1 |
24 |
jeremybenn |
/* Target-dependent code for Morpho mt processor, for GDB.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
19 |
|
|
|
20 |
|
|
/* Contributed by Michael Snyder, msnyder@redhat.com. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "frame-unwind.h"
|
25 |
|
|
#include "frame-base.h"
|
26 |
|
|
#include "symtab.h"
|
27 |
|
|
#include "dis-asm.h"
|
28 |
|
|
#include "arch-utils.h"
|
29 |
|
|
#include "gdbtypes.h"
|
30 |
|
|
#include "gdb_string.h"
|
31 |
|
|
#include "regcache.h"
|
32 |
|
|
#include "reggroups.h"
|
33 |
|
|
#include "gdbcore.h"
|
34 |
|
|
#include "trad-frame.h"
|
35 |
|
|
#include "inferior.h"
|
36 |
|
|
#include "dwarf2-frame.h"
|
37 |
|
|
#include "infcall.h"
|
38 |
|
|
#include "gdb_assert.h"
|
39 |
|
|
|
40 |
|
|
enum mt_arch_constants
|
41 |
|
|
{
|
42 |
|
|
MT_MAX_STRUCT_SIZE = 16
|
43 |
|
|
};
|
44 |
|
|
|
45 |
|
|
enum mt_gdb_regnums
|
46 |
|
|
{
|
47 |
|
|
MT_R0_REGNUM, /* 32 bit regs. */
|
48 |
|
|
MT_R1_REGNUM,
|
49 |
|
|
MT_1ST_ARGREG = MT_R1_REGNUM,
|
50 |
|
|
MT_R2_REGNUM,
|
51 |
|
|
MT_R3_REGNUM,
|
52 |
|
|
MT_R4_REGNUM,
|
53 |
|
|
MT_LAST_ARGREG = MT_R4_REGNUM,
|
54 |
|
|
MT_R5_REGNUM,
|
55 |
|
|
MT_R6_REGNUM,
|
56 |
|
|
MT_R7_REGNUM,
|
57 |
|
|
MT_R8_REGNUM,
|
58 |
|
|
MT_R9_REGNUM,
|
59 |
|
|
MT_R10_REGNUM,
|
60 |
|
|
MT_R11_REGNUM,
|
61 |
|
|
MT_R12_REGNUM,
|
62 |
|
|
MT_FP_REGNUM = MT_R12_REGNUM,
|
63 |
|
|
MT_R13_REGNUM,
|
64 |
|
|
MT_SP_REGNUM = MT_R13_REGNUM,
|
65 |
|
|
MT_R14_REGNUM,
|
66 |
|
|
MT_RA_REGNUM = MT_R14_REGNUM,
|
67 |
|
|
MT_R15_REGNUM,
|
68 |
|
|
MT_IRA_REGNUM = MT_R15_REGNUM,
|
69 |
|
|
MT_PC_REGNUM,
|
70 |
|
|
|
71 |
|
|
/* Interrupt Enable pseudo-register, exported by SID. */
|
72 |
|
|
MT_INT_ENABLE_REGNUM,
|
73 |
|
|
/* End of CPU regs. */
|
74 |
|
|
|
75 |
|
|
MT_NUM_CPU_REGS,
|
76 |
|
|
|
77 |
|
|
/* Co-processor registers. */
|
78 |
|
|
MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
|
79 |
|
|
MT_CPR0_REGNUM,
|
80 |
|
|
MT_CPR1_REGNUM,
|
81 |
|
|
MT_CPR2_REGNUM,
|
82 |
|
|
MT_CPR3_REGNUM,
|
83 |
|
|
MT_CPR4_REGNUM,
|
84 |
|
|
MT_CPR5_REGNUM,
|
85 |
|
|
MT_CPR6_REGNUM,
|
86 |
|
|
MT_CPR7_REGNUM,
|
87 |
|
|
MT_CPR8_REGNUM,
|
88 |
|
|
MT_CPR9_REGNUM,
|
89 |
|
|
MT_CPR10_REGNUM,
|
90 |
|
|
MT_CPR11_REGNUM,
|
91 |
|
|
MT_CPR12_REGNUM,
|
92 |
|
|
MT_CPR13_REGNUM,
|
93 |
|
|
MT_CPR14_REGNUM,
|
94 |
|
|
MT_CPR15_REGNUM,
|
95 |
|
|
MT_BYPA_REGNUM, /* 32 bit regs. */
|
96 |
|
|
MT_BYPB_REGNUM,
|
97 |
|
|
MT_BYPC_REGNUM,
|
98 |
|
|
MT_FLAG_REGNUM,
|
99 |
|
|
MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
|
100 |
|
|
six bytes). */
|
101 |
|
|
MT_MAC_REGNUM, /* 32 bits. */
|
102 |
|
|
MT_Z1_REGNUM, /* 16 bits. */
|
103 |
|
|
MT_Z2_REGNUM, /* 16 bits. */
|
104 |
|
|
MT_ICHANNEL_REGNUM, /* 32 bits. */
|
105 |
|
|
MT_ISCRAMB_REGNUM, /* 32 bits. */
|
106 |
|
|
MT_QSCRAMB_REGNUM, /* 32 bits. */
|
107 |
|
|
MT_OUT_REGNUM, /* 16 bits. */
|
108 |
|
|
MT_EXMAC_REGNUM, /* 32 bits (8 used). */
|
109 |
|
|
MT_QCHANNEL_REGNUM, /* 32 bits. */
|
110 |
|
|
MT_ZI2_REGNUM, /* 16 bits. */
|
111 |
|
|
MT_ZQ2_REGNUM, /* 16 bits. */
|
112 |
|
|
MT_CHANNEL2_REGNUM, /* 32 bits. */
|
113 |
|
|
MT_ISCRAMB2_REGNUM, /* 32 bits. */
|
114 |
|
|
MT_QSCRAMB2_REGNUM, /* 32 bits. */
|
115 |
|
|
MT_QCHANNEL2_REGNUM, /* 32 bits. */
|
116 |
|
|
|
117 |
|
|
/* Number of real registers. */
|
118 |
|
|
MT_NUM_REGS,
|
119 |
|
|
|
120 |
|
|
/* Pseudo-registers. */
|
121 |
|
|
MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
|
122 |
|
|
MT_MAC_PSEUDOREG_REGNUM,
|
123 |
|
|
MT_COPRO_PSEUDOREG_ARRAY,
|
124 |
|
|
|
125 |
|
|
MT_COPRO_PSEUDOREG_DIM_1 = 2,
|
126 |
|
|
MT_COPRO_PSEUDOREG_DIM_2 = 8,
|
127 |
|
|
/* The number of pseudo-registers for each coprocessor. These
|
128 |
|
|
include the real coprocessor registers, the pseudo-registe for
|
129 |
|
|
the coprocessor number, and the pseudo-register for the MAC. */
|
130 |
|
|
MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
|
131 |
|
|
/* The register number of the MAC, relative to a given coprocessor. */
|
132 |
|
|
MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
|
133 |
|
|
|
134 |
|
|
/* Two pseudo-regs ('coprocessor' and 'mac'). */
|
135 |
|
|
MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
|
136 |
|
|
* MT_COPRO_PSEUDOREG_DIM_1
|
137 |
|
|
* MT_COPRO_PSEUDOREG_DIM_2)
|
138 |
|
|
};
|
139 |
|
|
|
140 |
|
|
/* Return name of register number specified by REGNUM. */
|
141 |
|
|
|
142 |
|
|
static const char *
|
143 |
|
|
mt_register_name (struct gdbarch *gdbarch, int regnum)
|
144 |
|
|
{
|
145 |
|
|
static const char *const register_names[] = {
|
146 |
|
|
/* CPU regs. */
|
147 |
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
148 |
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
149 |
|
|
"pc", "IE",
|
150 |
|
|
/* Co-processor regs. */
|
151 |
|
|
"", /* copro register. */
|
152 |
|
|
"cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
|
153 |
|
|
"cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
|
154 |
|
|
"bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
|
155 |
|
|
"Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
|
156 |
|
|
"zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
|
157 |
|
|
/* Pseudo-registers. */
|
158 |
|
|
"coprocessor", "MAC"
|
159 |
|
|
};
|
160 |
|
|
static const char *array_names[MT_COPRO_PSEUDOREG_REGS
|
161 |
|
|
* MT_COPRO_PSEUDOREG_DIM_1
|
162 |
|
|
* MT_COPRO_PSEUDOREG_DIM_2];
|
163 |
|
|
|
164 |
|
|
if (regnum < 0)
|
165 |
|
|
return "";
|
166 |
|
|
if (regnum < ARRAY_SIZE (register_names))
|
167 |
|
|
return register_names[regnum];
|
168 |
|
|
if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
|
169 |
|
|
return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
|
170 |
|
|
|
171 |
|
|
{
|
172 |
|
|
char *name;
|
173 |
|
|
const char *stub;
|
174 |
|
|
unsigned dim_1;
|
175 |
|
|
