1 |
24 |
jeremybenn |
/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
|
2 |
|
|
Copyright (C) 2004, 2007, 2008 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GDB.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
9 |
|
|
(at your option) any later version.
|
10 |
|
|
|
11 |
|
|
This program is distributed in the hope that it will be useful,
|
12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
18 |
|
|
|
19 |
|
|
|
20 |
|
|
#include "defs.h"
|
21 |
|
|
#include "gdb_string.h"
|
22 |
|
|
#include "inferior.h"
|
23 |
|
|
#include "gdbcore.h"
|
24 |
|
|
#include "solib.h"
|
25 |
|
|
#include "solist.h"
|
26 |
|
|
#include "frv-tdep.h"
|
27 |
|
|
#include "objfiles.h"
|
28 |
|
|
#include "symtab.h"
|
29 |
|
|
#include "language.h"
|
30 |
|
|
#include "command.h"
|
31 |
|
|
#include "gdbcmd.h"
|
32 |
|
|
#include "elf/frv.h"
|
33 |
|
|
|
34 |
|
|
/* Flag which indicates whether internal debug messages should be printed. */
|
35 |
|
|
static int solib_frv_debug;
|
36 |
|
|
|
37 |
|
|
/* FR-V pointers are four bytes wide. */
|
38 |
|
|
enum { FRV_PTR_SIZE = 4 };
|
39 |
|
|
|
40 |
|
|
/* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
|
41 |
|
|
|
42 |
|
|
/* External versions; the size and alignment of the fields should be
|
43 |
|
|
the same as those on the target. When loaded, the placement of
|
44 |
|
|
the bits in each field will be the same as on the target. */
|
45 |
|
|
typedef gdb_byte ext_Elf32_Half[2];
|
46 |
|
|
typedef gdb_byte ext_Elf32_Addr[4];
|
47 |
|
|
typedef gdb_byte ext_Elf32_Word[4];
|
48 |
|
|
|
49 |
|
|
struct ext_elf32_fdpic_loadseg
|
50 |
|
|
{
|
51 |
|
|
/* Core address to which the segment is mapped. */
|
52 |
|
|
ext_Elf32_Addr addr;
|
53 |
|
|
/* VMA recorded in the program header. */
|
54 |
|
|
ext_Elf32_Addr p_vaddr;
|
55 |
|
|
/* Size of this segment in memory. */
|
56 |
|
|
ext_Elf32_Word p_memsz;
|
57 |
|
|
};
|
58 |
|
|
|
59 |
|
|
struct ext_elf32_fdpic_loadmap {
|
60 |
|
|
/* Protocol version number, must be zero. */
|
61 |
|
|
ext_Elf32_Half version;
|
62 |
|
|
/* Number of segments in this map. */
|
63 |
|
|
ext_Elf32_Half nsegs;
|
64 |
|
|
/* The actual memory map. */
|
65 |
|
|
struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
|
66 |
|
|
};
|
67 |
|
|
|
68 |
|
|
/* Internal versions; the types are GDB types and the data in each
|
69 |
|
|
of the fields is (or will be) decoded from the external struct
|
70 |
|
|
for ease of consumption. */
|
71 |
|
|
struct int_elf32_fdpic_loadseg
|
72 |
|
|
{
|
73 |
|
|
/* Core address to which the segment is mapped. */
|
74 |
|
|
CORE_ADDR addr;
|
75 |
|
|
/* VMA recorded in the program header. */
|
76 |
|
|
CORE_ADDR p_vaddr;
|
77 |
|
|
/* Size of this segment in memory. */
|
78 |
|
|
long p_memsz;
|
79 |
|
|
};
|
80 |
|
|
|
81 |
|
|
struct int_elf32_fdpic_loadmap {
|
82 |
|
|
/* Protocol version number, must be zero. */
|
83 |
|
|
int version;
|
84 |
|
|
/* Number of segments in this map. */
|
85 |
|
|
int nsegs;
|
86 |
|
|
/* The actual memory map. */
|
87 |
|
|
struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
|
88 |
|
|
};
|
89 |
|
|
|
90 |
|
|
/* Given address LDMADDR, fetch and decode the loadmap at that address.
|
91 |
|
|
Return NULL if there is a problem reading the target memory or if
|
92 |
|
|
there doesn't appear to be a loadmap at the given address. The
|
93 |
|
|
allocated space (representing the loadmap) returned by this
|
94 |
|
|
function may be freed via a single call to xfree(). */
|
95 |
|
|
|
96 |
|
|
static struct int_elf32_fdpic_loadmap *
|
97 |
|
|
fetch_loadmap (CORE_ADDR ldmaddr)
|
98 |
|
|
{
|
99 |
|
|
struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
|
100 |
|
|
struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
|
101 |
|
|
struct int_elf32_fdpic_loadmap *int_ldmbuf;
|
102 |
|
|
int ext_ldmbuf_size, int_ldmbuf_size;
|
103 |
|
|
int version, seg, nsegs;
|
104 |
|
|
|
105 |
|
|
/* Fetch initial portion of the loadmap. */
|
106 |
|
|
if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
|
107 |
|
|
sizeof ext_ldmbuf_partial))
|
108 |
|
|
{
|
109 |
|
|
/* Problem reading the target's memory. */
|
110 |
|
|
return NULL;
|
111 |
|
|
}
|
112 |
|
|
|
113 |
|
|
/* Extract the version. */
|
114 |
|
|
version = extract_unsigned_integer (ext_ldmbuf_partial.version,
|
115 |
|
|
sizeof ext_ldmbuf_partial.version);
|
116 |
|
|
if (version != 0)
|
117 |
|
|
{
|
118 |
|
|
/* We only handle version 0. */
|
119 |
|
|
return NULL;
|
120 |
|
|
}
|
121 |
|
|
|
122 |
|
|
/* Extract the number of segments. */
|
123 |
|
|
nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
|
124 |
|
|
sizeof ext_ldmbuf_partial.nsegs);
|
125 |
|
|
|
126 |
|
|
/* Allocate space for the complete (external) loadmap. */
|
127 |
|
|
ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
|
128 |
|
|
+ (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
|
129 |
|
|
ext_ldmbuf = xmalloc (ext_ldmbuf_size);
|
130 |
|
|
|
131 |
|
|
/* Copy over the portion of the loadmap that's already been read. */
|
132 |
|
|
memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
|
133 |
|
|
|
134 |
|
|
/* Read the rest of the loadmap from the target. */
|
135 |
|
|
if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
|
136 |
|
|
(gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
|
137 |
|
|
ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
|
138 |
|
|
{
|
139 |
|
|
/* Couldn't read rest of the loadmap. */
|
140 |
|
|
xfree (ext_ldmbuf);
|
141 |
|
|
return NULL;
|
142 |
|
|
}
|
143 |
|
|
|
144 |
|
|
/* Allocate space into which to put information extract from the
|
145 |
|
|
external loadsegs. I.e, allocate the internal loadsegs. */
|
146 |
|
|
int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
|
147 |
|
|
+ (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
|
148 |
|
|
int_ldmbuf = xmalloc (int_ldmbuf_size);
|
149 |
|
|
|
150 |
|
|
/* Place extracted information in internal structs. */
|
151 |
|
|
int_ldmbuf->version = version;
|
152 |
|
|
int_ldmbuf->nsegs = nsegs;
|
153 |
|
|
for (seg = 0; seg < nsegs; seg++)
|
154 |
|
|
{
|
155 |
|
|
int_ldmbuf->segs[seg].addr
|
156 |
|
|
= extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
|
157 |
|
|
sizeof (ext_ldmbuf->segs[seg].addr));
|
158 |
|
|
int_ldmbuf->segs[seg].p_vaddr
|
159 |
|
|
= extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
|
160 |
|
|
sizeof (ext_ldmbuf->segs[seg].p_vaddr));
|
161 |
|
|
int_ldmbuf->segs[seg].p_memsz
|
162 |
|
|
= extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
|
163 |
|
|
sizeof (ext_ldmbuf->segs[seg].p_memsz));
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
xfree (ext_ldmbuf);
|
167 |
|
|
return int_ldmbuf;
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
/* External link_map and elf32_fdpic_loadaddr struct definitions. */
|
171 |
|
|
|
172 |
|
|
typedef gdb_byte ext_ptr[4];
|
173 |
|
|
|
174 |
|
|
struct ext_elf32_fdpic_loadaddr
|
175 |
|
|
{
|
176 |
|
|
ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
|
177 |
|
|
ext_ptr got_value; /* void *got_value; */
|
178 |
|
|
};
|
179 |
|
|
|
180 |
|
|
struct ext_link_map
|
181 |
|
|
{
|
182 |
|
|
struct ext_elf32_fdpic_loadaddr l_addr;
|
183 |
|
|
|
184 |
|
|
/* Absolute file name object was found in. */
|
185 |
|
|
ext_ptr l_name; /* char *l_name; */
|
186 |
|
|
|
187 |
|
|
/* Dynamic section of the shared object. */
|
188 |
|
|
ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
|
189 |
|
|
|
190 |
|
|
/* Chain of loaded objects. */
|
191 |
|
|
ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
|
192 |
|
|
};
|
193 |
|
|
|
194 |
|
|
/* Link map info to include in an allocated so_list entry */
|
195 |
|
|
|
196 |
|
|
struct lm_info
|
197 |
|
|
{
|
198 |
|
|
/* The loadmap, digested into an easier to use form. */
|
199 |
|
|
struct int_elf32_fdpic_loadmap *map;
|
200 |
|
|
/* The GOT address for this link map entry. */
|
201 |
|
|
CORE_ADDR got_value;
|
202 |
|
|
/* The link map address, needed for frv_fetch_objfile_link_map(). */
|
203 |
|
|
CORE_ADDR lm_addr;
|
204 |
|
|
|
205 |
|
|
/* Cached dynamic symbol table and dynamic relocs initialized and
|
206 |
|
|
used only by find_canonical_descriptor_in_load_object().
|
207 |
|
|
|
208 |
|
|
Note: kevinb/2004-02-26: It appears that calls to
|
209 |
|
|
bfd_canonicalize_dynamic_reloc() will use the same symbols as
|
210 |
|
|
those supplied to the first call to this function. Therefore,
|
211 |
|
|
it's important to NOT free the asymbol ** data structure
|
212 |
|
|
supplied to the first call. Thus the caching of the dynamic
|
213 |
|
|
symbols (dyn_syms) is critical for correct operation. The
|
214 |
|
|
caching of the dynamic relocations could be dispensed with. */
|
215 |
|
|
asymbol **dyn_syms;
|
216 |
|
|
arelent **dyn_relocs;
|
217 |
|
|
int dyn_reloc_count; /* number of dynamic relocs. */
|
218 |
|
|
|
219 |
|
|
};
|
220 |
|
|
|
221 |
|
|
/* The load map, got value, etc. are not available from the chain
|
222 |
|
|
of loaded shared objects. ``main_executable_lm_info'' provides
|
223 |
|
|
a way to get at this information so that it doesn't need to be
|
224 |
|
|
frequently recomputed. Initialized by frv_relocate_main_executable(). */
|
225 |
|
|
static struct lm_info *main_executable_lm_info;
|
226 |
|
|
|
227 |
|
|
static void frv_relocate_main_executable (void);
|
228 |
|
|
static CORE_ADDR main_got (void);
|
229 |
|
|
static int enable_break2 (void);
|
230 |
|
|
|
231 |
|
|
/*
|
232 |
|
|
|
233 |
|
|
LOCAL FUNCTION
|
234 |
|
|
|
235 |
|
|
bfd_lookup_symbol -- lookup the value for a specific symbol
|
236 |
|
|
|
237 |
|
|
SYNOPSIS
|
238 |
|
|
|
239 |
|
|
CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
|
240 |
|
|
|
241 |
|
|
DESCRIPTION
|
242 |
|
|
|
243 |
|
|
An expensive way to lookup the value of a single symbol for
|
244 |
|
|
bfd's that are only temporary anyway. This is used by the
|
245 |
|
|
shared library support to find the address of the debugger
|
246 |
|
|
interface structures in the shared library.
|
247 |
|
|
|
248 |
|
|
Note that 0 is specifically allowed as an error return (no
|
249 |
|
|
such symbol).
