1 |
24 |
jeremybenn |
/* Target-dependent code for Renesas M32R, for GDB.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007,
|
4 |
|
|
2008 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "frame.h"
|
23 |
|
|
#include "frame-unwind.h"
|
24 |
|
|
#include "frame-base.h"
|
25 |
|
|
#include "symtab.h"
|
26 |
|
|
#include "gdbtypes.h"
|
27 |
|
|
#include "gdbcmd.h"
|
28 |
|
|
#include "gdbcore.h"
|
29 |
|
|
#include "gdb_string.h"
|
30 |
|
|
#include "value.h"
|
31 |
|
|
#include "inferior.h"
|
32 |
|
|
#include "symfile.h"
|
33 |
|
|
#include "objfiles.h"
|
34 |
|
|
#include "osabi.h"
|
35 |
|
|
#include "language.h"
|
36 |
|
|
#include "arch-utils.h"
|
37 |
|
|
#include "regcache.h"
|
38 |
|
|
#include "trad-frame.h"
|
39 |
|
|
#include "dis-asm.h"
|
40 |
|
|
|
41 |
|
|
#include "gdb_assert.h"
|
42 |
|
|
|
43 |
|
|
#include "m32r-tdep.h"
|
44 |
|
|
|
45 |
|
|
/* Local functions */
|
46 |
|
|
|
47 |
|
|
extern void _initialize_m32r_tdep (void);
|
48 |
|
|
|
49 |
|
|
static CORE_ADDR
|
50 |
|
|
m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
51 |
|
|
{
|
52 |
|
|
/* Align to the size of an instruction (so that they can safely be
|
53 |
|
|
pushed onto the stack. */
|
54 |
|
|
return sp & ~3;
|
55 |
|
|
}
|
56 |
|
|
|
57 |
|
|
|
58 |
|
|
/* Breakpoints
|
59 |
|
|
|
60 |
|
|
The little endian mode of M32R is unique. In most of architectures,
|
61 |
|
|
two 16-bit instructions, A and B, are placed as the following:
|
62 |
|
|
|
63 |
|
|
Big endian:
|
64 |
|
|
A0 A1 B0 B1
|
65 |
|
|
|
66 |
|
|
Little endian:
|
67 |
|
|
A1 A0 B1 B0
|
68 |
|
|
|
69 |
|
|
In M32R, they are placed like this:
|
70 |
|
|
|
71 |
|
|
Big endian:
|
72 |
|
|
A0 A1 B0 B1
|
73 |
|
|
|
74 |
|
|
Little endian:
|
75 |
|
|
B1 B0 A1 A0
|
76 |
|
|
|
77 |
|
|
This is because M32R always fetches instructions in 32-bit.
|
78 |
|
|
|
79 |
|
|
The following functions take care of this behavior. */
|
80 |
|
|
|
81 |
|
|
static int
|
82 |
|
|
m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
|
83 |
|
|
struct bp_target_info *bp_tgt)
|
84 |
|
|
{
|
85 |
|
|
CORE_ADDR addr = bp_tgt->placed_address;
|
86 |
|
|
int val;
|
87 |
|
|
gdb_byte buf[4];
|
88 |
|
|
gdb_byte *contents_cache = bp_tgt->shadow_contents;
|
89 |
|
|
gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
|
90 |
|
|
|
91 |
|
|
/* Save the memory contents. */
|
92 |
|
|
val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
|
93 |
|
|
if (val != 0)
|
94 |
|
|
return val; /* return error */
|
95 |
|
|
|
96 |
|
|
bp_tgt->placed_size = bp_tgt->shadow_len = 4;
|
97 |
|
|
|
98 |
|
|
/* Determine appropriate breakpoint contents and size for this address. */
|
99 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
100 |
|
|
{
|
101 |
|
|
if ((addr & 3) == 0)
|
102 |
|
|
{
|
103 |
|
|
buf[0] = bp_entry[0];
|
104 |
|
|
buf[1] = bp_entry[1];
|
105 |
|
|
buf[2] = contents_cache[2] & 0x7f;
|
106 |
|
|
buf[3] = contents_cache[3];
|
107 |
|
|
}
|
108 |
|
|
else
|
109 |
|
|
{
|
110 |
|
|
buf[0] = contents_cache[0];
|
111 |
|
|
buf[1] = contents_cache[1];
|
112 |
|
|
buf[2] = bp_entry[0];
|
113 |
|
|
buf[3] = bp_entry[1];
|
114 |
|
|
}
|
115 |
|
|
}
|
116 |
|
|
else /* little-endian */
|
117 |
|
|
{
|
118 |
|
|
if ((addr & 3) == 0)
|
119 |
|
|
{
|
120 |
|
|
buf[0] = contents_cache[0];
|
121 |
|
|
buf[1] = contents_cache[1] & 0x7f;
|
122 |
|
|
buf[2] = bp_entry[1];
|
123 |
|
|
buf[3] = bp_entry[0];
|
124 |
|
|
}
|
125 |
|
|
else
|
126 |
|
|
{
|
127 |
|
|
buf[0] = bp_entry[1];
|
128 |
|
|
buf[1] = bp_entry[0];
|
129 |
|
|
buf[2] = contents_cache[2];
|
130 |
|
|
buf[3] = contents_cache[3];
|
131 |
|
|
}
|
132 |
|
