OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [gdb/] [objfiles.c] - Blame information for rev 157

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 24 jeremybenn
/* GDB routines for manipulating objfiles.
2
 
3
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4
   2002, 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
5
 
6
   Contributed by Cygnus Support, using pieces from other GDB modules.
7
 
8
   This file is part of GDB.
9
 
10
   This program is free software; you can redistribute it and/or modify
11
   it under the terms of the GNU General Public License as published by
12
   the Free Software Foundation; either version 3 of the License, or
13
   (at your option) any later version.
14
 
15
   This program is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
   GNU General Public License for more details.
19
 
20
   You should have received a copy of the GNU General Public License
21
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
 
23
/* This file contains support routines for creating, manipulating, and
24
   destroying objfile structures. */
25
 
26
#include "defs.h"
27
#include "bfd.h"                /* Binary File Description */
28
#include "symtab.h"
29
#include "symfile.h"
30
#include "objfiles.h"
31
#include "gdb-stabs.h"
32
#include "target.h"
33
#include "bcache.h"
34
#include "mdebugread.h"
35
#include "expression.h"
36
#include "parser-defs.h"
37
 
38
#include "gdb_assert.h"
39
#include <sys/types.h>
40
#include "gdb_stat.h"
41
#include <fcntl.h>
42
#include "gdb_obstack.h"
43
#include "gdb_string.h"
44
#include "hashtab.h"
45
 
46
#include "breakpoint.h"
47
#include "block.h"
48
#include "dictionary.h"
49
#include "source.h"
50
#include "addrmap.h"
51
 
52
/* Prototypes for local functions */
53
 
54
static void objfile_alloc_data (struct objfile *objfile);
55
static void objfile_free_data (struct objfile *objfile);
56
 
57
/* Externally visible variables that are owned by this module.
58
   See declarations in objfile.h for more info. */
59
 
60
struct objfile *object_files;   /* Linked list of all objfiles */
61
struct objfile *current_objfile;        /* For symbol file being read in */
62
struct objfile *symfile_objfile;        /* Main symbol table loaded from */
63
struct objfile *rt_common_objfile;      /* For runtime common symbols */
64
 
65
/* Locate all mappable sections of a BFD file.
66
   objfile_p_char is a char * to get it through
67
   bfd_map_over_sections; we cast it back to its proper type.  */
68
 
69
#ifndef TARGET_KEEP_SECTION
70
#define TARGET_KEEP_SECTION(ASECT)      0
71
#endif
72
 
73
/* Called via bfd_map_over_sections to build up the section table that
74
   the objfile references.  The objfile contains pointers to the start
75
   of the table (objfile->sections) and to the first location after
76
   the end of the table (objfile->sections_end). */
77
 
78
static void
79
add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
80
                         void *objfile_p_char)
81
{
82
  struct objfile *objfile = (struct objfile *) objfile_p_char;
83
  struct obj_section section;
84
  flagword aflag;
85
 
86
  aflag = bfd_get_section_flags (abfd, asect);
87
 
88
  if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
89
    return;
90
 
91
  if (0 == bfd_section_size (abfd, asect))
92
    return;
93
  section.offset = 0;
94
  section.objfile = objfile;
95
  section.the_bfd_section = asect;
96
  section.ovly_mapped = 0;
97
  section.addr = bfd_section_vma (abfd, asect);
98
  section.endaddr = section.addr + bfd_section_size (abfd, asect);
99
  obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
100
  objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
101
}
102
 
103
/* Builds a section table for OBJFILE.
104
   Returns 0 if OK, 1 on error (in which case bfd_error contains the
105
   error).
106
 
107
   Note that while we are building the table, which goes into the
108
   psymbol obstack, we hijack the sections_end pointer to instead hold
109
   a count of the number of sections.  When bfd_map_over_sections
110
   returns, this count is used to compute the pointer to the end of
111
   the sections table, which then overwrites the count.
112
 
113
   Also note that the OFFSET and OVLY_MAPPED in each table entry
114
   are initialized to zero.
115
 
116
   Also note that if anything else writes to the psymbol obstack while
117
   we are building the table, we're pretty much hosed. */
118
 