|
250 |
|
|
*/
|
251 |
|
|
|
252 |
|
|
static CORE_ADDR
|
253 |
|
|
bfd_lookup_symbol (bfd *abfd, char *symname)
|
254 |
|
|
{
|
255 |
|
|
long storage_needed;
|
256 |
|
|
asymbol *sym;
|
257 |
|
|
asymbol **symbol_table;
|
258 |
|
|
unsigned int number_of_symbols;
|
259 |
|
|
unsigned int i;
|
260 |
|
|
struct cleanup *back_to;
|
261 |
|
|
CORE_ADDR symaddr = 0;
|
262 |
|
|
|
263 |
|
|
storage_needed = bfd_get_symtab_upper_bound (abfd);
|
264 |
|
|
|
265 |
|
|
if (storage_needed > 0)
|
266 |
|
|
{
|
267 |
|
|
symbol_table = (asymbol **) xmalloc (storage_needed);
|
268 |
|
|
back_to = make_cleanup (xfree, symbol_table);
|
269 |
|
|
number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
|
270 |
|
|
|
271 |
|
|
for (i = 0; i < number_of_symbols; i++)
|
272 |
|
|
{
|
273 |
|
|
sym = *symbol_table++;
|
274 |
|
|
if (strcmp (sym->name, symname) == 0)
|
275 |
|
|
{
|
276 |
|
|
/* Bfd symbols are section relative. */
|
277 |
|
|
symaddr = sym->value + sym->section->vma;
|
278 |
|
|
break;
|
279 |
|
|
}
|
280 |
|
|
}
|
281 |
|
|
do_cleanups (back_to);
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
if (symaddr)
|
285 |
|
|
return symaddr;
|
286 |
|
|
|
287 |
|
|
/* Look for the symbol in the dynamic string table too. */
|
288 |
|
|
|
289 |
|
|
storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
|
290 |
|
|
|
291 |
|
|
if (storage_needed > 0)
|
292 |
|
|
{
|
293 |
|
|
symbol_table = (asymbol **) xmalloc (storage_needed);
|
294 |
|
|
back_to = make_cleanup (xfree, symbol_table);
|
295 |
|
|
number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
|
296 |
|
|
|
297 |
|
|
for (i = 0; i < number_of_symbols; i++)
|
298 |
|
|
{
|
299 |
|
|
sym = *symbol_table++;
|
300 |
|
|
if (strcmp (sym->name, symname) == 0)
|
301 |
|
|
{
|
302 |
|
|
/* Bfd symbols are section relative. */
|
303 |
|
|
symaddr = sym->value + sym->section->vma;
|
304 |
|
|
break;
|
305 |
|
|
}
|
306 |
|
|
}
|
307 |
|
|
do_cleanups (back_to);
|
308 |
|
|
}
|
309 |
|
|
|
310 |
|
|
return symaddr;
|
311 |
|
|
}
|
312 |
|
|
|
313 |
|
|
|
314 |
|
|
/*
|
315 |
|
|
|
316 |
|
|
LOCAL FUNCTION
|
317 |
|
|
|
318 |
|
|
open_symbol_file_object
|
319 |
|
|
|
320 |
|
|
SYNOPSIS
|
321 |
|
|
|
322 |
|
|
void open_symbol_file_object (void *from_tty)
|
323 |
|
|
|
324 |
|
|
DESCRIPTION
|
325 |
|
|
|
326 |
|
|
If no open symbol file, attempt to locate and open the main symbol
|
327 |
|
|
file.
|
328 |
|
|
|
329 |
|
|
If FROM_TTYP dereferences to a non-zero integer, allow messages to
|
330 |
|
|
be printed. This parameter is a pointer rather than an int because
|
331 |
|
|
open_symbol_file_object() is called via catch_errors() and
|
332 |
|
|
catch_errors() requires a pointer argument. */
|
333 |
|
|
|
334 |
|
|
static int
|
335 |
|
|
open_symbol_file_object (void *from_ttyp)
|
336 |
|
|
{
|
337 |
|
|
/* Unimplemented. */
|
338 |
|
|
return 0;
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
/* Cached value for lm_base(), below. */
|
342 |
|
|
static CORE_ADDR lm_base_cache = 0;
|
343 |
|
|
|
344 |
|
|
/* Link map address for main module. */
|
345 |
|
|
static CORE_ADDR main_lm_addr = 0;
|
346 |
|
|
|
347 |
|
|
/* Return the address from which the link map chain may be found. On
|
348 |
|
|
the FR-V, this may be found in a number of ways. Assuming that the
|
349 |
|
|
main executable has already been relocated, the easiest way to find
|
350 |
|
|
this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
|
351 |
|
|
pointer to the start of the link map will be located at the word found
|
352 |
|
|
at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
|
353 |
|
|
reserve area mandated by the ABI.) */
|
354 |
|
|
|
355 |
|
|
static CORE_ADDR
|
356 |
|
|
lm_base (void)
|
357 |
|
|
{
|
358 |
|
|
struct minimal_symbol *got_sym;
|
359 |
|
|
CORE_ADDR addr;
|
360 |
|
|
gdb_byte buf[FRV_PTR_SIZE];
|
361 |
|
|
|
362 |
|
|
/* One of our assumptions is that the main executable has been relocated.
|
363 |
|
|
Bail out if this has not happened. (Note that post_create_inferior()
|
364 |
|
|
in infcmd.c will call solib_add prior to solib_create_inferior_hook().
