1 |
24 |
jeremybenn |
/* Variables that describe the inferior process running under GDB:
|
2 |
|
|
Where it is, why it stopped, and how to step it.
|
3 |
|
|
|
4 |
|
|
Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
5 |
|
|
1998, 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
|
6 |
|
|
Free Software Foundation, Inc.
|
7 |
|
|
|
8 |
|
|
This file is part of GDB.
|
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify
|
11 |
|
|
it under the terms of the GNU General Public License as published by
|
12 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
13 |
|
|
(at your option) any later version.
|
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful,
|
16 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
18 |
|
|
GNU General Public License for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#if !defined (INFERIOR_H)
|
24 |
|
|
#define INFERIOR_H 1
|
25 |
|
|
|
26 |
|
|
struct target_waitstatus;
|
27 |
|
|
struct frame_info;
|
28 |
|
|
struct ui_file;
|
29 |
|
|
struct type;
|
30 |
|
|
struct gdbarch;
|
31 |
|
|
struct regcache;
|
32 |
|
|
|
33 |
|
|
/* For bpstat. */
|
34 |
|
|
#include "breakpoint.h"
|
35 |
|
|
|
36 |
|
|
/* For enum target_signal. */
|
37 |
|
|
#include "target.h"
|
38 |
|
|
|
39 |
|
|
/* For struct frame_id. */
|
40 |
|
|
#include "frame.h"
|
41 |
|
|
|
42 |
|
|
/* Structure in which to save the status of the inferior. Create/Save
|
43 |
|
|
through "save_inferior_status", restore through
|
44 |
|
|
"restore_inferior_status".
|
45 |
|
|
|
46 |
|
|
This pair of routines should be called around any transfer of
|
47 |
|
|
control to the inferior which you don't want showing up in your
|
48 |
|
|
control variables. */
|
49 |
|
|
|
50 |
|
|
struct inferior_status;
|
51 |
|
|
|
52 |
|
|
extern struct inferior_status *save_inferior_status (int);
|
53 |
|
|
|
54 |
|
|
extern void restore_inferior_status (struct inferior_status *);
|
55 |
|
|
|
56 |
|
|
extern struct cleanup *make_cleanup_restore_inferior_status (struct inferior_status *);
|
57 |
|
|
|
58 |
|
|
extern void discard_inferior_status (struct inferior_status *);
|
59 |
|
|
|
60 |
|
|
extern void write_inferior_status_register (struct inferior_status
|
61 |
|
|
*inf_status, int regno,
|
62 |
|
|
LONGEST val);
|
63 |
|
|
|
64 |
|
|
/* The -1 ptid, often used to indicate either an error condition
|
65 |
|
|
or a "don't care" condition, i.e, "run all threads." */
|
66 |
|
|
extern ptid_t minus_one_ptid;
|
67 |
|
|
|
68 |
|
|
/* The null or zero ptid, often used to indicate no process. */
|
69 |
|
|
extern ptid_t null_ptid;
|
70 |
|
|
|
71 |
|
|
/* Attempt to find and return an existing ptid with the given PID, LWP,
|
72 |
|
|
and TID components. If none exists, create a new one and return
|
73 |
|
|
that. */
|
74 |
|
|
ptid_t ptid_build (int pid, long lwp, long tid);
|
75 |
|
|
|
76 |
|
|
/* Find/Create a ptid from just a pid. */
|
77 |
|
|
ptid_t pid_to_ptid (int pid);
|
78 |
|
|
|
79 |
|
|
/* Fetch the pid (process id) component from a ptid. */
|
80 |
|
|
int ptid_get_pid (ptid_t ptid);
|
81 |
|
|
|
82 |
|
|
/* Fetch the lwp (lightweight process) component from a ptid. */
|
83 |
|
|
long ptid_get_lwp (ptid_t ptid);
|
84 |
|
|
|
85 |
|
|
/* Fetch the tid (thread id) component from a ptid. */
|
86 |
|
|
long ptid_get_tid (ptid_t ptid);
|
87 |
|
|
|
88 |
|
|
/* Compare two ptids to see if they are equal */
|
89 |
|
|
extern int ptid_equal (ptid_t p1, ptid_t p2);
|
90 |
|
|
|
91 |
|
|
/* Save value of inferior_ptid so that it may be restored by
|
92 |
|
|
a later call to do_cleanups(). Returns the struct cleanup
|
93 |
|
|
pointer needed for later doing the cleanup. */
|
94 |
|
|
