1 |
24 |
jeremybenn |
/* Target-dependent code for GDB, the GNU debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
4 |
|
|
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "inferior.h"
|
25 |
|
|
#include "symtab.h"
|
26 |
|
|
#include "target.h"
|
27 |
|
|
#include "gdbcore.h"
|
28 |
|
|
#include "gdbcmd.h"
|
29 |
|
|
#include "symfile.h"
|
30 |
|
|
#include "objfiles.h"
|
31 |
|
|
#include "regcache.h"
|
32 |
|
|
#include "value.h"
|
33 |
|
|
#include "osabi.h"
|
34 |
|
|
#include "regset.h"
|
35 |
|
|
#include "solib-svr4.h"
|
36 |
|
|
#include "ppc-tdep.h"
|
37 |
|
|
#include "trad-frame.h"
|
38 |
|
|
#include "frame-unwind.h"
|
39 |
|
|
#include "tramp-frame.h"
|
40 |
|
|
|
41 |
|
|
static CORE_ADDR
|
42 |
|
|
ppc_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
43 |
|
|
{
|
44 |
|
|
gdb_byte buf[4];
|
45 |
|
|
struct obj_section *sect;
|
46 |
|
|
struct objfile *objfile;
|
47 |
|
|
unsigned long insn;
|
48 |
|
|
CORE_ADDR plt_start = 0;
|
49 |
|
|
CORE_ADDR symtab = 0;
|
50 |
|
|
CORE_ADDR strtab = 0;
|
51 |
|
|
int num_slots = -1;
|
52 |
|
|
int reloc_index = -1;
|
53 |
|
|
CORE_ADDR plt_table;
|
54 |
|
|
CORE_ADDR reloc;
|
55 |
|
|
CORE_ADDR sym;
|
56 |
|
|
long symidx;
|
57 |
|
|
char symname[1024];
|
58 |
|
|
struct minimal_symbol *msymbol;
|
59 |
|
|
|
60 |
|
|
/* Find the section pc is in; if not in .plt, try the default method. */
|
61 |
|
|
sect = find_pc_section (pc);
|
62 |
|
|
if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
|
63 |
|
|
return find_solib_trampoline_target (frame, pc);
|
64 |
|
|
|
65 |
|
|
objfile = sect->objfile;
|
66 |
|
|
|
67 |
|
|
/* Pick up the instruction at pc. It had better be of the
|
68 |
|
|
form
|
69 |
|
|
li r11, IDX
|
70 |
|
|
|
71 |
|
|
where IDX is an index into the plt_table. */
|
72 |
|
|
|
73 |
|
|
if (target_read_memory (pc, buf, 4) != 0)
|
74 |
|
|
return 0;
|
75 |
|
|
insn = extract_unsigned_integer (buf, 4);
|
76 |
|
|
|
77 |
|
|
if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
|
78 |
|
|
return 0;
|
79 |
|
|
|
80 |
|
|
reloc_index = (insn << 16) >> 16;
|
81 |
|
|
|
82 |
|
|
/* Find the objfile that pc is in and obtain the information
|
83 |
|
|
necessary for finding the symbol name. */
|
84 |
|
|
for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
|
85 |
|
|
{
|
86 |
|
|
const char *secname = sect->the_bfd_section->name;
|
87 |
|
|
if (strcmp (secname, ".plt") == 0)
|
88 |
|
|
plt_start = sect->addr;
|
89 |
|
|
else if (strcmp (secname, ".rela.plt") == 0)
|
90 |
|
|
num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
|
91 |
|
|
else if (strcmp (secname, ".dynsym") == 0)
|
92 |
|
|
symtab = sect->addr;
|
93 |
|
|
else if (strcmp (secname, ".dynstr") == 0)
|
94 |
|
|
strtab = sect->addr;
|
95 |
|
|
}
|
96 |
|
|
|
97 |
|
|
/* Make sure we have all the information we need. */
|
98 |
|
|
if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
|
99 |
|
|
return 0;
|
100 |
|
|
|
101 |
|
|
/* Compute the value of the plt table */
|
102 |
|
|
plt_table = plt_start + 72 + 8 * num_slots;
|
103 |
|
|
|
104 |
|
|
/* Get address of the relocation entry (Elf32_Rela) */
|
105 |
|
|
if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
|
106 |
|
|
return 0;
|
107 |
|
|
reloc = extract_unsigned_integer (buf, 4);
|
108 |
|
|
|
109 |
|
|
sect = find_pc_section (reloc);
|
110 |
|
|
if (!sect)
|
111 |
|
|
return 0;
|
112 |
|
|
|
113 |
|
|
if (strcmp (sect->the_bfd_section->name, ".text") == 0)
|
114 |
|
|
return reloc;
|
115 |
|
|
|
116 |
|
|
/* Now get the r_info field which is the relocation type and symbol
|
117 |
|
|
index. */
|
118 |
|
|
if (target_read_memory (reloc + 4, buf, 4) != 0)
|
119 |
|
|
return 0;
|
120 |
|
|
symidx = extract_unsigned_integer (buf, 4);
|
121 |
|
|
|
122 |
|
|
/* Shift out the relocation type leaving just the symbol index */
|
123 |
|
|
/* symidx = ELF32_R_SYM(symidx); */
|
124 |
|
|
symidx = symidx >> 8;
|
125 |
|
|
|
126 |
|
|
/* compute the address of the symbol */
|
127 |
|
|
sym = symtab + symidx * 4;
|
128 |
|
|
|
129 |
|
|
/* Fetch the string table index */
|
130 |
|
|
if (target_read_memory (sym, buf, 4) != 0)
|
131 |
|
|
return 0;
|
132 |
|
|
symidx = extract_unsigned_integer (buf, 4);
|
133 |
|
|
|
134 |
|
|
/* Fetch the string; we don't know how long it is. Is it possible
|
135 |
|
|
that the following will fail because we're trying to fetch too
|
136 |
|
|
much? */
|
137 |
|
|
if (target_read_memory (strtab + symidx, (gdb_byte *) symname,
|
138 |
|
|
sizeof (symname)) != 0)
|
139 |
|
|
return 0;
|
140 |
|
|
|
141 |
|
|
/* This might not work right if we have multiple symbols with the
|
142 |
|
|
same name; the only way to really get it right is to perform
|
143 |
|
|
the same sort of lookup as the dynamic linker. */
|
144 |
|
|
msymbol = lookup_minimal_symbol_text (symname, NULL);
|
145 |
|
|
if (!msymbol)
|
146 |
|
|
return 0;
|
147 |
|
|
|
148 |
|
|
return SYMBOL_VALUE_ADDRESS (msymbol);
|
149 |
|
|
}
|
150 |
|
|
|
151 |
|
|
/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
|
152 |
|
|
in much the same fashion as memory_remove_breakpoint in mem-break.c,
|
153 |
|
|
but is careful not to write back the previous contents if the code
|
154 |
|
|
in question has changed in between inserting the breakpoint and
|
155 |
|
|
removing it.
