| 1 |
24 |
jeremybenn |
/* Renesas M32C target-dependent code for GDB, the GNU debugger.
|
| 2 |
|
|
|
| 3 |
|
|
Copyright 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GDB.
|
| 6 |
|
|
|
| 7 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 8 |
|
|
it under the terms of the GNU General Public License as published by
|
| 9 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
| 10 |
|
|
(at your option) any later version.
|
| 11 |
|
|
|
| 12 |
|
|
This program is distributed in the hope that it will be useful,
|
| 13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
GNU General Public License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| 19 |
|
|
|
| 20 |
|
|
#include "defs.h"
|
| 21 |
|
|
|
| 22 |
|
|
#include <stdarg.h>
|
| 23 |
|
|
|
| 24 |
|
|
#if defined (HAVE_STRING_H)
|
| 25 |
|
|
#include <string.h>
|
| 26 |
|
|
#endif
|
| 27 |
|
|
|
| 28 |
|
|
#include "gdb_assert.h"
|
| 29 |
|
|
#include "elf-bfd.h"
|
| 30 |
|
|
#include "elf/m32c.h"
|
| 31 |
|
|
#include "gdb/sim-m32c.h"
|
| 32 |
|
|
#include "dis-asm.h"
|
| 33 |
|
|
#include "gdbtypes.h"
|
| 34 |
|
|
#include "regcache.h"
|
| 35 |
|
|
#include "arch-utils.h"
|
| 36 |
|
|
#include "frame.h"
|
| 37 |
|
|
#include "frame-unwind.h"
|
| 38 |
|
|
#include "dwarf2-frame.h"
|
| 39 |
|
|
#include "dwarf2expr.h"
|
| 40 |
|
|
#include "symtab.h"
|
| 41 |
|
|
#include "gdbcore.h"
|
| 42 |
|
|
#include "value.h"
|
| 43 |
|
|
#include "reggroups.h"
|
| 44 |
|
|
#include "prologue-value.h"
|
| 45 |
|
|
#include "target.h"
|
| 46 |
|
|
|
| 47 |
|
|
|
| 48 |
|
|
/* The m32c tdep structure. */
|
| 49 |
|
|
|
| 50 |
|
|
static struct reggroup *m32c_dma_reggroup;
|
| 51 |
|
|
|
| 52 |
|
|
struct m32c_reg;
|
| 53 |
|
|
|
| 54 |
|
|
/* The type of a function that moves the value of REG between CACHE or
|
| 55 |
|
|
BUF --- in either direction. */
|
| 56 |
|
|
typedef void (m32c_move_reg_t) (struct m32c_reg *reg,
|
| 57 |
|
|
struct regcache *cache,
|
| 58 |
|
|
void *buf);
|
| 59 |
|
|
|
| 60 |
|
|
struct m32c_reg
|
| 61 |
|
|
{
|
| 62 |
|
|
/* The name of this register. */
|
| 63 |
|
|
const char *name;
|
| 64 |
|
|
|
| 65 |
|
|
/* Its type. */
|
| 66 |
|
|
struct type *type;
|
| 67 |
|
|
|
| 68 |
|
|
/* The architecture this register belongs to. */
|
| 69 |
|
|
struct gdbarch *arch;
|
| 70 |
|
|
|
| 71 |
|
|
/* Its GDB register number. */
|
| 72 |
|
|
int num;
|
| 73 |
|
|
|
| 74 |
|
|
/* Its sim register number. */
|
| 75 |
|
|
int sim_num;
|
| 76 |
|
|
|
| 77 |
|
|
/* Its DWARF register number, or -1 if it doesn't have one. */
|
| 78 |
|
|
int dwarf_num;
|
| 79 |
|
|
|
| 80 |
|
|
/* Register group memberships. */
|
| 81 |
|
|
unsigned int general_p : 1;
|
| 82 |
|
|
unsigned int dma_p : 1;
|
| 83 |
|
|
unsigned int system_p : 1;
|
| 84 |
|
|
unsigned int save_restore_p : 1;
|
| 85 |
|
|
|
| 86 |
|
|
/* Functions to read its value from a regcache, and write its value
|
| 87 |
|
|
to a regcache. */
|
| 88 |
|
|
m32c_move_reg_t *read, *write;
|
| 89 |
|
|
|
| 90 |
|
|
/* Data for READ and WRITE functions. The exact meaning depends on
|
| 91 |
|
|
the specific functions selected; see the comments for those
|
| 92 |
|
|
functions. */
|
| 93 |
|
|
struct m32c_reg *rx, *ry;
|
| 94 |
|
|
int n;
|
| 95 |
|
|
};
|
| 96 |
|
|
|
| 97 |
|
|
|
| 98 |
|
|
/* An overestimate of the number of raw and pseudoregisters we will
|
| 99 |
|
|
have. The exact answer depends on the variant of the architecture
|
| 100 |
|
|
at hand, but we can use this to declare statically allocated
|
| 101 |
|
|
arrays, and bump it up when needed. */
|
| 102 |
|
|
#define M32C_MAX_NUM_REGS (75)
|
| 103 |
|
|
|
| 104 |
|
|
/* The largest assigned DWARF register number. */
|
| 105 |
|
|
#define M32C_MAX_DWARF_REGNUM (40)
|
| 106 |
|
|
|
| 107 |
|
|
|
| 108 |
|
|
struct gdbarch_tdep
|
| 109 |
|
|
{
|
| 110 |
|
|
/* All the registers for this variant, indexed by GDB register
|
| 111 |
|
|
number, and the number of registers present. */
|
| 112 |
|
|
struct m32c_reg regs[M32C_MAX_NUM_REGS];
|
| 113 |
|
|
|
| 114 |
|
|
/* The number of valid registers. */
|
| 115 |
|
|
int num_regs;
|
| 116 |
|
|
|
| 117 |
|
|
/* Interesting registers. These are pointers into REGS. */
|
| 118 |
|
|
struct m32c_reg *pc, *flg;
|
| 119 |
|
|
struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
|
| 120 |
|
|
struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
|
| 121 |
|
|
struct m32c_reg *sb, *fb, *sp;
|
| 122 |
|
|
|
| 123 |
|
|
/* A table indexed by DWARF register numbers, pointing into
|
| 124 |
|
|
REGS. */
|
| 125 |
|
|
struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
|
| 126 |
|
|
|
| 127 |
|
|
/* Types for this architecture. We can't use the builtin_type_foo
|
| 128 |
|
|
types, because they're not initialized when building a gdbarch
|
| 129 |
|
|
structure. */
|
| 130 |
|
|
struct type *voyd, *ptr_voyd, *func_voyd;
|
| 131 |
|
|
struct type *uint8, *uint16;
|
| 132 |
|
|
struct type *int8, *int16, *int32, *int64;
|
| 133 |
|
|
|
| 134 |
|
|
/* The types for data address and code address registers. */
|
| 135 |
|
|
struct type *data_addr_reg_type, *code_addr_reg_type;
|
| 136 |
|
|
|
| 137 |
|
|
/* The number of bytes a return address pushed by a 'jsr' instruction
|
| 138 |
|
|
occupies on the stack. */
|
| 139 |
|
|
int ret_addr_bytes;
|
| 140 |
|
|
|
| 141 |
|
|
/* The number of bytes an address register occupies on the stack
|
| 142 |
|
|
when saved by an 'enter' or 'pushm' instruction. */
|
| 143 |
|
|
int push_addr_bytes;
|
| 144 |
|
|
};
|
| 145 |
|
|
|
| 146 |
|
|
|
| 147 |
|
|
/* Types. */
|
| 148 |
|
|
|
| 149 |
|
|
static void
|
| 150 |
|
|
make_types (struct gdbarch *arch)
|
| 151 |
|
|
{
|
| 152 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
| 153 |
|
|
unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
|
| 154 |
|
|
int data_addr_reg_bits, code_addr_reg_bits;
|
| 155 |
|
|
char type_name[50];
|
| 156 |
|
|
|
| 157 |
|
|
#if 0
|
| 158 |
|
|
/* This is used to clip CORE_ADDR values, so this value is
|
| 159 |
|
|
appropriate both on the m32c, where pointers are 32 bits long,
|
| 160 |
|
|
and on the m16c, where pointers are sixteen bits long, but there
|
| 161 |
|
|
may be code above the 64k boundary. */
|
| 162 |
|
|
set_gdbarch_addr_bit (arch, 24);
|
| 163 |
|
|
#else
|
| 164 |
|
|
/* GCC uses 32 bits for addrs in the dwarf info, even though
|
| 165 |
|
|
only 16/24 bits are used. Setting addr_bit to 24 causes
|
| 166 |
|
|
errors in reading the dwarf addresses. */
|
| 167 |
|
|
set_gdbarch_addr_bit (arch, 32);
|
| 168 |
|
|
#endif
|
| 169 |
|
|
|
| 170 |
|
|
set_gdbarch_int_bit (arch, 16);
|
| 171 |
|
|
switch (mach)
|
| 172 |
|
|
{
|
| 173 |
|
|
case bfd_mach_m16c:
|
| 174 |
|
|
data_addr_reg_bits = 16;
|
| 175 |
|
|
code_addr_reg_bits = 24;
|
| 176 |
|
|
set_gdbarch_ptr_bit (arch, 16);
|
| 177 |
|
|
tdep->ret_addr_bytes = 3;
|
| 178 |
|
|
tdep->push_addr_bytes = 2;
|
| 179 |
|
|
break;
|
| 180 |
|
|
|
| 181 |
|
|
case bfd_mach_m32c:
|
| 182 |
|
|
data_addr_reg_bits = 24;
|
| 183 |
|
|
code_addr_reg_bits = 24;
|
| 184 |
|
|
set_gdbarch_ptr_bit (arch, 32);
|
| 185 |
|
|
tdep->ret_addr_bytes = 4;
|
| 186 |
|
|
tdep->push_addr_bytes = 4;
|
| 187 |
|
|
break;
|
| 188 |
|
|
|
| 189 |
|
|
default:
|
| 190 |
|
|
gdb_assert (0);
|
| 191 |
|
|
}
|
| 192 |
|
|
|
| 193 |
|
|
/* The builtin_type_mumble variables are sometimes uninitialized when
|
| 194 |
|
|
this is called, so we avoid using them. */
|
| 195 |
|
|
tdep->voyd = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
|
| 196 |
|
|
tdep->ptr_voyd = init_type (TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / 8,
|
| 197 |
|
|
TYPE_FLAG_UNSIGNED, NULL, NULL);
|
| 198 |
|
|
TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
|
| 199 |
|
|
tdep->func_voyd = lookup_function_type (tdep->voyd);
|
| 200 |
|
|
|
| 201 |
|
|
sprintf (type_name, "%s_data_addr_t",
|
| 202 |
|
|
gdbarch_bfd_arch_info (arch)->printable_name);
|
| 203 |
|
|
tdep->data_addr_reg_type
|
| 204 |
|
|
= init_type (TYPE_CODE_PTR, data_addr_reg_bits / 8,
|
| 205 |
|
|
TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
|
| 206 |
|
|
TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
|
| 207 |
|
|
|
| 208 |
|
|
sprintf (type_name, "%s_code_addr_t",
|
| 209 |
|
|
gdbarch_bfd_arch_info (arch)->printable_name);
|
| 210 |
|
|
tdep->code_addr_reg_type
|
| 211 |
|
|
= init_type (TYPE_CODE_PTR, code_addr_reg_bits / 8,
|
| 212 |
|
|
TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
|
| 213 |
|
|
TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
|
| 214 |
|
|
|
| 215 |
|
|
tdep->uint8 = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
|
| 216 |
|
|
"uint8_t", NULL);
|
| 217 |
|
|
tdep->uint16 = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
|
| 218 |
|
|
"uint16_t", NULL);
|
| 219 |
|
|
tdep->int8 = init_type (TYPE_CODE_INT, 1, 0, "int8_t", NULL);
|
| 220 |
|
|
tdep->int16 = init_type (TYPE_CODE_INT, 2, 0, "int16_t", NULL);
|
| 221 |
|
|
tdep->int32 = init_type (TYPE_CODE_INT, 4, 0, "int32_t", NULL);
|
| 222 |
|
|
tdep->int64 = init_type (TYPE_CODE_INT, 8, 0, "int64_t", NULL);
|
| 223 |
|
|
}
|
| 224 |
|
|
|
| 225 |
|
|
|
| 226 |
|
|
|
| 227 |
|
|
/* Register set. */
|
| 228 |
|
|
|
| 229 |
|
|
static const char *
|
| 230 |
|
|
m32c_register_name (struct gdbarch *gdbarch, int num)
|
| 231 |
|
|
{
|
| 232 |
|
|
return gdbarch_tdep (gdbarch)->regs[num].name;
|
| 233 |
|
|
}
|
| 234 |
|
|
|
| 235 |
|
|
|
| 236 |
|
|
static struct type *
|
| 237 |
|
|
m32c_register_type (struct gdbarch *arch, int reg_nr)
|
| 238 |
|
|
{
|
| 239 |
|
|
return gdbarch_tdep (arch)->regs[reg_nr].type;
|
| 240 |
|
|
}
|
| 241 |
|
|
|
| 242 |
|
|
|
| 243 |
|
|
static int
|
| 244 |
|
|
m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
|
| 245 |
|
|
{
|
| 246 |
|
|
return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
|
| 247 |
|
|
}
|
| 248 |
|
|
|
| 249 |
|
|
|
| 250 |
|
|
static int
|
| 251 |
|
|
m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
|
| 252 |
|
|
{
|
| 253 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| 254 |
|
|
if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
|
| 255 |
|
|
&& tdep->dwarf_regs[reg_nr])
|
| 256 |
|
|
return tdep->dwarf_regs[reg_nr]->num;
|
| 257 |
|
|
else
|
| 258 |
|
|
/* The DWARF CFI code expects to see -1 for invalid register
|
| 259 |
|
|
numbers. */
|
| 260 |
|
|
return -1;
|
| 261 |
|
|
}
|
| 262 |
|
|
|
| 263 |
|
|
|
| 264 |
|
|
int
|
| 265 |
|
|
m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
| 266 |
|
|
struct reggroup *group)
|
| 267 |
|
|
{
|
| 268 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| 269 |
|
|
struct m32c_reg *reg = &tdep->regs[regnum];
|
| 270 |
|
|
|
| 271 |
|
|
/* The anonymous raw registers aren't in any groups. */
|
| 272 |
|
|
if (! reg->name)
|
| 273 |
|
|
return 0;
|
| 274 |
|
|
|
| 275 |
|
|
if (group == all_reggroup)
|
| 276 |
|
|
return 1;
|
| 277 |
|
|
|
| 278 |
|
|
if (group == general_reggroup
|
| 279 |
|
|
&& reg->general_p)
|
| 280 |
|
|
return 1;
|
| 281 |
|
|
|
| 282 |
|
|
if (group == m32c_dma_reggroup
|
| 283 |
|
|
&& reg->dma_p)
|
| 284 |
|
|
return 1;
|
| 285 |
|
|
|
| 286 |
|
|
if (group == system_reggroup
|
| 287 |
|
|
&& reg->system_p)
|
| 288 |
|
|
return 1;
|
| 289 |
|
|
|
| 290 |
|
|
/* Since the m32c DWARF register numbers refer to cooked registers, not
|
| 291 |
|
|
raw registers, and frame_pop depends on the save and restore groups
|
| 292 |
|
|
containing registers the DWARF CFI will actually mention, our save
|
| 293 |
|
|
and restore groups are cooked registers, not raw registers. (This is
|
| 294 |
|
|
why we can't use the default reggroup function.) */
|
| 295 |
|
|
if ((group == save_reggroup
|
| 296 |
|
|
|| group == restore_reggroup)
|
| 297 |
|
|
&& reg->save_restore_p)
|
| 298 |
|
|
return 1;
|
| 299 |
|
|
|
| 300 |
|
|
return 0;
|
| 301 |
|
|
}
|
| 302 |
|
|
|
| 303 |
|
|
|
| 304 |
|
|
/* Register move functions. We declare them here using
|
| 305 |
|
|
m32c_move_reg_t to check the types. */
|
| 306 |
|
|
static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
|
| 307 |
|
|
static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
|
| 308 |
|
|
static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
|
| 309 |
|
|
static m32c_move_reg_t m32c_part_read, m32c_part_write;
|
| 310 |
|
|
static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
|
| 311 |
|
|
static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
|
| 312 |
|
|
|
| 313 |
|
|
|
| 314 |
|
|
/* Copy the value of the raw register REG from CACHE to BUF. */
|
| 315 |
|
|
static void
|
| 316 |
|
|
m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
| 317 |
|
|
{
|
| 318 |
|
|
regcache_raw_read (cache, reg->num, buf);
|
| 319 |
|
|
}
|
| 320 |
|
|
|
| 321 |
|
|
|
| 322 |
|
|
/* Copy the value of the raw register REG from BUF to CACHE. */
|
| 323 |
|
|
static void
|
| 324 |
|
|
m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
| 325 |
|
|
{
|
| 326 |
|
|
regcache_raw_write (cache, reg->num, (const void *) buf);
|
| 327 |
|
|
}
|
| 328 |
|
|
|
| 329 |
|
|
|
| 330 |
|
|
/* Return the value of the 'flg' register in CACHE. */
|
| 331 |
|
|
static int
|
| 332 |
|
|
m32c_read_flg (struct regcache *cache)
|
| 333 |
|
|
{
|
| 334 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
|
| 335 |
|
|
ULONGEST flg;
|
| 336 |
|
|
regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
|
| 337 |
|
|
return flg & 0xffff;
|
| 338 |
|
|
}
|
| 339 |
|
|
|
| 340 |
|
|
|
| 341 |
|
|
/* Evaluate the real register number of a banked register. */
|
| 342 |
|
|
static struct m32c_reg *
|
| 343 |
|
|
m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
|
| 344 |
|
|
{
|
| 345 |
|
|
return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
|
| 346 |
|
|
}
|
| 347 |
|
|
|
| 348 |
|
|
|
| 349 |
|
|
/* Move the value of a banked register from CACHE to BUF.