unsigned dim_2;
|
176 |
|
|
unsigned index;
|
177 |
|
|
|
178 |
|
|
regnum -= MT_COPRO_PSEUDOREG_ARRAY;
|
179 |
|
|
index = regnum % MT_COPRO_PSEUDOREG_REGS;
|
180 |
|
|
dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
|
181 |
|
|
dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
|
182 |
|
|
% MT_COPRO_PSEUDOREG_DIM_1);
|
183 |
|
|
|
184 |
|
|
if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
|
185 |
|
|
stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
|
186 |
|
|
else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
|
187 |
|
|
stub = "";
|
188 |
|
|
else
|
189 |
|
|
stub = register_names[index + MT_CPR0_REGNUM];
|
190 |
|
|
if (!*stub)
|
191 |
|
|
{
|
192 |
|
|
array_names[regnum] = stub;
|
193 |
|
|
return stub;
|
194 |
|
|
}
|
195 |
|
|
name = xmalloc (30);
|
196 |
|
|
sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
|
197 |
|
|
array_names[regnum] = name;
|
198 |
|
|
return name;
|
199 |
|
|
}
|
200 |
|
|
}
|
201 |
|
|
|
202 |
|
|
/* Return the type of a coprocessor register. */
|
203 |
|
|
|
204 |
|
|
static struct type *
|
205 |
|
|
mt_copro_register_type (struct gdbarch *arch, int regnum)
|
206 |
|
|
{
|
207 |
|
|
switch (regnum)
|
208 |
|
|
{
|
209 |
|
|
case MT_INT_ENABLE_REGNUM:
|
210 |
|
|
case MT_ICHANNEL_REGNUM:
|
211 |
|
|
case MT_QCHANNEL_REGNUM:
|
212 |
|
|
case MT_ISCRAMB_REGNUM:
|
213 |
|
|
case MT_QSCRAMB_REGNUM:
|
214 |
|
|
return builtin_type_int32;
|
215 |
|
|
case MT_BYPA_REGNUM:
|
216 |
|
|
case MT_BYPB_REGNUM:
|
217 |
|
|
case MT_BYPC_REGNUM:
|
218 |
|
|
case MT_Z1_REGNUM:
|
219 |
|
|
case MT_Z2_REGNUM:
|
220 |
|
|
case MT_OUT_REGNUM:
|
221 |
|
|
case MT_ZI2_REGNUM:
|
222 |
|
|
case MT_ZQ2_REGNUM:
|
223 |
|
|
return builtin_type_int16;
|
224 |
|
|
case MT_EXMAC_REGNUM:
|
225 |
|
|
case MT_MAC_REGNUM:
|
226 |
|
|
return builtin_type_uint32;
|
227 |
|
|
case MT_CONTEXT_REGNUM:
|
228 |
|
|
return builtin_type_long_long;
|
229 |
|
|
case MT_FLAG_REGNUM:
|
230 |
|
|
return builtin_type_unsigned_char;
|
231 |
|
|
default:
|
232 |
|
|
if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
|
233 |
|
|
return builtin_type_int16;
|
234 |
|
|
else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
|
235 |
|
|
{
|
236 |
|
|
if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
|
237 |
|
|
|| gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
|
238 |
|
|
return builtin_type_uint64;
|
239 |
|
|
else
|
240 |
|
|
return builtin_type_uint32;
|
241 |
|
|
}
|
242 |
|
|
else
|
243 |
|
|
return builtin_type_uint32;
|
244 |
|
|
}
|
245 |
|
|
}
|
246 |
|
|
|
247 |
|
|
/* Given ARCH and a register number specified by REGNUM, return the
|
248 |
|
|
type of that register. */
|
249 |
|
|
|
250 |
|
|
static struct type *
|
251 |
|
|
mt_register_type (struct gdbarch *arch, int regnum)
|
252 |
|
|
{
|
253 |
|
|
static struct type *void_func_ptr = NULL;
|
254 |
|
|
static struct type *void_ptr = NULL;
|
255 |
|
|
static struct type *copro_type;
|
256 |
|
|
|
257 |
|
|
if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
|
258 |
|
|
{
|
259 |
|
|
if (void_func_ptr == NULL)
|
260 |
|
|
{
|
261 |
|
|
struct type *temp;
|
262 |
|
|
|
263 |
|
|
void_ptr = lookup_pointer_type (builtin_type_void);
|
264 |
|
|
void_func_ptr =
|
265 |
|
|
lookup_pointer_type (lookup_function_type (builtin_type_void));
|
266 |
|
|
temp = create_range_type (NULL, builtin_type_unsigned_int, 0, 1);
|
267 |
|
|
copro_type = create_array_type (NULL, builtin_type_int16, temp);
|
268 |
|
|
}
|
269 |
|
|
switch (regnum)
|
270 |
|
|
{
|
271 |
|
|
case MT_PC_REGNUM:
|
272 |
|
|
case MT_RA_REGNUM:
|
273 |
|
|
case MT_IRA_REGNUM:
|
274 |
|
|
return void_func_ptr;
|
275 |
|
|
case MT_SP_REGNUM:
|
276 |
|
|
case MT_FP_REGNUM:
|
277 |
|
|
return void_ptr;
|
278 |
|
|
case MT_COPRO_REGNUM:
|
279 |
|
|
case MT_COPRO_PSEUDOREG_REGNUM:
|
280 |
|
|
return copro_type;
|
281 |
|
|
case MT_MAC_PSEUDOREG_REGNUM:
|
282 |
|
|
return mt_copro_register_type (arch,
|
283 |
|
|
MT_CPR0_REGNUM
|
284 |
|
|
+ MT_COPRO_PSEUDOREG_MAC_REGNUM);
|
285 |
|
|
default:
|
286 |
|
|
if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
|
287 |
|
|
return builtin_type_int32;
|
288 |
|
|
else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
|
289 |
|
|
return mt_copro_register_type (arch, regnum);
|
290 |
|
|
else
|
291 |
|
|
{
|
292 |
|
|
regnum -= MT_COPRO_PSEUDOREG_ARRAY;
|
293 |
|
|
regnum %= MT_COPRO_PSEUDOREG_REGS;
|
294 |
|
|
regnum += MT_CPR0_REGNUM;
|
295 |
|
|
return mt_copro_register_type (arch, regnum);
|
296 |
|
|
}
|
297 |
|
|
}
|
298 |
|
|
}
|
299 |
|
|
internal_error (__FILE__, __LINE__,
|
300 |
|
|
_("mt_register_type: illegal register number %d"), regnum);
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
/* Return true if register REGNUM is a member of the register group
|
304 |
|
|
specified by GROUP. */
|
305 |
|
|
|
306 |
|
|
static int
|
307 |
|
|
mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
308 |
|
|
struct reggroup *group)
|
309 |
|
|
{
|
310 |
|
|
/* Groups of registers that can be displayed via "info reg". */
|
311 |
|
|
if (group == all_reggroup)
|
312 |
|
|
return (regnum >= 0
|
313 |
|
|
&& regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
|
314 |
|
|
&& mt_register_name (gdbarch, regnum)[0] != '\0');
|
315 |
|
|
|
316 |
|
|
if (group == general_reggroup)
|
317 |
|
|
return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
|
318 |
|
|
|
319 |
|
|
if (group == float_reggroup)
|
320 |
|
|
return 0; /* No float regs. */
|
321 |
|
|
|
322 |
|
|
if (group == vector_reggroup)
|
323 |
|
|
return 0; /* No vector regs. */
|
324 |
|
|
|
325 |
|
|
/* For any that are not handled above. */
|
326 |
|
|
return default_register_reggroup_p (gdbarch, regnum, group);
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
/* Return the return value convention used for a given type TYPE.