|
365 |
|
|
If we allow this to happen, lm_base_cache will be initialized with
|
366 |
|
|
a bogus value. */
|
367 |
|
|
if (main_executable_lm_info == 0)
|
368 |
|
|
return 0;
|
369 |
|
|
|
370 |
|
|
/* If we already have a cached value, return it. */
|
371 |
|
|
if (lm_base_cache)
|
372 |
|
|
return lm_base_cache;
|
373 |
|
|
|
374 |
|
|
got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
|
375 |
|
|
symfile_objfile);
|
376 |
|
|
if (got_sym == 0)
|
377 |
|
|
{
|
378 |
|
|
if (solib_frv_debug)
|
379 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
380 |
|
|
"lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
|
381 |
|
|
return 0;
|
382 |
|
|
}
|
383 |
|
|
|
384 |
|
|
addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
|
385 |
|
|
|
386 |
|
|
if (solib_frv_debug)
|
387 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
388 |
|
|
"lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
|
389 |
|
|
hex_string_custom (addr, 8));
|
390 |
|
|
|
391 |
|
|
if (target_read_memory (addr, buf, sizeof buf) != 0)
|
392 |
|
|
return 0;
|
393 |
|
|
lm_base_cache = extract_unsigned_integer (buf, sizeof buf);
|
394 |
|
|
|
395 |
|
|
if (solib_frv_debug)
|
396 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
397 |
|
|
"lm_base: lm_base_cache = %s\n",
|
398 |
|
|
hex_string_custom (lm_base_cache, 8));
|
399 |
|
|
|
400 |
|
|
return lm_base_cache;
|
401 |
|
|
}
|
402 |
|
|
|
403 |
|
|
|
404 |
|
|
/* LOCAL FUNCTION
|
405 |
|
|
|
406 |
|
|
frv_current_sos -- build a list of currently loaded shared objects
|
407 |
|
|
|
408 |
|
|
SYNOPSIS
|
409 |
|
|
|
410 |
|
|
struct so_list *frv_current_sos ()
|
411 |
|
|
|
412 |
|
|
DESCRIPTION
|
413 |
|
|
|
414 |
|
|
Build a list of `struct so_list' objects describing the shared
|
415 |
|
|
objects currently loaded in the inferior. This list does not
|
416 |
|
|
include an entry for the main executable file.
|
417 |
|
|
|
418 |
|
|
Note that we only gather information directly available from the
|
419 |
|
|
inferior --- we don't examine any of the shared library files
|
420 |
|
|
themselves. The declaration of `struct so_list' says which fields
|
421 |
|
|
we provide values for. */
|
422 |
|
|
|
423 |
|
|
static struct so_list *
|
424 |
|
|
frv_current_sos (void)
|
425 |
|
|
{
|
426 |
|
|
CORE_ADDR lm_addr, mgot;
|
427 |
|
|
struct so_list *sos_head = NULL;
|
428 |
|
|
struct so_list **sos_next_ptr = &sos_head;
|
429 |
|
|
|
430 |
|
|
/* Make sure that the main executable has been relocated. This is
|
431 |
|
|
required in order to find the address of the global offset table,
|
432 |
|
|
which in turn is used to find the link map info. (See lm_base()
|
433 |
|
|
for details.)
|
434 |
|
|
|
435 |
|
|
Note that the relocation of the main executable is also performed
|
436 |
|
|
by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
|
437 |
|
|
files, this hook is called too late in order to be of benefit to
|
438 |
|
|
SOLIB_ADD. SOLIB_ADD eventually calls this this function,
|
439 |
|
|
frv_current_sos, and also precedes the call to
|
440 |
|
|
SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
|
441 |
|
|
infcmd.c.) */
|
442 |
|
|
if (main_executable_lm_info == 0 && core_bfd != NULL)
|
443 |
|
|
frv_relocate_main_executable ();
|
444 |
|
|
|
445 |
|
|
/* Fetch the GOT corresponding to the main executable. */
|
446 |
|
|
mgot = main_got ();
|
447 |
|
|
|
448 |
|
|
/* Locate the address of the first link map struct. */
|
449 |
|
|
lm_addr = lm_base ();
|
450 |
|
|
|
451 |
|
|
/* We have at least one link map entry. Fetch the the lot of them,
|
452 |
|
|
building the solist chain. */
|
453 |
|
|
while (lm_addr)
|
454 |
|
|
{
|
455 |
|
|
struct ext_link_map lm_buf;
|
456 |
|
|
CORE_ADDR got_addr;
|
457 |
|
|
|
458 |
|
|
if (solib_frv_debug)
|
459 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
460 |
|
|
"current_sos: reading link_map entry at %s\n",
|
461 |
|
|
hex_string_custom (lm_addr, 8));
|
462 |
|
|
|
463 |
|
|
if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
|
464 |
|
|
{
|
465 |
|
|
warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
|
466 |
|
|
break;
|
467 |
|
|
}
|
468 |
|
|
|
469 |
|
|
got_addr
|
470 |
|
|
= extract_unsigned_integer (lm_buf.l_addr.got_value,
|
471 |
|
|
sizeof (lm_buf.l_addr.got_value));
|
472 |
|
|
/* If the got_addr is the same as mgotr, then we're looking at the
|
473 |
|
|
entry for the main executable. By convention, we don't include
|
474 |
|
|
this in the list of shared objects. */
|
475 |
|
|
if (got_addr != mgot)
|
476 |
|
|
{
|
477 |
|
|
int errcode;
|
478 |
|
|
char *name_buf;
|
479 |
|
|
struct int_elf32_fdpic_loadmap *loadmap;
|
480 |
|
|
struct so_list *sop;
|
481 |
|
|
CORE_ADDR addr;
|
482 |
|
|
|
483 |
|
|
/* Fetch the load map address. */
|
484 |
|
|
addr = extract_unsigned_integer (lm_buf.l_addr.map,
|
485 |
|
|
sizeof lm_buf.l_addr.map);
|
486 |
|
|
loadmap = fetch_loadmap (addr);