|
156 |
|
|
|
157 |
|
|
Here is the problem that we're trying to solve...
|
158 |
|
|
|
159 |
|
|
Once upon a time, before introducing this function to remove
|
160 |
|
|
breakpoints from the inferior, setting a breakpoint on a shared
|
161 |
|
|
library function prior to running the program would not work
|
162 |
|
|
properly. In order to understand the problem, it is first
|
163 |
|
|
necessary to understand a little bit about dynamic linking on
|
164 |
|
|
this platform.
|
165 |
|
|
|
166 |
|
|
A call to a shared library function is accomplished via a bl
|
167 |
|
|
(branch-and-link) instruction whose branch target is an entry
|
168 |
|
|
in the procedure linkage table (PLT). The PLT in the object
|
169 |
|
|
file is uninitialized. To gdb, prior to running the program, the
|
170 |
|
|
entries in the PLT are all zeros.
|
171 |
|
|
|
172 |
|
|
Once the program starts running, the shared libraries are loaded
|
173 |
|
|
and the procedure linkage table is initialized, but the entries in
|
174 |
|
|
the table are not (necessarily) resolved. Once a function is
|
175 |
|
|
actually called, the code in the PLT is hit and the function is
|
176 |
|
|
resolved. In order to better illustrate this, an example is in
|
177 |
|
|
order; the following example is from the gdb testsuite.
|
178 |
|
|
|
179 |
|
|
We start the program shmain.
|
180 |
|
|
|
181 |
|
|
[kev@arroyo testsuite]$ ../gdb gdb.base/shmain
|
182 |
|
|
[...]
|
183 |
|
|
|
184 |
|
|
We place two breakpoints, one on shr1 and the other on main.
|
185 |
|
|
|
186 |
|
|
(gdb) b shr1
|
187 |
|
|
Breakpoint 1 at 0x100409d4
|
188 |
|
|
(gdb) b main
|
189 |
|
|
Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
|
190 |
|
|
|
191 |
|
|
Examine the instruction (and the immediatly following instruction)
|
192 |
|
|
upon which the breakpoint was placed. Note that the PLT entry
|
193 |
|
|
for shr1 contains zeros.
|
194 |
|
|
|
195 |
|
|
(gdb) x/2i 0x100409d4
|
196 |
|
|
0x100409d4 <shr1>: .long 0x0
|
197 |
|
|
0x100409d8 <shr1+4>: .long 0x0
|
198 |
|
|
|
199 |
|
|
Now run 'til main.
|
200 |
|
|
|
201 |
|
|
(gdb) r
|
202 |
|
|
Starting program: gdb.base/shmain
|
203 |
|
|
Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
|
204 |
|
|
|
205 |
|
|
Breakpoint 2, main ()
|
206 |
|
|
at gdb.base/shmain.c:44
|
207 |
|
|
44 g = 1;
|
208 |
|
|
|
209 |
|
|
Examine the PLT again. Note that the loading of the shared
|
210 |
|
|
library has initialized the PLT to code which loads a constant
|
211 |
|
|
(which I think is an index into the GOT) into r11 and then
|
212 |
|
|
branchs a short distance to the code which actually does the
|
213 |
|
|
resolving.
|
214 |
|
|
|
215 |
|
|
(gdb) x/2i 0x100409d4
|
216 |
|
|
0x100409d4 <shr1>: li r11,4
|
217 |
|
|
0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
|
218 |
|
|
(gdb) c
|
219 |
|
|
Continuing.
|
220 |
|
|
|
221 |
|
|
Breakpoint 1, shr1 (x=1)
|
222 |
|
|
at gdb.base/shr1.c:19
|
223 |
|
|
19 l = 1;
|
224 |
|
|
|
225 |
|
|
Now we've hit the breakpoint at shr1. (The breakpoint was
|
226 |
|
|
reset from the PLT entry to the actual shr1 function after the
|
227 |
|
|
shared library was loaded.) Note that the PLT entry has been
|
228 |
|
|
resolved to contain a branch that takes us directly to shr1.
|
229 |
|
|
(The real one, not the PLT entry.)
|
230 |
|
|
|
231 |
|
|
(gdb) x/2i 0x100409d4
|
232 |
|
|
0x100409d4 <shr1>: b 0xffaf76c <shr1>
|
233 |
|
|
0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
|
234 |
|
|
|
235 |
|
|
The thing to note here is that the PLT entry for shr1 has been
|
236 |
|
|
changed twice.
|
237 |
|
|
|
238 |
|
|
Now the problem should be obvious. GDB places a breakpoint (a
|
239 |
|
|
trap instruction) on the zero value of the PLT entry for shr1.
|
240 |
|
|
Later on, after the shared library had been loaded and the PLT
|
241 |
|
|
initialized, GDB gets a signal indicating this fact and attempts
|
242 |
|
|
(as it always does when it stops) to remove all the breakpoints.
|
243 |
|
|
|
244 |
|
|
The breakpoint removal was causing the former contents (a zero
|
245 |
|
|
word) to be written back to the now initialized PLT entry thus
|
246 |
|
|
destroying a portion of the initialization that had occurred only a
|
247 |
|
|
short time ago. When execution continued, the zero word would be
|
248 |
|
|
executed as an instruction an an illegal instruction trap was
|
249 |
|
|
generated instead. (0 is not a legal instruction.)
