OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [gdb/] [gdbarch.sh] - Blame information for rev 297

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 24 jeremybenn
#!/bin/sh -u
2
 
3
# Architecture commands for GDB, the GNU debugger.
4
#
5
# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6
# 2008 Free Software Foundation, Inc.
7
#
8
# This file is part of GDB.
9
#
10
# This program is free software; you can redistribute it and/or modify
11
# it under the terms of the GNU General Public License as published by
12
# the Free Software Foundation; either version 3 of the License, or
13
# (at your option) any later version.
14
#
15
# This program is distributed in the hope that it will be useful,
16
# but WITHOUT ANY WARRANTY; without even the implied warranty of
17
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
# GNU General Public License for more details.
19
#
20
# You should have received a copy of the GNU General Public License
21
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
22
 
23
# Make certain that the script is not running in an internationalized
24
# environment.
25
LANG=c ; export LANG
26
LC_ALL=c ; export LC_ALL
27
 
28
 
29
compare_new ()
30
{
31
    file=$1
32
    if test ! -r ${file}
33
    then
34
        echo "${file} missing? cp new-${file} ${file}" 1>&2
35
    elif diff -u ${file} new-${file}
36
    then
37
        echo "${file} unchanged" 1>&2
38
    else
39
        echo "${file} has changed? cp new-${file} ${file}" 1>&2
40
    fi
41
}
42
 
43
 
44
# Format of the input table
45
read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
 
47
do_read ()
48
{
49
    comment=""
50
    class=""
51
    while read line
52
    do
53
        if test "${line}" = ""
54
        then
55
            continue
56
        elif test "${line}" = "#" -a "${comment}" = ""
57
        then
58
            continue
59
        elif expr "${line}" : "#" > /dev/null
60
        then
61
            comment="${comment}
62
${line}"
63
        else
64
 
65
            # The semantics of IFS varies between different SH's.  Some
66
            # treat ``::' as three fields while some treat it as just too.
67
            # Work around this by eliminating ``::'' ....
68
            line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
 
70
            OFS="${IFS}" ; IFS="[:]"
71
            eval read ${read} <<EOF
72
${line}
73
EOF
74
            IFS="${OFS}"
75
 
76
            if test -n "${garbage_at_eol}"
77
            then
78
                echo "Garbage at end-of-line in ${line}" 1>&2
79
                kill $$
80
                exit 1
81
            fi
82
 
83
            # .... and then going back through each field and strip out those
84
            # that ended up with just that space character.
85
            for r in ${read}
86
            do
87
                if eval test \"\${${r}}\" = \"\ \"
88
                then
89
                    eval ${r}=""
90
                fi
91
            done
92
 
93
            case "${class}" in
94
                m ) staticdefault="${predefault}" ;;
95
                M ) staticdefault="0" ;;
96
                * ) test "${staticdefault}" || staticdefault=0 ;;
97
            esac
98
 
99
            case "${class}" in
100
            F | V | M )
101
                case "${invalid_p}" in
102
                "" )
103
                    if test -n "${predefault}"
104
                    then
105
                        #invalid_p="gdbarch->${function} == ${predefault}"
106
                        predicate="gdbarch->${function} != ${predefault}"
107
                    elif class_is_variable_p
108
                    then
109
                        predicate="gdbarch->${function} != 0"
110
                    elif class_is_function_p
111
                    then
112
                        predicate="gdbarch->${function} != NULL"
113
                    fi
114
                    ;;
115
                * )
116
                    echo "Predicate function ${function} with invalid_p." 1>&2
117
                    kill $$
118
                    exit 1
119
                    ;;
120
                esac
121
            esac
122
 
123
            # PREDEFAULT is a valid fallback definition of MEMBER when
124
            # multi-arch is not enabled.  This ensures that the
125
            # default value, when multi-arch is the same as the
126
            # default value when not multi-arch.  POSTDEFAULT is
127
            # always a valid definition of MEMBER as this again
128
            # ensures consistency.
129
 
130
            if [ -n "${postdefault}" ]
131
            then
132
                fallbackdefault="${postdefault}"
133
            elif [ -n "${predefault}" ]
134
            then
135
                fallbackdefault="${predefault}"
136
            else
137
                fallbackdefault="0"
138
            fi
139
 
140
            #NOT YET: See gdbarch.log for basic verification of
141
            # database
142
 
143
            break
144
        fi
145
    done
146
    if [ -n "${class}" ]
147
    then
148
        true
149
    else
150
        false
151
    fi
152
}
153
 
154
 
155
fallback_default_p ()
156
{
157
    [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158
        || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159
}
160
 
161
class_is_variable_p ()
162
{
163
    case "${class}" in
164
        *v* | *V* ) true ;;
165
        * ) false ;;
166
    esac
167
}
168
 
169
class_is_function_p ()
170
{
171
    case "${class}" in
172
        *f* | *F* | *m* | *M* ) true ;;
173
        * ) false ;;
174
    esac
175
}
176
 
177
class_is_multiarch_p ()
178
{
179
    case "${class}" in
180
        *m* | *M* ) true ;;
181
        * ) false ;;
182
    esac
183
}
184
 
185
class_is_predicate_p ()
186
{
187
    case "${class}" in
188
        *F* | *V* | *M* ) true ;;
189
        * ) false ;;
190
    esac
191
}
192
 
193
class_is_info_p ()
194
{
195
    case "${class}" in
196
        *i* ) true ;;
197
        * ) false ;;
198
    esac
199
}
200
 
201
 
202
# dump out/verify the doco
203
for field in ${read}
204
do
205
  case ${field} in
206
 
207
    class ) : ;;
208
 
209
        # # -> line disable
210
        # f -> function
211
        #   hiding a function
212
        # F -> function + predicate
213
        #   hiding a function + predicate to test function validity
214
        # v -> variable
215
        #   hiding a variable
216
        # V -> variable + predicate
217
        #   hiding a variable + predicate to test variables validity
218
        # i -> set from info
219
        #   hiding something from the ``struct info'' object
220
        # m -> multi-arch function
221
        #   hiding a multi-arch function (parameterised with the architecture)
222
        # M -> multi-arch function + predicate
223
        #   hiding a multi-arch function + predicate to test function validity
224
 
225
    returntype ) : ;;
226
 
227
        # For functions, the return type; for variables, the data type
228
 
229
    function ) : ;;
230
 
231
        # For functions, the member function name; for variables, the
232
        # variable name.  Member function names are always prefixed with
233
        # ``gdbarch_'' for name-space purity.
234
 
235
    formal ) : ;;
236
 
237
        # The formal argument list.  It is assumed that the formal
238
        # argument list includes the actual name of each list element.
239
        # A function with no arguments shall have ``void'' as the
240
        # formal argument list.
241
 
242
    actual ) : ;;
243
 
244
        # The list of actual arguments.  The arguments specified shall
245
        # match the FORMAL list given above.  Functions with out
246
        # arguments leave this blank.
247
 
248
    staticdefault ) : ;;
249
 
250
        # To help with the GDB startup a static gdbarch object is
251
        # created.  STATICDEFAULT is the value to insert into that
252
        # static gdbarch object.  Since this a static object only
253
        # simple expressions can be used.
254
 
255
        # If STATICDEFAULT is empty, zero is used.
256
 
257
    predefault ) : ;;
258
 
259
        # An initial value to assign to MEMBER of the freshly
260
        # malloc()ed gdbarch object.  After initialization, the
261
        # freshly malloc()ed object is passed to the target
262
        # architecture code for further updates.
263
 
264
        # If PREDEFAULT is empty, zero is used.
265
 
266
        # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267
        # INVALID_P are specified, PREDEFAULT will be used as the
268
        # default for the non- multi-arch target.
269
 
270
        # A zero PREDEFAULT function will force the fallback to call
271
        # internal_error().
272
 
273
        # Variable declarations can refer to ``gdbarch'' which will
274
        # contain the current architecture.  Care should be taken.
275
 
276
    postdefault ) : ;;
277
 
278
        # A value to assign to MEMBER of the new gdbarch object should
279
        # the target architecture code fail to change the PREDEFAULT
280
        # value.
281
 
