1 |
24 |
jeremybenn |
/* Target-dependent code for the HP PA-RISC architecture.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
4 |
|
|
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
Contributed by the Center for Software Science at the
|
8 |
|
|
University of Utah (pa-gdb-bugs@cs.utah.edu).
|
9 |
|
|
|
10 |
|
|
This file is part of GDB.
|
11 |
|
|
|
12 |
|
|
This program is free software; you can redistribute it and/or modify
|
13 |
|
|
it under the terms of the GNU General Public License as published by
|
14 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
15 |
|
|
(at your option) any later version.
|
16 |
|
|
|
17 |
|
|
This program is distributed in the hope that it will be useful,
|
18 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
19 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
20 |
|
|
GNU General Public License for more details.
|
21 |
|
|
|
22 |
|
|
You should have received a copy of the GNU General Public License
|
23 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
24 |
|
|
|
25 |
|
|
#include "defs.h"
|
26 |
|
|
#include "bfd.h"
|
27 |
|
|
#include "inferior.h"
|
28 |
|
|
#include "regcache.h"
|
29 |
|
|
#include "completer.h"
|
30 |
|
|
#include "osabi.h"
|
31 |
|
|
#include "gdb_assert.h"
|
32 |
|
|
#include "gdb_stdint.h"
|
33 |
|
|
#include "arch-utils.h"
|
34 |
|
|
/* For argument passing to the inferior */
|
35 |
|
|
#include "symtab.h"
|
36 |
|
|
#include "dis-asm.h"
|
37 |
|
|
#include "trad-frame.h"
|
38 |
|
|
#include "frame-unwind.h"
|
39 |
|
|
#include "frame-base.h"
|
40 |
|
|
|
41 |
|
|
#include "gdbcore.h"
|
42 |
|
|
#include "gdbcmd.h"
|
43 |
|
|
#include "gdbtypes.h"
|
44 |
|
|
#include "objfiles.h"
|
45 |
|
|
#include "hppa-tdep.h"
|
46 |
|
|
|
47 |
|
|
static int hppa_debug = 0;
|
48 |
|
|
|
49 |
|
|
/* Some local constants. */
|
50 |
|
|
static const int hppa32_num_regs = 128;
|
51 |
|
|
static const int hppa64_num_regs = 96;
|
52 |
|
|
|
53 |
|
|
/* hppa-specific object data -- unwind and solib info.
|
54 |
|
|
TODO/maybe: think about splitting this into two parts; the unwind data is
|
55 |
|
|
common to all hppa targets, but is only used in this file; we can register
|
56 |
|
|
that separately and make this static. The solib data is probably hpux-
|
57 |
|
|
specific, so we can create a separate extern objfile_data that is registered
|
58 |
|
|
by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
|
59 |
|
|
const struct objfile_data *hppa_objfile_priv_data = NULL;
|
60 |
|
|
|
61 |
|
|
/* Get at various relevent fields of an instruction word. */
|
62 |
|
|
#define MASK_5 0x1f
|
63 |
|
|
#define MASK_11 0x7ff
|
64 |
|
|
#define MASK_14 0x3fff
|
65 |
|
|
#define MASK_21 0x1fffff
|
66 |
|
|
|
67 |
|
|
/* Sizes (in bytes) of the native unwind entries. */
|
68 |
|
|
#define UNWIND_ENTRY_SIZE 16
|
69 |
|
|
#define STUB_UNWIND_ENTRY_SIZE 8
|
70 |
|
|
|
71 |
|
|
/* Routines to extract various sized constants out of hppa
|
72 |
|
|
instructions. */
|
73 |
|
|
|
74 |
|
|
/* This assumes that no garbage lies outside of the lower bits of
|
75 |
|
|
value. */
|
76 |
|
|
|
77 |
|
|
int
|
78 |
|
|
hppa_sign_extend (unsigned val, unsigned bits)
|
79 |
|
|
{
|
80 |
|
|
return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
|
81 |
|
|
}
|
82 |
|
|
|
83 |
|
|
/* For many immediate values the sign bit is the low bit! */
|
84 |
|
|
|
85 |
|
|
int
|
86 |
|
|
hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
|
87 |
|
|
{
|
88 |
|
|
return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
|
89 |
|
|
}
|
90 |
|
|
|
91 |
|
|
/* Extract the bits at positions between FROM and TO, using HP's numbering
|
92 |
|
|
(MSB = 0). */
|
93 |
|
|
|
94 |
|
|
int
|
95 |
|
|
hppa_get_field (unsigned word, int from, int to)
|
96 |
|
|
{
|
97 |
|
|
return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
|
98 |
|
|
}
|
99 |
|
|
|
100 |
|
|
/* extract the immediate field from a ld{bhw}s instruction */
|
101 |
|
|
|
102 |
|
|
int
|
103 |
|
|
hppa_extract_5_load (unsigned word)
|
104 |
|
|
{
|
105 |
|
|
return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
|
106 |
|
|
}
|
107 |
|
|
|
108 |
|
|
/* extract the immediate field from a break instruction */
|
109 |
|
|
|
110 |
|
|
unsigned
|
111 |
|
|
hppa_extract_5r_store (unsigned word)
|
112 |
|
|
{
|
113 |
|
|
return (word & MASK_5);
|
114 |
|
|
}
|
115 |
|
|
|
116 |
|
|
/* extract the immediate field from a {sr}sm instruction */
|
117 |
|
|
|
118 |
|
|
unsigned
|
119 |
|
|
hppa_extract_5R_store (unsigned word)
|
120 |
|
|
{
|
121 |
|
|
return (word >> 16 & MASK_5);
|
122 |
|
|
}
|
123 |
|
|
|
124 |
|
|
/* extract a 14 bit immediate field */
|
125 |
|
|
|
126 |
|
|
int
|
127 |
|
|
hppa_extract_14 (unsigned word)
|
128 |
|
|
{
|
129 |
|
|
return hppa_low_hppa_sign_extend (word & MASK_14, 14);
|
130 |
|
|
}
|
131 |
|
|
|
132 |
|
|
/* extract a 21 bit constant */
|
133 |
|
|
|
134 |
|
|
int
|
135 |
|
|
hppa_extract_21 (unsigned word)
|
136 |
|
|
{
|
137 |
|
|
int val;
|
138 |
|
|
|
139 |
|
|
word &= MASK_21;
|
140 |
|
|
word <<= 11;
|
141 |
|
|
val = hppa_get_field (word, 20, 20);
|
142 |
|
|
val <<= 11;
|
143 |
|
|
val |= hppa_get_field (word, 9, 19);
|
144 |
|
|
val <<= 2;
|
145 |
|
|
val |= hppa_get_field (word, 5, 6);
|
146 |
|
|
val <<= 5;
|
147 |
|
|
val |= hppa_get_field (word, 0, 4);
|
148 |
|
|
val <<= 2;
|
149 |
|
|
val |= hppa_get_field (word, 7, 8);
|
150 |
|
|
return hppa_sign_extend (val, 21) << 11;
|
151 |
|
|
}
|
152 |
|
|
|
153 |
|
|
/* extract a 17 bit constant from branch instructions, returning the
|
154 |
|
|
19 bit signed value. */
|
155 |
|
|
|
156 |
|
|
int
|
157 |
|
|
hppa_extract_17 (unsigned word)
|
158 |
|
|
{
|
159 |
|
|
return hppa_sign_extend (hppa_get_field (word, 19, 28) |
|
160 |
|
|
hppa_get_field (word, 29, 29) << 10 |
|
161 |
|
|
hppa_get_field (word, 11, 15) << 11 |
|
162 |
|
|
(word & 0x1) << 16, 17) << 2;
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
CORE_ADDR
|
166 |
|
|
hppa_symbol_address(const char *sym)
|
167 |
|
|
{
|
168 |
|
|
struct minimal_symbol *minsym;
|
169 |
|
|
|
170 |
|
|
minsym = lookup_minimal_symbol (sym, NULL, NULL);
|
171 |
|
|
if (minsym)
|
172 |
|
|
return SYMBOL_VALUE_ADDRESS (minsym);
|
173 |
|
|
else
|
174 |
|
|
return (CORE_ADDR)-1;
|
175 |
|
|
}
|
176 |
|
|
|
177 |
|
|
struct hppa_objfile_private *
|
178 |
|
|
hppa_init_objfile_priv_data (struct objfile *objfile)
|
179 |
|
|
{
|
180 |
|
|
struct hppa_objfile_private *priv;
|
181 |
|
|
|
182 |
|
|
priv = (struct hppa_objfile_private *)
|
183 |
|
|
obstack_alloc (&objfile->objfile_obstack,
|
184 |
|
|
sizeof (struct hppa_objfile_private));
|
185 |
|
|
set_objfile_data (objfile, hppa_objfile_priv_data, priv);
|
186 |
|
|
memset (priv, 0, sizeof (*priv));
|
187 |
|
|
|
188 |
|
|
return priv;
|
189 |
|
|
}
|
190 |
|
|
|
191 |
|
|
|
192 |
|
|
/* Compare the start address for two unwind entries returning 1 if
|
193 |
|
|
the first address is larger than the second, -1 if the second is
|
194 |
|
|
larger than the first, and zero if they are equal. */
|
195 |
|
|
|
196 |
|
|
static int
|
197 |
|
|
compare_unwind_entries (const void *arg1, const void *arg2)
|
198 |
|
|
{
|
199 |
|
|
const struct unwind_table_entry *a = arg1;
|
200 |
|
|
const struct unwind_table_entry *b = arg2;
|
201 |
|
|
|
202 |
|
|
if (a->region_start > b->region_start)
|
203 |
|
|
return 1;
|
204 |
|
|
else if (a->region_start < b->region_start)
|
205 |
|
|
return -1;
|
206 |
|
|
else
|
207 |
|
|
return 0;
|
208 |
|
|
}
|
209 |
|
|
|
210 |
|
|
static void
|
211 |
|
|
record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
|
212 |
|
|
{
|
213 |
|
|
if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
|
214 |
|
|
== (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
|
215 |
|
|
{
|
216 |
|
|
bfd_vma value = section->vma - section->filepos;
|
217 |
|
|
CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
|
218 |
|
|
|
219 |
|
|
if (value < *low_text_segment_address)
|
220 |
|
|
*low_text_segment_address = value;
|
221 |
|
|
}
|
222 |
|
|
}
|
223 |
|
|
|
224 |
|
|
static void
|
225 |
|
|
internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
|
226 |
|
|
asection *section, unsigned int entries, unsigned int size,
|
227 |
|
|
CORE_ADDR text_offset)
|
228 |
|
|
{
|
229 |
|
|
/* We will read the unwind entries into temporary memory, then
|
230 |
|
|
fill in the actual unwind table. */
|
231 |
|
|
|
232 |
|
|
if (size > 0)
|
233 |
|
|
{
|
234 |
|
|
unsigned long tmp;
|
235 |
|
|
unsigned i;
|
236 |
|
|
char *buf = alloca (size);
|
237 |
|
|
CORE_ADDR low_text_segment_address;
|
238 |
|
|
|
239 |
|
|
/* For ELF targets, then unwinds are supposed to
|
240 |
|
|
be segment relative offsets instead of absolute addresses.
|
241 |
|
|
|
242 |
|
|
Note that when loading a shared library (text_offset != 0) the
|
243 |
|
|
unwinds are already relative to the text_offset that will be
|
244 |
|
|
passed in. */
|
245 |
|
|
if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
|
246 |
|
|
{
|
247 |
|
|
low_text_segment_address = -1;
|
248 |
|
|
|
249 |
|
|
bfd_map_over_sections (objfile->obfd,
|
250 |
|
|
record_text_segment_lowaddr,
|
251 |
|
|
&low_text_segment_address);
|
252 |
|
|
|
253 |
|
|
text_offset = low_text_segment_address;
|
254 |
|
|
}
|
255 |
|
|
else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
|
256 |
|
|
{
|
257 |
|
|
text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
|
258 |
|
|
}
|
259 |
|
|
|
260 |
|
|
bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
|
261 |
|
|
|
262 |
|
|
/* Now internalize the information being careful to handle host/target
|
263 |
|
|
endian issues. */
|
264 |
|
|
for (i = 0; i < entries; i++)
|
265 |
|
|
{
|
266 |
|
|
table[i].region_start = bfd_get_32 (objfile->obfd,
|
267 |
|
|
(bfd_byte *) buf);
|
268 |
|
|
table[i].region_start += text_offset;
|
269 |
|
|
buf += 4;
|
270 |
|
|
table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
|
271 |
|
|
table[i].region_end += text_offset;
|
272 |
|
|
buf += 4;
|
273 |
|
|
tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
|
274 |
|
|
buf += 4;
|
275 |
|
|
table[i].Cannot_unwind = (tmp >> 31) & 0x1;
|
276 |
|
|
table[i].Millicode = (tmp >> 30) & 0x1;
|
277 |
|
|
table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
|
278 |
|
|
table[i].Region_description = (tmp >> 27) & 0x3;
|
279 |
|
|
table[i].reserved = (tmp >> 26) & 0x1;
|
280 |
|
|
table[i].Entry_SR = (tmp >> 25) & 0x1;
|
281 |
|
|
table[i].Entry_FR = (tmp >> 21) & 0xf;
|
282 |
|
|
table[i].Entry_GR = (tmp >> 16) & 0x1f;
|
283 |
|
|
table[i].Args_stored = (tmp >> 15) & 0x1;
|
284 |
|
|
table[i].Variable_Frame = (tmp >> 14) & 0x1;
|
285 |
|
|
table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
|
286 |
|
|
table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
|
287 |
|
|
table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
|
288 |
|
|
table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
|
289 |
|
|
table[i].sr4export = (tmp >> 9) & 0x1;
|
290 |
|
|
table[i].cxx_info = (tmp >> 8) & 0x1;
|
291 |
|
|
table[i].cxx_try_catch = (tmp >> 7) & 0x1;
|
292 |
|
|
table[i].sched_entry_seq = (tmp >> 6) & 0x1;
|
293 |
|
|
table[i].reserved1 = (tmp >> 5) & 0x1;
|
294 |
|
|
table[i].Save_SP = (tmp >> 4) & 0x1;
|
295 |
|
|
table[i].Save_RP = (tmp >> 3) & 0x1;
|
296 |
|
|
table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
|
297 |
|
|
table[i].save_r19 = (tmp >> 1) & 0x1;
|
298 |
|
|
table[i].Cleanup_defined = tmp & 0x1;
|
299 |
|
|
tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
|
300 |
|
|
buf += 4;
|
301 |
|
|
table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
|
302 |
|
|
table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
|
303 |
|
|
table[i].Large_frame = (tmp >> 29) & 0x1;
|
304 |
|
|
table[i].alloca_frame = (tmp >> 28) & 0x1;
|
305 |
|
|
table[i].reserved2 = (tmp >> 27) & 0x1;
|
306 |
|
|
table[i].Total_frame_size = tmp & 0x7ffffff;
|
307 |
|
|
|
308 |
|
|
/* Stub unwinds are handled elsewhere. */
|
309 |
|
|
table[i].stub_unwind.stub_type = 0;
|
310 |
|
|
table[i].stub_unwind.padding = 0;
|
311 |
|
|
}
|
312 |
|
|
}
|
313 |
|
|
}
|
314 |
|
|
|
315 |
|
|
/* Read in the backtrace information stored in the `$UNWIND_START$' section of
|
316 |
|
|
the object file. This info is used mainly by find_unwind_entry() to find
|
317 |
|
|
out the stack frame size and frame pointer used by procedures. We put
|
318 |
|
|
everything on the psymbol obstack in the objfile so that it automatically
|
319 |
|
|
gets freed when the objfile is destroyed. */
|
320 |
|
|
|
321 |
|
|
static void
|
322 |
|
|
read_unwind_info (struct objfile *objfile)
|
323 |
|
|
{
|
324 |
|
|
asection *unwind_sec, *stub_unwind_sec;
|
325 |
|
|
unsigned unwind_size, stub_unwind_size, total_size;
|
326 |
|
|
unsigned index, unwind_entries;
|
327 |
|
|
unsigned stub_entries, total_entries;
|
328 |
|
|
CORE_ADDR text_offset;
|
329 |
|
|
struct hppa_unwind_info *ui;
|
330 |
|
|
struct hppa_objfile_private *obj_private;
|
331 |
|
|
|
332 |
|
|
text_offset = ANOFFSET (objfile->section_offsets, 0);
|
333 |
|
|
ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
|
334 |
|
|
sizeof (struct hppa_unwind_info));
|
335 |
|
|
|
336 |
|
|
ui->table = NULL;
|
337 |
|
|
ui->cache = NULL;
|
338 |
|
|
ui->last = -1;
|
339 |
|
|
|
340 |
|
|
/* For reasons unknown the HP PA64 tools generate multiple unwinder
|
341 |
|
|
sections in a single executable. So we just iterate over every
|
342 |
|
|
section in the BFD looking for unwinder sections intead of trying
|
343 |
|
|
to do a lookup with bfd_get_section_by_name.
|
344 |
|
|
|
345 |
|
|
First determine the total size of the unwind tables so that we
|
346 |
|
|
can allocate memory in a nice big hunk. */
|
347 |
|
|
total_entries = 0;
|
348 |
|
|
for (unwind_sec = objfile->obfd->sections;
|
349 |
|
|
unwind_sec;
|
350 |
|
|
unwind_sec = unwind_sec->next)
|
351 |
|
|
{
|
352 |
|
|
if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
|
353 |
|
|
|| strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
|
354 |
|
|
{
|
355 |
|
|
unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
|
356 |
|
|
unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
|
357 |
|
|
|
358 |
|
|
total_entries += unwind_entries;
|
359 |
|
|
}
|
360 |
|
|
}
|
361 |
|
|
|
362 |
|
|
/* Now compute the size of the stub unwinds. Note the ELF tools do not
|
363 |
|
|
use stub unwinds at the current time. */
|
364 |
|
|
stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
|
365 |
|
|
|
366 |
|
|
if (stub_unwind_sec)
|
367 |
|
|
{
|
368 |
|
|
stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
|
369 |
|
|
stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
|
370 |
|
|
}
|
371 |
|
|
else
|
372 |
|
|
{
|
373 |
|
|
stub_unwind_size = 0;
|
374 |
|
|
stub_entries = 0;
|
375 |
|
|
}
|
376 |
|
|
|
377 |
|
|
/* Compute total number of unwind entries and their total size. */
|
378 |
|
|
total_entries += stub_entries;
|
379 |
|
|
total_size = total_entries * sizeof (struct unwind_table_entry);
|
380 |
|
|
|
381 |
|
|
/* Allocate memory for the unwind table. */
|
382 |
|
|
ui->table = (struct unwind_table_entry *)
|
383 |
|
|
obstack_alloc (&objfile->objfile_obstack, total_size);
|
384 |
|
|
ui->last = total_entries - 1;
|
385 |
|
|
|
386 |
|
|
/* Now read in each unwind section and internalize the standard unwind
|
387 |
|
|
entries. */
|
388 |
|
|
index = 0;
|
389 |
|
|
for (unwind_sec = objfile->obfd->sections;
|
390 |
|
|
unwind_sec;
|
391 |
|
|
unwind_sec = unwind_sec->next)
|
392 |
|
|
{
|
393 |
|
|
if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
|
394 |
|
|
|| strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
|
395 |
|
|
{
|
396 |
|
|
unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
|
397 |
|
|
unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
|
398 |
|
|
|
399 |
|
|
internalize_unwinds (objfile, &ui->table[index], unwind_sec,
|
400 |
|
|
unwind_entries, unwind_size, text_offset);
|
401 |
|
|
index += unwind_entries;
|
402 |
|
|
}
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
/* Now read in and internalize the stub unwind entries. */
|
406 |
|
|
if (stub_unwind_size > 0)
|
407 |
|
|
{
|
408 |
|
|
unsigned int i;
|
409 |
|
|
char *buf = alloca (stub_unwind_size);
|
410 |
|
|
|
411 |
|
|
/* Read in the stub unwind entries. */
|
412 |
|
|
bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
|
413 |
|
|
0, stub_unwind_size);
|
414 |
|
|
|
415 |
|
|
/* Now convert them into regular unwind entries. */
|
416 |
|
|
for (i = 0; i < stub_entries; i++, index++)
|
417 |
|
|
{
|
418 |
|
|
/* Clear out the next unwind entry. */
|
419 |
|
|
memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
|
420 |
|
|
|
421 |
|
|
/* Convert offset & size into region_start and region_end.