119
int
120
build_objfile_section_table (struct objfile *objfile)
121
{
122
  /* objfile->sections can be already set when reading a mapped symbol
123
     file.  I believe that we do need to rebuild the section table in
124
     this case (we rebuild other things derived from the bfd), but we
125
     can't free the old one (it's in the objfile_obstack).  So we just
126
     waste some memory.  */
127
 
128
  objfile->sections_end = 0;
129
  bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
130
  objfile->sections = (struct obj_section *)
131
    obstack_finish (&objfile->objfile_obstack);
132
  objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
133
  return (0);
134
}
135
 
136
/* Given a pointer to an initialized bfd (ABFD) and some flag bits
137
   allocate a new objfile struct, fill it in as best we can, link it
138
   into the list of all known objfiles, and return a pointer to the
139
   new objfile struct.
140
 
141
   The FLAGS word contains various bits (OBJF_*) that can be taken as
142
   requests for specific operations.  Other bits like OBJF_SHARED are
143
   simply copied through to the new objfile flags member. */
144
 
145
/* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
146
   by jv-lang.c, to create an artificial objfile used to hold
147
   information about dynamically-loaded Java classes.  Unfortunately,
148
   that branch of this function doesn't get tested very frequently, so
149
   it's prone to breakage.  (E.g. at one time the name was set to NULL
150
   in that situation, which broke a loop over all names in the dynamic
151
   library loader.)  If you change this function, please try to leave
152
   things in a consistent state even if abfd is NULL.  */
153
 
154
struct objfile *
155
allocate_objfile (bfd *abfd, int flags)
156
{
157
  struct objfile *objfile = NULL;
158
  struct objfile *last_one = NULL;
159
 
160
  /* If we don't support mapped symbol files, didn't ask for the file to be
161
     mapped, or failed to open the mapped file for some reason, then revert
162
     back to an unmapped objfile. */
163
 
164
  if (objfile == NULL)
165
    {
166
      objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
167
      memset (objfile, 0, sizeof (struct objfile));
168
      objfile->md = NULL;
169
      objfile->psymbol_cache = bcache_xmalloc ();
170
      objfile->macro_cache = bcache_xmalloc ();
171
      /* We could use obstack_specify_allocation here instead, but
172
         gdb_obstack.h specifies the alloc/dealloc functions.  */
173
      obstack_init (&objfile->objfile_obstack);
174
      terminate_minimal_symbol_table (objfile);
175
    }
176
 
177
  objfile_alloc_data (objfile);
178
 
179
  /* Update the per-objfile information that comes from the bfd, ensuring
180
     that any data that is reference is saved in the per-objfile data
181
     region. */
182
 
183
  objfile->obfd = abfd;
184
  if (objfile->name != NULL)
185
    {
186
      xfree (objfile->name);
187
    }
188
  if (abfd != NULL)
189
    {
190
      objfile->name = xstrdup (bfd_get_filename (abfd));
191
      objfile->mtime = bfd_get_mtime (abfd);
192
 
193
      /* Build section table.  */
194
 
195
      if (build_objfile_section_table (objfile))
196
        {
197
          error (_("Can't find the file sections in `%s': %s"),
198
                 objfile->name, bfd_errmsg (bfd_get_error ()));
199
        }
200
    }
201
  else
202
    {
203
      objfile->name = xstrdup ("<<anonymous objfile>>");
204
    }
205
 
206
  /* Initialize the section indexes for this objfile, so that we can
207
     later detect if they are used w/o being properly assigned to. */
208
 
209
  objfile->sect_index_text = -1;
210
  objfile->sect_index_data = -1;
211
  objfile->sect_index_bss = -1;
212
  objfile->sect_index_rodata = -1;
213
 
214
  /* We don't yet have a C++-specific namespace symtab.  */
215
 
216
  objfile->cp_namespace_symtab = NULL;
217
 
218
  /* Add this file onto the tail of the linked list of other such files. */
219
 