|
}
|
133 |
|
|
|
134 |
|
|
/* Write the breakpoint. */
|
135 |
|
|
val = target_write_memory (addr & 0xfffffffc, buf, 4);
|
136 |
|
|
return val;
|
137 |
|
|
}
|
138 |
|
|
|
139 |
|
|
static int
|
140 |
|
|
m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
|
141 |
|
|
struct bp_target_info *bp_tgt)
|
142 |
|
|
{
|
143 |
|
|
CORE_ADDR addr = bp_tgt->placed_address;
|
144 |
|
|
int val;
|
145 |
|
|
gdb_byte buf[4];
|
146 |
|
|
gdb_byte *contents_cache = bp_tgt->shadow_contents;
|
147 |
|
|
|
148 |
|
|
buf[0] = contents_cache[0];
|
149 |
|
|
buf[1] = contents_cache[1];
|
150 |
|
|
buf[2] = contents_cache[2];
|
151 |
|
|
buf[3] = contents_cache[3];
|
152 |
|
|
|
153 |
|
|
/* Remove parallel bit. */
|
154 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
155 |
|
|
{
|
156 |
|
|
if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
|
157 |
|
|
buf[2] &= 0x7f;
|
158 |
|
|
}
|
159 |
|
|
else /* little-endian */
|
160 |
|
|
{
|
161 |
|
|
if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
|
162 |
|
|
buf[1] &= 0x7f;
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
/* Write contents. */
|
166 |
|
|
val = target_write_memory (addr & 0xfffffffc, buf, 4);
|
167 |
|
|
return val;
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
static const gdb_byte *
|
171 |
|
|
m32r_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
|
172 |
|
|
{
|
173 |
|
|
static gdb_byte be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 }; /* dpt -> nop */
|
174 |
|
|
static gdb_byte le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 }; /* dpt -> nop */
|
175 |
|
|
gdb_byte *bp;
|
176 |
|
|
|
177 |
|
|
/* Determine appropriate breakpoint. */
|
178 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
179 |
|
|
{
|
180 |
|
|
if ((*pcptr & 3) == 0)
|
181 |
|
|
{
|
182 |
|
|
bp = be_bp_entry;
|
183 |
|
|
*lenptr = 4;
|
184 |
|
|
}
|
185 |
|
|
else
|
186 |
|
|
{
|
187 |
|
|
bp = be_bp_entry;
|
188 |
|
|
*lenptr = 2;
|
189 |
|
|
}
|
190 |
|
|
}
|
191 |
|
|
else
|
192 |
|
|
{
|
193 |
|
|
if ((*pcptr & 3) == 0)
|
194 |
|
|
{
|
195 |
|
|
bp = le_bp_entry;
|
196 |
|
|
*lenptr = 4;
|
197 |
|
|
}
|
198 |
|
|
else
|
199 |
|
|
{
|
200 |
|
|
bp = le_bp_entry + 2;
|
201 |
|
|
*lenptr = 2;
|
202 |
|
|
}
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
return bp;
|
206 |
|
|
}
|
207 |
|
|
|
208 |
|
|
|
209 |
|
|
char *m32r_register_names[] = {
|
210 |
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
211 |
|
|
"r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
|
212 |
|
|
"psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
|
213 |
|
|
"evb"
|
214 |
|
|
};
|
215 |
|
|
|
216 |
|
|
static const char *
|
217 |
|
|
m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
|
218 |
|
|
{
|
219 |
|
|
if (reg_nr < 0)
|
220 |
|
|
return NULL;
|
221 |
|
|
if (reg_nr >= M32R_NUM_REGS)
|
222 |
|
|
return NULL;
|
223 |
|
|
return m32r_register_names[reg_nr];
|
224 |
|
|
}
|
225 |
|
|
|
226 |
|
|
|
227 |
|
|
/* Return the GDB type object for the "standard" data type
|
228 |
|
|
of data in register N. */
|
229 |
|
|
|
230 |
|
|
static struct type *
|
231 |
|
|
m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
|
232 |
|
|
{
|
233 |
|
|
if (reg_nr == M32R_PC_REGNUM)
|
234 |
|
|
return builtin_type_void_func_ptr;
|
235 |
|
|
else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
|
236 |
|
|
return builtin_type_void_data_ptr;
|
237 |
|
|
else
|
238 |
|
|
return builtin_type_int32;
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
|
242 |
|
|
/* Write into appropriate registers a function return value
|
243 |
|
|
of type TYPE, given in virtual format.