282
        # If POSTDEFAULT is empty, no post update is performed.
283
 
284
        # If both INVALID_P and POSTDEFAULT are non-empty then
285
        # INVALID_P will be used to determine if MEMBER should be
286
        # changed to POSTDEFAULT.
287
 
288
        # If a non-empty POSTDEFAULT and a zero INVALID_P are
289
        # specified, POSTDEFAULT will be used as the default for the
290
        # non- multi-arch target (regardless of the value of
291
        # PREDEFAULT).
292
 
293
        # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
 
295
        # Variable declarations can refer to ``gdbarch'' which
296
        # will contain the current architecture.  Care should be
297
        # taken.
298
 
299
    invalid_p ) : ;;
300
 
301
        # A predicate equation that validates MEMBER.  Non-zero is
302
        # returned if the code creating the new architecture failed to
303
        # initialize MEMBER or the initialized the member is invalid.
304
        # If POSTDEFAULT is non-empty then MEMBER will be updated to
305
        # that value.  If POSTDEFAULT is empty then internal_error()
306
        # is called.
307
 
308
        # If INVALID_P is empty, a check that MEMBER is no longer
309
        # equal to PREDEFAULT is used.
310
 
311
        # The expression ``0'' disables the INVALID_P check making
312
        # PREDEFAULT a legitimate value.
313
 
314
        # See also PREDEFAULT and POSTDEFAULT.
315
 
316
    print ) : ;;
317
 
318
        # An optional expression that convers MEMBER to a value
319
        # suitable for formatting using %s.
320
 
321
        # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322
        # (anything else) is used.
323
 
324
    garbage_at_eol ) : ;;
325
 
326
        # Catches stray fields.
327
 
328
    *)
329
        echo "Bad field ${field}"
330
        exit 1;;
331
  esac
332
done
333
 
334
 
335
function_list ()
336
{
337
  # See below (DOCO) for description of each field
338
  cat <<EOF
339
i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340
#
341
i:int:byte_order:::BFD_ENDIAN_BIG
342
#
343
i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344
#
345
i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
346
 
347
# The bit byte-order has to do just with numbering of bits in debugging symbols
348
# and such.  Conceptually, it's quite separate from byte/word byte order.
349
v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
 
351
# Number of bits in a char or unsigned char for the target machine.
352
# Just like CHAR_BIT in <limits.h> but describes the target machine.
353
# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354
#
355
# Number of bits in a short or unsigned short for the target machine.
356
v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357
# Number of bits in an int or unsigned int for the target machine.
358
v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359
# Number of bits in a long or unsigned long for the target machine.
360
v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361
# Number of bits in a long long or unsigned long long for the target
362
# machine.
363
v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364
 
365
# The ABI default bit-size and format for "float", "double", and "long
366
# double".  These bit/format pairs should eventually be combined into
367
# a single object.  For the moment, just initialize them as a pair.
368
# Each format describes both the big and little endian layouts (if
369
# useful).
370
 
371
v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
372
v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
373
v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
374
v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
375
v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
376
v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
377
 
378
# For most targets, a pointer on the target and its representation as an
379
# address in GDB have the same size and "look the same".  For such a
380
# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
381
# / addr_bit will be set from it.
382
#
383
# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
384
# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
385
# as well.
386
#
387
# ptr_bit is the size of a pointer on the target
388
v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
389
# addr_bit is the size of a target address as represented in gdb
390
v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
391
#
392
# One if \`char' acts like \`signed char', zero if \`unsigned char'.
393
v:int:char_signed:::1:-1:1
394
#
395
F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
396
F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
397
# Function for getting target's idea of a frame pointer.  FIXME: GDB's
398
# whole scheme for dealing with "frames" and "frame pointers" needs a
399
# serious shakedown.
400
m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
401
#
402
M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
403
M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
404
#
405
v:int:num_regs:::0:-1
406
# This macro gives the number of pseudo-registers that live in the
407
# register namespace but do not get fetched or stored on the target.
408
# These pseudo-registers may be aliases for other registers,
409
# combinations of other registers, or they may be computed by GDB.
410
v:int:num_pseudo_regs:::0:0::0
411
 
412
# GDB's standard (or well known) register numbers.  These can map onto
413
# a real register or a pseudo (computed) register or not be defined at
414
# all (-1).
415
# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
416
v:int:sp_regnum:::-1:-1::0
417
v:int:pc_regnum:::-1:-1::0
418
v:int:ps_regnum:::-1:-1::0
419
v:int:fp0_regnum:::0:-1::0
420
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
421
m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
422
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
423
m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
424
# Provide a default mapping from a DWARF register number to a gdb REGNUM.
425
m:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
426
# Convert from an sdb register number to an internal gdb register number.
427
m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
428
m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429
m:const char *:register_name:int regnr:regnr::0
430
 
431
# Return the type of a register specified by the architecture.  Only
432
# the register cache should call this function directly; others should
433
# use "register_type".
434
M:struct type *:register_type:int reg_nr:reg_nr
435
 
436
# See gdbint.texinfo, and PUSH_DUMMY_CALL.
437
M:struct frame_id:unwind_dummy_id:struct frame_info *info:info
438
# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
439
# deprecated_fp_regnum.
440
v:int:deprecated_fp_regnum:::-1:-1::0
441
 
442
# See gdbint.texinfo.  See infcall.c.
443
M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444
v:int:call_dummy_location::::AT_ENTRY_POINT::0
445
M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
 
447
m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448
M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449
M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450
# MAP a GDB RAW register number onto a simulator register number.  See
451
# also include/...-sim.h.
452
m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453
m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454
m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455
# setjmp/longjmp support.
456
F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457
#
458
v:int:believe_pcc_promotion:::::::
459
#
460
m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461
f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462
f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463
# Construct a value representing the contents of register REGNUM in
464
# frame FRAME, interpreted as type TYPE.  The routine needs to
465
# allocate and return a struct value with all value attributes
466
# (but not the value contents) filled in.
467
f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468
#
469
f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470
f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471
M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
 
473
# It has been suggested that this, well actually its predecessor,
474
# should take the type/value of the function to be called and not the
475
# return type.  This is left as an exercise for the reader.
476
 
477
M:enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf
478
 
479
m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
480
f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
481
m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
482
M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
483
m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
484
m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
485
v:CORE_ADDR:decr_pc_after_break:::0:::0
486
 
487
# A function can be addressed by either it's "pointer" (possibly a
488
# descriptor address) or "entry point" (first executable instruction).
489
# The method "convert_from_func_ptr_addr" converting the former to the
490
# latter.  gdbarch_deprecated_function_start_offset is being used to implement
491
# a simplified subset of that functionality - the function's address
492
# corresponds to the "function pointer" and the function's start
493
# corresponds to the "function entry point" - and hence is redundant.
494
 
495
v:CORE_ADDR:deprecated_function_start_offset:::0:::0
496
 
497
# Return the remote protocol register number associated with this
498
# register.  Normally the identity mapping.
499
m:int:remote_register_number:int regno:regno::default_remote_register_number::0
500
 
501
# Fetch the target specific address used to represent a load module.
502
F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
503
#
504
v:CORE_ADDR:frame_args_skip:::0:::0
505
M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
506
M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
507
# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
508
# frame-base.  Enable frame-base before frame-unwind.
509
F:int:frame_num_args:struct frame_info *frame:frame
510
#
511
M:CORE_ADDR:frame_align:CORE_ADDR address:address
512
m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
513
v:int:frame_red_zone_size
514
#
515
m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
516
# On some machines there are bits in addresses which are not really
517
# part of the address, but are used by the kernel, the hardware, etc.
518
# for special purposes.  gdbarch_addr_bits_remove takes out any such bits so
519
# we get a "real" address such as one would find in a symbol table.
520
# This is used only for addresses of instructions, and even then I'm
521
# not sure it's used in all contexts.  It exists to deal with there
522
# being a few stray bits in the PC which would mislead us, not as some
523
# sort of generic thing to handle alignment or segmentation (it's
524
# possible it should be in TARGET_READ_PC instead).
525
f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
526
# It is not at all clear why gdbarch_smash_text_address is not folded into
527
# gdbarch_addr_bits_remove.
528
f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
529
 