220
  objfile->next = NULL;
221
  if (object_files == NULL)
222
    object_files = objfile;
223
  else
224
    {
225
      for (last_one = object_files;
226
           last_one->next;
227
           last_one = last_one->next);
228
      last_one->next = objfile;
229
    }
230
 
231
  /* Save passed in flag bits. */
232
  objfile->flags |= flags;
233
 
234
  return (objfile);
235
}
236
 
237
/* Initialize entry point information for this objfile. */
238
 
239
void
240
init_entry_point_info (struct objfile *objfile)
241
{
242
  /* Save startup file's range of PC addresses to help blockframe.c
243
     decide where the bottom of the stack is.  */
244
 
245
  if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
246
    {
247
      /* Executable file -- record its entry point so we'll recognize
248
         the startup file because it contains the entry point.  */
249
      objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
250
    }
251
  else
252
    {
253
      /* Examination of non-executable.o files.  Short-circuit this stuff.  */
254
      objfile->ei.entry_point = INVALID_ENTRY_POINT;
255
    }
256
}
257
 
258
/* Get current entry point address.  */
259
 
260
CORE_ADDR
261
entry_point_address (void)
262
{
263
  return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
264
}
265
 
266
/* Create the terminating entry of OBJFILE's minimal symbol table.
267
   If OBJFILE->msymbols is zero, allocate a single entry from
268
   OBJFILE->objfile_obstack; otherwise, just initialize
269
   OBJFILE->msymbols[OBJFILE->minimal_symbol_count].  */
270
void
271
terminate_minimal_symbol_table (struct objfile *objfile)
272
{
273
  if (! objfile->msymbols)
274
    objfile->msymbols = ((struct minimal_symbol *)
275
                         obstack_alloc (&objfile->objfile_obstack,
276
                                        sizeof (objfile->msymbols[0])));
277
 
278
  {
279
    struct minimal_symbol *m
280
      = &objfile->msymbols[objfile->minimal_symbol_count];
281
 
282
    memset (m, 0, sizeof (*m));
283
    /* Don't rely on these enumeration values being 0's.  */
284
    MSYMBOL_TYPE (m) = mst_unknown;
285
    SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
286
  }
287
}
288
 
289
 
290
/* Put one object file before a specified on in the global list.
291
   This can be used to make sure an object file is destroyed before
292
   another when using ALL_OBJFILES_SAFE to free all objfiles. */
293
void
294
put_objfile_before (struct objfile *objfile, struct objfile *before_this)
295
{
296
  struct objfile **objp;
297
 
298
  unlink_objfile (objfile);
299
 
300
  for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
301
    {
302
      if (*objp == before_this)
303
        {
304
          objfile->next = *objp;
305
          *objp = objfile;
306
          return;
307
        }
308
    }
309
 
310
  internal_error (__FILE__, __LINE__,
311
                  _("put_objfile_before: before objfile not in list"));
312
}
313
 
314
/* Put OBJFILE at the front of the list.  */
315
 
316
void
317
objfile_to_front (struct objfile *objfile)
318
{
319
  struct objfile **objp;
320
  for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
321
    {
322
      if (*objp == objfile)
323
        {
324
          /* Unhook it from where it is.  */
325
          *objp = objfile->next;
326
          /* Put it in the front.  */
327
          objfile->next = object_files;
328
          object_files = objfile;
329
          break;
330
        }
331
    }
332
}
333
 
334
/* Unlink OBJFILE from the list of known objfiles, if it is found in the
335
   list.
336
 
337
   It is not a bug, or error, to call this function if OBJFILE is not known
338
   to be in the current list.  This is done in the case of mapped objfiles,
339
   for example, just to ensure that the mapped objfile doesn't appear twice
340
   in the list.  Since the list is threaded, linking in a mapped objfile
341
   twice would create a circular list.
342
 
343
   If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
344
   unlinking it, just to ensure that we have completely severed any linkages
345
   between the OBJFILE and the list. */
346
 
347
void
348
unlink_objfile (struct objfile *objfile)
349
{
350
  struct objfile **objpp;
351
 