|
| 350 |
|
|
If the value of the 'flg' register in CACHE has any of the bits
|
| 351 |
|
|
masked in REG->n set, then read REG->ry. Otherwise, read
|
| 352 |
|
|
REG->rx. */
|
| 353 |
|
|
static void
|
| 354 |
|
|
m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
| 355 |
|
|
{
|
| 356 |
|
|
struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
|
| 357 |
|
|
regcache_raw_read (cache, bank_reg->num, buf);
|
| 358 |
|
|
}
|
| 359 |
|
|
|
| 360 |
|
|
|
| 361 |
|
|
/* Move the value of a banked register from BUF to CACHE.
|
| 362 |
|
|
If the value of the 'flg' register in CACHE has any of the bits
|
| 363 |
|
|
masked in REG->n set, then write REG->ry. Otherwise, write
|
| 364 |
|
|
REG->rx. */
|
| 365 |
|
|
static void
|
| 366 |
|
|
m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
| 367 |
|
|
{
|
| 368 |
|
|
struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
|
| 369 |
|
|
regcache_raw_write (cache, bank_reg->num, (const void *) buf);
|
| 370 |
|
|
}
|
| 371 |
|
|
|
| 372 |
|
|
|
| 373 |
|
|
/* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
|
| 374 |
|
|
banked register; on bfd_mach_m16c, it's not. */
|
| 375 |
|
|
static void
|
| 376 |
|
|
m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
| 377 |
|
|
{
|
| 378 |
|
|
if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
|
| 379 |
|
|
m32c_raw_read (reg->rx, cache, buf);
|
| 380 |
|
|
else
|
| 381 |
|
|
m32c_banked_read (reg, cache, buf);
|
| 382 |
|
|
}
|
| 383 |
|
|
|
| 384 |
|
|
|
| 385 |
|
|
/* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
|
| 386 |
|
|
banked register; on bfd_mach_m16c, it's not. */
|
| 387 |
|
|
static void
|
| 388 |
|
|
m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
| 389 |
|
|
{
|
| 390 |
|
|
if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
|
| 391 |
|
|
m32c_raw_write (reg->rx, cache, buf);
|
| 392 |
|
|
else
|
| 393 |
|
|
m32c_banked_write (reg, cache, buf);
|
| 394 |
|
|
}
|
| 395 |
|
|
|
| 396 |
|
|
|
| 397 |
|
|
/* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
|
| 398 |
|
|
and *LEN_P to the offset and length, in bytes, of the part REG
|
| 399 |
|
|
occupies in its underlying register. The offset is from the
|
| 400 |
|
|
lower-addressed end, regardless of the architecture's endianness.
|
| 401 |
|
|
(The M32C family is always little-endian, but let's keep those
|
| 402 |
|
|
assumptions out of here.) */
|
| 403 |
|
|
static void
|
| 404 |
|
|
m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
|
| 405 |
|
|
{
|
| 406 |
|
|
/* The length of the containing register, of which REG is one part. */
|
| 407 |
|
|
int containing_len = TYPE_LENGTH (reg->rx->type);
|
| 408 |
|
|
|
| 409 |
|
|
/* The length of one "element" in our imaginary array. */
|
| 410 |
|
|
int elt_len = TYPE_LENGTH (reg->type);
|
| 411 |
|
|
|
| 412 |
|
|
/* The offset of REG's "element" from the least significant end of
|
| 413 |
|
|
the containing register. */
|
| 414 |
|
|
int elt_offset = reg->n * elt_len;
|
| 415 |
|
|
|
| 416 |
|
|
/* If we extend off the end, trim the length of the element. */
|
| 417 |
|
|
if (elt_offset + elt_len > containing_len)
|
| 418 |
|
|
{
|
| 419 |
|
|
elt_len = containing_len - elt_offset;
|
| 420 |
|
|
/* We shouldn't be declaring partial registers that go off the
|
| 421 |
|
|
end of their containing registers. */
|
| 422 |
|
|
gdb_assert (elt_len > 0);
|
| 423 |
|
|
}
|
| 424 |
|
|
|
| 425 |
|
|
/* Flip the offset around if we're big-endian. */
|
| 426 |
|
|
if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
|
| 427 |
|
|
elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
|
| 428 |
|
|
|
| 429 |
|
|
*offset_p = elt_offset;
|
| 430 |
|
|
*len_p = elt_len;
|
| 431 |
|
|
}
|
| 432 |
|
|
|
| 433 |
|
|
|
| 434 |
|
|
/* Move the value of a partial register (r0h, intbl, etc.) from CACHE
|
| 435 |
|
|
to BUF. Treating the value of the register REG->rx as an array of
|
| 436 |
|
|
REG->type values, where higher indices refer to more significant
|
| 437 |
|
|
bits, read the value of the REG->n'th element. */
|
| 438 |
|
|
static void
|
| 439 |
|
|
m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
| 440 |
|
|
{
|
| 441 |
|
|
int offset, len;
|
| 442 |
|
|
memset (buf, 0, TYPE_LENGTH (reg->type));
|
| 443 |
|
|
m32c_find_part (reg, &offset, &len);
|
| 444 |
|
|
regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
|
| 445 |
|
|
}
|
| 446 |
|
|
|
| 447 |
|
|
|
| 448 |
|
|
/* Move the value of a banked register from BUF to CACHE.
|
| 449 |
|
|
Treating the value of the register REG->rx as an array of REG->type
|
| 450 |
|
|
values, where higher indices refer to more significant bits, write
|
| 451 |
|
|
the value of the REG->n'th element. */
|
| 452 |
|
|
static void
|
| 453 |
|
|
m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
| 454 |
|
|
{
|
| 455 |
|
|
int offset, len;
|
| 456 |
|
|
m32c_find_part (reg, &offset, &len);
|
| 457 |
|
|
regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
|
| 458 |
|
|
}
|
| 459 |
|
|
|
| 460 |
|
|
|
| 461 |
|
|
/* Move the value of REG from CACHE to BUF. REG's value is the
|
| 462 |
|
|
concatenation of the values of the registers REG->rx and REG->ry,
|
| 463 |
|
|
with REG->rx contributing the more significant bits. */
|
| 464 |
|
|
static void
|
| 465 |
|
|
m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
| 466 |
|
|
{
|
| 467 |
|
|
int high_bytes = TYPE_LENGTH (reg->rx->type);
|
| 468 |
|
|
int low_bytes = TYPE_LENGTH (reg->ry->type);
|
| 469 |
|
|
/* For address arithmetic. */
|
| 470 |
|
|
unsigned char *cbuf = buf;
|
| 471 |
|
|
|
| 472 |
|
|
gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
|
| 473 |
|
|
|
| 474 |
|
|
if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
|
| 475 |
|
|
{
|
| 476 |
|
|
regcache_cooked_read (cache, reg->rx->num, cbuf);
|
| 477 |
|
|
regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
|
| 478 |
|
|
}
|
| 479 |
|
|
else
|
| 480 |
|
|
{
|
| 481 |
|
|
regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
|
| 482 |
|
|
regcache_cooked_read (cache, reg->ry->num, cbuf);
|
| 483 |
|
|
}
|
| 484 |
|
|
}
|
| 485 |
|
|
|
| 486 |
|
|
|
| 487 |
|
|
/* Move the value of REG from CACHE to BUF. REG's value is the
|
| 488 |
|
|
concatenation of the values of the registers REG->rx and REG->ry,
|
| 489 |
|
|
with REG->rx contributing the more significant bits. */
|
| 490 |
|
|
static void
|
| 491 |
|
|
m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
| 492 |
|
|
{
|
| 493 |
|
|
int high_bytes = TYPE_LENGTH (reg->rx->type);
|
| 494 |
|
|
int low_bytes = TYPE_LENGTH (reg->ry->type);
|
| 495 |
|
|
/* For address arithmetic. */
|
| 496 |
|
|
unsigned char *cbuf = buf;
|
| 497 |
|
|
|
| 498 |
|
|
gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
|
| 499 |
|
|
|
| 500 |
|
|
if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
|
| 501 |
|
|
{
|
| 502 |
|
|
regcache_cooked_write (cache, reg->rx->num, cbuf);
|
| 503 |
|
|
regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
|
| 504 |
|
|
}
|
| 505 |
|
|
else
|
| 506 |
|
|
{
|
| 507 |
|
|
regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
|
| 508 |
|
|
regcache_cooked_write (cache, reg->ry->num, cbuf);
|
| 509 |
|
|
}
|
| 510 |
|
|
}
|
| 511 |
|
|
|
| 512 |
|
|
|
| 513 |
|
|
/* Copy the value of the raw register REG from CACHE to BUF. REG is
|
| 514 |
|
|
the concatenation (from most significant to least) of r3, r2, r1,
|
| 515 |
|
|
and r0. */
|
| 516 |
|
|
static void
|
| 517 |
|
|
m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
| 518 |
|
|
{
|
| 519 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
|
| 520 |
|
|
int len = TYPE_LENGTH (tdep->r0->type);
|
| 521 |
|
|
|
| 522 |
|
|
/* For address arithmetic. */
|
| 523 |
|
|
unsigned char *cbuf = buf;
|
| 524 |
|
|
|
| 525 |
|
|
if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
|
| 526 |
|
|
{
|
| 527 |
|
|
regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
|
| 528 |
|
|
regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
|
| 529 |
|
|
regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
|
| 530 |
|
|
regcache_cooked_read (cache, tdep->r3->num, cbuf);
|
| 531 |
|
|
}
|
| 532 |
|
|
else
|
| 533 |
|
|
{
|
| 534 |
|
|
regcache_cooked_read (cache, tdep->r0->num, cbuf);
|
| 535 |
|
|
regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
|
| 536 |
|
|
regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
|
| 537 |
|
|
regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
|
| 538 |
|
|
}
|
| 539 |
|
|
}
|
| 540 |
|
|
|
| 541 |
|
|
|
| 542 |
|
|
/* Copy the value of the raw register REG from BUF to CACHE. REG is
|
| 543 |
|
|
the concatenation (from most significant to least) of r3, r2, r1,
|
| 544 |
|
|
and r0. */
|
| 545 |
|
|
static void
|
| 546 |
|
|
m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
| 547 |
|
|
{
|
| 548 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
|
| 549 |
|
|
int len = TYPE_LENGTH (tdep->r0->type);
|
| 550 |
|
|
|
| 551 |
|
|
/* For address arithmetic. */
|
| 552 |
|
|
unsigned char *cbuf = buf;
|
| 553 |
|
|
|
| 554 |
|
|
if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
|
| 555 |
|
|
{
|
| 556 |
|
|
regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
|
| 557 |
|
|
regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
|
| 558 |
|
|
regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
|
| 559 |
|
|
regcache_cooked_write (cache, tdep->r3->num, cbuf);
|
| 560 |
|
|
}
|
| 561 |
|
|
else
|
| 562 |
|
|
{
|
| 563 |
|
|
regcache_cooked_write (cache, tdep->r0->num, cbuf);
|
| 564 |
|
|
regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
|
| 565 |
|
|
regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
|
| 566 |
|
|
regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
|
| 567 |
|
|
}
|
| 568 |
|
|
}
|
| 569 |
|
|
|
| 570 |
|
|
|
| 571 |
|
|
static void
|
| 572 |
|
|
m32c_pseudo_register_read (struct gdbarch *arch,
|
| 573 |
|
|
struct regcache *cache,
|
| 574 |
|
|
int cookednum,
|
| 575 |
|
|
gdb_byte *buf)
|
| 576 |
|
|
{
|
| 577 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
| 578 |
|
|
struct m32c_reg *reg;
|
| 579 |
|
|
|
| 580 |
|
|
gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
|
| 581 |
|
|
gdb_assert (arch == get_regcache_arch (cache));
|
| 582 |
|
|
gdb_assert (arch == tdep->regs[cookednum].arch);
|
| 583 |
|
|
reg = &tdep->regs[cookednum];
|
| 584 |
|
|
|
| 585 |
|
|
reg->read (reg, cache, buf);
|
| 586 |
|
|
}
|
| 587 |
|
|
|
| 588 |
|
|
|
| 589 |
|
|
static void
|
| 590 |
|
|
m32c_pseudo_register_write (struct gdbarch *arch,
|
| 591 |
|
|
struct regcache *cache,
|
| 592 |
|
|
int cookednum,
|
| 593 |
|
|
const gdb_byte *buf)
|
| 594 |
|
|
{
|
| 595 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
| 596 |
|
|
struct m32c_reg *reg;
|
| 597 |
|
|
|
| 598 |
|
|
gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
|
| 599 |
|
|
gdb_assert (arch == get_regcache_arch (cache));
|
| 600 |
|
|
gdb_assert (arch == tdep->regs[cookednum].arch);
|
| 601 |
|
|
reg = &tdep->regs[cookednum];
|
| 602 |
|
|
|
| 603 |
|
|
reg->write (reg, cache, (void *) buf);
|
| 604 |
|
|
}
|
| 605 |
|
|
|
| 606 |
|
|
|
| 607 |
|
|
/* Add a register with the given fields to the end of ARCH's table.
|
| 608 |
|
|
Return a pointer to the newly added register. */
|
| 609 |
|
|
static struct m32c_reg *
|
| 610 |
|
|
add_reg (struct gdbarch *arch,
|
| 611 |
|
|
const char *name,
|
| 612 |
|
|
struct type *type,
|
| 613 |
|
|
int sim_num,
|
| 614 |
|
|
m32c_move_reg_t *read,
|
| 615 |
|
|
m32c_move_reg_t *write,
|
| 616 |
|
|
struct m32c_reg *rx,
|
| 617 |
|
|
struct m32c_reg *ry,
|
| 618 |
|
|
int n)
|
| 619 |
|
|
{
|
| 620 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
| 621 |
|
|
struct m32c_reg *r = &tdep->regs[tdep->num_regs];
|
| 622 |
|
|
|
| 623 |
|
|
gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
|
| 624 |
|
|
|
| 625 |
|
|
r->name = name;
|
| 626 |
|
|
r->type = type;
|
| 627 |
|
|
r->arch = arch;
|
| 628 |
|
|
r->num = tdep->num_regs;
|
| 629 |
|
|
r->sim_num = sim_num;
|
| 630 |
|
|
r->dwarf_num = -1;
|
| 631 |
|
|
r->general_p = 0;
|
| 632 |
|
|
r->dma_p = 0;
|
| 633 |
|
|
r->system_p = 0;
|
| 634 |
|
|
r->save_restore_p = 0;
|
| 635 |
|
|
r->read = read;
|
| 636 |
|
|
r->write = write;
|
| 637 |
|
|
r->rx = rx;
|
| 638 |
|
|
r->ry = ry;
|
| 639 |
|
|
r->n = n;
|
| 640 |
|
|
|
| 641 |
|
|
tdep->num_regs++;
|
| 642 |
|
|
|
| 643 |
|
|
return r;
|
| 644 |
|
|
}
|
| 645 |
|
|
|
| 646 |
|
|
|
| 647 |
|
|
/* Record NUM as REG's DWARF register number. */
|
| 648 |
|
|
static void
|
| 649 |
|
|
set_dwarf_regnum (struct m32c_reg *reg, int num)
|
| 650 |
|
|
{
|
| 651 |
|
|
gdb_assert (num < M32C_MAX_NUM_REGS);
|
| 652 |
|
|
|
| 653 |
|
|
/* Update the reg->DWARF mapping. Only count the first number
|
| 654 |
|
|
assigned to this register. */
|
| 655 |
|
|
if (reg->dwarf_num == -1)
|
| 656 |
|
|
reg->dwarf_num = num;
|
| 657 |
|
|
|
| 658 |
|
|
/* Update the DWARF->reg mapping. */
|
| 659 |
|
|
gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
|
| 660 |
|
|
}
|
| 661 |
|
|
|
| 662 |
|
|
|
| 663 |
|
|
/* Mark REG as a general-purpose register, and return it. */
|
| 664 |
|
|
static struct m32c_reg *
|
| 665 |
|
|
mark_general (struct m32c_reg *reg)
|
| 666 |
|
|
{
|
| 667 |
|
|
reg->general_p = 1;
|
| 668 |
|
|
return reg;
|
| 669 |
|
|
}
|
| 670 |
|
|
|
| 671 |
|
|
|
| 672 |
|
|
/* Mark REG as a DMA register, and return it. */
|
| 673 |
|
|
static struct m32c_reg *
|
| 674 |
|
|
mark_dma (struct m32c_reg *reg)
|
| 675 |
|
|
{
|
| 676 |
|
|
reg->dma_p = 1;
|
| 677 |
|
|
return reg;
|
| 678 |
|
|
}
|
| 679 |
|
|
|
| 680 |
|
|
|
| 681 |
|
|
/* Mark REG as a SYSTEM register, and return it. */
|
| 682 |
|
|
static struct m32c_reg *
|
| 683 |
|
|
mark_system (struct m32c_reg *reg)
|
| 684 |
|
|
{
|
| 685 |
|
|
reg->system_p = 1;
|
| 686 |
|
|
return reg;
|
| 687 |
|
|
}
|
| 688 |
|
|
|
| 689 |
|
|
|
| 690 |
|
|
/* Mark REG as a save-restore register, and return it. */
|
| 691 |
|
|
static struct m32c_reg *
|
| 692 |
|
|
mark_save_restore (struct m32c_reg *reg)
|
| 693 |
|
|
{
|
| 694 |
|
|
reg->save_restore_p = 1;
|
| 695 |
|
|
return reg;
|
| 696 |
|
|
}
|
| 697 |
|
|
|
| 698 |
|
|
|
| 699 |
|
|
#define FLAGBIT_B 0x0010
|
| 700 |
|
|
#define FLAGBIT_U 0x0080
|
| 701 |
|
|
|
| 702 |
|
|
/* Handy macros for declaring registers. These all evaluate to
|
| 703 |
|
|
pointers to the register declared. Macros that define two
|
| 704 |
|
|
registers evaluate to a pointer to the first. */
|
| 705 |
|
|
|
| 706 |
|
|
/* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
|
| 707 |
|
|
#define R(name, type, sim_num) \
|
| 708 |
|
|
(add_reg (arch, (name), (type), (sim_num), \
|
| 709 |
|
|
m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
|
| 710 |
|
|
|
| 711 |
|
|
/* The simulator register number for a raw register named NAME. */
|
| 712 |
|
|
#define SIM(name) (m32c_sim_reg_ ## name)
|
| 713 |
|
|
|
| 714 |
|
|
/* A raw unsigned 16-bit data register named NAME.
