1 |
24 |
jeremybenn |
/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "gdb_string.h"
|
23 |
|
|
#include "inferior.h"
|
24 |
|
|
#include "gdbcore.h"
|
25 |
|
|
#include "arch-utils.h"
|
26 |
|
|
#include "regcache.h"
|
27 |
|
|
#include "frame.h"
|
28 |
|
|
#include "frame-unwind.h"
|
29 |
|
|
#include "frame-base.h"
|
30 |
|
|
#include "trad-frame.h"
|
31 |
|
|
#include "dis-asm.h"
|
32 |
|
|
#include "gdb_assert.h"
|
33 |
|
|
#include "sim-regno.h"
|
34 |
|
|
#include "gdb/sim-frv.h"
|
35 |
|
|
#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
|
36 |
|
|
#include "symtab.h"
|
37 |
|
|
#include "elf-bfd.h"
|
38 |
|
|
#include "elf/frv.h"
|
39 |
|
|
#include "osabi.h"
|
40 |
|
|
#include "infcall.h"
|
41 |
|
|
#include "solib.h"
|
42 |
|
|
#include "frv-tdep.h"
|
43 |
|
|
|
44 |
|
|
extern void _initialize_frv_tdep (void);
|
45 |
|
|
|
46 |
|
|
struct frv_unwind_cache /* was struct frame_extra_info */
|
47 |
|
|
{
|
48 |
|
|
/* The previous frame's inner-most stack address. Used as this
|
49 |
|
|
frame ID's stack_addr. */
|
50 |
|
|
CORE_ADDR prev_sp;
|
51 |
|
|
|
52 |
|
|
/* The frame's base, optionally used by the high-level debug info. */
|
53 |
|
|
CORE_ADDR base;
|
54 |
|
|
|
55 |
|
|
/* Table indicating the location of each and every register. */
|
56 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
57 |
|
|
};
|
58 |
|
|
|
59 |
|
|
/* A structure describing a particular variant of the FRV.
|
60 |
|
|
We allocate and initialize one of these structures when we create
|
61 |
|
|
the gdbarch object for a variant.
|
62 |
|
|
|
63 |
|
|
At the moment, all the FR variants we support differ only in which
|
64 |
|
|
registers are present; the portable code of GDB knows that
|
65 |
|
|
registers whose names are the empty string don't exist, so the
|
66 |
|
|
`register_names' array captures all the per-variant information we
|
67 |
|
|
need.
|
68 |
|
|
|
69 |
|
|
in the future, if we need to have per-variant maps for raw size,
|
70 |
|
|
virtual type, etc., we should replace register_names with an array
|
71 |
|
|
of structures, each of which gives all the necessary info for one
|
72 |
|
|
register. Don't stick parallel arrays in here --- that's so
|
73 |
|
|
Fortran. */
|
74 |
|
|
struct gdbarch_tdep
|
75 |
|
|
{
|
76 |
|
|
/* Which ABI is in use? */
|
77 |
|
|
enum frv_abi frv_abi;
|
78 |
|
|
|
79 |
|
|
/* How many general-purpose registers does this variant have? */
|
80 |
|
|
int num_gprs;
|
81 |
|
|
|
82 |
|
|
/* How many floating-point registers does this variant have? */
|
83 |
|
|
int num_fprs;
|
84 |
|
|
|
85 |
|
|
/* How many hardware watchpoints can it support? */
|
86 |
|
|
int num_hw_watchpoints;
|
87 |
|
|
|
88 |
|
|
/* How many hardware breakpoints can it support? */
|
89 |
|
|
int num_hw_breakpoints;
|
90 |
|
|
|
91 |
|
|
/* Register names. */
|
92 |
|
|
char **register_names;
|
93 |
|
|
};
|
94 |
|
|
|
95 |
|
|
/* Return the FR-V ABI associated with GDBARCH. */
|
96 |
|
|
enum frv_abi
|
97 |
|
|
frv_abi (struct gdbarch *gdbarch)
|
98 |
|
|
{
|
99 |
|
|
return gdbarch_tdep (gdbarch)->frv_abi;
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
/* Fetch the interpreter and executable loadmap addresses (for shared
|
103 |
|
|
library support) for the FDPIC ABI. Return 0 if successful, -1 if
|
104 |
|
|
not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
|
105 |
|
|
int
|
106 |
|
|
frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
|
107 |
|
|
CORE_ADDR *exec_addr)
|
108 |
|
|
{
|
109 |
|
|
if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
|
110 |
|
|
return -1;
|
111 |
|
|
else
|
112 |
|
|
{
|
113 |
|
|
struct regcache *regcache = get_current_regcache ();
|
114 |
|
|
|
115 |
|
|
if (interp_addr != NULL)
|
116 |
|
|
{
|
117 |
|
|
ULONGEST val;
|
118 |
|
|
regcache_cooked_read_unsigned (regcache,
|
119 |
|
|
fdpic_loadmap_interp_regnum, &val);
|
120 |
|
|
*interp_addr = val;
|
121 |
|
|
}
|
122 |
|
|
if (exec_addr != NULL)
|
123 |
|
|
{
|
124 |
|
|
ULONGEST val;
|
125 |
|
|
regcache_cooked_read_unsigned (regcache,
|
126 |
|
|
fdpic_loadmap_exec_regnum, &val);
|
127 |
|
|
*exec_addr = val;
|
128 |
|
|
}
|
129 |
|
|
return 0;
|
130 |
|
|
}
|
131 |
|
|
}
|
132 |
|
|
|
133 |
|
|
/* Allocate a new variant structure, and set up default values for all
|
134 |
|
|
the fields. */
|
135 |
|
|
static struct gdbarch_tdep *
|
136 |
|
|
new_variant (void)
|
137 |
|
|
{
|
138 |
|
|
struct gdbarch_tdep *var;
|
139 |
|
|
int r;
|
140 |
|
|
char buf[20];
|
141 |
|
|
|
142 |
|
|
var = xmalloc (sizeof (*var));
|
143 |
|
|
memset (var, 0, sizeof (*var));
|
144 |
|
|
|
145 |
|
|
var->frv_abi = FRV_ABI_EABI;
|
146 |
|
|
var->num_gprs = 64;
|
147 |
|
|
var->num_fprs = 64;
|
148 |
|
|
var->num_hw_watchpoints = 0;
|
149 |
|
|
var->num_hw_breakpoints = 0;
|
150 |
|
|
|
151 |
|
|
/* By default, don't supply any general-purpose or floating-point
|
152 |
|
|
register names. */
|
153 |
|
|
var->register_names
|
154 |
|
|
= (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
|
155 |
|
|
* sizeof (char *));
|
156 |
|
|
for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
|
157 |
|
|
var->register_names[r] = "";
|
158 |
|
|
|
159 |
|
|
/* Do, however, supply default names for the known special-purpose
|
160 |
|
|
registers. */
|
161 |
|
|
|
162 |
|
|
var->register_names[pc_regnum] = "pc";
|
163 |
|
|
var->register_names[lr_regnum] = "lr";
|
164 |
|
|
var->register_names[lcr_regnum] = "lcr";
|
165 |
|
|
|
166 |
|
|
var->register_names[psr_regnum] = "psr";
|
167 |
|
|
var->register_names[ccr_regnum] = "ccr";
|
168 |
|
|
var->register_names[cccr_regnum] = "cccr";
|
169 |
|
|
var->register_names[tbr_regnum] = "tbr";
|
170 |
|
|
|
171 |
|
|
/* Debug registers. */
|
172 |
|
|
var->register_names[brr_regnum] = "brr";
|
173 |
|
|
var->register_names[dbar0_regnum] = "dbar0";
|
174 |
|
|
var->register_names[dbar1_regnum] = "dbar1";
|
175 |
|
|
var->register_names[dbar2_regnum] = "dbar2";
|
176 |
|
|
var->register_names[dbar3_regnum] = "dbar3";
|
177 |
|
|
|
178 |
|
|
/* iacc0 (Only found on MB93405.) */
|
179 |
|
|
var->register_names[iacc0h_regnum] = "iacc0h";
|
180 |
|
|
var->register_names[iacc0l_regnum] = "iacc0l";
|
181 |
|
|
var->register_names[iacc0_regnum] = "iacc0";
|
182 |
|
|
|
183 |
|
|
/* fsr0 (Found on FR555 and FR501.) */
|
184 |
|
|
var->register_names[fsr0_regnum] = "fsr0";
|
185 |
|
|
|
186 |
|
|
/* acc0 - acc7. The architecture provides for the possibility of many
|
187 |
|
|
more (up to 64 total), but we don't want to make that big of a hole
|
188 |
|
|
in the G packet. If we need more in the future, we'll add them
|
189 |
|
|
elsewhere. */
|
190 |
|
|
for (r = acc0_regnum; r <= acc7_regnum; r++)
|
191 |
|
|
{
|
192 |
|
|
char *buf;
|
193 |
|
|
buf = xstrprintf ("acc%d", r - acc0_regnum);
|
194 |
|
|
var->register_names[r] = buf;
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
/* accg0 - accg7: These are one byte registers. The remote protocol
|
198 |
|
|
provides the raw values packed four into a slot. accg0123 and
|
199 |
|
|
accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
|
200 |
|
|
We don't provide names for accg0123 and accg4567 since the user will
|
201 |
|
|
likely not want to see these raw values. */
|
202 |
|
|
|
203 |
|
|
for (r = accg0_regnum; r <= accg7_regnum; r++)
|
204 |
|
|
{
|
205 |
|
|
char *buf;
|
206 |
|
|
buf = xstrprintf ("accg%d", r - accg0_regnum);
|
207 |
|
|
var->register_names[r] = buf;
|
208 |
|
|
}
|
209 |
|
|
|
210 |
|
|
/* msr0 and msr1. */
|
211 |
|
|
|
212 |
|
|
var->register_names[msr0_regnum] = "msr0";
|
213 |
|
|
var->register_names[msr1_regnum] = "msr1";
|
214 |
|
|
|
215 |
|
|
/* gner and fner registers. */
|
216 |
|
|
var->register_names[gner0_regnum] = "gner0";