|
330 |
|
|
Optionally, fetch or set the return value via READBUF or
|
331 |
|
|
WRITEBUF respectively using REGCACHE for the register
|
332 |
|
|
values. */
|
333 |
|
|
|
334 |
|
|
static enum return_value_convention
|
335 |
|
|
mt_return_value (struct gdbarch *gdbarch, struct type *type,
|
336 |
|
|
struct regcache *regcache, gdb_byte *readbuf,
|
337 |
|
|
const gdb_byte *writebuf)
|
338 |
|
|
{
|
339 |
|
|
if (TYPE_LENGTH (type) > 4)
|
340 |
|
|
{
|
341 |
|
|
/* Return values > 4 bytes are returned in memory,
|
342 |
|
|
pointed to by R11. */
|
343 |
|
|
if (readbuf)
|
344 |
|
|
{
|
345 |
|
|
ULONGEST addr;
|
346 |
|
|
|
347 |
|
|
regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
|
348 |
|
|
read_memory (addr, readbuf, TYPE_LENGTH (type));
|
349 |
|
|
}
|
350 |
|
|
|
351 |
|
|
if (writebuf)
|
352 |
|
|
{
|
353 |
|
|
ULONGEST addr;
|
354 |
|
|
|
355 |
|
|
regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
|
356 |
|
|
write_memory (addr, writebuf, TYPE_LENGTH (type));
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
360 |
|
|
}
|
361 |
|
|
else
|
362 |
|
|
{
|
363 |
|
|
if (readbuf)
|
364 |
|
|
{
|
365 |
|
|
ULONGEST temp;
|
366 |
|
|
|
367 |
|
|
/* Return values of <= 4 bytes are returned in R11. */
|
368 |
|
|
regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
|
369 |
|
|
store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp);
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
if (writebuf)
|
373 |
|
|
{
|
374 |
|
|
if (TYPE_LENGTH (type) < 4)
|
375 |
|
|
{
|
376 |
|
|
gdb_byte buf[4];
|
377 |
|
|
/* Add leading zeros to the value. */
|
378 |
|
|
memset (buf, 0, sizeof (buf));
|
379 |
|
|
memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
|
380 |
|
|
writebuf, TYPE_LENGTH (type));
|
381 |
|
|
regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
|
382 |
|
|
}
|
383 |
|
|
else /* (TYPE_LENGTH (type) == 4 */
|
384 |
|
|
regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
388 |
|
|
}
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
/* If the input address, PC, is in a function prologue, return the
|
392 |
|
|
address of the end of the prologue, otherwise return the input
|
393 |
|
|
address.
|
394 |
|
|
|
395 |
|
|
Note: PC is likely to be the function start, since this function
|
396 |
|
|
is mainly used for advancing a breakpoint to the first line, or
|
397 |
|
|
stepping to the first line when we have stepped into a function
|
398 |
|
|
call. */
|
399 |
|
|
|
400 |
|
|
static CORE_ADDR
|
401 |
|
|
mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
402 |
|
|
{
|
403 |
|
|
CORE_ADDR func_addr = 0, func_end = 0;
|
404 |
|
|
char *func_name;
|
405 |
|
|
unsigned long instr;
|
406 |
|
|
|
407 |
|
|
if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
|
408 |
|
|
{
|
409 |
|
|
struct symtab_and_line sal;
|
410 |
|
|
struct symbol *sym;
|
411 |
|
|
|
412 |
|
|
/* Found a function. */
|
413 |
|
|
sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
|
414 |
|
|
if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
|
415 |
|
|
{
|
416 |
|
|
/* Don't use this trick for assembly source files. */
|
417 |
|
|
sal = find_pc_line (func_addr, 0);
|
418 |
|
|
|
419 |
|
|
if (sal.end && sal.end < func_end)
|
420 |
|
|
{
|
421 |
|
|
/* Found a line number, use it as end of prologue. */
|
422 |
|
|
return sal.end;
|
423 |
|
|
}
|
424 |
|
|
}
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
/* No function symbol, or no line symbol. Use prologue scanning method. */
|
428 |
|
|
for (;; pc += 4)
|
429 |
|
|
{
|
430 |
|
|
instr = read_memory_unsigned_integer (pc, 4);
|
431 |
|
|
if (instr == 0x12000000) /* nop */
|
432 |
|
|
continue;
|
433 |
|
|
if (instr == 0x12ddc000) /* copy sp into fp */
|
434 |
|
|
continue;
|
435 |
|
|
instr >>= 16;
|
436 |
|
|
if (instr == 0x05dd) /* subi sp, sp, imm */
|
437 |
|
|
continue;
|
438 |
|
|
if (instr >= 0x43c0 && instr <= 0x43df) /* push */
|
439 |
|
|
continue;
|
440 |
|
|
/* Not an obvious prologue instruction. */
|
441 |
|
|
break;
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
return pc;
|
445 |
|
|
}
|
446 |
|
|
|
447 |
|
|
/* The breakpoint instruction must be the same size as the smallest
|
448 |
|
|
instruction in the instruction set.
|
449 |
|
|
|
450 |
|
|
The BP for ms1 is defined as 0x68000000 (BREAK).