|
422 |
|
|
Stuff away the stub type into "reserved" fields. */
|
423 |
|
|
ui->table[index].region_start = bfd_get_32 (objfile->obfd,
|
424 |
|
|
(bfd_byte *) buf);
|
425 |
|
|
ui->table[index].region_start += text_offset;
|
426 |
|
|
buf += 4;
|
427 |
|
|
ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
|
428 |
|
|
(bfd_byte *) buf);
|
429 |
|
|
buf += 2;
|
430 |
|
|
ui->table[index].region_end
|
431 |
|
|
= ui->table[index].region_start + 4 *
|
432 |
|
|
(bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
|
433 |
|
|
buf += 2;
|
434 |
|
|
}
|
435 |
|
|
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
/* Unwind table needs to be kept sorted. */
|
439 |
|
|
qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
|
440 |
|
|
compare_unwind_entries);
|
441 |
|
|
|
442 |
|
|
/* Keep a pointer to the unwind information. */
|
443 |
|
|
obj_private = (struct hppa_objfile_private *)
|
444 |
|
|
objfile_data (objfile, hppa_objfile_priv_data);
|
445 |
|
|
if (obj_private == NULL)
|
446 |
|
|
obj_private = hppa_init_objfile_priv_data (objfile);
|
447 |
|
|
|
448 |
|
|
obj_private->unwind_info = ui;
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
/* Lookup the unwind (stack backtrace) info for the given PC. We search all
|
452 |
|
|
of the objfiles seeking the unwind table entry for this PC. Each objfile
|
453 |
|
|
contains a sorted list of struct unwind_table_entry. Since we do a binary
|
454 |
|
|
search of the unwind tables, we depend upon them to be sorted. */
|
455 |
|
|
|
456 |
|
|
struct unwind_table_entry *
|
457 |
|
|
find_unwind_entry (CORE_ADDR pc)
|
458 |
|
|
{
|
459 |
|
|
int first, middle, last;
|
460 |
|
|
struct objfile *objfile;
|
461 |
|
|
struct hppa_objfile_private *priv;
|
462 |
|
|
|
463 |
|
|
if (hppa_debug)
|
464 |
|
|
fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
|
465 |
|
|
paddr_nz (pc));
|
466 |
|
|
|
467 |
|
|
/* A function at address 0? Not in HP-UX! */
|
468 |
|
|
if (pc == (CORE_ADDR) 0)
|
469 |
|
|
{
|
470 |
|
|
if (hppa_debug)
|
471 |
|
|
fprintf_unfiltered (gdb_stdlog, "NULL }\n");
|
472 |
|
|
return NULL;
|
473 |
|
|
}
|
474 |
|
|
|
475 |
|
|
ALL_OBJFILES (objfile)
|
476 |
|
|
{
|
477 |
|
|
struct hppa_unwind_info *ui;
|
478 |
|
|
ui = NULL;
|
479 |
|
|
priv = objfile_data (objfile, hppa_objfile_priv_data);
|
480 |
|
|
if (priv)
|
481 |
|
|
ui = ((struct hppa_objfile_private *) priv)->unwind_info;
|
482 |
|
|
|
483 |
|
|
if (!ui)
|
484 |
|
|
{
|
485 |
|
|
read_unwind_info (objfile);
|
486 |
|
|
priv = objfile_data (objfile, hppa_objfile_priv_data);
|
487 |
|
|
if (priv == NULL)
|
488 |
|
|
error (_("Internal error reading unwind information."));
|
489 |
|
|
ui = ((struct hppa_objfile_private *) priv)->unwind_info;
|
490 |
|
|
}
|
491 |
|
|
|
492 |
|
|
/* First, check the cache */
|
493 |
|
|
|
494 |
|
|
if (ui->cache
|
495 |
|
|
&& pc >= ui->cache->region_start
|
496 |
|
|
&& pc <= ui->cache->region_end)
|
497 |
|
|
{
|
498 |
|
|
if (hppa_debug)
|
499 |
|
|
fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
|
500 |
|
|
paddr_nz ((uintptr_t) ui->cache));
|
501 |
|
|
return ui->cache;
|
502 |
|
|
}
|
503 |
|
|
|
504 |
|
|
/* Not in the cache, do a binary search */
|
505 |
|
|
|
506 |
|
|
first = 0;
|
507 |
|
|
last = ui->last;
|
508 |
|
|
|
509 |
|
|
while (first <= last)
|
510 |
|
|
{
|
511 |
|
|
middle = (first + last) / 2;
|
512 |
|
|
if (pc >= ui->table[middle].region_start
|
513 |
|
|
&& pc <= ui->table[middle].region_end)
|
514 |
|
|
{
|
515 |
|
|
ui->cache = &ui->table[middle];
|
516 |
|
|
if (hppa_debug)
|
517 |
|
|
fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
|
518 |
|
|
paddr_nz ((uintptr_t) ui->cache));
|
519 |
|
|
return &ui->table[middle];
|
520 |
|
|
}
|
521 |
|
|
|
522 |
|
|
if (pc < ui->table[middle].region_start)
|
523 |
|
|
last = middle - 1;
|
524 |
|
|
else
|
525 |
|
|
first = middle + 1;
|
526 |
|
|
}
|
527 |
|
|
} /* ALL_OBJFILES() */
|
528 |
|
|
|
529 |
|
|
if (hppa_debug)
|
530 |
|
|
fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
|
531 |
|
|
|
532 |
|
|
return NULL;
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
/* The epilogue is defined here as the area either on the `bv' instruction
|
536 |
|
|
itself or an instruction which destroys the function's stack frame.
|
537 |
|
|
|
538 |
|
|
We do not assume that the epilogue is at the end of a function as we can
|
539 |
|
|
also have return sequences in the middle of a function. */
|
540 |
|
|
static int
|
541 |
|
|
hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
542 |
|
|
{
|
543 |
|
|
unsigned long status;
|
544 |
|
|
unsigned int inst;
|
545 |
|
|
char buf[4];
|
546 |
|
|
int off;
|
547 |
|
|
|
548 |
|
|
status = read_memory_nobpt (pc, buf, 4);
|
549 |
|
|
if (status != 0)
|
550 |
|
|
return 0;
|
551 |
|
|
|
552 |
|
|
inst = extract_unsigned_integer (buf, 4);
|
553 |
|
|
|
554 |
|
|
/* The most common way to perform a stack adjustment ldo X(sp),sp
|
555 |
|
|
We are destroying a stack frame if the offset is negative. */
|
556 |
|
|
if ((inst & 0xffffc000) == 0x37de0000
|
557 |
|
|
&& hppa_extract_14 (inst) < 0)
|
558 |
|
|
return 1;
|
559 |
|
|
|
560 |
|
|
/* ldw,mb D(sp),X or ldd,mb D(sp),X */
|
561 |
|
|
if (((inst & 0x0fc010e0) == 0x0fc010e0
|
562 |
|
|
|| (inst & 0x0fc010e0) == 0x0fc010e0)
|
563 |
|
|
&& hppa_extract_14 (inst) < 0)
|
564 |
|
|
return 1;
|
565 |
|
|
|
566 |
|
|
/* bv %r0(%rp) or bv,n %r0(%rp) */
|
567 |
|
|
if (inst == 0xe840c000 || inst == 0xe840c002)
|
568 |
|
|
return 1;
|
569 |
|
|
|
570 |
|
|
return 0;
|
571 |
|
|
}
|
572 |
|
|
|
573 |
|
|
static const unsigned char *
|
574 |
|
|
hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
|
575 |
|
|
{
|
576 |
|
|
static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
|
577 |
|
|
(*len) = sizeof (breakpoint);
|
578 |
|
|
return breakpoint;
|
579 |
|
|
}
|
580 |
|
|
|
581 |
|
|
/* Return the name of a register. */
|
582 |
|
|
|
583 |
|
|
static const char *
|
584 |
|
|
hppa32_register_name (struct gdbarch *gdbarch, int i)
|
585 |
|
|
{
|
586 |
|
|
static char *names[] = {
|
587 |
|
|
"flags", "r1", "rp", "r3",
|
588 |
|
|
"r4", "r5", "r6", "r7",
|
589 |
|
|
"r8", "r9", "r10", "r11",
|
590 |
|
|
"r12", "r13", "r14", "r15",
|
591 |
|
|
"r16", "r17", "r18", "r19",
|
592 |
|
|
"r20", "r21", "r22", "r23",
|
593 |
|
|
"r24", "r25", "r26", "dp",
|
594 |
|
|
"ret0", "ret1", "sp", "r31",
|
595 |
|
|
"sar", "pcoqh", "pcsqh", "pcoqt",
|
596 |
|
|
"pcsqt", "eiem", "iir", "isr",
|
597 |
|
|
"ior", "ipsw", "goto", "sr4",
|
598 |
|
|
"sr0", "sr1", "sr2", "sr3",
|
599 |
|
|
"sr5", "sr6", "sr7", "cr0",
|
600 |
|
|
"cr8", "cr9", "ccr", "cr12",
|
601 |
|
|
"cr13", "cr24", "cr25", "cr26",
|
602 |
|
|
"mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
|
603 |
|
|
"fpsr", "fpe1", "fpe2", "fpe3",
|
604 |
|
|
"fpe4", "fpe5", "fpe6", "fpe7",
|
605 |
|
|
"fr4", "fr4R", "fr5", "fr5R",
|
606 |
|
|
"fr6", "fr6R", "fr7", "fr7R",
|
607 |
|
|
"fr8", "fr8R", "fr9", "fr9R",
|
608 |
|
|
"fr10", "fr10R", "fr11", "fr11R",
|
609 |
|
|
"fr12", "fr12R", "fr13", "fr13R",
|
610 |
|
|
"fr14", "fr14R", "fr15", "fr15R",
|
611 |
|
|
"fr16", "fr16R", "fr17", "fr17R",
|
612 |
|
|
"fr18", "fr18R", "fr19", "fr19R",
|
613 |
|
|
"fr20", "fr20R", "fr21", "fr21R",
|
614 |
|
|
"fr22", "fr22R", "fr23", "fr23R",
|
615 |
|
|
"fr24", "fr24R", "fr25", "fr25R",
|
616 |
|
|
"fr26", "fr26R", "fr27", "fr27R",
|
617 |
|
|
"fr28", "fr28R", "fr29", "fr29R",
|
618 |
|
|
"fr30", "fr30R", "fr31", "fr31R"
|
619 |
|
|
};
|
620 |
|
|
if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
|
621 |
|
|
return NULL;
|
622 |
|
|
else
|
623 |
|
|
return names[i];
|
624 |
|
|
}
|
625 |
|
|
|
626 |
|
|
static const char *
|
627 |
|
|
hppa64_register_name (struct gdbarch *gdbarch, int i)
|
628 |
|
|
{
|
629 |
|
|
static char *names[] = {
|
630 |
|
|
"flags", "r1", "rp", "r3",
|
631 |
|
|
"r4", "r5", "r6", "r7",
|
632 |
|
|
"r8", "r9", "r10", "r11",
|
633 |
|
|
"r12", "r13", "r14", "r15",
|
634 |
|
|
"r16", "r17", "r18", "r19",
|
635 |
|
|
"r20", "r21", "r22", "r23",
|
636 |
|
|
"r24", "r25", "r26", "dp",
|
637 |
|
|
"ret0", "ret1", "sp", "r31",
|
638 |
|
|
"sar", "pcoqh", "pcsqh", "pcoqt",
|
639 |
|
|
"pcsqt", "eiem", "iir", "isr",
|
640 |
|
|
"ior", "ipsw", "goto", "sr4",
|
641 |
|
|
"sr0", "sr1", "sr2", "sr3",
|
642 |
|
|
"sr5", "sr6", "sr7", "cr0",
|
643 |
|
|
"cr8", "cr9", "ccr", "cr12",
|
644 |
|
|
"cr13", "cr24", "cr25", "cr26",
|
645 |
|
|
"mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
|
646 |
|
|
"fpsr", "fpe1", "fpe2", "fpe3",
|
647 |
|
|
"fr4", "fr5", "fr6", "fr7",
|
648 |
|
|
"fr8", "fr9", "fr10", "fr11",
|
649 |
|
|
"fr12", "fr13", "fr14", "fr15",
|
650 |
|
|
"fr16", "fr17", "fr18", "fr19",
|
651 |
|
|
"fr20", "fr21", "fr22", "fr23",
|
652 |
|
|
"fr24", "fr25", "fr26", "fr27",
|
653 |
|
|
"fr28", "fr29", "fr30", "fr31"
|
654 |
|
|
};
|
655 |
|
|
if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
|
656 |
|
|
return NULL;
|
657 |
|
|
else
|
658 |
|
|
return names[i];
|
659 |
|
|
}
|
660 |
|
|
|
661 |
|
|
static int
|
662 |
|
|
hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
663 |
|
|
{
|
664 |
|
|
/* r0-r31 and sar map one-to-one. */
|
665 |
|
|
if (reg <= 32)
|
666 |
|
|
return reg;
|
667 |
|
|
|
668 |
|
|
/* fr4-fr31 are mapped from 72 in steps of 2. */
|
669 |
|
|
if (reg >= 72 || reg < 72 + 28 * 2)
|
670 |
|
|
return HPPA64_FP4_REGNUM + (reg - 72) / 2;
|
671 |
|
|
|
672 |
|
|
error ("Invalid DWARF register num %d.", reg);
|
673 |
|
|
return -1;
|
674 |
|
|
}
|
675 |
|
|
|
676 |
|
|
/* This function pushes a stack frame with arguments as part of the
|
677 |
|
|
inferior function calling mechanism.
|
678 |
|
|
|
679 |
|
|
This is the version of the function for the 32-bit PA machines, in
|
680 |
|
|
which later arguments appear at lower addresses. (The stack always
|
681 |
|
|
grows towards higher addresses.)
|
682 |
|
|
|
683 |
|
|
We simply allocate the appropriate amount of stack space and put
|
684 |
|
|
arguments into their proper slots. */
|
685 |
|
|
|
686 |
|
|
static CORE_ADDR
|
687 |
|
|
hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
688 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
689 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
690 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
691 |
|
|
{
|
692 |
|
|
/* Stack base address at which any pass-by-reference parameters are
|
693 |
|
|
stored. */
|
694 |
|
|
CORE_ADDR struct_end = 0;
|
695 |
|
|
/* Stack base address at which the first parameter is stored. */
|
696 |
|
|
CORE_ADDR param_end = 0;
|
697 |
|
|
|
698 |
|
|
/* The inner most end of the stack after all the parameters have
|
699 |
|
|
been pushed. */
|
700 |
|
|
CORE_ADDR new_sp = 0;
|
701 |
|
|
|
702 |
|
|
/* Two passes. First pass computes the location of everything,
|
703 |
|
|
second pass writes the bytes out. */
|
704 |
|
|
int write_pass;
|
705 |
|
|
|
706 |
|
|
/* Global pointer (r19) of the function we are trying to call. */
|
707 |
|
|
CORE_ADDR gp;
|
708 |
|
|
|
709 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
710 |
|
|
|
711 |
|
|
for (write_pass = 0; write_pass < 2; write_pass++)
|
712 |
|
|
{
|
713 |
|
|
CORE_ADDR struct_ptr = 0;
|
714 |
|
|
/* The first parameter goes into sp-36, each stack slot is 4-bytes.
|
715 |
|
|
struct_ptr is adjusted for each argument below, so the first
|
716 |
|
|
argument will end up at sp-36. */
|
717 |
|
|
CORE_ADDR param_ptr = 32;
|
718 |
|
|
int i;
|
719 |
|
|
int small_struct = 0;
|
720 |
|
|
|
721 |
|
|
for (i = 0; i < nargs; i++)
|
722 |
|
|
{
|
723 |
|
|
struct value *arg = args[i];
|
724 |
|
|
struct type *type = check_typedef (value_type (arg));
|
725 |
|
|
/* The corresponding parameter that is pushed onto the
|
726 |
|
|
stack, and [possibly] passed in a register. */
|
727 |
|
|
char param_val[8];
|
728 |
|
|
int param_len;
|
729 |
|
|
memset (param_val, 0, sizeof param_val);
|
730 |
|
|
if (TYPE_LENGTH (type) > 8)
|
731 |
|
|
{
|
732 |
|
|
/* Large parameter, pass by reference. Store the value
|
733 |
|
|
in "struct" area and then pass its address. */
|
734 |
|
|
param_len = 4;
|
735 |
|
|
struct_ptr += align_up (TYPE_LENGTH (type), 8);
|
736 |
|
|
if (write_pass)
|
737 |
|
|
write_memory (struct_end - struct_ptr, value_contents (arg),
|
738 |
|
|
TYPE_LENGTH (type));
|
739 |
|
|
store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
|
740 |
|
|
}
|
741 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_INT
|
742 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_ENUM)
|
743 |
|
|
{
|
744 |
|
|
/* Integer value store, right aligned. "unpack_long"
|
745 |
|
|
takes care of any sign-extension problems. */
|
746 |
|
|
param_len = align_up (TYPE_LENGTH (type), 4);
|
747 |
|
|
store_unsigned_integer (param_val, param_len,
|
748 |
|
|
unpack_long (type,
|
749 |
|
|
value_contents (arg)));
|
750 |
|
|
}
|
751 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
752 |
|
|
{
|
753 |
|
|
/* Floating point value store, right aligned. */
|
754 |
|
|
param_len = align_up (TYPE_LENGTH (type), 4);
|
755 |
|
|
memcpy (param_val, value_contents (arg), param_len);
|
756 |
|
|
}
|
757 |
|
|
else
|
758 |
|
|
{
|
759 |
|
|
param_len = align_up (TYPE_LENGTH (type), 4);
|
760 |
|
|
|
761 |
|
|
/* Small struct value are stored right-aligned. */
|
762 |
|
|
memcpy (param_val + param_len - TYPE_LENGTH (type),
|
763 |
|
|
value_contents (arg), TYPE_LENGTH (type));
|
764 |
|
|
|
765 |
|
|
/* Structures of size 5, 6 and 7 bytes are special in that
|
766 |
|
|
the higher-ordered word is stored in the lower-ordered
|
767 |
|
|
argument, and even though it is a 8-byte quantity the
|
768 |
|
|
registers need not be 8-byte aligned. */
|
769 |
|
|
if (param_len > 4 && param_len < 8)
|
770 |
|
|
small_struct = 1;
|
771 |
|
|
}
|
772 |
|
|
|
773 |
|
|
param_ptr += param_len;
|
774 |
|
|
if (param_len == 8 && !small_struct)
|
775 |
|
|
param_ptr = align_up (param_ptr, 8);
|
776 |
|
|
|
777 |
|
|
/* First 4 non-FP arguments are passed in gr26-gr23.
|
778 |
|
|
First 4 32-bit FP arguments are passed in fr4L-fr7L.
|
779 |
|
|
First 2 64-bit FP arguments are passed in fr5 and fr7.
