
| 587 |
|
|
&& fmt->intbit == floatformat_intbit_yes)
|
| 588 |
|
|
mant &= ~(1 << (mant_bits - 1));
|
| 589 |
|
|
|
| 590 |
|
|
if (mant)
|
| 591 |
|
|
{
|
| 592 |
|
|
mant_zero = 0;
|
| 593 |
|
|
break;
|
| 594 |
|
|
}
|
| 595 |
|
|
|
| 596 |
|
|
mant_off += mant_bits;
|
| 597 |
|
|
mant_bits_left -= mant_bits;
|
| 598 |
|
|
}
|
| 599 |
|
|
|
| 600 |
|
|
/* If exp_nan is not set, assume that inf, NaN, and subnormals are not
|
| 601 |
|
|
supported. */
|
| 602 |
|
|
if (! fmt->exp_nan)
|
| 603 |
|
|
{
|
| 604 |
|
|
if (mant_zero)
|
| 605 |
|
|
return float_zero;
|
| 606 |
|
|
else
|
| 607 |
|
|
return float_normal;
|
| 608 |
|
|
}
|
| 609 |
|
|
|
| 610 |
|
|
if (exponent == 0 && !mant_zero)
|
| 611 |
|
|
return float_subnormal;
|
| 612 |
|
|
|
| 613 |
|
|
if (exponent == fmt->exp_nan)
|
| 614 |
|
|
{
|
| 615 |
|
|
if (mant_zero)
|
| 616 |
|
|
return float_infinite;
|
| 617 |
|
|
else
|
| 618 |
|
|
return float_nan;
|
| 619 |
|
|
}
|
| 620 |
|
|
|
| 621 |
|
|
if (mant_zero)
|
| 622 |
|
|
return float_zero;
|
| 623 |
|
|
|
| 624 |
|
|
return float_normal;
|
| 625 |
|
|
}
|
| 626 |
|
|
|
| 627 |
|
|
/* Convert the mantissa of VAL (which is assumed to be a floating
|
| 628 |
|
|
point number whose format is described by FMT) into a hexadecimal
|
| 629 |
|
|
and store it in a static string. Return a pointer to that string. */
|
| 630 |
|
|
|
| 631 |
|
|
const char *
|
| 632 |
|
|
floatformat_mantissa (const struct floatformat *fmt,
|
| 633 |
|
|
const bfd_byte *val)
|
| 634 |
|
|
{
|
| 635 |
|
|
unsigned char *uval = (unsigned char *) val;
|
| 636 |
|
|
unsigned long mant;
|
| 637 |
|
|
unsigned int mant_bits, mant_off;
|
| 638 |
|
|
int mant_bits_left;
|
| 639 |
|
|
static char res[50];
|
| 640 |
|
|
char buf[9];
|
| 641 |
|
|
int len;
|
| 642 |
|
|
enum floatformat_byteorders order;
|
| 643 |
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
| 644 |
|
|
|
| 645 |
|
|
gdb_assert (fmt != NULL);
|
| 646 |
|
|
gdb_assert (fmt->totalsize
|
| 647 |
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
| 648 |
|
|
|
| 649 |
|
|
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
| 650 |
|
|
|
| 651 |
|
|
if (order != fmt->byteorder)
|
| 652 |
|
|
uval = newfrom;
|
| 653 |
|
|
|
| 654 |
|
|
if (! fmt->exp_nan)
|
| 655 |
|
|
return 0;
|
| 656 |
|
|
|
| 657 |
|
|
/* Make sure we have enough room to store the mantissa. */
|
| 658 |
|
|
gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
|
| 659 |
|
|
|
| 660 |
|
|
mant_off = fmt->man_start;
|
| 661 |
|
|
mant_bits_left = fmt->man_len;
|
| 662 |
|
|
mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
|
| 663 |
|
|
|
| 664 |
|
|
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
|
| 665 |
|
|
|
| 666 |
|
|
len = xsnprintf (res, sizeof res, "%lx", mant);
|
| 667 |
|
|
|
| 668 |
|
|
mant_off += mant_bits;
|
| 669 |
|
|
mant_bits_left -= mant_bits;
|
| 670 |
|
|
|
| 671 |
|
|
while (mant_bits_left > 0)
|
| 672 |
|
|
{
|
| 673 |
|
|
mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
|
| 674 |
|
|
|
| 675 |
|
|
xsnprintf (buf, sizeof buf, "%08lx", mant);