|
487 |
|
|
if (loadmap == NULL)
|
488 |
|
|
{
|
489 |
|
|
warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
|
490 |
|
|
break;
|
491 |
|
|
}
|
492 |
|
|
|
493 |
|
|
sop = xcalloc (1, sizeof (struct so_list));
|
494 |
|
|
sop->lm_info = xcalloc (1, sizeof (struct lm_info));
|
495 |
|
|
sop->lm_info->map = loadmap;
|
496 |
|
|
sop->lm_info->got_value = got_addr;
|
497 |
|
|
sop->lm_info->lm_addr = lm_addr;
|
498 |
|
|
/* Fetch the name. */
|
499 |
|
|
addr = extract_unsigned_integer (lm_buf.l_name,
|
500 |
|
|
sizeof (lm_buf.l_name));
|
501 |
|
|
target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
|
502 |
|
|
&errcode);
|
503 |
|
|
|
504 |
|
|
if (solib_frv_debug)
|
505 |
|
|
fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
|
506 |
|
|
name_buf);
|
507 |
|
|
|
508 |
|
|
if (errcode != 0)
|
509 |
|
|
warning (_("Can't read pathname for link map entry: %s."),
|
510 |
|
|
safe_strerror (errcode));
|
511 |
|
|
else
|
512 |
|
|
{
|
513 |
|
|
strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
|
514 |
|
|
sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
|
515 |
|
|
xfree (name_buf);
|
516 |
|
|
strcpy (sop->so_original_name, sop->so_name);
|
517 |
|
|
}
|
518 |
|
|
|
519 |
|
|
*sos_next_ptr = sop;
|
520 |
|
|
sos_next_ptr = &sop->next;
|
521 |
|
|
}
|
522 |
|
|
else
|
523 |
|
|
{
|
524 |
|
|
main_lm_addr = lm_addr;
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
lm_addr = extract_unsigned_integer (lm_buf.l_next, sizeof (lm_buf.l_next));
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
enable_break2 ();
|
531 |
|
|
|
532 |
|
|
return sos_head;
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
|
536 |
|
|
/* Return 1 if PC lies in the dynamic symbol resolution code of the
|
537 |
|
|
run time loader. */
|
538 |
|
|
|
539 |
|
|
static CORE_ADDR interp_text_sect_low;
|
540 |
|
|
static CORE_ADDR interp_text_sect_high;
|
541 |
|
|
static CORE_ADDR interp_plt_sect_low;
|
542 |
|
|
static CORE_ADDR interp_plt_sect_high;
|
543 |
|
|
|
544 |
|
|
static int
|
545 |
|
|
frv_in_dynsym_resolve_code (CORE_ADDR pc)
|
546 |
|
|
{
|
547 |
|
|
return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
|
548 |
|
|
|| (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
|
549 |
|
|
|| in_plt_section (pc, NULL));
|
550 |
|
|
}
|
551 |
|
|
|
552 |
|
|
/* Given a loadmap and an address, return the displacement needed
|
553 |
|
|
to relocate the address. */
|
554 |
|
|
|
555 |
|
|
CORE_ADDR
|
556 |
|
|
displacement_from_map (struct int_elf32_fdpic_loadmap *map,
|
557 |
|
|
CORE_ADDR addr)
|
558 |
|
|
{
|
559 |
|
|
int seg;
|
560 |
|
|
|
561 |
|
|
for (seg = 0; seg < map->nsegs; seg++)
|
562 |
|
|
{
|
563 |
|
|
if (map->segs[seg].p_vaddr <= addr
|
564 |
|
|
&& addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
|
565 |
|
|
{
|
566 |
|
|
return map->segs[seg].addr - map->segs[seg].p_vaddr;
|
567 |
|
|
}
|
568 |
|
|
}
|
569 |
|
|
|
570 |
|
|
return 0;
|
571 |
|
|
}
|
572 |
|
|
|
573 |
|
|
/* Print a warning about being unable to set the dynamic linker
|
574 |
|
|
breakpoint. */
|
575 |
|
|
|
576 |
|
|
static void
|
577 |
|
|
enable_break_failure_warning (void)
|
578 |
|
|
{
|
579 |
|
|
warning (_("Unable to find dynamic linker breakpoint function.\n"
|
580 |
|
|
"GDB will be unable to debug shared library initializers\n"
|
581 |
|
|
"and track explicitly loaded dynamic code."));
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
/*
|
585 |
|
|
|
586 |
|
|
LOCAL FUNCTION
|
587 |
|
|
|
588 |
|
|
enable_break -- arrange for dynamic linker to hit breakpoint
|
589 |
|
|
|
590 |
|
|
SYNOPSIS
|
591 |
|
|
|
592 |
|
|
int enable_break (void)
|
593 |
|
|
|
594 |
|
|
DESCRIPTION
|
595 |
|
|
|
596 |
|
|
The dynamic linkers has, as part of its debugger interface, support
|
597 |
|
|
for arranging for the inferior to hit a breakpoint after mapping in
|
598 |
|
|
the shared libraries. This function enables that breakpoint.
|
599 |
|
|
|
600 |
|
|
On the FR-V, using the shared library (FDPIC) ABI, the symbol
|
601 |
|
|
_dl_debug_addr points to the r_debug struct which contains
|
602 |
|
|
a field called r_brk. r_brk is the address of the function
|
603 |
|
|
descriptor upon which a breakpoint must be placed. Being a
|
604 |
|
|
function descriptor, we must extract the entry point in order
|
605 |
|
|
to set the breakpoint.
|
606 |
|
|
|
607 |
|
|
Our strategy will be to get the .interp section from the
|
608 |
|
|
executable. This section will provide us with the name of the
|
609 |
|
|
interpreter. We'll open the interpreter and then look up
|
610 |
|
|
the address of _dl_debug_addr. We then relocate this address
|
611 |
|
|
using the interpreter's loadmap. Once the relocated address
|
612 |
|
|
is known, we fetch the value (address) corresponding to r_brk
|
613 |
|
|
and then use that value to fetch the entry point of the function
|
614 |
|
|
we're interested in.