|
780 |
|
|
|
781 |
|
|
The rest go on the stack, starting at sp-36, towards lower
|
782 |
|
|
addresses. 8-byte arguments must be aligned to a 8-byte
|
783 |
|
|
stack boundary. */
|
784 |
|
|
if (write_pass)
|
785 |
|
|
{
|
786 |
|
|
write_memory (param_end - param_ptr, param_val, param_len);
|
787 |
|
|
|
788 |
|
|
/* There are some cases when we don't know the type
|
789 |
|
|
expected by the callee (e.g. for variadic functions), so
|
790 |
|
|
pass the parameters in both general and fp regs. */
|
791 |
|
|
if (param_ptr <= 48)
|
792 |
|
|
{
|
793 |
|
|
int grreg = 26 - (param_ptr - 36) / 4;
|
794 |
|
|
int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
|
795 |
|
|
int fpreg = 74 + (param_ptr - 32) / 8 * 4;
|
796 |
|
|
|
797 |
|
|
regcache_cooked_write (regcache, grreg, param_val);
|
798 |
|
|
regcache_cooked_write (regcache, fpLreg, param_val);
|
799 |
|
|
|
800 |
|
|
if (param_len > 4)
|
801 |
|
|
{
|
802 |
|
|
regcache_cooked_write (regcache, grreg + 1,
|
803 |
|
|
param_val + 4);
|
804 |
|
|
|
805 |
|
|
regcache_cooked_write (regcache, fpreg, param_val);
|
806 |
|
|
regcache_cooked_write (regcache, fpreg + 1,
|
807 |
|
|
param_val + 4);
|
808 |
|
|
}
|
809 |
|
|
}
|
810 |
|
|
}
|
811 |
|
|
}
|
812 |
|
|
|
813 |
|
|
/* Update the various stack pointers. */
|
814 |
|
|
if (!write_pass)
|
815 |
|
|
{
|
816 |
|
|
struct_end = sp + align_up (struct_ptr, 64);
|
817 |
|
|
/* PARAM_PTR already accounts for all the arguments passed
|
818 |
|
|
by the user. However, the ABI mandates minimum stack
|
819 |
|
|
space allocations for outgoing arguments. The ABI also
|
820 |
|
|
mandates minimum stack alignments which we must
|
821 |
|
|
preserve. */
|
822 |
|
|
param_end = struct_end + align_up (param_ptr, 64);
|
823 |
|
|
}
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
/* If a structure has to be returned, set up register 28 to hold its
|
827 |
|
|
address */
|
828 |
|
|
if (struct_return)
|
829 |
|
|
regcache_cooked_write_unsigned (regcache, 28, struct_addr);
|
830 |
|
|
|
831 |
|
|
gp = tdep->find_global_pointer (gdbarch, function);
|
832 |
|
|
|
833 |
|
|
if (gp != 0)
|
834 |
|
|
regcache_cooked_write_unsigned (regcache, 19, gp);
|
835 |
|
|
|
836 |
|
|
/* Set the return address. */
|
837 |
|
|
if (!gdbarch_push_dummy_code_p (gdbarch))
|
838 |
|
|
regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
|
839 |
|
|
|
840 |
|
|
/* Update the Stack Pointer. */
|
841 |
|
|
regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
|
842 |
|
|
|
843 |
|
|
return param_end;
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
|
847 |
|
|
Runtime Architecture for PA-RISC 2.0", which is distributed as part
|
848 |
|
|
as of the HP-UX Software Transition Kit (STK). This implementation
|
849 |
|
|
is based on version 3.3, dated October 6, 1997. */
|
850 |
|
|
|
851 |
|
|
/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
|
852 |
|
|
|
853 |
|
|
static int
|
854 |
|
|
hppa64_integral_or_pointer_p (const struct type *type)
|
855 |
|
|
{
|
856 |
|
|
switch (TYPE_CODE (type))
|
857 |
|
|
{
|
858 |
|
|
case TYPE_CODE_INT:
|
859 |
|
|
case TYPE_CODE_BOOL:
|
860 |
|
|
case TYPE_CODE_CHAR:
|
861 |
|
|
case TYPE_CODE_ENUM:
|
862 |
|
|
case TYPE_CODE_RANGE:
|
863 |
|
|
{
|
864 |
|
|
int len = TYPE_LENGTH (type);
|
865 |
|
|
return (len == 1 || len == 2 || len == 4 || len == 8);
|
866 |
|
|
}
|
867 |
|
|
case TYPE_CODE_PTR:
|
868 |
|
|
case TYPE_CODE_REF:
|
869 |
|
|
return (TYPE_LENGTH (type) == 8);
|
870 |
|
|
default:
|
871 |
|
|
break;
|
872 |
|
|
}
|
873 |
|
|
|
874 |
|
|
return 0;
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
/* Check whether TYPE is a "Floating Scalar Type". */
|
878 |
|
|
|
879 |
|
|
static int
|
880 |
|
|
hppa64_floating_p (const struct type *type)
|
881 |
|
|
{
|
882 |
|
|
switch (TYPE_CODE (type))
|
883 |
|
|
{
|
884 |
|
|
case TYPE_CODE_FLT:
|
885 |
|
|
{
|
886 |
|
|
int len = TYPE_LENGTH (type);
|
887 |
|
|
return (len == 4 || len == 8 || len == 16);
|
888 |
|
|
}
|
889 |
|
|
default:
|
890 |
|
|
break;
|
891 |
|
|
}
|
892 |
|
|
|
893 |
|
|
return 0;
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
/* If CODE points to a function entry address, try to look up the corresponding
|
897 |
|
|
function descriptor and return its address instead. If CODE is not a
|
898 |
|
|
function entry address, then just return it unchanged. */
|
899 |
|
|
static CORE_ADDR
|
900 |
|
|
hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
|
901 |
|
|
{
|
902 |
|
|
struct obj_section *sec, *opd;
|
903 |
|
|
|
904 |
|
|
sec = find_pc_section (code);
|
905 |
|
|
|
906 |
|
|
if (!sec)
|
907 |
|
|
return code;
|
908 |
|
|
|
909 |
|
|
/* If CODE is in a data section, assume it's already a fptr. */
|
910 |
|
|
if (!(sec->the_bfd_section->flags & SEC_CODE))
|
911 |
|
|
return code;
|
912 |
|
|
|
913 |
|
|
ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
|
914 |
|
|
{
|
915 |
|
|
if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
|
916 |
|
|
break;
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
if (opd < sec->objfile->sections_end)
|
920 |
|
|
{
|
921 |
|
|
CORE_ADDR addr;
|
922 |
|
|
|
923 |
|
|
for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
|
924 |
|
|
{
|
925 |
|
|
ULONGEST opdaddr;
|
926 |
|
|
char tmp[8];
|
927 |
|
|
|
928 |
|
|
if (target_read_memory (addr, tmp, sizeof (tmp)))
|
929 |
|
|
break;
|
930 |
|
|
opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
|
931 |
|
|
|
932 |
|
|
if (opdaddr == code)
|
933 |
|
|
return addr - 16;
|
934 |
|
|
}
|
935 |
|
|
}
|
936 |
|
|
|
937 |
|
|
return code;
|
938 |
|
|
}
|
939 |
|
|
|
940 |
|
|
static CORE_ADDR
|
941 |
|
|
hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
942 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
943 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
944 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
945 |
|
|
{
|
946 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
947 |
|
|
int i, offset = 0;
|
948 |
|
|
CORE_ADDR gp;
|
949 |
|
|
|
950 |
|
|
/* "The outgoing parameter area [...] must be aligned at a 16-byte
|
951 |
|
|
boundary." */
|
952 |
|
|
sp = align_up (sp, 16);
|
953 |
|
|
|
954 |
|
|
for (i = 0; i < nargs; i++)
|
955 |
|
|
{
|
956 |
|
|
struct value *arg = args[i];
|
957 |
|
|
struct type *type = value_type (arg);
|
958 |
|
|
int len = TYPE_LENGTH (type);
|
959 |
|
|
const bfd_byte *valbuf;
|
960 |
|
|
bfd_byte fptrbuf[8];
|
961 |
|
|
int regnum;
|
962 |
|
|
|
963 |
|
|
/* "Each parameter begins on a 64-bit (8-byte) boundary." */
|
964 |
|
|
offset = align_up (offset, 8);
|
965 |
|
|
|
966 |
|
|
if (hppa64_integral_or_pointer_p (type))
|
967 |
|
|
{
|
968 |
|
|
/* "Integral scalar parameters smaller than 64 bits are
|
969 |
|
|
padded on the left (i.e., the value is in the
|
970 |
|
|
least-significant bits of the 64-bit storage unit, and
|
971 |
|
|
the high-order bits are undefined)." Therefore we can
|
972 |
|
|
safely sign-extend them. */
|
973 |
|
|
if (len < 8)
|
974 |
|
|
{
|
975 |
|
|
arg = value_cast (builtin_type_int64, arg);
|
976 |
|
|
len = 8;
|
977 |
|
|
}
|
978 |
|
|
}
|
979 |
|
|
else if (hppa64_floating_p (type))
|
980 |
|
|
{
|
981 |
|
|
if (len > 8)
|
982 |
|
|
{
|
983 |
|
|
/* "Quad-precision (128-bit) floating-point scalar
|
984 |
|
|
parameters are aligned on a 16-byte boundary." */
|
985 |
|
|
offset = align_up (offset, 16);
|
986 |
|
|
|
987 |
|
|
/* "Double-extended- and quad-precision floating-point
|
988 |
|
|
parameters within the first 64 bytes of the parameter
|
989 |
|
|
list are always passed in general registers." */
|
990 |
|
|
}
|
991 |
|
|
else
|
992 |
|
|
{
|
993 |
|
|
if (len == 4)
|
994 |
|
|
{
|
995 |
|
|
/* "Single-precision (32-bit) floating-point scalar
|
996 |
|
|
parameters are padded on the left with 32 bits of
|
997 |
|
|
garbage (i.e., the floating-point value is in the
|
998 |
|
|
least-significant 32 bits of a 64-bit storage
|
999 |
|
|
unit)." */
|
1000 |
|
|
offset += 4;
|
1001 |
|
|
}
|
1002 |
|
|
|
1003 |
|
|
/* "Single- and double-precision floating-point
|
1004 |
|
|
parameters in this area are passed according to the
|
1005 |
|
|
available formal parameter information in a function
|
1006 |
|
|
prototype. [...] If no prototype is in scope,
|
1007 |
|
|
floating-point parameters must be passed both in the
|
1008 |
|
|
corresponding general registers and in the
|
1009 |
|
|
corresponding floating-point registers." */
|
1010 |
|
|
regnum = HPPA64_FP4_REGNUM + offset / 8;
|
1011 |
|
|
|
1012 |
|
|
if (regnum < HPPA64_FP4_REGNUM + 8)
|
1013 |
|
|
{
|
1014 |
|
|
/* "Single-precision floating-point parameters, when
|
1015 |
|
|
passed in floating-point registers, are passed in
|
1016 |
|
|
the right halves of the floating point registers;
|
1017 |
|
|
the left halves are unused." */
|
1018 |
|
|
regcache_cooked_write_part (regcache, regnum, offset % 8,
|
1019 |
|
|
len, value_contents (arg));
|
1020 |
|
|
}
|
1021 |
|
|
}
|
1022 |
|
|
}
|
1023 |
|
|
else
|
1024 |
|
|
{
|
1025 |
|
|
if (len > 8)
|
1026 |
|
|
{
|
1027 |
|
|
/* "Aggregates larger than 8 bytes are aligned on a
|
1028 |
|
|
16-byte boundary, possibly leaving an unused argument
|
1029 |
|
|
slot, which is filled with garbage. If necessary,
|
1030 |
|
|
they are padded on the right (with garbage), to a
|
1031 |
|
|
multiple of 8 bytes." */
|
1032 |
|
|
offset = align_up (offset, 16);
|
1033 |
|
|
}
|
1034 |
|
|
}
|
1035 |
|
|
|
1036 |
|
|
/* If we are passing a function pointer, make sure we pass a function
|
1037 |
|
|
descriptor instead of the function entry address. */
|
1038 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR
|
1039 |
|
|
&& TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
|
1040 |
|
|
{
|
1041 |
|
|
ULONGEST codeptr, fptr;
|
1042 |
|
|
|
1043 |
|
|
codeptr = unpack_long (type, value_contents (arg));
|
1044 |
|
|
fptr = hppa64_convert_code_addr_to_fptr (codeptr);
|
1045 |
|
|
store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
|
1046 |
|
|
valbuf = fptrbuf;
|
1047 |
|
|
}
|
1048 |
|
|
else
|
1049 |
|
|
{
|
1050 |
|
|
valbuf = value_contents (arg);
|
1051 |
|
|
}
|
1052 |
|
|
|
1053 |
|
|
/* Always store the argument in memory. */
|
1054 |
|
|
write_memory (sp + offset, valbuf, len);
|
1055 |
|
|
|
1056 |
|
|
regnum = HPPA_ARG0_REGNUM - offset / 8;
|
1057 |
|
|
while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
|
1058 |
|
|
{
|
1059 |
|
|
regcache_cooked_write_part (regcache, regnum,
|
1060 |
|
|
offset % 8, min (len, 8), valbuf);
|
1061 |
|
|
offset += min (len, 8);
|
1062 |
|
|
valbuf += min (len, 8);
|
1063 |
|
|
len -= min (len, 8);
|
1064 |
|
|
regnum--;
|
1065 |
|
|
}
|
1066 |
|
|
|
1067 |
|
|
offset += len;
|
1068 |
|
|
}
|
1069 |
|
|
|
1070 |
|
|
/* Set up GR29 (%ret1) to hold the argument pointer (ap). */
|
1071 |
|
|
regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
|
1072 |
|
|
|
1073 |
|
|
/* Allocate the outgoing parameter area. Make sure the outgoing
|
1074 |
|
|
parameter area is multiple of 16 bytes in length. */
|
1075 |
|
|
sp += max (align_up (offset, 16), 64);
|
1076 |
|
|
|
1077 |
|
|
/* Allocate 32-bytes of scratch space. The documentation doesn't
|
1078 |
|
|
mention this, but it seems to be needed. */
|
1079 |
|
|
sp += 32;
|
1080 |
|
|
|
1081 |
|
|
/* Allocate the frame marker area. */
|
1082 |
|
|
sp += 16;
|
1083 |
|
|
|
1084 |
|
|
/* If a structure has to be returned, set up GR 28 (%ret0) to hold
|
1085 |
|
|
its address. */
|
1086 |
|
|
if (struct_return)
|
1087 |
|
|
regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
|
1088 |
|
|
|
1089 |
|
|
/* Set up GR27 (%dp) to hold the global pointer (gp). */
|
1090 |
|
|
gp = tdep->find_global_pointer (gdbarch, function);
|
1091 |
|
|
if (gp != 0)
|
1092 |
|
|
regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
|
1093 |
|
|
|
1094 |
|
|
/* Set up GR2 (%rp) to hold the return pointer (rp). */
|
1095 |
|
|
if (!gdbarch_push_dummy_code_p (gdbarch))
|
1096 |
|
|
regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
|
1097 |
|
|
|
1098 |
|
|
/* Set up GR30 to hold the stack pointer (sp). */
|
1099 |
|
|
regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
|
1100 |
|
|
|
1101 |
|
|
return sp;
|
1102 |
|
|
}
|
1103 |
|
|
|
1104 |
|
|
|
1105 |
|
|
/* Handle 32/64-bit struct return conventions. */
|
1106 |
|
|
|
1107 |
|
|
static enum return_value_convention
|
1108 |
|
|
hppa32_return_value (struct gdbarch *gdbarch,
|
1109 |
|
|
struct type *type, struct regcache *regcache,
|
1110 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
1111 |
|
|
{
|
1112 |
|
|
if (TYPE_LENGTH (type) <= 2 * 4)
|
1113 |
|
|
{
|
1114 |
|
|
/* The value always lives in the right hand end of the register
|
1115 |
|
|
(or register pair)? */
|
1116 |
|
|
int b;
|
1117 |
|
|
int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
|
1118 |
|
|
int part = TYPE_LENGTH (type) % 4;
|
1119 |
|
|
/* The left hand register contains only part of the value,
|
1120 |
|
|
transfer that first so that the rest can be xfered as entire
|
1121 |
|
|
4-byte registers. */
|
1122 |
|
|
if (part > 0)
|
1123 |
|
|
{
|
1124 |
|
|
if (readbuf != NULL)
|
1125 |
|
|
regcache_cooked_read_part (regcache, reg, 4 - part,
|
1126 |
|
|
part, readbuf);
|
1127 |
|
|
if (writebuf != NULL)
|
1128 |
|
|
regcache_cooked_write_part (regcache, reg, 4 - part,
|
1129 |
|
|
part, writebuf);
|
1130 |
|
|
reg++;
|
1131 |
|
|
}
|
1132 |
|
|
/* Now transfer the remaining register values. */
|
1133 |
|
|
for (b = part; b < TYPE_LENGTH (type); b += 4)
|
1134 |
|
|
{
|
1135 |
|
|
if (readbuf != NULL)
|
1136 |
|
|
regcache_cooked_read (regcache, reg, readbuf + b);
|
1137 |
|
|
if (writebuf != NULL)
|
1138 |
|
|
regcache_cooked_write (regcache, reg, writebuf + b);
|
1139 |
|
|
reg++;
|
1140 |
|
|
}
|
1141 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
1142 |
|
|
}
|
1143 |
|
|
else
|
1144 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
static enum return_value_convention
|
1148 |
|
|
hppa64_return_value (struct gdbarch *gdbarch,
|
1149 |
|
|
struct type *type, struct regcache *regcache,
|
1150 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
1151 |
|
|
{
|
1152 |
|
|
int len = TYPE_LENGTH (type);
|
1153 |
|
|
int regnum, offset;
|
1154 |
|
|
|
1155 |
|
|
if (len > 16)
|
1156 |
|
|
{
|
1157 |
|
|
/* All return values larget than 128 bits must be aggregate
|
1158 |
|
|
return values. */
|
1159 |
|
|
gdb_assert (!hppa64_integral_or_pointer_p (type));
|
1160 |
|
|
gdb_assert (!hppa64_floating_p (type));
|
1161 |
|
|
|
1162 |
|
|
/* "Aggregate return values larger than 128 bits are returned in
|
1163 |
|
|
a buffer allocated by the caller. The address of the buffer
|
1164 |
|
|
must be passed in GR 28." */
|
1165 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
1166 |
|
|
}
|
1167 |
|
|
|
1168 |
|
|
if (hppa64_integral_or_pointer_p (type))
|
1169 |
|
|
{
|
1170 |
|
|
/* "Integral return values are returned in GR 28. Values
|
1171 |
|
|
smaller than 64 bits are padded on the left (with garbage)." */
|
1172 |
|
|
regnum = HPPA_RET0_REGNUM;
|
1173 |
|
|
offset = 8 - len;
|
1174 |
|
|
}
|
1175 |
|
|
else if (hppa64_floating_p (type))
|
1176 |
|
|
{
|
1177 |
|
|
if (len > 8)
|
1178 |
|
|
{
|
1179 |
|
|
/* "Double-extended- and quad-precision floating-point
|
1180 |
|
|
values are returned in GRs 28 and 29. The sign,
|
1181 |
|
|
exponent, and most-significant bits of the mantissa are
|
1182 |
|
|
returned in GR 28; the least-significant bits of the
|
1183 |
|
|
mantissa are passed in GR 29. For double-extended
|
1184 |
|
|
precision values, GR 29 is padded on the right with 48
|
1185 |
|
|
bits of garbage." */
|
1186 |
|
|
regnum = HPPA_RET0_REGNUM;
|
1187 |
|
|
offset = 0;
|
1188 |
|
|
}
|
1189 |
|
|
else
|
1190 |
|
|
{
|
1191 |
|
|
/* "Single-precision and double-precision floating-point
|
1192 |
|
|
return values are returned in FR 4R (single precision) or
|
1193 |
|
|
FR 4 (double-precision)." */
|
1194 |
|
|
regnum = HPPA64_FP4_REGNUM;
|
1195 |
|
|
offset = 8 - len;
|
1196 |
|
|
}
|
1197 |
|
|
}
|
1198 |
|
|
else
|
1199 |
|
|
{
|
1200 |
|
|
/* "Aggregate return values up to 64 bits in size are returned
|
1201 |
|
|
in GR 28. Aggregates smaller than 64 bits are left aligned
|
1202 |
|
|
in the register; the pad bits on the right are undefined."