extern struct cleanup * save_inferior_ptid (void);
|
95 |
|
|
|
96 |
|
|
extern void set_sigint_trap (void);
|
97 |
|
|
|
98 |
|
|
extern void clear_sigint_trap (void);
|
99 |
|
|
|
100 |
|
|
extern void set_sigio_trap (void);
|
101 |
|
|
|
102 |
|
|
extern void clear_sigio_trap (void);
|
103 |
|
|
|
104 |
|
|
/* Set/get file name for default use for standard in/out in the inferior. */
|
105 |
|
|
|
106 |
|
|
extern void set_inferior_io_terminal (const char *terminal_name);
|
107 |
|
|
extern const char *get_inferior_io_terminal (void);
|
108 |
|
|
|
109 |
|
|
/* Collected pid, tid, etc. of the debugged inferior. When there's
|
110 |
|
|
no inferior, PIDGET (inferior_ptid) will be 0. */
|
111 |
|
|
|
112 |
|
|
extern ptid_t inferior_ptid;
|
113 |
|
|
|
114 |
|
|
/* Is the inferior running right now, as a result of a 'run&',
|
115 |
|
|
'continue&' etc command? This is used in asycn gdb to determine
|
116 |
|
|
whether a command that the user enters while the target is running
|
117 |
|
|
is allowed or not. */
|
118 |
|
|
extern int target_executing;
|
119 |
|
|
|
120 |
|
|
/* Are we simulating synchronous execution? This is used in async gdb
|
121 |
|
|
to implement the 'run', 'continue' etc commands, which will not
|
122 |
|
|
redisplay the prompt until the execution is actually over. */
|
123 |
|
|
extern int sync_execution;
|
124 |
|
|
|
125 |
|
|
/* Some targets (stupidly) report more than one exec event per actual
|
126 |
|
|
call to an event() system call. If only the last such exec event
|
127 |
|
|
need actually be noticed and responded to by the debugger (i.e.,
|
128 |
|
|
be reported to the user), then this is the number of "leading"
|
129 |
|
|
exec events which should be ignored.
|
130 |
|
|
*/
|
131 |
|
|
extern int inferior_ignoring_leading_exec_events;
|
132 |
|
|
|
133 |
|
|
/* Inferior environment. */
|
134 |
|
|
|
135 |
|
|
extern struct gdb_environ *inferior_environ;
|
136 |
|
|
|
137 |
|
|
extern void clear_proceed_status (void);
|
138 |
|
|
|
139 |
|
|
extern void proceed (CORE_ADDR, enum target_signal, int);
|
140 |
|
|
|
141 |
|
|
/* When set, stop the 'step' command if we enter a function which has
|
142 |
|
|
no line number information. The normal behavior is that we step
|
143 |
|
|
over such function. */
|
144 |
|
|
extern int step_stop_if_no_debug;
|
145 |
|
|
|
146 |
|
|
extern void generic_mourn_inferior (void);
|
147 |
|
|
|
148 |
|
|
extern void terminal_save_ours (void);
|
149 |
|
|
|
150 |
|
|
extern void terminal_ours (void);
|
151 |
|
|
|
152 |
|
|
extern CORE_ADDR read_pc (void);
|
153 |
|
|
|
154 |
|
|
extern CORE_ADDR read_pc_pid (ptid_t);
|
155 |
|
|
|
156 |
|
|
extern void write_pc (CORE_ADDR);
|
157 |
|
|
|
158 |
|
|
extern void write_pc_pid (CORE_ADDR, ptid_t);
|
159 |
|
|
|
160 |
|
|
extern CORE_ADDR unsigned_pointer_to_address (struct type *type,
|
161 |
|
|
const gdb_byte *buf);
|
162 |
|
|
extern void unsigned_address_to_pointer (struct type *type, gdb_byte *buf,
|
163 |
|
|
CORE_ADDR addr);
|
164 |
|
|
extern CORE_ADDR signed_pointer_to_address (struct type *type,
|
165 |
|
|
const gdb_byte *buf);
|
166 |
|
|
extern void address_to_signed_pointer (struct type *type, gdb_byte *buf,
|
167 |
|
|
CORE_ADDR addr);
|
168 |
|
|
|
169 |
|
|
extern void wait_for_inferior (int treat_exec_as_sigtrap);
|
170 |
|
|
|
171 |
|
|
extern void fetch_inferior_event (void *);
|
172 |
|
|
|
173 |
|
|
extern void init_wait_for_inferior (void);
|
174 |
|
|
|
175 |
|
|
extern void close_exec_file (void);
|
176 |
|
|
|
177 |
|
|
extern void reopen_exec_file (void);
|
178 |
|
|
|
179 |
|
|
/* The `resume' routine should only be called in special circumstances.