530
# FIXME/cagney/2001-01-18: This should be split in two.  A target method that
531
# indicates if the target needs software single step.  An ISA method to
532
# implement it.
533
#
534
# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
535
# breakpoints using the breakpoint system instead of blatting memory directly
536
# (as with rs6000).
537
#
538
# FIXME/cagney/2001-01-18: The logic is backwards.  It should be asking if the
539
# target can single step.  If not, then implement single step using breakpoints.
540
#
541
# A return value of 1 means that the software_single_step breakpoints
542
# were inserted; 0 means they were not.
543
F:int:software_single_step:struct frame_info *frame:frame
544
 
545
# Return non-zero if the processor is executing a delay slot and a
546
# further single-step is needed before the instruction finishes.
547
M:int:single_step_through_delay:struct frame_info *frame:frame
548
# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
549
# disassembler.  Perhaps objdump can handle it?
550
f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
551
f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
552
 
553
 
554
# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
555
# evaluates non-zero, this is the address where the debugger will place
556
# a step-resume breakpoint to get us past the dynamic linker.
557
m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
558
# Some systems also have trampoline code for returning from shared libs.
559
f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
560
 
561
# A target might have problems with watchpoints as soon as the stack
562
# frame of the current function has been destroyed.  This mostly happens
563
# as the first action in a funtion's epilogue.  in_function_epilogue_p()
564
# is defined to return a non-zero value if either the given addr is one
565
# instruction after the stack destroying instruction up to the trailing
566
# return instruction or if we can figure out that the stack frame has
567
# already been invalidated regardless of the value of addr.  Targets
568
# which don't suffer from that problem could just let this functionality
569
# untouched.
570
m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
571
# Given a vector of command-line arguments, return a newly allocated
572
# string which, when passed to the create_inferior function, will be
573
# parsed (on Unix systems, by the shell) to yield the same vector.
574
# This function should call error() if the argument vector is not
575
# representable for this target or if this target does not support
576
# command-line arguments.
577
# ARGC is the number of elements in the vector.
578
# ARGV is an array of strings, one per argument.
579
m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
580
f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
581
f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
582
v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
583
v:int:cannot_step_breakpoint:::0:0::0
584
v:int:have_nonsteppable_watchpoint:::0:0::0
585
F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
586
M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
587
M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
588
# Is a register in a group
589
m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
590
# Fetch the pointer to the ith function argument.
591
F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
592
 
593
# Return the appropriate register set for a core file section with
594
# name SECT_NAME and size SECT_SIZE.
595
M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
596
 
597
# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
598
# core file into buffer READBUF with length LEN.
599
M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
600
 
601
# If the elements of C++ vtables are in-place function descriptors rather
602
# than normal function pointers (which may point to code or a descriptor),
603
# set this to one.
604
v:int:vtable_function_descriptors:::0:0::0
605
 
606
# Set if the least significant bit of the delta is used instead of the least
607
# significant bit of the pfn for pointers to virtual member functions.
608
v:int:vbit_in_delta:::0:0::0
609
 
610
# Advance PC to next instruction in order to skip a permanent breakpoint.
611
F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
612
 
613
# Refresh overlay mapped state for section OSECT.
614
F:void:overlay_update:struct obj_section *osect:osect
615
 
616
M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
617
 
618
# Handle special encoding of static variables in stabs debug info.
619
F:char *:static_transform_name:char *name:name
620
# Set if the address in N_SO or N_FUN stabs may be zero.
621
v:int:sofun_address_maybe_missing:::0:0::0
622
EOF
623
}
624
 
625
#
626
# The .log file
627
#
628
exec > new-gdbarch.log
629
function_list | while do_read
630
do
631
    cat <<EOF
632
${class} ${returntype} ${function} ($formal)
633
EOF
634
    for r in ${read}
635
    do
636
        eval echo \"\ \ \ \ ${r}=\${${r}}\"
637
    done
638
    if class_is_predicate_p && fallback_default_p
639
    then
640
        echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
641
        kill $$
642
        exit 1
643
    fi
644
    if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
645
    then
646
        echo "Error: postdefault is useless when invalid_p=0" 1>&2
647
        kill $$
648
        exit 1
649
    fi
650
    if class_is_multiarch_p
651
    then
652
        if class_is_predicate_p ; then :
653
        elif test "x${predefault}" = "x"
654
        then
655
            echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
656
            kill $$
657
            exit 1
658
        fi
659
    fi
660
    echo ""
661
done
662
 
663
exec 1>&2
664
compare_new gdbarch.log
665
 
666
 
667
copyright ()
668
{
669
cat <<EOF
670
/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
671
 
672
/* Dynamic architecture support for GDB, the GNU debugger.
673
 
674
   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
675
   Free Software Foundation, Inc.
676
 
677
   This file is part of GDB.
678
 
679
   This program is free software; you can redistribute it and/or modify
680
   it under the terms of the GNU General Public License as published by
681
   the Free Software Foundation; either version 3 of the License, or
682
   (at your option) any later version.
683
 
684
   This program is distributed in the hope that it will be useful,
685
   but WITHOUT ANY WARRANTY; without even the implied warranty of
686
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
687
   GNU General Public License for more details.
688
 
689
   You should have received a copy of the GNU General Public License
690
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
691
 
692
/* This file was created with the aid of \`\`gdbarch.sh''.
693
 
694
   The Bourne shell script \`\`gdbarch.sh'' creates the files
695
   \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
696
   against the existing \`\`gdbarch.[hc]''.  Any differences found
697
   being reported.
698
 
699
   If editing this file, please also run gdbarch.sh and merge any
700
   changes into that script. Conversely, when making sweeping changes
701
   to this file, modifying gdbarch.sh and using its output may prove
702
   easier. */
703
 
704
EOF
705
}
706
 
707
#
708
# The .h file
709
#
710
 
711
exec > new-gdbarch.h
712
copyright
713
cat <<EOF
714
#ifndef GDBARCH_H
715
#define GDBARCH_H
716
 
717
struct floatformat;
718
struct ui_file;
719
struct frame_info;
720
struct value;
721
struct objfile;
722
struct obj_section;
723
struct minimal_symbol;
724
struct regcache;
725
struct reggroup;
726
struct regset;
727
struct disassemble_info;
728
struct target_ops;
729
struct obstack;
730
struct bp_target_info;
731
struct target_desc;
732
 
733
extern struct gdbarch *current_gdbarch;
734
EOF
735
 
736
# function typedef's
737
printf "\n"
738
printf "\n"
739
printf "/* The following are pre-initialized by GDBARCH. */\n"
740
function_list | while do_read
741
do
742
    if class_is_info_p
743
    then
744
        printf "\n"
745
        printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
746
        printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
747
    fi
748
done
749
 
750
# function typedef's
751
printf "\n"
752
printf "\n"
753
printf "/* The following are initialized by the target dependent code. */\n"
754
function_list | while do_read
755
do
756
    if [ -n "${comment}" ]
757
    then
758
        echo "${comment}" | sed \
759
            -e '2 s,#,/*,' \
760
            -e '3,$ s,#,  ,' \
761
            -e '$ s,$, */,'
762
    fi
763
 
764
    if class_is_predicate_p
765
    then
766
        printf "\n"
767
        printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
768
    fi
769
    if class_is_variable_p
770
    then
771
        printf "\n"
772
        printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
773
        printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
774
    fi
775
    if class_is_function_p
776
    then
777
        printf "\n"
778
        if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
779
        then
780
            printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
781
        elif class_is_multiarch_p
782
        then
783
            printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
784
        else
785
            printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
786
        fi
787
        if [ "x${formal}" = "xvoid" ]
788
        then
789
          printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
790
        else
791
          printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
792
        fi
793
        printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
794
    fi
795
done
796
 