|
250 |
|
|
|
251 |
|
|
The fix for this problem was fairly straightforward. The function
|
252 |
|
|
memory_remove_breakpoint from mem-break.c was copied to this file,
|
253 |
|
|
modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
|
254 |
|
|
In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
|
255 |
|
|
function.
|
256 |
|
|
|
257 |
|
|
The differences between ppc_linux_memory_remove_breakpoint () and
|
258 |
|
|
memory_remove_breakpoint () are minor. All that the former does
|
259 |
|
|
that the latter does not is check to make sure that the breakpoint
|
260 |
|
|
location actually contains a breakpoint (trap instruction) prior
|
261 |
|
|
to attempting to write back the old contents. If it does contain
|
262 |
|
|
a trap instruction, we allow the old contents to be written back.
|
263 |
|
|
Otherwise, we silently do nothing.
|
264 |
|
|
|
265 |
|
|
The big question is whether memory_remove_breakpoint () should be
|
266 |
|
|
changed to have the same functionality. The downside is that more
|
267 |
|
|
traffic is generated for remote targets since we'll have an extra
|
268 |
|
|
fetch of a memory word each time a breakpoint is removed.
|
269 |
|
|
|
270 |
|
|
For the time being, we'll leave this self-modifying-code-friendly
|
271 |
|
|
version in ppc-linux-tdep.c, but it ought to be migrated somewhere
|
272 |
|
|
else in the event that some other platform has similar needs with
|
273 |
|
|
regard to removing breakpoints in some potentially self modifying
|
274 |
|
|
code. */
|
275 |
|
|
int
|
276 |
|
|
ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
|
277 |
|
|
struct bp_target_info *bp_tgt)
|
278 |
|
|
{
|
279 |
|
|
CORE_ADDR addr = bp_tgt->placed_address;
|
280 |
|
|
const unsigned char *bp;
|
281 |
|
|
int val;
|
282 |
|
|
int bplen;
|
283 |
|
|
gdb_byte old_contents[BREAKPOINT_MAX];
|
284 |
|
|
|
285 |
|
|
/* Determine appropriate breakpoint contents and size for this address. */
|
286 |
|
|
bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
|
287 |
|
|
if (bp == NULL)
|
288 |
|
|
error (_("Software breakpoints not implemented for this target."));
|
289 |
|
|
|
290 |
|
|
val = target_read_memory (addr, old_contents, bplen);
|
291 |
|
|
|
292 |
|
|
/* If our breakpoint is no longer at the address, this means that the
|
293 |
|
|
program modified the code on us, so it is wrong to put back the
|
294 |
|
|
old value */
|
295 |
|
|
if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
|
296 |
|
|
val = target_write_memory (addr, bp_tgt->shadow_contents, bplen);
|
297 |
|
|
|
298 |
|
|
return val;
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
/* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
|
302 |
|
|
than the 32 bit SYSV R4 ABI structure return convention - all
|
303 |
|
|
structures, no matter their size, are put in memory. Vectors,
|
304 |
|
|
which were added later, do get returned in a register though. */
|
305 |
|
|
|
306 |
|
|
static enum return_value_convention
|
307 |
|
|
ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype,
|
308 |
|
|
struct regcache *regcache, gdb_byte *readbuf,
|
309 |
|
|
const gdb_byte *writebuf)
|
310 |
|
|
{
|
311 |
|
|
if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
312 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION)
|
313 |
|
|
&& !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
|
314 |
|
|
&& TYPE_VECTOR (valtype)))
|
315 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
316 |
|
|
else
|
317 |
|
|
return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, readbuf,
|
318 |
|
|
writebuf);
|
319 |
|
|
}
|
320 |
|
|
|
321 |
|
|
/* Macros for matching instructions. Note that, since all the
|
322 |
|
|
operands are masked off before they're or-ed into the instruction,
|
323 |
|
|
you can use -1 to make masks. */
|
324 |
|
|
|
325 |
|
|
#define insn_d(opcd, rts, ra, d) \
|
326 |
|
|
((((opcd) & 0x3f) << 26) \
|
327 |
|
|
| (((rts) & 0x1f) << 21) \
|
328 |
|
|
| (((ra) & 0x1f) << 16) \
|
329 |
|
|
| ((d) & 0xffff))
|
330 |
|
|
|
331 |
|
|
#define insn_ds(opcd, rts, ra, d, xo) \
|
332 |
|
|
((((opcd) & 0x3f) << 26) \
|
333 |
|
|
| (((rts) & 0x1f) << 21) \
|
334 |
|
|
| (((ra) & 0x1f) << 16) \
|
335 |
|
|
| ((d) & 0xfffc) \
|
336 |
|
|
| ((xo) & 0x3))
|
337 |
|
|
|
338 |
|
|
#define insn_xfx(opcd, rts, spr, xo) \
|
339 |
|
|
((((opcd) & 0x3f) << 26) \
|
340 |
|
|
| (((rts) & 0x1f) << 21) \
|
341 |
|
|
| (((spr) & 0x1f) << 16) \
|
342 |
|
|
| (((spr) & 0x3e0) << 6) \
|
343 |
|
|
| (((xo) & 0x3ff) << 1))
|
344 |
|
|
|
345 |
|
|
/* Read a PPC instruction from memory. PPC instructions are always
|
346 |
|
|
big-endian, no matter what endianness the program is running in, so
|
347 |
|
|
we can't use read_memory_integer or one of its friends here. */
|
348 |
|
|
static unsigned int
|
349 |
|
|
read_insn (CORE_ADDR pc)
|
350 |
|
|
{
|
351 |
|
|
unsigned char buf[4];
|
352 |
|
|
|
353 |
|
|
read_memory (pc, buf, 4);
|
354 |
|
|
return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
|
355 |
|
|
}
|
356 |
|
|
|
357 |
|
|
|
358 |
|
|
/* An instruction to match. */
|
359 |
|
|
struct insn_pattern
|
360 |
|
|
{
|
361 |
|
|
unsigned int mask; /* mask the insn with this... */
|
362 |
|
|
unsigned int data; /* ...and see if it matches this. */
|
363 |
|
|
int optional; /* If non-zero, this insn may be absent. */
|
364 |
|
|
};
|
365 |
|
|
|
366 |
|
|
/* Return non-zero if the instructions at PC match the series
|
367 |
|
|
described in PATTERN, or zero otherwise. PATTERN is an array of
|
368 |
|
|
'struct insn_pattern' objects, terminated by an entry whose mask is
|
369 |
|
|
zero.