|
451 |
|
|
The BP for ms2 is defined as 0x69000000 (illegal) */
|
452 |
|
|
|
453 |
|
|
static const gdb_byte *
|
454 |
|
|
mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
|
455 |
|
|
int *bp_size)
|
456 |
|
|
{
|
457 |
|
|
static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
|
458 |
|
|
static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
|
459 |
|
|
|
460 |
|
|
*bp_size = 4;
|
461 |
|
|
if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
|
462 |
|
|
return ms2_breakpoint;
|
463 |
|
|
|
464 |
|
|
return ms1_breakpoint;
|
465 |
|
|
}
|
466 |
|
|
|
467 |
|
|
/* Select the correct coprocessor register bank. Return the pseudo
|
468 |
|
|
regnum we really want to read. */
|
469 |
|
|
|
470 |
|
|
static int
|
471 |
|
|
mt_select_coprocessor (struct gdbarch *gdbarch,
|
472 |
|
|
struct regcache *regcache, int regno)
|
473 |
|
|
{
|
474 |
|
|
unsigned index, base;
|
475 |
|
|
gdb_byte copro[4];
|
476 |
|
|
|
477 |
|
|
/* Get the copro pseudo regnum. */
|
478 |
|
|
regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
|
479 |
|
|
base = (extract_signed_integer (&copro[0], 2) * MT_COPRO_PSEUDOREG_DIM_2
|
480 |
|
|
+ extract_signed_integer (&copro[2], 2));
|
481 |
|
|
|
482 |
|
|
regno -= MT_COPRO_PSEUDOREG_ARRAY;
|
483 |
|
|
index = regno % MT_COPRO_PSEUDOREG_REGS;
|
484 |
|
|
regno /= MT_COPRO_PSEUDOREG_REGS;
|
485 |
|
|
if (base != regno)
|
486 |
|
|
{
|
487 |
|
|
/* Select the correct coprocessor register bank. Invalidate the
|
488 |
|
|
coprocessor register cache. */
|
489 |
|
|
unsigned ix;
|
490 |
|
|
|
491 |
|
|
store_signed_integer (&copro[0], 2, regno / MT_COPRO_PSEUDOREG_DIM_2);
|
492 |
|
|
store_signed_integer (&copro[2], 2, regno % MT_COPRO_PSEUDOREG_DIM_2);
|
493 |
|
|
regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
|
494 |
|
|
|
495 |
|
|
/* We must flush the cache, as it is now invalid. */
|
496 |
|
|
for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
|
497 |
|
|
regcache_invalidate (regcache, ix);
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
return index;
|
501 |
|
|
}
|
502 |
|
|
|
503 |
|
|
/* Fetch the pseudo registers:
|
504 |
|
|
|
505 |
|
|
There are two regular pseudo-registers:
|
506 |
|
|
1) The 'coprocessor' pseudo-register (which mirrors the
|
507 |
|
|
"real" coprocessor register sent by the target), and
|
508 |
|
|
2) The 'MAC' pseudo-register (which represents the union
|
509 |
|
|
of the original 32 bit target MAC register and the new
|
510 |
|
|
8-bit extended-MAC register).
|
511 |
|
|
|
512 |
|
|
Additionally there is an array of coprocessor registers which track
|
513 |
|
|
the coprocessor registers for each coprocessor. */
|
514 |
|
|
|
515 |
|
|
static void
|
516 |
|
|
mt_pseudo_register_read (struct gdbarch *gdbarch,
|
517 |
|
|
struct regcache *regcache, int regno, gdb_byte *buf)
|
518 |
|
|
{
|
519 |
|
|
switch (regno)
|
520 |
|
|
{
|
521 |
|
|
case MT_COPRO_REGNUM:
|
522 |
|
|
case MT_COPRO_PSEUDOREG_REGNUM:
|
523 |
|
|
regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
|
524 |
|
|
break;
|
525 |
|
|
case MT_MAC_REGNUM:
|
526 |
|
|
case MT_MAC_PSEUDOREG_REGNUM:
|
527 |
|
|
if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
|
528 |
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
|
529 |
|
|
{
|
530 |
|
|
ULONGEST oldmac = 0, ext_mac = 0;
|
531 |
|
|
ULONGEST newmac;
|
532 |
|
|
|
533 |
|
|
regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
|
534 |
|
|
regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
|
535 |
|
|
newmac =
|
536 |
|
|
(oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
|
537 |
|
|
store_signed_integer (buf, 8, newmac);
|
538 |
|
|
}
|
539 |
|
|
else
|
540 |
|
|
regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
|
541 |
|
|
break;
|
542 |
|
|
default:
|
543 |
|
|
{
|
544 |
|
|
unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
|
545 |
|
|
|
546 |
|
|
if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
|
547 |
|
|
mt_pseudo_register_read (gdbarch, regcache,
|
548 |
|
|
MT_MAC_PSEUDOREG_REGNUM, buf);
|
549 |
|
|
else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
|
550 |
|
|
regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
|
551 |
|
|
}
|
552 |
|
|
break;
|
553 |
|
|
}
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
/* Write the pseudo registers:
|
557 |
|
|
|
558 |
|
|
Mt pseudo-registers are stored directly to the target. The
|
559 |
|
|
'coprocessor' register is special, because when it is modified, all
|
560 |
|
|
the other coprocessor regs must be flushed from the reg cache. */
|
561 |
|
|
|
562 |
|
|
static void
|
563 |
|
|
mt_pseudo_register_write (struct gdbarch *gdbarch,
|
564 |
|
|
struct regcache *regcache,
|
565 |
|
|
int regno, const gdb_byte *buf)
|
566 |
|
|
{
|
567 |
|
|
int i;
|
568 |
|
|
|
569 |
|
|
switch (regno)
|
570 |
|
|
{
|
571 |
|
|
case MT_COPRO_REGNUM:
|
572 |
|
|
case MT_COPRO_PSEUDOREG_REGNUM:
|
573 |
|
|
regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
|
574 |
|
|
for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
|
575 |
|
|
regcache_invalidate (regcache, i);
|
576 |
|
|
break;
|
577 |
|
|
case MT_MAC_REGNUM:
|
578 |
|
|
case MT_MAC_PSEUDOREG_REGNUM:
|
579 |
|
|
if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
|
580 |
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
|
581 |
|
|
{
|
582 |
|
|
/* The 8-byte MAC pseudo-register must be broken down into two
|
583 |
|
|
32-byte registers. */
|
584 |
|
|
unsigned int oldmac, ext_mac;
|
585 |
|
|
ULONGEST newmac;
|
586 |
|
|
|
587 |
|
|
newmac = extract_unsigned_integer (buf, 8);
|
588 |
|
|
oldmac = newmac & 0xffffffff;
|
589 |
|
|
ext_mac = (newmac >> 32) & 0xff;
|
590 |
|
|
regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
|
591 |
|
|
regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
|
592 |
|
|
}