|
244 |
|
|
|
245 |
|
|
Things always get returned in RET1_REGNUM, RET2_REGNUM. */
|
246 |
|
|
|
247 |
|
|
static void
|
248 |
|
|
m32r_store_return_value (struct type *type, struct regcache *regcache,
|
249 |
|
|
const void *valbuf)
|
250 |
|
|
{
|
251 |
|
|
CORE_ADDR regval;
|
252 |
|
|
int len = TYPE_LENGTH (type);
|
253 |
|
|
|
254 |
|
|
regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
|
255 |
|
|
regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
|
256 |
|
|
|
257 |
|
|
if (len > 4)
|
258 |
|
|
{
|
259 |
|
|
regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4, len - 4);
|
260 |
|
|
regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
|
261 |
|
|
}
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
/* This is required by skip_prologue. The results of decoding a prologue
|
265 |
|
|
should be cached because this thrashing is getting nuts. */
|
266 |
|
|
|
267 |
|
|
static int
|
268 |
|
|
decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
|
269 |
|
|
CORE_ADDR *pl_endptr, unsigned long *framelength)
|
270 |
|
|
{
|
271 |
|
|
unsigned long framesize;
|
272 |
|
|
int insn;
|
273 |
|
|
int op1;
|
274 |
|
|
CORE_ADDR after_prologue = 0;
|
275 |
|
|
CORE_ADDR after_push = 0;
|
276 |
|
|
CORE_ADDR after_stack_adjust = 0;
|
277 |
|
|
CORE_ADDR current_pc;
|
278 |
|
|
LONGEST return_value;
|
279 |
|
|
|
280 |
|
|
framesize = 0;
|
281 |
|
|
after_prologue = 0;
|
282 |
|
|
|
283 |
|
|
for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
|
284 |
|
|
{
|
285 |
|
|
/* Check if current pc's location is readable. */
|
286 |
|
|
if (!safe_read_memory_integer (current_pc, 2, &return_value))
|
287 |
|
|
return -1;
|
288 |
|
|
|
289 |
|
|
insn = read_memory_unsigned_integer (current_pc, 2);
|
290 |
|
|
|
291 |
|
|
if (insn == 0x0000)
|
292 |
|
|
break;
|
293 |
|
|
|
294 |
|
|
/* If this is a 32 bit instruction, we dont want to examine its
|
295 |
|
|
immediate data as though it were an instruction */
|
296 |
|
|
if (current_pc & 0x02)
|
297 |
|
|
{
|
298 |
|
|
/* decode this instruction further */
|
299 |
|
|
insn &= 0x7fff;
|
300 |
|
|
}
|
301 |
|
|
else
|
302 |
|
|
{
|
303 |
|
|
if (insn & 0x8000)
|
304 |
|
|
{
|
305 |
|
|
if (current_pc == scan_limit)
|
306 |
|
|
scan_limit += 2; /* extend the search */
|
307 |
|
|
|
308 |
|
|
current_pc += 2; /* skip the immediate data */
|
309 |
|
|
|
310 |
|
|
/* Check if current pc's location is readable. */
|
311 |
|
|
if (!safe_read_memory_integer (current_pc, 2, &return_value))
|
312 |
|
|
return -1;
|
313 |
|
|
|
314 |
|
|
if (insn == 0x8faf) /* add3 sp, sp, xxxx */
|
315 |
|
|
/* add 16 bit sign-extended offset */
|
316 |
|
|
{
|
317 |
|
|
framesize +=
|
318 |
|
|
-((short) read_memory_unsigned_integer (current_pc, 2));
|
319 |
|
|
}
|
320 |
|
|
else
|
321 |
|
|
{
|
322 |
|
|
if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
|
323 |
|
|
&& safe_read_memory_integer (current_pc + 2, 2,
|
324 |
|
|
&return_value)
|
325 |
|
|
&& read_memory_unsigned_integer (current_pc + 2,
|
326 |
|
|
2) == 0x0f24)
|
327 |
|
|
/* subtract 24 bit sign-extended negative-offset */
|
328 |
|
|
{
|
329 |
|
|
insn = read_memory_unsigned_integer (current_pc - 2, 4);
|
330 |
|
|
if (insn & 0x00800000) /* sign extend */
|
331 |
|
|
insn |= 0xff000000; /* negative */
|
332 |
|
|
else
|
333 |
|
|
insn &= 0x00ffffff; /* positive */
|
334 |
|
|
framesize += insn;
|
335 |
|
|
}
|
336 |
|
|
}
|
337 |
|
|
after_push = current_pc + 2;
|
338 |
|
|
continue;
|
339 |
|
|
}
|
340 |
|
|
}
|
341 |
|
|
op1 = insn & 0xf000; /* isolate just the first nibble */
|
342 |
|
|
|
343 |
|
|
if ((insn & 0xf0ff) == 0x207f)
|
344 |
|
|
{ /* st reg, @-sp */
|
345 |
|
|
int regno;
|
346 |
|
|
framesize += 4;
|
347 |
|
|
regno = ((insn >> 8) & 0xf);
|
348 |
|
|
after_prologue = 0;
|
349 |
|
|
continue;
|
350 |
|
|
}
|
351 |
|
|
if ((insn >> 8) == 0x4f) /* addi sp, xx */
|
352 |
|
|
/* add 8 bit sign-extended offset */
|
353 |
|
|
{
|
354 |
|
|
int stack_adjust = (signed char) (insn & 0xff);
|
355 |
|
|
|
356 |
|
|
/* there are probably two of these stack adjustments:
|
357 |
|
|
1) A negative one in the prologue, and
|
358 |
|
|
2) A positive one in the epilogue.
|
359 |
|
|
We are only interested in the first one. */
|
360 |
|
|
|
361 |
|
|
if (stack_adjust < 0)
|
362 |
|
|
{
|
363 |
|
|
framesize -= stack_adjust;
|
364 |
|
|
after_prologue = 0;
|
365 |
|
|
/* A frameless function may have no "mv fp, sp".