|
217 |
|
|
var->register_names[gner1_regnum] = "gner1";
|
218 |
|
|
var->register_names[fner0_regnum] = "fner0";
|
219 |
|
|
var->register_names[fner1_regnum] = "fner1";
|
220 |
|
|
|
221 |
|
|
return var;
|
222 |
|
|
}
|
223 |
|
|
|
224 |
|
|
|
225 |
|
|
/* Indicate that the variant VAR has NUM_GPRS general-purpose
|
226 |
|
|
registers, and fill in the names array appropriately. */
|
227 |
|
|
static void
|
228 |
|
|
set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
|
229 |
|
|
{
|
230 |
|
|
int r;
|
231 |
|
|
|
232 |
|
|
var->num_gprs = num_gprs;
|
233 |
|
|
|
234 |
|
|
for (r = 0; r < num_gprs; ++r)
|
235 |
|
|
{
|
236 |
|
|
char buf[20];
|
237 |
|
|
|
238 |
|
|
sprintf (buf, "gr%d", r);
|
239 |
|
|
var->register_names[first_gpr_regnum + r] = xstrdup (buf);
|
240 |
|
|
}
|
241 |
|
|
}
|
242 |
|
|
|
243 |
|
|
|
244 |
|
|
/* Indicate that the variant VAR has NUM_FPRS floating-point
|
245 |
|
|
registers, and fill in the names array appropriately. */
|
246 |
|
|
static void
|
247 |
|
|
set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
|
248 |
|
|
{
|
249 |
|
|
int r;
|
250 |
|
|
|
251 |
|
|
var->num_fprs = num_fprs;
|
252 |
|
|
|
253 |
|
|
for (r = 0; r < num_fprs; ++r)
|
254 |
|
|
{
|
255 |
|
|
char buf[20];
|
256 |
|
|
|
257 |
|
|
sprintf (buf, "fr%d", r);
|
258 |
|
|
var->register_names[first_fpr_regnum + r] = xstrdup (buf);
|
259 |
|
|
}
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
static void
|
263 |
|
|
set_variant_abi_fdpic (struct gdbarch_tdep *var)
|
264 |
|
|
{
|
265 |
|
|
var->frv_abi = FRV_ABI_FDPIC;
|
266 |
|
|
var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
|
267 |
|
|
var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
|
268 |
|
|
}
|
269 |
|
|
|
270 |
|
|
static void
|
271 |
|
|
set_variant_scratch_registers (struct gdbarch_tdep *var)
|
272 |
|
|
{
|
273 |
|
|
var->register_names[scr0_regnum] = xstrdup ("scr0");
|
274 |
|
|
var->register_names[scr1_regnum] = xstrdup ("scr1");
|
275 |
|
|
var->register_names[scr2_regnum] = xstrdup ("scr2");
|
276 |
|
|
var->register_names[scr3_regnum] = xstrdup ("scr3");
|
277 |
|
|
}
|
278 |
|
|
|
279 |
|
|
static const char *
|
280 |
|
|
frv_register_name (struct gdbarch *gdbarch, int reg)
|
281 |
|
|
{
|
282 |
|
|
if (reg < 0)
|
283 |
|
|
return "?toosmall?";
|
284 |
|
|
if (reg >= frv_num_regs + frv_num_pseudo_regs)
|
285 |
|
|
return "?toolarge?";
|
286 |
|
|
|
287 |
|
|
return gdbarch_tdep (gdbarch)->register_names[reg];
|
288 |
|
|
}
|
289 |
|
|
|
290 |
|
|
|
291 |
|
|
static struct type *
|
292 |
|
|
frv_register_type (struct gdbarch *gdbarch, int reg)
|
293 |
|
|
{
|
294 |
|
|
if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
|
295 |
|
|
return builtin_type_float;
|
296 |
|
|
else if (reg == iacc0_regnum)
|
297 |
|
|
return builtin_type_int64;
|
298 |
|
|
else
|
299 |
|
|
return builtin_type_int32;
|
300 |
|
|
}
|
301 |
|
|
|
302 |
|
|
static void
|
303 |
|
|
frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
304 |
|
|
int reg, gdb_byte *buffer)
|
305 |
|
|
{
|
306 |
|
|
if (reg == iacc0_regnum)
|
307 |
|
|
{
|
308 |
|
|
regcache_raw_read (regcache, iacc0h_regnum, buffer);
|
309 |
|
|
regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
|
310 |
|
|
}
|
311 |
|
|
else if (accg0_regnum <= reg && reg <= accg7_regnum)
|
312 |
|
|
{
|
313 |
|
|
/* The accg raw registers have four values in each slot with the
|
314 |
|
|
lowest register number occupying the first byte. */
|
315 |
|
|
|
316 |
|
|
int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
|
317 |
|
|
int byte_num = (reg - accg0_regnum) % 4;
|
318 |
|
|
bfd_byte buf[4];
|
319 |
|
|
|
320 |
|
|
regcache_raw_read (regcache, raw_regnum, buf);
|
321 |
|
|
memset (buffer, 0, 4);
|
322 |
|
|
/* FR-V is big endian, so put the requested byte in the first byte
|
323 |
|
|
of the buffer allocated to hold the pseudo-register. */
|
324 |
|
|
((bfd_byte *) buffer)[0] = buf[byte_num];
|
325 |
|
|
}
|
326 |
|
|
}
|
327 |
|
|
|
328 |
|
|
static void
|
329 |
|
|
frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
330 |
|
|
int reg, const gdb_byte *buffer)
|
331 |
|
|
{
|
332 |
|
|
if (reg == iacc0_regnum)
|
333 |
|
|
{
|
334 |
|
|
regcache_raw_write (regcache, iacc0h_regnum, buffer);
|
335 |
|
|
regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
|
336 |
|
|
}
|
337 |
|
|
else if (accg0_regnum <= reg && reg <= accg7_regnum)
|
338 |
|
|
{
|
339 |
|
|
/* The accg raw registers have four values in each slot with the
|
340 |
|
|
lowest register number occupying the first byte. */
|
341 |
|
|
|
342 |
|
|
int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
|
343 |
|
|
int byte_num = (reg - accg0_regnum) % 4;
|
344 |
|
|
char buf[4];
|
345 |
|
|
|
346 |
|
|
regcache_raw_read (regcache, raw_regnum, buf);
|
347 |
|
|
buf[byte_num] = ((bfd_byte *) buffer)[0];
|
348 |
|
|
regcache_raw_write (regcache, raw_regnum, buf);
|
349 |
|
|
}
|
350 |
|
|
}
|
351 |
|
|
|
352 |
|
|
static int
|
353 |
|
|
frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
|
354 |
|
|
{
|
355 |
|
|
static const int spr_map[] =
|
356 |
|
|
{
|
357 |
|
|
H_SPR_PSR, /* psr_regnum */
|
358 |
|
|
H_SPR_CCR, /* ccr_regnum */
|
359 |
|
|
H_SPR_CCCR, /* cccr_regnum */
|
360 |
|
|
-1, /* fdpic_loadmap_exec_regnum */
|
361 |
|
|
-1, /* fdpic_loadmap_interp_regnum */
|
362 |
|
|
-1, /* 134 */
|
363 |
|
|
H_SPR_TBR, /* tbr_regnum */
|
364 |
|
|
H_SPR_BRR, /* brr_regnum */
|
365 |
|
|
H_SPR_DBAR0, /* dbar0_regnum */
|
366 |
|
|
H_SPR_DBAR1, /* dbar1_regnum */
|
367 |
|
|
H_SPR_DBAR2, /* dbar2_regnum */
|
368 |
|
|
H_SPR_DBAR3, /* dbar3_regnum */
|
369 |
|
|
H_SPR_SCR0, /* scr0_regnum */
|
370 |
|
|
H_SPR_SCR1, /* scr1_regnum */
|
371 |
|
|
H_SPR_SCR2, /* scr2_regnum */
|
372 |
|
|
H_SPR_SCR3, /* scr3_regnum */
|
373 |
|
|
H_SPR_LR, /* lr_regnum */
|
374 |
|
|
H_SPR_LCR, /* lcr_regnum */
|
375 |
|
|
H_SPR_IACC0H, /* iacc0h_regnum */
|
376 |
|
|
H_SPR_IACC0L, /* iacc0l_regnum */
|
377 |
|
|
H_SPR_FSR0, /* fsr0_regnum */
|
378 |
|
|
/* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
|
379 |
|
|
-1, /* acc0_regnum */
|
380 |
|
|
-1, /* acc1_regnum */
|
381 |
|
|
-1, /* acc2_regnum */
|
382 |
|
|
-1, /* acc3_regnum */
|
383 |
|
|
-1, /* acc4_regnum */
|
384 |
|
|
-1, /* acc5_regnum */
|
385 |
|
|
-1, /* acc6_regnum */
|
386 |
|
|
-1, /* acc7_regnum */
|
387 |
|
|
-1, /* acc0123_regnum */
|
388 |
|
|
-1, /* acc4567_regnum */
|
389 |
|
|
H_SPR_MSR0, /* msr0_regnum */
|
390 |
|
|
H_SPR_MSR1, /* msr1_regnum */
|
391 |
|
|
H_SPR_GNER0, /* gner0_regnum */
|
392 |
|
|
H_SPR_GNER1, /* gner1_regnum */
|
393 |
|
|
H_SPR_FNER0, /* fner0_regnum */
|
394 |
|
|
H_SPR_FNER1, /* fner1_regnum */
|
395 |
|
|
};
|
396 |
|
|
|
397 |
|
|
gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
|
398 |
|
|
|
399 |
|
|
if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
|
400 |
|
|
return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
|
401 |
|
|
else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
|
402 |
|
|
return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
|
403 |
|
|
else if (pc_regnum == reg)
|
404 |
|
|
return SIM_FRV_PC_REGNUM;
|
405 |
|
|
else if (reg >= first_spr_regnum
|
406 |
|
|
&& reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
|
407 |
|
|
{
|
408 |
|
|
int spr_reg_offset = spr_map[reg - first_spr_regnum];
|
409 |
|
|
|
410 |
|
|
if (spr_reg_offset < 0)
|
411 |
|
|
return SIM_REGNO_DOES_NOT_EXIST;
|
412 |
|
|
else
|
413 |
|
|
return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
|
414 |
|
|
}
|
415 |
|
|
|
416 |
|
|
internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
static const unsigned char *
|
420 |
|
|
frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
|
421 |
|
|
{
|
422 |