|
| 715 |
|
|
NAME should be an identifier, not a string. */
|
| 716 |
|
|
#define R16U(name) \
|
| 717 |
|
|
(R(#name, tdep->uint16, SIM (name)))
|
| 718 |
|
|
|
| 719 |
|
|
/* A raw data address register named NAME.
|
| 720 |
|
|
NAME should be an identifier, not a string. */
|
| 721 |
|
|
#define RA(name) \
|
| 722 |
|
|
(R(#name, tdep->data_addr_reg_type, SIM (name)))
|
| 723 |
|
|
|
| 724 |
|
|
/* A raw code address register named NAME. NAME should
|
| 725 |
|
|
be an identifier, not a string. */
|
| 726 |
|
|
#define RC(name) \
|
| 727 |
|
|
(R(#name, tdep->code_addr_reg_type, SIM (name)))
|
| 728 |
|
|
|
| 729 |
|
|
/* A pair of raw registers named NAME0 and NAME1, with type TYPE.
|
| 730 |
|
|
NAME should be an identifier, not a string. */
|
| 731 |
|
|
#define RP(name, type) \
|
| 732 |
|
|
(R(#name "0", (type), SIM (name ## 0)), \
|
| 733 |
|
|
R(#name "1", (type), SIM (name ## 1)) - 1)
|
| 734 |
|
|
|
| 735 |
|
|
/* A raw banked general-purpose data register named NAME.
|
| 736 |
|
|
NAME should be an identifier, not a string. */
|
| 737 |
|
|
#define RBD(name) \
|
| 738 |
|
|
(R(NULL, tdep->int16, SIM (name ## _bank0)), \
|
| 739 |
|
|
R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
|
| 740 |
|
|
|
| 741 |
|
|
/* A raw banked data address register named NAME.
|
| 742 |
|
|
NAME should be an identifier, not a string. */
|
| 743 |
|
|
#define RBA(name) \
|
| 744 |
|
|
(R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
|
| 745 |
|
|
R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
|
| 746 |
|
|
|
| 747 |
|
|
/* A cooked register named NAME referring to a raw banked register
|
| 748 |
|
|
from the bank selected by the current value of FLG. RAW_PAIR
|
| 749 |
|
|
should be a pointer to the first register in the banked pair.
|
| 750 |
|
|
NAME must be an identifier, not a string. */
|
| 751 |
|
|
#define CB(name, raw_pair) \
|
| 752 |
|
|
(add_reg (arch, #name, (raw_pair)->type, 0, \
|
| 753 |
|
|
m32c_banked_read, m32c_banked_write, \
|
| 754 |
|
|
(raw_pair), (raw_pair + 1), FLAGBIT_B))
|
| 755 |
|
|
|
| 756 |
|
|
/* A pair of registers named NAMEH and NAMEL, of type TYPE, that
|
| 757 |
|
|
access the top and bottom halves of the register pointed to by
|
| 758 |
|
|
NAME. NAME should be an identifier. */
|
| 759 |
|
|
#define CHL(name, type) \
|
| 760 |
|
|
(add_reg (arch, #name "h", (type), 0, \
|
| 761 |
|
|
m32c_part_read, m32c_part_write, name, NULL, 1), \
|
| 762 |
|
|
add_reg (arch, #name "l", (type), 0, \
|
| 763 |
|
|
m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
|
| 764 |
|
|
|
| 765 |
|
|
/* A register constructed by concatenating the two registers HIGH and
|
| 766 |
|
|
LOW, whose name is HIGHLOW and whose type is TYPE. */
|
| 767 |
|
|
#define CCAT(high, low, type) \
|
| 768 |
|
|
(add_reg (arch, #high #low, (type), 0, \
|
| 769 |
|
|
m32c_cat_read, m32c_cat_write, (high), (low), 0))
|
| 770 |
|
|
|
| 771 |
|
|
/* Abbreviations for marking register group membership. */
|
| 772 |
|
|
#define G(reg) (mark_general (reg))
|
| 773 |
|
|
#define S(reg) (mark_system (reg))
|
| 774 |
|
|
#define DMA(reg) (mark_dma (reg))
|
| 775 |
|
|
|
| 776 |
|
|
|
| 777 |
|
|
/* Construct the register set for ARCH. */
|
| 778 |
|
|
static void
|
| 779 |
|
|
make_regs (struct gdbarch *arch)
|
| 780 |
|
|
{
|
| 781 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
| 782 |
|
|
int mach = gdbarch_bfd_arch_info (arch)->mach;
|
| 783 |
|
|
int num_raw_regs;
|
| 784 |
|
|
int num_cooked_regs;
|
| 785 |
|
|
|
| 786 |
|
|
struct m32c_reg *r0;
|
| 787 |
|
|
struct m32c_reg *r1;
|
| 788 |
|
|
struct m32c_reg *r2;
|
| 789 |
|
|
struct m32c_reg *r3;
|
| 790 |
|
|
struct m32c_reg *a0;
|
| 791 |
|
|
struct m32c_reg *a1;
|
| 792 |
|
|
struct m32c_reg *fb;
|
| 793 |
|
|
struct m32c_reg *sb;
|
| 794 |
|
|
struct m32c_reg *sp;
|
| 795 |
|
|
struct m32c_reg *r0hl;
|
| 796 |
|
|
struct m32c_reg *r1hl;
|
| 797 |
|
|
struct m32c_reg *r2hl;
|
| 798 |
|
|
struct m32c_reg *r3hl;
|
| 799 |
|
|
struct m32c_reg *intbhl;
|
| 800 |
|
|
struct m32c_reg *r2r0;
|
| 801 |
|
|
struct m32c_reg *r3r1;
|
| 802 |
|
|
struct m32c_reg *r3r1r2r0;
|
| 803 |
|
|
struct m32c_reg *r3r2r1r0;
|
| 804 |
|
|
struct m32c_reg *a1a0;
|
| 805 |
|
|
|
| 806 |
|
|
struct m32c_reg *raw_r0_pair = RBD (r0);
|
| 807 |
|
|
struct m32c_reg *raw_r1_pair = RBD (r1);
|
| 808 |
|
|
struct m32c_reg *raw_r2_pair = RBD (r2);
|
| 809 |
|
|
struct m32c_reg *raw_r3_pair = RBD (r3);
|
| 810 |
|
|
struct m32c_reg *raw_a0_pair = RBA (a0);
|
| 811 |
|
|
struct m32c_reg *raw_a1_pair = RBA (a1);
|
| 812 |
|
|
struct m32c_reg *raw_fb_pair = RBA (fb);
|
| 813 |
|
|
|
| 814 |
|
|
/* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
|
| 815 |
|
|
We always declare both raw registers, and deal with the distinction
|
| 816 |
|
|
in the pseudoregister. */
|
| 817 |
|
|
struct m32c_reg *raw_sb_pair = RBA (sb);
|
| 818 |
|
|
|
| 819 |
|
|
struct m32c_reg *usp = S (RA (usp));
|
| 820 |
|
|
struct m32c_reg *isp = S (RA (isp));
|
| 821 |
|
|
struct m32c_reg *intb = S (RC (intb));
|
| 822 |
|
|
struct m32c_reg *pc = G (RC (pc));
|
| 823 |
|
|
struct m32c_reg *flg = G (R16U (flg));
|
| 824 |
|
|
|
| 825 |
|
|
if (mach == bfd_mach_m32c)
|
| 826 |
|
|
{
|
| 827 |
|
|
struct m32c_reg *svf = S (R16U (svf));
|
| 828 |
|
|
struct m32c_reg *svp = S (RC (svp));
|
| 829 |
|
|
struct m32c_reg *vct = S (RC (vct));
|
| 830 |
|
|
|
| 831 |
|
|
struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
|
| 832 |
|
|
struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
|
| 833 |
|
|
struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
|
| 834 |
|
|
struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
|
| 835 |
|
|
struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
|
| 836 |
|
|
struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
|
| 837 |
|
|
}
|
| 838 |
|
|
|
| 839 |
|
|
num_raw_regs = tdep->num_regs;
|
| 840 |
|
|
|
| 841 |
|
|
r0 = G (CB (r0, raw_r0_pair));
|
| 842 |
|
|
r1 = G (CB (r1, raw_r1_pair));
|
| 843 |
|
|
r2 = G (CB (r2, raw_r2_pair));
|
| 844 |
|
|
r3 = G (CB (r3, raw_r3_pair));
|
| 845 |
|
|
a0 = G (CB (a0, raw_a0_pair));
|
| 846 |
|
|
a1 = G (CB (a1, raw_a1_pair));
|
| 847 |
|
|
fb = G (CB (fb, raw_fb_pair));
|
| 848 |
|
|
|
| 849 |
|
|
/* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
|
| 850 |
|
|
Specify custom read/write functions that do the right thing. */
|
| 851 |
|
|
sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
|
| 852 |
|
|
m32c_sb_read, m32c_sb_write,
|
| 853 |
|
|
raw_sb_pair, raw_sb_pair + 1, 0));
|
| 854 |
|
|
|
| 855 |
|
|
/* The current sp is either usp or isp, depending on the value of
|
| 856 |
|
|
the FLG register's U bit. */
|
| 857 |
|
|
sp = G (add_reg (arch, "sp", usp->type, 0,
|
| 858 |
|
|
m32c_banked_read, m32c_banked_write,
|
| 859 |
|
|
isp, usp, FLAGBIT_U));
|
| 860 |
|
|
|
| 861 |
|
|
r0hl = CHL (r0, tdep->int8);
|
| 862 |
|
|
r1hl = CHL (r1, tdep->int8);
|
| 863 |
|
|
r2hl = CHL (r2, tdep->int8);
|
| 864 |
|
|
r3hl = CHL (r3, tdep->int8);
|
| 865 |
|
|
intbhl = CHL (intb, tdep->int16);
|
| 866 |
|
|
|
| 867 |
|
|
r2r0 = CCAT (r2, r0, tdep->int32);
|
| 868 |
|
|
r3r1 = CCAT (r3, r1, tdep->int32);
|
| 869 |
|
|
r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
|
| 870 |
|
|
|
| 871 |
|
|
r3r2r1r0
|
| 872 |
|
|
= add_reg (arch, "r3r2r1r0", tdep->int64, 0,
|
| 873 |
|
|
m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
|
| 874 |
|
|
|
| 875 |
|
|
if (mach == bfd_mach_m16c)
|
| 876 |
|
|
a1a0 = CCAT (a1, a0, tdep->int32);
|
| 877 |
|
|
else
|
| 878 |
|
|
a1a0 = NULL;
|
| 879 |
|
|
|
| 880 |
|
|
num_cooked_regs = tdep->num_regs - num_raw_regs;
|
| 881 |
|
|
|
| 882 |
|
|
tdep->pc = pc;
|
| 883 |
|
|
tdep->flg = flg;
|
| 884 |
|
|
tdep->r0 = r0;
|
| 885 |
|
|
tdep->r1 = r1;
|
| 886 |
|
|
tdep->r2 = r2;
|
| 887 |
|
|
tdep->r3 = r3;
|
| 888 |
|
|
tdep->r2r0 = r2r0;
|
| 889 |
|
|
tdep->r3r2r1r0 = r3r2r1r0;
|
| 890 |
|
|
tdep->r3r1r2r0 = r3r1r2r0;
|
| 891 |
|
|
tdep->a0 = a0;
|
| 892 |
|
|
tdep->a1 = a1;
|
| 893 |
|
|
tdep->sb = sb;
|
| 894 |
|
|
tdep->fb = fb;
|
| 895 |
|
|
tdep->sp = sp;
|
| 896 |
|
|
|
| 897 |
|
|
/* Set up the DWARF register table. */
|
| 898 |
|
|
memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
|
| 899 |
|
|
set_dwarf_regnum (r0hl + 1, 0x01);
|
| 900 |
|
|
set_dwarf_regnum (r0hl + 0, 0x02);
|
| 901 |
|
|
set_dwarf_regnum (r1hl + 1, 0x03);
|
| 902 |
|
|
set_dwarf_regnum (r1hl + 0, 0x04);
|
| 903 |
|
|
set_dwarf_regnum (r0, 0x05);
|
| 904 |
|
|
set_dwarf_regnum (r1, 0x06);
|
| 905 |
|
|
set_dwarf_regnum (r2, 0x07);
|
| 906 |
|
|
set_dwarf_regnum (r3, 0x08);
|
| 907 |
|
|
set_dwarf_regnum (a0, 0x09);
|
| 908 |
|
|
set_dwarf_regnum (a1, 0x0a);
|
| 909 |
|
|
set_dwarf_regnum (fb, 0x0b);
|
| 910 |
|
|
set_dwarf_regnum (sp, 0x0c);
|
| 911 |
|
|
set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
|
| 912 |
|
|
set_dwarf_regnum (sb, 0x13);
|
| 913 |
|
|
set_dwarf_regnum (r2r0, 0x15);
|
| 914 |
|
|
set_dwarf_regnum (r3r1, 0x16);
|
| 915 |
|
|
if (a1a0)
|
| 916 |
|
|
set_dwarf_regnum (a1a0, 0x17);
|
| 917 |
|
|
|
| 918 |
|
|
/* Enumerate the save/restore register group.
|
| 919 |
|
|
|
| 920 |
|
|
The regcache_save and regcache_restore functions apply their read
|
| 921 |
|
|
function to each register in this group.
|
| 922 |
|
|
|
| 923 |
|
|
Since frame_pop supplies frame_unwind_register as its read
|
| 924 |
|
|
function, the registers meaningful to the Dwarf unwinder need to
|
| 925 |
|
|
be in this group.
|
| 926 |
|
|
|
| 927 |
|
|
On the other hand, when we make inferior calls, save_inferior_status
|
| 928 |
|
|
and restore_inferior_status use them to preserve the current register
|
| 929 |
|
|
values across the inferior call. For this, you'd kind of like to
|
| 930 |
|
|
preserve all the raw registers, to protect the interrupted code from
|
| 931 |
|
|
any sort of bank switching the callee might have done. But we handle
|
| 932 |
|
|
those cases so badly anyway --- for example, it matters whether we
|
| 933 |
|
|
restore FLG before or after we restore the general-purpose registers,
|
| 934 |
|
|
but there's no way to express that --- that it isn't worth worrying
|
| 935 |
|
|
about.
|
| 936 |
|
|
|
| 937 |
|
|
We omit control registers like inthl: if you call a function that
|
| 938 |
|
|
changes those, it's probably because you wanted that change to be
|
| 939 |
|
|
visible to the interrupted code. */
|
| 940 |
|
|
mark_save_restore (r0);
|
| 941 |
|
|
mark_save_restore (r1);
|
| 942 |
|
|
mark_save_restore (r2);
|
| 943 |
|
|
mark_save_restore (r3);
|
| 944 |
|
|
mark_save_restore (a0);
|
| 945 |
|
|
mark_save_restore (a1);
|
| 946 |
|
|
mark_save_restore (sb);
|
| 947 |
|
|
mark_save_restore (fb);
|
| 948 |
|
|
mark_save_restore (sp);
|
| 949 |
|
|
mark_save_restore (pc);
|
| 950 |
|
|
mark_save_restore (flg);
|
| 951 |
|
|
|
| 952 |
|
|
set_gdbarch_num_regs (arch, num_raw_regs);
|
| 953 |
|
|
set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
|
| 954 |
|
|
set_gdbarch_pc_regnum (arch, pc->num);
|
| 955 |
|
|
set_gdbarch_sp_regnum (arch, sp->num);
|
| 956 |
|
|
set_gdbarch_register_name (arch, m32c_register_name);
|
| 957 |
|
|
set_gdbarch_register_type (arch, m32c_register_type);
|
| 958 |
|
|
set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
|
| 959 |
|
|
set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
|
| 960 |
|
|
set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
|
| 961 |
|
|
set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
|
| 962 |
|
|
set_gdbarch_dwarf_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
|
| 963 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
|
| 964 |
|
|
set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
|
| 965 |
|
|
|
| 966 |
|
|
reggroup_add (arch, general_reggroup);
|
| 967 |
|
|
reggroup_add (arch, all_reggroup);
|
| 968 |
|
|
reggroup_add (arch, save_reggroup);
|
| 969 |
|
|
reggroup_add (arch, restore_reggroup);
|
| 970 |
|
|
reggroup_add (arch, system_reggroup);
|
| 971 |
|
|
reggroup_add (arch, m32c_dma_reggroup);
|
| 972 |
|
|
}
|
| 973 |
|
|
|
| 974 |
|
|
|
| 975 |
|
|
|
| 976 |
|
|
/* Breakpoints. */
|
| 977 |
|
|
|
| 978 |
|
|
static const unsigned char *
|
| 979 |
|
|
m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
|
| 980 |
|
|
{
|
| 981 |
|
|
static unsigned char break_insn[] = { 0x00 }; /* brk */
|
| 982 |
|
|
|
| 983 |
|
|
*len = sizeof (break_insn);
|
| 984 |
|
|
return break_insn;
|
| 985 |
|
|
}
|
| 986 |
|
|
|
| 987 |
|
|
|
| 988 |
|
|
|
| 989 |
|
|
/* Prologue analysis. */
|
| 990 |
|
|
|
| 991 |
|
|
struct m32c_prologue
|
| 992 |
|
|
{
|
| 993 |
|
|
/* For consistency with the DWARF 2 .debug_frame info generated by
|
| 994 |
|
|
GCC, a frame's CFA is the address immediately after the saved
|
| 995 |
|
|
return address. */
|
| 996 |
|
|
|
| 997 |
|
|
/* The architecture for which we generated this prologue info. */
|
| 998 |
|
|
struct gdbarch *arch;
|
| 999 |
|
|
|
| 1000 |
|
|
enum {
|
| 1001 |
|
|
/* This function uses a frame pointer. */
|
| 1002 |
|
|
prologue_with_frame_ptr,
|
| 1003 |
|
|
|
| 1004 |
|
|
/* This function has no frame pointer. */
|
| 1005 |
|
|
prologue_sans_frame_ptr,
|
| 1006 |
|
|
|
| 1007 |
|
|
/* This function sets up the stack, so its frame is the first
|
| 1008 |
|
|
frame on the stack. */
|
| 1009 |
|
|
prologue_first_frame
|
| 1010 |
|
|
|
| 1011 |
|
|
} kind;
|
| 1012 |
|
|
|
| 1013 |
|
|
/* If KIND is prologue_with_frame_ptr, this is the offset from the
|
| 1014 |
|
|
CFA to where the frame pointer points. This is always zero or
|
| 1015 |
|
|
negative. */
|
| 1016 |
|
|
LONGEST frame_ptr_offset;
|
| 1017 |
|
|
|
| 1018 |
|
|
/* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
|
| 1019 |
|
|
the stack pointer --- always zero or negative.