797
# close it off
798
cat <<EOF
799
 
800
extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
801
 
802
 
803
/* Mechanism for co-ordinating the selection of a specific
804
   architecture.
805
 
806
   GDB targets (*-tdep.c) can register an interest in a specific
807
   architecture.  Other GDB components can register a need to maintain
808
   per-architecture data.
809
 
810
   The mechanisms below ensures that there is only a loose connection
811
   between the set-architecture command and the various GDB
812
   components.  Each component can independently register their need
813
   to maintain architecture specific data with gdbarch.
814
 
815
   Pragmatics:
816
 
817
   Previously, a single TARGET_ARCHITECTURE_HOOK was provided.  It
818
   didn't scale.
819
 
820
   The more traditional mega-struct containing architecture specific
821
   data for all the various GDB components was also considered.  Since
822
   GDB is built from a variable number of (fairly independent)
823
   components it was determined that the global aproach was not
824
   applicable. */
825
 
826
 
827
/* Register a new architectural family with GDB.
828
 
829
   Register support for the specified ARCHITECTURE with GDB.  When
830
   gdbarch determines that the specified architecture has been
831
   selected, the corresponding INIT function is called.
832
 
833
   --
834
 
835
   The INIT function takes two parameters: INFO which contains the
836
   information available to gdbarch about the (possibly new)
837
   architecture; ARCHES which is a list of the previously created
838
   \`\`struct gdbarch'' for this architecture.
839
 
840
   The INFO parameter is, as far as possible, be pre-initialized with
841
   information obtained from INFO.ABFD or the global defaults.
842
 
843
   The ARCHES parameter is a linked list (sorted most recently used)
844
   of all the previously created architures for this architecture
845
   family.  The (possibly NULL) ARCHES->gdbarch can used to access
846
   values from the previously selected architecture for this
847
   architecture family.  The global \`\`current_gdbarch'' shall not be
848
   used.
849
 
850
   The INIT function shall return any of: NULL - indicating that it
851
   doesn't recognize the selected architecture; an existing \`\`struct
852
   gdbarch'' from the ARCHES list - indicating that the new
853
   architecture is just a synonym for an earlier architecture (see
854
   gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
855
   - that describes the selected architecture (see gdbarch_alloc()).
856
 
857
   The DUMP_TDEP function shall print out all target specific values.
858
   Care should be taken to ensure that the function works in both the
859
   multi-arch and non- multi-arch cases. */
860
 
861
struct gdbarch_list
862
{
863
  struct gdbarch *gdbarch;
864
  struct gdbarch_list *next;
865
};
866
 
867
struct gdbarch_info
868
{
869
  /* Use default: NULL (ZERO). */
870
  const struct bfd_arch_info *bfd_arch_info;
871
 
872
  /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO).  */
873
  int byte_order;
874
 
875
  /* Use default: NULL (ZERO). */
876
  bfd *abfd;
877
 
878
  /* Use default: NULL (ZERO). */
879
  struct gdbarch_tdep_info *tdep_info;
880
 
881
  /* Use default: GDB_OSABI_UNINITIALIZED (-1).  */
882
  enum gdb_osabi osabi;
883
 
884
  /* Use default: NULL (ZERO).  */
885
  const struct target_desc *target_desc;
886
};
887
 
888
typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
889
typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
890
 
891
/* DEPRECATED - use gdbarch_register() */
892
extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
893
 
894
extern void gdbarch_register (enum bfd_architecture architecture,
895
                              gdbarch_init_ftype *,
896
                              gdbarch_dump_tdep_ftype *);
897
 
898
 
899
/* Return a freshly allocated, NULL terminated, array of the valid
900
   architecture names.  Since architectures are registered during the
901
   _initialize phase this function only returns useful information
902
   once initialization has been completed. */
903
 
904
extern const char **gdbarch_printable_names (void);
905
 
906
 
907
/* Helper function.  Search the list of ARCHES for a GDBARCH that
908
   matches the information provided by INFO. */
909
 
910
extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
911
 
912
 
913
/* Helper function.  Create a preliminary \`\`struct gdbarch''.  Perform
914
   basic initialization using values obtained from the INFO and TDEP
915
   parameters.  set_gdbarch_*() functions are called to complete the
916
   initialization of the object. */
917
 
918
extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
919
 
920
 
921
/* Helper function.  Free a partially-constructed \`\`struct gdbarch''.
922
   It is assumed that the caller freeds the \`\`struct
923
   gdbarch_tdep''. */
924
 
925
extern void gdbarch_free (struct gdbarch *);
926
 
927
 
928
/* Helper function.  Allocate memory from the \`\`struct gdbarch''
929
   obstack.  The memory is freed when the corresponding architecture
930
   is also freed.  */
931
 
932
extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
933
#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
934
#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
935
 
936
 
937
/* Helper function. Force an update of the current architecture.
938
 
939
   The actual architecture selected is determined by INFO, \`\`(gdb) set
940
   architecture'' et.al., the existing architecture and BFD's default
941
   architecture.  INFO should be initialized to zero and then selected
942
   fields should be updated.
943
 
944
   Returns non-zero if the update succeeds */
945
 
946
extern int gdbarch_update_p (struct gdbarch_info info);
947
 
948
 
949
/* Helper function.  Find an architecture matching info.
950
 
951
   INFO should be initialized using gdbarch_info_init, relevant fields
952
   set, and then finished using gdbarch_info_fill.
953
 
954
   Returns the corresponding architecture, or NULL if no matching
955
   architecture was found.  "current_gdbarch" is not updated.  */
956
 
957
extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
958
 
959
 
960
/* Helper function.  Set the global "current_gdbarch" to "gdbarch".
961
 
962
   FIXME: kettenis/20031124: Of the functions that follow, only
963
   gdbarch_from_bfd is supposed to survive.  The others will
964
   dissappear since in the future GDB will (hopefully) be truly
965
   multi-arch.  However, for now we're still stuck with the concept of
966
   a single active architecture.  */
967
 
968
extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
969
 
970
 
971
/* Register per-architecture data-pointer.
972
 
973
   Reserve space for a per-architecture data-pointer.  An identifier
974
   for the reserved data-pointer is returned.  That identifer should
975
   be saved in a local static variable.
976
 
977
   Memory for the per-architecture data shall be allocated using
978
   gdbarch_obstack_zalloc.  That memory will be deleted when the
979
   corresponding architecture object is deleted.
980
 
981
   When a previously created architecture is re-selected, the
982
   per-architecture data-pointer for that previous architecture is
983
   restored.  INIT() is not re-called.
984
 
985
   Multiple registrarants for any architecture are allowed (and
986
   strongly encouraged).  */
987
 
988
struct gdbarch_data;
989
 
990
typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
991
extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
992
typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
993
extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
994
extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
995
                                         struct gdbarch_data *data,
996
                                         void *pointer);
997
 
998
extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
999
 
1000
 
1001
/* Set the dynamic target-system-dependent parameters (architecture,
1002
   byte-order, ...) using information found in the BFD */
1003
 
1004
extern void set_gdbarch_from_file (bfd *);
1005
 
1006
 
1007
/* Initialize the current architecture to the "first" one we find on
1008
   our list.  */
1009
 
1010
extern void initialize_current_architecture (void);
1011
 
1012
/* gdbarch trace variable */
1013
extern int gdbarch_debug;
1014
 
1015
extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1016
 
1017
#endif
1018
EOF
1019
exec 1>&2
1020
#../move-if-change new-gdbarch.h gdbarch.h
1021
compare_new gdbarch.h
1022
 
1023
 
1024
#
1025
# C file
1026
#
1027
 
1028
exec > new-gdbarch.c
1029
copyright
1030
cat <<EOF
1031
 
1032
#include "defs.h"
1033
#include "arch-utils.h"
1034
 
1035
#include "gdbcmd.h"
1036
#include "inferior.h"
1037
#include "symcat.h"
1038
 
1039
#include "floatformat.h"
1040
 
1041
#include "gdb_assert.h"
1042
#include "gdb_string.h"
1043
#include "gdb-events.h"
1044
#include "reggroups.h"
1045
#include "osabi.h"
1046
#include "gdb_obstack.h"
1047
 