|
|
static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
|
423 |
|
|
*lenp = sizeof (breakpoint);
|
424 |
|
|
return breakpoint;
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
/* Define the maximum number of instructions which may be packed into a
|
428 |
|
|
bundle (VLIW instruction). */
|
429 |
|
|
static const int max_instrs_per_bundle = 8;
|
430 |
|
|
|
431 |
|
|
/* Define the size (in bytes) of an FR-V instruction. */
|
432 |
|
|
static const int frv_instr_size = 4;
|
433 |
|
|
|
434 |
|
|
/* Adjust a breakpoint's address to account for the FR-V architecture's
|
435 |
|
|
constraint that a break instruction must not appear as any but the
|
436 |
|
|
first instruction in the bundle. */
|
437 |
|
|
static CORE_ADDR
|
438 |
|
|
frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
|
439 |
|
|
{
|
440 |
|
|
int count = max_instrs_per_bundle;
|
441 |
|
|
CORE_ADDR addr = bpaddr - frv_instr_size;
|
442 |
|
|
CORE_ADDR func_start = get_pc_function_start (bpaddr);
|
443 |
|
|
|
444 |
|
|
/* Find the end of the previous packing sequence. This will be indicated
|
445 |
|
|
by either attempting to access some inaccessible memory or by finding
|
446 |
|
|
an instruction word whose packing bit is set to one. */
|
447 |
|
|
while (count-- > 0 && addr >= func_start)
|
448 |
|
|
{
|
449 |
|
|
char instr[frv_instr_size];
|
450 |
|
|
int status;
|
451 |
|
|
|
452 |
|
|
status = read_memory_nobpt (addr, instr, sizeof instr);
|
453 |
|
|
|
454 |
|
|
if (status != 0)
|
455 |
|
|
break;
|
456 |
|
|
|
457 |
|
|
/* This is a big endian architecture, so byte zero will have most
|
458 |
|
|
significant byte. The most significant bit of this byte is the
|
459 |
|
|
packing bit. */
|
460 |
|
|
if (instr[0] & 0x80)
|
461 |
|
|
break;
|
462 |
|
|
|
463 |
|
|
addr -= frv_instr_size;
|
464 |
|
|
}
|
465 |
|
|
|
466 |
|
|
if (count > 0)
|
467 |
|
|
bpaddr = addr + frv_instr_size;
|
468 |
|
|
|
469 |
|
|
return bpaddr;
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
|
473 |
|
|
/* Return true if REG is a caller-saves ("scratch") register,
|
474 |
|
|
false otherwise. */
|
475 |
|
|
static int
|
476 |
|
|
is_caller_saves_reg (int reg)
|
477 |
|
|
{
|
478 |
|
|
return ((4 <= reg && reg <= 7)
|
479 |
|
|
|| (14 <= reg && reg <= 15)
|
480 |
|
|
|| (32 <= reg && reg <= 47));
|
481 |
|
|
}
|
482 |
|
|
|
483 |
|
|
|
484 |
|
|
/* Return true if REG is a callee-saves register, false otherwise. */
|
485 |
|
|
static int
|
486 |
|
|
is_callee_saves_reg (int reg)
|
487 |
|
|
{
|
488 |
|
|
return ((16 <= reg && reg <= 31)
|
489 |
|
|
|| (48 <= reg && reg <= 63));
|
490 |
|
|
}
|
491 |
|
|
|
492 |
|
|
|
493 |
|
|
/* Return true if REG is an argument register, false otherwise. */
|
494 |
|
|
static int
|
495 |
|
|
is_argument_reg (int reg)
|
496 |
|
|
{
|
497 |
|
|
return (8 <= reg && reg <= 13);
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
/* Scan an FR-V prologue, starting at PC, until frame->PC.
|
501 |
|
|
If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
|
502 |
|
|
We assume FRAME's saved_regs array has already been allocated and cleared.
|
503 |
|
|
Return the first PC value after the prologue.
|
504 |
|
|
|
505 |
|
|
Note that, for unoptimized code, we almost don't need this function
|
506 |
|
|
at all; all arguments and locals live on the stack, so we just need
|
507 |
|
|
the FP to find everything. The catch: structures passed by value
|
508 |
|
|
have their addresses living in registers; they're never spilled to
|
509 |
|
|
the stack. So if you ever want to be able to get to these
|
510 |
|
|
arguments in any frame but the top, you'll need to do this serious
|
511 |
|
|
prologue analysis. */
|
512 |
|
|
static CORE_ADDR
|
513 |
|
|
frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
|
514 |
|
|
struct frv_unwind_cache *info)
|
515 |
|
|
{
|
516 |
|
|
/* When writing out instruction bitpatterns, we use the following
|
517 |
|
|
letters to label instruction fields:
|
518 |
|
|
P - The parallel bit. We don't use this.
|
519 |
|
|
J - The register number of GRj in the instruction description.
|
520 |
|
|
K - The register number of GRk in the instruction description.
|
521 |
|
|
I - The register number of GRi.
|
522 |
|
|
S - a signed imediate offset.
|
523 |
|
|
U - an unsigned immediate offset.
|
524 |
|
|
|
525 |
|
|
The dots below the numbers indicate where hex digit boundaries
|
526 |
|
|
fall, to make it easier to check the numbers. */
|
527 |
|
|
|
528 |
|
|
/* Non-zero iff we've seen the instruction that initializes the
|
529 |
|
|
frame pointer for this function's frame. */
|
530 |
|
|
int fp_set = 0;
|
531 |
|
|
|
532 |
|
|
/* If fp_set is non_zero, then this is the distance from
|
533 |
|
|
the stack pointer to frame pointer: fp = sp + fp_offset. */
|
534 |
|
|
int fp_offset = 0;
|
535 |
|
|
|
536 |
|
|
/* Total size of frame prior to any alloca operations. */
|
537 |
|
|
int framesize = 0;
|
538 |
|
|
|
539 |
|
|
/* Flag indicating if lr has been saved on the stack. */
|
540 |
|
|
int lr_saved_on_stack = 0;
|
541 |
|
|
|
542 |
|
|
/* The number of the general-purpose register we saved the return
|
543 |
|
|
address ("link register") in, or -1 if we haven't moved it yet. */
|
544 |
|
|
int lr_save_reg = -1;
|
545 |
|
|
|
546 |
|
|
/* Offset (from sp) at which lr has been saved on the stack. */
|
547 |
|
|
|
548 |
|
|
int lr_sp_offset = 0;
|
549 |
|
|
|
550 |
|
|
/* If gr_saved[i] is non-zero, then we've noticed that general
|
551 |
|
|
register i has been saved at gr_sp_offset[i] from the stack
|
552 |
|
|
pointer. */
|
553 |
|
|
char gr_saved[64];
|
554 |
|
|
int gr_sp_offset[64];
|
555 |
|
|
|
556 |
|
|
/* The address of the most recently scanned prologue instruction. */
|
557 |
|
|
CORE_ADDR last_prologue_pc;
|
558 |
|
|
|
559 |
|
|
/* The address of the next instruction. */
|
560 |
|
|
CORE_ADDR next_pc;
|
561 |
|
|
|
562 |
|
|
/* The upper bound to of the pc values to scan. */
|
563 |
|
|
CORE_ADDR lim_pc;
|
564 |
|
|
|
565 |
|
|
memset (gr_saved, 0, sizeof (gr_saved));
|
566 |
|
|
|
567 |
|
|
last_prologue_pc = pc;
|
568 |
|
|
|
569 |
|
|
/* Try to compute an upper limit (on how far to scan) based on the
|
570 |
|
|
line number info. */
|
571 |
|
|
lim_pc = skip_prologue_using_sal (pc);
|
572 |
|
|
/* If there's no line number info, lim_pc will be 0. In that case,
|
573 |
|
|
set the limit to be 100 instructions away from pc. Hopefully, this
|
574 |
|
|
will be far enough away to account for the entire prologue. Don't
|
575 |
|
|
worry about overshooting the end of the function. The scan loop
|
576 |
|
|
below contains some checks to avoid scanning unreasonably far. */
|
577 |
|
|
if (lim_pc == 0)
|
578 |
|
|
lim_pc = pc + 400;
|
579 |
|
|
|
580 |
|
|
/* If we have a frame, we don't want to scan past the frame's pc. This
|
581 |
|
|
will catch those cases where the pc is in the prologue. */
|
582 |
|
|
if (next_frame)
|
583 |
|
|
{
|
584 |
|
|
CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
|
585 |
|
|
if (frame_pc < lim_pc)
|
586 |
|
|
lim_pc = frame_pc;
|
587 |
|
|
}
|
588 |
|
|
|
589 |
|
|
/* Scan the prologue. */
|
590 |
|
|
while (pc < lim_pc)
|
591 |
|
|
{
|
592 |
|
|
char buf[frv_instr_size];
|
593 |
|
|
LONGEST op;
|
594 |
|
|
|
595 |
|
|
if (target_read_memory (pc, buf, sizeof buf) != 0)
|
596 |
|
|
break;
|
597 |
|
|
op = extract_signed_integer (buf, sizeof buf);
|
598 |
|
|
|
599 |
|
|
next_pc = pc + 4;
|
600 |
|
|
|
601 |
|
|
/* The tests in this chain of ifs should be in order of
|
602 |
|
|
decreasing selectivity, so that more particular patterns get
|
603 |
|
|
to fire before less particular patterns. */
|
604 |
|
|
|
605 |
|
|
/* Some sort of control transfer instruction: stop scanning prologue.