|
593 |
|
|
else
|
594 |
|
|
regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
|
595 |
|
|
break;
|
596 |
|
|
default:
|
597 |
|
|
{
|
598 |
|
|
unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
|
599 |
|
|
|
600 |
|
|
if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
|
601 |
|
|
mt_pseudo_register_write (gdbarch, regcache,
|
602 |
|
|
MT_MAC_PSEUDOREG_REGNUM, buf);
|
603 |
|
|
else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
|
604 |
|
|
regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
|
605 |
|
|
}
|
606 |
|
|
break;
|
607 |
|
|
}
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
static CORE_ADDR
|
611 |
|
|
mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
612 |
|
|
{
|
613 |
|
|
/* Register size is 4 bytes. */
|
614 |
|
|
return align_down (sp, 4);
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
/* Implements the "info registers" command. When ``all'' is non-zero,
|
618 |
|
|
the coprocessor registers will be printed in addition to the rest
|
619 |
|
|
of the registers. */
|
620 |
|
|
|
621 |
|
|
static void
|
622 |
|
|
mt_registers_info (struct gdbarch *gdbarch,
|
623 |
|
|
struct ui_file *file,
|
624 |
|
|
struct frame_info *frame, int regnum, int all)
|
625 |
|
|
{
|
626 |
|
|
if (regnum == -1)
|
627 |
|
|
{
|
628 |
|
|
int lim;
|
629 |
|
|
|
630 |
|
|
lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
|
631 |
|
|
|
632 |
|
|
for (regnum = 0; regnum < lim; regnum++)
|
633 |
|
|
{
|
634 |
|
|
/* Don't display the Qchannel register since it will be displayed
|
635 |
|
|
along with Ichannel. (See below.) */
|
636 |
|
|
if (regnum == MT_QCHANNEL_REGNUM)
|
637 |
|
|
continue;
|
638 |
|
|
|
639 |
|
|
mt_registers_info (gdbarch, file, frame, regnum, all);
|
640 |
|
|
|
641 |
|
|
/* Display the Qchannel register immediately after Ichannel. */
|
642 |
|
|
if (regnum == MT_ICHANNEL_REGNUM)
|
643 |
|
|
mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
|
644 |
|
|
}
|
645 |
|
|
}
|
646 |
|
|
else
|
647 |
|
|
{
|
648 |
|
|
if (regnum == MT_EXMAC_REGNUM)
|
649 |
|
|
return;
|
650 |
|
|
else if (regnum == MT_CONTEXT_REGNUM)
|
651 |
|
|
{
|
652 |
|
|
/* Special output handling for 38-bit context register. */
|
653 |
|
|
unsigned char *buff;
|
654 |
|
|
unsigned int *bytes, i, regsize;
|
655 |
|
|
|
656 |
|
|
regsize = register_size (gdbarch, regnum);
|
657 |
|
|
|
658 |
|
|
buff = alloca (regsize);
|
659 |
|
|
bytes = alloca (regsize * sizeof (*bytes));
|
660 |
|
|
|
661 |
|
|
frame_register_read (frame, regnum, buff);
|
662 |
|
|
|
663 |
|
|
fputs_filtered (gdbarch_register_name
|
664 |
|
|
(gdbarch, regnum), file);
|
665 |
|
|
print_spaces_filtered (15 - strlen (gdbarch_register_name
|
666 |
|
|
(gdbarch, regnum)),
|
667 |
|
|
file);
|
668 |
|
|
fputs_filtered ("0x", file);
|
669 |
|
|
|
670 |
|
|
for (i = 0; i < regsize; i++)
|
671 |
|
|
fprintf_filtered (file, "%02x", (unsigned int)
|
672 |
|
|
extract_unsigned_integer (buff + i, 1));
|
673 |
|
|
fputs_filtered ("\t", file);
|
674 |
|
|
print_longest (file, 'd', 0,
|
675 |
|
|
extract_unsigned_integer (buff, regsize));
|
676 |
|
|
fputs_filtered ("\n", file);
|
677 |
|
|
}
|
678 |
|
|
else if (regnum == MT_COPRO_REGNUM
|
679 |
|
|
|| regnum == MT_COPRO_PSEUDOREG_REGNUM)
|
680 |
|
|
{
|
681 |
|
|
/* Special output handling for the 'coprocessor' register. */
|
682 |
|
|
gdb_byte *buf;
|
683 |
|
|
|
684 |
|
|
buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
|
685 |
|
|
frame_register_read (frame, MT_COPRO_REGNUM, buf);
|
686 |
|
|
/* And print. */
|
687 |
|
|
regnum = MT_COPRO_PSEUDOREG_REGNUM;
|
688 |
|
|
fputs_filtered (gdbarch_register_name (gdbarch, regnum),
|
689 |
|
|
file);
|
690 |
|
|
print_spaces_filtered (15 - strlen (gdbarch_register_name
|
691 |
|
|
(gdbarch, regnum)),
|
692 |
|
|
file);
|
693 |
|
|
val_print (register_type (gdbarch, regnum), buf,
|
694 |
|
|
0, 0, file, 0, 1, 0, Val_no_prettyprint);
|
695 |
|
|
fputs_filtered ("\n", file);
|
696 |
|
|
}
|
697 |
|
|
else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
|
698 |
|
|
{
|
699 |
|
|
ULONGEST oldmac, ext_mac, newmac;
|
700 |
|
|
gdb_byte buf[3 * sizeof (LONGEST)];
|
701 |
|
|
|
702 |
|
|
/* Get the two "real" mac registers. */
|
703 |
|
|
frame_register_read (frame, MT_MAC_REGNUM, buf);
|
704 |
|
|
oldmac = extract_unsigned_integer
|
705 |
|
|
(buf, register_size (gdbarch, MT_MAC_REGNUM));
|
706 |
|
|
if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
|
707 |
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
|
708 |
|
|
{
|
709 |
|
|
frame_register_read (frame, MT_EXMAC_REGNUM, buf);
|
710 |
|
|
ext_mac = extract_unsigned_integer
|
711 |
|
|
(buf, register_size (gdbarch, MT_EXMAC_REGNUM));
|
712 |
|
|
}
|
713 |
|
|
else
|
714 |
|
|
ext_mac = 0;
|
715 |
|
|
|
716 |
|
|
/* Add them together. */
|
717 |
|
|
newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
|
718 |
|
|
|
719 |
|
|
/* And print. */
|
720 |
|
|
regnum = MT_MAC_PSEUDOREG_REGNUM;
|
721 |
|
|
fputs_filtered (gdbarch_register_name (gdbarch, regnum),
|
722 |
|
|
file);
|
723 |
|
|
print_spaces_filtered (15 - strlen (gdbarch_register_name
|
724 |
|
|
(gdbarch, regnum)),
|
725 |
|
|
file);
|
726 |
|
|
fputs_filtered ("0x", file);
|
727 |
|
|
print_longest (file, 'x', 0, newmac);
|
728 |
|
|
fputs_filtered ("\t", file);
|
729 |
|
|
print_longest (file, 'u', 0, newmac);
|
730 |
|
|
fputs_filtered ("\n", file);
|
731 |
|
|
}
|
732 |
|
|
else
|
733 |
|
|
default_print_registers_info (gdbarch, file, frame, regnum, all);
|
734 |
|
|
}
|
735 |
|
|
}
|
736 |
|
|
|
737 |
|
|
/* Set up the callee's arguments for an inferior function call. The
|
738 |
|
|
arguments are pushed on the stack or are placed in registers as
|
739 |
|
|
appropriate. It also sets up the return address (which points to
|
740 |
|
|
the call dummy breakpoint).