|
180 |
|
|
Normally, use `proceed', which handles a lot of bookkeeping. */
|
181 |
|
|
|
182 |
|
|
extern void resume (int, enum target_signal);
|
183 |
|
|
|
184 |
|
|
/* From misc files */
|
185 |
|
|
|
186 |
|
|
extern void default_print_registers_info (struct gdbarch *gdbarch,
|
187 |
|
|
struct ui_file *file,
|
188 |
|
|
struct frame_info *frame,
|
189 |
|
|
int regnum, int all);
|
190 |
|
|
|
191 |
|
|
extern void child_terminal_info (char *, int);
|
192 |
|
|
|
193 |
|
|
extern void term_info (char *, int);
|
194 |
|
|
|
195 |
|
|
extern void terminal_ours_for_output (void);
|
196 |
|
|
|
197 |
|
|
extern void terminal_inferior (void);
|
198 |
|
|
|
199 |
|
|
extern void terminal_init_inferior (void);
|
200 |
|
|
|
201 |
|
|
extern void terminal_init_inferior_with_pgrp (int pgrp);
|
202 |
|
|
|
203 |
|
|
/* From procfs.c */
|
204 |
|
|
|
205 |
|
|
extern int proc_iterate_over_mappings (int (*)(int, CORE_ADDR));
|
206 |
|
|
|
207 |
|
|
extern ptid_t procfs_first_available (void);
|
208 |
|
|
|
209 |
|
|
/* From fork-child.c */
|
210 |
|
|
|
211 |
|
|
extern void fork_inferior (char *, char *, char **,
|
212 |
|
|
void (*)(void),
|
213 |
|
|
void (*)(int), void (*)(void), char *);
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
extern void startup_inferior (int);
|
217 |
|
|
|
218 |
|
|
extern char *construct_inferior_arguments (struct gdbarch *, int, char **);
|
219 |
|
|
|
220 |
|
|
/* From inflow.c */
|
221 |
|
|
|
222 |
|
|
extern void new_tty_prefork (const char *);
|
223 |
|
|
|
224 |
|
|
extern int gdb_has_a_terminal (void);
|
225 |
|
|
|
226 |
|
|
/* From infrun.c */
|
227 |
|
|
|
228 |
|
|
extern void start_remote (int from_tty);
|
229 |
|
|
|
230 |
|
|
extern void normal_stop (void);
|
231 |
|
|
|
232 |
|
|
extern int signal_stop_state (int);
|
233 |
|
|
|
234 |
|
|
extern int signal_print_state (int);
|
235 |
|
|
|
236 |
|
|
extern int signal_pass_state (int);
|
237 |
|
|
|
238 |
|
|
extern int signal_stop_update (int, int);
|
239 |
|
|
|
240 |
|
|
extern int signal_print_update (int, int);
|
241 |
|
|
|
242 |
|
|
extern int signal_pass_update (int, int);
|
243 |
|
|
|
244 |
|
|
extern void get_last_target_status(ptid_t *ptid,
|
245 |
|
|
struct target_waitstatus *status);
|
246 |
|
|
|
247 |
|
|
extern void follow_inferior_reset_breakpoints (void);
|
248 |
|
|
|
249 |
|
|
/* From infcmd.c */
|
250 |
|
|
|
251 |
|
|
extern void tty_command (char *, int);
|
252 |
|
|
|
253 |
|
|
extern void post_create_inferior (struct target_ops *, int);
|
254 |
|
|
|
255 |
|
|
extern void attach_command (char *, int);
|
256 |
|
|
|
257 |
|
|
extern char *get_inferior_args (void);
|
258 |
|
|
|
259 |
|
|
extern char *set_inferior_args (char *);
|
260 |
|
|
|
261 |
|
|
extern void set_inferior_args_vector (int, char **);
|
262 |
|
|
|
263 |
|
|
extern void registers_info (char *, int);
|
264 |
|
|
|
265 |
|
|
extern void nexti_command (char *, int);
|
266 |
|
|
|
267 |
|
|
extern void stepi_command (char *, int);
|
268 |
|
|
|
269 |
|
|
extern void continue_command (char *, int);
|
270 |
|
|
|
271 |
|
|
extern void interrupt_target_command (char *args, int from_tty);
|
272 |
|
|
|
273 |
|
|
/* Last signal that the inferior received (why it stopped). */
|
274 |
|
|
|
275 |
|
|
extern enum target_signal stop_signal;
|
276 |
|
|
|
277 |
|
|