1048
/* Static function declarations */
1049
 
1050
static void alloc_gdbarch_data (struct gdbarch *);
1051
 
1052
/* Non-zero if we want to trace architecture code.  */
1053
 
1054
#ifndef GDBARCH_DEBUG
1055
#define GDBARCH_DEBUG 0
1056
#endif
1057
int gdbarch_debug = GDBARCH_DEBUG;
1058
static void
1059
show_gdbarch_debug (struct ui_file *file, int from_tty,
1060
                    struct cmd_list_element *c, const char *value)
1061
{
1062
  fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1063
}
1064
 
1065
static const char *
1066
pformat (const struct floatformat **format)
1067
{
1068
  if (format == NULL)
1069
    return "(null)";
1070
  else
1071
    /* Just print out one of them - this is only for diagnostics.  */
1072
    return format[0]->name;
1073
}
1074
 
1075
EOF
1076
 
1077
# gdbarch open the gdbarch object
1078
printf "\n"
1079
printf "/* Maintain the struct gdbarch object */\n"
1080
printf "\n"
1081
printf "struct gdbarch\n"
1082
printf "{\n"
1083
printf "  /* Has this architecture been fully initialized?  */\n"
1084
printf "  int initialized_p;\n"
1085
printf "\n"
1086
printf "  /* An obstack bound to the lifetime of the architecture.  */\n"
1087
printf "  struct obstack *obstack;\n"
1088
printf "\n"
1089
printf "  /* basic architectural information */\n"
1090
function_list | while do_read
1091
do
1092
    if class_is_info_p
1093
    then
1094
        printf "  ${returntype} ${function};\n"
1095
    fi
1096
done
1097
printf "\n"
1098
printf "  /* target specific vector. */\n"
1099
printf "  struct gdbarch_tdep *tdep;\n"
1100
printf "  gdbarch_dump_tdep_ftype *dump_tdep;\n"
1101
printf "\n"
1102
printf "  /* per-architecture data-pointers */\n"
1103
printf "  unsigned nr_data;\n"
1104
printf "  void **data;\n"
1105
printf "\n"
1106
printf "  /* per-architecture swap-regions */\n"
1107
printf "  struct gdbarch_swap *swap;\n"
1108
printf "\n"
1109
cat <<EOF
1110
  /* Multi-arch values.
1111
 
1112
     When extending this structure you must:
1113
 
1114
     Add the field below.
1115
 
1116
     Declare set/get functions and define the corresponding
1117
     macro in gdbarch.h.
1118
 
1119
     gdbarch_alloc(): If zero/NULL is not a suitable default,
1120
     initialize the new field.
1121
 
1122
     verify_gdbarch(): Confirm that the target updated the field
1123
     correctly.
1124
 
1125
     gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1126
     field is dumped out
1127
 
1128
     \`\`startup_gdbarch()'': Append an initial value to the static
1129
     variable (base values on the host's c-type system).
1130
 
1131
     get_gdbarch(): Implement the set/get functions (probably using
1132
     the macro's as shortcuts).
1133
 
1134
     */
1135
 
1136
EOF
1137
function_list | while do_read
1138
do
1139
    if class_is_variable_p
1140
    then
1141
        printf "  ${returntype} ${function};\n"
1142
    elif class_is_function_p
1143
    then
1144
        printf "  gdbarch_${function}_ftype *${function};\n"
1145
    fi
1146
done
1147
printf "};\n"
1148
 
1149
# A pre-initialized vector
1150
printf "\n"
1151
printf "\n"
1152
cat <<EOF
1153
/* The default architecture uses host values (for want of a better
1154
   choice). */
1155
EOF
1156
printf "\n"
1157
printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1158
printf "\n"
1159
printf "struct gdbarch startup_gdbarch =\n"
1160
printf "{\n"
1161
printf "  1, /* Always initialized.  */\n"
1162
printf "  NULL, /* The obstack.  */\n"
1163
printf "  /* basic architecture information */\n"
1164
function_list | while do_read
1165
do
1166
    if class_is_info_p
1167
    then
1168
        printf "  ${staticdefault},  /* ${function} */\n"
1169
    fi
1170
done
1171
cat <<EOF
1172
  /* target specific vector and its dump routine */
1173
  NULL, NULL,
1174
  /*per-architecture data-pointers and swap regions */
1175
  0, NULL, NULL,
1176
  /* Multi-arch values */
1177
EOF
1178
function_list | while do_read
1179
do
1180
    if class_is_function_p || class_is_variable_p
1181
    then
1182
        printf "  ${staticdefault},  /* ${function} */\n"
1183
    fi
1184
done
1185
cat <<EOF
1186
  /* startup_gdbarch() */
1187
};
1188
 
1189
struct gdbarch *current_gdbarch = &startup_gdbarch;
1190
EOF
1191
 
1192
# Create a new gdbarch struct
1193
cat <<EOF
1194
 
1195
/* Create a new \`\`struct gdbarch'' based on information provided by
1196
   \`\`struct gdbarch_info''. */
1197
EOF
1198
printf "\n"
1199
cat <<EOF
1200
struct gdbarch *
1201
gdbarch_alloc (const struct gdbarch_info *info,
1202
               struct gdbarch_tdep *tdep)
1203
{
1204
  struct gdbarch *gdbarch;
1205
 
1206
  /* Create an obstack for allocating all the per-architecture memory,
1207
     then use that to allocate the architecture vector.  */
1208
  struct obstack *obstack = XMALLOC (struct obstack);
1209
  obstack_init (obstack);
1210
  gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1211
  memset (gdbarch, 0, sizeof (*gdbarch));
1212
  gdbarch->obstack = obstack;
1213
 
1214
  alloc_gdbarch_data (gdbarch);
1215
 
1216
  gdbarch->tdep = tdep;
1217
EOF
1218
printf "\n"
1219
function_list | while do_read
1220
do
1221
    if class_is_info_p
1222
    then
1223
        printf "  gdbarch->${function} = info->${function};\n"
1224
    fi
1225
done
1226
printf "\n"
1227
printf "  /* Force the explicit initialization of these. */\n"
1228
function_list | while do_read
1229
do
1230
    if class_is_function_p || class_is_variable_p
1231
    then
1232
        if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1233
        then
1234
          printf "  gdbarch->${function} = ${predefault};\n"
1235
        fi
1236
    fi
1237
done
1238
cat <<EOF
1239
  /* gdbarch_alloc() */
1240
 
1241
  return gdbarch;
1242
}
1243
EOF
1244
 
1245
# Free a gdbarch struct.
1246
printf "\n"
1247
printf "\n"
1248
cat <<EOF
1249
/* Allocate extra space using the per-architecture obstack.  */
1250
 
1251
void *
1252
gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1253
{
1254
  void *data = obstack_alloc (arch->obstack, size);
1255
  memset (data, 0, size);
1256
  return data;
1257
}
1258
 
1259
 
1260
/* Free a gdbarch struct.  This should never happen in normal
1261
   operation --- once you've created a gdbarch, you keep it around.
1262
   However, if an architecture's init function encounters an error
1263
   building the structure, it may need to clean up a partially
1264
   constructed gdbarch.  */
1265
 
1266
void
1267
gdbarch_free (struct gdbarch *arch)
1268
{
1269
  struct obstack *obstack;
1270
  gdb_assert (arch != NULL);
1271
  gdb_assert (!arch->initialized_p);
1272
  obstack = arch->obstack;
1273
  obstack_free (obstack, 0); /* Includes the ARCH.  */
1274
  xfree (obstack);
1275
}
1276
EOF
1277
 