|
606 |
|
|
Integer Conditional Branch:
|
607 |
|
|
X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
|
608 |
|
|
Floating-point / media Conditional Branch:
|
609 |
|
|
X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
|
610 |
|
|
LCR Conditional Branch to LR
|
611 |
|
|
X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
|
612 |
|
|
Integer conditional Branches to LR
|
613 |
|
|
X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
|
614 |
|
|
X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
|
615 |
|
|
Floating-point/Media Branches to LR
|
616 |
|
|
X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
|
617 |
|
|
X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
|
618 |
|
|
Jump and Link
|
619 |
|
|
X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
|
620 |
|
|
X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
|
621 |
|
|
Call
|
622 |
|
|
X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
|
623 |
|
|
Return from Trap
|
624 |
|
|
X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
|
625 |
|
|
Integer Conditional Trap
|
626 |
|
|
X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
|
627 |
|
|
X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
|
628 |
|
|
Floating-point /media Conditional Trap
|
629 |
|
|
X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
|
630 |
|
|
X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
|
631 |
|
|
Break
|
632 |
|
|
X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
|
633 |
|
|
Media Trap
|
634 |
|
|
X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
|
635 |
|
|
if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
|
636 |
|
|
|| (op & 0x01f80000) == 0x00300000 /* Jump and Link */
|
637 |
|
|
|| (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
|
638 |
|
|
|| (op & 0x01f80000) == 0x00700000) /* Trap immediate */
|
639 |
|
|
{
|
640 |
|
|
/* Stop scanning; not in prologue any longer. */
|
641 |
|
|
break;
|
642 |
|
|
}
|
643 |
|
|
|
644 |
|
|
/* Loading something from memory into fp probably means that
|
645 |
|
|
we're in the epilogue. Stop scanning the prologue.
|
646 |
|
|
ld @(GRi, GRk), fp
|
647 |
|
|
X 000010 0000010 XXXXXX 000100 XXXXXX
|
648 |
|
|
ldi @(GRi, d12), fp
|
649 |
|
|
X 000010 0110010 XXXXXX XXXXXXXXXXXX */
|
650 |
|
|
else if ((op & 0x7ffc0fc0) == 0x04080100
|
651 |
|
|
|| (op & 0x7ffc0000) == 0x04c80000)
|
652 |
|
|
{
|
653 |
|
|
break;
|
654 |
|
|
}
|
655 |
|
|
|
656 |
|
|
/* Setting the FP from the SP:
|
657 |
|
|
ori sp, 0, fp
|
658 |
|
|
P 000010 0100010 000001 000000000000 = 0x04881000
|
659 |
|
|
|
660 |
|
|
. . . . . . . .
|
661 |
|
|
We treat this as part of the prologue. */
|
662 |
|
|
else if ((op & 0x7fffffff) == 0x04881000)
|
663 |
|
|
{
|
664 |
|
|
fp_set = 1;
|
665 |
|
|
fp_offset = 0;
|
666 |
|
|
last_prologue_pc = next_pc;
|
667 |
|
|
}
|
668 |
|
|
|
669 |
|
|
/* Move the link register to the scratch register grJ, before saving:
|
670 |
|
|
movsg lr, grJ
|
671 |
|
|
P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
|
672 |
|
|
|
673 |
|
|
. . . . . . . .
|
674 |
|
|
We treat this as part of the prologue. */
|
675 |
|
|
else if ((op & 0x7fffffc0) == 0x080d01c0)
|
676 |
|
|
{
|
677 |
|
|
int gr_j = op & 0x3f;
|
678 |
|
|
|
679 |
|
|
/* If we're moving it to a scratch register, that's fine. */
|
680 |
|
|
if (is_caller_saves_reg (gr_j))
|
681 |
|
|
{
|
682 |
|
|
lr_save_reg = gr_j;
|
683 |
|
|
last_prologue_pc = next_pc;
|
684 |
|
|
}
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
/* To save multiple callee-saves registers on the stack, at
|
688 |
|
|
offset zero:
|
689 |
|
|
|
690 |
|
|
std grK,@(sp,gr0)
|
691 |
|
|
P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
|
692 |
|
|
|
693 |
|
|
|
694 |
|
|
stq grK,@(sp,gr0)
|
695 |
|
|
P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
|
696 |
|
|
|
697 |
|
|
. . . . . . . .
|
698 |
|
|
We treat this as part of the prologue, and record the register's
|
699 |
|
|
saved address in the frame structure. */
|
700 |
|
|
else if ((op & 0x01ffffff) == 0x000c10c0
|
701 |
|
|
|| (op & 0x01ffffff) == 0x000c1100)
|
702 |
|
|
{
|
703 |
|
|
int gr_k = ((op >> 25) & 0x3f);
|
704 |
|
|
int ope = ((op >> 6) & 0x3f);
|
705 |
|
|
int count;
|
706 |
|
|
int i;
|
707 |
|
|
|
708 |
|
|
/* Is it an std or an stq? */
|
709 |
|
|
if (ope == 0x03)
|
710 |
|
|
count = 2;
|
711 |
|
|
else
|
712 |
|
|
count = 4;
|
713 |
|
|
|
714 |
|
|
/* Is it really a callee-saves register? */
|
715 |
|
|
if (is_callee_saves_reg (gr_k))
|
716 |
|
|
{
|
717 |
|
|
for (i = 0; i < count; i++)
|
718 |
|
|
{
|
719 |
|
|
gr_saved[gr_k + i] = 1;
|
720 |
|
|
gr_sp_offset[gr_k + i] = 4 * i;
|
721 |
|
|
}
|
722 |
|
|
last_prologue_pc = next_pc;
|
723 |
|
|
}
|
724 |
|
|
}
|
725 |
|
|
|
726 |
|
|
/* Adjusting the stack pointer. (The stack pointer is GR1.)
|
727 |
|
|
addi sp, S, sp
|
728 |
|
|
P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
|
729 |
|
|
|
730 |
|
|
. . . . . . . .
|
731 |
|
|
We treat this as part of the prologue. */
|
732 |
|
|
else if ((op & 0x7ffff000) == 0x02401000)
|
733 |
|
|
{
|
734 |
|
|
if (framesize == 0)
|
735 |
|
|
{
|
736 |
|
|
/* Sign-extend the twelve-bit field.
|
737 |
|
|
(Isn't there a better way to do this?) */
|
738 |
|
|
int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
|
739 |
|
|
|
740 |
|
|
framesize -= s;
|
741 |
|
|
last_prologue_pc = pc;
|
742 |
|
|
}
|
743 |
|
|
else
|
744 |
|
|
{
|
745 |
|
|
/* If the prologue is being adjusted again, we've
|
746 |
|
|
likely gone too far; i.e. we're probably in the
|
747 |
|
|
epilogue. */
|
748 |
|
|
break;
|
749 |
|
|
}
|
750 |
|
|
}
|
751 |
|
|
|
752 |
|
|
/* Setting the FP to a constant distance from the SP:
|
753 |
|
|
addi sp, S, fp
|
754 |
|
|
P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
|
755 |
|
|
|
756 |
|
|
. . . . . . . .
|
757 |
|
|
We treat this as part of the prologue. */
|
758 |
|
|
else if ((op & 0x7ffff000) == 0x04401000)
|
759 |
|
|
{
|
760 |
|
|
/* Sign-extend the twelve-bit field.
|
761 |
|
|
(Isn't there a better way to do this?) */
|
762 |
|
|
int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
|
763 |
|
|
fp_set = 1;
|
764 |
|
|
fp_offset = s;
|
765 |
|
|
last_prologue_pc = pc;
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
/* To spill an argument register to a scratch register:
|
769 |
|
|
ori GRi, 0, GRk
|
770 |
|
|
P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
|
771 |
|
|
|
772 |
|
|
. . . . . . . .
|
773 |
|
|
For the time being, we treat this as a prologue instruction,
|
774 |
|
|
assuming that GRi is an argument register. This one's kind
|
775 |
|
|
of suspicious, because it seems like it could be part of a
|
776 |
|
|
legitimate body instruction. But we only come here when the
|
777 |
|
|
source info wasn't helpful, so we have to do the best we can.
|
778 |
|
|
Hopefully once GCC and GDB agree on how to emit line number
|
779 |
|
|
info for prologues, then this code will never come into play. */
|
780 |
|
|
else if ((op & 0x01fc0fff) == 0x00880000)
|
781 |
|
|
{
|
782 |
|
|
int gr_i = ((op >> 12) & 0x3f);
|
783 |
|
|
|
784 |
|
|
/* Make sure that the source is an arg register; if it is, we'll
|
785 |
|
|
treat it as a prologue instruction. */
|
786 |
|
|
if (is_argument_reg (gr_i))
|
787 |
|
|
last_prologue_pc = next_pc;
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
/* To spill 16-bit values to the stack:
|
791 |
|
|
sthi GRk, @(fp, s)
|
792 |
|
|
P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
|
793 |
|
|
|
794 |
|
|
. . . . . . . .