|
615 |
|
|
|
616 |
|
|
*/
|
617 |
|
|
|
618 |
|
|
static int enable_break1_done = 0;
|
619 |
|
|
static int enable_break2_done = 0;
|
620 |
|
|
|
621 |
|
|
static int
|
622 |
|
|
enable_break2 (void)
|
623 |
|
|
{
|
624 |
|
|
int success = 0;
|
625 |
|
|
char **bkpt_namep;
|
626 |
|
|
asection *interp_sect;
|
627 |
|
|
|
628 |
|
|
if (!enable_break1_done || enable_break2_done)
|
629 |
|
|
return 1;
|
630 |
|
|
|
631 |
|
|
enable_break2_done = 1;
|
632 |
|
|
|
633 |
|
|
/* First, remove all the solib event breakpoints. Their addresses
|
634 |
|
|
may have changed since the last time we ran the program. */
|
635 |
|
|
remove_solib_event_breakpoints ();
|
636 |
|
|
|
637 |
|
|
interp_text_sect_low = interp_text_sect_high = 0;
|
638 |
|
|
interp_plt_sect_low = interp_plt_sect_high = 0;
|
639 |
|
|
|
640 |
|
|
/* Find the .interp section; if not found, warn the user and drop
|
641 |
|
|
into the old breakpoint at symbol code. */
|
642 |
|
|
interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
|
643 |
|
|
if (interp_sect)
|
644 |
|
|
{
|
645 |
|
|
unsigned int interp_sect_size;
|
646 |
|
|
gdb_byte *buf;
|
647 |
|
|
bfd *tmp_bfd = NULL;
|
648 |
|
|
int tmp_fd = -1;
|
649 |
|
|
char *tmp_pathname = NULL;
|
650 |
|
|
int status;
|
651 |
|
|
CORE_ADDR addr, interp_loadmap_addr;
|
652 |
|
|
gdb_byte addr_buf[FRV_PTR_SIZE];
|
653 |
|
|
struct int_elf32_fdpic_loadmap *ldm;
|
654 |
|
|
|
655 |
|
|
/* Read the contents of the .interp section into a local buffer;
|
656 |
|
|
the contents specify the dynamic linker this program uses. */
|
657 |
|
|
interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
|
658 |
|
|
buf = alloca (interp_sect_size);
|
659 |
|
|
bfd_get_section_contents (exec_bfd, interp_sect,
|
660 |
|
|
buf, 0, interp_sect_size);
|
661 |
|
|
|
662 |
|
|
/* Now we need to figure out where the dynamic linker was
|
663 |
|
|
loaded so that we can load its symbols and place a breakpoint
|
664 |
|
|
in the dynamic linker itself.
|
665 |
|
|
|
666 |
|
|
This address is stored on the stack. However, I've been unable
|
667 |
|
|
to find any magic formula to find it for Solaris (appears to
|
668 |
|
|
be trivial on GNU/Linux). Therefore, we have to try an alternate
|
669 |
|
|
mechanism to find the dynamic linker's base address. */
|
670 |
|
|
|
671 |
|
|
tmp_fd = solib_open (buf, &tmp_pathname);
|
672 |
|
|
if (tmp_fd >= 0)
|
673 |
|
|
tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
|
674 |
|
|
|
675 |
|
|
if (tmp_bfd == NULL)
|
676 |
|
|
{
|
677 |
|
|
enable_break_failure_warning ();
|
678 |
|
|
return 0;
|
679 |
|
|
}
|
680 |
|
|
|
681 |
|
|
/* Make sure the dynamic linker is really a useful object. */
|
682 |
|
|
if (!bfd_check_format (tmp_bfd, bfd_object))
|
683 |
|
|
{
|
684 |
|
|
warning (_("Unable to grok dynamic linker %s as an object file"), buf);
|
685 |
|
|
enable_break_failure_warning ();
|
686 |
|
|
bfd_close (tmp_bfd);
|
687 |
|
|
return 0;
|
688 |
|
|
}
|
689 |
|
|
|
690 |
|
|
status = frv_fdpic_loadmap_addresses (current_gdbarch,
|
691 |
|
|
&interp_loadmap_addr, 0);
|
692 |
|
|
if (status < 0)
|
693 |
|
|
{
|
694 |
|
|
warning (_("Unable to determine dynamic linker loadmap address."));
|
695 |
|
|
enable_break_failure_warning ();
|
696 |
|
|
bfd_close (tmp_bfd);
|
697 |
|
|
return 0;
|
698 |
|
|
}
|
699 |
|
|
|
700 |
|
|
if (solib_frv_debug)
|
701 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
702 |
|
|
"enable_break: interp_loadmap_addr = %s\n",
|
703 |
|
|
hex_string_custom (interp_loadmap_addr, 8));
|
704 |
|
|
|
705 |
|
|
ldm = fetch_loadmap (interp_loadmap_addr);
|
706 |
|
|
if (ldm == NULL)
|
707 |
|
|
{
|
708 |
|
|
warning (_("Unable to load dynamic linker loadmap at address %s."),
|
709 |
|
|
hex_string_custom (interp_loadmap_addr, 8));
|
710 |
|
|
enable_break_failure_warning ();
|
711 |
|
|
bfd_close (tmp_bfd);
|
712 |
|
|
return 0;
|
713 |
|
|
}
|
714 |
|
|
|
715 |
|
|
/* Record the relocated start and end address of the dynamic linker
|
716 |
|
|
text and plt section for svr4_in_dynsym_resolve_code. */
|
717 |
|
|
interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
|
718 |
|
|
if (interp_sect)
|
719 |
|
|
{
|
720 |
|
|
interp_text_sect_low
|
721 |
|
|
= bfd_section_vma (tmp_bfd, interp_sect);
|
722 |
|
|
interp_text_sect_low
|
723 |
|
|
+= displacement_from_map (ldm, interp_text_sect_low);
|
724 |
|
|
interp_text_sect_high
|
725 |
|
|
= interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
|
726 |
|
|
}
|
727 |
|
|
interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
|
728 |
|
|
if (interp_sect)
|
729 |
|
|
{
|
730 |
|
|
interp_plt_sect_low =
|
731 |
|
|
bfd_section_vma (tmp_bfd, interp_sect);
|
732 |
|
|
interp_plt_sect_low
|
733 |
|
|
+= displacement_from_map (ldm, interp_plt_sect_low);
|
734 |
|
|
interp_plt_sect_high =
|
735 |
|
|
interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
|
739 |
|
|
if (addr == 0)
|
740 |
|
|
{
|
741 |
|
|
warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
|
742 |
|
|
enable_break_failure_warning ();
|
743 |
|
|
bfd_close (tmp_bfd);