|
| 676 |
|
|
gdb_assert (len + strlen (buf) <= sizeof res);
|
| 677 |
|
|
strcat (res, buf);
|
| 678 |
|
|
|
| 679 |
|
|
mant_off += 32;
|
| 680 |
|
|
mant_bits_left -= 32;
|
| 681 |
|
|
}
|
| 682 |
|
|
|
| 683 |
|
|
return res;
|
| 684 |
|
|
}
|
| 685 |
|
|
|
| 686 |
|
|
|
| 687 |
|
|
/* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
|
| 688 |
|
|
|
| 689 |
|
|
If the host and target formats agree, we just copy the raw data
|
| 690 |
|
|
into the appropriate type of variable and return, letting the host
|
| 691 |
|
|
increase precision as necessary. Otherwise, we call the conversion
|
| 692 |
|
|
routine and let it do the dirty work. */
|
| 693 |
|
|
|
| 694 |
|
|
static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
|
| 695 |
|
|
static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
|
| 696 |
|
|
static const struct floatformat *host_long_double_format = GDB_HOST_LONG_DOUBLE_FORMAT;
|
| 697 |
|
|
|
| 698 |
|
|
void
|
| 699 |
|
|
floatformat_to_doublest (const struct floatformat *fmt,
|
| 700 |
|
|
const void *in, DOUBLEST *out)
|
| 701 |
|
|
{
|
| 702 |
|
|
gdb_assert (fmt != NULL);
|
| 703 |
|
|
if (fmt == host_float_format)
|
| 704 |
|
|
{
|
| 705 |
|
|
float val;
|
| 706 |
|
|
memcpy (&val, in, sizeof (val));
|
| 707 |
|
|
*out = val;
|
| 708 |
|
|
}
|
| 709 |
|
|
else if (fmt == host_double_format)
|
| 710 |
|
|
{
|
| 711 |
|
|
double val;
|
| 712 |
|
|
memcpy (&val, in, sizeof (val));
|
| 713 |
|
|
*out = val;
|
| 714 |
|
|
}
|
| 715 |
|
|
else if (fmt == host_long_double_format)
|
| 716 |
|
|
{
|
| 717 |
|
|
long double val;
|
| 718 |
|
|
memcpy (&val, in, sizeof (val));
|
| 719 |
|
|
*out = val;
|
| 720 |
|
|
}
|
| 721 |
|
|
else
|
| 722 |
|
|
convert_floatformat_to_doublest (fmt, in, out);
|
| 723 |
|
|
}
|
| 724 |
|
|
|
| 725 |
|
|
void
|
| 726 |
|
|
floatformat_from_doublest (const struct floatformat *fmt,
|
| 727 |
|
|
const DOUBLEST *in, void *out)
|
| 728 |
|
|
{
|
| 729 |
|
|
gdb_assert (fmt != NULL);
|
| 730 |
|
|
if (fmt == host_float_format)
|
| 731 |
|
|
{
|
| 732 |
|
|
float val = *in;
|
| 733 |
|
|
memcpy (out, &val, sizeof (val));
|
| 734 |
|
|
}
|
| 735 |
|
|
else if (fmt == host_double_format)
|
| 736 |
|
|
{
|
| 737 |
|
|
double val = *in;
|
| 738 |
|
|
memcpy (out, &val, sizeof (val));
|
| 739 |
|
|
}
|
| 740 |
|
|
else if (fmt == host_long_double_format)
|
| 741 |
|
|
{
|
| 742 |
|
|
long double val = *in;
|
| 743 |
|
|
memcpy (out, &val, sizeof (val));
|
| 744 |
|
|
}
|
| 745 |
|
|
else
|
| 746 |
|
|
convert_doublest_to_floatformat (fmt, in, out);
|
| 747 |
|
|
}
|
| 748 |
|
|
|
| 749 |
|
|
|
| 750 |
|
|
/* Return a floating-point format for a floating-point variable of
|
| 751 |
|
|
length LEN. If no suitable floating-point format is found, an
|
| 752 |
|
|
error is thrown.
|
| 753 |
|
|
|
| 754 |
|
|
We need this functionality since information about the
|
| 755 |
|
|
floating-point format of a type is not always available to GDB; the
|
| 756 |
|
|
debug information typically only tells us the size of a
|
| 757 |
|
|
floating-point type.