|
795 |
|
|
And for 8-bit values, we use STB instructions.
|
796 |
|
|
stbi GRk, @(fp, s)
|
797 |
|
|
P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
|
798 |
|
|
|
799 |
|
|
. . . . . . . .
|
800 |
|
|
We check that GRk is really an argument register, and treat
|
801 |
|
|
all such as part of the prologue. */
|
802 |
|
|
else if ( (op & 0x01fff000) == 0x01442000
|
803 |
|
|
|| (op & 0x01fff000) == 0x01402000)
|
804 |
|
|
{
|
805 |
|
|
int gr_k = ((op >> 25) & 0x3f);
|
806 |
|
|
|
807 |
|
|
/* Make sure that GRk is really an argument register; treat
|
808 |
|
|
it as a prologue instruction if so. */
|
809 |
|
|
if (is_argument_reg (gr_k))
|
810 |
|
|
last_prologue_pc = next_pc;
|
811 |
|
|
}
|
812 |
|
|
|
813 |
|
|
/* To save multiple callee-saves register on the stack, at a
|
814 |
|
|
non-zero offset:
|
815 |
|
|
|
816 |
|
|
stdi GRk, @(sp, s)
|
817 |
|
|
P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
|
818 |
|
|
|
819 |
|
|
. . . . . . . .
|
820 |
|
|
stqi GRk, @(sp, s)
|
821 |
|
|
P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
|
822 |
|
|
|
823 |
|
|
. . . . . . . .
|
824 |
|
|
We treat this as part of the prologue, and record the register's
|
825 |
|
|
saved address in the frame structure. */
|
826 |
|
|
else if ((op & 0x01fff000) == 0x014c1000
|
827 |
|
|
|| (op & 0x01fff000) == 0x01501000)
|
828 |
|
|
{
|
829 |
|
|
int gr_k = ((op >> 25) & 0x3f);
|
830 |
|
|
int count;
|
831 |
|
|
int i;
|
832 |
|
|
|
833 |
|
|
/* Is it a stdi or a stqi? */
|
834 |
|
|
if ((op & 0x01fff000) == 0x014c1000)
|
835 |
|
|
count = 2;
|
836 |
|
|
else
|
837 |
|
|
count = 4;
|
838 |
|
|
|
839 |
|
|
/* Is it really a callee-saves register? */
|
840 |
|
|
if (is_callee_saves_reg (gr_k))
|
841 |
|
|
{
|
842 |
|
|
/* Sign-extend the twelve-bit field.
|
843 |
|
|
(Isn't there a better way to do this?) */
|
844 |
|
|
int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
|
845 |
|
|
|
846 |
|
|
for (i = 0; i < count; i++)
|
847 |
|
|
{
|
848 |
|
|
gr_saved[gr_k + i] = 1;
|
849 |
|
|
gr_sp_offset[gr_k + i] = s + (4 * i);
|
850 |
|
|
}
|
851 |
|
|
last_prologue_pc = next_pc;
|
852 |
|
|
}
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
/* Storing any kind of integer register at any constant offset
|
856 |
|
|
from any other register.
|
857 |
|
|
|
858 |
|
|
st GRk, @(GRi, gr0)
|
859 |
|
|
P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
|
860 |
|
|
|
861 |
|
|
. . . . . . . .
|
862 |
|
|
sti GRk, @(GRi, d12)
|
863 |
|
|
P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
|
864 |
|
|
|
865 |
|
|
. . . . . . . .
|
866 |
|
|
These could be almost anything, but a lot of prologue
|
867 |
|
|
instructions fall into this pattern, so let's decode the
|
868 |
|
|
instruction once, and then work at a higher level. */
|
869 |
|
|
else if (((op & 0x01fc0fff) == 0x000c0080)
|
870 |
|
|
|| ((op & 0x01fc0000) == 0x01480000))
|
871 |
|
|
{
|
872 |
|
|
int gr_k = ((op >> 25) & 0x3f);
|
873 |
|
|
int gr_i = ((op >> 12) & 0x3f);
|
874 |
|
|
int offset;
|
875 |
|
|
|
876 |
|
|
/* Are we storing with gr0 as an offset, or using an
|
877 |
|
|
immediate value? */
|
878 |
|
|
if ((op & 0x01fc0fff) == 0x000c0080)
|
879 |
|
|
offset = 0;
|
880 |
|
|
else
|
881 |
|
|
offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
|
882 |
|
|
|
883 |
|
|
/* If the address isn't relative to the SP or FP, it's not a
|
884 |
|
|
prologue instruction. */
|
885 |
|
|
if (gr_i != sp_regnum && gr_i != fp_regnum)
|
886 |
|
|
{
|
887 |
|
|
/* Do nothing; not a prologue instruction. */
|
888 |
|
|
}
|
889 |
|
|
|
890 |
|
|
/* Saving the old FP in the new frame (relative to the SP). */
|
891 |
|
|
else if (gr_k == fp_regnum && gr_i == sp_regnum)
|
892 |
|
|
{
|
893 |
|
|
gr_saved[fp_regnum] = 1;
|
894 |
|
|
gr_sp_offset[fp_regnum] = offset;
|
895 |
|
|
last_prologue_pc = next_pc;
|
896 |
|
|
}
|
897 |
|
|
|
898 |
|
|
/* Saving callee-saves register(s) on the stack, relative to
|
899 |
|
|
the SP. */
|
900 |
|
|
else if (gr_i == sp_regnum
|
901 |
|
|
&& is_callee_saves_reg (gr_k))
|
902 |
|
|
{
|
903 |
|
|
gr_saved[gr_k] = 1;
|
904 |
|
|
if (gr_i == sp_regnum)
|
905 |
|
|
gr_sp_offset[gr_k] = offset;
|
906 |
|
|
else
|
907 |
|
|
gr_sp_offset[gr_k] = offset + fp_offset;
|
908 |
|
|
last_prologue_pc = next_pc;
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
/* Saving the scratch register holding the return address. */
|
912 |
|
|
else if (lr_save_reg != -1
|
913 |
|
|
&& gr_k == lr_save_reg)
|
914 |
|
|
{
|
915 |
|
|
lr_saved_on_stack = 1;
|
916 |
|
|
if (gr_i == sp_regnum)
|
917 |
|
|
lr_sp_offset = offset;
|
918 |
|
|
else
|
919 |
|
|
lr_sp_offset = offset + fp_offset;
|
920 |
|
|
last_prologue_pc = next_pc;
|
921 |
|
|
}
|
922 |
|
|
|
923 |
|
|
/* Spilling int-sized arguments to the stack. */
|
924 |
|
|
else if (is_argument_reg (gr_k))
|
925 |
|
|
last_prologue_pc = next_pc;
|
926 |
|
|
}
|
927 |
|
|
pc = next_pc;
|
928 |
|
|
}
|
929 |
|
|
|
930 |
|
|
if (next_frame && info)
|
931 |
|
|
{
|
932 |
|
|
int i;
|
933 |
|
|
ULONGEST this_base;
|
934 |
|
|
|
935 |
|
|
/* If we know the relationship between the stack and frame
|
936 |
|
|
pointers, record the addresses of the registers we noticed.
|
937 |
|
|
Note that we have to do this as a separate step at the end,
|
938 |
|
|
because instructions may save relative to the SP, but we need
|
939 |
|
|
their addresses relative to the FP. */
|
940 |
|
|
if (fp_set)
|
941 |
|
|
this_base = frame_unwind_register_unsigned (next_frame, fp_regnum);
|
942 |
|
|
else
|
943 |
|
|
this_base = frame_unwind_register_unsigned (next_frame, sp_regnum);
|
944 |
|
|
|
945 |
|
|
for (i = 0; i < 64; i++)
|
946 |
|
|
if (gr_saved[i])
|
947 |
|
|
info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
|
948 |
|
|
|
949 |
|
|
info->prev_sp = this_base - fp_offset + framesize;
|
950 |
|
|
info->base = this_base;
|
951 |
|
|
|
952 |
|
|
/* If LR was saved on the stack, record its location. */
|
953 |
|
|
if (lr_saved_on_stack)
|
954 |
|
|
info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
|
955 |
|
|
|
956 |
|
|
/* The call instruction moves the caller's PC in the callee's LR.
|
957 |
|
|
Since this is an unwind, do the reverse. Copy the location of LR
|
958 |
|
|
into PC (the address / regnum) so that a request for PC will be
|
959 |
|
|
converted into a request for the LR. */
|
960 |
|
|
info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
|
961 |
|
|
|
962 |
|
|
/* Save the previous frame's computed SP value. */
|
963 |
|
|
trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
|
964 |
|
|
}
|
965 |
|
|
|
966 |
|
|
return last_prologue_pc;
|
967 |
|
|
}
|
968 |
|
|
|
969 |
|
|
|
970 |
|
|
static CORE_ADDR
|
971 |
|
|
frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
972 |
|
|
{
|
973 |
|
|
CORE_ADDR func_addr, func_end, new_pc;
|
974 |
|
|
|
975 |
|
|
new_pc = pc;
|
976 |
|
|
|
977 |
|
|
/* If the line table has entry for a line *within* the function
|
978 |
|
|
(i.e., not in the prologue, and not past the end), then that's
|
979 |
|
|
our location. */
|
980 |
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
981 |
|
|
{
|
982 |
|
|
struct symtab_and_line sal;
|
983 |
|
|
|
984 |
|
|
sal = find_pc_line (func_addr, 0);
|
985 |
|
|
|
986 |
|
|
if (sal.line != 0 && sal.end < func_end)
|
987 |
|
|
{
|
988 |
|
|
new_pc = sal.end;
|
989 |
|
|
}
|
990 |
|
|
}
|
991 |
|
|
|
992 |
|
|
/* The FR-V prologue is at least five instructions long (twenty bytes).