1278
# verify a new architecture
1279
cat <<EOF
1280
 
1281
 
1282
/* Ensure that all values in a GDBARCH are reasonable.  */
1283
 
1284
static void
1285
verify_gdbarch (struct gdbarch *gdbarch)
1286
{
1287
  struct ui_file *log;
1288
  struct cleanup *cleanups;
1289
  long dummy;
1290
  char *buf;
1291
  log = mem_fileopen ();
1292
  cleanups = make_cleanup_ui_file_delete (log);
1293
  /* fundamental */
1294
  if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1295
    fprintf_unfiltered (log, "\n\tbyte-order");
1296
  if (gdbarch->bfd_arch_info == NULL)
1297
    fprintf_unfiltered (log, "\n\tbfd_arch_info");
1298
  /* Check those that need to be defined for the given multi-arch level. */
1299
EOF
1300
function_list | while do_read
1301
do
1302
    if class_is_function_p || class_is_variable_p
1303
    then
1304
        if [ "x${invalid_p}" = "x0" ]
1305
        then
1306
            printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1307
        elif class_is_predicate_p
1308
        then
1309
            printf "  /* Skip verify of ${function}, has predicate */\n"
1310
        # FIXME: See do_read for potential simplification
1311
        elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1312
        then
1313
            printf "  if (${invalid_p})\n"
1314
            printf "    gdbarch->${function} = ${postdefault};\n"
1315
        elif [ -n "${predefault}" -a -n "${postdefault}" ]
1316
        then
1317
            printf "  if (gdbarch->${function} == ${predefault})\n"
1318
            printf "    gdbarch->${function} = ${postdefault};\n"
1319
        elif [ -n "${postdefault}" ]
1320
        then
1321
            printf "  if (gdbarch->${function} == 0)\n"
1322
            printf "    gdbarch->${function} = ${postdefault};\n"
1323
        elif [ -n "${invalid_p}" ]
1324
        then
1325
            printf "  if (${invalid_p})\n"
1326
            printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1327
        elif [ -n "${predefault}" ]
1328
        then
1329
            printf "  if (gdbarch->${function} == ${predefault})\n"
1330
            printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1331
        fi
1332
    fi
1333
done
1334
cat <<EOF
1335
  buf = ui_file_xstrdup (log, &dummy);
1336
  make_cleanup (xfree, buf);
1337
  if (strlen (buf) > 0)
1338
    internal_error (__FILE__, __LINE__,
1339
                    _("verify_gdbarch: the following are invalid ...%s"),
1340
                    buf);
1341
  do_cleanups (cleanups);
1342
}
1343
EOF
1344
 
1345
# dump the structure
1346
printf "\n"
1347
printf "\n"
1348
cat <<EOF
1349
/* Print out the details of the current architecture. */
1350
 
1351
void
1352
gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1353
{
1354
  const char *gdb_nm_file = "<not-defined>";
1355
#if defined (GDB_NM_FILE)
1356
  gdb_nm_file = GDB_NM_FILE;
1357
#endif
1358
  fprintf_unfiltered (file,
1359
                      "gdbarch_dump: GDB_NM_FILE = %s\\n",
1360
                      gdb_nm_file);
1361
EOF
1362
function_list | sort -t: -k 3 | while do_read
1363
do
1364
    # First the predicate
1365
    if class_is_predicate_p
1366
    then
1367
        printf "  fprintf_unfiltered (file,\n"
1368
        printf "                      \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1369
        printf "                      gdbarch_${function}_p (gdbarch));\n"
1370
    fi
1371
    # Print the corresponding value.
1372
    if class_is_function_p
1373
    then
1374
        printf "  fprintf_unfiltered (file,\n"
1375
        printf "                      \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1376
        printf "                      (long) gdbarch->${function});\n"
1377
    else
1378
        # It is a variable
1379
        case "${print}:${returntype}" in
1380
            :CORE_ADDR )
1381
                fmt="0x%s"
1382
                print="paddr_nz (gdbarch->${function})"
1383
                ;;
1384
            :* )
1385
                fmt="%s"
1386
                print="paddr_d (gdbarch->${function})"
1387
                ;;
1388
            * )
1389
                fmt="%s"
1390
                ;;
1391
        esac
1392
        printf "  fprintf_unfiltered (file,\n"
1393
        printf "                      \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1394
        printf "                      ${print});\n"
1395
    fi
1396
done
1397
cat <<EOF
1398
  if (gdbarch->dump_tdep != NULL)
1399
    gdbarch->dump_tdep (gdbarch, file);
1400
}
1401
EOF
1402
 
1403
 
1404
# GET/SET
1405
printf "\n"
1406
cat <<EOF
1407
struct gdbarch_tdep *
1408
gdbarch_tdep (struct gdbarch *gdbarch)
1409
{
1410
  if (gdbarch_debug >= 2)
1411
    fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1412
  return gdbarch->tdep;
1413
}
1414
EOF
1415
printf "\n"
1416
function_list | while do_read
1417
do
1418
    if class_is_predicate_p
1419
    then
1420
        printf "\n"
1421
        printf "int\n"
1422
        printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1423
        printf "{\n"
1424
        printf "  gdb_assert (gdbarch != NULL);\n"
1425
        printf "  return ${predicate};\n"
1426
        printf "}\n"
1427
    fi
1428
    if class_is_function_p
1429
    then
1430
        printf "\n"
1431
        printf "${returntype}\n"
1432
        if [ "x${formal}" = "xvoid" ]
1433
        then
1434
          printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1435
        else
1436
          printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1437
        fi
1438
        printf "{\n"
1439
        printf "  gdb_assert (gdbarch != NULL);\n"
1440
        printf "  gdb_assert (gdbarch->${function} != NULL);\n"
1441
        if class_is_predicate_p && test -n "${predefault}"
1442
        then
1443
            # Allow a call to a function with a predicate.
1444
            printf "  /* Do not check predicate: ${predicate}, allow call.  */\n"
1445
        fi
1446
        printf "  if (gdbarch_debug >= 2)\n"
1447
        printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1448
        if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1449
        then
1450
            if class_is_multiarch_p
1451
            then
1452
                params="gdbarch"
1453
            else
1454
                params=""
1455
            fi
1456
        else
1457
            if class_is_multiarch_p
1458
            then
1459
                params="gdbarch, ${actual}"
1460
            else
1461
                params="${actual}"
1462
            fi
1463
        fi
1464
        if [ "x${returntype}" = "xvoid" ]
1465
        then
1466
          printf "  gdbarch->${function} (${params});\n"
1467
        else
1468
          printf "  return gdbarch->${function} (${params});\n"
1469
        fi
1470
        printf "}\n"
1471
        printf "\n"
1472
        printf "void\n"
1473
        printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1474
        printf "            `echo ${function} | sed -e 's/./ /g'`  gdbarch_${function}_ftype ${function})\n"
1475
        printf "{\n"
1476
        printf "  gdbarch->${function} = ${function};\n"
1477
        printf "}\n"
1478
    elif class_is_variable_p
1479
    then
1480
        printf "\n"
1481
        printf "${returntype}\n"
1482
        printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1483
        printf "{\n"
1484
        printf "  gdb_assert (gdbarch != NULL);\n"
1485
        if [ "x${invalid_p}" = "x0" ]
1486
        then
1487
            printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1488
        elif [ -n "${invalid_p}" ]
1489
        then
1490
            printf "  /* Check variable is valid.  */\n"
1491
            printf "  gdb_assert (!(${invalid_p}));\n"
1492
        elif [ -n "${predefault}" ]
1493
        then
1494
            printf "  /* Check variable changed from pre-default.  */\n"
1495
            printf "  gdb_assert (gdbarch->${function} != ${predefault});\n"
1496
        fi
1497
        printf "  if (gdbarch_debug >= 2)\n"
1498
        printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1499
        printf "  return gdbarch->${function};\n"
1500
        printf "}\n"
1501
        printf "\n"
1502
        printf "void\n"
1503
        printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1504
        printf "            `echo ${function} | sed -e 's/./ /g'`  ${returntype} ${function})\n"
1505
        printf "{\n"
1506
        printf "  gdbarch->${function} = ${function};\n"
1507
        printf "}\n"
1508
    elif class_is_info_p
1509
    then
1510
        printf "\n"
1511
        printf "${returntype}\n"
1512
        printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1513
        printf "{\n"
1514
        printf "  gdb_assert (gdbarch != NULL);\n"
1515
        printf "  if (gdbarch_debug >= 2)\n"
1516
        printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1517
        printf "  return gdbarch->${function};\n"
1518
        printf "}\n"
1519
    fi
1520
done
1521
 