|
370 |
|
|
|
371 |
|
|
When the match is successful, fill INSN[i] with what PATTERN[i]
|
372 |
|
|
matched. If PATTERN[i] is optional, and the instruction wasn't
|
373 |
|
|
present, set INSN[i] to 0 (which is not a valid PPC instruction).
|
374 |
|
|
INSN should have as many elements as PATTERN. Note that, if
|
375 |
|
|
PATTERN contains optional instructions which aren't present in
|
376 |
|
|
memory, then INSN will have holes, so INSN[i] isn't necessarily the
|
377 |
|
|
i'th instruction in memory. */
|
378 |
|
|
static int
|
379 |
|
|
insns_match_pattern (CORE_ADDR pc,
|
380 |
|
|
struct insn_pattern *pattern,
|
381 |
|
|
unsigned int *insn)
|
382 |
|
|
{
|
383 |
|
|
int i;
|
384 |
|
|
|
385 |
|
|
for (i = 0; pattern[i].mask; i++)
|
386 |
|
|
{
|
387 |
|
|
insn[i] = read_insn (pc);
|
388 |
|
|
if ((insn[i] & pattern[i].mask) == pattern[i].data)
|
389 |
|
|
pc += 4;
|
390 |
|
|
else if (pattern[i].optional)
|
391 |
|
|
insn[i] = 0;
|
392 |
|
|
else
|
393 |
|
|
return 0;
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
return 1;
|
397 |
|
|
}
|
398 |
|
|
|
399 |
|
|
|
400 |
|
|
/* Return the 'd' field of the d-form instruction INSN, properly
|
401 |
|
|
sign-extended. */
|
402 |
|
|
static CORE_ADDR
|
403 |
|
|
insn_d_field (unsigned int insn)
|
404 |
|
|
{
|
405 |
|
|
return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
|
409 |
|
|
/* Return the 'ds' field of the ds-form instruction INSN, with the two
|
410 |
|
|
zero bits concatenated at the right, and properly
|
411 |
|
|
sign-extended. */
|
412 |
|
|
static CORE_ADDR
|
413 |
|
|
insn_ds_field (unsigned int insn)
|
414 |
|
|
{
|
415 |
|
|
return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
|
419 |
|
|
/* If DESC is the address of a 64-bit PowerPC GNU/Linux function
|
420 |
|
|
descriptor, return the descriptor's entry point. */
|
421 |
|
|
static CORE_ADDR
|
422 |
|
|
ppc64_desc_entry_point (CORE_ADDR desc)
|
423 |
|
|
{
|
424 |
|
|
/* The first word of the descriptor is the entry point. */
|
425 |
|
|
return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
|
426 |
|
|
}
|
427 |
|
|
|
428 |
|
|
|
429 |
|
|
/* Pattern for the standard linkage function. These are built by
|
430 |
|
|
build_plt_stub in elf64-ppc.c, whose GLINK argument is always
|
431 |
|
|
zero. */
|
432 |
|
|
static struct insn_pattern ppc64_standard_linkage[] =
|
433 |
|
|
{
|
434 |
|
|
/* addis r12, r2, <any> */
|
435 |
|
|
{ insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
|
436 |
|
|
|
437 |
|
|
/* std r2, 40(r1) */
|
438 |
|
|
{ -1, insn_ds (62, 2, 1, 40, 0), 0 },
|
439 |
|
|
|
440 |
|
|
/* ld r11, <any>(r12) */
|
441 |
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
|
442 |
|
|
|
443 |
|
|
/* addis r12, r12, 1 <optional> */
|
444 |
|
|
{ insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
|
445 |
|
|
|
446 |
|
|
/* ld r2, <any>(r12) */
|
447 |
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
|
448 |
|
|
|
449 |
|
|
/* addis r12, r12, 1 <optional> */
|
450 |
|
|
{ insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
|
451 |
|
|
|
452 |
|
|
/* mtctr r11 */
|
453 |
|
|
{ insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
|
454 |
|
|
|
455 |
|
|
|
456 |
|
|
/* ld r11, <any>(r12) */
|
457 |
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
|
458 |
|
|
|
459 |
|
|
/* bctr */
|
460 |
|
|
{ -1, 0x4e800420, 0 },
|
461 |
|
|
|
462 |
|
|
{ 0, 0, 0 }
|
463 |
|
|
};
|
464 |
|
|
#define PPC64_STANDARD_LINKAGE_LEN \
|
465 |
|
|
(sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
|
466 |
|
|
|
467 |
|
|
/* When the dynamic linker is doing lazy symbol resolution, the first
|
468 |
|
|
call to a function in another object will go like this:
|
469 |
|
|
|
470 |
|
|
- The user's function calls the linkage function:
|
471 |
|
|
|
472 |
|
|
100007c4: 4b ff fc d5 bl 10000498
|
473 |
|
|
100007c8: e8 41 00 28 ld r2,40(r1)
|
474 |
|
|
|
475 |
|
|
- The linkage function loads the entry point (and other stuff) from
|
476 |
|
|
the function descriptor in the PLT, and jumps to it:
|
477 |
|
|
|
478 |
|
|
10000498: 3d 82 00 00 addis r12,r2,0
|
479 |
|
|
1000049c: f8 41 00 28 std r2,40(r1)
|
480 |
|
|
100004a0: e9 6c 80 98 ld r11,-32616(r12)
|
481 |
|
|
100004a4: e8 4c 80 a0 ld r2,-32608(r12)
|
482 |
|
|
100004a8: 7d 69 03 a6 mtctr r11
|
483 |
|
|
100004ac: e9 6c 80 a8 ld r11,-32600(r12)
|
484 |
|
|