|
| 1020 |
|
|
|
| 1021 |
|
|
Calling this a "size" is a bit misleading, but given that the
|
| 1022 |
|
|
stack grows downwards, using offsets for everything keeps one
|
| 1023 |
|
|
from going completely sign-crazy: you never change anything's
|
| 1024 |
|
|
sign for an ADD instruction; always change the second operand's
|
| 1025 |
|
|
sign for a SUB instruction; and everything takes care of
|
| 1026 |
|
|
itself.
|
| 1027 |
|
|
|
| 1028 |
|
|
Functions that use alloca don't have a constant frame size. But
|
| 1029 |
|
|
they always have frame pointers, so we must use that to find the
|
| 1030 |
|
|
CFA (and perhaps to unwind the stack pointer). */
|
| 1031 |
|
|
LONGEST frame_size;
|
| 1032 |
|
|
|
| 1033 |
|
|
/* The address of the first instruction at which the frame has been
|
| 1034 |
|
|
set up and the arguments are where the debug info says they are
|
| 1035 |
|
|
--- as best as we can tell. */
|
| 1036 |
|
|
CORE_ADDR prologue_end;
|
| 1037 |
|
|
|
| 1038 |
|
|
/* reg_offset[R] is the offset from the CFA at which register R is
|
| 1039 |
|
|
saved, or 1 if register R has not been saved. (Real values are
|
| 1040 |
|
|
always zero or negative.) */
|
| 1041 |
|
|
LONGEST reg_offset[M32C_MAX_NUM_REGS];
|
| 1042 |
|
|
};
|
| 1043 |
|
|
|
| 1044 |
|
|
|
| 1045 |
|
|
/* The longest I've seen, anyway. */
|
| 1046 |
|
|
#define M32C_MAX_INSN_LEN (9)
|
| 1047 |
|
|
|
| 1048 |
|
|
/* Processor state, for the prologue analyzer. */
|
| 1049 |
|
|
struct m32c_pv_state
|
| 1050 |
|
|
{
|
| 1051 |
|
|
struct gdbarch *arch;
|
| 1052 |
|
|
pv_t r0, r1, r2, r3;
|
| 1053 |
|
|
pv_t a0, a1;
|
| 1054 |
|
|
pv_t sb, fb, sp;
|
| 1055 |
|
|
pv_t pc;
|
| 1056 |
|
|
struct pv_area *stack;
|
| 1057 |
|
|
|
| 1058 |
|
|
/* Bytes from the current PC, the address they were read from,
|
| 1059 |
|
|
and the address of the next unconsumed byte. */
|
| 1060 |
|
|
gdb_byte insn[M32C_MAX_INSN_LEN];
|
| 1061 |
|
|
CORE_ADDR scan_pc, next_addr;
|
| 1062 |
|
|
};
|
| 1063 |
|
|
|
| 1064 |
|
|
|
| 1065 |
|
|
/* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
|
| 1066 |
|
|
all went well, or non-zero if simulating the action would trash our
|
| 1067 |
|
|
state. */
|
| 1068 |
|
|
static int
|
| 1069 |
|
|
m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
|
| 1070 |
|
|
{
|
| 1071 |
|
|
if (pv_area_store_would_trash (state->stack, state->sp))
|
| 1072 |
|
|
return 1;
|
| 1073 |
|
|
|
| 1074 |
|
|
state->sp = pv_add_constant (state->sp, -size);
|
| 1075 |
|
|
pv_area_store (state->stack, state->sp, size, value);
|
| 1076 |
|
|
|
| 1077 |
|
|
return 0;
|
| 1078 |
|
|
}
|
| 1079 |
|
|
|
| 1080 |
|
|
|
| 1081 |
|
|
/* A source or destination location for an m16c or m32c
|
| 1082 |
|
|
instruction. */
|
| 1083 |
|
|
struct srcdest
|
| 1084 |
|
|
{
|
| 1085 |
|
|
/* If srcdest_reg, the location is a register pointed to by REG.
|
| 1086 |
|
|
If srcdest_partial_reg, the location is part of a register pointed
|
| 1087 |
|
|
to by REG. We don't try to handle this too well.
|
| 1088 |
|
|
If srcdest_mem, the location is memory whose address is ADDR. */
|
| 1089 |
|
|
enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
|
| 1090 |
|
|
pv_t *reg, addr;
|
| 1091 |
|
|
};
|
| 1092 |
|
|
|
| 1093 |
|
|
|
| 1094 |
|
|
/* Return the SIZE-byte value at LOC in STATE. */
|
| 1095 |
|
|
static pv_t
|
| 1096 |
|
|
m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
|
| 1097 |
|
|
{
|
| 1098 |
|
|
if (loc.kind == srcdest_mem)
|
| 1099 |
|
|
return pv_area_fetch (state->stack, loc.addr, size);
|
| 1100 |
|
|
else if (loc.kind == srcdest_partial_reg)
|
| 1101 |
|
|
return pv_unknown ();
|
| 1102 |
|
|
else
|
| 1103 |
|
|
return *loc.reg;
|
| 1104 |
|
|
}
|
| 1105 |
|
|
|
| 1106 |
|
|
|
| 1107 |
|
|
/* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
|
| 1108 |
|
|
all went well, or non-zero if simulating the store would trash our
|
| 1109 |
|
|
state. */
|
| 1110 |
|
|
static int
|
| 1111 |
|
|
m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
|
| 1112 |
|
|
pv_t value, int size)
|
| 1113 |
|
|
{
|
| 1114 |
|
|
if (loc.kind == srcdest_mem)
|
| 1115 |
|
|
{
|
| 1116 |
|
|
if (pv_area_store_would_trash (state->stack, loc.addr))
|
| 1117 |
|
|
return 1;
|
| 1118 |
|
|
pv_area_store (state->stack, loc.addr, size, value);
|
| 1119 |
|
|
}
|
| 1120 |
|
|
else if (loc.kind == srcdest_partial_reg)
|
| 1121 |
|
|
*loc.reg = pv_unknown ();
|
| 1122 |
|
|
else
|
| 1123 |
|
|
*loc.reg = value;
|
| 1124 |
|
|
|
| 1125 |
|
|
return 0;
|
| 1126 |
|
|
}
|
| 1127 |
|
|
|
| 1128 |
|
|
|
| 1129 |
|
|
static int
|
| 1130 |
|
|
m32c_sign_ext (int v, int bits)
|
| 1131 |
|
|
{
|
| 1132 |
|
|
int mask = 1 << (bits - 1);
|
| 1133 |
|
|
return (v ^ mask) - mask;
|
| 1134 |
|
|
}
|
| 1135 |
|
|
|
| 1136 |
|
|
static unsigned int
|
| 1137 |
|
|
m32c_next_byte (struct m32c_pv_state *st)
|
| 1138 |
|
|
{
|
| 1139 |
|
|
gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
|
| 1140 |
|
|
return st->insn[st->next_addr++ - st->scan_pc];
|
| 1141 |
|
|
}
|
| 1142 |
|
|
|
| 1143 |
|
|
static int
|
| 1144 |
|
|
m32c_udisp8 (struct m32c_pv_state *st)
|
| 1145 |
|
|
{
|
| 1146 |
|
|
return m32c_next_byte (st);
|
| 1147 |
|
|
}
|
| 1148 |
|
|
|
| 1149 |
|
|
|
| 1150 |
|
|
static int
|
| 1151 |
|
|
m32c_sdisp8 (struct m32c_pv_state *st)
|
| 1152 |
|
|
{
|
| 1153 |
|
|
return m32c_sign_ext (m32c_next_byte (st), 8);
|
| 1154 |
|
|
}
|
| 1155 |
|
|
|
| 1156 |
|
|
|
| 1157 |
|
|
static int
|
| 1158 |
|
|
m32c_udisp16 (struct m32c_pv_state *st)
|
| 1159 |
|
|
{
|
| 1160 |
|
|
int low = m32c_next_byte (st);
|
| 1161 |
|
|
int high = m32c_next_byte (st);
|
| 1162 |
|
|
|
| 1163 |
|
|
return low + (high << 8);
|
| 1164 |
|
|
}
|
| 1165 |
|
|
|
| 1166 |
|
|
|
| 1167 |
|
|
static int
|
| 1168 |
|
|
m32c_sdisp16 (struct m32c_pv_state *st)
|
| 1169 |
|
|
{
|
| 1170 |
|
|
int low = m32c_next_byte (st);
|
| 1171 |
|
|
int high = m32c_next_byte (st);
|
| 1172 |
|
|
|
| 1173 |
|
|
return m32c_sign_ext (low + (high << 8), 16);
|
| 1174 |
|
|
}
|
| 1175 |
|
|
|
| 1176 |
|
|
|
| 1177 |
|
|
static int
|
| 1178 |
|
|
m32c_udisp24 (struct m32c_pv_state *st)
|
| 1179 |
|
|
{
|
| 1180 |
|
|
int low = m32c_next_byte (st);
|
| 1181 |
|
|
int mid = m32c_next_byte (st);
|
| 1182 |
|
|
int high = m32c_next_byte (st);
|
| 1183 |
|
|
|
| 1184 |
|
|
return low + (mid << 8) + (high << 16);
|
| 1185 |
|
|
}
|
| 1186 |
|
|
|
| 1187 |
|
|
|
| 1188 |
|
|
/* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
|
| 1189 |
|
|
static int
|
| 1190 |
|
|
m32c_get_src23 (unsigned char *i)
|
| 1191 |
|
|
{
|
| 1192 |
|
|
return (((i[0] & 0x70) >> 2)
|
| 1193 |
|
|
| ((i[1] & 0x30) >> 4));
|
| 1194 |
|
|
}
|
| 1195 |
|
|
|
| 1196 |
|
|
|
| 1197 |
|
|
/* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
|
| 1198 |
|
|
static int
|
| 1199 |
|
|
m32c_get_dest23 (unsigned char *i)
|
| 1200 |
|
|
{
|
| 1201 |
|
|
return (((i[0] & 0x0e) << 1)
|
| 1202 |
|
|
| ((i[1] & 0xc0) >> 6));
|
| 1203 |
|
|
}
|
| 1204 |
|
|
|
| 1205 |
|
|
|
| 1206 |
|
|
static struct srcdest
|
| 1207 |
|
|
m32c_decode_srcdest4 (struct m32c_pv_state *st,
|
| 1208 |
|
|
int code, int size)
|
| 1209 |
|
|
{
|
| 1210 |
|
|
struct srcdest sd;
|
| 1211 |
|
|
|
| 1212 |
|
|
if (code < 6)
|
| 1213 |
|
|
sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
|
| 1214 |
|
|
else
|
| 1215 |
|
|
sd.kind = srcdest_mem;
|
| 1216 |
|
|
|
| 1217 |
|
|
sd.addr = pv_unknown ();
|
| 1218 |
|
|
sd.reg = 0;
|
| 1219 |
|
|
|
| 1220 |
|
|
switch (code)
|
| 1221 |
|
|
{
|
| 1222 |
|
|
case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
|
| 1223 |
|
|
case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
|
| 1224 |
|
|
case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
|
| 1225 |
|
|
case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
|
| 1226 |
|
|
|
| 1227 |
|
|
case 0x4: sd.reg = &st->a0; break;
|
| 1228 |
|
|
case 0x5: sd.reg = &st->a1; break;
|
| 1229 |
|
|
|
| 1230 |
|
|
case 0x6: sd.addr = st->a0; break;
|
| 1231 |
|
|
case 0x7: sd.addr = st->a1; break;
|
| 1232 |
|
|
|
| 1233 |
|
|
case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
|
| 1234 |
|
|
case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
|
| 1235 |
|
|
case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
|
| 1236 |
|
|
case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
|
| 1237 |
|
|
|
| 1238 |
|
|
case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
|
| 1239 |
|
|
case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
|
| 1240 |
|
|
case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
|
| 1241 |
|
|
case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
|
| 1242 |
|
|
|
| 1243 |
|
|
default:
|
| 1244 |
|
|
gdb_assert (0);
|
| 1245 |
|
|
}
|
| 1246 |
|
|
|
| 1247 |
|
|
return sd;
|
| 1248 |
|
|
}
|
| 1249 |
|
|
|
| 1250 |
|
|
|
| 1251 |
|
|
static struct srcdest
|
| 1252 |
|
|
m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
|
| 1253 |
|
|
{
|
| 1254 |
|
|
struct srcdest sd;
|
| 1255 |
|
|
|
| 1256 |
|
|
sd.addr = pv_unknown ();
|
| 1257 |
|
|
sd.reg = 0;
|
| 1258 |
|
|
|
| 1259 |
|
|
switch (code)
|
| 1260 |
|
|
{
|
| 1261 |
|
|
case 0x12:
|
| 1262 |
|
|
case 0x13:
|
| 1263 |
|
|
case 0x10:
|
| 1264 |
|
|
case 0x11:
|
| 1265 |
|
|
sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
|
| 1266 |
|
|
break;
|
| 1267 |
|
|
|
| 1268 |
|
|
case 0x02:
|
| 1269 |
|
|
case 0x03:
|
| 1270 |
|
|
sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
|
| 1271 |
|
|
break;
|
| 1272 |
|
|
|
| 1273 |
|
|
default:
|
| 1274 |
|
|
sd.kind = srcdest_mem;
|
| 1275 |
|
|
break;
|
| 1276 |
|
|
|
| 1277 |
|
|
}
|
| 1278 |
|
|
|
| 1279 |
|
|
switch (code)
|
| 1280 |
|
|
{
|
| 1281 |
|
|
case 0x12: sd.reg = &st->r0; break;
|
| 1282 |
|
|
case 0x13: sd.reg = &st->r1; break;
|
| 1283 |
|
|
case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
|
| 1284 |
|
|
case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
|
| 1285 |
|
|
case 0x02: sd.reg = &st->a0; break;
|
| 1286 |
|
|
case 0x03: sd.reg = &st->a1; break;
|
| 1287 |
|
|
|
| 1288 |
|
|
case 0x00: sd.addr = st->a0; break;
|
| 1289 |
|
|
case 0x01: sd.addr = st->a1; break;
|
| 1290 |
|
|
case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
|
| 1291 |
|
|
case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
|
| 1292 |
|
|
case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
|
| 1293 |
|
|
case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
|
| 1294 |
|
|
case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
|
| 1295 |
|
|
case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
|
| 1296 |
|
|
case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
|
| 1297 |
|
|
case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
|
| 1298 |
|
|
case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
|
| 1299 |
|
|
case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
|
| 1300 |
|
|
case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
|
| 1301 |
|
|
case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
|
| 1302 |
|
|
default:
|
| 1303 |
|
|
gdb_assert (0);
|
| 1304 |
|
|
}
|
| 1305 |
|
|
|
| 1306 |
|
|
if (ind)
|
| 1307 |
|
|
{
|
| 1308 |
|
|
sd.addr = m32c_srcdest_fetch (st, sd, 4);
|
| 1309 |
|
|
sd.kind = srcdest_mem;
|
| 1310 |
|
|
}
|
| 1311 |
|
|
|
| 1312 |
|
|
return sd;
|
| 1313 |
|
|
}
|
| 1314 |
|
|
|
| 1315 |
|
|
|
| 1316 |
|
|
/* The r16c and r32c machines have instructions with similar
|
| 1317 |
|
|
semantics, but completely different machine language encodings. So
|
| 1318 |
|
|
we break out the semantics into their own functions, and leave
|
| 1319 |
|
|
machine-specific decoding in m32c_analyze_prologue.