|
993 |
|
|
If we didn't find a real source location past that, then
|
994 |
|
|
do a full analysis of the prologue. */
|
995 |
|
|
if (new_pc < pc + 20)
|
996 |
|
|
new_pc = frv_analyze_prologue (pc, 0, 0);
|
997 |
|
|
|
998 |
|
|
return new_pc;
|
999 |
|
|
}
|
1000 |
|
|
|
1001 |
|
|
|
1002 |
|
|
static struct frv_unwind_cache *
|
1003 |
|
|
frv_frame_unwind_cache (struct frame_info *next_frame,
|
1004 |
|
|
void **this_prologue_cache)
|
1005 |
|
|
{
|
1006 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
1007 |
|
|
CORE_ADDR pc;
|
1008 |
|
|
ULONGEST this_base;
|
1009 |
|
|
struct frv_unwind_cache *info;
|
1010 |
|
|
|
1011 |
|
|
if ((*this_prologue_cache))
|
1012 |
|
|
return (*this_prologue_cache);
|
1013 |
|
|
|
1014 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
|
1015 |
|
|
(*this_prologue_cache) = info;
|
1016 |
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
1017 |
|
|
|
1018 |
|
|
/* Prologue analysis does the rest... */
|
1019 |
|
|
frv_analyze_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
|
1020 |
|
|
next_frame, info);
|
1021 |
|
|
|
1022 |
|
|
return info;
|
1023 |
|
|
}
|
1024 |
|
|
|
1025 |
|
|
static void
|
1026 |
|
|
frv_extract_return_value (struct type *type, struct regcache *regcache,
|
1027 |
|
|
gdb_byte *valbuf)
|
1028 |
|
|
{
|
1029 |
|
|
int len = TYPE_LENGTH (type);
|
1030 |
|
|
|
1031 |
|
|
if (len <= 4)
|
1032 |
|
|
{
|
1033 |
|
|
ULONGEST gpr8_val;
|
1034 |
|
|
regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
|
1035 |
|
|
store_unsigned_integer (valbuf, len, gpr8_val);
|
1036 |
|
|
}
|
1037 |
|
|
else if (len == 8)
|
1038 |
|
|
{
|
1039 |
|
|
ULONGEST regval;
|
1040 |
|
|
regcache_cooked_read_unsigned (regcache, 8, ®val);
|
1041 |
|
|
store_unsigned_integer (valbuf, 4, regval);
|
1042 |
|
|
regcache_cooked_read_unsigned (regcache, 9, ®val);
|
1043 |
|
|
store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
|
1044 |
|
|
}
|
1045 |
|
|
else
|
1046 |
|
|
internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
|
1047 |
|
|
}
|
1048 |
|
|
|
1049 |
|
|
static CORE_ADDR
|
1050 |
|
|
frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
1051 |
|
|
{
|
1052 |
|
|
/* Require dword alignment. */
|
1053 |
|
|
return align_down (sp, 8);
|
1054 |
|
|
}
|
1055 |
|
|
|
1056 |
|
|
static CORE_ADDR
|
1057 |
|
|
find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
|
1058 |
|
|
{
|
1059 |
|
|
CORE_ADDR descr;
|
1060 |
|
|
char valbuf[4];
|
1061 |
|
|
CORE_ADDR start_addr;
|
1062 |
|
|
|
1063 |
|
|
/* If we can't find the function in the symbol table, then we assume
|
1064 |
|
|
that the function address is already in descriptor form. */
|
1065 |
|
|
if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
|
1066 |
|
|
|| entry_point != start_addr)
|
1067 |
|
|
return entry_point;
|
1068 |
|
|
|
1069 |
|
|
descr = frv_fdpic_find_canonical_descriptor (entry_point);
|
1070 |
|
|
|
1071 |
|
|
if (descr != 0)
|
1072 |
|
|
return descr;
|
1073 |
|
|
|
1074 |
|
|
/* Construct a non-canonical descriptor from space allocated on
|
1075 |
|
|
the stack. */
|
1076 |
|
|
|
1077 |
|
|
descr = value_as_long (value_allocate_space_in_inferior (8));
|
1078 |
|
|
store_unsigned_integer (valbuf, 4, entry_point);
|
1079 |
|
|
write_memory (descr, valbuf, 4);
|
1080 |
|
|
store_unsigned_integer (valbuf, 4,
|
1081 |
|
|
frv_fdpic_find_global_pointer (entry_point));
|
1082 |
|
|
write_memory (descr + 4, valbuf, 4);
|
1083 |
|
|
return descr;
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
static CORE_ADDR
|
1087 |
|
|
frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
|
1088 |
|
|
struct target_ops *targ)
|
1089 |
|
|
{
|
1090 |
|
|
CORE_ADDR entry_point;
|
1091 |
|
|
CORE_ADDR got_address;
|
1092 |
|
|
|
1093 |
|
|
entry_point = get_target_memory_unsigned (targ, addr, 4);
|
1094 |
|
|
got_address = get_target_memory_unsigned (targ, addr + 4, 4);
|
1095 |
|
|
|
1096 |
|
|
if (got_address == frv_fdpic_find_global_pointer (entry_point))
|
1097 |
|
|
return entry_point;
|
1098 |
|
|
else
|
1099 |
|
|
return addr;
|
1100 |
|
|
}
|
1101 |
|
|
|
1102 |
|
|
static CORE_ADDR
|
1103 |
|
|
frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
1104 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
1105 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
1106 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
1107 |
|
|
{
|
1108 |
|
|
int argreg;
|
1109 |
|
|
int argnum;
|
1110 |
|
|
char *val;
|
1111 |
|
|
char valbuf[4];
|
1112 |
|
|
struct value *arg;
|
1113 |
|
|
struct type *arg_type;
|
1114 |
|
|
int len;
|
1115 |
|
|
enum type_code typecode;
|
1116 |
|
|
CORE_ADDR regval;
|
1117 |
|
|
int stack_space;
|
1118 |
|
|
int stack_offset;
|
1119 |
|
|
enum frv_abi abi = frv_abi (gdbarch);
|
1120 |
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
1121 |
|
|
|
1122 |
|
|
#if 0
|
1123 |
|
|
printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
|
1124 |
|
|
nargs, (int) sp, struct_return, struct_addr);
|
1125 |
|
|
#endif
|
1126 |
|
|
|
1127 |
|
|
stack_space = 0;
|
1128 |
|
|
for (argnum = 0; argnum < nargs; ++argnum)
|
1129 |
|
|
stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
|
1130 |
|
|
|
1131 |
|
|
stack_space -= (6 * 4);
|
1132 |
|
|
if (stack_space > 0)
|
1133 |
|
|
sp -= stack_space;
|
1134 |
|
|
|
1135 |
|
|
/* Make sure stack is dword aligned. */
|
1136 |
|
|
sp = align_down (sp, 8);
|
1137 |
|
|
|
1138 |
|
|
stack_offset = 0;
|
1139 |
|
|
|
1140 |
|
|
argreg = 8;
|
1141 |
|
|
|
1142 |
|
|
if (struct_return)
|
1143 |
|
|
regcache_cooked_write_unsigned (regcache, struct_return_regnum,
|
1144 |
|
|
struct_addr);
|
1145 |
|
|
|
1146 |
|
|
for (argnum = 0; argnum < nargs; ++argnum)
|
1147 |
|
|
{
|
1148 |
|
|
arg = args[argnum];
|
1149 |
|
|
arg_type = check_typedef (value_type (arg));
|
1150 |
|
|
len = TYPE_LENGTH (arg_type);
|
1151 |
|
|
typecode = TYPE_CODE (arg_type);
|
1152 |
|
|
|
1153 |
|
|
if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
|
1154 |
|
|
{
|
1155 |
|
|
store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
|
1156 |
|
|
typecode = TYPE_CODE_PTR;
|
1157 |
|
|
len = 4;
|
1158 |
|
|
val = valbuf;
|
1159 |
|
|
}
|
1160 |
|
|
else if (abi == FRV_ABI_FDPIC
|
1161 |
|
|
&& len == 4
|
1162 |
|
|
&& typecode == TYPE_CODE_PTR
|
1163 |
|
|
&& TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
|
1164 |
|
|
{
|
1165 |
|
|
/* The FDPIC ABI requires function descriptors to be passed instead
|
1166 |
|
|
of entry points. */
|
1167 |
|
|
store_unsigned_integer
|
1168 |
|
|
(valbuf, 4,
|
1169 |
|
|
find_func_descr (gdbarch,
|
1170 |
|
|
extract_unsigned_integer (value_contents (arg),
|
1171 |
|
|
4)));
|
1172 |
|
|
typecode = TYPE_CODE_PTR;
|
1173 |
|
|
len = 4;
|
1174 |
|
|
val = valbuf;
|
1175 |
|
|
}
|
1176 |
|
|
else
|
1177 |
|
|
{
|
1178 |
|
|
val = (char *) value_contents (arg);
|
1179 |
|
|
}
|
1180 |
|
|
|
1181 |
|
|
while (len > 0)
|
1182 |
|
|
{
|
1183 |
|
|
int partial_len = (len < 4 ? len : 4);
|
1184 |
|
|
|
1185 |
|
|
if (argreg < 14)
|
1186 |
|
|
{
|
1187 |
|
|
regval = extract_unsigned_integer (val, partial_len);
|
1188 |
|
|
#if 0
|
1189 |
|
|
printf(" Argnum %d data %x -> reg %d\n",
|
1190 |
|
|
argnum, (int) regval, argreg);
|
1191 |
|
|
#endif
|
1192 |
|
|
regcache_cooked_write_unsigned (regcache, argreg, regval);
|
1193 |
|
|
++argreg;
|
1194 |
|
|
}
|
1195 |
|
|
else
|
1196 |
|
|
{
|
1197 |
|
|
#if 0
|
1198 |
|
|