352
  for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
353
    {
354
      if (*objpp == objfile)
355
        {
356
          *objpp = (*objpp)->next;
357
          objfile->next = NULL;
358
          return;
359
        }
360
    }
361
 
362
  internal_error (__FILE__, __LINE__,
363
                  _("unlink_objfile: objfile already unlinked"));
364
}
365
 
366
 
367
/* Destroy an objfile and all the symtabs and psymtabs under it.  Note
368
   that as much as possible is allocated on the objfile_obstack
369
   so that the memory can be efficiently freed.
370
 
371
   Things which we do NOT free because they are not in malloc'd memory
372
   or not in memory specific to the objfile include:
373
 
374
   objfile -> sf
375
 
376
   FIXME:  If the objfile is using reusable symbol information (via mmalloc),
377
   then we need to take into account the fact that more than one process
378
   may be using the symbol information at the same time (when mmalloc is
379
   extended to support cooperative locking).  When more than one process
380
   is using the mapped symbol info, we need to be more careful about when
381
   we free objects in the reusable area. */
382
 
383
void
384
free_objfile (struct objfile *objfile)
385
{
386
  if (objfile->separate_debug_objfile)
387
    {
388
      free_objfile (objfile->separate_debug_objfile);
389
    }
390
 
391
  if (objfile->separate_debug_objfile_backlink)
392
    {
393
      /* We freed the separate debug file, make sure the base objfile
394
         doesn't reference it.  */
395
      objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
396
    }
397
 
398
  /* Remove any references to this objfile in the global value
399
     lists.  */
400
  preserve_values (objfile);
401
 
402
  /* First do any symbol file specific actions required when we are
403
     finished with a particular symbol file.  Note that if the objfile
404
     is using reusable symbol information (via mmalloc) then each of
405
     these routines is responsible for doing the correct thing, either
406
     freeing things which are valid only during this particular gdb
407
     execution, or leaving them to be reused during the next one. */
408
 
409
  if (objfile->sf != NULL)
410
    {
411
      (*objfile->sf->sym_finish) (objfile);
412
    }
413
 
414
  /* We always close the bfd. */
415
 
416
  if (objfile->obfd != NULL)
417
    {
418
      char *name = bfd_get_filename (objfile->obfd);
419
      if (!bfd_close (objfile->obfd))
420
        warning (_("cannot close \"%s\": %s"),
421
                 name, bfd_errmsg (bfd_get_error ()));
422
      xfree (name);
423
    }
424
 
425
  /* Remove it from the chain of all objfiles. */
426
 
427
  unlink_objfile (objfile);
428
 
429
  /* If we are going to free the runtime common objfile, mark it
430
     as unallocated.  */
431
 
432
  if (objfile == rt_common_objfile)
433
    rt_common_objfile = NULL;
434
 
435
  /* Before the symbol table code was redone to make it easier to
436
     selectively load and remove information particular to a specific
437
     linkage unit, gdb used to do these things whenever the monolithic
438
     symbol table was blown away.  How much still needs to be done
439
     is unknown, but we play it safe for now and keep each action until
440
     it is shown to be no longer needed. */
441
 
442
  /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
443
     for example), so we need to call this here.  */
444
  clear_pc_function_cache ();
445
 
446
  /* Clear globals which might have pointed into a removed objfile.
447
     FIXME: It's not clear which of these are supposed to persist
448
     between expressions and which ought to be reset each time.  */
449
  expression_context_block = NULL;
450
  innermost_block = NULL;
451
 
452
  /* Check to see if the current_source_symtab belongs to this objfile,
453
     and if so, call clear_current_source_symtab_and_line. */
454
 
455
  {
456
    struct symtab_and_line cursal = get_current_source_symtab_and_line ();
457
    struct symtab *s;
458
 
459
    ALL_OBJFILE_SYMTABS (objfile, s)
460
      {
461
        if (s == cursal.symtab)
462
          clear_current_source_symtab_and_line ();
463
      }
464
  }
465
 