/* Address at which inferior stopped. */
|
278 |
|
|
|
279 |
|
|
extern CORE_ADDR stop_pc;
|
280 |
|
|
|
281 |
|
|
/* Chain containing status of breakpoint(s) that we have stopped at. */
|
282 |
|
|
|
283 |
|
|
extern bpstat stop_bpstat;
|
284 |
|
|
|
285 |
|
|
/* Flag indicating that a command has proceeded the inferior past the
|
286 |
|
|
current breakpoint. */
|
287 |
|
|
|
288 |
|
|
extern int breakpoint_proceeded;
|
289 |
|
|
|
290 |
|
|
/* Nonzero if stopped due to a step command. */
|
291 |
|
|
|
292 |
|
|
extern int stop_step;
|
293 |
|
|
|
294 |
|
|
/* Nonzero if stopped due to completion of a stack dummy routine. */
|
295 |
|
|
|
296 |
|
|
extern int stop_stack_dummy;
|
297 |
|
|
|
298 |
|
|
/* Nonzero if program stopped due to a random (unexpected) signal in
|
299 |
|
|
inferior process. */
|
300 |
|
|
|
301 |
|
|
extern int stopped_by_random_signal;
|
302 |
|
|
|
303 |
|
|
/* Range to single step within.
|
304 |
|
|
If this is nonzero, respond to a single-step signal
|
305 |
|
|
by continuing to step if the pc is in this range.
|
306 |
|
|
|
307 |
|
|
If step_range_start and step_range_end are both 1, it means to step for
|
308 |
|
|
a single instruction (FIXME: it might clean up wait_for_inferior in a
|
309 |
|
|
minor way if this were changed to the address of the instruction and
|
310 |
|
|
that address plus one. But maybe not.). */
|
311 |
|
|
|
312 |
|
|
extern CORE_ADDR step_range_start; /* Inclusive */
|
313 |
|
|
extern CORE_ADDR step_range_end; /* Exclusive */
|
314 |
|
|
|
315 |
|
|
/* Stack frame address as of when stepping command was issued.
|
316 |
|
|
This is how we know when we step into a subroutine call,
|
317 |
|
|
and how to set the frame for the breakpoint used to step out. */
|
318 |
|
|
|
319 |
|
|
extern struct frame_id step_frame_id;
|
320 |
|
|
|
321 |
|
|
/* 1 means step over all subroutine calls.
|
322 |
|
|
-1 means step over calls to undebuggable functions. */
|
323 |
|
|
|
324 |
|
|
enum step_over_calls_kind
|
325 |
|
|
{
|
326 |
|
|
STEP_OVER_NONE,
|
327 |
|
|
STEP_OVER_ALL,
|
328 |
|
|
STEP_OVER_UNDEBUGGABLE
|
329 |
|
|
};
|
330 |
|
|
|
331 |
|
|
extern enum step_over_calls_kind step_over_calls;
|
332 |
|
|
|
333 |
|
|
/* If stepping, nonzero means step count is > 1
|
334 |
|
|
so don't print frame next time inferior stops
|
335 |
|
|
if it stops due to stepping. */
|
336 |
|
|
|
337 |
|
|
extern int step_multi;
|
338 |
|
|
|
339 |
|
|
/* Anything but NO_STOP_QUIETLY means we expect a trap and the caller
|
340 |
|
|
will handle it themselves. STOP_QUIETLY is used when running in
|
341 |
|
|
the shell before the child program has been exec'd and when running
|
342 |
|
|
through shared library loading. STOP_QUIETLY_REMOTE is used when
|
343 |
|
|
setting up a remote connection; it is like STOP_QUIETLY_NO_SIGSTOP
|
344 |
|
|
except that there is no need to hide a signal. */
|
345 |
|
|
|
346 |
|
|
/* It is also used after attach, due to attaching to a process. This
|
347 |
|
|
is a bit trickier. When doing an attach, the kernel stops the
|
348 |
|
|
debuggee with a SIGSTOP. On newer GNU/Linux kernels (>= 2.5.61)
|
349 |
|
|
the handling of SIGSTOP for a ptraced process has changed. Earlier
|
350 |
|
|
versions of the kernel would ignore these SIGSTOPs, while now
|
351 |
|
|
SIGSTOP is treated like any other signal, i.e. it is not muffled.