100004b0: 4e 80 04 20 bctr
|
485 |
|
|
|
486 |
|
|
- But since this is the first time that PLT entry has been used, it
|
487 |
|
|
sends control to its glink entry. That loads the number of the
|
488 |
|
|
PLT entry and jumps to the common glink0 code:
|
489 |
|
|
|
490 |
|
|
10000c98: 38 00 00 00 li r0,0
|
491 |
|
|
10000c9c: 4b ff ff dc b 10000c78
|
492 |
|
|
|
493 |
|
|
- The common glink0 code then transfers control to the dynamic
|
494 |
|
|
linker's fixup code:
|
495 |
|
|
|
496 |
|
|
10000c78: e8 41 00 28 ld r2,40(r1)
|
497 |
|
|
10000c7c: 3d 82 00 00 addis r12,r2,0
|
498 |
|
|
10000c80: e9 6c 80 80 ld r11,-32640(r12)
|
499 |
|
|
10000c84: e8 4c 80 88 ld r2,-32632(r12)
|
500 |
|
|
10000c88: 7d 69 03 a6 mtctr r11
|
501 |
|
|
10000c8c: e9 6c 80 90 ld r11,-32624(r12)
|
502 |
|
|
10000c90: 4e 80 04 20 bctr
|
503 |
|
|
|
504 |
|
|
Eventually, this code will figure out how to skip all of this,
|
505 |
|
|
including the dynamic linker. At the moment, we just get through
|
506 |
|
|
the linkage function. */
|
507 |
|
|
|
508 |
|
|
/* If the current thread is about to execute a series of instructions
|
509 |
|
|
at PC matching the ppc64_standard_linkage pattern, and INSN is the result
|
510 |
|
|
from that pattern match, return the code address to which the
|
511 |
|
|
standard linkage function will send them. (This doesn't deal with
|
512 |
|
|
dynamic linker lazy symbol resolution stubs.) */
|
513 |
|
|
static CORE_ADDR
|
514 |
|
|
ppc64_standard_linkage_target (struct frame_info *frame,
|
515 |
|
|
CORE_ADDR pc, unsigned int *insn)
|
516 |
|
|
{
|
517 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
|
518 |
|
|
|
519 |
|
|
/* The address of the function descriptor this linkage function
|
520 |
|
|
references. */
|
521 |
|
|
CORE_ADDR desc
|
522 |
|
|
= ((CORE_ADDR) get_frame_register_unsigned (frame,
|
523 |
|
|
tdep->ppc_gp0_regnum + 2)
|
524 |
|
|
+ (insn_d_field (insn[0]) << 16)
|
525 |
|
|
+ insn_ds_field (insn[2]));
|
526 |
|
|
|
527 |
|
|
/* The first word of the descriptor is the entry point. Return that. */
|
528 |
|
|
return ppc64_desc_entry_point (desc);
|
529 |
|
|
}
|
530 |
|
|
|
531 |
|
|
|
532 |
|
|
/* Given that we've begun executing a call trampoline at PC, return
|
533 |
|
|
the entry point of the function the trampoline will go to. */
|
534 |
|
|
static CORE_ADDR
|
535 |
|
|
ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
536 |
|
|
{
|
537 |
|
|
unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
|
538 |
|
|
|
539 |
|
|
if (insns_match_pattern (pc, ppc64_standard_linkage,
|
540 |
|
|
ppc64_standard_linkage_insn))
|
541 |
|
|
return ppc64_standard_linkage_target (frame, pc,
|
542 |
|
|
ppc64_standard_linkage_insn);
|
543 |
|
|
else
|
544 |
|
|
return 0;
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
|
548 |
|
|
/* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC
|
549 |
|
|
GNU/Linux.
|
550 |
|
|
|
551 |
|
|
Usually a function pointer's representation is simply the address
|
552 |
|
|
of the function. On GNU/Linux on the PowerPC however, a function
|
553 |
|
|
pointer may be a pointer to a function descriptor.
|
554 |
|
|
|
555 |
|
|
For PPC64, a function descriptor is a TOC entry, in a data section,
|
556 |
|
|
which contains three words: the first word is the address of the
|
557 |
|
|
function, the second word is the TOC pointer (r2), and the third word
|
558 |
|
|
is the static chain value.
|
559 |
|
|
|
560 |
|
|
For PPC32, there are two kinds of function pointers: non-secure and
|
561 |
|
|
secure. Non-secure function pointers point directly to the
|
562 |
|
|
function in a code section and thus need no translation. Secure
|
563 |
|
|
ones (from GCC's -msecure-plt option) are in a data section and
|
564 |
|
|
contain one word: the address of the function.
|
565 |
|
|
|
566 |
|
|
Throughout GDB it is currently assumed that a function pointer contains
|
567 |
|
|
the address of the function, which is not easy to fix. In addition, the
|
568 |
|
|
conversion of a function address to a function pointer would
|
569 |
|
|
require allocation of a TOC entry in the inferior's memory space,
|
570 |
|
|
with all its drawbacks. To be able to call C++ virtual methods in
|
571 |
|
|
the inferior (which are called via function pointers),
|
572 |
|
|
find_function_addr uses this function to get the function address
|
573 |
|
|
from a function pointer.