1522
# All the trailing guff
1523
cat <<EOF
1524
 
1525
 
1526
/* Keep a registry of per-architecture data-pointers required by GDB
1527
   modules. */
1528
 
1529
struct gdbarch_data
1530
{
1531
  unsigned index;
1532
  int init_p;
1533
  gdbarch_data_pre_init_ftype *pre_init;
1534
  gdbarch_data_post_init_ftype *post_init;
1535
};
1536
 
1537
struct gdbarch_data_registration
1538
{
1539
  struct gdbarch_data *data;
1540
  struct gdbarch_data_registration *next;
1541
};
1542
 
1543
struct gdbarch_data_registry
1544
{
1545
  unsigned nr;
1546
  struct gdbarch_data_registration *registrations;
1547
};
1548
 
1549
struct gdbarch_data_registry gdbarch_data_registry =
1550
{
1551
  0, NULL,
1552
};
1553
 
1554
static struct gdbarch_data *
1555
gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1556
                       gdbarch_data_post_init_ftype *post_init)
1557
{
1558
  struct gdbarch_data_registration **curr;
1559
  /* Append the new registraration.  */
1560
  for (curr = &gdbarch_data_registry.registrations;
1561
       (*curr) != NULL;
1562
       curr = &(*curr)->next);
1563
  (*curr) = XMALLOC (struct gdbarch_data_registration);
1564
  (*curr)->next = NULL;
1565
  (*curr)->data = XMALLOC (struct gdbarch_data);
1566
  (*curr)->data->index = gdbarch_data_registry.nr++;
1567
  (*curr)->data->pre_init = pre_init;
1568
  (*curr)->data->post_init = post_init;
1569
  (*curr)->data->init_p = 1;
1570
  return (*curr)->data;
1571
}
1572
 
1573
struct gdbarch_data *
1574
gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1575
{
1576
  return gdbarch_data_register (pre_init, NULL);
1577
}
1578
 
1579
struct gdbarch_data *
1580
gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1581
{
1582
  return gdbarch_data_register (NULL, post_init);
1583
}
1584
 
1585
/* Create/delete the gdbarch data vector. */
1586
 
1587
static void
1588
alloc_gdbarch_data (struct gdbarch *gdbarch)
1589
{
1590
  gdb_assert (gdbarch->data == NULL);
1591
  gdbarch->nr_data = gdbarch_data_registry.nr;
1592
  gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1593
}
1594
 
1595
/* Initialize the current value of the specified per-architecture
1596
   data-pointer. */
1597
 
1598
void
1599
deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1600
                             struct gdbarch_data *data,
1601
                             void *pointer)
1602
{
1603
  gdb_assert (data->index < gdbarch->nr_data);
1604
  gdb_assert (gdbarch->data[data->index] == NULL);
1605
  gdb_assert (data->pre_init == NULL);
1606
  gdbarch->data[data->index] = pointer;
1607
}
1608
 
1609
/* Return the current value of the specified per-architecture
1610
   data-pointer. */
1611
 
1612
void *
1613
gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1614
{
1615
  gdb_assert (data->index < gdbarch->nr_data);
1616
  if (gdbarch->data[data->index] == NULL)
1617
    {
1618
      /* The data-pointer isn't initialized, call init() to get a
1619
         value.  */
1620
      if (data->pre_init != NULL)
1621
        /* Mid architecture creation: pass just the obstack, and not
1622
           the entire architecture, as that way it isn't possible for
1623
           pre-init code to refer to undefined architecture
1624
           fields.  */
1625
        gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1626
      else if (gdbarch->initialized_p
1627
               && data->post_init != NULL)
1628
        /* Post architecture creation: pass the entire architecture
1629
           (as all fields are valid), but be careful to also detect
1630
           recursive references.  */
1631
        {
1632
          gdb_assert (data->init_p);
1633
          data->init_p = 0;
1634
          gdbarch->data[data->index] = data->post_init (gdbarch);
1635
          data->init_p = 1;
1636
        }
1637
      else
1638
        /* The architecture initialization hasn't completed - punt -
1639
         hope that the caller knows what they are doing.  Once
1640
         deprecated_set_gdbarch_data has been initialized, this can be
1641
         changed to an internal error.  */
1642
        return NULL;
1643
      gdb_assert (gdbarch->data[data->index] != NULL);
1644
    }
1645
  return gdbarch->data[data->index];
1646
}
1647
 
1648
 
1649
/* Keep a registry of the architectures known by GDB. */
1650
 
1651
struct gdbarch_registration
1652
{
1653
  enum bfd_architecture bfd_architecture;
1654
  gdbarch_init_ftype *init;
1655
  gdbarch_dump_tdep_ftype *dump_tdep;
1656
  struct gdbarch_list *arches;
1657
  struct gdbarch_registration *next;
1658
};
1659
 
1660
static struct gdbarch_registration *gdbarch_registry = NULL;
1661
 
1662
static void
1663
append_name (const char ***buf, int *nr, const char *name)
1664
{
1665
  *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1666
  (*buf)[*nr] = name;
1667
  *nr += 1;
1668
}
1669
 
1670
const char **
1671
gdbarch_printable_names (void)
1672
{
1673
  /* Accumulate a list of names based on the registed list of
1674
     architectures. */
1675
  enum bfd_architecture a;
1676
  int nr_arches = 0;
1677
  const char **arches = NULL;
1678
  struct gdbarch_registration *rego;
1679
  for (rego = gdbarch_registry;
1680
       rego != NULL;
1681
       rego = rego->next)
1682
    {
1683
      const struct bfd_arch_info *ap;
1684
      ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1685
      if (ap == NULL)
1686
        internal_error (__FILE__, __LINE__,
1687
                        _("gdbarch_architecture_names: multi-arch unknown"));
1688
      do
1689
        {
1690
          append_name (&arches, &nr_arches, ap->printable_name);
1691
          ap = ap->next;
1692
        }
1693
      while (ap != NULL);
1694
    }
1695
  append_name (&arches, &nr_arches, NULL);
1696
  return arches;
1697
}
1698
 
1699
 
1700
void
1701
gdbarch_register (enum bfd_architecture bfd_architecture,
1702
                  gdbarch_init_ftype *init,
1703
                  gdbarch_dump_tdep_ftype *dump_tdep)
1704
{
1705
  struct gdbarch_registration **curr;
1706
  const struct bfd_arch_info *bfd_arch_info;
1707
  /* Check that BFD recognizes this architecture */
1708
  bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1709
  if (bfd_arch_info == NULL)
1710
    {
1711
      internal_error (__FILE__, __LINE__,
1712
                      _("gdbarch: Attempt to register unknown architecture (%d)"),
1713
                      bfd_architecture);
1714
    }
1715
  /* Check that we haven't seen this architecture before */
1716
  for (curr = &gdbarch_registry;
1717
       (*curr) != NULL;
1718
       curr = &(*curr)->next)
1719
    {
1720
      if (bfd_architecture == (*curr)->bfd_architecture)
1721
        internal_error (__FILE__, __LINE__,
1722
                        _("gdbarch: Duplicate registraration of architecture (%s)"),
1723
                        bfd_arch_info->printable_name);
1724
    }
1725
  /* log it */
1726
  if (gdbarch_debug)
1727
    fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1728
                        bfd_arch_info->printable_name,
1729
                        (long) init);
1730
  /* Append it */
1731
  (*curr) = XMALLOC (struct gdbarch_registration);
1732
  (*curr)->bfd_architecture = bfd_architecture;
1733
  (*curr)->init = init;
1734
  (*curr)->dump_tdep = dump_tdep;
1735
  (*curr)->arches = NULL;
1736
  (*curr)->next = NULL;
1737
}
1738
 
1739
void
1740
register_gdbarch_init (enum bfd_architecture bfd_architecture,
1741
                       gdbarch_init_ftype *init)
1742
{
1743
  gdbarch_register (bfd_architecture, init, NULL);
1744
}
1745
 