|
741 |
|
|
|
742 |
|
|
Returns the updated (and aligned) stack pointer. */
|
743 |
|
|
|
744 |
|
|
static CORE_ADDR
|
745 |
|
|
mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
746 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
747 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
748 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
749 |
|
|
{
|
750 |
|
|
#define wordsize 4
|
751 |
|
|
gdb_byte buf[MT_MAX_STRUCT_SIZE];
|
752 |
|
|
int argreg = MT_1ST_ARGREG;
|
753 |
|
|
int split_param_len = 0;
|
754 |
|
|
int stack_dest = sp;
|
755 |
|
|
int slacklen;
|
756 |
|
|
int typelen;
|
757 |
|
|
int i, j;
|
758 |
|
|
|
759 |
|
|
/* First handle however many args we can fit into MT_1ST_ARGREG thru
|
760 |
|
|
MT_LAST_ARGREG. */
|
761 |
|
|
for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
|
762 |
|
|
{
|
763 |
|
|
const gdb_byte *val;
|
764 |
|
|
typelen = TYPE_LENGTH (value_type (args[i]));
|
765 |
|
|
switch (typelen)
|
766 |
|
|
{
|
767 |
|
|
case 1:
|
768 |
|
|
case 2:
|
769 |
|
|
case 3:
|
770 |
|
|
case 4:
|
771 |
|
|
regcache_cooked_write_unsigned (regcache, argreg++,
|
772 |
|
|
extract_unsigned_integer
|
773 |
|
|
(value_contents (args[i]),
|
774 |
|
|
wordsize));
|
775 |
|
|
break;
|
776 |
|
|
case 8:
|
777 |
|
|
case 12:
|
778 |
|
|
case 16:
|
779 |
|
|
val = value_contents (args[i]);
|
780 |
|
|
while (typelen > 0)
|
781 |
|
|
{
|
782 |
|
|
if (argreg <= MT_LAST_ARGREG)
|
783 |
|
|
{
|
784 |
|
|
/* This word of the argument is passed in a register. */
|
785 |
|
|
regcache_cooked_write_unsigned (regcache, argreg++,
|
786 |
|
|
extract_unsigned_integer
|
787 |
|
|
(val, wordsize));
|
788 |
|
|
typelen -= wordsize;
|
789 |
|
|
val += wordsize;
|
790 |
|
|
}
|
791 |
|
|
else
|
792 |
|
|
{
|
793 |
|
|
/* Remainder of this arg must be passed on the stack
|
794 |
|
|
(deferred to do later). */
|
795 |
|
|
split_param_len = typelen;
|
796 |
|
|
memcpy (buf, val, typelen);
|
797 |
|
|
break; /* No more args can be handled in regs. */
|
798 |
|
|
}
|
799 |
|
|
}
|
800 |
|
|
break;
|
801 |
|
|
default:
|
802 |
|
|
/* By reverse engineering of gcc output, args bigger than
|
803 |
|
|
16 bytes go on the stack, and their address is passed
|
804 |
|
|
in the argreg. */
|
805 |
|
|
stack_dest -= typelen;
|
806 |
|
|
write_memory (stack_dest, value_contents (args[i]), typelen);
|
807 |
|
|
regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
|
808 |
|
|
break;
|
809 |
|
|
}
|
810 |
|
|
}
|
811 |
|
|
|
812 |
|
|
/* Next, the rest of the arguments go onto the stack, in reverse order. */
|
813 |
|
|
for (j = nargs - 1; j >= i; j--)
|
814 |
|
|
{
|
815 |
|
|
gdb_byte *val;
|
816 |
|
|
|
817 |
|
|
/* Right-justify the value in an aligned-length buffer. */
|
818 |
|
|
typelen = TYPE_LENGTH (value_type (args[j]));
|
819 |
|
|
slacklen = (wordsize - (typelen % wordsize)) % wordsize;
|
820 |
|
|
val = alloca (typelen + slacklen);
|
821 |
|
|
memcpy (val, value_contents (args[j]), typelen);
|
822 |
|
|
memset (val + typelen, 0, slacklen);
|
823 |
|
|
/* Now write this data to the stack. */
|
824 |
|
|
stack_dest -= typelen + slacklen;
|
825 |
|
|
write_memory (stack_dest, val, typelen + slacklen);
|
826 |
|
|
}
|
827 |
|
|
|
828 |
|
|
/* Finally, if a param needs to be split between registers and stack,
|
829 |
|
|
write the second half to the stack now. */
|
830 |
|
|
if (split_param_len != 0)
|
831 |
|
|
{
|
832 |
|
|
stack_dest -= split_param_len;
|
833 |
|
|
write_memory (stack_dest, buf, split_param_len);
|
834 |
|
|
}
|
835 |
|
|
|
836 |
|
|
/* Set up return address (provided to us as bp_addr). */
|
837 |
|
|
regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
|
838 |
|
|
|
839 |
|
|
/* Store struct return address, if given. */
|
840 |
|
|
if (struct_return && struct_addr != 0)
|
841 |
|
|
regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
|
842 |
|
|
|
843 |
|
|
/* Set aside 16 bytes for the callee to save regs 1-4. */
|
844 |
|
|
stack_dest -= 16;
|
845 |
|
|
|
846 |
|
|
/* Update the stack pointer. */
|
847 |
|
|
regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
|
848 |
|
|
|
849 |
|
|
/* And that should do it. Return the new stack pointer. */
|
850 |
|
|
return stack_dest;
|
851 |
|
|
}
|
852 |
|
|
|
853 |
|
|
|
854 |
|
|
/* The 'unwind_cache' data structure. */
|
855 |
|
|
|
856 |
|
|
struct mt_unwind_cache
|
857 |
|
|
{
|
858 |
|
|
/* The previous frame's inner most stack address.
|
859 |
|
|
Used as this frame ID's stack_addr. */
|
860 |
|
|
CORE_ADDR prev_sp;
|
861 |
|
|
CORE_ADDR frame_base;
|
862 |
|
|
int framesize;
|
863 |
|
|
int frameless_p;
|
864 |
|
|
|
865 |
|
|
/* Table indicating the location of each and every register. */
|
866 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
867 |
|
|
};
|
868 |
|
|
|
869 |
|
|
/* Initialize an unwind_cache. Build up the saved_regs table etc. for
|
870 |
|
|
the frame. */
|
871 |
|
|
|
872 |
|
|
static struct mt_unwind_cache *
|
873 |
|
|
mt_frame_unwind_cache (struct frame_info *next_frame,
|
874 |
|
|
void **this_prologue_cache)
|
875 |
|
|
{
|
876 |
|
|
struct gdbarch *gdbarch;
|
877 |
|
|
struct mt_unwind_cache *info;
|
878 |
|
|
CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
|
879 |
|
|
unsigned long instr, upper_half, delayed_store = 0;
|
880 |
|
|
int regnum, offset;
|
881 |
|
|
ULONGEST sp, fp;
|
882 |
|
|
|
883 |
|
|
if ((*this_prologue_cache))
|
884 |
|
|
return (*this_prologue_cache);
|
885 |
|
|
|
886 |
|
|
gdbarch = get_frame_arch (next_frame);
|
887 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
|
888 |
|
|
(*this_prologue_cache) = info;
|
889 |
|
|
|
890 |
|
|
info->prev_sp = 0;
|
891 |
|
|
info->framesize = 0;
|
892 |
|
|
info->frame_base = 0;
|
893 |
|
|
info->frameless_p = 1;
|
894 |
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
895 |
|
|
|
896 |
|
|
/* Grab the frame-relative values of SP and FP, needed below.