|
574 |
|
|
|
575 |
|
|
If ADDR points at what is clearly a function descriptor, transform
|
576 |
|
|
it into the address of the corresponding function, if needed. Be
|
577 |
|
|
conservative, otherwise GDB will do the transformation on any
|
578 |
|
|
random addresses such as occur when there is no symbol table. */
|
579 |
|
|
|
580 |
|
|
static CORE_ADDR
|
581 |
|
|
ppc_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
|
582 |
|
|
CORE_ADDR addr,
|
583 |
|
|
struct target_ops *targ)
|
584 |
|
|
{
|
585 |
|
|
struct gdbarch_tdep *tdep;
|
586 |
|
|
struct section_table *s = target_section_by_addr (targ, addr);
|
587 |
|
|
char *sect_name = NULL;
|
588 |
|
|
|
589 |
|
|
if (!s)
|
590 |
|
|
return addr;
|
591 |
|
|
|
592 |
|
|
tdep = gdbarch_tdep (gdbarch);
|
593 |
|
|
|
594 |
|
|
switch (tdep->wordsize)
|
595 |
|
|
{
|
596 |
|
|
case 4:
|
597 |
|
|
sect_name = ".plt";
|
598 |
|
|
break;
|
599 |
|
|
case 8:
|
600 |
|
|
sect_name = ".opd";
|
601 |
|
|
break;
|
602 |
|
|
default:
|
603 |
|
|
internal_error (__FILE__, __LINE__,
|
604 |
|
|
_("failed internal consistency check"));
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
/* Check if ADDR points to a function descriptor. */
|
608 |
|
|
|
609 |
|
|
/* NOTE: this depends on the coincidence that the address of a functions
|
610 |
|
|
entry point is contained in the first word of its function descriptor
|
611 |
|
|
for both PPC-64 and for PPC-32 with secure PLTs. */
|
612 |
|
|
if ((strcmp (s->the_bfd_section->name, sect_name) == 0)
|
613 |
|
|
&& s->the_bfd_section->flags & SEC_DATA)
|
614 |
|
|
return get_target_memory_unsigned (targ, addr, tdep->wordsize);
|
615 |
|
|
|
616 |
|
|
return addr;
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
/* This wrapper clears areas in the linux gregset not written by
|
620 |
|
|
ppc_collect_gregset. */
|
621 |
|
|
|
622 |
|
|
static void
|
623 |
|
|
ppc_linux_collect_gregset (const struct regset *regset,
|
624 |
|
|
const struct regcache *regcache,
|
625 |
|
|
int regnum, void *gregs, size_t len)
|
626 |
|
|
{
|
627 |
|
|
if (regnum == -1)
|
628 |
|
|
memset (gregs, 0, len);
|
629 |
|
|
ppc_collect_gregset (regset, regcache, regnum, gregs, len);
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
/* Regset descriptions. */
|
633 |
|
|
static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
|
634 |
|
|
{
|
635 |
|
|
/* General-purpose registers. */
|
636 |
|
|
/* .r0_offset = */ 0,
|
637 |
|
|
/* .gpr_size = */ 4,
|
638 |
|
|
/* .xr_size = */ 4,
|
639 |
|
|
/* .pc_offset = */ 128,
|
640 |
|
|
/* .ps_offset = */ 132,
|
641 |
|
|
/* .cr_offset = */ 152,
|
642 |
|
|
/* .lr_offset = */ 144,
|
643 |
|
|
/* .ctr_offset = */ 140,
|
644 |
|
|
/* .xer_offset = */ 148,
|
645 |
|
|
/* .mq_offset = */ 156,
|
646 |
|
|
|
647 |
|
|
/* Floating-point registers. */
|
648 |
|
|
/* .f0_offset = */ 0,
|
649 |
|
|
/* .fpscr_offset = */ 256,
|
650 |
|
|
/* .fpscr_size = */ 8,
|
651 |
|
|
|
652 |
|
|
/* AltiVec registers. */
|
653 |
|
|
/* .vr0_offset = */ 0,
|
654 |
|
|
/* .vscr_offset = */ 512 + 12,
|
655 |
|
|
/* .vrsave_offset = */ 528
|
656 |
|
|
};
|
657 |
|
|
|
658 |
|
|
static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
|
659 |
|
|
{
|
660 |
|
|
/* General-purpose registers. */
|
661 |
|
|
/* .r0_offset = */ 0,
|
662 |
|
|
/* .gpr_size = */ 8,
|
663 |
|
|
/* .xr_size = */ 8,
|
664 |
|
|
/* .pc_offset = */ 256,
|
665 |
|
|
/* .ps_offset = */ 264,
|
666 |
|
|
/* .cr_offset = */ 304,
|
667 |
|
|
/* .lr_offset = */ 288,
|
668 |
|
|
/* .ctr_offset = */ 280,
|
669 |
|
|
/* .xer_offset = */ 296,
|
670 |
|
|
/* .mq_offset = */ 312,
|
671 |
|
|
|
672 |
|
|
/* Floating-point registers. */
|
673 |
|
|
/* .f0_offset = */ 0,
|
674 |
|
|
/* .fpscr_offset = */ 256,
|
675 |
|
|
/* .fpscr_size = */ 8,
|
676 |
|
|
|
677 |
|
|
/* AltiVec registers. */
|
678 |
|
|
/* .vr0_offset = */ 0,
|
679 |
|
|
/* .vscr_offset = */ 512 + 12,
|
680 |
|
|
/* .vrsave_offset = */ 528
|
681 |
|
|
};
|
682 |
|
|
|
683 |
|
|
static const struct regset ppc32_linux_gregset = {
|
684 |
|
|
&ppc32_linux_reg_offsets,
|
685 |
|
|
ppc_supply_gregset,
|
686 |
|
|
ppc_linux_collect_gregset,
|
687 |
|
|
NULL
|
688 |
|
|
};
|
689 |
|
|
|
690 |
|
|
static const struct regset ppc64_linux_gregset = {
|
691 |
|
|
&ppc64_linux_reg_offsets,
|
692 |
|
|
ppc_supply_gregset,
|
693 |
|
|
ppc_linux_collect_gregset,
|
694 |
|
|
NULL
|
695 |
|
|
};
|
696 |
|
|
|
697 |
|
|
static const struct regset ppc32_linux_fpregset = {
|
698 |
|
|
&ppc32_linux_reg_offsets,
|
699 |
|
|
ppc_supply_fpregset,
|
700 |
|
|
ppc_collect_fpregset,
|
701 |
|
|
NULL
|
702 |
|
|
};
|
703 |
|
|
|
704 |
|
|
static const struct regset ppc32_linux_vrregset = {
|
705 |
|
|
&ppc32_linux_reg_offsets,
|
706 |
|
|
ppc_supply_vrregset,
|
707 |
|
|
ppc_collect_vrregset,
|
708 |
|
|
NULL
|
709 |
|
|
};
|
710 |
|
|
|
711 |
|
|
const struct regset *
|
712 |
|
|
ppc_linux_gregset (int wordsize)
|
713 |
|
|
{
|
714 |
|
|
return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
|