|
| 758 |
|
|
|
| 759 |
|
|
FIXME: kettenis/2001-10-28: In many places, particularly in
|
| 760 |
|
|
target-dependent code, the format of floating-point types is known,
|
| 761 |
|
|
but not passed on by GDB. This should be fixed. */
|
| 762 |
|
|
|
| 763 |
|
|
static const struct floatformat *
|
| 764 |
|
|
floatformat_from_length (int len)
|
| 765 |
|
|
{
|
| 766 |
|
|
const struct floatformat *format;
|
| 767 |
|
|
if (len * TARGET_CHAR_BIT == gdbarch_float_bit (current_gdbarch))
|
| 768 |
|
|
format = gdbarch_float_format (current_gdbarch)
|
| 769 |
|
|
[gdbarch_byte_order (current_gdbarch)];
|
| 770 |
|
|
else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (current_gdbarch))
|
| 771 |
|
|
format = gdbarch_double_format (current_gdbarch)
|
| 772 |
|
|
[gdbarch_byte_order (current_gdbarch)];
|
| 773 |
|
|
else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (current_gdbarch))
|
| 774 |
|
|
format = gdbarch_long_double_format (current_gdbarch)
|
| 775 |
|
|
[gdbarch_byte_order (current_gdbarch)];
|
| 776 |
|
|
/* On i386 the 'long double' type takes 96 bits,
|
| 777 |
|
|
while the real number of used bits is only 80,
|
| 778 |
|
|
both in processor and in memory.
|
| 779 |
|
|
The code below accepts the real bit size. */
|
| 780 |
|
|
else if ((gdbarch_long_double_format (current_gdbarch) != NULL)
|
| 781 |
|
|
&& (len * TARGET_CHAR_BIT ==
|
| 782 |
|
|
gdbarch_long_double_format (current_gdbarch)[0]->totalsize))
|
| 783 |
|
|
format = gdbarch_long_double_format (current_gdbarch)
|
| 784 |
|
|
[gdbarch_byte_order (current_gdbarch)];
|
| 785 |
|
|
else
|
| 786 |
|
|
format = NULL;
|
| 787 |
|
|
if (format == NULL)
|
| 788 |
|
|
error (_("Unrecognized %d-bit floating-point type."),
|
| 789 |
|
|
len * TARGET_CHAR_BIT);
|
| 790 |
|
|
return format;
|
| 791 |
|
|
}
|
| 792 |
|
|
|
| 793 |
|
|
const struct floatformat *
|
| 794 |
|
|
floatformat_from_type (const struct type *type)
|
| 795 |
|
|
{
|
| 796 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
| 797 |
|
|
if (TYPE_FLOATFORMAT (type) != NULL)
|
| 798 |
|
|
return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (current_gdbarch)];
|
| 799 |
|
|
else
|
| 800 |
|
|
return floatformat_from_length (TYPE_LENGTH (type));
|
| 801 |
|
|
}
|
| 802 |
|
|
|
| 803 |
|
|
/* If the host doesn't define NAN, use zero instead. */
|
| 804 |
|
|
#ifndef NAN
|
| 805 |
|
|
#define NAN 0.0
|
| 806 |
|
|
#endif
|
| 807 |
|
|
|
| 808 |
|
|
/* Extract a floating-point number of length LEN from a target-order
|
| 809 |
|
|
byte-stream at ADDR. Returns the value as type DOUBLEST. */
|
| 810 |
|
|
|
| 811 |
|
|
static DOUBLEST
|
| 812 |
|
|
extract_floating_by_length (const void *addr, int len)
|
| 813 |
|
|
{
|
| 814 |
|
|
const struct floatformat *fmt = floatformat_from_length (len);
|
| 815 |
|
|
DOUBLEST val;
|
| 816 |
|
|
|
| 817 |
|
|
floatformat_to_doublest (fmt, addr, &val);
|
| 818 |
|
|
return val;
|
| 819 |
|
|
}
|
| 820 |
|
|
|
| 821 |
|
|
DOUBLEST
|
| 822 |
|
|
deprecated_extract_floating (const void *addr, int len)
|