|
366 |
|
|
In that case, this is the end of the prologue. */
|
367 |
|
|
after_stack_adjust = current_pc + 2;
|
368 |
|
|
}
|
369 |
|
|
continue;
|
370 |
|
|
}
|
371 |
|
|
if (insn == 0x1d8f)
|
372 |
|
|
{ /* mv fp, sp */
|
373 |
|
|
after_prologue = current_pc + 2;
|
374 |
|
|
break; /* end of stack adjustments */
|
375 |
|
|
}
|
376 |
|
|
|
377 |
|
|
/* Nop looks like a branch, continue explicitly */
|
378 |
|
|
if (insn == 0x7000)
|
379 |
|
|
{
|
380 |
|
|
after_prologue = current_pc + 2;
|
381 |
|
|
continue; /* nop occurs between pushes */
|
382 |
|
|
}
|
383 |
|
|
/* End of prolog if any of these are trap instructions */
|
384 |
|
|
if ((insn & 0xfff0) == 0x10f0)
|
385 |
|
|
{
|
386 |
|
|
after_prologue = current_pc;
|
387 |
|
|
break;
|
388 |
|
|
}
|
389 |
|
|
/* End of prolog if any of these are branch instructions */
|
390 |
|
|
if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
|
391 |
|
|
{
|
392 |
|
|
after_prologue = current_pc;
|
393 |
|
|
continue;
|
394 |
|
|
}
|
395 |
|
|
/* Some of the branch instructions are mixed with other types */
|
396 |
|
|
if (op1 == 0x1000)
|
397 |
|
|
{
|
398 |
|
|
int subop = insn & 0x0ff0;
|
399 |
|
|
if ((subop == 0x0ec0) || (subop == 0x0fc0))
|
400 |
|
|
{
|
401 |
|
|
after_prologue = current_pc;
|
402 |
|
|
continue; /* jmp , jl */
|
403 |
|
|
}
|
404 |
|
|
}
|
405 |
|
|
}
|
406 |
|
|
|
407 |
|
|
if (framelength)
|
408 |
|
|
*framelength = framesize;
|
409 |
|
|
|
410 |
|
|
if (current_pc >= scan_limit)
|
411 |
|
|
{
|
412 |
|
|
if (pl_endptr)
|
413 |
|
|
{
|
414 |
|
|
if (after_stack_adjust != 0)
|
415 |
|
|
/* We did not find a "mv fp,sp", but we DID find
|
416 |
|
|
a stack_adjust. Is it safe to use that as the
|
417 |
|
|
end of the prologue? I just don't know. */
|
418 |
|
|
{
|
419 |
|
|
*pl_endptr = after_stack_adjust;
|
420 |
|
|
}
|
421 |
|
|
else if (after_push != 0)
|
422 |
|
|
/* We did not find a "mv fp,sp", but we DID find
|
423 |
|
|
a push. Is it safe to use that as the
|
424 |
|
|
end of the prologue? I just don't know. */
|
425 |
|
|
{
|
426 |
|
|
*pl_endptr = after_push;
|
427 |
|
|
}
|
428 |
|
|
else
|
429 |
|
|
/* We reached the end of the loop without finding the end
|
430 |
|
|
of the prologue. No way to win -- we should report failure.
|
431 |
|
|
The way we do that is to return the original start_pc.
|
432 |
|
|
GDB will set a breakpoint at the start of the function (etc.) */
|
433 |
|
|
*pl_endptr = start_pc;
|
434 |
|
|
}
|
435 |
|
|
return 0;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
if (after_prologue == 0)
|
439 |
|
|
after_prologue = current_pc;
|
440 |
|
|
|
441 |
|
|
if (pl_endptr)
|
442 |
|
|
*pl_endptr = after_prologue;
|
443 |
|
|
|
444 |
|
|
return 0;
|
445 |
|
|
} /* decode_prologue */
|
446 |
|
|
|
447 |
|
|
/* Function: skip_prologue
|
448 |
|
|
Find end of function prologue */
|
449 |
|
|
|
450 |
|
|
#define DEFAULT_SEARCH_LIMIT 128
|
451 |
|
|
|
452 |
|
|
CORE_ADDR
|
453 |
|
|
m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
454 |
|
|
{
|
455 |
|
|
CORE_ADDR func_addr, func_end;
|
456 |
|
|
struct symtab_and_line sal;
|
457 |
|
|
LONGEST return_value;
|
458 |
|
|
|
459 |
|
|
/* See what the symbol table says */
|
460 |
|
|
|
461 |
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
462 |
|
|
{
|
463 |
|
|
sal = find_pc_line (func_addr, 0);
|
464 |
|
|
|
465 |
|
|
if (sal.line != 0 && sal.end <= func_end)
|
466 |
|
|
{
|
467 |
|
|
func_end = sal.end;
|
468 |
|
|
}
|
469 |
|
|
else
|
470 |
|
|
/* Either there's no line info, or the line after the prologue is after
|
471 |
|
|
the end of the function. In this case, there probably isn't a
|
472 |
|
|
prologue. */
|
473 |
|
|
{
|
474 |
|
|
func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
|
475 |
|
|
}
|
476 |
|
|
}
|
477 |
|
|
else
|
478 |
|
|
func_end = pc + DEFAULT_SEARCH_LIMIT;
|
479 |
|
|
|
480 |
|
|
/* If pc's location is not readable, just quit. */
|
481 |
|
|
if (!safe_read_memory_integer (pc, 4, &return_value))
|
482 |
|
|
return pc;
|
483 |
|
|
|
484 |
|
|
/* Find the end of prologue. */
|
485 |
|
|
if (decode_prologue (pc, func_end, &sal.end, NULL) < 0)
|
486 |
|
|
return pc;
|
487 |
|
|
|
488 |
|
|
return sal.end;
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
struct m32r_unwind_cache
|
492 |
|
|
{
|
493 |
|
|
/* The previous frame's inner most stack address. Used as this
|
494 |
|
|
frame ID's stack_addr. */
|
495 |
|
|
CORE_ADDR prev_sp;
|
496 |
|
|
/* The frame's base, optionally used by the high-level debug info. */
|
497 |
|
|
CORE_ADDR base;
|
498 |
|
|
int size;
|
499 |
|
|
/* How far the SP and r13 (FP) have been offset from the start of
|
500 |
|
|
the stack frame (as defined by the previous frame's stack
|
501 |
|
|
pointer). */
|
502 |
|
|
LONGEST sp_offset;
|
503 |
|
|
LONGEST r13_offset;
|
504 |
|
|
int uses_frame;
|
505 |
|
|
/* Table indicating the location of each and every register. */