715 |
|
|
}
|
716 |
|
|
|
717 |
|
|
const struct regset *
|
718 |
|
|
ppc_linux_fpregset (void)
|
719 |
|
|
{
|
720 |
|
|
return &ppc32_linux_fpregset;
|
721 |
|
|
}
|
722 |
|
|
|
723 |
|
|
static const struct regset *
|
724 |
|
|
ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
|
725 |
|
|
const char *sect_name, size_t sect_size)
|
726 |
|
|
{
|
727 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
|
728 |
|
|
if (strcmp (sect_name, ".reg") == 0)
|
729 |
|
|
{
|
730 |
|
|
if (tdep->wordsize == 4)
|
731 |
|
|
return &ppc32_linux_gregset;
|
732 |
|
|
else
|
733 |
|
|
return &ppc64_linux_gregset;
|
734 |
|
|
}
|
735 |
|
|
if (strcmp (sect_name, ".reg2") == 0)
|
736 |
|
|
return &ppc32_linux_fpregset;
|
737 |
|
|
if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
|
738 |
|
|
return &ppc32_linux_vrregset;
|
739 |
|
|
return NULL;
|
740 |
|
|
}
|
741 |
|
|
|
742 |
|
|
static void
|
743 |
|
|
ppc_linux_sigtramp_cache (struct frame_info *next_frame,
|
744 |
|
|
struct trad_frame_cache *this_cache,
|
745 |
|
|
CORE_ADDR func, LONGEST offset,
|
746 |
|
|
int bias)
|
747 |
|
|
{
|
748 |
|
|
CORE_ADDR base;
|
749 |
|
|
CORE_ADDR regs;
|
750 |
|
|
CORE_ADDR gpregs;
|
751 |
|
|
CORE_ADDR fpregs;
|
752 |
|
|
int i;
|
753 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
754 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
755 |
|
|
|
756 |
|
|
base = frame_unwind_register_unsigned (next_frame,
|
757 |
|
|
gdbarch_sp_regnum (gdbarch));
|
758 |
|
|
if (bias > 0 && frame_pc_unwind (next_frame) != func)
|
759 |
|
|
/* See below, some signal trampolines increment the stack as their
|
760 |
|
|
first instruction, need to compensate for that. */
|
761 |
|
|
base -= bias;
|
762 |
|
|
|
763 |
|
|
/* Find the address of the register buffer pointer. */
|
764 |
|
|
regs = base + offset;
|
765 |
|
|
/* Use that to find the address of the corresponding register
|
766 |
|
|
buffers. */
|
767 |
|
|
gpregs = read_memory_unsigned_integer (regs, tdep->wordsize);
|
768 |
|
|
fpregs = gpregs + 48 * tdep->wordsize;
|
769 |
|
|
|
770 |
|
|
/* General purpose. */
|
771 |
|
|
for (i = 0; i < 32; i++)
|
772 |
|
|
{
|
773 |
|
|
int regnum = i + tdep->ppc_gp0_regnum;
|
774 |
|
|
trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize);
|
775 |
|
|
}
|
776 |
|
|
trad_frame_set_reg_addr (this_cache,
|
777 |
|
|
gdbarch_pc_regnum (gdbarch),
|
778 |
|
|
gpregs + 32 * tdep->wordsize);
|
779 |
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
|
780 |
|
|
gpregs + 35 * tdep->wordsize);
|
781 |
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
|
782 |
|
|
gpregs + 36 * tdep->wordsize);
|
783 |
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
|
784 |
|
|
gpregs + 37 * tdep->wordsize);
|
785 |
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
|
786 |
|
|
gpregs + 38 * tdep->wordsize);
|
787 |
|
|
|
788 |
|
|
if (ppc_floating_point_unit_p (gdbarch))
|
789 |
|
|
{
|
790 |
|
|
/* Floating point registers. */
|
791 |
|
|
for (i = 0; i < 32; i++)
|
792 |
|
|
{
|
793 |
|
|
int regnum = i + gdbarch_fp0_regnum (gdbarch);
|
794 |
|
|
trad_frame_set_reg_addr (this_cache, regnum,
|
795 |
|
|
fpregs + i * tdep->wordsize);
|
796 |
|
|
}
|
797 |
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
|
798 |
|
|
fpregs + 32 * tdep->wordsize);
|
799 |
|
|
}
|
800 |
|
|
trad_frame_set_id (this_cache, frame_id_build (base, func));
|
801 |
|
|
}
|
802 |
|
|
|
803 |
|
|
static void
|
804 |
|
|
ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
|
805 |
|
|
struct frame_info *next_frame,
|
806 |
|
|
struct trad_frame_cache *this_cache,
|
807 |
|
|
CORE_ADDR func)
|
808 |
|
|
{
|
809 |
|
|
ppc_linux_sigtramp_cache (next_frame, this_cache, func,
|
810 |
|
|
0xd0 /* Offset to ucontext_t. */
|
811 |
|
|
+ 0x30 /* Offset to .reg. */,
|
812 |
|
|
0);
|
813 |
|
|
}
|
814 |
|
|
|
815 |
|
|
static void
|
816 |
|
|
ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
|
817 |
|
|
struct frame_info *next_frame,
|
818 |
|
|
struct trad_frame_cache *this_cache,
|
819 |
|
|
CORE_ADDR func)
|
820 |
|
|
{
|
821 |
|
|
ppc_linux_sigtramp_cache (next_frame, this_cache, func,
|
822 |
|
|
0x80 /* Offset to ucontext_t. */
|
823 |
|
|
+ 0xe0 /* Offset to .reg. */,
|
824 |
|
|
128);
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
static void
|
828 |
|
|
ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
|
829 |
|
|
struct frame_info *next_frame,
|
830 |
|
|
struct trad_frame_cache *this_cache,
|
831 |
|
|
CORE_ADDR func)
|
832 |
|
|
{
|
833 |
|
|
ppc_linux_sigtramp_cache (next_frame, this_cache, func,
|
834 |
|
|
0x40 /* Offset to ucontext_t. */
|
835 |
|
|
+ 0x1c /* Offset to .reg. */,
|
836 |
|
|
0);
|
837 |
|
|
}
|
838 |
|
|
|
839 |
|
|
static void
|
840 |
|
|
ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
|
841 |
|
|
struct frame_info *next_frame,
|
842 |
|
|
struct trad_frame_cache *this_cache,
|
843 |
|
|
CORE_ADDR func)
|
844 |
|
|
{
|
845 |
|
|
ppc_linux_sigtramp_cache (next_frame, this_cache, func,
|
846 |
|
|