466
  /* The last thing we do is free the objfile struct itself. */
467
 
468
  objfile_free_data (objfile);
469
  if (objfile->name != NULL)
470
    {
471
      xfree (objfile->name);
472
    }
473
  if (objfile->global_psymbols.list)
474
    xfree (objfile->global_psymbols.list);
475
  if (objfile->static_psymbols.list)
476
    xfree (objfile->static_psymbols.list);
477
  /* Free the obstacks for non-reusable objfiles */
478
  bcache_xfree (objfile->psymbol_cache);
479
  bcache_xfree (objfile->macro_cache);
480
  if (objfile->demangled_names_hash)
481
    htab_delete (objfile->demangled_names_hash);
482
  obstack_free (&objfile->objfile_obstack, 0);
483
  xfree (objfile);
484
  objfile = NULL;
485
}
486
 
487
static void
488
do_free_objfile_cleanup (void *obj)
489
{
490
  free_objfile (obj);
491
}
492
 
493
struct cleanup *
494
make_cleanup_free_objfile (struct objfile *obj)
495
{
496
  return make_cleanup (do_free_objfile_cleanup, obj);
497
}
498
 
499
/* Free all the object files at once and clean up their users.  */
500
 
501
void
502
free_all_objfiles (void)
503
{
504
  struct objfile *objfile, *temp;
505
 
506
  ALL_OBJFILES_SAFE (objfile, temp)
507
  {
508
    free_objfile (objfile);
509
  }
510
  clear_symtab_users ();
511
}
512
 
513
/* Relocate OBJFILE to NEW_OFFSETS.  There should be OBJFILE->NUM_SECTIONS
514
   entries in new_offsets.  */
515
void
516
objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
517
{
518
  struct section_offsets *delta =
519
    ((struct section_offsets *)
520
     alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
521
 
522
  {
523
    int i;
524
    int something_changed = 0;
525
    for (i = 0; i < objfile->num_sections; ++i)
526
      {
527
        delta->offsets[i] =
528
          ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
529
        if (ANOFFSET (delta, i) != 0)
530
          something_changed = 1;
531
      }
532
    if (!something_changed)
533
      return;
534
  }
535
 
536
  /* OK, get all the symtabs.  */
537
  {
538
    struct symtab *s;
539
 
540
    ALL_OBJFILE_SYMTABS (objfile, s)
541
    {
542
      struct linetable *l;
543
      struct blockvector *bv;
544
      int i;
545
 
546
      /* First the line table.  */
547
      l = LINETABLE (s);
548
      if (l)
549
        {
550
          for (i = 0; i < l->nitems; ++i)
551
            l->item[i].pc += ANOFFSET (delta, s->block_line_section);
552
        }
553
 
554
      /* Don't relocate a shared blockvector more than once.  */
555
      if (!s->primary)
556
        continue;
557
 
558
      bv = BLOCKVECTOR (s);
559
      for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
560
        {
561
          struct block *b;
562
          struct symbol *sym;
563
          struct dict_iterator iter;
564
 
565
          b = BLOCKVECTOR_BLOCK (bv, i);
566
          BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
567
          BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
568
          if (BLOCKVECTOR_MAP (bv))
569
            addrmap_relocate (BLOCKVECTOR_MAP (bv),
570
                              ANOFFSET (delta, s->block_line_section));
571
 
572
          ALL_BLOCK_SYMBOLS (b, iter, sym)
573
            {
574
              fixup_symbol_section (sym, objfile);
575
 
576
              /* The RS6000 code from which this was taken skipped
577
                 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
578
                 But I'm leaving out that test, on the theory that
579
                 they can't possibly pass the tests below.  */
580
              if ((SYMBOL_CLASS (sym) == LOC_LABEL
581
                   || SYMBOL_CLASS (sym) == LOC_STATIC
582
                   || SYMBOL_CLASS (sym) == LOC_INDIRECT)
583
                  && SYMBOL_SECTION (sym) >= 0)
584
                {
585
                  SYMBOL_VALUE_ADDRESS (sym) +=
586
                    ANOFFSET (delta, SYMBOL_SECTION (sym));
587
                }
588
            }
589
        }
590
    }
591
  }
592
 