|
897 |
|
|
The frame_saved_register function will find them on the
|
898 |
|
|
stack or in the registers as appropriate. */
|
899 |
|
|
sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
|
900 |
|
|
fp = frame_unwind_register_unsigned (next_frame, MT_FP_REGNUM);
|
901 |
|
|
|
902 |
|
|
start_addr = frame_func_unwind (next_frame, NORMAL_FRAME);
|
903 |
|
|
|
904 |
|
|
/* Return early if GDB couldn't find the function. */
|
905 |
|
|
if (start_addr == 0)
|
906 |
|
|
return info;
|
907 |
|
|
|
908 |
|
|
end_addr = frame_pc_unwind (next_frame);
|
909 |
|
|
prologue_end_addr = skip_prologue_using_sal (start_addr);
|
910 |
|
|
if (end_addr == 0)
|
911 |
|
|
for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
|
912 |
|
|
{
|
913 |
|
|
instr = get_frame_memory_unsigned (next_frame, next_addr, 4);
|
914 |
|
|
if (delayed_store) /* previous instr was a push */
|
915 |
|
|
{
|
916 |
|
|
upper_half = delayed_store >> 16;
|
917 |
|
|
regnum = upper_half & 0xf;
|
918 |
|
|
offset = delayed_store & 0xffff;
|
919 |
|
|
switch (upper_half & 0xfff0)
|
920 |
|
|
{
|
921 |
|
|
case 0x43c0: /* push using frame pointer */
|
922 |
|
|
info->saved_regs[regnum].addr = offset;
|
923 |
|
|
break;
|
924 |
|
|
case 0x43d0: /* push using stack pointer */
|
925 |
|
|
info->saved_regs[regnum].addr = offset;
|
926 |
|
|
break;
|
927 |
|
|
default: /* lint */
|
928 |
|
|
break;
|
929 |
|
|
}
|
930 |
|
|
delayed_store = 0;
|
931 |
|
|
}
|
932 |
|
|
|
933 |
|
|
switch (instr)
|
934 |
|
|
{
|
935 |
|
|
case 0x12000000: /* NO-OP */
|
936 |
|
|
continue;
|
937 |
|
|
case 0x12ddc000: /* copy sp into fp */
|
938 |
|
|
info->frameless_p = 0; /* Record that the frame pointer is in use. */
|
939 |
|
|
continue;
|
940 |
|
|
default:
|
941 |
|
|
upper_half = instr >> 16;
|
942 |
|
|
if (upper_half == 0x05dd || /* subi sp, sp, imm */
|
943 |
|
|
upper_half == 0x07dd) /* subui sp, sp, imm */
|
944 |
|
|
{
|
945 |
|
|
/* Record the frame size. */
|
946 |
|
|
info->framesize = instr & 0xffff;
|
947 |
|
|
continue;
|
948 |
|
|
}
|
949 |
|
|
if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
|
950 |
|
|
(upper_half & 0xfff0) == 0x43d0) /* stack push */
|
951 |
|
|
{
|
952 |
|
|
/* Save this instruction, but don't record the
|
953 |
|
|
pushed register as 'saved' until we see the
|
954 |
|
|
next instruction. That's because of deferred stores
|
955 |
|
|
on this target -- GDB won't be able to read the register
|
956 |
|
|
from the stack until one instruction later. */
|
957 |
|
|
delayed_store = instr;
|
958 |
|
|
continue;
|
959 |
|
|
}
|
960 |
|
|
/* Not a prologue instruction. Is this the end of the prologue?
|
961 |
|
|
This is the most difficult decision; when to stop scanning.
|
962 |
|
|
|
963 |
|
|
If we have no line symbol, then the best thing we can do
|
964 |
|
|
is to stop scanning when we encounter an instruction that
|
965 |
|
|
is not likely to be a part of the prologue.
|
966 |
|
|
|
967 |
|
|
But if we do have a line symbol, then we should
|
968 |
|
|
keep scanning until we reach it (or we reach end_addr). */
|
969 |
|
|
|
970 |
|
|
if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
|
971 |
|
|
continue; /* Keep scanning, recording saved_regs etc. */
|
972 |
|
|
else
|
973 |
|
|
break; /* Quit scanning: breakpoint can be set here. */
|
974 |
|
|
}
|
975 |
|
|
}
|
976 |
|
|
|
977 |
|
|
/* Special handling for the "saved" address of the SP:
|
978 |
|
|
The SP is of course never saved on the stack at all, so
|
979 |
|
|
by convention what we put here is simply the previous
|
980 |
|
|
_value_ of the SP (as opposed to an address where the
|
981 |
|
|
previous value would have been pushed). This will also
|
982 |
|
|
give us the frame base address. */
|
983 |
|
|
|
984 |
|
|
if (info->frameless_p)
|
985 |
|
|
{
|
986 |
|
|
info->frame_base = sp + info->framesize;
|
987 |
|
|
info->prev_sp = sp + info->framesize;
|
988 |
|
|
}
|
989 |
|
|
else
|
990 |
|
|
{
|
991 |
|
|
info->frame_base = fp + info->framesize;
|
992 |
|
|
info->prev_sp = fp + info->framesize;
|
993 |
|
|
}
|
994 |
|
|
/* Save prev_sp in saved_regs as a value, not as an address. */
|
995 |
|
|
trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
|
996 |
|
|
|
997 |
|
|
/* Now convert frame offsets to actual addresses (not offsets). */
|
998 |
|
|
for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
|
999 |
|
|
if (trad_frame_addr_p (info->saved_regs, regnum))
|
1000 |
|
|
info->saved_regs[regnum].addr += info->frame_base - info->framesize;
|
1001 |
|
|
|
1002 |
|
|
/* The call instruction moves the caller's PC in the callee's RA reg.