|
744 |
|
|
return 0;
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
if (solib_frv_debug)
|
748 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
749 |
|
|
"enable_break: _dl_debug_addr (prior to relocation) = %s\n",
|
750 |
|
|
hex_string_custom (addr, 8));
|
751 |
|
|
|
752 |
|
|
addr += displacement_from_map (ldm, addr);
|
753 |
|
|
|
754 |
|
|
if (solib_frv_debug)
|
755 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
756 |
|
|
"enable_break: _dl_debug_addr (after relocation) = %s\n",
|
757 |
|
|
hex_string_custom (addr, 8));
|
758 |
|
|
|
759 |
|
|
/* Fetch the address of the r_debug struct. */
|
760 |
|
|
if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
|
761 |
|
|
{
|
762 |
|
|
warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
|
763 |
|
|
hex_string_custom (addr, 8));
|
764 |
|
|
}
|
765 |
|
|
addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
|
766 |
|
|
|
767 |
|
|
/* Fetch the r_brk field. It's 8 bytes from the start of
|
768 |
|
|
_dl_debug_addr. */
|
769 |
|
|
if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
|
770 |
|
|
{
|
771 |
|
|
warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
|
772 |
|
|
hex_string_custom (addr + 8, 8));
|
773 |
|
|
enable_break_failure_warning ();
|
774 |
|
|
bfd_close (tmp_bfd);
|
775 |
|
|
return 0;
|
776 |
|
|
}
|
777 |
|
|
addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
|
778 |
|
|
|
779 |
|
|
/* Now fetch the function entry point. */
|
780 |
|
|
if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
|
781 |
|
|
{
|
782 |
|
|
warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
|
783 |
|
|
hex_string_custom (addr, 8));
|
784 |
|
|
enable_break_failure_warning ();
|
785 |
|
|
bfd_close (tmp_bfd);
|
786 |
|
|
return 0;
|
787 |
|
|
}
|
788 |
|
|
addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
|
789 |
|
|
|
790 |
|
|
/* We're done with the temporary bfd. */
|
791 |
|
|
bfd_close (tmp_bfd);
|
792 |
|
|
|
793 |
|
|
/* We're also done with the loadmap. */
|
794 |
|
|
xfree (ldm);
|
795 |
|
|
|
796 |
|
|
/* Now (finally!) create the solib breakpoint. */
|
797 |
|
|
create_solib_event_breakpoint (addr);
|
798 |
|
|
|
799 |
|
|
return 1;
|
800 |
|
|
}
|
801 |
|
|
|
802 |
|
|
/* Tell the user we couldn't set a dynamic linker breakpoint. */
|
803 |
|
|
enable_break_failure_warning ();
|
804 |
|
|
|
805 |
|
|
/* Failure return. */
|
806 |
|
|
return 0;
|
807 |
|
|
}
|
808 |
|
|
|
809 |
|
|
static int
|
810 |
|
|
enable_break (void)
|
811 |
|
|
{
|
812 |
|
|
asection *interp_sect;
|
813 |
|
|
|
814 |
|
|
/* Remove all the solib event breakpoints. Their addresses
|
815 |
|
|
may have changed since the last time we ran the program. */
|
816 |
|
|
remove_solib_event_breakpoints ();
|
817 |
|
|
|
818 |
|
|
/* Check for the presence of a .interp section. If there is no
|
819 |
|
|
such section, the executable is statically linked. */
|
820 |
|
|
|
821 |
|
|
interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
|
822 |
|
|
|
823 |
|
|
if (interp_sect)
|
824 |
|
|
{
|
825 |
|
|
enable_break1_done = 1;
|
826 |
|
|
create_solib_event_breakpoint (symfile_objfile->ei.entry_point);
|
827 |
|
|
|
828 |
|
|
if (solib_frv_debug)
|
829 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
830 |
|
|
"enable_break: solib event breakpoint placed at entry point: %s\n",
|
831 |
|
|
hex_string_custom
|
832 |
|
|
(symfile_objfile->ei.entry_point, 8));
|
833 |
|
|
}
|
834 |
|
|
else
|
835 |
|
|
{
|
836 |
|
|
if (solib_frv_debug)
|
837 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
838 |
|
|
"enable_break: No .interp section found.\n");
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
return 1;
|
842 |
|
|
}
|
843 |
|
|
|
844 |
|
|
/*
|
845 |
|
|
|
846 |
|
|
LOCAL FUNCTION
|
847 |
|
|
|
848 |
|
|
special_symbol_handling -- additional shared library symbol handling
|
849 |
|
|
|
850 |
|
|
SYNOPSIS
|
851 |
|
|
|
852 |
|
|
void special_symbol_handling ()
|
853 |
|
|
|
854 |
|
|
DESCRIPTION
|
855 |
|
|
|
856 |
|
|
Once the symbols from a shared object have been loaded in the usual
|
857 |
|
|
way, we are called to do any system specific symbol handling that
|
858 |
|
|
is needed.
|
859 |
|
|
|
860 |
|
|
*/
|
861 |
|
|
|
862 |
|
|
static void
|
863 |
|
|
frv_special_symbol_handling (void)
|
864 |
|
|
{
|
865 |
|
|
/* Nothing needed (yet) for FRV. */
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
static void
|
869 |
|
|
frv_relocate_main_executable (void)
|
870 |
|
|
{
|
871 |
|
|
int status;
|
872 |
|
|
CORE_ADDR exec_addr;
|
873 |
|
|
struct int_elf32_fdpic_loadmap *ldm;
|
874 |
|
|
struct cleanup *old_chain;
|
875 |
|
|
struct section_offsets *new_offsets;
|
876 |
|
|
int changed;
|
877 |
|
|
struct obj_section *osect;
|
878 |
|
|
|
879 |
|
|
status = frv_fdpic_loadmap_addresses (current_gdbarch, 0, &exec_addr);
|
880 |
|
|
|
881 |
|
|
if (status < 0)
|
882 |
|
|
{
|
883 |
|
|
/* Not using FDPIC ABI, so do nothing. */
|
884 |
|
|
return;
|
885 |
|
|
}
|
886 |
|
|
|
887 |
|
|
/* Fetch the loadmap located at ``exec_addr''. */
|
888 |
|
|