0x80 /* Offset to struct sigcontext. */
|
847 |
|
|
+ 0x38 /* Offset to .reg. */,
|
848 |
|
|
128);
|
849 |
|
|
}
|
850 |
|
|
|
851 |
|
|
static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
|
852 |
|
|
SIGTRAMP_FRAME,
|
853 |
|
|
4,
|
854 |
|
|
{
|
855 |
|
|
{ 0x380000ac, -1 }, /* li r0, 172 */
|
856 |
|
|
{ 0x44000002, -1 }, /* sc */
|
857 |
|
|
{ TRAMP_SENTINEL_INSN },
|
858 |
|
|
},
|
859 |
|
|
ppc32_linux_sigaction_cache_init
|
860 |
|
|
};
|
861 |
|
|
static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
|
862 |
|
|
SIGTRAMP_FRAME,
|
863 |
|
|
4,
|
864 |
|
|
{
|
865 |
|
|
{ 0x38210080, -1 }, /* addi r1,r1,128 */
|
866 |
|
|
{ 0x380000ac, -1 }, /* li r0, 172 */
|
867 |
|
|
{ 0x44000002, -1 }, /* sc */
|
868 |
|
|
{ TRAMP_SENTINEL_INSN },
|
869 |
|
|
},
|
870 |
|
|
ppc64_linux_sigaction_cache_init
|
871 |
|
|
};
|
872 |
|
|
static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
|
873 |
|
|
SIGTRAMP_FRAME,
|
874 |
|
|
4,
|
875 |
|
|
{
|
876 |
|
|
{ 0x38000077, -1 }, /* li r0,119 */
|
877 |
|
|
{ 0x44000002, -1 }, /* sc */
|
878 |
|
|
{ TRAMP_SENTINEL_INSN },
|
879 |
|
|
},
|
880 |
|
|
ppc32_linux_sighandler_cache_init
|
881 |
|
|
};
|
882 |
|
|
static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
|
883 |
|
|
SIGTRAMP_FRAME,
|
884 |
|
|
4,
|
885 |
|
|
{
|
886 |
|
|
{ 0x38210080, -1 }, /* addi r1,r1,128 */
|
887 |
|
|
{ 0x38000077, -1 }, /* li r0,119 */
|
888 |
|
|
{ 0x44000002, -1 }, /* sc */
|
889 |
|
|
{ TRAMP_SENTINEL_INSN },
|
890 |
|
|
},
|
891 |
|
|
ppc64_linux_sighandler_cache_init
|
892 |
|
|
};
|
893 |
|
|
|
894 |
|
|
static void
|
895 |
|
|
ppc_linux_init_abi (struct gdbarch_info info,
|
896 |
|
|
struct gdbarch *gdbarch)
|
897 |
|
|
{
|
898 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
899 |
|
|
|
900 |
|
|
/* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
|
901 |
|
|
128-bit, they are IBM long double, not IEEE quad long double as
|
902 |
|
|
in the System V ABI PowerPC Processor Supplement. We can safely
|
903 |
|
|
let them default to 128-bit, since the debug info will give the
|
904 |
|
|
size of type actually used in each case. */
|
905 |
|
|
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
906 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
|
907 |
|
|
|
908 |
|
|
/* Handle PPC GNU/Linux 64-bit function pointers (which are really
|
909 |
|
|
function descriptors) and 32-bit secure PLT entries. */
|
910 |
|
|
set_gdbarch_convert_from_func_ptr_addr
|
911 |
|
|
(gdbarch, ppc_linux_convert_from_func_ptr_addr);
|
912 |
|
|
|
913 |
|
|
if (tdep->wordsize == 4)
|
914 |
|
|
{
|
915 |
|
|
/* Until November 2001, gcc did not comply with the 32 bit SysV
|
916 |
|
|
R4 ABI requirement that structures less than or equal to 8
|
917 |
|
|
bytes should be returned in registers. Instead GCC was using
|
918 |
|
|
the the AIX/PowerOpen ABI - everything returned in memory
|
919 |
|
|
(well ignoring vectors that is). When this was corrected, it
|
920 |
|
|
wasn't fixed for GNU/Linux native platform. Use the
|
921 |
|
|
PowerOpen struct convention. */
|
922 |
|
|
set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
|
923 |
|
|
|
924 |
|
|
set_gdbarch_memory_remove_breakpoint (gdbarch,
|
925 |
|
|
ppc_linux_memory_remove_breakpoint);
|
926 |
|
|
|
927 |
|
|
/* Shared library handling. */
|
928 |
|
|
set_gdbarch_skip_trampoline_code (gdbarch,
|
929 |
|
|
ppc_linux_skip_trampoline_code);
|
930 |
|
|
set_solib_svr4_fetch_link_map_offsets
|
931 |
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
932 |
|
|
|
933 |
|
|
/* Trampolines. */
|
934 |
|
|
tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame);
|
935 |
|
|
tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame);
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
if (tdep->wordsize == 8)
|
939 |
|
|
{
|
940 |
|
|
/* Shared library handling. */
|
941 |
|
|
set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
|
942 |
|
|
set_solib_svr4_fetch_link_map_offsets
|
943 |
|
|
(gdbarch, svr4_lp64_fetch_link_map_offsets);
|
944 |
|
|
|
945 |
|
|
/* Trampolines. */
|
946 |
|
|
tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame);
|
947 |
|
|
tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame);
|
948 |
|
|
}
|
949 |
|
|
set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
|
950 |
|
|
|
951 |
|
|
/* Enable TLS support. */
|
952 |
|
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
953 |
|
|
svr4_fetch_objfile_link_map);
|
954 |
|
|
}
|
955 |
|
|
|
956 |
|
|
void
|
957 |
|
|
_initialize_ppc_linux_tdep (void)
|
958 |
|
|
{
|
959 |
|
|
/* Register for all sub-familes of the POWER/PowerPC: 32-bit and
|
960 |
|
|
64-bit PowerPC, and the older rs6k. */
|
961 |
|
|
gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
|
962 |
|
|
ppc_linux_init_abi);
|
963 |
|
|
gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
|
964 |
|
|
ppc_linux_init_abi);
|
965 |
|
|
gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
|
966 |
|
|
ppc_linux_init_abi);
|
967 |
|
|
}
|