|
1003 |
|
|
Since this is an unwind, do the reverse. Copy the location of RA
|
1004 |
|
|
into PC (the address / regnum) so that a request for PC will be
|
1005 |
|
|
converted into a request for the RA. */
|
1006 |
|
|
info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
|
1007 |
|
|
|
1008 |
|
|
return info;
|
1009 |
|
|
}
|
1010 |
|
|
|
1011 |
|
|
static CORE_ADDR
|
1012 |
|
|
mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1013 |
|
|
{
|
1014 |
|
|
ULONGEST pc;
|
1015 |
|
|
|
1016 |
|
|
pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
|
1017 |
|
|
return pc;
|
1018 |
|
|
}
|
1019 |
|
|
|
1020 |
|
|
static CORE_ADDR
|
1021 |
|
|
mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1022 |
|
|
{
|
1023 |
|
|
ULONGEST sp;
|
1024 |
|
|
|
1025 |
|
|
sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
|
1026 |
|
|
return sp;
|
1027 |
|
|
}
|
1028 |
|
|
|
1029 |
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
1030 |
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
1031 |
|
|
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
|
1032 |
|
|
breakpoint. */
|
1033 |
|
|
|
1034 |
|
|
static struct frame_id
|
1035 |
|
|
mt_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1036 |
|
|
{
|
1037 |
|
|
return frame_id_build (mt_unwind_sp (gdbarch, next_frame),
|
1038 |
|
|
frame_pc_unwind (next_frame));
|
1039 |
|
|
}
|
1040 |
|
|
|
1041 |
|
|
/* Given a GDB frame, determine the address of the calling function's
|
1042 |
|
|
frame. This will be used to create a new GDB frame struct. */
|
1043 |
|
|
|
1044 |
|
|
static void
|
1045 |
|
|
mt_frame_this_id (struct frame_info *next_frame,
|
1046 |
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
1047 |
|
|
{
|
1048 |
|
|
struct mt_unwind_cache *info =
|
1049 |
|
|
mt_frame_unwind_cache (next_frame, this_prologue_cache);
|
1050 |
|
|
|
1051 |
|
|
if (!(info == NULL || info->prev_sp == 0))
|
1052 |
|
|
(*this_id) = frame_id_build (info->prev_sp,
|
1053 |
|
|
frame_func_unwind (next_frame, NORMAL_FRAME));
|
1054 |
|
|
|
1055 |
|
|
return;
|
1056 |
|
|
}
|
1057 |
|
|
|
1058 |
|
|
static void
|
1059 |
|
|
mt_frame_prev_register (struct frame_info *next_frame,
|
1060 |
|
|
void **this_prologue_cache,
|
1061 |
|
|
int regnum, int *optimizedp,
|
1062 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
1063 |
|
|
int *realnump, gdb_byte *bufferp)
|
1064 |
|
|
{
|
1065 |
|
|
struct mt_unwind_cache *info =
|
1066 |
|
|
mt_frame_unwind_cache (next_frame, this_prologue_cache);
|
1067 |
|
|
|
1068 |
|
|
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
|
1069 |
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
1070 |
|
|
}
|
1071 |
|
|
|
1072 |
|
|
static CORE_ADDR
|
1073 |
|
|
mt_frame_base_address (struct frame_info *next_frame,
|
1074 |
|
|
void **this_prologue_cache)
|
1075 |
|
|
{
|
1076 |
|
|
struct mt_unwind_cache *info =
|
1077 |
|
|
mt_frame_unwind_cache (next_frame, this_prologue_cache);
|
1078 |
|
|
|
1079 |
|
|
return info->frame_base;
|
1080 |
|
|
}
|
1081 |
|
|
|
1082 |
|
|
/* This is a shared interface: the 'frame_unwind' object is what's
|
1083 |
|
|
returned by the 'sniffer' function, and in turn specifies how to
|
1084 |
|
|
get a frame's ID and prev_regs.
|
1085 |
|
|
|
1086 |
|
|
This exports the 'prev_register' and 'this_id' methods. */
|
1087 |
|
|
|
1088 |
|
|
static const struct frame_unwind mt_frame_unwind = {
|
1089 |
|
|
NORMAL_FRAME,
|
1090 |
|
|
mt_frame_this_id,
|
1091 |
|
|
mt_frame_prev_register
|
1092 |
|
|
};
|
1093 |
|
|
|
1094 |
|
|
/* The sniffer is a registered function that identifies our family of
|
1095 |
|
|
frame unwind functions (this_id and prev_register). */
|
1096 |
|
|
|
1097 |
|
|
static const struct frame_unwind *
|
1098 |
|
|
mt_frame_sniffer (struct frame_info *next_frame)
|
1099 |
|
|
{
|
1100 |
|
|
return &mt_frame_unwind;
|
1101 |
|
|
}
|
1102 |
|
|
|
1103 |
|
|
/* Another shared interface: the 'frame_base' object specifies how to
|
1104 |
|
|
unwind a frame and secure the base addresses for frame objects
|
1105 |
|
|
(locals, args). */
|
1106 |
|
|
|
1107 |
|
|
static struct frame_base mt_frame_base = {
|
1108 |
|
|
&mt_frame_unwind,
|
1109 |
|
|
mt_frame_base_address,
|
1110 |
|
|
mt_frame_base_address,
|
1111 |
|
|
mt_frame_base_address
|
1112 |
|
|
};
|
1113 |
|
|
|
1114 |
|
|
static struct gdbarch *
|
1115 |
|
|
mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
1116 |
|
|
{
|
1117 |
|
|
struct gdbarch *gdbarch;
|
1118 |
|
|
|
1119 |
|
|
/* Find a candidate among the list of pre-declared architectures. */
|
1120 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
1121 |
|
|
if (arches != NULL)
|
1122 |
|
|
return arches->gdbarch;
|
1123 |
|
|
|
1124 |
|
|
/* None found, create a new architecture from the information
|
1125 |
|
|
provided. */
|
1126 |
|
|
gdbarch = gdbarch_alloc (&info, NULL);
|
1127 |
|
|
|
1128 |
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
1129 |
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
|
1130 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
1131 |
|
|
|
1132 |
|
|
set_gdbarch_register_name (gdbarch, mt_register_name);
|
1133 |
|
|
set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
|
1134 |
|
|
set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
|
1135 |
|
|
set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
|
1136 |
|
|
set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
|
1137 |
|
|
set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
|
1138 |
|
|
set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
|
1139 |
|
|
set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
|
1140 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
1141 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
|
1142 |
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
1143 |
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
1144 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_mt);
|
1145 |
|
|
set_gdbarch_register_type (gdbarch, mt_register_type);
|
1146 |
|
|
set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
|
1147 |
|
|
|
1148 |
|
|
set_gdbarch_return_value (gdbarch, mt_return_value);
|
1149 |
|
|
set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
|
1150 |
|
|
|
1151 |
|
|
set_gdbarch_frame_align (gdbarch, mt_frame_align);
|
1152 |
|
|
|
1153 |
|
|
set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
|
1154 |
|
|
|
1155 |
|
|
set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
|
1156 |
|
|
|
1157 |
|
|
/* Target builtin data types. */
|
1158 |
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
1159 |
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
1160 |
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
1161 |
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
1162 |
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
1163 |
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
1164 |
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
1165 |
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
1166 |
|
|
|
1167 |
|
|
/* Register the DWARF 2 sniffer first, and then the traditional prologue
|
1168 |
|
|
based sniffer. */
|
1169 |
|
|
frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
|
1170 |
|
|
frame_unwind_append_sniffer (gdbarch, mt_frame_sniffer);
|
1171 |
|
|
frame_base_set_default (gdbarch, &mt_frame_base);
|
1172 |
|
|
|
1173 |
|
|
/* Register the 'unwind_pc' method. */
|
1174 |
|
|
set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
|
1175 |
|
|
set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
|
1176 |
|
|
|
1177 |
|
|
/* Methods for saving / extracting a dummy frame's ID.
|
1178 |
|
|
The ID's stack address must match the SP value returned by
|
1179 |
|
|
PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
|
1180 |
|
|
set_gdbarch_unwind_dummy_id (gdbarch, mt_unwind_dummy_id);
|
1181 |
|
|
|
1182 |
|
|
return gdbarch;
|
1183 |
|
|
}
|
1184 |
|
|
|
1185 |
|
|
void
|
1186 |
|
|
_initialize_mt_tdep (void)
|
1187 |
|
|
{
|
1188 |
|
|
register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
|
1189 |
|
|
}
|