|
1203 |
|
|
|
1204 |
|
|
"Aggregate return values between 65 and 128 bits are returned
|
1205 |
|
|
in GRs 28 and 29. The first 64 bits are placed in GR 28, and
|
1206 |
|
|
the remaining bits are placed, left aligned, in GR 29. The
|
1207 |
|
|
pad bits on the right of GR 29 (if any) are undefined." */
|
1208 |
|
|
regnum = HPPA_RET0_REGNUM;
|
1209 |
|
|
offset = 0;
|
1210 |
|
|
}
|
1211 |
|
|
|
1212 |
|
|
if (readbuf)
|
1213 |
|
|
{
|
1214 |
|
|
while (len > 0)
|
1215 |
|
|
{
|
1216 |
|
|
regcache_cooked_read_part (regcache, regnum, offset,
|
1217 |
|
|
min (len, 8), readbuf);
|
1218 |
|
|
readbuf += min (len, 8);
|
1219 |
|
|
len -= min (len, 8);
|
1220 |
|
|
regnum++;
|
1221 |
|
|
}
|
1222 |
|
|
}
|
1223 |
|
|
|
1224 |
|
|
if (writebuf)
|
1225 |
|
|
{
|
1226 |
|
|
while (len > 0)
|
1227 |
|
|
{
|
1228 |
|
|
regcache_cooked_write_part (regcache, regnum, offset,
|
1229 |
|
|
min (len, 8), writebuf);
|
1230 |
|
|
writebuf += min (len, 8);
|
1231 |
|
|
len -= min (len, 8);
|
1232 |
|
|
regnum++;
|
1233 |
|
|
}
|
1234 |
|
|
}
|
1235 |
|
|
|
1236 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
1237 |
|
|
}
|
1238 |
|
|
|
1239 |
|
|
|
1240 |
|
|
static CORE_ADDR
|
1241 |
|
|
hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
|
1242 |
|
|
struct target_ops *targ)
|
1243 |
|
|
{
|
1244 |
|
|
if (addr & 2)
|
1245 |
|
|
{
|
1246 |
|
|
CORE_ADDR plabel = addr & ~3;
|
1247 |
|
|
return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
|
1248 |
|
|
}
|
1249 |
|
|
|
1250 |
|
|
return addr;
|
1251 |
|
|
}
|
1252 |
|
|
|
1253 |
|
|
static CORE_ADDR
|
1254 |
|
|
hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
1255 |
|
|
{
|
1256 |
|
|
/* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
|
1257 |
|
|
and not _bit_)! */
|
1258 |
|
|
return align_up (addr, 64);
|
1259 |
|
|
}
|
1260 |
|
|
|
1261 |
|
|
/* Force all frames to 16-byte alignment. Better safe than sorry. */
|
1262 |
|
|
|
1263 |
|
|
static CORE_ADDR
|
1264 |
|
|
hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
1265 |
|
|
{
|
1266 |
|
|
/* Just always 16-byte align. */
|
1267 |
|
|
return align_up (addr, 16);
|
1268 |
|
|
}
|
1269 |
|
|
|
1270 |
|
|
CORE_ADDR
|
1271 |
|
|
hppa_read_pc (struct regcache *regcache)
|
1272 |
|
|
{
|
1273 |
|
|
ULONGEST ipsw;
|
1274 |
|
|
ULONGEST pc;
|
1275 |
|
|
|
1276 |
|
|
regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
|
1277 |
|
|
regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
|
1278 |
|
|
|
1279 |
|
|
/* If the current instruction is nullified, then we are effectively
|
1280 |
|
|
still executing the previous instruction. Pretend we are still
|
1281 |
|
|
there. This is needed when single stepping; if the nullified
|
1282 |
|
|
instruction is on a different line, we don't want GDB to think
|
1283 |
|
|
we've stepped onto that line. */
|
1284 |
|
|
if (ipsw & 0x00200000)
|
1285 |
|
|
pc -= 4;
|
1286 |
|
|
|
1287 |
|
|
return pc & ~0x3;
|
1288 |
|
|
}
|
1289 |
|
|
|
1290 |
|
|
void
|
1291 |
|
|
hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
1292 |
|
|
{
|
1293 |
|
|
regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
|
1294 |
|
|
regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
|
1295 |
|
|
}
|
1296 |
|
|
|
1297 |
|
|
/* return the alignment of a type in bytes. Structures have the maximum
|
1298 |
|
|
alignment required by their fields. */
|
1299 |
|
|
|
1300 |
|
|
static int
|
1301 |
|
|
hppa_alignof (struct type *type)
|
1302 |
|
|
{
|
1303 |
|
|
int max_align, align, i;
|
1304 |
|
|
CHECK_TYPEDEF (type);
|
1305 |
|
|
switch (TYPE_CODE (type))
|
1306 |
|
|
{
|
1307 |
|
|
case TYPE_CODE_PTR:
|
1308 |
|
|
case TYPE_CODE_INT:
|
1309 |
|
|
case TYPE_CODE_FLT:
|
1310 |
|
|
return TYPE_LENGTH (type);
|
1311 |
|
|
case TYPE_CODE_ARRAY:
|
1312 |
|
|
return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
|
1313 |
|
|
case TYPE_CODE_STRUCT:
|
1314 |
|
|
case TYPE_CODE_UNION:
|
1315 |
|
|
max_align = 1;
|
1316 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
1317 |
|
|
{
|
1318 |
|
|
/* Bit fields have no real alignment. */
|
1319 |
|
|
/* if (!TYPE_FIELD_BITPOS (type, i)) */
|
1320 |
|
|
if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
|
1321 |
|
|
{
|
1322 |
|
|
align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
|
1323 |
|
|
max_align = max (max_align, align);
|
1324 |
|
|
}
|
1325 |
|
|
}
|
1326 |
|
|
return max_align;
|
1327 |
|
|
default:
|
1328 |
|
|
return 4;
|
1329 |
|
|
}
|
1330 |
|
|
}
|
1331 |
|
|
|
1332 |
|
|
/* For the given instruction (INST), return any adjustment it makes
|
1333 |
|
|
to the stack pointer or zero for no adjustment.
|
1334 |
|
|
|
1335 |
|
|
This only handles instructions commonly found in prologues. */
|
1336 |
|
|
|
1337 |
|
|
static int
|
1338 |
|
|
prologue_inst_adjust_sp (unsigned long inst)
|
1339 |
|
|
{
|
1340 |
|
|
/* This must persist across calls. */
|
1341 |
|
|
static int save_high21;
|
1342 |
|
|
|
1343 |
|
|
/* The most common way to perform a stack adjustment ldo X(sp),sp */
|
1344 |
|
|
if ((inst & 0xffffc000) == 0x37de0000)
|
1345 |
|
|
return hppa_extract_14 (inst);
|
1346 |
|
|
|
1347 |
|
|
/* stwm X,D(sp) */
|
1348 |
|
|
if ((inst & 0xffe00000) == 0x6fc00000)
|
1349 |
|
|
return hppa_extract_14 (inst);
|
1350 |
|
|
|
1351 |
|
|
/* std,ma X,D(sp) */
|
1352 |
|
|
if ((inst & 0xffe00008) == 0x73c00008)
|
1353 |
|
|
return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
|
1354 |
|
|
|
1355 |
|
|
/* addil high21,%r30; ldo low11,(%r1),%r30)
|
1356 |
|
|
save high bits in save_high21 for later use. */
|
1357 |
|
|
if ((inst & 0xffe00000) == 0x2bc00000)
|
1358 |
|
|
{
|
1359 |
|
|
save_high21 = hppa_extract_21 (inst);
|
1360 |
|
|
return 0;
|
1361 |
|
|
}
|
1362 |
|
|
|
1363 |
|
|
if ((inst & 0xffff0000) == 0x343e0000)
|
1364 |
|
|
return save_high21 + hppa_extract_14 (inst);
|
1365 |
|
|
|
1366 |
|
|
/* fstws as used by the HP compilers. */
|
1367 |
|
|
if ((inst & 0xffffffe0) == 0x2fd01220)
|
1368 |
|
|
return hppa_extract_5_load (inst);
|
1369 |
|
|
|
1370 |
|
|
/* No adjustment. */
|
1371 |
|
|
return 0;
|
1372 |
|
|
}
|
1373 |
|
|
|
1374 |
|
|
/* Return nonzero if INST is a branch of some kind, else return zero. */
|
1375 |
|
|
|
1376 |
|
|
static int
|
1377 |
|
|
is_branch (unsigned long inst)
|
1378 |
|
|
{
|
1379 |
|
|
switch (inst >> 26)
|
1380 |
|
|
{
|
1381 |
|
|
case 0x20:
|
1382 |
|
|
case 0x21:
|
1383 |
|
|
case 0x22:
|
1384 |
|
|
case 0x23:
|
1385 |
|
|
case 0x27:
|
1386 |
|
|
case 0x28:
|
1387 |
|
|
case 0x29:
|
1388 |
|
|
case 0x2a:
|
1389 |
|
|
case 0x2b:
|
1390 |
|
|
case 0x2f:
|
1391 |
|
|
case 0x30:
|
1392 |
|
|
case 0x31:
|
1393 |
|
|
case 0x32:
|
1394 |
|
|
case 0x33:
|
1395 |
|
|
case 0x38:
|
1396 |
|
|
case 0x39:
|
1397 |
|
|
case 0x3a:
|
1398 |
|
|
case 0x3b:
|
1399 |
|
|
return 1;
|
1400 |
|
|
|
1401 |
|
|
default:
|
1402 |
|
|
return 0;
|
1403 |
|
|
}
|
1404 |
|
|
}
|
1405 |
|
|
|
1406 |
|
|
/* Return the register number for a GR which is saved by INST or
|
1407 |
|
|
zero it INST does not save a GR. */
|
1408 |
|
|
|
1409 |
|
|
static int
|
1410 |
|
|
inst_saves_gr (unsigned long inst)
|
1411 |
|
|
{
|
1412 |
|
|
/* Does it look like a stw? */
|
1413 |
|
|
if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
|
1414 |
|
|
|| (inst >> 26) == 0x1f
|
1415 |
|
|
|| ((inst >> 26) == 0x1f
|
1416 |
|
|
&& ((inst >> 6) == 0xa)))
|
1417 |
|
|
return hppa_extract_5R_store (inst);
|
1418 |
|
|
|
1419 |
|
|
/* Does it look like a std? */
|
1420 |
|
|
if ((inst >> 26) == 0x1c
|
1421 |
|
|
|| ((inst >> 26) == 0x03
|
1422 |
|
|
&& ((inst >> 6) & 0xf) == 0xb))
|
1423 |
|
|
return hppa_extract_5R_store (inst);
|
1424 |
|
|
|
1425 |
|
|
/* Does it look like a stwm? GCC & HPC may use this in prologues. */
|
1426 |
|
|
if ((inst >> 26) == 0x1b)
|
1427 |
|
|
return hppa_extract_5R_store (inst);
|
1428 |
|
|
|
1429 |
|
|
/* Does it look like sth or stb? HPC versions 9.0 and later use these
|
1430 |
|
|
too. */
|
1431 |
|
|
if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
|
1432 |
|
|
|| ((inst >> 26) == 0x3
|
1433 |
|
|
&& (((inst >> 6) & 0xf) == 0x8
|
1434 |
|
|
|| (inst >> 6) & 0xf) == 0x9))
|
1435 |
|
|
return hppa_extract_5R_store (inst);
|
1436 |
|
|
|
1437 |
|
|
return 0;
|
1438 |
|
|
}
|
1439 |
|
|
|
1440 |
|
|
/* Return the register number for a FR which is saved by INST or
|
1441 |
|
|
zero it INST does not save a FR.
|
1442 |
|
|
|
1443 |
|
|
Note we only care about full 64bit register stores (that's the only
|
1444 |
|
|
kind of stores the prologue will use).
|
1445 |
|
|
|
1446 |
|
|
FIXME: What about argument stores with the HP compiler in ANSI mode? */
|
1447 |
|
|
|
1448 |
|
|
static int
|
1449 |
|
|
inst_saves_fr (unsigned long inst)
|
1450 |
|
|
{
|
1451 |
|
|
/* is this an FSTD ? */
|
1452 |
|
|
if ((inst & 0xfc00dfc0) == 0x2c001200)
|
1453 |
|
|
return hppa_extract_5r_store (inst);
|
1454 |
|
|
if ((inst & 0xfc000002) == 0x70000002)
|
1455 |
|
|
return hppa_extract_5R_store (inst);
|
1456 |
|
|
/* is this an FSTW ? */
|
1457 |
|
|
if ((inst & 0xfc00df80) == 0x24001200)
|
1458 |
|
|
return hppa_extract_5r_store (inst);
|
1459 |
|
|
if ((inst & 0xfc000002) == 0x7c000000)
|
1460 |
|
|
return hppa_extract_5R_store (inst);
|
1461 |
|
|
return 0;
|
1462 |
|
|
}
|
1463 |
|
|
|
1464 |
|
|
/* Advance PC across any function entry prologue instructions
|
1465 |
|
|
to reach some "real" code.
|
1466 |
|
|
|
1467 |
|
|
Use information in the unwind table to determine what exactly should
|
1468 |
|
|
be in the prologue. */
|
1469 |
|
|
|
1470 |
|
|
|
1471 |
|
|
static CORE_ADDR
|
1472 |
|
|
skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
|
1473 |
|
|
int stop_before_branch)
|
1474 |
|
|
{
|
1475 |
|
|
char buf[4];
|
1476 |
|
|
CORE_ADDR orig_pc = pc;
|
1477 |
|
|
unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
|
1478 |
|
|
unsigned long args_stored, status, i, restart_gr, restart_fr;
|
1479 |
|
|
struct unwind_table_entry *u;
|
1480 |
|
|
int final_iteration;
|
1481 |
|
|
|
1482 |
|
|
restart_gr = 0;
|
1483 |
|
|
restart_fr = 0;
|
1484 |
|
|
|
1485 |
|
|
restart:
|
1486 |
|
|
u = find_unwind_entry (pc);
|
1487 |
|
|
if (!u)
|
1488 |
|
|
return pc;
|
1489 |
|
|
|
1490 |
|
|
/* If we are not at the beginning of a function, then return now. */
|
1491 |
|
|
if ((pc & ~0x3) != u->region_start)
|
1492 |
|
|
return pc;
|
1493 |
|
|
|
1494 |
|
|
/* This is how much of a frame adjustment we need to account for. */
|
1495 |
|
|
stack_remaining = u->Total_frame_size << 3;
|
1496 |
|
|
|
1497 |
|
|
/* Magic register saves we want to know about. */
|
1498 |
|
|
save_rp = u->Save_RP;
|
1499 |
|
|
save_sp = u->Save_SP;
|
1500 |
|
|
|
1501 |
|
|
/* An indication that args may be stored into the stack. Unfortunately
|
1502 |
|
|
the HPUX compilers tend to set this in cases where no args were
|
1503 |
|
|
stored too!. */
|
1504 |
|
|
args_stored = 1;
|
1505 |
|
|
|
1506 |
|
|
/* Turn the Entry_GR field into a bitmask. */
|
1507 |
|
|
save_gr = 0;
|
1508 |
|
|
for (i = 3; i < u->Entry_GR + 3; i++)
|
1509 |
|
|
{
|
1510 |
|
|
/* Frame pointer gets saved into a special location. */
|
1511 |
|
|
if (u->Save_SP && i == HPPA_FP_REGNUM)
|
1512 |
|
|
continue;
|
1513 |
|
|
|
1514 |
|
|
save_gr |= (1 << i);
|
1515 |
|
|
}
|
1516 |
|
|
save_gr &= ~restart_gr;
|
1517 |
|
|
|
1518 |
|
|
/* Turn the Entry_FR field into a bitmask too. */
|
1519 |
|
|
save_fr = 0;
|
1520 |
|
|
for (i = 12; i < u->Entry_FR + 12; i++)
|
1521 |
|
|
save_fr |= (1 << i);
|
1522 |
|
|
save_fr &= ~restart_fr;
|
1523 |
|
|
|
1524 |
|
|
final_iteration = 0;
|
1525 |
|
|
|
1526 |
|
|
/* Loop until we find everything of interest or hit a branch.
|
1527 |
|
|
|
1528 |
|
|
For unoptimized GCC code and for any HP CC code this will never ever
|
1529 |
|
|
examine any user instructions.
|
1530 |
|
|
|
1531 |
|
|
For optimzied GCC code we're faced with problems. GCC will schedule
|
1532 |
|
|
its prologue and make prologue instructions available for delay slot
|
1533 |
|
|
filling. The end result is user code gets mixed in with the prologue
|
1534 |
|
|
and a prologue instruction may be in the delay slot of the first branch
|
1535 |
|
|
or call.
|
1536 |
|
|
|
1537 |
|
|
Some unexpected things are expected with debugging optimized code, so
|
1538 |
|
|
we allow this routine to walk past user instructions in optimized
|
1539 |
|
|
GCC code. */
|
1540 |
|
|
while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
|
1541 |
|
|
|| args_stored)
|
1542 |
|
|
{
|
1543 |
|
|
unsigned int reg_num;
|
1544 |
|
|
unsigned long old_stack_remaining, old_save_gr, old_save_fr;
|
1545 |
|
|
unsigned long old_save_rp, old_save_sp, next_inst;
|
1546 |
|
|
|
1547 |
|
|
/* Save copies of all the triggers so we can compare them later
|
1548 |
|
|
(only for HPC). */
|
1549 |
|
|
old_save_gr = save_gr;
|
1550 |
|
|
old_save_fr = save_fr;
|
1551 |
|
|
old_save_rp = save_rp;
|
1552 |
|
|
old_save_sp = save_sp;
|
1553 |
|
|
old_stack_remaining = stack_remaining;
|
1554 |
|
|
|
1555 |
|
|
status = read_memory_nobpt (pc, buf, 4);
|
1556 |
|
|
inst = extract_unsigned_integer (buf, 4);
|
1557 |
|
|
|
1558 |
|
|
/* Yow! */
|
1559 |
|
|
if (status != 0)
|
1560 |
|
|
return pc;
|
1561 |
|
|
|
1562 |
|
|
/* Note the interesting effects of this instruction. */
|
1563 |
|
|
stack_remaining -= prologue_inst_adjust_sp (inst);
|
1564 |
|
|
|
1565 |
|
|
/* There are limited ways to store the return pointer into the
|
1566 |
|
|
stack. */
|
1567 |
|
|
if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
|
1568 |
|
|
save_rp = 0;
|
1569 |
|
|
|
1570 |
|
|
/* These are the only ways we save SP into the stack. At this time
|
1571 |
|
|
the HP compilers never bother to save SP into the stack. */
|
1572 |
|
|
if ((inst & 0xffffc000) == 0x6fc10000
|
1573 |
|
|
|| (inst & 0xffffc00c) == 0x73c10008)
|
1574 |
|
|
save_sp = 0;
|
1575 |
|
|
|
1576 |
|
|
/* Are we loading some register with an offset from the argument
|
1577 |
|
|
pointer? */
|
1578 |
|
|
if ((inst & 0xffe00000) == 0x37a00000
|
1579 |
|
|
|| (inst & 0xffffffe0) == 0x081d0240)
|
1580 |
|
|
{
|
1581 |
|
|
pc += 4;
|
1582 |
|
|
continue;
|
1583 |
|
|
}
|
1584 |
|
|
|
1585 |
|
|
/* Account for general and floating-point register saves. */
|
1586 |
|
|
reg_num = inst_saves_gr (inst);
|
1587 |
|
|
save_gr &= ~(1 << reg_num);
|
1588 |
|
|
|
1589 |
|
|
/* Ugh. Also account for argument stores into the stack.
|
1590 |
|
|
Unfortunately args_stored only tells us that some arguments
|
1591 |
|
|
where stored into the stack. Not how many or what kind!
|
1592 |
|
|
|
1593 |
|
|
This is a kludge as on the HP compiler sets this bit and it
|
1594 |
|
|
never does prologue scheduling. So once we see one, skip past
|
1595 |
|
|
all of them. We have similar code for the fp arg stores below.