|
| 1320 |
|
|
|
| 1321 |
|
|
The following functions all expect their arguments already decoded,
|
| 1322 |
|
|
and they all return zero if analysis should continue past this
|
| 1323 |
|
|
instruction, or non-zero if analysis should stop. */
|
| 1324 |
|
|
|
| 1325 |
|
|
|
| 1326 |
|
|
/* Simulate an 'enter SIZE' instruction in STATE. */
|
| 1327 |
|
|
static int
|
| 1328 |
|
|
m32c_pv_enter (struct m32c_pv_state *state, int size)
|
| 1329 |
|
|
{
|
| 1330 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
|
| 1331 |
|
|
|
| 1332 |
|
|
/* If simulating this store would require us to forget
|
| 1333 |
|
|
everything we know about the stack frame in the name of
|
| 1334 |
|
|
accuracy, it would be better to just quit now. */
|
| 1335 |
|
|
if (pv_area_store_would_trash (state->stack, state->sp))
|
| 1336 |
|
|
return 1;
|
| 1337 |
|
|
|
| 1338 |
|
|
if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
|
| 1339 |
|
|
return 1;
|
| 1340 |
|
|
state->fb = state->sp;
|
| 1341 |
|
|
state->sp = pv_add_constant (state->sp, -size);
|
| 1342 |
|
|
|
| 1343 |
|
|
return 0;
|
| 1344 |
|
|
}
|
| 1345 |
|
|
|
| 1346 |
|
|
|
| 1347 |
|
|
static int
|
| 1348 |
|
|
m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
|
| 1349 |
|
|
int bit, int src, int size)
|
| 1350 |
|
|
{
|
| 1351 |
|
|
if (bit & src)
|
| 1352 |
|
|
{
|
| 1353 |
|
|
if (m32c_pv_push (state, reg, size))
|
| 1354 |
|
|
return 1;
|
| 1355 |
|
|
}
|
| 1356 |
|
|
|
| 1357 |
|
|
return 0;
|
| 1358 |
|
|
}
|
| 1359 |
|
|
|
| 1360 |
|
|
|
| 1361 |
|
|
/* Simulate a 'pushm SRC' instruction in STATE. */
|
| 1362 |
|
|
static int
|
| 1363 |
|
|
m32c_pv_pushm (struct m32c_pv_state *state, int src)
|
| 1364 |
|
|
{
|
| 1365 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
|
| 1366 |
|
|
|
| 1367 |
|
|
/* The bits in SRC indicating which registers to save are:
|
| 1368 |
|
|
r0 r1 r2 r3 a0 a1 sb fb */
|
| 1369 |
|
|
return
|
| 1370 |
|
|
( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
|
| 1371 |
|
|
|| m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
|
| 1372 |
|
|
|| m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
|
| 1373 |
|
|
|| m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
|
| 1374 |
|
|
|| m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
|
| 1375 |
|
|
|| m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
|
| 1376 |
|
|
|| m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
|
| 1377 |
|
|
|| m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
|
| 1378 |
|
|
}
|
| 1379 |
|
|
|
| 1380 |
|
|
/* Return non-zero if VALUE is the first incoming argument register. */
|
| 1381 |
|
|
|
| 1382 |
|
|
static int
|
| 1383 |
|
|
m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
|
| 1384 |
|
|
{
|
| 1385 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
|
| 1386 |
|
|
return (value.kind == pvk_register
|
| 1387 |
|
|
&& (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
|
| 1388 |
|
|
? (value.reg == tdep->r1->num)
|
| 1389 |
|
|
: (value.reg == tdep->r0->num))
|
| 1390 |
|
|
&& value.k == 0);
|
| 1391 |
|
|
}
|
| 1392 |
|
|
|
| 1393 |
|
|
/* Return non-zero if VALUE is an incoming argument register. */
|
| 1394 |
|
|
|
| 1395 |
|
|
static int
|
| 1396 |
|
|
m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
|
| 1397 |
|
|
{
|
| 1398 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
|
| 1399 |
|
|
return (value.kind == pvk_register
|
| 1400 |
|
|
&& (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
|
| 1401 |
|
|
? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
|
| 1402 |
|
|
: (value.reg == tdep->r0->num))
|
| 1403 |
|
|
&& value.k == 0);
|
| 1404 |
|
|
}
|
| 1405 |
|
|
|
| 1406 |
|
|
/* Return non-zero if a store of VALUE to LOC is probably spilling an
|
| 1407 |
|
|
argument register to its stack slot in STATE. Such instructions
|
| 1408 |
|
|
should be included in the prologue, if possible.
|
| 1409 |
|
|
|
| 1410 |
|
|
The store is a spill if:
|
| 1411 |
|
|
- the value being stored is the original value of an argument register;
|
| 1412 |
|
|
- the value has not already been stored somewhere in STACK; and
|
| 1413 |
|
|
- LOC is a stack slot (e.g., a memory location whose address is
|
| 1414 |
|
|
relative to the original value of the SP). */
|
| 1415 |
|
|
|
| 1416 |
|
|
static int
|
| 1417 |
|
|
m32c_is_arg_spill (struct m32c_pv_state *st,
|
| 1418 |
|
|
struct srcdest loc,
|
| 1419 |
|
|
pv_t value)
|
| 1420 |
|
|
{
|
| 1421 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
|
| 1422 |
|
|
|
| 1423 |
|
|
return (m32c_is_arg_reg (st, value)
|
| 1424 |
|
|
&& loc.kind == srcdest_mem
|
| 1425 |
|
|
&& pv_is_register (loc.addr, tdep->sp->num)
|
| 1426 |
|
|
&& ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
|
| 1427 |
|
|
}
|
| 1428 |
|
|
|
| 1429 |
|
|
/* Return non-zero if a store of VALUE to LOC is probably
|
| 1430 |
|
|
copying the struct return address into an address register
|
| 1431 |
|
|
for immediate use. This is basically a "spill" into the
|
| 1432 |
|
|
address register, instead of onto the stack.
|
| 1433 |
|
|
|
| 1434 |
|
|
The prerequisites are:
|
| 1435 |
|
|
- value being stored is original value of the FIRST arg register;
|
| 1436 |
|
|
- value has not already been stored on stack; and
|
| 1437 |
|
|
- LOC is an address register (a0 or a1). */
|
| 1438 |
|
|
|
| 1439 |
|
|
static int
|
| 1440 |
|
|
m32c_is_struct_return (struct m32c_pv_state *st,
|
| 1441 |
|
|
struct srcdest loc,
|
| 1442 |
|
|
pv_t value)
|
| 1443 |
|
|
{
|
| 1444 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
|
| 1445 |
|
|
|
| 1446 |
|
|
return (m32c_is_1st_arg_reg (st, value)
|
| 1447 |
|
|
&& !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
|
| 1448 |
|
|
&& loc.kind == srcdest_reg
|
| 1449 |
|
|
&& (pv_is_register (*loc.reg, tdep->a0->num)
|
| 1450 |
|
|
|| pv_is_register (*loc.reg, tdep->a1->num)));
|
| 1451 |
|
|
}
|
| 1452 |
|
|
|
| 1453 |
|
|
/* Return non-zero if a 'pushm' saving the registers indicated by SRC
|
| 1454 |
|
|
was a register save:
|
| 1455 |
|
|
- all the named registers should have their original values, and
|
| 1456 |
|
|
- the stack pointer should be at a constant offset from the
|
| 1457 |
|
|
original stack pointer. */
|
| 1458 |
|
|
static int
|
| 1459 |
|
|
m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
|
| 1460 |
|
|
{
|
| 1461 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
|
| 1462 |
|
|
/* The bits in SRC indicating which registers to save are:
|
| 1463 |
|
|
r0 r1 r2 r3 a0 a1 sb fb */
|
| 1464 |
|
|
return
|
| 1465 |
|
|
(pv_is_register (st->sp, tdep->sp->num)
|
| 1466 |
|
|
&& (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
|
| 1467 |
|
|
&& (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
|
| 1468 |
|
|
&& (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
|
| 1469 |
|
|
&& (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
|
| 1470 |
|
|
&& (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
|
| 1471 |
|
|
&& (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
|
| 1472 |
|
|
&& (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
|
| 1473 |
|
|
&& (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
|
| 1474 |
|
|
}
|
| 1475 |
|
|
|
| 1476 |
|
|
|
| 1477 |
|
|
/* Function for finding saved registers in a 'struct pv_area'; we pass
|
| 1478 |
|
|
this to pv_area_scan.
|
| 1479 |
|
|
|
| 1480 |
|
|
If VALUE is a saved register, ADDR says it was saved at a constant
|
| 1481 |
|
|
offset from the frame base, and SIZE indicates that the whole
|
| 1482 |
|
|
register was saved, record its offset in RESULT_UNTYPED. */
|
| 1483 |
|
|
static void
|
| 1484 |
|
|
check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
|
| 1485 |
|
|
{
|
| 1486 |
|
|
struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
|
| 1487 |
|
|
struct gdbarch *arch = prologue->arch;
|
| 1488 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
| 1489 |
|
|
|
| 1490 |
|
|
/* Is this the unchanged value of some register being saved on the
|
| 1491 |
|
|
stack? */
|
| 1492 |
|
|
if (value.kind == pvk_register
|
| 1493 |
|
|
&& value.k == 0
|
| 1494 |
|
|
&& pv_is_register (addr, tdep->sp->num))
|
| 1495 |
|
|
{
|
| 1496 |
|
|
/* Some registers require special handling: they're saved as a
|
| 1497 |
|
|
larger value than the register itself. */
|
| 1498 |
|
|
CORE_ADDR saved_size = register_size (arch, value.reg);
|
| 1499 |
|
|
|
| 1500 |
|
|
if (value.reg == tdep->pc->num)
|
| 1501 |
|
|
saved_size = tdep->ret_addr_bytes;
|
| 1502 |
|
|
else if (register_type (arch, value.reg)
|
| 1503 |
|
|
== tdep->data_addr_reg_type)
|
| 1504 |
|
|
saved_size = tdep->push_addr_bytes;
|
| 1505 |
|
|
|
| 1506 |
|
|
if (size == saved_size)
|
| 1507 |
|
|
{
|
| 1508 |
|
|
/* Find which end of the saved value corresponds to our
|
| 1509 |
|
|
register. */
|
| 1510 |
|
|
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
|
| 1511 |
|
|
prologue->reg_offset[value.reg]
|
| 1512 |
|
|
= (addr.k + saved_size - register_size (arch, value.reg));
|
| 1513 |
|
|
else
|
| 1514 |
|
|
prologue->reg_offset[value.reg] = addr.k;
|
| 1515 |
|
|
}
|
| 1516 |
|
|
}
|
| 1517 |
|
|
}
|
| 1518 |
|
|
|
| 1519 |
|
|
|
| 1520 |
|
|
/* Analyze the function prologue for ARCH at START, going no further
|
| 1521 |
|
|
than LIMIT, and place a description of what we found in
|
| 1522 |
|
|
PROLOGUE. */
|
| 1523 |
|
|
void
|
| 1524 |
|
|
m32c_analyze_prologue (struct gdbarch *arch,
|
| 1525 |
|
|
CORE_ADDR start, CORE_ADDR limit,
|
| 1526 |
|
|
struct m32c_prologue *prologue)
|
| 1527 |
|
|
{
|
| 1528 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
| 1529 |
|
|
unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
|
| 1530 |
|
|
CORE_ADDR after_last_frame_related_insn;
|
| 1531 |
|
|
struct cleanup *back_to;
|
| 1532 |
|
|
struct m32c_pv_state st;
|
| 1533 |
|
|
|
| 1534 |
|
|
st.arch = arch;
|
| 1535 |
|
|
st.r0 = pv_register (tdep->r0->num, 0);
|
| 1536 |
|
|
st.r1 = pv_register (tdep->r1->num, 0);
|
| 1537 |
|
|
st.r2 = pv_register (tdep->r2->num, 0);
|
| 1538 |
|
|
st.r3 = pv_register (tdep->r3->num, 0);
|
| 1539 |
|
|
st.a0 = pv_register (tdep->a0->num, 0);
|
| 1540 |
|
|
st.a1 = pv_register (tdep->a1->num, 0);
|
| 1541 |
|
|
st.sb = pv_register (tdep->sb->num, 0);
|
| 1542 |
|
|
st.fb = pv_register (tdep->fb->num, 0);
|
| 1543 |
|
|
st.sp = pv_register (tdep->sp->num, 0);
|
| 1544 |
|
|
st.pc = pv_register (tdep->pc->num, 0);
|
| 1545 |
|
|
st.stack = make_pv_area (tdep->sp->num);
|
| 1546 |
|
|
back_to = make_cleanup_free_pv_area (st.stack);
|
| 1547 |
|
|
|
| 1548 |
|
|
/* Record that the call instruction has saved the return address on
|
| 1549 |
|
|
the stack. */
|
| 1550 |
|
|
m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
|
| 1551 |
|
|
|
| 1552 |
|
|
memset (prologue, 0, sizeof (*prologue));
|
| 1553 |
|
|
prologue->arch = arch;
|
| 1554 |
|
|
{
|
| 1555 |
|
|
int i;
|
| 1556 |
|
|
for (i = 0; i < M32C_MAX_NUM_REGS; i++)
|
| 1557 |
|
|
prologue->reg_offset[i] = 1;
|
| 1558 |
|
|
}
|
| 1559 |
|
|
|
| 1560 |
|
|
st.scan_pc = after_last_frame_related_insn = start;
|
| 1561 |
|
|
|
| 1562 |
|
|
while (st.scan_pc < limit)
|
| 1563 |
|
|
{
|
| 1564 |
|
|
pv_t pre_insn_fb = st.fb;
|
| 1565 |
|
|
pv_t pre_insn_sp = st.sp;
|
| 1566 |
|
|
|
| 1567 |
|
|
/* In theory we could get in trouble by trying to read ahead
|
| 1568 |
|
|
here, when we only know we're expecting one byte. In
|
| 1569 |
|
|
practice I doubt anyone will care, and it makes the rest of
|
| 1570 |
|
|
the code easier. */
|
| 1571 |
|
|
if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
|
| 1572 |
|
|
/* If we can't fetch the instruction from memory, stop here
|
| 1573 |
|
|
and hope for the best. */
|
| 1574 |
|
|
break;
|
| 1575 |
|
|
st.next_addr = st.scan_pc;
|
| 1576 |
|
|
|
| 1577 |
|
|
/* The assembly instructions are written as they appear in the
|
| 1578 |
|
|
section of the processor manuals that describe the
|
| 1579 |
|
|
instruction encodings.
|
| 1580 |
|
|
|
| 1581 |
|
|
When a single assembly language instruction has several
|
| 1582 |
|
|
different machine-language encodings, the manual
|
| 1583 |
|
|
distinguishes them by a number in parens, before the
|
| 1584 |
|
|
mnemonic. Those numbers are included, as well.
|
| 1585 |
|
|
|
| 1586 |
|
|
The srcdest decoding instructions have the same names as the
|
| 1587 |
|
|
analogous functions in the simulator. */
|
| 1588 |
|
|
if (mach == bfd_mach_m16c)
|
| 1589 |
|
|
{
|
| 1590 |
|
|
/* (1) ENTER #imm8 */
|
| 1591 |
|
|
if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
|
| 1592 |
|
|
{
|
| 1593 |
|
|
if (m32c_pv_enter (&st, st.insn[2]))
|
| 1594 |
|
|
break;
|
| 1595 |
|
|
st.next_addr += 3;
|
| 1596 |
|
|
}
|
| 1597 |
|
|
/* (1) PUSHM src */
|
| 1598 |
|
|
else if (st.insn[0] == 0xec)
|
| 1599 |
|
|
{
|
| 1600 |
|
|
int src = st.insn[1];
|
| 1601 |
|
|
if (m32c_pv_pushm (&st, src))
|
| 1602 |
|
|
break;
|
| 1603 |
|
|
st.next_addr += 2;
|
| 1604 |
|
|
|
| 1605 |
|
|
if (m32c_pushm_is_reg_save (&st, src))
|
| 1606 |
|
|
after_last_frame_related_insn = st.next_addr;
|
| 1607 |
|
|
}
|
| 1608 |
|
|
|
| 1609 |
|
|
/* (6) MOV.size:G src, dest */
|
| 1610 |
|
|
else if ((st.insn[0] & 0xfe) == 0x72)
|
| 1611 |
|
|
{
|
| 1612 |
|
|
int size = (st.insn[0] & 0x01) ? 2 : 1;
|
| 1613 |
|
|
struct srcdest src;
|
| 1614 |
|
|
struct srcdest dest;
|
| 1615 |
|
|
pv_t src_value;
|
| 1616 |
|
|
st.next_addr += 2;
|
| 1617 |
|
|
|
| 1618 |
|
|
src
|
| 1619 |
|
|
= m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
|
| 1620 |
|
|
dest
|
| 1621 |
|
|
= m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
|
| 1622 |
|
|
src_value = m32c_srcdest_fetch (&st, src, size);
|
| 1623 |
|
|
|
| 1624 |
|
|
if (m32c_is_arg_spill (&st, dest, src_value))
|
| 1625 |
|
|
after_last_frame_related_insn = st.next_addr;
|
| 1626 |
|
|
else if (m32c_is_struct_return (&st, dest, src_value))
|
| 1627 |
|
|
after_last_frame_related_insn = st.next_addr;
|
| 1628 |
|
|
|
| 1629 |
|
|
if (m32c_srcdest_store (&st, dest, src_value, size))
|
| 1630 |
|
|
break;
|
| 1631 |
|
|
}
|
| 1632 |
|
|
|
| 1633 |
|
|
/* (1) LDC #IMM16, sp */
|
| 1634 |
|
|
else if (st.insn[0] == 0xeb
|
| 1635 |
|
|
&& st.insn[1] == 0x50)
|
| 1636 |
|
|
{
|
| 1637 |
|
|
st.next_addr += 2;
|
| 1638 |
|
|
st.sp = pv_constant (m32c_udisp16 (&st));
|
| 1639 |
|
|
}
|
| 1640 |
|
|
|
| 1641 |
|
|
else
|
| 1642 |
|
|
/* We've hit some instruction we don't know how to simulate.