|
506 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
507 |
|
|
};
|
508 |
|
|
|
509 |
|
|
/* Put here the code to store, into fi->saved_regs, the addresses of
|
510 |
|
|
the saved registers of frame described by FRAME_INFO. This
|
511 |
|
|
includes special registers such as pc and fp saved in special ways
|
512 |
|
|
in the stack frame. sp is even more special: the address we return
|
513 |
|
|
for it IS the sp for the next frame. */
|
514 |
|
|
|
515 |
|
|
static struct m32r_unwind_cache *
|
516 |
|
|
m32r_frame_unwind_cache (struct frame_info *next_frame,
|
517 |
|
|
void **this_prologue_cache)
|
518 |
|
|
{
|
519 |
|
|
CORE_ADDR pc, scan_limit;
|
520 |
|
|
ULONGEST prev_sp;
|
521 |
|
|
ULONGEST this_base;
|
522 |
|
|
unsigned long op, op2;
|
523 |
|
|
int i;
|
524 |
|
|
struct m32r_unwind_cache *info;
|
525 |
|
|
|
526 |
|
|
|
527 |
|
|
if ((*this_prologue_cache))
|
528 |
|
|
return (*this_prologue_cache);
|
529 |
|
|
|
530 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
|
531 |
|
|
(*this_prologue_cache) = info;
|
532 |
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
533 |
|
|
|
534 |
|
|
info->size = 0;
|
535 |
|
|
info->sp_offset = 0;
|
536 |
|
|
info->uses_frame = 0;
|
537 |
|
|
|
538 |
|
|
scan_limit = frame_pc_unwind (next_frame);
|
539 |
|
|
for (pc = frame_func_unwind (next_frame, NORMAL_FRAME);
|
540 |
|
|
pc > 0 && pc < scan_limit; pc += 2)
|
541 |
|
|
{
|
542 |
|
|
if ((pc & 2) == 0)
|
543 |
|
|
{
|
544 |
|
|
op = get_frame_memory_unsigned (next_frame, pc, 4);
|
545 |
|
|
if ((op & 0x80000000) == 0x80000000)
|
546 |
|
|
{
|
547 |
|
|
/* 32-bit instruction */
|
548 |
|
|
if ((op & 0xffff0000) == 0x8faf0000)
|
549 |
|
|
{
|
550 |
|
|
/* add3 sp,sp,xxxx */
|
551 |
|
|
short n = op & 0xffff;
|
552 |
|
|
info->sp_offset += n;
|
553 |
|
|
}
|
554 |
|
|
else if (((op >> 8) == 0xe4)
|
555 |
|
|
&& get_frame_memory_unsigned (next_frame, pc + 2,
|
556 |
|
|
2) == 0x0f24)
|
557 |
|
|
{
|
558 |
|
|
/* ld24 r4, xxxxxx; sub sp, r4 */
|
559 |
|
|
unsigned long n = op & 0xffffff;
|
560 |
|
|
info->sp_offset += n;
|
561 |
|
|
pc += 2; /* skip sub instruction */
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
if (pc == scan_limit)
|
565 |
|
|
scan_limit += 2; /* extend the search */
|
566 |
|
|
pc += 2; /* skip the immediate data */
|
567 |
|
|
continue;
|
568 |
|
|
}
|
569 |
|
|
}
|
570 |
|
|
|
571 |
|
|
/* 16-bit instructions */
|
572 |
|
|
op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
|
573 |
|
|
if ((op & 0xf0ff) == 0x207f)
|
574 |
|
|
{
|
575 |
|
|
/* st rn, @-sp */
|
576 |
|
|
int regno = ((op >> 8) & 0xf);
|
577 |
|
|
info->sp_offset -= 4;
|
578 |
|
|
info->saved_regs[regno].addr = info->sp_offset;
|
579 |
|
|
}
|
580 |
|
|
else if ((op & 0xff00) == 0x4f00)
|
581 |
|
|
{
|
582 |
|
|
/* addi sp, xx */
|
583 |
|
|
int n = (signed char) (op & 0xff);
|
584 |
|
|
info->sp_offset += n;
|
585 |
|
|
}
|
586 |
|
|
else if (op == 0x1d8f)
|
587 |
|
|
{
|
588 |
|
|
/* mv fp, sp */
|
589 |
|
|
info->uses_frame = 1;
|
590 |
|
|
info->r13_offset = info->sp_offset;
|
591 |
|
|
break; /* end of stack adjustments */
|
592 |
|
|
}
|
593 |
|
|
else if ((op & 0xfff0) == 0x10f0)
|
594 |
|
|
{
|
595 |
|
|
/* end of prologue if this is a trap instruction */
|
596 |
|
|
break; /* end of stack adjustments */
|
597 |
|
|
}
|
598 |
|
|
}
|
599 |
|
|
|
600 |
|
|
info->size = -info->sp_offset;
|
601 |
|
|
|
602 |
|
|
/* Compute the previous frame's stack pointer (which is also the
|
603 |
|
|
frame's ID's stack address), and this frame's base pointer. */
|
604 |
|
|
if (info->uses_frame)
|
605 |
|
|
{
|
606 |
|
|
/* The SP was moved to the FP. This indicates that a new frame
|
607 |
|
|
was created. Get THIS frame's FP value by unwinding it from
|
608 |
|
|
the next frame. */
|
609 |
|
|
this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM);
|
610 |
|
|
/* The FP points at the last saved register. Adjust the FP back
|
611 |
|
|
to before the first saved register giving the SP. */
|
612 |
|
|
prev_sp = this_base + info->size;
|
613 |
|
|
}
|
614 |
|
|
else
|
615 |
|
|
{
|
616 |
|
|
/* Assume that the FP is this frame's SP but with that pushed
|
617 |
|
|
stack space added back. */
|
618 |
|
|
this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
|
619 |
|
|
prev_sp = this_base + info->size;
|
620 |
|
|
}
|
621 |
|
|
|
622 |
|
|
/* Convert that SP/BASE into real addresses. */
|
623 |
|
|
info->prev_sp = prev_sp;
|
624 |
|
|
info->base = this_base;
|
625 |
|
|
|
626 |
|
|
/* Adjust all the saved registers so that they contain addresses and
|
627 |
|
|
not offsets. */
|
628 |
|
|
for (i = 0; i < gdbarch_num_regs (get_frame_arch (next_frame)) - 1; i++)
|
629 |
|
|
if (trad_frame_addr_p (info->saved_regs, i))
|
630 |
|
|
info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
|
631 |
|
|
|
632 |
|
|
/* The call instruction moves the caller's PC in the callee's LR.