|
1596 |
|
|
|
1597 |
|
|
FIXME. Can still die if we have a mix of GR and FR argument
|
1598 |
|
|
stores! */
|
1599 |
|
|
if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
|
1600 |
|
|
&& reg_num <= 26)
|
1601 |
|
|
{
|
1602 |
|
|
while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
|
1603 |
|
|
&& reg_num <= 26)
|
1604 |
|
|
{
|
1605 |
|
|
pc += 4;
|
1606 |
|
|
status = read_memory_nobpt (pc, buf, 4);
|
1607 |
|
|
inst = extract_unsigned_integer (buf, 4);
|
1608 |
|
|
if (status != 0)
|
1609 |
|
|
return pc;
|
1610 |
|
|
reg_num = inst_saves_gr (inst);
|
1611 |
|
|
}
|
1612 |
|
|
args_stored = 0;
|
1613 |
|
|
continue;
|
1614 |
|
|
}
|
1615 |
|
|
|
1616 |
|
|
reg_num = inst_saves_fr (inst);
|
1617 |
|
|
save_fr &= ~(1 << reg_num);
|
1618 |
|
|
|
1619 |
|
|
status = read_memory_nobpt (pc + 4, buf, 4);
|
1620 |
|
|
next_inst = extract_unsigned_integer (buf, 4);
|
1621 |
|
|
|
1622 |
|
|
/* Yow! */
|
1623 |
|
|
if (status != 0)
|
1624 |
|
|
return pc;
|
1625 |
|
|
|
1626 |
|
|
/* We've got to be read to handle the ldo before the fp register
|
1627 |
|
|
save. */
|
1628 |
|
|
if ((inst & 0xfc000000) == 0x34000000
|
1629 |
|
|
&& inst_saves_fr (next_inst) >= 4
|
1630 |
|
|
&& inst_saves_fr (next_inst)
|
1631 |
|
|
<= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
|
1632 |
|
|
{
|
1633 |
|
|
/* So we drop into the code below in a reasonable state. */
|
1634 |
|
|
reg_num = inst_saves_fr (next_inst);
|
1635 |
|
|
pc -= 4;
|
1636 |
|
|
}
|
1637 |
|
|
|
1638 |
|
|
/* Ugh. Also account for argument stores into the stack.
|
1639 |
|
|
This is a kludge as on the HP compiler sets this bit and it
|
1640 |
|
|
never does prologue scheduling. So once we see one, skip past
|
1641 |
|
|
all of them. */
|
1642 |
|
|
if (reg_num >= 4
|
1643 |
|
|
&& reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
|
1644 |
|
|
{
|
1645 |
|
|
while (reg_num >= 4
|
1646 |
|
|
&& reg_num
|
1647 |
|
|
<= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
|
1648 |
|
|
{
|
1649 |
|
|
pc += 8;
|
1650 |
|
|
status = read_memory_nobpt (pc, buf, 4);
|
1651 |
|
|
inst = extract_unsigned_integer (buf, 4);
|
1652 |
|
|
if (status != 0)
|
1653 |
|
|
return pc;
|
1654 |
|
|
if ((inst & 0xfc000000) != 0x34000000)
|
1655 |
|
|
break;
|
1656 |
|
|
status = read_memory_nobpt (pc + 4, buf, 4);
|
1657 |
|
|
next_inst = extract_unsigned_integer (buf, 4);
|
1658 |
|
|
if (status != 0)
|
1659 |
|
|
return pc;
|
1660 |
|
|
reg_num = inst_saves_fr (next_inst);
|
1661 |
|
|
}
|
1662 |
|
|
args_stored = 0;
|
1663 |
|
|
continue;
|
1664 |
|
|
}
|
1665 |
|
|
|
1666 |
|
|
/* Quit if we hit any kind of branch. This can happen if a prologue
|
1667 |
|
|
instruction is in the delay slot of the first call/branch. */
|
1668 |
|
|
if (is_branch (inst) && stop_before_branch)
|
1669 |
|
|
break;
|
1670 |
|
|
|
1671 |
|
|
/* What a crock. The HP compilers set args_stored even if no
|
1672 |
|
|
arguments were stored into the stack (boo hiss). This could
|
1673 |
|
|
cause this code to then skip a bunch of user insns (up to the
|
1674 |
|
|
first branch).
|
1675 |
|
|
|
1676 |
|
|
To combat this we try to identify when args_stored was bogusly
|
1677 |
|
|
set and clear it. We only do this when args_stored is nonzero,
|
1678 |
|
|
all other resources are accounted for, and nothing changed on
|
1679 |
|
|
this pass. */
|
1680 |
|
|
if (args_stored
|
1681 |
|
|
&& !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
|
1682 |
|
|
&& old_save_gr == save_gr && old_save_fr == save_fr
|
1683 |
|
|
&& old_save_rp == save_rp && old_save_sp == save_sp
|
1684 |
|
|
&& old_stack_remaining == stack_remaining)
|
1685 |
|
|
break;
|
1686 |
|
|
|
1687 |
|
|
/* Bump the PC. */
|
1688 |
|
|
pc += 4;
|
1689 |
|
|
|
1690 |
|
|
/* !stop_before_branch, so also look at the insn in the delay slot
|
1691 |
|
|
of the branch. */
|
1692 |
|
|
if (final_iteration)
|
1693 |
|
|
break;
|
1694 |
|
|
if (is_branch (inst))
|
1695 |
|
|
final_iteration = 1;
|
1696 |
|
|
}
|
1697 |
|
|
|
1698 |
|
|
/* We've got a tenative location for the end of the prologue. However
|
1699 |
|
|
because of limitations in the unwind descriptor mechanism we may
|
1700 |
|
|
have went too far into user code looking for the save of a register
|
1701 |
|
|
that does not exist. So, if there registers we expected to be saved
|
1702 |
|
|
but never were, mask them out and restart.
|
1703 |
|
|
|
1704 |
|
|
This should only happen in optimized code, and should be very rare. */
|
1705 |
|
|
if (save_gr || (save_fr && !(restart_fr || restart_gr)))
|
1706 |
|
|
{
|
1707 |
|
|
pc = orig_pc;
|
1708 |
|
|
restart_gr = save_gr;
|
1709 |
|
|
restart_fr = save_fr;
|
1710 |
|
|
goto restart;
|
1711 |
|
|
}
|
1712 |
|
|
|
1713 |
|
|
return pc;
|
1714 |
|
|
}
|
1715 |
|
|
|
1716 |
|
|
|
1717 |
|
|
/* Return the address of the PC after the last prologue instruction if
|
1718 |
|
|
we can determine it from the debug symbols. Else return zero. */
|
1719 |
|
|
|
1720 |
|
|
static CORE_ADDR
|
1721 |
|
|
after_prologue (CORE_ADDR pc)
|
1722 |
|
|
{
|
1723 |
|
|
struct symtab_and_line sal;
|
1724 |
|
|
CORE_ADDR func_addr, func_end;
|
1725 |
|
|
struct symbol *f;
|
1726 |
|
|
|
1727 |
|
|
/* If we can not find the symbol in the partial symbol table, then
|
1728 |
|
|
there is no hope we can determine the function's start address
|
1729 |
|
|
with this code. */
|
1730 |
|
|
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
1731 |
|
|
return 0;
|
1732 |
|
|
|
1733 |
|
|
/* Get the line associated with FUNC_ADDR. */
|
1734 |
|
|
sal = find_pc_line (func_addr, 0);
|
1735 |
|
|
|
1736 |
|
|
/* There are only two cases to consider. First, the end of the source line
|
1737 |
|
|
is within the function bounds. In that case we return the end of the
|
1738 |
|
|
source line. Second is the end of the source line extends beyond the
|
1739 |
|
|
bounds of the current function. We need to use the slow code to
|
1740 |
|
|
examine instructions in that case.
|
1741 |
|
|
|
1742 |
|
|
Anything else is simply a bug elsewhere. Fixing it here is absolutely
|
1743 |
|
|
the wrong thing to do. In fact, it should be entirely possible for this
|
1744 |
|
|
function to always return zero since the slow instruction scanning code
|
1745 |
|
|
is supposed to *always* work. If it does not, then it is a bug. */
|
1746 |
|
|
if (sal.end < func_end)
|
1747 |
|
|
return sal.end;
|
1748 |
|
|
else
|
1749 |
|
|
return 0;
|
1750 |
|
|
}
|
1751 |
|
|
|
1752 |
|
|
/* To skip prologues, I use this predicate. Returns either PC itself
|
1753 |
|
|
if the code at PC does not look like a function prologue; otherwise
|
1754 |
|
|
returns an address that (if we're lucky) follows the prologue.
|
1755 |
|
|
|
1756 |
|
|
hppa_skip_prologue is called by gdb to place a breakpoint in a function.
|
1757 |
|
|
It doesn't necessarily skips all the insns in the prologue. In fact
|
1758 |
|
|
we might not want to skip all the insns because a prologue insn may
|
1759 |
|
|
appear in the delay slot of the first branch, and we don't want to
|
1760 |
|
|
skip over the branch in that case. */
|
1761 |
|
|
|
1762 |
|
|
static CORE_ADDR
|
1763 |
|
|
hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
1764 |
|
|
{
|
1765 |
|
|
unsigned long inst;
|
1766 |
|
|
int offset;
|
1767 |
|
|
CORE_ADDR post_prologue_pc;
|
1768 |
|
|
char buf[4];
|
1769 |
|
|
|
1770 |
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
1771 |
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
1772 |
|
|
is greater. */
|
1773 |
|
|
|
1774 |
|
|
post_prologue_pc = after_prologue (pc);
|
1775 |
|
|
|
1776 |
|
|
/* If after_prologue returned a useful address, then use it. Else
|
1777 |
|
|
fall back on the instruction skipping code.
|
1778 |
|
|
|
1779 |
|
|
Some folks have claimed this causes problems because the breakpoint
|
1780 |
|
|
may be the first instruction of the prologue. If that happens, then
|
1781 |
|
|
the instruction skipping code has a bug that needs to be fixed. */
|
1782 |
|
|
if (post_prologue_pc != 0)
|
1783 |
|
|
return max (pc, post_prologue_pc);
|
1784 |
|
|
else
|
1785 |
|
|
return (skip_prologue_hard_way (gdbarch, pc, 1));
|
1786 |
|
|
}
|
1787 |
|
|
|
1788 |
|
|
/* Return an unwind entry that falls within the frame's code block. */
|
1789 |
|
|
static struct unwind_table_entry *
|
1790 |
|
|
hppa_find_unwind_entry_in_block (struct frame_info *f)
|
1791 |
|
|
{
|
1792 |
|
|
CORE_ADDR pc = frame_unwind_address_in_block (f, NORMAL_FRAME);
|
1793 |
|
|
|
1794 |
|
|
/* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
|
1795 |
|
|
result of frame_unwind_address_in_block implies a problem.
|
1796 |
|
|
The bits should have been removed earlier, before the return
|
1797 |
|
|
value of frame_pc_unwind. That might be happening already;
|
1798 |
|
|
if it isn't, it should be fixed. Then this call can be
|
1799 |
|
|
removed. */
|
1800 |
|
|
pc = gdbarch_addr_bits_remove (get_frame_arch (f), pc);
|
1801 |
|
|
return find_unwind_entry (pc);
|
1802 |
|
|
}
|
1803 |
|
|
|
1804 |
|
|
struct hppa_frame_cache
|
1805 |
|
|
{
|
1806 |
|
|
CORE_ADDR base;
|
1807 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
1808 |
|
|
};
|
1809 |
|
|
|
1810 |
|
|
static struct hppa_frame_cache *
|
1811 |
|
|
hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
|
1812 |
|
|
{
|
1813 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
1814 |
|
|
struct hppa_frame_cache *cache;
|
1815 |
|
|
long saved_gr_mask;
|
1816 |
|
|
long saved_fr_mask;
|
1817 |
|
|
CORE_ADDR this_sp;
|
1818 |
|
|
long frame_size;
|
1819 |
|
|
struct unwind_table_entry *u;
|
1820 |
|
|
CORE_ADDR prologue_end;
|
1821 |
|
|
int fp_in_r1 = 0;
|
1822 |
|
|
int i;
|
1823 |
|
|
|
1824 |
|
|
if (hppa_debug)
|
1825 |
|
|
fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
|
1826 |
|
|
frame_relative_level(next_frame));
|
1827 |
|
|
|
1828 |
|
|
if ((*this_cache) != NULL)
|
1829 |
|
|
{
|
1830 |
|
|
if (hppa_debug)
|
1831 |
|
|
fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
|
1832 |
|
|
paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
|
1833 |
|
|
return (*this_cache);
|
1834 |
|
|
}
|
1835 |
|
|
cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
|
1836 |
|
|
(*this_cache) = cache;
|
1837 |
|
|
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
1838 |
|
|
|
1839 |
|
|
/* Yow! */
|
1840 |
|
|
u = hppa_find_unwind_entry_in_block (next_frame);
|
1841 |
|
|
if (!u)
|
1842 |
|
|
{
|
1843 |
|
|
if (hppa_debug)
|
1844 |
|
|
fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
|
1845 |
|
|
return (*this_cache);
|
1846 |
|
|
}
|
1847 |
|
|
|
1848 |
|
|
/* Turn the Entry_GR field into a bitmask. */
|
1849 |
|
|
saved_gr_mask = 0;
|
1850 |
|
|
for (i = 3; i < u->Entry_GR + 3; i++)
|
1851 |
|
|
{
|
1852 |
|
|
/* Frame pointer gets saved into a special location. */
|
1853 |
|
|
if (u->Save_SP && i == HPPA_FP_REGNUM)
|
1854 |
|
|
continue;
|
1855 |
|
|
|
1856 |
|
|
saved_gr_mask |= (1 << i);
|
1857 |
|
|
}
|
1858 |
|
|
|
1859 |
|
|
/* Turn the Entry_FR field into a bitmask too. */
|
1860 |
|
|
saved_fr_mask = 0;
|
1861 |
|
|
for (i = 12; i < u->Entry_FR + 12; i++)
|
1862 |
|
|
saved_fr_mask |= (1 << i);
|
1863 |
|
|
|
1864 |
|
|
/* Loop until we find everything of interest or hit a branch.
|
1865 |
|
|
|
1866 |
|
|
For unoptimized GCC code and for any HP CC code this will never ever
|
1867 |
|
|
examine any user instructions.
|
1868 |
|
|
|
1869 |
|
|
For optimized GCC code we're faced with problems. GCC will schedule
|
1870 |
|
|
its prologue and make prologue instructions available for delay slot
|
1871 |
|
|
filling. The end result is user code gets mixed in with the prologue
|
1872 |
|
|
and a prologue instruction may be in the delay slot of the first branch
|
1873 |
|
|
or call.
|
1874 |
|
|
|
1875 |
|
|
Some unexpected things are expected with debugging optimized code, so
|
1876 |
|
|
we allow this routine to walk past user instructions in optimized
|
1877 |
|
|
GCC code. */
|
1878 |
|
|
{
|
1879 |
|
|
int final_iteration = 0;
|
1880 |
|
|
CORE_ADDR pc, start_pc, end_pc;
|
1881 |
|
|
int looking_for_sp = u->Save_SP;
|
1882 |
|
|
int looking_for_rp = u->Save_RP;
|
1883 |
|
|
int fp_loc = -1;
|
1884 |
|
|
|
1885 |
|
|
/* We have to use skip_prologue_hard_way instead of just
|
1886 |
|
|
skip_prologue_using_sal, in case we stepped into a function without
|
1887 |
|
|
symbol information. hppa_skip_prologue also bounds the returned
|
1888 |
|
|
pc by the passed in pc, so it will not return a pc in the next
|
1889 |
|
|
function.
|
1890 |
|
|
|
1891 |
|
|
We used to call hppa_skip_prologue to find the end of the prologue,
|
1892 |
|
|
but if some non-prologue instructions get scheduled into the prologue,
|
1893 |
|
|
and the program is compiled with debug information, the "easy" way
|
1894 |
|
|
in hppa_skip_prologue will return a prologue end that is too early
|
1895 |
|
|
for us to notice any potential frame adjustments. */
|
1896 |
|
|
|
1897 |
|
|
/* We used to use frame_func_unwind () to locate the beginning of the
|
1898 |
|
|
function to pass to skip_prologue (). However, when objects are
|
1899 |
|
|
compiled without debug symbols, frame_func_unwind can return the wrong
|
1900 |
|
|
function (or 0). We can do better than that by using unwind records.
|
1901 |
|
|
This only works if the Region_description of the unwind record
|
1902 |
|
|
indicates that it includes the entry point of the function.
|
1903 |
|
|
HP compilers sometimes generate unwind records for regions that
|
1904 |
|
|
do not include the entry or exit point of a function. GNU tools
|
1905 |
|
|
do not do this. */
|
1906 |
|
|
|
1907 |
|
|
if ((u->Region_description & 0x2) == 0)
|
1908 |
|
|
start_pc = u->region_start;
|
1909 |
|
|
else
|
1910 |
|
|
start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
|
1911 |
|
|
|
1912 |
|
|
prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
|
1913 |
|
|
end_pc = frame_pc_unwind (next_frame);
|
1914 |
|
|
|
1915 |
|
|
if (prologue_end != 0 && end_pc > prologue_end)
|
1916 |
|
|
end_pc = prologue_end;
|
1917 |
|
|
|
1918 |
|
|
frame_size = 0;
|
1919 |
|
|
|
1920 |
|
|
for (pc = start_pc;
|
1921 |
|
|
((saved_gr_mask || saved_fr_mask
|
1922 |
|
|
|| looking_for_sp || looking_for_rp
|
1923 |
|
|
|| frame_size < (u->Total_frame_size << 3))
|
1924 |
|
|
&& pc < end_pc);
|
1925 |
|
|
pc += 4)
|
1926 |
|
|
{
|
1927 |
|
|
int reg;
|
1928 |
|
|
char buf4[4];
|
1929 |
|
|
long inst;
|
1930 |
|
|
|
1931 |
|
|
if (!safe_frame_unwind_memory (next_frame, pc, buf4,
|
1932 |
|
|
sizeof buf4))
|
1933 |
|
|
{
|
1934 |
|
|
error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
|
1935 |
|
|
return (*this_cache);
|
1936 |
|
|
}
|
1937 |
|
|
|
1938 |
|
|
inst = extract_unsigned_integer (buf4, sizeof buf4);
|
1939 |
|
|
|
1940 |
|
|
/* Note the interesting effects of this instruction. */
|
1941 |
|
|
frame_size += prologue_inst_adjust_sp (inst);
|
1942 |
|
|
|
1943 |
|
|
/* There are limited ways to store the return pointer into the
|
1944 |
|
|
stack. */
|
1945 |
|
|
if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
|
1946 |
|
|
{
|
1947 |
|
|
looking_for_rp = 0;
|
1948 |
|
|
cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
|
1949 |
|
|
}
|
1950 |
|
|
else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
|
1951 |
|
|
{
|
1952 |
|
|
looking_for_rp = 0;
|
1953 |
|
|
cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
|
1954 |
|
|
}
|
1955 |
|
|
else if (inst == 0x0fc212c1
|
1956 |
|
|
|| inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
|
1957 |
|
|
{
|
1958 |
|
|
looking_for_rp = 0;
|
1959 |
|
|
cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
|
1960 |
|
|
}
|
1961 |
|
|
|
1962 |
|
|
/* Check to see if we saved SP into the stack. This also
|
1963 |
|
|
happens to indicate the location of the saved frame
|
1964 |
|
|
pointer. */
|
1965 |
|
|
if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
|
1966 |
|
|
|| (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
|
1967 |
|
|
{
|
1968 |
|
|
looking_for_sp = 0;
|
1969 |
|
|
cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
|
1970 |
|
|
}
|
1971 |
|
|
else if (inst == 0x08030241) /* copy %r3, %r1 */
|
1972 |
|
|
{
|
1973 |
|
|
fp_in_r1 = 1;
|
1974 |
|
|
}
|
1975 |
|
|
|
1976 |
|
|
/* Account for general and floating-point register saves. */
|
1977 |
|
|
reg = inst_saves_gr (inst);
|
1978 |
|
|
if (reg >= 3 && reg <= 18
|
1979 |
|
|
&& (!u->Save_SP || reg != HPPA_FP_REGNUM))
|
1980 |
|
|
{
|
1981 |
|
|
saved_gr_mask &= ~(1 << reg);
|
1982 |
|
|
if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
|
1983 |
|
|
/* stwm with a positive displacement is a _post_
|
1984 |
|
|
_modify_. */
|
1985 |
|
|
cache->saved_regs[reg].addr = 0;
|
1986 |
|
|
else if ((inst & 0xfc00000c) == 0x70000008)
|
1987 |
|
|
/* A std has explicit post_modify forms. */
|
1988 |
|
|
cache->saved_regs[reg].addr = 0;
|
1989 |
|
|
else
|
1990 |
|
|
{
|
1991 |
|
|
CORE_ADDR offset;
|
1992 |
|
|
|
1993 |
|
|
if ((inst >> 26) == 0x1c)
|
1994 |
|
|
offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
|
1995 |
|
|
else if ((inst >> 26) == 0x03)
|
1996 |
|
|
offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
|
1997 |
|
|
else
|
1998 |
|
|
offset = hppa_extract_14 (inst);
|
1999 |
|
|
|
2000 |
|
|
/* Handle code with and without frame pointers. */
|
2001 |
|
|
if (u->Save_SP)
|
2002 |
|
|
cache->saved_regs[reg].addr = offset;
|
2003 |
|
|
else
|
2004 |
|
|
cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
|
2005 |
|
|
}
|
2006 |
|
|
}
|
2007 |
|
|
|
2008 |
|
|
/* GCC handles callee saved FP regs a little differently.