| 823 |
|
|
{
|
| 824 |
|
|
return extract_floating_by_length (addr, len);
|
| 825 |
|
|
}
|
| 826 |
|
|
|
| 827 |
|
|
/* Store VAL as a floating-point number of length LEN to a
|
| 828 |
|
|
target-order byte-stream at ADDR. */
|
| 829 |
|
|
|
| 830 |
|
|
static void
|
| 831 |
|
|
store_floating_by_length (void *addr, int len, DOUBLEST val)
|
| 832 |
|
|
{
|
| 833 |
|
|
const struct floatformat *fmt = floatformat_from_length (len);
|
| 834 |
|
|
|
| 835 |
|
|
floatformat_from_doublest (fmt, &val, addr);
|
| 836 |
|
|
}
|
| 837 |
|
|
|
| 838 |
|
|
void
|
| 839 |
|
|
deprecated_store_floating (void *addr, int len, DOUBLEST val)
|
| 840 |
|
|
{
|
| 841 |
|
|
store_floating_by_length (addr, len, val);
|
| 842 |
|
|
}
|
| 843 |
|
|
|
| 844 |
|
|
/* Extract a floating-point number of type TYPE from a target-order
|
| 845 |
|
|
byte-stream at ADDR. Returns the value as type DOUBLEST. */
|
| 846 |
|
|
|
| 847 |
|
|
DOUBLEST
|
| 848 |
|
|
extract_typed_floating (const void *addr, const struct type *type)
|
| 849 |
|
|
{
|
| 850 |
|
|
DOUBLEST retval;
|
| 851 |
|
|
|
| 852 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
| 853 |
|
|
|
| 854 |
|
|
if (TYPE_FLOATFORMAT (type) == NULL)
|
| 855 |
|
|
/* Not all code remembers to set the FLOATFORMAT (language
|
| 856 |
|
|
specific code? stabs?) so handle that here as a special case. */
|
| 857 |
|
|
return extract_floating_by_length (addr, TYPE_LENGTH (type));
|
| 858 |
|
|
|
| 859 |
|
|
floatformat_to_doublest
|
| 860 |
|
|
(TYPE_FLOATFORMAT (type)[gdbarch_byte_order (current_gdbarch)],
|
| 861 |
|
|
addr, &retval);
|
| 862 |
|
|
return retval;
|
| 863 |
|
|
}
|
| 864 |
|
|
|
| 865 |
|
|
/* Store VAL as a floating-point number of type TYPE to a target-order
|
| 866 |
|
|
byte-stream at ADDR. */
|
| 867 |
|
|
|
| 868 |
|
|
void
|
| 869 |
|
|
store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
|
| 870 |
|
|
{
|
| 871 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
| 872 |
|
|
|
| 873 |
|
|
/* FIXME: kettenis/2001-10-28: It is debatable whether we should
|
| 874 |
|
|
zero out any remaining bytes in the target buffer when TYPE is
|
| 875 |
|
|
longer than the actual underlying floating-point format. Perhaps
|
| 876 |
|
|
we should store a fixed bitpattern in those remaining bytes,
|
| 877 |
|
|
instead of zero, or perhaps we shouldn't touch those remaining
|
| 878 |
|
|
bytes at all.
|
| 879 |
|
|
|
| 880 |
|
|
NOTE: cagney/2001-10-28: With the way things currently work, it
|
| 881 |
|
|
isn't a good idea to leave the end bits undefined. This is
|
| 882 |
|
|
because GDB writes out the entire sizeof(<floating>) bits of the
|
| 883 |
|
|
floating-point type even though the value might only be stored
|
| 884 |
|
|
in, and the target processor may only refer to, the first N <
|
| 885 |
|
|
TYPE_LENGTH (type) bits. If the end of the buffer wasn't
|
| 886 |
|
|
initialized, GDB would write undefined data to the target. An
|
| 887 |
|
|
errant program, refering to that undefined data, would then
|
| 888 |
|
|
become non-deterministic.