|
633 |
|
|
Since this is an unwind, do the reverse. Copy the location of LR
|
634 |
|
|
into PC (the address / regnum) so that a request for PC will be
|
635 |
|
|
converted into a request for the LR. */
|
636 |
|
|
info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
|
637 |
|
|
|
638 |
|
|
/* The previous frame's SP needed to be computed. Save the computed
|
639 |
|
|
value. */
|
640 |
|
|
trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
|
641 |
|
|
|
642 |
|
|
return info;
|
643 |
|
|
}
|
644 |
|
|
|
645 |
|
|
static CORE_ADDR
|
646 |
|
|
m32r_read_pc (struct regcache *regcache)
|
647 |
|
|
{
|
648 |
|
|
ULONGEST pc;
|
649 |
|
|
regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
|
650 |
|
|
return pc;
|
651 |
|
|
}
|
652 |
|
|
|
653 |
|
|
static void
|
654 |
|
|
m32r_write_pc (struct regcache *regcache, CORE_ADDR val)
|
655 |
|
|
{
|
656 |
|
|
regcache_cooked_write_unsigned (regcache, M32R_PC_REGNUM, val);
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
static CORE_ADDR
|
660 |
|
|
m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
661 |
|
|
{
|
662 |
|
|
return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
|
663 |
|
|
}
|
664 |
|
|
|
665 |
|
|
|
666 |
|
|
static CORE_ADDR
|
667 |
|
|
m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
668 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
|
669 |
|
|
struct value **args, CORE_ADDR sp, int struct_return,
|
670 |
|
|
CORE_ADDR struct_addr)
|
671 |
|
|
{
|
672 |
|
|
int stack_offset, stack_alloc;
|
673 |
|
|
int argreg = ARG1_REGNUM;
|
674 |
|
|
int argnum;
|
675 |
|
|
struct type *type;
|
676 |
|
|
enum type_code typecode;
|
677 |
|
|
CORE_ADDR regval;
|
678 |
|
|
gdb_byte *val;
|
679 |
|
|
gdb_byte valbuf[MAX_REGISTER_SIZE];
|
680 |
|
|
int len;
|
681 |
|
|
int odd_sized_struct;
|
682 |
|
|
|
683 |
|
|
/* first force sp to a 4-byte alignment */
|
684 |
|
|
sp = sp & ~3;
|
685 |
|
|
|
686 |
|
|
/* Set the return address. For the m32r, the return breakpoint is
|
687 |
|
|
always at BP_ADDR. */
|
688 |
|
|
regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
|
689 |
|
|
|
690 |
|
|
/* If STRUCT_RETURN is true, then the struct return address (in
|
691 |
|
|
STRUCT_ADDR) will consume the first argument-passing register.