|
2009 |
|
|
|
2010 |
|
|
It emits an instruction to put the value of the start of
|
2011 |
|
|
the FP store area into %r1. It then uses fstds,ma with a
|
2012 |
|
|
basereg of %r1 for the stores.
|
2013 |
|
|
|
2014 |
|
|
HP CC emits them at the current stack pointer modifying the
|
2015 |
|
|
stack pointer as it stores each register. */
|
2016 |
|
|
|
2017 |
|
|
/* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
|
2018 |
|
|
if ((inst & 0xffffc000) == 0x34610000
|
2019 |
|
|
|| (inst & 0xffffc000) == 0x37c10000)
|
2020 |
|
|
fp_loc = hppa_extract_14 (inst);
|
2021 |
|
|
|
2022 |
|
|
reg = inst_saves_fr (inst);
|
2023 |
|
|
if (reg >= 12 && reg <= 21)
|
2024 |
|
|
{
|
2025 |
|
|
/* Note +4 braindamage below is necessary because the FP
|
2026 |
|
|
status registers are internally 8 registers rather than
|
2027 |
|
|
the expected 4 registers. */
|
2028 |
|
|
saved_fr_mask &= ~(1 << reg);
|
2029 |
|
|
if (fp_loc == -1)
|
2030 |
|
|
{
|
2031 |
|
|
/* 1st HP CC FP register store. After this
|
2032 |
|
|
instruction we've set enough state that the GCC and
|
2033 |
|
|
HPCC code are both handled in the same manner. */
|
2034 |
|
|
cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
|
2035 |
|
|
fp_loc = 8;
|
2036 |
|
|
}
|
2037 |
|
|
else
|
2038 |
|
|
{
|
2039 |
|
|
cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
|
2040 |
|
|
fp_loc += 8;
|
2041 |
|
|
}
|
2042 |
|
|
}
|
2043 |
|
|
|
2044 |
|
|
/* Quit if we hit any kind of branch the previous iteration. */
|
2045 |
|
|
if (final_iteration)
|
2046 |
|
|
break;
|
2047 |
|
|
/* We want to look precisely one instruction beyond the branch
|
2048 |
|
|
if we have not found everything yet. */
|
2049 |
|
|
if (is_branch (inst))
|
2050 |
|
|
final_iteration = 1;
|
2051 |
|
|
}
|
2052 |
|
|
}
|
2053 |
|
|
|
2054 |
|
|
{
|
2055 |
|
|
/* The frame base always represents the value of %sp at entry to
|
2056 |
|
|
the current function (and is thus equivalent to the "saved"
|
2057 |
|
|
stack pointer. */
|
2058 |
|
|
CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
|
2059 |
|
|
CORE_ADDR fp;
|
2060 |
|
|
|
2061 |
|
|
if (hppa_debug)
|
2062 |
|
|
fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
|
2063 |
|
|
"prologue_end=0x%s) ",
|
2064 |
|
|
paddr_nz (this_sp),
|
2065 |
|
|
paddr_nz (frame_pc_unwind (next_frame)),
|
2066 |
|
|
paddr_nz (prologue_end));
|
2067 |
|
|
|
2068 |
|
|
/* Check to see if a frame pointer is available, and use it for
|
2069 |
|
|
frame unwinding if it is.
|
2070 |
|
|
|
2071 |
|
|
There are some situations where we need to rely on the frame
|
2072 |
|
|
pointer to do stack unwinding. For example, if a function calls
|
2073 |
|
|
alloca (), the stack pointer can get adjusted inside the body of
|
2074 |
|
|
the function. In this case, the ABI requires that the compiler
|
2075 |
|
|
maintain a frame pointer for the function.
|
2076 |
|
|
|
2077 |
|
|
The unwind record has a flag (alloca_frame) that indicates that
|
2078 |
|
|
a function has a variable frame; unfortunately, gcc/binutils
|
2079 |
|
|
does not set this flag. Instead, whenever a frame pointer is used
|
2080 |
|
|
and saved on the stack, the Save_SP flag is set. We use this to
|
2081 |
|
|
decide whether to use the frame pointer for unwinding.
|
2082 |
|
|
|
2083 |
|
|
TODO: For the HP compiler, maybe we should use the alloca_frame flag
|
2084 |
|
|
instead of Save_SP. */
|
2085 |
|
|
|
2086 |
|
|
fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
|
2087 |
|
|
|
2088 |
|
|
if (u->alloca_frame)
|
2089 |
|
|
fp -= u->Total_frame_size << 3;
|
2090 |
|
|
|
2091 |
|
|
if (frame_pc_unwind (next_frame) >= prologue_end
|
2092 |
|
|
&& (u->Save_SP || u->alloca_frame) && fp != 0)
|
2093 |
|
|
{
|
2094 |
|
|
cache->base = fp;
|
2095 |
|
|
|
2096 |
|
|
if (hppa_debug)
|
2097 |
|
|
fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
|
2098 |
|
|
paddr_nz (cache->base));
|
2099 |
|
|
}
|
2100 |
|
|
else if (u->Save_SP
|
2101 |
|
|
&& trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
|
2102 |
|
|
{
|
2103 |
|
|
/* Both we're expecting the SP to be saved and the SP has been
|
2104 |
|
|
saved. The entry SP value is saved at this frame's SP
|
2105 |
|
|
address. */
|
2106 |
|
|
cache->base = read_memory_integer
|
2107 |
|
|
(this_sp, gdbarch_ptr_bit (gdbarch) / 8);
|
2108 |
|
|
|
2109 |
|
|
if (hppa_debug)
|
2110 |
|
|
fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
|
2111 |
|
|
paddr_nz (cache->base));
|
2112 |
|
|
}
|
2113 |
|
|
else
|
2114 |
|
|
{
|
2115 |
|
|
/* The prologue has been slowly allocating stack space. Adjust
|
2116 |
|
|
the SP back. */
|
2117 |
|
|
cache->base = this_sp - frame_size;
|
2118 |
|
|
if (hppa_debug)
|
2119 |
|
|
fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
|
2120 |
|
|
paddr_nz (cache->base));
|
2121 |
|
|
|
2122 |
|
|
}
|
2123 |
|
|
trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
|
2124 |
|
|
}
|
2125 |
|
|
|
2126 |
|
|
/* The PC is found in the "return register", "Millicode" uses "r31"
|
2127 |
|
|
as the return register while normal code uses "rp". */
|
2128 |
|
|
if (u->Millicode)
|
2129 |
|
|
{
|
2130 |
|
|
if (trad_frame_addr_p (cache->saved_regs, 31))
|
2131 |
|
|
{
|
2132 |
|
|
cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
|
2133 |
|
|
if (hppa_debug)
|
2134 |
|
|
fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
|
2135 |
|
|
}
|
2136 |
|
|
else
|
2137 |
|
|
{
|
2138 |
|
|
ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
|
2139 |
|
|
trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
|
2140 |
|
|
if (hppa_debug)
|
2141 |
|
|
fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
|
2142 |
|
|
}
|
2143 |
|
|
}
|
2144 |
|
|
else
|
2145 |
|
|
{
|
2146 |
|
|
if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
|
2147 |
|
|
{
|
2148 |
|
|
cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
|
2149 |
|
|
cache->saved_regs[HPPA_RP_REGNUM];
|
2150 |
|
|
if (hppa_debug)
|
2151 |
|
|
fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
|
2152 |
|
|
}
|
2153 |
|
|
else
|
2154 |
|
|
{
|
2155 |
|
|
ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
|
2156 |
|
|
trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
|
2157 |
|
|
if (hppa_debug)
|
2158 |
|
|
fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
|
2159 |
|
|
}
|
2160 |
|
|
}
|
2161 |
|
|
|
2162 |
|
|
/* If Save_SP is set, then we expect the frame pointer to be saved in the
|
2163 |
|
|
frame. However, there is a one-insn window where we haven't saved it
|
2164 |
|
|
yet, but we've already clobbered it. Detect this case and fix it up.
|
2165 |
|
|
|
2166 |
|
|
The prologue sequence for frame-pointer functions is:
|
2167 |
|
|
0: stw %rp, -20(%sp)
|
2168 |
|
|
4: copy %r3, %r1
|
2169 |
|
|
8: copy %sp, %r3
|
2170 |
|
|
c: stw,ma %r1, XX(%sp)
|
2171 |
|
|
|
2172 |
|
|
So if we are at offset c, the r3 value that we want is not yet saved
|
2173 |
|
|
on the stack, but it's been overwritten. The prologue analyzer will
|
2174 |
|
|
set fp_in_r1 when it sees the copy insn so we know to get the value
|
2175 |
|
|
from r1 instead. */
|
2176 |
|
|
if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
|
2177 |
|
|
&& fp_in_r1)
|
2178 |
|
|
{
|
2179 |
|
|
ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
|
2180 |
|
|
trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
|
2181 |
|
|
}
|
2182 |
|
|
|
2183 |
|
|
{
|
2184 |
|
|
/* Convert all the offsets into addresses. */
|
2185 |
|
|
int reg;
|
2186 |
|
|
for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
|
2187 |
|
|
{
|
2188 |
|
|
if (trad_frame_addr_p (cache->saved_regs, reg))
|
2189 |
|
|
cache->saved_regs[reg].addr += cache->base;
|
2190 |
|
|
}
|
2191 |
|
|
}
|
2192 |
|
|
|
2193 |
|
|
{
|
2194 |
|
|
struct gdbarch_tdep *tdep;
|
2195 |
|
|
|
2196 |
|
|
tdep = gdbarch_tdep (gdbarch);
|
2197 |
|
|
|
2198 |
|
|
if (tdep->unwind_adjust_stub)
|
2199 |
|
|
{
|
2200 |
|
|
tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
|
2201 |
|
|
}
|
2202 |
|
|
}
|
2203 |
|
|
|
2204 |
|
|
if (hppa_debug)
|
2205 |
|
|
fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
|
2206 |
|
|
paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
|
2207 |
|
|
return (*this_cache);
|
2208 |
|
|
}
|
2209 |
|
|
|
2210 |
|
|
static void
|
2211 |
|
|
hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
|
2212 |
|
|
struct frame_id *this_id)
|
2213 |
|
|
{
|
2214 |
|
|
struct hppa_frame_cache *info;
|
2215 |
|
|
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
2216 |
|
|
struct unwind_table_entry *u;
|
2217 |
|
|
|
2218 |
|
|
info = hppa_frame_cache (next_frame, this_cache);
|
2219 |
|
|
u = hppa_find_unwind_entry_in_block (next_frame);
|
2220 |
|
|
|
2221 |
|
|
(*this_id) = frame_id_build (info->base, u->region_start);
|
2222 |
|
|
}
|
2223 |
|
|
|
2224 |
|
|
static void
|
2225 |
|
|
hppa_frame_prev_register (struct frame_info *next_frame,
|
2226 |
|
|
void **this_cache,
|
2227 |
|
|
int regnum, int *optimizedp,
|
2228 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
2229 |
|
|
int *realnump, gdb_byte *valuep)
|
2230 |
|
|
{
|
2231 |
|
|
struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
|
2232 |
|
|
hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
|
2233 |
|
|
optimizedp, lvalp, addrp, realnump, valuep);
|
2234 |
|
|
}
|
2235 |
|
|
|
2236 |
|
|
static const struct frame_unwind hppa_frame_unwind =
|
2237 |
|
|
{
|
2238 |
|
|
NORMAL_FRAME,
|
2239 |
|
|
hppa_frame_this_id,
|
2240 |
|
|
hppa_frame_prev_register
|
2241 |
|
|
};
|
2242 |
|
|
|
2243 |
|
|
static const struct frame_unwind *
|
2244 |
|
|
hppa_frame_unwind_sniffer (struct frame_info *next_frame)
|
2245 |
|
|
{
|
2246 |
|
|
if (hppa_find_unwind_entry_in_block (next_frame))
|
2247 |
|
|
return &hppa_frame_unwind;
|
2248 |
|
|
|
2249 |
|
|
return NULL;
|
2250 |
|
|
}
|
2251 |
|
|
|
2252 |
|
|
/* This is a generic fallback frame unwinder that kicks in if we fail all
|
2253 |
|
|
the other ones. Normally we would expect the stub and regular unwinder
|
2254 |
|
|
to work, but in some cases we might hit a function that just doesn't
|
2255 |
|
|
have any unwind information available. In this case we try to do
|
2256 |
|
|
unwinding solely based on code reading. This is obviously going to be
|
2257 |
|
|
slow, so only use this as a last resort. Currently this will only
|
2258 |
|
|
identify the stack and pc for the frame. */
|
2259 |
|
|
|
2260 |
|
|
static struct hppa_frame_cache *
|
2261 |
|
|
hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
|
2262 |
|
|
{
|
2263 |
|
|
struct hppa_frame_cache *cache;
|
2264 |
|
|
unsigned int frame_size = 0;
|
2265 |
|
|
int found_rp = 0;
|
2266 |
|
|
CORE_ADDR start_pc;
|
2267 |
|
|
|
2268 |
|
|
if (hppa_debug)
|
2269 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2270 |
|
|
"{ hppa_fallback_frame_cache (frame=%d) -> ",
|
2271 |
|
|
frame_relative_level (next_frame));
|
2272 |
|
|
|
2273 |
|
|
cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
|
2274 |
|
|
(*this_cache) = cache;
|
2275 |
|
|
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
2276 |
|
|
|
2277 |
|
|
start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
|
2278 |
|
|
if (start_pc)
|
2279 |
|
|
{
|
2280 |
|
|
CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
|
2281 |
|
|
CORE_ADDR pc;
|
2282 |
|
|
|
2283 |
|
|
for (pc = start_pc; pc < cur_pc; pc += 4)
|
2284 |
|
|
{
|
2285 |
|
|
unsigned int insn;
|
2286 |
|
|
|
2287 |
|
|
insn = read_memory_unsigned_integer (pc, 4);
|
2288 |
|
|
frame_size += prologue_inst_adjust_sp (insn);
|
2289 |
|
|
|
2290 |
|
|
/* There are limited ways to store the return pointer into the
|
2291 |
|
|
stack. */
|
2292 |
|
|
if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
|
2293 |
|
|
{
|
2294 |
|
|
cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
|
2295 |
|
|
found_rp = 1;
|
2296 |
|
|
}
|
2297 |
|
|
else if (insn == 0x0fc212c1
|
2298 |
|
|
|| insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
|
2299 |
|
|
{
|
2300 |
|
|
cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
|
2301 |
|
|
found_rp = 1;
|
2302 |
|
|
}
|
2303 |
|
|
}
|
2304 |
|
|
}
|
2305 |
|
|
|
2306 |
|
|
if (hppa_debug)
|
2307 |
|
|
fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
|
2308 |
|
|
frame_size, found_rp);
|
2309 |
|
|
|
2310 |
|
|
cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
|
2311 |
|
|
cache->base -= frame_size;
|
2312 |
|
|
trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
|
2313 |
|
|
|
2314 |
|
|
if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
|
2315 |
|
|
{
|
2316 |
|
|
cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
|
2317 |
|
|
cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
|
2318 |
|
|
cache->saved_regs[HPPA_RP_REGNUM];
|
2319 |
|
|
}
|
2320 |
|
|
else
|
2321 |
|
|
{
|
2322 |
|
|
ULONGEST rp;
|
2323 |
|
|
rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
|
2324 |
|
|
trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
|
2325 |
|
|
}
|
2326 |
|
|
|
2327 |
|
|
return cache;
|
2328 |
|
|
}
|
2329 |
|
|
|
2330 |
|
|
static void
|
2331 |
|
|
hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
|
2332 |
|
|
struct frame_id *this_id)
|
2333 |
|
|
{
|
2334 |
|
|
struct hppa_frame_cache *info =
|
2335 |
|
|
hppa_fallback_frame_cache (next_frame, this_cache);
|
2336 |
|
|
(*this_id) = frame_id_build (info->base,
|
2337 |
|
|
frame_func_unwind (next_frame, NORMAL_FRAME));
|
2338 |
|
|
}
|
2339 |
|
|
|
2340 |
|
|
static void
|
2341 |
|
|
hppa_fallback_frame_prev_register (struct frame_info *next_frame,
|
2342 |
|
|
void **this_cache,
|
2343 |
|
|
int regnum, int *optimizedp,
|
2344 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
2345 |
|
|
int *realnump, gdb_byte *valuep)
|
2346 |
|
|
{
|
2347 |
|
|
struct hppa_frame_cache *info =
|
2348 |
|
|
hppa_fallback_frame_cache (next_frame, this_cache);
|
2349 |
|
|
hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
|
2350 |
|
|
optimizedp, lvalp, addrp, realnump, valuep);
|
2351 |
|
|
}
|
2352 |
|
|
|
2353 |
|
|
static const struct frame_unwind hppa_fallback_frame_unwind =
|
2354 |
|
|
{
|
2355 |
|
|
NORMAL_FRAME,
|
2356 |
|
|
hppa_fallback_frame_this_id,
|
2357 |
|
|
hppa_fallback_frame_prev_register
|
2358 |
|
|
};
|
2359 |
|
|
|
2360 |
|
|