|
| 889 |
|
|
|
| 890 |
|
|
See also the function convert_typed_floating below. */
|
| 891 |
|
|
memset (addr, 0, TYPE_LENGTH (type));
|
| 892 |
|
|
|
| 893 |
|
|
if (TYPE_FLOATFORMAT (type) == NULL)
|
| 894 |
|
|
/* Not all code remembers to set the FLOATFORMAT (language
|
| 895 |
|
|
specific code? stabs?) so handle that here as a special case. */
|
| 896 |
|
|
store_floating_by_length (addr, TYPE_LENGTH (type), val);
|
| 897 |
|
|
else
|
| 898 |
|
|
floatformat_from_doublest
|
| 899 |
|
|
(TYPE_FLOATFORMAT (type)[gdbarch_byte_order (current_gdbarch)],
|
| 900 |
|
|
&val, addr);
|
| 901 |
|
|
}
|
| 902 |
|
|
|
| 903 |
|
|
/* Convert a floating-point number of type FROM_TYPE from a
|
| 904 |
|
|
target-order byte-stream at FROM to a floating-point number of type
|
| 905 |
|
|
TO_TYPE, and store it to a target-order byte-stream at TO. */
|
| 906 |
|
|
|
| 907 |
|
|
void
|
| 908 |
|
|
convert_typed_floating (const void *from, const struct type *from_type,
|
| 909 |
|
|
void *to, const struct type *to_type)
|
| 910 |
|
|
{
|
| 911 |
|
|
const struct floatformat *from_fmt = floatformat_from_type (from_type);
|
| 912 |
|
|
const struct floatformat *to_fmt = floatformat_from_type (to_type);
|
| 913 |
|
|
|
| 914 |
|
|
gdb_assert (TYPE_CODE (from_type) == TYPE_CODE_FLT);
|
| 915 |
|
|
gdb_assert (TYPE_CODE (to_type) == TYPE_CODE_FLT);
|
| 916 |
|
|
|
| 917 |
|
|
if (from_fmt == NULL || to_fmt == NULL)
|
| 918 |
|
|
{
|
| 919 |
|
|
/* If we don't know the floating-point format of FROM_TYPE or
|
| 920 |
|
|
TO_TYPE, there's not much we can do. We might make the
|
| 921 |
|
|
assumption that if the length of FROM_TYPE and TO_TYPE match,
|
| 922 |
|
|
their floating-point format would match too, but that
|
| 923 |
|
|
assumption might be wrong on targets that support
|
| 924 |
|
|
floating-point types that only differ in endianness for
|
| 925 |
|
|
example. So we warn instead, and zero out the target buffer. */
|
| 926 |
|
|
warning (_("Can't convert floating-point number to desired type."));
|
| 927 |
|
|
memset (to, 0, TYPE_LENGTH (to_type));
|
| 928 |
|
|
}
|
| 929 |
|
|
else if (from_fmt == to_fmt)
|
| 930 |
|
|
{
|
| 931 |
|
|
/* We're in business. The floating-point format of FROM_TYPE
|
| 932 |
|
|
and TO_TYPE match. However, even though the floating-point
|
| 933 |
|
|
format matches, the length of the type might still be
|
| 934 |
|
|
different. Make sure we don't overrun any buffers. See
|
| 935 |
|
|
comment in store_typed_floating for a discussion about
|
| 936 |
|
|
zeroing out remaining bytes in the target buffer. */
|
| 937 |
|
|
memset (to, 0, TYPE_LENGTH (to_type));
|
| 938 |
|
|
memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
|
| 939 |
|
|
}
|
| 940 |
|
|
else
|
| 941 |
|
|
{
|
| 942 |
|
|
/* The floating-point types don't match. The best we can do
|
| 943 |
|
|
(aport from simulating the target FPU) is converting to the
|
| 944 |
|
|
widest floating-point type supported by the host, and then
|
| 945 |
|
|
again to the desired type. */
|
| 946 |
|
|
DOUBLEST d;
|
| 947 |
|
|
|
| 948 |
|
|
floatformat_to_doublest (from_fmt, from, &d);
|
| 949 |
|
|
floatformat_from_doublest (to_fmt, &d, to);
|
| 950 |
|
|
}
|
| 951 |
|
|
}
|
| 952 |
|
|
|
| 953 |
|
|
const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN];
|
| 954 |
|
|
const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN];
|
| 955 |
|
|
const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN];
|
| 956 |
|
|
const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN];
|
| 957 |
|
|
const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN];
|
| 958 |
|
|
|
| 959 |
|
|
extern void _initialize_doublest (void);
|
| 960 |
|
|
|
| 961 |
|
|
extern void
|
| 962 |
|
|
_initialize_doublest (void)
|
| 963 |
|
|
{
|
| 964 |
|
|
floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little;
|
| 965 |
|
|
floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big;
|
| 966 |
|
|
floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little;
|
| 967 |
|
|
floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big;
|
| 968 |
|
|
floatformat_arm_ext[BFD_ENDIAN_LITTLE] = &floatformat_arm_ext_littlebyte_bigword;
|
| 969 |
|
|
floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big;
|
| 970 |
|
|
floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little;
|
| 971 |
|
|
floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big;
|
| 972 |
|
|
floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little;
|
| 973 |
|
|
floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big;
|
| 974 |
|
|
}
|