593
  {
594
    struct partial_symtab *p;
595
 
596
    ALL_OBJFILE_PSYMTABS (objfile, p)
597
    {
598
      p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
599
      p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
600
    }
601
  }
602
 
603
  {
604
    struct partial_symbol **psym;
605
 
606
    for (psym = objfile->global_psymbols.list;
607
         psym < objfile->global_psymbols.next;
608
         psym++)
609
      {
610
        fixup_psymbol_section (*psym, objfile);
611
        if (SYMBOL_SECTION (*psym) >= 0)
612
          SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
613
                                                    SYMBOL_SECTION (*psym));
614
      }
615
    for (psym = objfile->static_psymbols.list;
616
         psym < objfile->static_psymbols.next;
617
         psym++)
618
      {
619
        fixup_psymbol_section (*psym, objfile);
620
        if (SYMBOL_SECTION (*psym) >= 0)
621
          SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
622
                                                    SYMBOL_SECTION (*psym));
623
      }
624
  }
625
 
626
  {
627
    struct minimal_symbol *msym;
628
    ALL_OBJFILE_MSYMBOLS (objfile, msym)
629
      if (SYMBOL_SECTION (msym) >= 0)
630
      SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
631
  }
632
  /* Relocating different sections by different amounts may cause the symbols
633
     to be out of order.  */
634
  msymbols_sort (objfile);
635
 
636
  {
637
    int i;
638
    for (i = 0; i < objfile->num_sections; ++i)
639
      (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
640
  }
641
 
642
  if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
643
    {
644
      /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
645
         only as a fallback.  */
646
      struct obj_section *s;
647
      s = find_pc_section (objfile->ei.entry_point);
648
      if (s)
649
        objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
650
      else
651
        objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
652
    }
653
 
654
  {
655
    struct obj_section *s;
656
    bfd *abfd;
657
 
658
    abfd = objfile->obfd;
659
 
660
    ALL_OBJFILE_OSECTIONS (objfile, s)
661
      {
662
        int idx = s->the_bfd_section->index;
663
 
664
        s->addr += ANOFFSET (delta, idx);
665
        s->endaddr += ANOFFSET (delta, idx);
666
      }
667
  }
668
 
669
  /* Relocate breakpoints as necessary, after things are relocated. */
670
  breakpoint_re_set ();
671
}
672
 
673
/* Many places in gdb want to test just to see if we have any partial
674
   symbols available.  This function returns zero if none are currently
675
   available, nonzero otherwise. */
676
 
677
int
678
have_partial_symbols (void)
679
{
680
  struct objfile *ofp;
681
 
682
  ALL_OBJFILES (ofp)
683
  {
684
    if (ofp->psymtabs != NULL)
685
      {
686
        return 1;
687
      }
688
  }
689
  return 0;
690
}
691
 
692
/* Many places in gdb want to test just to see if we have any full
693
   symbols available.  This function returns zero if none are currently
694
   available, nonzero otherwise. */
695
 
696
int
697
have_full_symbols (void)
698
{
699
  struct objfile *ofp;
700
 
701
  ALL_OBJFILES (ofp)
702
  {
703
    if (ofp->symtabs != NULL)
704
      {
705
        return 1;
706
      }
707
  }
708
  return 0;
709
}
710
 
711
 
712
/* This operations deletes all objfile entries that represent solibs that
713
   weren't explicitly loaded by the user, via e.g., the add-symbol-file
714
   command.
715
 */
716
void
717
objfile_purge_solibs (void)
718
{
719
  struct objfile *objf;
720
  struct objfile *temp;
721
 
722
  ALL_OBJFILES_SAFE (objf, temp)
723
  {
724
    /* We assume that the solib package has been purged already, or will
725
       be soon.
726
     */
727
    if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
728
      free_objfile (objf);
729
  }
730
}
731
 
732
 
733
/* Many places in gdb want to test just to see if we have any minimal
734
   symbols available.  This function returns zero if none are currently
735
   available, nonzero otherwise. */
736
 