static const struct frame_unwind *
|
2361 |
|
|
hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
|
2362 |
|
|
{
|
2363 |
|
|
return &hppa_fallback_frame_unwind;
|
2364 |
|
|
}
|
2365 |
|
|
|
2366 |
|
|
/* Stub frames, used for all kinds of call stubs. */
|
2367 |
|
|
struct hppa_stub_unwind_cache
|
2368 |
|
|
{
|
2369 |
|
|
CORE_ADDR base;
|
2370 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
2371 |
|
|
};
|
2372 |
|
|
|
2373 |
|
|
static struct hppa_stub_unwind_cache *
|
2374 |
|
|
hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
|
2375 |
|
|
void **this_cache)
|
2376 |
|
|
{
|
2377 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
2378 |
|
|
struct hppa_stub_unwind_cache *info;
|
2379 |
|
|
struct unwind_table_entry *u;
|
2380 |
|
|
|
2381 |
|
|
if (*this_cache)
|
2382 |
|
|
return *this_cache;
|
2383 |
|
|
|
2384 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
|
2385 |
|
|
*this_cache = info;
|
2386 |
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
2387 |
|
|
|
2388 |
|
|
info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
|
2389 |
|
|
|
2390 |
|
|
if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
|
2391 |
|
|
{
|
2392 |
|
|
/* HPUX uses export stubs in function calls; the export stub clobbers
|
2393 |
|
|
the return value of the caller, and, later restores it from the
|
2394 |
|
|
stack. */
|
2395 |
|
|
u = find_unwind_entry (frame_pc_unwind (next_frame));
|
2396 |
|
|
|
2397 |
|
|
if (u && u->stub_unwind.stub_type == EXPORT)
|
2398 |
|
|
{
|
2399 |
|
|
info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
|
2400 |
|
|
|
2401 |
|
|
return info;
|
2402 |
|
|
}
|
2403 |
|
|
}
|
2404 |
|
|
|
2405 |
|
|
/* By default we assume that stubs do not change the rp. */
|
2406 |
|
|
info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
|
2407 |
|
|
|
2408 |
|
|
return info;
|
2409 |
|
|
}
|
2410 |
|
|
|
2411 |
|
|
static void
|
2412 |
|
|
hppa_stub_frame_this_id (struct frame_info *next_frame,
|
2413 |
|
|
void **this_prologue_cache,
|
2414 |
|
|
struct frame_id *this_id)
|
2415 |
|
|
{
|
2416 |
|
|
struct hppa_stub_unwind_cache *info
|
2417 |
|
|
= hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
|
2418 |
|
|
|
2419 |
|
|
if (info)
|
2420 |
|
|
*this_id = frame_id_build (info->base,
|
2421 |
|
|
frame_func_unwind (next_frame, NORMAL_FRAME));
|
2422 |
|
|
else
|
2423 |
|
|
*this_id = null_frame_id;
|
2424 |
|
|
}
|
2425 |
|
|
|
2426 |
|
|
static void
|
2427 |
|
|
hppa_stub_frame_prev_register (struct frame_info *next_frame,
|
2428 |
|
|
void **this_prologue_cache,
|
2429 |
|
|
int regnum, int *optimizedp,
|
2430 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
2431 |
|
|
int *realnump, gdb_byte *valuep)
|
2432 |
|
|
{
|
2433 |
|
|
struct hppa_stub_unwind_cache *info
|
2434 |
|
|
= hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
|
2435 |
|
|
|
2436 |
|
|
if (info)
|
2437 |
|
|
hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
|
2438 |
|
|
optimizedp, lvalp, addrp, realnump,
|
2439 |
|
|
valuep);
|
2440 |
|
|
else
|
2441 |
|
|
error (_("Requesting registers from null frame."));
|
2442 |
|
|
}
|
2443 |
|
|
|
2444 |
|
|
static const struct frame_unwind hppa_stub_frame_unwind = {
|
2445 |
|
|
NORMAL_FRAME,
|
2446 |
|
|
hppa_stub_frame_this_id,
|
2447 |
|
|
hppa_stub_frame_prev_register
|
2448 |
|
|
};
|
2449 |
|
|
|
2450 |
|
|
static const struct frame_unwind *
|
2451 |
|
|
hppa_stub_unwind_sniffer (struct frame_info *next_frame)
|
2452 |
|
|
{
|
2453 |
|
|
CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
|
2454 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
2455 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2456 |
|
|
|
2457 |
|
|
if (pc == 0
|
2458 |
|
|
|| (tdep->in_solib_call_trampoline != NULL
|
2459 |
|
|
&& tdep->in_solib_call_trampoline (pc, NULL))
|
2460 |
|
|
|| gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
|
2461 |
|
|
return &hppa_stub_frame_unwind;
|
2462 |
|
|
return NULL;
|
2463 |
|
|
}
|
2464 |
|
|
|
2465 |
|
|
static struct frame_id
|
2466 |
|
|
hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
2467 |
|
|
{
|
2468 |
|
|
return frame_id_build (frame_unwind_register_unsigned (next_frame,
|
2469 |
|
|
HPPA_SP_REGNUM),
|
2470 |
|
|
frame_pc_unwind (next_frame));
|
2471 |
|
|
}
|
2472 |
|
|
|
2473 |
|
|
CORE_ADDR
|
2474 |
|
|
hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
2475 |
|
|
{
|
2476 |
|
|
ULONGEST ipsw;
|
2477 |
|
|
CORE_ADDR pc;
|
2478 |
|
|
|
2479 |
|
|
ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
|
2480 |
|
|
pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
|
2481 |
|
|
|
2482 |
|
|
/* If the current instruction is nullified, then we are effectively
|
2483 |
|
|
still executing the previous instruction. Pretend we are still
|
2484 |
|
|
there. This is needed when single stepping; if the nullified
|
2485 |
|
|
instruction is on a different line, we don't want GDB to think
|
2486 |
|
|
we've stepped onto that line. */
|
2487 |
|
|
if (ipsw & 0x00200000)
|
2488 |
|
|
pc -= 4;
|
2489 |
|
|
|
2490 |
|
|
return pc & ~0x3;
|
2491 |
|
|
}
|
2492 |
|
|
|
2493 |
|
|
/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
|
2494 |
|
|
Return NULL if no such symbol was found. */
|
2495 |
|
|
|
2496 |
|
|
struct minimal_symbol *
|
2497 |
|
|
hppa_lookup_stub_minimal_symbol (const char *name,
|
2498 |
|
|
enum unwind_stub_types stub_type)
|
2499 |
|
|
{
|
2500 |
|
|
struct objfile *objfile;
|
2501 |
|
|
struct minimal_symbol *msym;
|
2502 |
|
|
|
2503 |
|
|
ALL_MSYMBOLS (objfile, msym)
|
2504 |
|
|
{
|
2505 |
|
|
if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
|
2506 |
|
|
{
|
2507 |
|
|
struct unwind_table_entry *u;
|
2508 |
|
|
|
2509 |
|
|
u = find_unwind_entry (SYMBOL_VALUE (msym));
|
2510 |
|
|
if (u != NULL && u->stub_unwind.stub_type == stub_type)
|
2511 |
|
|
return msym;
|
2512 |
|
|
}
|
2513 |
|
|
}
|
2514 |
|
|
|
2515 |
|
|
return NULL;
|
2516 |
|
|
}
|
2517 |
|
|
|
2518 |
|
|
static void
|
2519 |
|
|
unwind_command (char *exp, int from_tty)
|
2520 |
|
|
{
|
2521 |
|
|
CORE_ADDR address;
|
2522 |
|
|
struct unwind_table_entry *u;
|
2523 |
|
|
|
2524 |
|
|
/* If we have an expression, evaluate it and use it as the address. */
|
2525 |
|
|
|
2526 |
|
|
if (exp != 0 && *exp != 0)
|
2527 |
|
|
address = parse_and_eval_address (exp);
|
2528 |
|
|
else
|
2529 |
|
|
return;
|
2530 |
|
|
|
2531 |
|
|
u = find_unwind_entry (address);
|
2532 |
|
|
|
2533 |
|
|
if (!u)
|
2534 |
|
|
{
|
2535 |
|
|
printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
|
2536 |
|
|
return;
|
2537 |
|
|
}
|
2538 |
|
|
|
2539 |
|
|
printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
|
2540 |
|
|
|
2541 |
|
|
printf_unfiltered ("\tregion_start = ");
|
2542 |
|
|
print_address (u->region_start, gdb_stdout);
|
2543 |
|
|
gdb_flush (gdb_stdout);
|
2544 |
|
|
|
2545 |
|
|
printf_unfiltered ("\n\tregion_end = ");
|
2546 |
|
|
print_address (u->region_end, gdb_stdout);
|
2547 |
|
|
gdb_flush (gdb_stdout);
|
2548 |
|
|
|
2549 |
|
|
#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
|
2550 |
|
|
|
2551 |
|
|
printf_unfiltered ("\n\tflags =");
|
2552 |
|
|
pif (Cannot_unwind);
|
2553 |
|
|
pif (Millicode);
|
2554 |
|
|
pif (Millicode_save_sr0);
|
2555 |
|
|
pif (Entry_SR);
|
2556 |
|
|
pif (Args_stored);
|
2557 |
|
|
pif (Variable_Frame);
|
2558 |
|
|
pif (Separate_Package_Body);
|
2559 |
|
|
pif (Frame_Extension_Millicode);
|
2560 |
|
|
pif (Stack_Overflow_Check);
|
2561 |
|
|
pif (Two_Instruction_SP_Increment);
|
2562 |
|
|
pif (sr4export);
|
2563 |
|
|
pif (cxx_info);
|
2564 |
|
|
pif (cxx_try_catch);
|
2565 |
|
|
pif (sched_entry_seq);
|
2566 |
|
|
pif (Save_SP);
|
2567 |
|
|
pif (Save_RP);
|
2568 |
|
|
pif (Save_MRP_in_frame);
|
2569 |
|
|
pif (save_r19);
|
2570 |
|
|
pif (Cleanup_defined);
|
2571 |
|
|
pif (MPE_XL_interrupt_marker);
|
2572 |
|
|
pif (HP_UX_interrupt_marker);
|
2573 |
|
|
pif (Large_frame);
|
2574 |
|
|
pif (alloca_frame);
|
2575 |
|
|
|
2576 |
|
|
putchar_unfiltered ('\n');
|
2577 |
|
|
|
2578 |
|
|
#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
|
2579 |
|
|
|
2580 |
|
|
pin (Region_description);
|
2581 |
|
|
pin (Entry_FR);
|
2582 |
|
|
pin (Entry_GR);
|
2583 |
|
|
pin (Total_frame_size);
|
2584 |
|
|
|
2585 |
|
|
if (u->stub_unwind.stub_type)
|
2586 |
|
|
{
|
2587 |
|
|
printf_unfiltered ("\tstub type = ");
|
2588 |
|
|
switch (u->stub_unwind.stub_type)
|
2589 |
|
|
{
|
2590 |
|
|
case LONG_BRANCH:
|
2591 |
|
|
printf_unfiltered ("long branch\n");
|
2592 |
|
|
break;
|
2593 |
|
|
case PARAMETER_RELOCATION:
|
2594 |
|
|
printf_unfiltered ("parameter relocation\n");
|
2595 |
|
|
break;
|
2596 |
|
|
case EXPORT:
|
2597 |
|
|
printf_unfiltered ("export\n");
|
2598 |
|
|
break;
|
2599 |
|
|
case IMPORT:
|
2600 |
|
|
printf_unfiltered ("import\n");
|
2601 |
|
|
break;
|
2602 |
|
|
case IMPORT_SHLIB:
|
2603 |
|
|
printf_unfiltered ("import shlib\n");
|
2604 |
|
|
break;
|
2605 |
|
|
default:
|
2606 |
|
|
printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
|
2607 |
|
|
}
|
2608 |
|
|
}
|
2609 |
|
|
}
|
2610 |
|
|
|
2611 |
|
|
/* Return the GDB type object for the "standard" data type of data in
|
2612 |
|
|
register REGNUM. */
|
2613 |
|
|
|
2614 |
|
|
static struct type *
|
2615 |
|
|
hppa32_register_type (struct gdbarch *gdbarch, int regnum)
|
2616 |
|
|
{
|
2617 |
|
|
if (regnum < HPPA_FP4_REGNUM)
|
2618 |
|
|
return builtin_type_uint32;
|
2619 |
|
|
else
|
2620 |
|
|
return builtin_type_ieee_single;
|
2621 |
|
|
}
|
2622 |
|
|
|
2623 |
|
|
static struct type *
|
2624 |
|
|
hppa64_register_type (struct gdbarch *gdbarch, int regnum)
|
2625 |
|
|
{
|
2626 |
|
|
if (regnum < HPPA64_FP4_REGNUM)
|
2627 |
|
|
return builtin_type_uint64;
|
2628 |
|
|
else
|
2629 |
|
|
return builtin_type_ieee_double;
|
2630 |
|
|
}
|
2631 |
|
|
|
2632 |
|
|
/* Return non-zero if REGNUM is not a register available to the user
|
2633 |
|
|
through ptrace/ttrace. */
|
2634 |
|
|
|
2635 |
|
|
static int
|
2636 |
|
|
hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
|
2637 |
|
|
{
|
2638 |
|
|
return (regnum == 0
|
2639 |
|
|
|| regnum == HPPA_PCSQ_HEAD_REGNUM
|
2640 |
|
|
|| (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
|
2641 |
|
|
|| (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
|
2642 |
|
|
}
|
2643 |
|
|
|
2644 |
|
|
static int
|
2645 |
|
|
hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
|
2646 |
|
|
{
|
2647 |
|
|
/* cr26 and cr27 are readable (but not writable) from userspace. */
|
2648 |
|
|
if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
|
2649 |
|
|
return 0;
|
2650 |
|
|
else
|
2651 |
|
|
return hppa32_cannot_store_register (gdbarch, regnum);
|
2652 |
|
|
}
|
2653 |
|
|
|
2654 |
|
|
static int
|
2655 |
|
|
hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
|
2656 |
|
|
{
|
2657 |
|
|
return (regnum == 0
|
2658 |
|
|
|| regnum == HPPA_PCSQ_HEAD_REGNUM
|
2659 |
|
|
|| (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
|
2660 |
|
|
|| (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
|
2661 |
|
|
}
|
2662 |
|
|
|
2663 |
|
|
static int
|
2664 |
|
|
hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
|
2665 |
|
|
{
|
2666 |
|
|
/* cr26 and cr27 are readable (but not writable) from userspace. */
|
2667 |
|
|
if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
|
2668 |
|
|
return 0;
|
2669 |
|
|
else
|
2670 |
|
|
return hppa64_cannot_store_register (gdbarch, regnum);
|
2671 |
|
|
}
|
2672 |
|
|
|
2673 |
|
|
static CORE_ADDR
|
2674 |
|
|
hppa_smash_text_address (CORE_ADDR addr)
|
2675 |
|
|
{
|
2676 |
|
|
/* The low two bits of the PC on the PA contain the privilege level.
|
2677 |
|
|
Some genius implementing a (non-GCC) compiler apparently decided
|
2678 |
|
|
this means that "addresses" in a text section therefore include a
|
2679 |
|
|
privilege level, and thus symbol tables should contain these bits.
|
2680 |
|
|
This seems like a bonehead thing to do--anyway, it seems to work
|
2681 |
|
|
for our purposes to just ignore those bits. */
|
2682 |
|
|
|
2683 |
|
|
return (addr &= ~0x3);
|
2684 |
|
|
}
|
2685 |
|
|
|
2686 |
|
|
/* Get the ARGIth function argument for the current function. */
|
2687 |
|
|
|
2688 |
|
|
static CORE_ADDR
|
2689 |
|
|
hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
|
2690 |
|
|
struct type *type)
|
2691 |
|
|
{
|
2692 |
|
|
return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
|
2693 |
|
|
}
|
2694 |
|
|
|
2695 |
|
|
static void
|
2696 |
|
|
hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
2697 |
|
|
int regnum, gdb_byte *buf)
|
2698 |
|
|
{
|
2699 |
|
|
ULONGEST tmp;
|
2700 |
|
|
|
2701 |
|
|
regcache_raw_read_unsigned (regcache, regnum, &tmp);
|
2702 |
|
|
if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
|
2703 |
|
|
tmp &= ~0x3;
|
2704 |
|
|
store_unsigned_integer (buf, sizeof tmp, tmp);
|
2705 |
|
|
}
|
2706 |
|
|
|
2707 |
|
|
static CORE_ADDR
|
2708 |
|
|
hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
|
2709 |
|
|
{
|
2710 |
|
|
return 0;
|
2711 |
|
|
}
|
2712 |
|
|
|
2713 |
|
|
void
|
2714 |
|
|
hppa_frame_prev_register_helper (struct frame_info *next_frame,
|
2715 |
|
|
struct trad_frame_saved_reg saved_regs[],
|
2716 |
|
|
int regnum, int *optimizedp,
|
2717 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
2718 |
|
|
int *realnump, gdb_byte *valuep)
|
2719 |
|
|
{
|
2720 |
|
|
struct gdbarch *arch = get_frame_arch (next_frame);
|
2721 |
|
|
|
2722 |
|
|
if (regnum == HPPA_PCOQ_TAIL_REGNUM)
|
2723 |
|
|
{
|
2724 |
|
|
if (valuep)
|
2725 |
|
|
{
|
2726 |
|
|
int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
|
2727 |
|
|
CORE_ADDR pc;
|
2728 |
|
|
|
2729 |
|
|
trad_frame_get_prev_register (next_frame, saved_regs,
|
2730 |
|
|
HPPA_PCOQ_HEAD_REGNUM, optimizedp,
|
2731 |
|
|
lvalp, addrp, realnump, valuep);
|
2732 |
|
|
|
2733 |
|
|
pc = extract_unsigned_integer (valuep, size);
|
2734 |
|
|
store_unsigned_integer (valuep, size, pc + 4);
|
2735 |
|
|
}
|
2736 |
|
|
|
2737 |
|
|
/* It's a computed value. */
|
2738 |
|
|
*optimizedp = 0;
|
2739 |
|
|
*lvalp = not_lval;
|
2740 |
|
|
*addrp = 0;
|
2741 |
|
|
*realnump = -1;
|
2742 |
|
|
return;
|
2743 |
|
|
}
|
2744 |
|
|
|
2745 |
|
|
/* Make sure the "flags" register is zero in all unwound frames.