|
692 |
|
|
Both adjust the register count and store that value. */
|
693 |
|
|
if (struct_return)
|
694 |
|
|
{
|
695 |
|
|
regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
|
696 |
|
|
argreg++;
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
/* Now make sure there's space on the stack */
|
700 |
|
|
for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
|
701 |
|
|
stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
|
702 |
|
|
sp -= stack_alloc; /* make room on stack for args */
|
703 |
|
|
|
704 |
|
|
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
|
705 |
|
|
{
|
706 |
|
|
type = value_type (args[argnum]);
|
707 |
|
|
typecode = TYPE_CODE (type);
|
708 |
|
|
len = TYPE_LENGTH (type);
|
709 |
|
|
|
710 |
|
|
memset (valbuf, 0, sizeof (valbuf));
|
711 |
|
|
|
712 |
|
|
/* Passes structures that do not fit in 2 registers by reference. */
|
713 |
|
|
if (len > 8
|
714 |
|
|
&& (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
|
715 |
|
|
{
|
716 |
|
|
store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
|
717 |
|
|
typecode = TYPE_CODE_PTR;
|
718 |
|
|
len = 4;
|
719 |
|
|
val = valbuf;
|
720 |
|
|
}
|
721 |
|
|
else if (len < 4)
|
722 |
|
|
{
|
723 |
|
|
/* value gets right-justified in the register or stack word */
|
724 |
|
|
memcpy (valbuf + (register_size (gdbarch, argreg) - len),
|
725 |
|
|
(gdb_byte *) value_contents (args[argnum]), len);
|
726 |
|
|
val = valbuf;
|
727 |
|
|
}
|
728 |
|
|
else
|
729 |
|
|
val = (gdb_byte *) value_contents (args[argnum]);
|
730 |
|
|
|
731 |
|
|
while (len > 0)
|
732 |
|
|
{
|
733 |
|
|
if (argreg > ARGN_REGNUM)
|
734 |
|
|
{
|
735 |
|
|
/* must go on the stack */
|
736 |
|
|
write_memory (sp + stack_offset, val, 4);
|
737 |
|
|
stack_offset += 4;
|
738 |
|
|
}
|
739 |
|
|
else if (argreg <= ARGN_REGNUM)
|
740 |
|
|
{
|
741 |
|
|
/* there's room in a register */
|
742 |
|
|
regval =
|
743 |
|
|
extract_unsigned_integer (val,
|
744 |
|
|
register_size (gdbarch, argreg));
|
745 |
|
|
regcache_cooked_write_unsigned (regcache, argreg++, regval);
|
746 |
|
|
}
|
747 |
|
|
|
748 |
|
|
/* Store the value 4 bytes at a time. This means that things
|
749 |
|
|
larger than 4 bytes may go partly in registers and partly
|
750 |
|
|
on the stack. */
|
751 |
|
|
len -= register_size (gdbarch, argreg);
|
752 |
|
|
val += register_size (gdbarch, argreg);
|
753 |
|
|
}
|
754 |
|
|
}
|
755 |
|
|
|
756 |
|
|
/* Finally, update the SP register. */
|
757 |
|
|
regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
|
758 |
|
|
|
759 |
|
|
return sp;
|
760 |
|
|
}
|
761 |
|
|
|
762 |
|
|
|
763 |
|
|
/* Given a return value in `regbuf' with a type `valtype',
|
764 |
|
|
extract and copy its value into `valbuf'. */
|
765 |
|
|
|
766 |
|
|
static void
|
767 |
|
|
m32r_extract_return_value (struct type *type, struct regcache *regcache,
|
768 |
|
|
void *dst)
|
769 |
|
|
{
|
770 |
|
|
bfd_byte *valbuf = dst;
|
771 |
|
|
int len = TYPE_LENGTH (type);
|
772 |
|
|
ULONGEST tmp;
|
773 |
|
|
|
774 |
|
|
/* By using store_unsigned_integer we avoid having to do
|
775 |
|
|
anything special for small big-endian values. */
|
776 |
|
|
regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
|
777 |
|
|
store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
|
778 |
|
|
|
779 |
|
|
/* Ignore return values more than 8 bytes in size because the m32r
|
780 |
|
|
returns anything more than 8 bytes in the stack. */
|
781 |
|
|
if (len > 4)
|
782 |
|
|
{
|
783 |
|
|
regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
|
784 |
|
|
store_unsigned_integer (valbuf + len - 4, 4, tmp);
|
785 |
|
|
}
|
786 |
|
|
}
|
787 |
|
|
|
788 |
|
|
enum return_value_convention
|
789 |
|
|
m32r_return_value (struct gdbarch *gdbarch, struct type *valtype,
|
790 |
|
|
struct regcache *regcache, gdb_byte *readbuf,
|
791 |
|
|
const gdb_byte *writebuf)
|
792 |
|
|
{
|
793 |
|
|
if (TYPE_LENGTH (valtype) > 8)
|
794 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
795 |
|
|
else
|
796 |
|
|
{
|
797 |
|
|
if (readbuf != NULL)
|
798 |
|
|
m32r_extract_return_value (valtype, regcache, readbuf);
|
799 |
|
|
if (writebuf != NULL)
|
800 |
|
|
m32r_store_return_value (valtype, regcache, writebuf);
|
801 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
802 |
|
|
}
|
803 |
|
|
}
|
804 |
|
|
|
805 |
|
|
|
806 |
|
|
|
807 |
|
|
static CORE_ADDR
|
808 |
|
|
m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
809 |
|
|
{
|
810 |
|
|
return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
|
811 |
|
|
}
|
812 |
|
|
|
813 |
|
|
/* Given a GDB frame, determine the address of the calling function's
|
814 |
|
|
frame. This will be used to create a new GDB frame struct. */
|
815 |
|
|
|
816 |
|
|
static void
|
817 |
|
|
m32r_frame_this_id (struct frame_info *next_frame,
|
818 |
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
819 |
|
|
{
|
820 |
|
|
struct m32r_unwind_cache *info
|
821 |
|
|
= m32r_frame_unwind_cache (next_frame, this_prologue_cache);
|
822 |
|
|
CORE_ADDR base;
|
823 |
|
|
CORE_ADDR func;
|
824 |
|
|
struct minimal_symbol *msym_stack;
|
825 |
|
|
struct frame_id id;
|
826 |
|
|
|
827 |
|
|
/* The FUNC is easy. */
|
828 |
|
|
func = frame_func_unwind (next_frame, NORMAL_FRAME);
|
829 |
|
|
|
830 |
|
|
/* Check if the stack is empty. */
|
831 |
|
|
msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
|
832 |
|
|