|
352 |
|
|
|
353 |
|
|
If the gdb user does a 'continue' after the 'attach', gdb passes
|
354 |
|
|
the global variable stop_signal (which stores the signal from the
|
355 |
|
|
attach, SIGSTOP) to the ptrace(PTRACE_CONT,...) call. This is
|
356 |
|
|
problematic, because the kernel doesn't ignore such SIGSTOP
|
357 |
|
|
now. I.e. it is reported back to gdb, which in turn presents it
|
358 |
|
|
back to the user.
|
359 |
|
|
|
360 |
|
|
To avoid the problem, we use STOP_QUIETLY_NO_SIGSTOP, which allows
|
361 |
|
|
gdb to clear the value of stop_signal after the attach, so that it
|
362 |
|
|
is not passed back down to the kernel. */
|
363 |
|
|
|
364 |
|
|
enum stop_kind
|
365 |
|
|
{
|
366 |
|
|
NO_STOP_QUIETLY = 0,
|
367 |
|
|
STOP_QUIETLY,
|
368 |
|
|
STOP_QUIETLY_REMOTE,
|
369 |
|
|
STOP_QUIETLY_NO_SIGSTOP
|
370 |
|
|
};
|
371 |
|
|
|
372 |
|
|
extern enum stop_kind stop_soon;
|
373 |
|
|
|
374 |
|
|
/* Nonzero if proceed is being used for a "finish" command or a similar
|
375 |
|
|
situation when stop_registers should be saved. */
|
376 |
|
|
|
377 |
|
|
extern int proceed_to_finish;
|
378 |
|
|
|
379 |
|
|
/* Save register contents here when about to pop a stack dummy frame,
|
380 |
|
|
if-and-only-if proceed_to_finish is set.
|
381 |
|
|
Thus this contains the return value from the called function (assuming
|
382 |
|
|
values are returned in a register). */
|
383 |
|
|
|
384 |
|
|
extern struct regcache *stop_registers;
|
385 |
|
|
|
386 |
|
|
/* Nonzero if the child process in inferior_ptid was attached rather
|
387 |
|
|
than forked. */
|
388 |
|
|
|
389 |
|
|
extern int attach_flag;
|
390 |
|
|
|
391 |
|
|
/* Possible values for gdbarch_call_dummy_location. */
|
392 |
|
|
#define ON_STACK 1
|
393 |
|
|
#define AT_ENTRY_POINT 4
|
394 |
|
|
#define AT_SYMBOL 5
|
395 |
|
|
|
396 |
|
|
/* If STARTUP_WITH_SHELL is set, GDB's "run"
|
397 |
|
|
will attempts to start up the debugee under a shell.
|
398 |
|
|
This is in order for argument-expansion to occur. E.g.,
|
399 |
|
|
(gdb) run *
|
400 |
|
|
The "*" gets expanded by the shell into a list of files.
|
401 |
|
|
While this is a nice feature, it turns out to interact badly
|
402 |
|
|
with some of the catch-fork/catch-exec features we have added.
|
403 |
|
|
In particular, if the shell does any fork/exec's before
|
404 |
|
|
the exec of the target program, that can confuse GDB.
|
405 |
|
|
To disable this feature, set STARTUP_WITH_SHELL to 0.
|
406 |
|
|
To enable this feature, set STARTUP_WITH_SHELL to 1.
|
407 |
|
|
The catch-exec traps expected during start-up will
|
408 |
|
|
be 1 if target is not started up with a shell, 2 if it is.
|
409 |
|
|
- RT
|
410 |
|
|
If you disable this, you need to decrement
|
411 |
|
|
START_INFERIOR_TRAPS_EXPECTED in tm.h. */
|
412 |
|
|
#define STARTUP_WITH_SHELL 1
|
413 |
|
|
#if !defined(START_INFERIOR_TRAPS_EXPECTED)
|
414 |
|
|
#define START_INFERIOR_TRAPS_EXPECTED 2
|
415 |
|
|
#endif
|
416 |
|
|
#endif /* !defined (INFERIOR_H) */
|