|
| 1643 |
|
|
Strictly speaking, we should set every value we're
|
| 1644 |
|
|
tracking to "unknown". But we'll be optimistic, assume
|
| 1645 |
|
|
that we have enough information already, and stop
|
| 1646 |
|
|
analysis here. */
|
| 1647 |
|
|
break;
|
| 1648 |
|
|
}
|
| 1649 |
|
|
else
|
| 1650 |
|
|
{
|
| 1651 |
|
|
int src_indirect = 0;
|
| 1652 |
|
|
int dest_indirect = 0;
|
| 1653 |
|
|
int i = 0;
|
| 1654 |
|
|
|
| 1655 |
|
|
gdb_assert (mach == bfd_mach_m32c);
|
| 1656 |
|
|
|
| 1657 |
|
|
/* Check for prefix bytes indicating indirect addressing. */
|
| 1658 |
|
|
if (st.insn[0] == 0x41)
|
| 1659 |
|
|
{
|
| 1660 |
|
|
src_indirect = 1;
|
| 1661 |
|
|
i++;
|
| 1662 |
|
|
}
|
| 1663 |
|
|
else if (st.insn[0] == 0x09)
|
| 1664 |
|
|
{
|
| 1665 |
|
|
dest_indirect = 1;
|
| 1666 |
|
|
i++;
|
| 1667 |
|
|
}
|
| 1668 |
|
|
else if (st.insn[0] == 0x49)
|
| 1669 |
|
|
{
|
| 1670 |
|
|
src_indirect = dest_indirect = 1;
|
| 1671 |
|
|
i++;
|
| 1672 |
|
|
}
|
| 1673 |
|
|
|
| 1674 |
|
|
/* (1) ENTER #imm8 */
|
| 1675 |
|
|
if (st.insn[i] == 0xec)
|
| 1676 |
|
|
{
|
| 1677 |
|
|
if (m32c_pv_enter (&st, st.insn[i + 1]))
|
| 1678 |
|
|
break;
|
| 1679 |
|
|
st.next_addr += 2;
|
| 1680 |
|
|
}
|
| 1681 |
|
|
|
| 1682 |
|
|
/* (1) PUSHM src */
|
| 1683 |
|
|
else if (st.insn[i] == 0x8f)
|
| 1684 |
|
|
{
|
| 1685 |
|
|
int src = st.insn[i + 1];
|
| 1686 |
|
|
if (m32c_pv_pushm (&st, src))
|
| 1687 |
|
|
break;
|
| 1688 |
|
|
st.next_addr += 2;
|
| 1689 |
|
|
|
| 1690 |
|
|
if (m32c_pushm_is_reg_save (&st, src))
|
| 1691 |
|
|
after_last_frame_related_insn = st.next_addr;
|
| 1692 |
|
|
}
|
| 1693 |
|
|
|
| 1694 |
|
|
/* (7) MOV.size:G src, dest */
|
| 1695 |
|
|
else if ((st.insn[i] & 0x80) == 0x80
|
| 1696 |
|
|
&& (st.insn[i + 1] & 0x0f) == 0x0b
|
| 1697 |
|
|
&& m32c_get_src23 (&st.insn[i]) < 20
|
| 1698 |
|
|
&& m32c_get_dest23 (&st.insn[i]) < 20)
|
| 1699 |
|
|
{
|
| 1700 |
|
|
struct srcdest src;
|
| 1701 |
|
|
struct srcdest dest;
|
| 1702 |
|
|
pv_t src_value;
|
| 1703 |
|
|
int bw = st.insn[i] & 0x01;
|
| 1704 |
|
|
int size = bw ? 2 : 1;
|
| 1705 |
|
|
st.next_addr += 2;
|
| 1706 |
|
|
|
| 1707 |
|
|
src
|
| 1708 |
|
|
= m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
|
| 1709 |
|
|
size, src_indirect);
|
| 1710 |
|
|
dest
|
| 1711 |
|
|
= m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
|
| 1712 |
|
|
size, dest_indirect);
|
| 1713 |
|
|
src_value = m32c_srcdest_fetch (&st, src, size);
|
| 1714 |
|
|
|
| 1715 |
|
|
if (m32c_is_arg_spill (&st, dest, src_value))
|
| 1716 |
|
|
after_last_frame_related_insn = st.next_addr;
|
| 1717 |
|
|
|
| 1718 |
|
|
if (m32c_srcdest_store (&st, dest, src_value, size))
|
| 1719 |
|
|
break;
|
| 1720 |
|
|
}
|
| 1721 |
|
|
/* (2) LDC #IMM24, sp */
|
| 1722 |
|
|
else if (st.insn[i] == 0xd5
|
| 1723 |
|
|
&& st.insn[i + 1] == 0x29)
|
| 1724 |
|
|
{
|
| 1725 |
|
|
st.next_addr += 2;
|
| 1726 |
|
|
st.sp = pv_constant (m32c_udisp24 (&st));
|
| 1727 |
|
|
}
|
| 1728 |
|
|
else
|
| 1729 |
|
|
/* We've hit some instruction we don't know how to simulate.
|
| 1730 |
|
|
Strictly speaking, we should set every value we're
|
| 1731 |
|
|
tracking to "unknown". But we'll be optimistic, assume
|
| 1732 |
|
|
that we have enough information already, and stop
|
| 1733 |
|
|
analysis here. */
|
| 1734 |
|
|
break;
|
| 1735 |
|
|
}
|
| 1736 |
|
|
|
| 1737 |
|
|
/* If this instruction changed the FB or decreased the SP (i.e.,
|
| 1738 |
|
|
allocated more stack space), then this may be a good place to
|
| 1739 |
|
|
declare the prologue finished. However, there are some
|
| 1740 |
|
|
exceptions:
|
| 1741 |
|
|
|
| 1742 |
|
|
- If the instruction just changed the FB back to its original
|
| 1743 |
|
|
value, then that's probably a restore instruction. The
|
| 1744 |
|
|
prologue should definitely end before that.
|
| 1745 |
|
|
|
| 1746 |
|
|
- If the instruction increased the value of the SP (that is,
|
| 1747 |
|
|
shrunk the frame), then it's probably part of a frame
|
| 1748 |
|
|
teardown sequence, and the prologue should end before
|
| 1749 |
|
|
that. */
|
| 1750 |
|
|
|
| 1751 |
|
|
if (! pv_is_identical (st.fb, pre_insn_fb))
|
| 1752 |
|
|
{
|
| 1753 |
|
|
if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
|
| 1754 |
|
|
after_last_frame_related_insn = st.next_addr;
|
| 1755 |
|
|
}
|
| 1756 |
|
|
else if (! pv_is_identical (st.sp, pre_insn_sp))
|
| 1757 |
|
|
{
|
| 1758 |
|
|
/* The comparison of the constants looks odd, there, because
|
| 1759 |
|
|
.k is unsigned. All it really means is that the SP is
|
| 1760 |
|
|
lower than it was before the instruction. */
|
| 1761 |
|
|
if ( pv_is_register (pre_insn_sp, tdep->sp->num)
|
| 1762 |
|
|
&& pv_is_register (st.sp, tdep->sp->num)
|
| 1763 |
|
|
&& ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
|
| 1764 |
|
|
after_last_frame_related_insn = st.next_addr;
|
| 1765 |
|
|
}
|
| 1766 |
|
|
|
| 1767 |
|
|
st.scan_pc = st.next_addr;
|
| 1768 |
|
|
}
|
| 1769 |
|
|
|
| 1770 |
|
|
/* Did we load a constant value into the stack pointer? */
|
| 1771 |
|
|
if (pv_is_constant (st.sp))
|
| 1772 |
|
|
prologue->kind = prologue_first_frame;
|
| 1773 |
|
|
|
| 1774 |
|
|
/* Alternatively, did we initialize the frame pointer? Remember
|
| 1775 |
|
|
that the CFA is the address after the return address. */
|
| 1776 |
|
|
if (pv_is_register (st.fb, tdep->sp->num))
|
| 1777 |
|
|
{
|
| 1778 |
|
|
prologue->kind = prologue_with_frame_ptr;
|
| 1779 |
|
|
prologue->frame_ptr_offset = st.fb.k;
|
| 1780 |
|
|
}
|
| 1781 |
|
|
|
| 1782 |
|
|
/* Is the frame size a known constant? Remember that frame_size is
|
| 1783 |
|
|
actually the offset from the CFA to the SP (i.e., a negative
|
| 1784 |
|
|
value). */
|
| 1785 |
|
|
else if (pv_is_register (st.sp, tdep->sp->num))
|
| 1786 |
|
|
{
|
| 1787 |
|
|
prologue->kind = prologue_sans_frame_ptr;
|
| 1788 |
|
|
prologue->frame_size = st.sp.k;
|
| 1789 |
|
|
}
|
| 1790 |
|
|
|
| 1791 |
|
|
/* We haven't been able to make sense of this function's frame. Treat
|
| 1792 |
|
|
it as the first frame. */
|
| 1793 |
|
|
else
|
| 1794 |
|
|
prologue->kind = prologue_first_frame;
|
| 1795 |
|
|
|
| 1796 |
|
|
/* Record where all the registers were saved. */
|
| 1797 |
|
|
pv_area_scan (st.stack, check_for_saved, (void *) prologue);
|
| 1798 |
|
|
|
| 1799 |
|
|
prologue->prologue_end = after_last_frame_related_insn;
|
| 1800 |
|
|
|
| 1801 |
|
|
do_cleanups (back_to);
|
| 1802 |
|
|
}
|
| 1803 |
|
|
|
| 1804 |
|
|
|
| 1805 |
|
|
static CORE_ADDR
|
| 1806 |
|
|
m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
|
| 1807 |
|
|
{
|
| 1808 |
|
|
char *name;
|
| 1809 |
|
|
CORE_ADDR func_addr, func_end, sal_end;
|
| 1810 |
|
|
struct m32c_prologue p;
|
| 1811 |
|
|
|
| 1812 |
|
|
/* Try to find the extent of the function that contains IP. */
|
| 1813 |
|
|
if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
|
| 1814 |
|
|
return ip;
|
| 1815 |
|
|
|
| 1816 |
|
|
/* Find end by prologue analysis. */
|
| 1817 |
|
|
m32c_analyze_prologue (gdbarch, ip, func_end, &p);
|
| 1818 |
|
|
/* Find end by line info. */
|
| 1819 |
|
|
sal_end = skip_prologue_using_sal (ip);
|
| 1820 |
|
|
/* Return whichever is lower. */
|
| 1821 |
|
|
if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
|
| 1822 |
|
|
return sal_end;
|
| 1823 |
|
|
else
|
| 1824 |
|
|
return p.prologue_end;
|
| 1825 |
|
|
}
|
| 1826 |
|
|
|
| 1827 |
|
|
|
| 1828 |
|
|
|
| 1829 |
|
|
/* Stack unwinding. */
|
| 1830 |
|
|
|
| 1831 |
|
|
static struct m32c_prologue *
|
| 1832 |
|
|
m32c_analyze_frame_prologue (struct frame_info *next_frame,
|
| 1833 |
|
|
void **this_prologue_cache)
|
| 1834 |
|
|
{
|
| 1835 |
|
|
if (! *this_prologue_cache)
|
| 1836 |
|
|
{
|
| 1837 |
|
|
CORE_ADDR func_start = frame_func_unwind (next_frame, NORMAL_FRAME);
|
| 1838 |
|
|
CORE_ADDR stop_addr = frame_pc_unwind (next_frame);
|
| 1839 |
|
|
|
| 1840 |
|
|
/* If we couldn't find any function containing the PC, then
|
| 1841 |
|
|
just initialize the prologue cache, but don't do anything. */
|
| 1842 |
|
|
if (! func_start)
|
| 1843 |
|
|
stop_addr = func_start;
|
| 1844 |
|
|
|
| 1845 |
|
|
*this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
|
| 1846 |
|
|
m32c_analyze_prologue (get_frame_arch (next_frame),
|
| 1847 |
|
|
func_start, stop_addr, *this_prologue_cache);
|
| 1848 |
|
|
}
|
| 1849 |
|
|
|
| 1850 |
|
|
return *this_prologue_cache;
|
| 1851 |
|
|
}
|
| 1852 |
|
|
|
| 1853 |
|
|
|
| 1854 |
|
|
static CORE_ADDR
|
| 1855 |
|
|
m32c_frame_base (struct frame_info *next_frame,
|
| 1856 |
|
|
void **this_prologue_cache)
|
| 1857 |
|
|
{
|
| 1858 |
|
|
struct m32c_prologue *p
|
| 1859 |
|
|
= m32c_analyze_frame_prologue (next_frame, this_prologue_cache);
|
| 1860 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
|
| 1861 |
|
|
|
| 1862 |
|
|
/* In functions that use alloca, the distance between the stack
|
| 1863 |
|
|
pointer and the frame base varies dynamically, so we can't use
|
| 1864 |
|
|
the SP plus static information like prologue analysis to find the
|
| 1865 |
|
|
frame base. However, such functions must have a frame pointer,
|
| 1866 |
|
|
to be able to restore the SP on exit. So whenever we do have a
|
| 1867 |
|
|
frame pointer, use that to find the base. */
|
| 1868 |
|
|
switch (p->kind)
|
| 1869 |
|
|
{
|
| 1870 |
|
|
case prologue_with_frame_ptr:
|
| 1871 |
|
|
{
|
| 1872 |
|
|
CORE_ADDR fb
|
| 1873 |
|
|
= frame_unwind_register_unsigned (next_frame, tdep->fb->num);
|
| 1874 |
|
|
return fb - p->frame_ptr_offset;
|
| 1875 |
|
|
}
|
| 1876 |
|
|
|
| 1877 |
|
|
case prologue_sans_frame_ptr:
|
| 1878 |
|
|
{
|
| 1879 |
|
|
CORE_ADDR sp
|
| 1880 |
|
|
= frame_unwind_register_unsigned (next_frame, tdep->sp->num);
|
| 1881 |
|
|
return sp - p->frame_size;
|
| 1882 |
|
|
}
|
| 1883 |
|
|
|
| 1884 |
|
|
case prologue_first_frame:
|
| 1885 |
|
|
return 0;
|
| 1886 |
|
|
|
| 1887 |
|
|
default:
|
| 1888 |
|
|
gdb_assert (0);
|
| 1889 |
|
|
}
|
| 1890 |
|
|
}
|
| 1891 |
|
|
|
| 1892 |
|
|
|
| 1893 |
|
|
static void
|
| 1894 |
|
|
m32c_this_id (struct frame_info *next_frame,
|
| 1895 |
|
|
void **this_prologue_cache,
|
| 1896 |
|
|
struct frame_id *this_id)
|
| 1897 |
|
|
{
|
| 1898 |
|
|
CORE_ADDR base = m32c_frame_base (next_frame, this_prologue_cache);
|
| 1899 |
|
|
|
| 1900 |
|
|
if (base)
|
| 1901 |
|
|
*this_id = frame_id_build (base,
|
| 1902 |
|
|
frame_func_unwind (next_frame, NORMAL_FRAME));
|
| 1903 |
|
|
/* Otherwise, leave it unset, and that will terminate the backtrace. */
|
| 1904 |
|
|
}
|
| 1905 |
|
|
|
| 1906 |
|
|
|
| 1907 |
|
|
static void
|
| 1908 |
|
|
m32c_prev_register (struct frame_info *next_frame,
|
| 1909 |
|
|
void **this_prologue_cache,
|
| 1910 |
|
|
int regnum, int *optimizedp,
|
| 1911 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
| 1912 |
|
|
int *realnump, gdb_byte *bufferp)
|
| 1913 |
|
|
{
|
| 1914 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
|
| 1915 |
|
|
struct m32c_prologue *p
|
| 1916 |
|
|
= m32c_analyze_frame_prologue (next_frame, this_prologue_cache);
|
| 1917 |
|
|
CORE_ADDR frame_base = m32c_frame_base (next_frame, this_prologue_cache);
|
| 1918 |
|
|
int reg_size = register_size (get_frame_arch (next_frame), regnum);
|
| 1919 |
|
|
|
| 1920 |
|
|
if (regnum == tdep->sp->num)
|
| 1921 |
|
|
{
|
| 1922 |
|
|
*optimizedp = 0;
|
| 1923 |
|
|
*lvalp = not_lval;
|
| 1924 |
|
|
*addrp = 0;
|
| 1925 |
|
|
*realnump = -1;
|
| 1926 |
|
|
if (bufferp)
|
| 1927 |
|
|
store_unsigned_integer (bufferp, reg_size, frame_base);
|
| 1928 |
|
|
}
|
| 1929 |
|
|
|
| 1930 |
|
|
/* If prologue analysis says we saved this register somewhere,
|
| 1931 |
|
|
return a description of the stack slot holding it. */
|
| 1932 |
|
|
else if (p->reg_offset[regnum] != 1)
|
| 1933 |
|
|
{
|
| 1934 |
|
|
*optimizedp = 0;
|
| 1935 |
|
|
*lvalp = lval_memory;
|
| 1936 |
|
|
*addrp = frame_base + p->reg_offset[regnum];
|
| 1937 |
|
|
*realnump = -1;
|
| 1938 |
|
|
if (bufferp)
|
| 1939 |
|
|
get_frame_memory (next_frame, *addrp, bufferp, reg_size);
|
| 1940 |
|
|
}
|
| 1941 |
|
|
|
| 1942 |
|
|
/* Otherwise, presume we haven't changed the value of this
|
| 1943 |
|
|
register, and get it from the next frame. */
|
| 1944 |
|
|
else
|
| 1945 |
|
|
{
|
| 1946 |
|
|
*optimizedp = 0;
|
| 1947 |
|
|
*lvalp = lval_register;
|
| 1948 |
|
|
*addrp = 0;
|
| 1949 |
|
|
*realnump = regnum;
|
| 1950 |
|
|
if (bufferp)
|
| 1951 |
|
|
frame_unwind_register (next_frame, *realnump, bufferp);
|
| 1952 |
|
|
}
|
| 1953 |
|
|
}
|
| 1954 |
|
|
|
| 1955 |
|
|
|
| 1956 |
|
|
static const struct frame_unwind m32c_unwind = {
|
| 1957 |
|
|
NORMAL_FRAME,
|
| 1958 |
|
|
m32c_this_id,
|
| 1959 |
|
|
m32c_prev_register
|
| 1960 |
|
|
};
|
| 1961 |
|
|
|
| 1962 |
|
|
|
| 1963 |
|
|
static const struct frame_unwind *
|
| 1964 |
|
|
m32c_frame_sniffer (struct frame_info *next_frame)
|
| 1965 |
|
|
{
|
| 1966 |
|
|
return &m32c_unwind;
|
| 1967 |
|
|
}
|
| 1968 |
|
|
|
| 1969 |
|
|
|
| 1970 |
|
|
static CORE_ADDR
|
| 1971 |
|
|
m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
|
| 1972 |
|
|
{
|
| 1973 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
| 1974 |
|
|
return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
|
| 1975 |
|
|
}
|
| 1976 |
|
|
|
| 1977 |
|
|
|
| 1978 |
|
|
static CORE_ADDR
|
| 1979 |
|
|
m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
|
| 1980 |
|
|
{
|
| 1981 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
| 1982 |
|
|
return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
|
| 1983 |
|
|
}
|
| 1984 |
|
|
|
| 1985 |
|
|
|
| 1986 |
|
|
/* Inferior calls. */
|
| 1987 |
|
|
|
| 1988 |
|
|
/* The calling conventions, according to GCC:
|
| 1989 |
|
|
|
| 1990 |
|
|
r8c, m16c
|
| 1991 |
|
|
---------
|
| 1992 |
|
|
First arg may be passed in r1l or r1 if it (1) fits (QImode or
|
| 1993 |
|
|
HImode), (2) is named, and (3) is an integer or pointer type (no
|
| 1994 |
|
|
structs, floats, etc). Otherwise, it's passed on the stack.
|
| 1995 |
|
|
|
| 1996 |
|
|
Second arg may be passed in r2, same restrictions (but not QImode),
|
| 1997 |
|
|
even if the first arg is passed on the stack.