|
2746 |
|
|
The "flags" registers is a HP-UX specific wart, and only the code
|
2747 |
|
|
in hppa-hpux-tdep.c depends on it. However, it is easier to deal
|
2748 |
|
|
with it here. This shouldn't affect other systems since those
|
2749 |
|
|
should provide zero for the "flags" register anyway. */
|
2750 |
|
|
if (regnum == HPPA_FLAGS_REGNUM)
|
2751 |
|
|
{
|
2752 |
|
|
if (valuep)
|
2753 |
|
|
store_unsigned_integer (valuep, register_size (arch, regnum), 0);
|
2754 |
|
|
|
2755 |
|
|
/* It's a computed value. */
|
2756 |
|
|
*optimizedp = 0;
|
2757 |
|
|
*lvalp = not_lval;
|
2758 |
|
|
*addrp = 0;
|
2759 |
|
|
*realnump = -1;
|
2760 |
|
|
return;
|
2761 |
|
|
}
|
2762 |
|
|
|
2763 |
|
|
trad_frame_get_prev_register (next_frame, saved_regs, regnum,
|
2764 |
|
|
optimizedp, lvalp, addrp, realnump, valuep);
|
2765 |
|
|
}
|
2766 |
|
|
|
2767 |
|
|
|
2768 |
|
|
/* An instruction to match. */
|
2769 |
|
|
struct insn_pattern
|
2770 |
|
|
{
|
2771 |
|
|
unsigned int data; /* See if it matches this.... */
|
2772 |
|
|
unsigned int mask; /* ... with this mask. */
|
2773 |
|
|
};
|
2774 |
|
|
|
2775 |
|
|
/* See bfd/elf32-hppa.c */
|
2776 |
|
|
static struct insn_pattern hppa_long_branch_stub[] = {
|
2777 |
|
|
/* ldil LR'xxx,%r1 */
|
2778 |
|
|
{ 0x20200000, 0xffe00000 },
|
2779 |
|
|
/* be,n RR'xxx(%sr4,%r1) */
|
2780 |
|
|
{ 0xe0202002, 0xffe02002 },
|
2781 |
|
|
{ 0, 0 }
|
2782 |
|
|
};
|
2783 |
|
|
|
2784 |
|
|
static struct insn_pattern hppa_long_branch_pic_stub[] = {
|
2785 |
|
|
/* b,l .+8, %r1 */
|
2786 |
|
|
{ 0xe8200000, 0xffe00000 },
|
2787 |
|
|
/* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
|
2788 |
|
|
{ 0x28200000, 0xffe00000 },
|
2789 |
|
|
/* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
|
2790 |
|
|
{ 0xe0202002, 0xffe02002 },
|
2791 |
|
|
{ 0, 0 }
|
2792 |
|
|
};
|
2793 |
|
|
|
2794 |
|
|
static struct insn_pattern hppa_import_stub[] = {
|
2795 |
|
|
/* addil LR'xxx, %dp */
|
2796 |
|
|
{ 0x2b600000, 0xffe00000 },
|
2797 |
|
|
/* ldw RR'xxx(%r1), %r21 */
|
2798 |
|
|
{ 0x48350000, 0xffffb000 },
|
2799 |
|
|
/* bv %r0(%r21) */
|
2800 |
|
|
{ 0xeaa0c000, 0xffffffff },
|
2801 |
|
|
/* ldw RR'xxx+4(%r1), %r19 */
|
2802 |
|
|
{ 0x48330000, 0xffffb000 },
|
2803 |
|
|
{ 0, 0 }
|
2804 |
|
|
};
|
2805 |
|
|
|
2806 |
|
|
static struct insn_pattern hppa_import_pic_stub[] = {
|
2807 |
|
|
/* addil LR'xxx,%r19 */
|
2808 |
|
|
{ 0x2a600000, 0xffe00000 },
|
2809 |
|
|
/* ldw RR'xxx(%r1),%r21 */
|
2810 |
|
|
{ 0x48350000, 0xffffb000 },
|
2811 |
|
|
/* bv %r0(%r21) */
|
2812 |
|
|
{ 0xeaa0c000, 0xffffffff },
|
2813 |
|
|
/* ldw RR'xxx+4(%r1),%r19 */
|
2814 |
|
|
{ 0x48330000, 0xffffb000 },
|
2815 |
|
|
{ 0, 0 },
|
2816 |
|
|
};
|
2817 |
|
|
|
2818 |
|
|
static struct insn_pattern hppa_plt_stub[] = {
|
2819 |
|
|
/* b,l 1b, %r20 - 1b is 3 insns before here */
|
2820 |
|
|
{ 0xea9f1fdd, 0xffffffff },
|
2821 |
|
|
/* depi 0,31,2,%r20 */
|
2822 |
|
|
{ 0xd6801c1e, 0xffffffff },
|
2823 |
|
|
{ 0, 0 }
|
2824 |
|
|
};
|
2825 |
|
|
|
2826 |
|
|
static struct insn_pattern hppa_sigtramp[] = {
|
2827 |
|
|
/* ldi 0, %r25 or ldi 1, %r25 */
|
2828 |
|
|
{ 0x34190000, 0xfffffffd },
|
2829 |
|
|
/* ldi __NR_rt_sigreturn, %r20 */
|
2830 |
|
|
{ 0x3414015a, 0xffffffff },
|
2831 |
|
|
/* be,l 0x100(%sr2, %r0), %sr0, %r31 */
|
2832 |
|
|
{ 0xe4008200, 0xffffffff },
|
2833 |
|
|
/* nop */
|
2834 |
|
|
{ 0x08000240, 0xffffffff },
|
2835 |
|
|
{ 0, 0 }
|
2836 |
|
|
};
|
2837 |
|
|
|
2838 |
|
|
/* Maximum number of instructions on the patterns above. */
|
2839 |
|
|
#define HPPA_MAX_INSN_PATTERN_LEN 4
|
2840 |
|
|
|
2841 |
|
|
/* Return non-zero if the instructions at PC match the series
|
2842 |
|
|
described in PATTERN, or zero otherwise. PATTERN is an array of
|
2843 |
|
|
'struct insn_pattern' objects, terminated by an entry whose mask is
|
2844 |
|
|
zero.
|
2845 |
|
|
|
2846 |
|
|
When the match is successful, fill INSN[i] with what PATTERN[i]
|
2847 |
|
|
matched. */
|
2848 |
|
|
|
2849 |
|
|
static int
|
2850 |
|
|
hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
|
2851 |
|
|
unsigned int *insn)
|
2852 |
|
|
{
|
2853 |
|
|
CORE_ADDR npc = pc;
|
2854 |
|
|
int i;
|
2855 |
|
|
|
2856 |
|
|
for (i = 0; pattern[i].mask; i++)
|
2857 |
|
|
{
|
2858 |
|
|
gdb_byte buf[HPPA_INSN_SIZE];
|
2859 |
|
|
|
2860 |
|
|
read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
|
2861 |
|
|
insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
|
2862 |
|
|
if ((insn[i] & pattern[i].mask) == pattern[i].data)
|
2863 |
|
|
npc += 4;
|
2864 |
|
|
else
|
2865 |
|
|
return 0;
|
2866 |
|
|
}
|
2867 |
|
|
|
2868 |
|
|
return 1;
|
2869 |
|
|
}
|
2870 |
|
|
|
2871 |
|
|
/* This relaxed version of the insstruction matcher allows us to match
|
2872 |
|
|
from somewhere inside the pattern, by looking backwards in the
|
2873 |
|
|
instruction scheme. */
|
2874 |
|
|
|
2875 |
|
|
static int
|
2876 |
|
|
hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
|
2877 |
|
|
unsigned int *insn)
|
2878 |
|
|
{
|
2879 |
|
|
int offset, len = 0;
|
2880 |
|
|
|
2881 |
|
|
while (pattern[len].mask)
|
2882 |
|
|
len++;
|
2883 |
|
|
|
2884 |
|
|
for (offset = 0; offset < len; offset++)
|
2885 |
|
|
if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
|
2886 |
|
|
return 1;
|
2887 |
|
|
|
2888 |
|
|
return 0;
|
2889 |
|
|
}
|
2890 |
|
|
|
2891 |
|
|
static int
|
2892 |
|
|
hppa_in_dyncall (CORE_ADDR pc)
|
2893 |
|
|
{
|
2894 |
|
|
struct unwind_table_entry *u;
|
2895 |
|
|
|
2896 |
|
|
u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
|
2897 |
|
|
if (!u)
|
2898 |
|
|
return 0;
|
2899 |
|
|
|
2900 |
|
|
return (pc >= u->region_start && pc <= u->region_end);
|
2901 |
|
|
}
|
2902 |
|
|
|
2903 |
|
|
int
|
2904 |
|
|
hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
|
2905 |
|
|
{
|
2906 |
|
|
unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
|
2907 |
|
|
struct unwind_table_entry *u;
|
2908 |
|
|
|
2909 |
|
|
if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
|
2910 |
|
|
return 1;
|
2911 |
|
|
|
2912 |
|
|
/* The GNU toolchain produces linker stubs without unwind
|
2913 |
|
|
information. Since the pattern matching for linker stubs can be
|
2914 |
|
|
quite slow, so bail out if we do have an unwind entry. */
|
2915 |
|
|
|
2916 |
|
|
u = find_unwind_entry (pc);
|
2917 |
|
|
if (u != NULL)
|
2918 |
|
|
return 0;
|
2919 |
|
|
|
2920 |
|
|
return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
|
2921 |
|
|
|| hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
|
2922 |
|
|
|| hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
|
2923 |
|
|
|| hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
|
2924 |
|
|
}
|
2925 |
|
|
|
2926 |
|
|
/* This code skips several kind of "trampolines" used on PA-RISC
|
2927 |
|
|
systems: $$dyncall, import stubs and PLT stubs. */
|
2928 |
|
|
|
2929 |
|
|
CORE_ADDR
|
2930 |
|
|
hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
2931 |
|
|
{
|
2932 |
|
|
unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
|
2933 |
|
|
int dp_rel;
|
2934 |
|
|
|
2935 |
|
|
/* $$dyncall handles both PLABELs and direct addresses. */
|
2936 |
|
|
if (hppa_in_dyncall (pc))
|
2937 |
|
|
{
|
2938 |
|
|
pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
|
2939 |
|
|
|
2940 |
|
|
/* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
|
2941 |
|
|
if (pc & 0x2)
|
2942 |
|
|
pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
|
2943 |
|
|
|
2944 |
|
|
return pc;
|
2945 |
|
|
}
|
2946 |
|
|
|
2947 |
|
|
dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
|
2948 |
|
|
if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
|
2949 |
|
|
{
|
2950 |
|
|
/* Extract the target address from the addil/ldw sequence. */
|
2951 |
|
|
pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
|
2952 |
|
|
|
2953 |
|
|
if (dp_rel)
|
2954 |
|
|
pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
|
2955 |
|
|
else
|
2956 |
|
|
pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
|
2957 |
|
|
|
2958 |
|
|
/* fallthrough */
|
2959 |
|
|
}
|
2960 |
|
|
|
2961 |
|
|
if (in_plt_section (pc, NULL))
|
2962 |
|
|
{
|
2963 |
|
|
pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
|
2964 |
|
|
|
2965 |
|
|
/* If the PLT slot has not yet been resolved, the target will be
|
2966 |
|
|
the PLT stub. */
|
2967 |
|
|
if (in_plt_section (pc, NULL))
|
2968 |
|
|
{
|
2969 |
|
|
/* Sanity check: are we pointing to the PLT stub? */
|
2970 |
|
|
if (!hppa_match_insns (pc, hppa_plt_stub, insn))
|
2971 |
|
|
{
|
2972 |
|
|
warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
|
2973 |
|
|
return 0;
|
2974 |
|
|
}
|
2975 |
|
|
|
2976 |
|
|
/* This should point to the fixup routine. */
|
2977 |
|
|
pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
|
2978 |
|
|
}
|
2979 |
|
|
}
|
2980 |
|
|
|
2981 |
|
|
return pc;
|
2982 |
|
|
}
|
2983 |
|
|
|
2984 |
|
|
|
2985 |
|
|
/* Here is a table of C type sizes on hppa with various compiles
|
2986 |
|
|
and options. I measured this on PA 9000/800 with HP-UX 11.11
|
2987 |
|
|
and these compilers:
|
2988 |
|
|
|
2989 |
|
|
/usr/ccs/bin/cc HP92453-01 A.11.01.21
|
2990 |
|
|
/opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
|
2991 |
|
|
/opt/aCC/bin/aCC B3910B A.03.45
|
2992 |
|
|
gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
|
2993 |
|
|
|
2994 |
|
|
cc : 1 2 4 4 8 : 4 8 -- : 4 4
|
2995 |
|
|
ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
|
2996 |
|
|
ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
|
2997 |
|
|
ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
|
2998 |
|
|
acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
|
2999 |
|
|
acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
|
3000 |
|
|
acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
|
3001 |
|
|
gcc : 1 2 4 4 8 : 4 8 16 : 4 4
|
3002 |
|
|
|
3003 |
|
|
Each line is:
|
3004 |
|
|
|
3005 |
|
|
compiler and options
|
3006 |
|
|
char, short, int, long, long long
|
3007 |
|
|
float, double, long double
|
3008 |
|
|
char *, void (*)()
|
3009 |
|
|
|
3010 |
|
|
So all these compilers use either ILP32 or LP64 model.
|
3011 |
|
|
TODO: gcc has more options so it needs more investigation.
|
3012 |
|
|
|
3013 |
|
|
For floating point types, see:
|
3014 |
|
|
|
3015 |
|
|
http://docs.hp.com/hpux/pdf/B3906-90006.pdf
|
3016 |
|
|
HP-UX floating-point guide, hpux 11.00
|
3017 |
|
|
|
3018 |
|
|
-- chastain 2003-12-18 */
|
3019 |
|
|
|
3020 |
|
|
static struct gdbarch *
|
3021 |
|
|
hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
3022 |
|
|
{
|
3023 |
|
|
struct gdbarch_tdep *tdep;
|
3024 |
|
|
struct gdbarch *gdbarch;
|
3025 |
|
|
|
3026 |
|
|
/* Try to determine the ABI of the object we are loading. */
|
3027 |
|
|
if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
|
3028 |
|
|
{
|
3029 |
|
|
/* If it's a SOM file, assume it's HP/UX SOM. */
|
3030 |
|
|
if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
|
3031 |
|
|
info.osabi = GDB_OSABI_HPUX_SOM;
|
3032 |
|
|
}
|
3033 |
|
|
|
3034 |
|
|
/* find a candidate among the list of pre-declared architectures. */
|
3035 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
3036 |
|
|
if (arches != NULL)
|
3037 |
|
|
return (arches->gdbarch);
|
3038 |
|
|
|
3039 |
|
|
/* If none found, then allocate and initialize one. */
|
3040 |
|
|
tdep = XZALLOC (struct gdbarch_tdep);
|
3041 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
3042 |
|
|
|
3043 |
|
|
/* Determine from the bfd_arch_info structure if we are dealing with
|
3044 |
|
|
a 32 or 64 bits architecture. If the bfd_arch_info is not available,
|
3045 |
|
|
then default to a 32bit machine. */
|
3046 |
|
|
if (info.bfd_arch_info != NULL)
|
3047 |
|
|
tdep->bytes_per_address =
|
3048 |
|
|
info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
|
3049 |
|
|
else
|
3050 |
|
|
tdep->bytes_per_address = 4;
|
3051 |
|
|
|
3052 |
|
|
tdep->find_global_pointer = hppa_find_global_pointer;
|
3053 |
|
|
|
3054 |
|
|
/* Some parts of the gdbarch vector depend on whether we are running
|
3055 |
|
|
on a 32 bits or 64 bits target. */
|
3056 |
|
|
switch (tdep->bytes_per_address)
|
3057 |
|
|
{
|
3058 |
|
|
case 4:
|
3059 |
|
|
set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
|
3060 |
|
|
set_gdbarch_register_name (gdbarch, hppa32_register_name);
|
3061 |
|
|
set_gdbarch_register_type (gdbarch, hppa32_register_type);
|
3062 |
|
|
set_gdbarch_cannot_store_register (gdbarch,
|
3063 |
|
|
hppa32_cannot_store_register);
|
3064 |
|
|
set_gdbarch_cannot_fetch_register (gdbarch,
|
3065 |
|
|
hppa32_cannot_fetch_register);
|
3066 |
|
|
break;
|
3067 |
|
|
case 8:
|
3068 |
|
|
set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
|
3069 |
|
|
set_gdbarch_register_name (gdbarch, hppa64_register_name);
|
3070 |
|
|
set_gdbarch_register_type (gdbarch, hppa64_register_type);
|
3071 |
|
|
set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
|
3072 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
|
3073 |
|
|
set_gdbarch_cannot_store_register (gdbarch,
|
3074 |
|
|
hppa64_cannot_store_register);
|
3075 |
|
|
set_gdbarch_cannot_fetch_register (gdbarch,
|
3076 |
|
|
hppa64_cannot_fetch_register);
|
3077 |
|
|
break;
|
3078 |
|
|
default:
|
3079 |
|
|
internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
|
3080 |
|
|
tdep->bytes_per_address);
|
3081 |
|
|
}
|
3082 |
|
|
|
3083 |
|
|
set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
|
3084 |
|
|
set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
|
3085 |
|
|
|
3086 |
|
|
/* The following gdbarch vector elements are the same in both ILP32
|
3087 |
|
|
and LP64, but might show differences some day. */
|
3088 |
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
3089 |
|
|
set_gdbarch_long_double_bit (gdbarch, 128);
|
3090 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
|
3091 |
|
|
|
3092 |
|
|
/* The following gdbarch vector elements do not depend on the address
|
3093 |
|
|
size, or in any other gdbarch element previously set. */
|
3094 |
|
|
set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
|
3095 |
|
|
set_gdbarch_in_function_epilogue_p (gdbarch,
|
3096 |
|
|
hppa_in_function_epilogue_p);
|
3097 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
|
3098 |
|
|
set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
|
3099 |
|
|
set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
|
3100 |
|
|
set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
|
3101 |
|
|
set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
|
3102 |
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
3103 |
|
|
set_gdbarch_read_pc (gdbarch, hppa_read_pc);
|
3104 |
|
|
set_gdbarch_write_pc (gdbarch, hppa_write_pc);
|
3105 |
|
|
|
3106 |
|
|
/* Helper for function argument information. */
|
3107 |
|
|
set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
|
3108 |
|
|
|
3109 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_hppa);
|
3110 |
|
|
|
3111 |
|
|
/* When a hardware watchpoint triggers, we'll move the inferior past
|
3112 |
|
|
it by removing all eventpoints; stepping past the instruction
|
3113 |
|
|
that caused the trigger; reinserting eventpoints; and checking
|
3114 |
|
|
whether any watched location changed. */
|
3115 |
|
|
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
3116 |
|
|
|
3117 |
|
|
/* Inferior function call methods. */
|
3118 |
|
|
switch (tdep->bytes_per_address)
|
3119 |
|
|
{
|
3120 |
|
|
case 4:
|
3121 |
|
|
set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
|
3122 |
|
|
set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
|
3123 |
|
|
set_gdbarch_convert_from_func_ptr_addr
|
3124 |
|
|
(gdbarch, hppa32_convert_from_func_ptr_addr);
|
3125 |
|
|
break;
|
3126 |
|
|
case 8:
|
3127 |
|
|
set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
|
3128 |
|
|
set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
|
3129 |
|
|
break;
|
3130 |
|
|
default:
|
3131 |
|
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
3132 |
|
|
}
|
3133 |
|
|
|
3134 |
|
|
/* Struct return methods. */
|
3135 |
|
|
switch (tdep->bytes_per_address)
|
3136 |
|
|
{
|
3137 |
|
|
case 4:
|
3138 |
|
|
set_gdbarch_return_value (gdbarch, hppa32_return_value);
|
3139 |
|
|
break;
|
3140 |
|
|
case 8:
|
3141 |
|
|
set_gdbarch_return_value (gdbarch, hppa64_return_value);
|
3142 |
|
|
break;
|
3143 |
|
|
default:
|
3144 |
|
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
3145 |
|
|
}
|
3146 |
|
|
|
3147 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
|
3148 |
|
|
set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
|
3149 |
|
|
|
3150 |
|
|
/* Frame unwind methods. */
|
3151 |
|
|
set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
|
3152 |
|
|
set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
|
3153 |
|
|
|
3154 |
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
3155 |
|
|
gdbarch_init_osabi (info, gdbarch);
|
3156 |
|
|
|
3157 |
|
|
/* Hook in the default unwinders. */
|
3158 |
|
|
frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
|
3159 |
|
|
frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
|
3160 |
|
|
frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
|
3161 |
|
|
|
3162 |
|
|
return gdbarch;
|
3163 |
|
|
}
|
3164 |
|
|
|
3165 |
|
|
static void
|
3166 |
|
|
hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
3167 |
|
|
{
|
3168 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
3169 |
|
|
|
3170 |
|
|
fprintf_unfiltered (file, "bytes_per_address = %d\n",
|
3171 |
|
|
tdep->bytes_per_address);
|
3172 |
|
|
fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
|
3173 |
|
|
}
|
3174 |
|
|
|
3175 |
|
|
void
|
3176 |
|
|
_initialize_hppa_tdep (void)
|
3177 |
|
|
{
|
3178 |
|
|
struct cmd_list_element *c;
|
3179 |
|
|
|
3180 |
|
|
gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
|
3181 |
|
|
|
3182 |
|
|
hppa_objfile_priv_data = register_objfile_data ();
|
3183 |
|
|
|
3184 |
|
|
add_cmd ("unwind", class_maintenance, unwind_command,
|
3185 |
|
|
_("Print unwind table entry at given address."),
|
3186 |
|
|
&maintenanceprintlist);
|
3187 |
|
|
|
3188 |
|
|
/* Debug this files internals. */
|
3189 |
|
|
add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
|
3190 |
|
|
Set whether hppa target specific debugging information should be displayed."),
|
3191 |
|
|
_("\
|
3192 |
|
|
Show whether hppa target specific debugging information is displayed."), _("\
|
3193 |
|
|
This flag controls whether hppa target specific debugging information is\n\
|
3194 |
|
|
displayed. This information is particularly useful for debugging frame\n\
|
3195 |
|
|
unwinding problems."),
|
3196 |
|
|
NULL,
|
3197 |
|
|
NULL, /* FIXME: i18n: hppa debug flag is %s. */
|
3198 |
|
|
&setdebuglist, &showdebuglist);
|
3199 |
|
|
}
|