printf(" Argnum %d data %x -> offset %d (%x)\n",
|
1199 |
|
|
argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
|
1200 |
|
|
#endif
|
1201 |
|
|
write_memory (sp + stack_offset, val, partial_len);
|
1202 |
|
|
stack_offset += align_up (partial_len, 4);
|
1203 |
|
|
}
|
1204 |
|
|
len -= partial_len;
|
1205 |
|
|
val += partial_len;
|
1206 |
|
|
}
|
1207 |
|
|
}
|
1208 |
|
|
|
1209 |
|
|
/* Set the return address. For the frv, the return breakpoint is
|
1210 |
|
|
always at BP_ADDR. */
|
1211 |
|
|
regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
|
1212 |
|
|
|
1213 |
|
|
if (abi == FRV_ABI_FDPIC)
|
1214 |
|
|
{
|
1215 |
|
|
/* Set the GOT register for the FDPIC ABI. */
|
1216 |
|
|
regcache_cooked_write_unsigned
|
1217 |
|
|
(regcache, first_gpr_regnum + 15,
|
1218 |
|
|
frv_fdpic_find_global_pointer (func_addr));
|
1219 |
|
|
}
|
1220 |
|
|
|
1221 |
|
|
/* Finally, update the SP register. */
|
1222 |
|
|
regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
|
1223 |
|
|
|
1224 |
|
|
return sp;
|
1225 |
|
|
}
|
1226 |
|
|
|
1227 |
|
|
static void
|
1228 |
|
|
frv_store_return_value (struct type *type, struct regcache *regcache,
|
1229 |
|
|
const gdb_byte *valbuf)
|
1230 |
|
|
{
|
1231 |
|
|
int len = TYPE_LENGTH (type);
|
1232 |
|
|
|
1233 |
|
|
if (len <= 4)
|
1234 |
|
|
{
|
1235 |
|
|
bfd_byte val[4];
|
1236 |
|
|
memset (val, 0, sizeof (val));
|
1237 |
|
|
memcpy (val + (4 - len), valbuf, len);
|
1238 |
|
|
regcache_cooked_write (regcache, 8, val);
|
1239 |
|
|
}
|
1240 |
|
|
else if (len == 8)
|
1241 |
|
|
{
|
1242 |
|
|
regcache_cooked_write (regcache, 8, valbuf);
|
1243 |
|
|
regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
|
1244 |
|
|
}
|
1245 |
|
|
else
|
1246 |
|
|
internal_error (__FILE__, __LINE__,
|
1247 |
|
|
_("Don't know how to return a %d-byte value."), len);
|
1248 |
|
|
}
|
1249 |
|
|
|
1250 |
|
|
enum return_value_convention
|
1251 |
|
|
frv_return_value (struct gdbarch *gdbarch, struct type *valtype,
|
1252 |
|
|
struct regcache *regcache, gdb_byte *readbuf,
|
1253 |
|
|
const gdb_byte *writebuf)
|
1254 |
|
|
{
|
1255 |
|
|
int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
1256 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|
1257 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
|
1258 |
|
|
|
1259 |
|
|
if (writebuf != NULL)
|
1260 |
|
|
{
|
1261 |
|
|
gdb_assert (!struct_return);
|
1262 |
|
|
frv_store_return_value (valtype, regcache, writebuf);
|
1263 |
|
|
}
|
1264 |
|
|
|
1265 |
|
|
if (readbuf != NULL)
|
1266 |
|
|
{
|
1267 |
|
|
gdb_assert (!struct_return);
|
1268 |
|
|
frv_extract_return_value (valtype, regcache, readbuf);
|
1269 |
|
|
}
|
1270 |
|
|
|
1271 |
|
|
if (struct_return)
|
1272 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
1273 |
|
|
else
|
1274 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
1275 |
|
|
}
|
1276 |
|
|
|
1277 |
|
|
|
1278 |
|
|
/* Hardware watchpoint / breakpoint support for the FR500
|
1279 |
|
|
and FR400. */
|
1280 |
|
|
|
1281 |
|
|
int
|
1282 |
|
|
frv_check_watch_resources (struct gdbarch *gdbarch, int type, int cnt, int ot)
|
1283 |
|
|
{
|
1284 |
|
|
struct gdbarch_tdep *var = gdbarch_tdep (gdbarch);
|
1285 |
|
|
|
1286 |
|
|
/* Watchpoints not supported on simulator. */
|
1287 |
|
|
if (strcmp (target_shortname, "sim") == 0)
|
1288 |
|
|
return 0;
|
1289 |
|
|
|
1290 |
|
|
if (type == bp_hardware_breakpoint)
|
1291 |
|
|
{
|
1292 |
|
|
if (var->num_hw_breakpoints == 0)
|
1293 |
|
|
return 0;
|
1294 |
|
|
else if (cnt <= var->num_hw_breakpoints)
|
1295 |
|
|
return 1;
|
1296 |
|
|
}
|
1297 |
|
|
else
|
1298 |
|
|
{
|
1299 |
|
|
if (var->num_hw_watchpoints == 0)
|
1300 |
|
|
return 0;
|
1301 |
|
|
else if (ot)
|
1302 |
|
|
return -1;
|
1303 |
|
|
else if (cnt <= var->num_hw_watchpoints)
|
1304 |
|
|
return 1;
|
1305 |
|
|
}
|
1306 |
|
|
return -1;
|
1307 |
|
|
}
|
1308 |
|
|
|
1309 |
|
|
|
1310 |
|
|
int
|
1311 |
|
|
frv_stopped_data_address (CORE_ADDR *addr_p)
|
1312 |
|
|
{
|
1313 |
|
|
struct frame_info *frame = get_current_frame ();
|
1314 |
|
|
CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
|
1315 |
|
|
|
1316 |
|
|
brr = get_frame_register_unsigned (frame, brr_regnum);
|
1317 |
|
|
dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
|
1318 |
|
|
dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
|
1319 |
|
|
dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
|
1320 |
|
|
dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
|
1321 |
|
|
|
1322 |
|
|
if (brr & (1<<11))
|
1323 |
|
|
*addr_p = dbar0;
|
1324 |
|
|
else if (brr & (1<<10))
|
1325 |
|
|
*addr_p = dbar1;
|
1326 |
|
|
else if (brr & (1<<9))
|
1327 |
|
|
*addr_p = dbar2;
|
1328 |
|
|
else if (brr & (1<<8))
|
1329 |
|
|
*addr_p = dbar3;
|
1330 |
|
|
else
|
1331 |
|
|
return 0;
|
1332 |
|
|
|
1333 |
|
|
return 1;
|
1334 |
|
|
}
|
1335 |
|
|
|
1336 |
|
|
int
|
1337 |
|
|
frv_have_stopped_data_address (void)
|
1338 |
|
|
{
|
1339 |
|
|
CORE_ADDR addr = 0;
|
1340 |
|
|
return frv_stopped_data_address (&addr);
|
1341 |
|
|
}
|
1342 |
|
|
|
1343 |
|
|
static CORE_ADDR
|
1344 |
|
|
frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1345 |
|
|
{
|
1346 |
|
|
return frame_unwind_register_unsigned (next_frame, pc_regnum);
|
1347 |
|
|
}
|
1348 |
|
|
|
1349 |
|
|
/* Given a GDB frame, determine the address of the calling function's
|
1350 |
|
|
frame. This will be used to create a new GDB frame struct. */
|
1351 |
|
|
|
1352 |
|
|
static void
|
1353 |
|
|
frv_frame_this_id (struct frame_info *next_frame,
|
1354 |
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
1355 |
|
|
{
|
1356 |
|
|
struct frv_unwind_cache *info
|
1357 |
|
|
= frv_frame_unwind_cache (next_frame, this_prologue_cache);
|
1358 |
|
|
CORE_ADDR base;
|
1359 |
|
|
CORE_ADDR func;
|
1360 |
|
|
struct minimal_symbol *msym_stack;
|
1361 |
|
|
struct frame_id id;
|
1362 |
|
|
|
1363 |
|
|
/* The FUNC is easy. */
|
1364 |
|
|
func = frame_func_unwind (next_frame, NORMAL_FRAME);
|
1365 |
|
|
|
1366 |
|
|
/* Check if the stack is empty. */
|
1367 |
|
|
msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
|
1368 |
|
|
if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
|
1369 |
|
|
return;
|
1370 |
|
|
|
1371 |
|
|
/* Hopefully the prologue analysis either correctly determined the
|
1372 |
|
|
frame's base (which is the SP from the previous frame), or set
|
1373 |
|
|
that base to "NULL". */
|
1374 |
|
|
base = info->prev_sp;
|
1375 |
|
|
if (base == 0)
|
1376 |
|
|
return;
|
1377 |
|
|
|
1378 |
|
|
id = frame_id_build (base, func);
|
1379 |
|
|
(*this_id) = id;
|
1380 |
|
|
}
|
1381 |
|
|
|
1382 |
|
|
static void
|
1383 |
|
|
frv_frame_prev_register (struct frame_info *next_frame,
|
1384 |
|
|
void **this_prologue_cache,
|
1385 |
|
|
int regnum, int *optimizedp,
|
1386 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
1387 |
|
|
int *realnump, gdb_byte *bufferp)
|
1388 |
|
|
{
|
1389 |
|
|
struct frv_unwind_cache *info
|
1390 |
|
|
= frv_frame_unwind_cache (next_frame, this_prologue_cache);
|
1391 |
|
|
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
|
1392 |
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
1393 |
|
|
}
|
1394 |
|
|
|
1395 |
|
|
static const struct frame_unwind frv_frame_unwind = {
|
1396 |
|
|
NORMAL_FRAME,
|
1397 |
|
|
frv_frame_this_id,
|
1398 |
|
|
frv_frame_prev_register
|
1399 |
|
|
};
|
1400 |
|
|
|
1401 |
|
|