1746
 
1747
/* Look for an architecture using gdbarch_info.  */
1748
 
1749
struct gdbarch_list *
1750
gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1751
                             const struct gdbarch_info *info)
1752
{
1753
  for (; arches != NULL; arches = arches->next)
1754
    {
1755
      if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1756
        continue;
1757
      if (info->byte_order != arches->gdbarch->byte_order)
1758
        continue;
1759
      if (info->osabi != arches->gdbarch->osabi)
1760
        continue;
1761
      if (info->target_desc != arches->gdbarch->target_desc)
1762
        continue;
1763
      return arches;
1764
    }
1765
  return NULL;
1766
}
1767
 
1768
 
1769
/* Find an architecture that matches the specified INFO.  Create a new
1770
   architecture if needed.  Return that new architecture.  Assumes
1771
   that there is no current architecture.  */
1772
 
1773
static struct gdbarch *
1774
find_arch_by_info (struct gdbarch_info info)
1775
{
1776
  struct gdbarch *new_gdbarch;
1777
  struct gdbarch_registration *rego;
1778
 
1779
  /* The existing architecture has been swapped out - all this code
1780
     works from a clean slate.  */
1781
  gdb_assert (current_gdbarch == NULL);
1782
 
1783
  /* Fill in missing parts of the INFO struct using a number of
1784
     sources: "set ..."; INFOabfd supplied; and the global
1785
     defaults.  */
1786
  gdbarch_info_fill (&info);
1787
 
1788
  /* Must have found some sort of architecture. */
1789
  gdb_assert (info.bfd_arch_info != NULL);
1790
 
1791
  if (gdbarch_debug)
1792
    {
1793
      fprintf_unfiltered (gdb_stdlog,
1794
                          "find_arch_by_info: info.bfd_arch_info %s\n",
1795
                          (info.bfd_arch_info != NULL
1796
                           ? info.bfd_arch_info->printable_name
1797
                           : "(null)"));
1798
      fprintf_unfiltered (gdb_stdlog,
1799
                          "find_arch_by_info: info.byte_order %d (%s)\n",
1800
                          info.byte_order,
1801
                          (info.byte_order == BFD_ENDIAN_BIG ? "big"
1802
                           : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1803
                           : "default"));
1804
      fprintf_unfiltered (gdb_stdlog,
1805
                          "find_arch_by_info: info.osabi %d (%s)\n",
1806
                          info.osabi, gdbarch_osabi_name (info.osabi));
1807
      fprintf_unfiltered (gdb_stdlog,
1808
                          "find_arch_by_info: info.abfd 0x%lx\n",
1809
                          (long) info.abfd);
1810
      fprintf_unfiltered (gdb_stdlog,
1811
                          "find_arch_by_info: info.tdep_info 0x%lx\n",
1812
                          (long) info.tdep_info);
1813
    }
1814
 
1815
  /* Find the tdep code that knows about this architecture.  */
1816
  for (rego = gdbarch_registry;
1817
       rego != NULL;
1818
       rego = rego->next)
1819
    if (rego->bfd_architecture == info.bfd_arch_info->arch)
1820
      break;
1821
  if (rego == NULL)
1822
    {
1823
      if (gdbarch_debug)
1824
        fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1825
                            "No matching architecture\n");
1826
      return 0;
1827
    }
1828
 
1829
  /* Ask the tdep code for an architecture that matches "info".  */
1830
  new_gdbarch = rego->init (info, rego->arches);
1831
 
1832
  /* Did the tdep code like it?  No.  Reject the change and revert to
1833
     the old architecture.  */
1834
  if (new_gdbarch == NULL)
1835
    {
1836
      if (gdbarch_debug)
1837
        fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1838
                            "Target rejected architecture\n");
1839
      return NULL;
1840
    }
1841
 
1842
  /* Is this a pre-existing architecture (as determined by already
1843
     being initialized)?  Move it to the front of the architecture
1844
     list (keeping the list sorted Most Recently Used).  */
1845
  if (new_gdbarch->initialized_p)
1846
    {
1847
      struct gdbarch_list **list;
1848
      struct gdbarch_list *this;
1849
      if (gdbarch_debug)
1850
        fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1851
                            "Previous architecture 0x%08lx (%s) selected\n",
1852
                            (long) new_gdbarch,
1853
                            new_gdbarch->bfd_arch_info->printable_name);
1854
      /* Find the existing arch in the list.  */
1855
      for (list = &rego->arches;
1856
           (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1857
           list = &(*list)->next);
1858
      /* It had better be in the list of architectures.  */
1859
      gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1860
      /* Unlink THIS.  */
1861
      this = (*list);
1862
      (*list) = this->next;
1863
      /* Insert THIS at the front.  */
1864
      this->next = rego->arches;
1865
      rego->arches = this;
1866
      /* Return it.  */
1867
      return new_gdbarch;
1868
    }
1869
 
1870
  /* It's a new architecture.  */
1871
  if (gdbarch_debug)
1872
    fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1873
                        "New architecture 0x%08lx (%s) selected\n",
1874
                        (long) new_gdbarch,
1875
                        new_gdbarch->bfd_arch_info->printable_name);
1876
 
1877
  /* Insert the new architecture into the front of the architecture
1878
     list (keep the list sorted Most Recently Used).  */
1879
  {
1880
    struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1881
    this->next = rego->arches;
1882
    this->gdbarch = new_gdbarch;
1883
    rego->arches = this;
1884
  }
1885
 
1886
  /* Check that the newly installed architecture is valid.  Plug in
1887
     any post init values.  */
1888
  new_gdbarch->dump_tdep = rego->dump_tdep;
1889
  verify_gdbarch (new_gdbarch);
1890
  new_gdbarch->initialized_p = 1;
1891
 
1892
  if (gdbarch_debug)
1893
    gdbarch_dump (new_gdbarch, gdb_stdlog);
1894
 
1895
  return new_gdbarch;
1896
}
1897
 
1898
struct gdbarch *
1899
gdbarch_find_by_info (struct gdbarch_info info)
1900
{
1901
  struct gdbarch *new_gdbarch;
1902
 
1903
  /* Save the previously selected architecture, setting the global to
1904
     NULL.  This stops things like gdbarch->init() trying to use the
1905
     previous architecture's configuration.  The previous architecture
1906
     may not even be of the same architecture family.  The most recent
1907
     architecture of the same family is found at the head of the
1908
     rego->arches list.  */
1909
  struct gdbarch *old_gdbarch = current_gdbarch;
1910
  current_gdbarch = NULL;
1911
 
1912
  /* Find the specified architecture.  */
1913
  new_gdbarch = find_arch_by_info (info);
1914
 
1915
  /* Restore the existing architecture.  */
1916
  gdb_assert (current_gdbarch == NULL);
1917
  current_gdbarch = old_gdbarch;
1918
 
1919
  return new_gdbarch;
1920
}
1921
 
1922
/* Make the specified architecture current.  */
1923
 
1924
void
1925
deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
1926
{
1927
  gdb_assert (new_gdbarch != NULL);
1928
  gdb_assert (current_gdbarch != NULL);
1929
  gdb_assert (new_gdbarch->initialized_p);
1930
  current_gdbarch = new_gdbarch;
1931
  architecture_changed_event ();
1932
  reinit_frame_cache ();
1933
}
1934
 
1935
extern void _initialize_gdbarch (void);
1936
 
1937
void
1938
_initialize_gdbarch (void)
1939
{
1940
  struct cmd_list_element *c;
1941
 
1942
  add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
1943
Set architecture debugging."), _("\\
1944
Show architecture debugging."), _("\\
1945
When non-zero, architecture debugging is enabled."),
1946
                            NULL,
1947
                            show_gdbarch_debug,
1948
                            &setdebuglist, &showdebuglist);
1949
}
1950
EOF
1951
 
1952
# close things off
1953
exec 1>&2
1954
#../move-if-change new-gdbarch.c gdbarch.c
1955
compare_new gdbarch.c

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.