737
int
738
have_minimal_symbols (void)
739
{
740
  struct objfile *ofp;
741
 
742
  ALL_OBJFILES (ofp)
743
  {
744
    if (ofp->minimal_symbol_count > 0)
745
      {
746
        return 1;
747
      }
748
  }
749
  return 0;
750
}
751
 
752
/* Returns a section whose range includes PC and SECTION, or NULL if
753
   none found.  Note the distinction between the return type, struct
754
   obj_section (which is defined in gdb), and the input type "struct
755
   bfd_section" (which is a bfd-defined data type).  The obj_section
756
   contains a pointer to the "struct bfd_section".  */
757
 
758
struct obj_section *
759
find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section)
760
{
761
  struct obj_section *s;
762
  struct objfile *objfile;
763
 
764
  ALL_OBJSECTIONS (objfile, s)
765
    if ((section == 0 || section == s->the_bfd_section) &&
766
        s->addr <= pc && pc < s->endaddr)
767
      return (s);
768
 
769
  return (NULL);
770
}
771
 
772
/* Returns a section whose range includes PC or NULL if none found.
773
   Backward compatibility, no section.  */
774
 
775
struct obj_section *
776
find_pc_section (CORE_ADDR pc)
777
{
778
  return find_pc_sect_section (pc, find_pc_mapped_section (pc));
779
}
780
 
781
 
782
/* In SVR4, we recognize a trampoline by it's section name.
783
   That is, if the pc is in a section named ".plt" then we are in
784
   a trampoline.  */
785
 
786
int
787
in_plt_section (CORE_ADDR pc, char *name)
788
{
789
  struct obj_section *s;
790
  int retval = 0;
791
 
792
  s = find_pc_section (pc);
793
 
794
  retval = (s != NULL
795
            && s->the_bfd_section->name != NULL
796
            && strcmp (s->the_bfd_section->name, ".plt") == 0);
797
  return (retval);
798
}
799
 
800
 
801
/* Keep a registry of per-objfile data-pointers required by other GDB
802
   modules.  */
803
 
804
struct objfile_data
805
{
806
  unsigned index;
807
};
808
 
809
struct objfile_data_registration
810
{
811
  struct objfile_data *data;
812
  struct objfile_data_registration *next;
813
};
814
 
815
struct objfile_data_registry
816
{
817
  struct objfile_data_registration *registrations;
818
  unsigned num_registrations;
819
};
820
 
821
static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
822
 
823
const struct objfile_data *
824
register_objfile_data (void)
825
{
826
  struct objfile_data_registration **curr;
827
 
828
  /* Append new registration.  */
829
  for (curr = &objfile_data_registry.registrations;
830
       *curr != NULL; curr = &(*curr)->next);
831
 
832
  *curr = XMALLOC (struct objfile_data_registration);
833
  (*curr)->next = NULL;
834
  (*curr)->data = XMALLOC (struct objfile_data);
835
  (*curr)->data->index = objfile_data_registry.num_registrations++;
836
 
837
  return (*curr)->data;
838
}
839
 
840
static void
841
objfile_alloc_data (struct objfile *objfile)
842
{
843
  gdb_assert (objfile->data == NULL);
844
  objfile->num_data = objfile_data_registry.num_registrations;
845
  objfile->data = XCALLOC (objfile->num_data, void *);
846
}
847
 
848
static void
849
objfile_free_data (struct objfile *objfile)
850
{
851
  gdb_assert (objfile->data != NULL);
852
  xfree (objfile->data);
853
  objfile->data = NULL;
854
}
855
 
856
void
857
clear_objfile_data (struct objfile *objfile)
858
{
859
  gdb_assert (objfile->data != NULL);
860
  memset (objfile->data, 0, objfile->num_data * sizeof (void *));
861
}
862
 
863
void
864
set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
865
                  void *value)
866
{
867
  gdb_assert (data->index < objfile->num_data);
868
  objfile->data[data->index] = value;
869
}
870
 
871
void *
872
objfile_data (struct objfile *objfile, const struct objfile_data *data)
873
{
874
  gdb_assert (data->index < objfile->num_data);
875
  return objfile->data[data->index];
876
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.