static const struct frame_unwind *
|
1402 |
|
|
frv_frame_sniffer (struct frame_info *next_frame)
|
1403 |
|
|
{
|
1404 |
|
|
return &frv_frame_unwind;
|
1405 |
|
|
}
|
1406 |
|
|
|
1407 |
|
|
static CORE_ADDR
|
1408 |
|
|
frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
1409 |
|
|
{
|
1410 |
|
|
struct frv_unwind_cache *info
|
1411 |
|
|
= frv_frame_unwind_cache (next_frame, this_cache);
|
1412 |
|
|
return info->base;
|
1413 |
|
|
}
|
1414 |
|
|
|
1415 |
|
|
static const struct frame_base frv_frame_base = {
|
1416 |
|
|
&frv_frame_unwind,
|
1417 |
|
|
frv_frame_base_address,
|
1418 |
|
|
frv_frame_base_address,
|
1419 |
|
|
frv_frame_base_address
|
1420 |
|
|
};
|
1421 |
|
|
|
1422 |
|
|
static CORE_ADDR
|
1423 |
|
|
frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1424 |
|
|
{
|
1425 |
|
|
return frame_unwind_register_unsigned (next_frame, sp_regnum);
|
1426 |
|
|
}
|
1427 |
|
|
|
1428 |
|
|
|
1429 |
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
1430 |
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
1431 |
|
|
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
|
1432 |
|
|
breakpoint. */
|
1433 |
|
|
|
1434 |
|
|
static struct frame_id
|
1435 |
|
|
frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1436 |
|
|
{
|
1437 |
|
|
return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
|
1438 |
|
|
frame_pc_unwind (next_frame));
|
1439 |
|
|
}
|
1440 |
|
|
|
1441 |
|
|
static struct gdbarch *
|
1442 |
|
|
frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
1443 |
|
|
{
|
1444 |
|
|
struct gdbarch *gdbarch;
|
1445 |
|
|
struct gdbarch_tdep *var;
|
1446 |
|
|
int elf_flags = 0;
|
1447 |
|
|
|
1448 |
|
|
/* Check to see if we've already built an appropriate architecture
|
1449 |
|
|
object for this executable. */
|
1450 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
1451 |
|
|
if (arches)
|
1452 |
|
|
return arches->gdbarch;
|
1453 |
|
|
|
1454 |
|
|
/* Select the right tdep structure for this variant. */
|
1455 |
|
|
var = new_variant ();
|
1456 |
|
|
switch (info.bfd_arch_info->mach)
|
1457 |
|
|
{
|
1458 |
|
|
case bfd_mach_frv:
|
1459 |
|
|
case bfd_mach_frvsimple:
|
1460 |
|
|
case bfd_mach_fr500:
|
1461 |
|
|
case bfd_mach_frvtomcat:
|
1462 |
|
|
case bfd_mach_fr550:
|
1463 |
|
|
set_variant_num_gprs (var, 64);
|
1464 |
|
|
set_variant_num_fprs (var, 64);
|
1465 |
|
|
break;
|
1466 |
|
|
|
1467 |
|
|
case bfd_mach_fr400:
|
1468 |
|
|
case bfd_mach_fr450:
|
1469 |
|
|
set_variant_num_gprs (var, 32);
|
1470 |
|
|
set_variant_num_fprs (var, 32);
|
1471 |
|
|
break;
|
1472 |
|
|
|
1473 |
|
|
default:
|
1474 |
|
|
/* Never heard of this variant. */
|
1475 |
|
|
return 0;
|
1476 |
|
|
}
|
1477 |
|
|
|
1478 |
|
|
/* Extract the ELF flags, if available. */
|
1479 |
|
|
if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
1480 |
|
|
elf_flags = elf_elfheader (info.abfd)->e_flags;
|
1481 |
|
|
|
1482 |
|
|
if (elf_flags & EF_FRV_FDPIC)
|
1483 |
|
|
set_variant_abi_fdpic (var);
|
1484 |
|
|
|
1485 |
|
|
if (elf_flags & EF_FRV_CPU_FR450)
|
1486 |
|
|
set_variant_scratch_registers (var);
|
1487 |
|
|
|
1488 |
|
|
gdbarch = gdbarch_alloc (&info, var);
|
1489 |
|
|
|
1490 |
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
1491 |
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
1492 |
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
1493 |
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
1494 |
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
1495 |
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
1496 |
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
1497 |
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
1498 |
|
|
|
1499 |
|
|
set_gdbarch_num_regs (gdbarch, frv_num_regs);
|
1500 |
|
|
set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
|
1501 |
|
|
|
1502 |
|
|
set_gdbarch_sp_regnum (gdbarch, sp_regnum);
|
1503 |
|
|
set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
|
1504 |
|
|
set_gdbarch_pc_regnum (gdbarch, pc_regnum);
|
1505 |
|
|
|
1506 |
|
|
set_gdbarch_register_name (gdbarch, frv_register_name);
|
1507 |
|
|
set_gdbarch_register_type (gdbarch, frv_register_type);
|
1508 |
|
|
set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
|
1509 |
|
|
|
1510 |
|
|
set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
|
1511 |
|
|
set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
|
1512 |
|
|
|
1513 |
|
|
set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
|
1514 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
|
1515 |
|
|
set_gdbarch_adjust_breakpoint_address
|
1516 |
|
|
(gdbarch, frv_adjust_breakpoint_address);
|
1517 |
|
|
|
1518 |
|
|
set_gdbarch_return_value (gdbarch, frv_return_value);
|
1519 |
|
|
|
1520 |
|
|
/* Frame stuff. */
|
1521 |
|
|
set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
|
1522 |
|
|
set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
|
1523 |
|
|
set_gdbarch_frame_align (gdbarch, frv_frame_align);
|
1524 |
|
|
frame_base_set_default (gdbarch, &frv_frame_base);
|
1525 |
|
|
/* We set the sniffer lower down after the OSABI hooks have been
|
1526 |
|
|
established. */
|
1527 |
|
|
|
1528 |
|
|
/* Settings for calling functions in the inferior. */
|
1529 |
|
|
set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
|
1530 |
|
|
set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
|
1531 |
|
|
|
1532 |
|
|
/* Settings that should be unnecessary. */
|
1533 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
1534 |
|
|
|
1535 |
|
|
/* Hardware watchpoint / breakpoint support. */
|
1536 |
|
|
switch (info.bfd_arch_info->mach)
|
1537 |
|
|
{
|
1538 |
|
|
case bfd_mach_frv:
|
1539 |
|
|
case bfd_mach_frvsimple:
|
1540 |
|
|
case bfd_mach_fr500:
|
1541 |
|
|
case bfd_mach_frvtomcat:
|
1542 |
|
|
/* fr500-style hardware debugging support. */
|
1543 |
|
|
var->num_hw_watchpoints = 4;
|
1544 |
|
|
var->num_hw_breakpoints = 4;
|
1545 |
|
|
break;
|
1546 |
|
|
|
1547 |
|
|
case bfd_mach_fr400:
|
1548 |
|
|
case bfd_mach_fr450:
|
1549 |
|
|
/* fr400-style hardware debugging support. */
|
1550 |
|
|
var->num_hw_watchpoints = 2;
|
1551 |
|
|
var->num_hw_breakpoints = 4;
|
1552 |
|
|
break;
|
1553 |
|
|
|
1554 |
|
|
default:
|
1555 |
|
|
/* Otherwise, assume we don't have hardware debugging support. */
|
1556 |
|
|
var->num_hw_watchpoints = 0;
|
1557 |
|
|
var->num_hw_breakpoints = 0;
|
1558 |
|
|
break;
|
1559 |
|
|
}
|
1560 |
|
|
|
1561 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_frv);
|
1562 |
|
|
if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
|
1563 |
|
|
set_gdbarch_convert_from_func_ptr_addr (gdbarch,
|
1564 |
|
|
frv_convert_from_func_ptr_addr);
|
1565 |
|
|
|
1566 |
|
|
set_solib_ops (gdbarch, &frv_so_ops);
|
1567 |
|
|
|
1568 |
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
1569 |
|
|
gdbarch_init_osabi (info, gdbarch);
|
1570 |
|
|
|
1571 |
|
|
/* Set the fallback (prologue based) frame sniffer. */
|
1572 |
|
|
frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
|
1573 |
|
|
|
1574 |
|
|
/* Enable TLS support. */
|
1575 |
|
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
1576 |
|
|
frv_fetch_objfile_link_map);
|
1577 |
|
|
|
1578 |
|
|
return gdbarch;
|
1579 |
|
|
}
|
1580 |
|
|
|
1581 |
|
|
void
|
1582 |
|
|
_initialize_frv_tdep (void)
|
1583 |
|
|
{
|
1584 |
|
|
register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
|
1585 |
|
|
}
|