|
| 1998 |
|
|
|
| 1999 |
|
|
Third and further args are passed on the stack. No padding is
|
| 2000 |
|
|
used, stack "alignment" is 8 bits.
|
| 2001 |
|
|
|
| 2002 |
|
|
m32cm, m32c
|
| 2003 |
|
|
-----------
|
| 2004 |
|
|
|
| 2005 |
|
|
First arg may be passed in r0l or r0, same restrictions as above.
|
| 2006 |
|
|
|
| 2007 |
|
|
Second and further args are passed on the stack. Padding is used
|
| 2008 |
|
|
after QImode parameters (i.e. lower-addressed byte is the value,
|
| 2009 |
|
|
higher-addressed byte is the padding), stack "alignment" is 16
|
| 2010 |
|
|
bits. */
|
| 2011 |
|
|
|
| 2012 |
|
|
|
| 2013 |
|
|
/* Return true if TYPE is a type that can be passed in registers. (We
|
| 2014 |
|
|
ignore the size, and pay attention only to the type code;
|
| 2015 |
|
|
acceptable sizes depends on which register is being considered to
|
| 2016 |
|
|
hold it.) */
|
| 2017 |
|
|
static int
|
| 2018 |
|
|
m32c_reg_arg_type (struct type *type)
|
| 2019 |
|
|
{
|
| 2020 |
|
|
enum type_code code = TYPE_CODE (type);
|
| 2021 |
|
|
|
| 2022 |
|
|
return (code == TYPE_CODE_INT
|
| 2023 |
|
|
|| code == TYPE_CODE_ENUM
|
| 2024 |
|
|
|| code == TYPE_CODE_PTR
|
| 2025 |
|
|
|| code == TYPE_CODE_REF
|
| 2026 |
|
|
|| code == TYPE_CODE_BOOL
|
| 2027 |
|
|
|| code == TYPE_CODE_CHAR);
|
| 2028 |
|
|
}
|
| 2029 |
|
|
|
| 2030 |
|
|
|
| 2031 |
|
|
static CORE_ADDR
|
| 2032 |
|
|
m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
| 2033 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
|
| 2034 |
|
|
struct value **args, CORE_ADDR sp, int struct_return,
|
| 2035 |
|
|
CORE_ADDR struct_addr)
|
| 2036 |
|
|
{
|
| 2037 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| 2038 |
|
|
unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
|
| 2039 |
|
|
CORE_ADDR cfa;
|
| 2040 |
|
|
int i;
|
| 2041 |
|
|
|
| 2042 |
|
|
/* The number of arguments given in this function's prototype, or
|
| 2043 |
|
|
zero if it has a non-prototyped function type. The m32c ABI
|
| 2044 |
|
|
passes arguments mentioned in the prototype differently from
|
| 2045 |
|
|
those in the ellipsis of a varargs function, or from those passed
|
| 2046 |
|
|
to a non-prototyped function. */
|
| 2047 |
|
|
int num_prototyped_args = 0;
|
| 2048 |
|
|
|
| 2049 |
|
|
{
|
| 2050 |
|
|
struct type *func_type = value_type (function);
|
| 2051 |
|
|
|
| 2052 |
|
|
gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
|
| 2053 |
|
|
TYPE_CODE (func_type) == TYPE_CODE_METHOD);
|
| 2054 |
|
|
|
| 2055 |
|
|
#if 0
|
| 2056 |
|
|
/* The ABI description in gcc/config/m32c/m32c.abi says that
|
| 2057 |
|
|
we need to handle prototyped and non-prototyped functions
|
| 2058 |
|
|
separately, but the code in GCC doesn't actually do so. */
|
| 2059 |
|
|
if (TYPE_PROTOTYPED (func_type))
|
| 2060 |
|
|
#endif
|
| 2061 |
|
|
num_prototyped_args = TYPE_NFIELDS (func_type);
|
| 2062 |
|
|
}
|
| 2063 |
|
|
|
| 2064 |
|
|
/* First, if the function returns an aggregate by value, push a
|
| 2065 |
|
|
pointer to a buffer for it. This doesn't affect the way
|
| 2066 |
|
|
subsequent arguments are allocated to registers. */
|
| 2067 |
|
|
if (struct_return)
|
| 2068 |
|
|
{
|
| 2069 |
|
|
int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
|
| 2070 |
|
|
sp -= ptr_len;
|
| 2071 |
|
|
write_memory_unsigned_integer (sp, ptr_len, struct_addr);
|
| 2072 |
|
|
}
|
| 2073 |
|
|
|
| 2074 |
|
|
/* Push the arguments. */
|
| 2075 |
|
|
for (i = nargs - 1; i >= 0; i--)
|
| 2076 |
|
|
{
|
| 2077 |
|
|
struct value *arg = args[i];
|
| 2078 |
|
|
const gdb_byte *arg_bits = value_contents (arg);
|
| 2079 |
|
|
struct type *arg_type = value_type (arg);
|
| 2080 |
|
|
ULONGEST arg_size = TYPE_LENGTH (arg_type);
|
| 2081 |
|
|
|
| 2082 |
|
|
/* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
|
| 2083 |
|
|
if (i == 0
|
| 2084 |
|
|
&& arg_size <= 2
|
| 2085 |
|
|
&& i < num_prototyped_args
|
| 2086 |
|
|
&& m32c_reg_arg_type (arg_type))
|
| 2087 |
|
|
{
|
| 2088 |
|
|
/* Extract and re-store as an integer as a terse way to make
|
| 2089 |
|
|
sure it ends up in the least significant end of r1. (GDB
|
| 2090 |
|
|
should avoid assuming endianness, even on uni-endian
|
| 2091 |
|
|
processors.) */
|
| 2092 |
|
|
ULONGEST u = extract_unsigned_integer (arg_bits, arg_size);
|
| 2093 |
|
|
struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
|
| 2094 |
|
|
regcache_cooked_write_unsigned (regcache, reg->num, u);
|
| 2095 |
|
|
}
|
| 2096 |
|
|
|
| 2097 |
|
|
/* Can it go in r2? */
|
| 2098 |
|
|
else if (mach == bfd_mach_m16c
|
| 2099 |
|
|
&& i == 1
|
| 2100 |
|
|
&& arg_size == 2
|
| 2101 |
|
|
&& i < num_prototyped_args
|
| 2102 |
|
|
&& m32c_reg_arg_type (arg_type))
|
| 2103 |
|
|
regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
|
| 2104 |
|
|
|
| 2105 |
|
|
/* Everything else goes on the stack. */
|
| 2106 |
|
|
else
|
| 2107 |
|
|
{
|
| 2108 |
|
|
sp -= arg_size;
|
| 2109 |
|
|
|
| 2110 |
|
|
/* Align the stack. */
|
| 2111 |
|
|
if (mach == bfd_mach_m32c)
|
| 2112 |
|
|
sp &= ~1;
|
| 2113 |
|
|
|
| 2114 |
|
|
write_memory (sp, arg_bits, arg_size);
|
| 2115 |
|
|
}
|
| 2116 |
|
|
}
|
| 2117 |
|
|
|
| 2118 |
|
|
/* This is the CFA we use to identify the dummy frame. */
|
| 2119 |
|
|
cfa = sp;
|
| 2120 |
|
|
|
| 2121 |
|
|
/* Push the return address. */
|
| 2122 |
|
|
sp -= tdep->ret_addr_bytes;
|
| 2123 |
|
|
write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, bp_addr);
|
| 2124 |
|
|
|
| 2125 |
|
|
/* Update the stack pointer. */
|
| 2126 |
|
|
regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
|
| 2127 |
|
|
|
| 2128 |
|
|
/* We need to borrow an odd trick from the i386 target here.
|
| 2129 |
|
|
|
| 2130 |
|
|
The value we return from this function gets used as the stack
|
| 2131 |
|
|
address (the CFA) for the dummy frame's ID. The obvious thing is
|
| 2132 |
|
|
to return the new TOS. However, that points at the return
|
| 2133 |
|
|
address, saved on the stack, which is inconsistent with the CFA's
|
| 2134 |
|
|
described by GCC's DWARF 2 .debug_frame information: DWARF 2
|
| 2135 |
|
|
.debug_frame info uses the address immediately after the saved
|
| 2136 |
|
|
return address. So you end up with a dummy frame whose CFA
|
| 2137 |
|
|
points at the return address, but the frame for the function
|
| 2138 |
|
|
being called has a CFA pointing after the return address: the
|
| 2139 |
|
|
younger CFA is *greater than* the older CFA. The sanity checks
|
| 2140 |
|
|
in frame.c don't like that.
|
| 2141 |
|
|
|
| 2142 |
|
|
So we try to be consistent with the CFA's used by DWARF 2.
|
| 2143 |
|
|
Having a dummy frame and a real frame with the *same* CFA is
|
| 2144 |
|
|
tolerable. */
|
| 2145 |
|
|
return cfa;
|
| 2146 |
|
|
}
|
| 2147 |
|
|
|
| 2148 |
|
|
|
| 2149 |
|
|
static struct frame_id
|
| 2150 |
|
|
m32c_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
| 2151 |
|
|
{
|
| 2152 |
|
|
/* This needs to return a frame ID whose PC is the return address
|
| 2153 |
|
|
passed to m32c_push_dummy_call, and whose stack_addr is the SP
|
| 2154 |
|
|
m32c_push_dummy_call returned.
|
| 2155 |
|
|
|
| 2156 |
|
|
m32c_unwind_sp gives us the CFA, which is the value the SP had
|
| 2157 |
|
|
before the return address was pushed. */
|
| 2158 |
|
|
return frame_id_build (m32c_unwind_sp (gdbarch, next_frame),
|
| 2159 |
|
|
frame_pc_unwind (next_frame));
|
| 2160 |
|
|
}
|
| 2161 |
|
|
|
| 2162 |
|
|
|
| 2163 |
|
|
|
| 2164 |
|
|
/* Return values. */
|
| 2165 |
|
|
|
| 2166 |
|
|
/* Return value conventions, according to GCC:
|
| 2167 |
|
|
|
| 2168 |
|
|
r8c, m16c
|
| 2169 |
|
|
---------
|
| 2170 |
|
|
|
| 2171 |
|
|
QImode in r0l
|
| 2172 |
|
|
HImode in r0
|
| 2173 |
|
|
SImode in r2r0
|
| 2174 |
|
|
near pointer in r0
|
| 2175 |
|
|
far pointer in r2r0
|
| 2176 |
|
|
|
| 2177 |
|
|
Aggregate values (regardless of size) are returned by pushing a
|
| 2178 |
|
|
pointer to a temporary area on the stack after the args are pushed.
|
| 2179 |
|
|
The function fills in this area with the value. Note that this
|
| 2180 |
|
|
pointer on the stack does not affect how register arguments, if any,
|
| 2181 |
|
|
are configured.
|
| 2182 |
|
|
|
| 2183 |
|
|
m32cm, m32c
|
| 2184 |
|
|
-----------
|
| 2185 |
|
|
Same. */
|
| 2186 |
|
|
|
| 2187 |
|
|
/* Return non-zero if values of type TYPE are returned by storing them
|
| 2188 |
|
|
in a buffer whose address is passed on the stack, ahead of the
|
| 2189 |
|
|
other arguments. */
|
| 2190 |
|
|
static int
|
| 2191 |
|
|
m32c_return_by_passed_buf (struct type *type)
|
| 2192 |
|
|
{
|
| 2193 |
|
|
enum type_code code = TYPE_CODE (type);
|
| 2194 |
|
|
|
| 2195 |
|
|
return (code == TYPE_CODE_STRUCT
|
| 2196 |
|
|
|| code == TYPE_CODE_UNION);
|
| 2197 |
|
|
}
|
| 2198 |
|
|
|
| 2199 |
|
|
static enum return_value_convention
|
| 2200 |
|
|
m32c_return_value (struct gdbarch *gdbarch,
|
| 2201 |
|
|
struct type *valtype,
|
| 2202 |
|
|
struct regcache *regcache,
|
| 2203 |
|
|
gdb_byte *readbuf,
|
| 2204 |
|
|
const gdb_byte *writebuf)
|
| 2205 |
|
|
{
|
| 2206 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| 2207 |
|
|
enum return_value_convention conv;
|
| 2208 |
|
|
ULONGEST valtype_len = TYPE_LENGTH (valtype);
|
| 2209 |
|
|
|
| 2210 |
|
|
if (m32c_return_by_passed_buf (valtype))
|
| 2211 |
|
|
conv = RETURN_VALUE_STRUCT_CONVENTION;
|
| 2212 |
|
|
else
|
| 2213 |
|
|
conv = RETURN_VALUE_REGISTER_CONVENTION;
|
| 2214 |
|
|
|
| 2215 |
|
|
if (readbuf)
|
| 2216 |
|
|
{
|
| 2217 |
|
|
/* We should never be called to find values being returned by
|
| 2218 |
|
|
RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
|
| 2219 |
|
|
unless we made the call ourselves. */
|
| 2220 |
|
|
gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
|
| 2221 |
|
|
|
| 2222 |
|
|
gdb_assert (valtype_len <= 8);
|
| 2223 |
|
|
|
| 2224 |
|
|
/* Anything that fits in r0 is returned there. */
|
| 2225 |
|
|
if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
|
| 2226 |
|
|
{
|
| 2227 |
|
|
ULONGEST u;
|
| 2228 |
|
|
regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
|
| 2229 |
|
|
store_unsigned_integer (readbuf, valtype_len, u);
|
| 2230 |
|
|
}
|
| 2231 |
|
|
else
|
| 2232 |
|
|
{
|
| 2233 |
|
|
/* Everything else is passed in mem0, using as many bytes as
|
| 2234 |
|
|
needed. This is not what the Renesas tools do, but it's
|
| 2235 |
|
|
what GCC does at the moment. */
|
| 2236 |
|
|
struct minimal_symbol *mem0
|
| 2237 |
|
|
= lookup_minimal_symbol ("mem0", NULL, NULL);
|
| 2238 |
|
|
|
| 2239 |
|
|
if (! mem0)
|
| 2240 |
|
|
error ("The return value is stored in memory at 'mem0', "
|
| 2241 |
|
|
"but GDB cannot find\n"
|
| 2242 |
|
|
"its address.");
|
| 2243 |
|
|
read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
|
| 2244 |
|
|
}
|
| 2245 |
|
|
}
|
| 2246 |
|
|
|
| 2247 |
|
|
if (writebuf)
|
| 2248 |
|
|
{
|
| 2249 |
|
|
/* We should never be called to store values to be returned
|
| 2250 |
|
|
using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
|
| 2251 |
|
|
finding the buffer, unless we made the call ourselves. */
|
| 2252 |
|
|
gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
|
| 2253 |
|
|
|
| 2254 |
|
|
gdb_assert (valtype_len <= 8);
|
| 2255 |
|
|
|
| 2256 |
|
|
/* Anything that fits in r0 is returned there. */
|
| 2257 |
|
|
if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
|
| 2258 |
|
|
{
|
| 2259 |
|
|
ULONGEST u = extract_unsigned_integer (writebuf, valtype_len);
|
| 2260 |
|
|
regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
|
| 2261 |
|
|
}
|
| 2262 |
|
|
else
|
| 2263 |
|
|
{
|
| 2264 |
|
|
/* Everything else is passed in mem0, using as many bytes as
|
| 2265 |
|
|
needed. This is not what the Renesas tools do, but it's
|
| 2266 |
|
|
what GCC does at the moment. */
|
| 2267 |
|
|
struct minimal_symbol *mem0
|
| 2268 |
|
|
= lookup_minimal_symbol ("mem0", NULL, NULL);
|
| 2269 |
|
|
|
| 2270 |
|
|
if (! mem0)
|
| 2271 |
|
|
error ("The return value is stored in memory at 'mem0', "
|
| 2272 |
|
|
"but GDB cannot find\n"
|
| 2273 |
|
|
" its address.");
|
| 2274 |
|
|
write_memory (SYMBOL_VALUE_ADDRESS (mem0),
|
| 2275 |
|
|
(char *) writebuf, valtype_len);
|
| 2276 |
|
|
}
|
| 2277 |
|
|
}
|
| 2278 |
|
|
|
| 2279 |
|
|
return conv;
|
| 2280 |
|
|
}
|
| 2281 |
|
|
|
| 2282 |
|
|
|
| 2283 |
|
|
|
| 2284 |
|
|
/* Trampolines. */
|
| 2285 |
|
|
|
| 2286 |
|
|
/* The m16c and m32c use a trampoline function for indirect function
|
| 2287 |
|
|
calls. An indirect call looks like this:
|
| 2288 |
|
|
|
| 2289 |
|
|
... push arguments ...
|
| 2290 |
|
|
... push target function address ...
|
| 2291 |
|
|
jsr.a m32c_jsri16
|
| 2292 |
|
|
|
| 2293 |
|
|
The code for m32c_jsri16 looks like this:
|
| 2294 |
|
|
|
| 2295 |
|
|
m32c_jsri16:
|
| 2296 |
|
|
|
| 2297 |
|
|
# Save return address.
|
| 2298 |
|
|
pop.w m32c_jsri_ret
|
| 2299 |
|
|
pop.b m32c_jsri_ret+2
|
| 2300 |
|
|
|
| 2301 |
|
|
# Store target function address.
|
| 2302 |
|
|
pop.w m32c_jsri_addr
|
| 2303 |
|
|
|
| 2304 |
|
|
# Re-push return address.
|
| 2305 |
|
|
push.b m32c_jsri_ret+2
|
| 2306 |
|
|
push.w m32c_jsri_ret
|
| 2307 |
|
|
|
| 2308 |
|
|
# Call the target function.
|
| 2309 |
|
|
jmpi.a m32c_jsri_addr
|
| 2310 |
|
|
|
| 2311 |
|
|
Without further information, GDB will treat calls to m32c_jsri16
|
| 2312 |
|
|
like calls to any other function. Since m32c_jsri16 doesn't have
|
| 2313 |
|
|
debugging information, that normally means that GDB sets a step-
|
| 2314 |
|
|
resume breakpoint and lets the program continue --- which is not
|
| 2315 |
|
|
what the user wanted. (Giving the trampoline debugging info
|
| 2316 |
|
|
doesn't help: the user expects the program to stop in the function
|
| 2317 |
|
|
their program is calling, not in some trampoline code they've never
|
| 2318 |
|
|
seen before.)