if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
|
833 |
|
|
return;
|
834 |
|
|
|
835 |
|
|
/* Hopefully the prologue analysis either correctly determined the
|
836 |
|
|
frame's base (which is the SP from the previous frame), or set
|
837 |
|
|
that base to "NULL". */
|
838 |
|
|
base = info->prev_sp;
|
839 |
|
|
if (base == 0)
|
840 |
|
|
return;
|
841 |
|
|
|
842 |
|
|
id = frame_id_build (base, func);
|
843 |
|
|
(*this_id) = id;
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
static void
|
847 |
|
|
m32r_frame_prev_register (struct frame_info *next_frame,
|
848 |
|
|
void **this_prologue_cache,
|
849 |
|
|
int regnum, int *optimizedp,
|
850 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
851 |
|
|
int *realnump, gdb_byte *bufferp)
|
852 |
|
|
{
|
853 |
|
|
struct m32r_unwind_cache *info
|
854 |
|
|
= m32r_frame_unwind_cache (next_frame, this_prologue_cache);
|
855 |
|
|
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
|
856 |
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
857 |
|
|
}
|
858 |
|
|
|
859 |
|
|
static const struct frame_unwind m32r_frame_unwind = {
|
860 |
|
|
NORMAL_FRAME,
|
861 |
|
|
m32r_frame_this_id,
|
862 |
|
|
m32r_frame_prev_register
|
863 |
|
|
};
|
864 |
|
|
|
865 |
|
|
static const struct frame_unwind *
|
866 |
|
|
m32r_frame_sniffer (struct frame_info *next_frame)
|
867 |
|
|
{
|
868 |
|
|
return &m32r_frame_unwind;
|
869 |
|
|
}
|
870 |
|
|
|
871 |
|
|
static CORE_ADDR
|
872 |
|
|
m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
873 |
|
|
{
|
874 |
|
|
struct m32r_unwind_cache *info
|
875 |
|
|
= m32r_frame_unwind_cache (next_frame, this_cache);
|
876 |
|
|
return info->base;
|
877 |
|
|
}
|
878 |
|
|
|
879 |
|
|
static const struct frame_base m32r_frame_base = {
|
880 |
|
|
&m32r_frame_unwind,
|
881 |
|
|
m32r_frame_base_address,
|
882 |
|
|
m32r_frame_base_address,
|
883 |
|
|
m32r_frame_base_address
|
884 |
|
|
};
|
885 |
|
|
|
886 |
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
887 |
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
888 |
|
|
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
|
889 |
|
|
breakpoint. */
|
890 |
|
|
|
891 |
|
|
static struct frame_id
|
892 |
|
|
m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
893 |
|
|
{
|
894 |
|
|
return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
|
895 |
|
|
frame_pc_unwind (next_frame));
|
896 |
|
|
}
|
897 |
|
|
|
898 |
|
|
|
899 |
|
|
static gdbarch_init_ftype m32r_gdbarch_init;
|
900 |
|
|
|
901 |
|
|
static struct gdbarch *
|
902 |
|
|
m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
903 |
|
|
{
|
904 |
|
|
struct gdbarch *gdbarch;
|
905 |
|
|
struct gdbarch_tdep *tdep;
|
906 |
|
|
|
907 |
|
|
/* If there is already a candidate, use it. */
|
908 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
909 |
|
|
if (arches != NULL)
|
910 |
|
|
return arches->gdbarch;
|
911 |
|
|
|
912 |
|
|
/* Allocate space for the new architecture. */
|
913 |
|
|
tdep = XMALLOC (struct gdbarch_tdep);
|
914 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
915 |
|
|
|
916 |
|
|
set_gdbarch_read_pc (gdbarch, m32r_read_pc);
|
917 |
|
|
set_gdbarch_write_pc (gdbarch, m32r_write_pc);
|
918 |
|
|
set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
|
919 |
|
|
|
920 |
|
|
set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
|
921 |
|
|
set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
|
922 |
|
|
set_gdbarch_register_name (gdbarch, m32r_register_name);
|
923 |
|
|
set_gdbarch_register_type (gdbarch, m32r_register_type);
|
924 |
|
|
|
925 |
|
|
set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
|
926 |
|
|
set_gdbarch_return_value (gdbarch, m32r_return_value);
|
927 |
|
|
|
928 |
|
|
set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
|
929 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
930 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
|
931 |
|
|
set_gdbarch_memory_insert_breakpoint (gdbarch,
|
932 |
|
|
m32r_memory_insert_breakpoint);
|
933 |
|
|
set_gdbarch_memory_remove_breakpoint (gdbarch,
|
934 |
|
|
m32r_memory_remove_breakpoint);
|
935 |
|
|
|
936 |
|
|
set_gdbarch_frame_align (gdbarch, m32r_frame_align);
|
937 |
|
|
|
938 |
|
|
frame_base_set_default (gdbarch, &m32r_frame_base);
|
939 |
|
|
|
940 |
|
|
/* Methods for saving / extracting a dummy frame's ID. The ID's
|
941 |
|
|
stack address must match the SP value returned by
|
942 |
|
|
PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
|
943 |
|
|
set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
|
944 |
|
|
|
945 |
|
|
/* Return the unwound PC value. */
|
946 |
|
|
set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
|
947 |
|
|
|
948 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_m32r);
|
949 |
|
|
|
950 |
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
951 |
|
|
gdbarch_init_osabi (info, gdbarch);
|
952 |
|
|
|
953 |
|
|
/* Hook in the default unwinders. */
|
954 |
|
|
frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer);
|
955 |
|
|
|
956 |
|
|
/* Support simple overlay manager. */
|
957 |
|
|
set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
|
958 |
|
|
|
959 |
|
|
return gdbarch;
|
960 |
|
|
}
|
961 |
|
|
|
962 |
|
|
void
|
963 |
|
|
_initialize_m32r_tdep (void)
|
964 |
|
|
{
|
965 |
|
|
register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
|
966 |
|
|
}
|