|
| 2319 |
|
|
|
| 2320 |
|
|
The gdbarch_skip_trampoline_code method tells GDB how to step
|
| 2321 |
|
|
through such trampoline functions transparently to the user. When
|
| 2322 |
|
|
given the address of a trampoline function's first instruction,
|
| 2323 |
|
|
gdbarch_skip_trampoline_code should return the address of the first
|
| 2324 |
|
|
instruction of the function really being called. If GDB decides it
|
| 2325 |
|
|
wants to step into that function, it will set a breakpoint there
|
| 2326 |
|
|
and silently continue to it.
|
| 2327 |
|
|
|
| 2328 |
|
|
We recognize the trampoline by name, and extract the target address
|
| 2329 |
|
|
directly from the stack. This isn't great, but recognizing by its
|
| 2330 |
|
|
code sequence seems more fragile. */
|
| 2331 |
|
|
|
| 2332 |
|
|
static CORE_ADDR
|
| 2333 |
|
|
m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
|
| 2334 |
|
|
{
|
| 2335 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
|
| 2336 |
|
|
|
| 2337 |
|
|
/* It would be nicer to simply look up the addresses of known
|
| 2338 |
|
|
trampolines once, and then compare stop_pc with them. However,
|
| 2339 |
|
|
we'd need to ensure that that cached address got invalidated when
|
| 2340 |
|
|
someone loaded a new executable, and I'm not quite sure of the
|
| 2341 |
|
|
best way to do that. find_pc_partial_function does do some
|
| 2342 |
|
|
caching, so we'll see how this goes. */
|
| 2343 |
|
|
char *name;
|
| 2344 |
|
|
CORE_ADDR start, end;
|
| 2345 |
|
|
|
| 2346 |
|
|
if (find_pc_partial_function (stop_pc, &name, &start, &end))
|
| 2347 |
|
|
{
|
| 2348 |
|
|
/* Are we stopped at the beginning of the trampoline function? */
|
| 2349 |
|
|
if (strcmp (name, "m32c_jsri16") == 0
|
| 2350 |
|
|
&& stop_pc == start)
|
| 2351 |
|
|
{
|
| 2352 |
|
|
/* Get the stack pointer. The return address is at the top,
|
| 2353 |
|
|
and the target function's address is just below that. We
|
| 2354 |
|
|
know it's a two-byte address, since the trampoline is
|
| 2355 |
|
|
m32c_jsri*16*. */
|
| 2356 |
|
|
CORE_ADDR sp = get_frame_sp (get_current_frame ());
|
| 2357 |
|
|
CORE_ADDR target
|
| 2358 |
|
|
= read_memory_unsigned_integer (sp + tdep->ret_addr_bytes, 2);
|
| 2359 |
|
|
|
| 2360 |
|
|
/* What we have now is the address of a jump instruction.
|
| 2361 |
|
|
What we need is the destination of that jump.
|
| 2362 |
|
|
The opcode is 1 byte, and the destination is the next 3 bytes.
|
| 2363 |
|
|
*/
|
| 2364 |
|
|
target = read_memory_unsigned_integer (target + 1, 3);
|
| 2365 |
|
|
return target;
|
| 2366 |
|
|
}
|
| 2367 |
|
|
}
|
| 2368 |
|
|
|
| 2369 |
|
|
return 0;
|
| 2370 |
|
|
}
|
| 2371 |
|
|
|
| 2372 |
|
|
|
| 2373 |
|
|
/* Address/pointer conversions. */
|
| 2374 |
|
|
|
| 2375 |
|
|
/* On the m16c, there is a 24-bit address space, but only a very few
|
| 2376 |
|
|
instructions can generate addresses larger than 0xffff: jumps,
|
| 2377 |
|
|
jumps to subroutines, and the lde/std (load/store extended)
|
| 2378 |
|
|
instructions.
|
| 2379 |
|
|
|
| 2380 |
|
|
Since GCC can only support one size of pointer, we can't have
|
| 2381 |
|
|
distinct 'near' and 'far' pointer types; we have to pick one size
|
| 2382 |
|
|
for everything. If we wanted to use 24-bit pointers, then GCC
|
| 2383 |
|
|
would have to use lde and ste for all memory references, which
|
| 2384 |
|
|
would be terrible for performance and code size. So the GNU
|
| 2385 |
|
|
toolchain uses 16-bit pointers for everything, and gives up the
|
| 2386 |
|
|
ability to have pointers point outside the first 64k of memory.
|
| 2387 |
|
|
|
| 2388 |
|
|
However, as a special hack, we let the linker place functions at
|
| 2389 |
|
|
addresses above 0xffff, as long as it also places a trampoline in
|
| 2390 |
|
|
the low 64k for every function whose address is taken. Each
|
| 2391 |
|
|
trampoline consists of a single jmp.a instruction that jumps to the
|
| 2392 |
|
|
function's real entry point. Pointers to functions can be 16 bits
|
| 2393 |
|
|
long, even though the functions themselves are at higher addresses:
|
| 2394 |
|
|
the pointers refer to the trampolines, not the functions.
|
| 2395 |
|
|
|
| 2396 |
|
|
This complicates things for GDB, however: given the address of a
|
| 2397 |
|
|
function (from debug info or linker symbols, say) which could be
|
| 2398 |
|
|
anywhere in the 24-bit address space, how can we find an
|
| 2399 |
|
|
appropriate 16-bit value to use as a pointer to it?
|
| 2400 |
|
|
|
| 2401 |
|
|
If the linker has not generated a trampoline for the function,
|
| 2402 |
|
|
we're out of luck. Well, I guess we could malloc some space and
|
| 2403 |
|
|
write a jmp.a instruction to it, but I'm not going to get into that
|
| 2404 |
|
|
at the moment.
|
| 2405 |
|
|
|
| 2406 |
|
|
If the linker has generated a trampoline for the function, then it
|
| 2407 |
|
|
also emitted a symbol for the trampoline: if the function's linker
|
| 2408 |
|
|
symbol is named NAME, then the function's trampoline's linker
|
| 2409 |
|
|
symbol is named NAME.plt.
|
| 2410 |
|
|
|
| 2411 |
|
|
So, given a code address:
|
| 2412 |
|
|
- We try to find a linker symbol at that address.
|
| 2413 |
|
|
- If we find such a symbol named NAME, we look for a linker symbol
|
| 2414 |
|
|
named NAME.plt.
|
| 2415 |
|
|
- If we find such a symbol, we assume it is a trampoline, and use
|
| 2416 |
|
|
its address as the pointer value.
|
| 2417 |
|
|
|
| 2418 |
|
|
And, given a function pointer:
|
| 2419 |
|
|
- We try to find a linker symbol at that address named NAME.plt.
|
| 2420 |
|
|
- If we find such a symbol, we look for a linker symbol named NAME.
|
| 2421 |
|
|
- If we find that, we provide that as the function's address.
|
| 2422 |
|
|
- If any of the above steps fail, we return the original address
|
| 2423 |
|
|
unchanged; it might really be a function in the low 64k.
|
| 2424 |
|
|
|
| 2425 |
|
|
See? You *knew* there was a reason you wanted to be a computer
|
| 2426 |
|
|
programmer! :) */
|
| 2427 |
|
|
|
| 2428 |
|
|
static void
|
| 2429 |
|
|
m32c_m16c_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
|
| 2430 |
|
|
{
|
| 2431 |
|
|
enum type_code target_code;
|
| 2432 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
|
| 2433 |
|
|
TYPE_CODE (type) == TYPE_CODE_REF);
|
| 2434 |
|
|
|
| 2435 |
|
|
target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
|
| 2436 |
|
|
|
| 2437 |
|
|
if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
|
| 2438 |
|
|
{
|
| 2439 |
|
|
char *func_name;
|
| 2440 |
|
|
char *tramp_name;
|
| 2441 |
|
|
struct minimal_symbol *tramp_msym;
|
| 2442 |
|
|
|
| 2443 |
|
|
/* Try to find a linker symbol at this address. */
|
| 2444 |
|
|
struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
|
| 2445 |
|
|
|
| 2446 |
|
|
if (! func_msym)
|
| 2447 |
|
|
error ("Cannot convert code address %s to function pointer:\n"
|
| 2448 |
|
|
"couldn't find a symbol at that address, to find trampoline.",
|
| 2449 |
|
|
paddr_nz (addr));
|
| 2450 |
|
|
|
| 2451 |
|
|
func_name = SYMBOL_LINKAGE_NAME (func_msym);
|
| 2452 |
|
|
tramp_name = xmalloc (strlen (func_name) + 5);
|
| 2453 |
|
|
strcpy (tramp_name, func_name);
|
| 2454 |
|
|
strcat (tramp_name, ".plt");
|
| 2455 |
|
|
|
| 2456 |
|
|
/* Try to find a linker symbol for the trampoline. */
|
| 2457 |
|
|
tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
|
| 2458 |
|
|
|
| 2459 |
|
|
/* We've either got another copy of the name now, or don't need
|
| 2460 |
|
|
the name any more. */
|
| 2461 |
|
|
xfree (tramp_name);
|
| 2462 |
|
|
|
| 2463 |
|
|
if (! tramp_msym)
|
| 2464 |
|
|
error ("Cannot convert code address %s to function pointer:\n"
|
| 2465 |
|
|
"couldn't find trampoline named '%s.plt'.",
|
| 2466 |
|
|
paddr_nz (addr), func_name);
|
| 2467 |
|
|
|
| 2468 |
|
|
/* The trampoline's address is our pointer. */
|
| 2469 |
|
|
addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
|
| 2470 |
|
|
}
|
| 2471 |
|
|
|
| 2472 |
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
|
| 2473 |
|
|
}
|
| 2474 |
|
|
|
| 2475 |
|
|
|
| 2476 |
|
|
static CORE_ADDR
|
| 2477 |
|
|
m32c_m16c_pointer_to_address (struct type *type, const gdb_byte *buf)
|
| 2478 |
|
|
{
|
| 2479 |
|
|
CORE_ADDR ptr;
|
| 2480 |
|
|
enum type_code target_code;
|
| 2481 |
|
|
|
| 2482 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
|
| 2483 |
|
|
TYPE_CODE (type) == TYPE_CODE_REF);
|
| 2484 |
|
|
|
| 2485 |
|
|
ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
|
| 2486 |
|
|
|
| 2487 |
|
|
target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
|
| 2488 |
|
|
|
| 2489 |
|
|
if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
|
| 2490 |
|
|
{
|
| 2491 |
|
|
/* See if there is a minimal symbol at that address whose name is
|
| 2492 |
|
|
"NAME.plt". */
|
| 2493 |
|
|
struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
|
| 2494 |
|
|
|
| 2495 |
|
|
if (ptr_msym)
|
| 2496 |
|
|
{
|
| 2497 |
|
|
char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
|
| 2498 |
|
|
int len = strlen (ptr_msym_name);
|
| 2499 |
|
|
|
| 2500 |
|
|
if (len > 4
|
| 2501 |
|
|
&& strcmp (ptr_msym_name + len - 4, ".plt") == 0)
|
| 2502 |
|
|
{
|
| 2503 |
|
|
struct minimal_symbol *func_msym;
|
| 2504 |
|
|
/* We have a .plt symbol; try to find the symbol for the
|
| 2505 |
|
|
corresponding function.
|
| 2506 |
|
|
|
| 2507 |
|
|
Since the trampoline contains a jump instruction, we
|
| 2508 |
|
|
could also just extract the jump's target address. I
|
| 2509 |
|
|
don't see much advantage one way or the other. */
|
| 2510 |
|
|
char *func_name = xmalloc (len - 4 + 1);
|
| 2511 |
|
|
memcpy (func_name, ptr_msym_name, len - 4);
|
| 2512 |
|
|
func_name[len - 4] = '\0';
|
| 2513 |
|
|
func_msym
|
| 2514 |
|
|
= lookup_minimal_symbol (func_name, NULL, NULL);
|
| 2515 |
|
|
|
| 2516 |
|
|
/* If we do have such a symbol, return its value as the
|
| 2517 |
|
|
function's true address. */
|
| 2518 |
|
|
if (func_msym)
|
| 2519 |
|
|
ptr = SYMBOL_VALUE_ADDRESS (func_msym);
|
| 2520 |
|
|
}
|
| 2521 |
|
|
}
|
| 2522 |
|
|
}
|
| 2523 |
|
|
|
| 2524 |
|
|
return ptr;
|
| 2525 |
|
|
}
|
| 2526 |
|
|
|
| 2527 |
|
|
void
|
| 2528 |
|
|
m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
|
| 2529 |
|
|
int *frame_regnum,
|
| 2530 |
|
|
LONGEST *frame_offset)
|
| 2531 |
|
|
{
|
| 2532 |
|
|
char *name;
|
| 2533 |
|
|
CORE_ADDR func_addr, func_end, sal_end;
|
| 2534 |
|
|
struct m32c_prologue p;
|
| 2535 |
|
|
|
| 2536 |
|
|
struct regcache *regcache = get_current_regcache ();
|
| 2537 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| 2538 |
|
|
|
| 2539 |
|
|
if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
|
| 2540 |
|
|
internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
|
| 2541 |
|
|
|
| 2542 |
|
|
m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
|
| 2543 |
|
|
switch (p.kind)
|
| 2544 |
|
|
{
|
| 2545 |
|
|
case prologue_with_frame_ptr:
|
| 2546 |
|
|
*frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
|
| 2547 |
|
|
*frame_offset = p.frame_ptr_offset;
|
| 2548 |
|
|
break;
|
| 2549 |
|
|
case prologue_sans_frame_ptr:
|
| 2550 |
|
|
*frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
|
| 2551 |
|
|
*frame_offset = p.frame_size;
|
| 2552 |
|
|
break;
|
| 2553 |
|
|
default:
|
| 2554 |
|
|
*frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
|
| 2555 |
|
|
*frame_offset = 0;
|
| 2556 |
|
|
break;
|
| 2557 |
|
|
}
|
| 2558 |
|
|
/* Sanity check */
|
| 2559 |
|
|
if (*frame_regnum > gdbarch_num_regs (gdbarch))
|
| 2560 |
|
|
internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
|
| 2561 |
|
|
}
|
| 2562 |
|
|
|
| 2563 |
|
|
|
| 2564 |
|
|
/* Initialization. */
|
| 2565 |
|
|
|
| 2566 |
|
|
static struct gdbarch *
|
| 2567 |
|
|
m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
| 2568 |
|
|
{
|
| 2569 |
|
|
struct gdbarch *arch;
|
| 2570 |
|
|
struct gdbarch_tdep *tdep;
|
| 2571 |
|
|
unsigned long mach = info.bfd_arch_info->mach;
|
| 2572 |
|
|
|
| 2573 |
|
|
/* Find a candidate among the list of architectures we've created
|
| 2574 |
|
|
already. */
|
| 2575 |
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
| 2576 |
|
|
arches != NULL;
|
| 2577 |
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
| 2578 |
|
|
return arches->gdbarch;
|
| 2579 |
|
|
|
| 2580 |
|
|
tdep = xcalloc (1, sizeof (*tdep));
|
| 2581 |
|
|
arch = gdbarch_alloc (&info, tdep);
|
| 2582 |
|
|
|
| 2583 |
|
|
/* Essential types. */
|
| 2584 |
|
|
make_types (arch);
|
| 2585 |
|
|
|
| 2586 |
|
|
/* Address/pointer conversions. */
|
| 2587 |
|
|
if (mach == bfd_mach_m16c)
|
| 2588 |
|
|
{
|
| 2589 |
|
|
set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
|
| 2590 |
|
|
set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
|
| 2591 |
|
|
}
|
| 2592 |
|
|
|
| 2593 |
|
|
/* Register set. */
|
| 2594 |
|
|
make_regs (arch);
|
| 2595 |
|
|
|
| 2596 |
|
|
/* Disassembly. */
|
| 2597 |
|
|
set_gdbarch_print_insn (arch, print_insn_m32c);
|
| 2598 |
|
|
|
| 2599 |
|
|
/* Breakpoints. */
|
| 2600 |
|
|
set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
|
| 2601 |
|
|
|
| 2602 |
|
|
/* Prologue analysis and unwinding. */
|
| 2603 |
|
|
set_gdbarch_inner_than (arch, core_addr_lessthan);
|
| 2604 |
|
|
set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
|
| 2605 |
|
|
set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
|
| 2606 |
|
|
set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
|
| 2607 |
|
|
#if 0
|
| 2608 |
|
|
/* I'm dropping the dwarf2 sniffer because it has a few problems.
|
| 2609 |
|
|
They may be in the dwarf2 cfi code in GDB, or they may be in
|
| 2610 |
|
|
the debug info emitted by the upstream toolchain. I don't
|
| 2611 |
|
|
know which, but I do know that the prologue analyzer works better.
|
| 2612 |
|
|
MVS 04/13/06
|
| 2613 |
|
|
*/
|
| 2614 |
|
|
frame_unwind_append_sniffer (arch, dwarf2_frame_sniffer);
|
| 2615 |
|
|
#endif
|
| 2616 |
|
|
frame_unwind_append_sniffer (arch, m32c_frame_sniffer);
|
| 2617 |
|
|
|
| 2618 |
|
|
/* Inferior calls. */
|
| 2619 |
|
|
set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
|
| 2620 |
|
|
set_gdbarch_return_value (arch, m32c_return_value);
|
| 2621 |
|
|
set_gdbarch_unwind_dummy_id (arch, m32c_unwind_dummy_id);
|
| 2622 |
|
|
|
| 2623 |
|
|
/* Trampolines. */
|
| 2624 |
|
|
set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
|
| 2625 |
|
|
|
| 2626 |
|
|
set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
|
| 2627 |
|
|
|
| 2628 |
|
|
return arch;
|
| 2629 |
|
|
}
|
| 2630 |
|
|
|
| 2631 |
|
|
|
| 2632 |
|
|
void
|
| 2633 |
|
|
_initialize_m32c_tdep (void)
|
| 2634 |
|
|
{
|
| 2635 |
|
|
register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
|
| 2636 |
|
|
|
| 2637 |
|
|
m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
|
| 2638 |
|
|
}
|