ldm = fetch_loadmap (exec_addr);
|
889 |
|
|
if (ldm == NULL)
|
890 |
|
|
error (_("Unable to load the executable's loadmap."));
|
891 |
|
|
|
892 |
|
|
if (main_executable_lm_info)
|
893 |
|
|
xfree (main_executable_lm_info);
|
894 |
|
|
main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
|
895 |
|
|
main_executable_lm_info->map = ldm;
|
896 |
|
|
|
897 |
|
|
new_offsets = xcalloc (symfile_objfile->num_sections,
|
898 |
|
|
sizeof (struct section_offsets));
|
899 |
|
|
old_chain = make_cleanup (xfree, new_offsets);
|
900 |
|
|
changed = 0;
|
901 |
|
|
|
902 |
|
|
ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
|
903 |
|
|
{
|
904 |
|
|
CORE_ADDR orig_addr, addr, offset;
|
905 |
|
|
int osect_idx;
|
906 |
|
|
int seg;
|
907 |
|
|
|
908 |
|
|
osect_idx = osect->the_bfd_section->index;
|
909 |
|
|
|
910 |
|
|
/* Current address of section. */
|
911 |
|
|
addr = osect->addr;
|
912 |
|
|
/* Offset from where this section started. */
|
913 |
|
|
offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
|
914 |
|
|
/* Original address prior to any past relocations. */
|
915 |
|
|
orig_addr = addr - offset;
|
916 |
|
|
|
917 |
|
|
for (seg = 0; seg < ldm->nsegs; seg++)
|
918 |
|
|
{
|
919 |
|
|
if (ldm->segs[seg].p_vaddr <= orig_addr
|
920 |
|
|
&& orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
|
921 |
|
|
{
|
922 |
|
|
new_offsets->offsets[osect_idx]
|
923 |
|
|
= ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
|
924 |
|
|
|
925 |
|
|
if (new_offsets->offsets[osect_idx] != offset)
|
926 |
|
|
changed = 1;
|
927 |
|
|
break;
|
928 |
|
|
}
|
929 |
|
|
}
|
930 |
|
|
}
|
931 |
|
|
|
932 |
|
|
if (changed)
|
933 |
|
|
objfile_relocate (symfile_objfile, new_offsets);
|
934 |
|
|
|
935 |
|
|
do_cleanups (old_chain);
|
936 |
|
|
|
937 |
|
|
/* Now that symfile_objfile has been relocated, we can compute the
|
938 |
|
|
GOT value and stash it away. */
|
939 |
|
|
main_executable_lm_info->got_value = main_got ();
|
940 |
|
|
}
|
941 |
|
|
|
942 |
|
|
/*
|
943 |
|
|
|
944 |
|
|
GLOBAL FUNCTION
|
945 |
|
|
|
946 |
|
|
frv_solib_create_inferior_hook -- shared library startup support
|
947 |
|
|
|
948 |
|
|
SYNOPSIS
|
949 |
|
|
|
950 |
|
|
void frv_solib_create_inferior_hook ()
|
951 |
|
|
|
952 |
|
|
DESCRIPTION
|
953 |
|
|
|
954 |
|
|
When gdb starts up the inferior, it nurses it along (through the
|
955 |
|
|
shell) until it is ready to execute it's first instruction. At this
|
956 |
|
|
point, this function gets called via expansion of the macro
|
957 |
|
|
SOLIB_CREATE_INFERIOR_HOOK.
|
958 |
|
|
|
959 |
|
|
For the FR-V shared library ABI (FDPIC), the main executable
|
960 |
|
|
needs to be relocated. The shared library breakpoints also need
|
961 |
|
|
to be enabled.
|
962 |
|
|
*/
|
963 |
|
|
|
964 |
|
|
static void
|
965 |
|
|
frv_solib_create_inferior_hook (void)
|
966 |
|
|
{
|
967 |
|
|
/* Relocate main executable. */
|
968 |
|
|
frv_relocate_main_executable ();
|
969 |
|
|
|
970 |
|
|
/* Enable shared library breakpoints. */
|
971 |
|
|
if (!enable_break ())
|
972 |
|
|
{
|
973 |
|
|
warning (_("shared library handler failed to enable breakpoint"));
|
974 |
|
|
return;
|
975 |
|
|
}
|
976 |
|
|
}
|
977 |
|
|
|
978 |
|
|
static void
|
979 |
|
|
frv_clear_solib (void)
|
980 |
|
|
{
|
981 |
|
|
lm_base_cache = 0;
|
982 |
|
|
enable_break1_done = 0;
|
983 |
|
|
enable_break2_done = 0;
|
984 |
|
|
main_lm_addr = 0;
|
985 |
|
|
if (main_executable_lm_info != 0)
|
986 |
|
|
{
|
987 |
|
|
xfree (main_executable_lm_info->map);
|
988 |
|
|
xfree (main_executable_lm_info->dyn_syms);
|
989 |
|
|
xfree (main_executable_lm_info->dyn_relocs);
|
990 |
|
|
xfree (main_executable_lm_info);
|
991 |
|
|
main_executable_lm_info = 0;
|
992 |
|
|
}
|
993 |
|
|
}
|
994 |
|
|
|
995 |
|
|
static void
|
996 |
|
|
frv_free_so (struct so_list *so)
|
997 |
|
|
{
|
998 |
|
|
xfree (so->lm_info->map);
|
999 |
|
|
xfree (so->lm_info->dyn_syms);
|
1000 |
|
|
xfree (so->lm_info->dyn_relocs);
|
1001 |
|
|
xfree (so->lm_info);
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
|
|
static void
|
1005 |
|
|
frv_relocate_section_addresses (struct so_list *so,
|
1006 |
|
|
struct section_table *sec)
|
1007 |
|
|
{
|
1008 |
|
|
int seg;
|
1009 |
|
|
struct int_elf32_fdpic_loadmap *map;
|
1010 |
|
|
|
1011 |
|
|
map = so->lm_info->map;
|
1012 |
|
|
|
1013 |
|
|
for (seg = 0; seg < map->nsegs; seg++)
|
1014 |
|
|
{
|
1015 |
|
|
if (map->segs[seg].p_vaddr <= sec->addr
|
1016 |
|
|
&& sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
|
1017 |
|
|
{
|
1018 |
|
|
CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
|
1019 |
|
|
sec->addr += displ;
|
1020 |
|
|
sec->endaddr += displ;
|
1021 |
|
|
break;
|
1022 |
|
|
}
|
1023 |
|
|
}
|
1024 |
|
|
}
|
1025 |
|
|
|
1026 |
|
|
/* Return the GOT address associated with the main executable. Return
|
1027 |
|
|
|
1028 |
|
|
|
1029 |
|
|
static CORE_ADDR
|
1030 |
|
|
main_got (void)
|
1031 |
|
|
{
|
1032 |
|
|
struct minimal_symbol *got_sym;
|
1033 |
|
|
|
1034 |
|
|
got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
|
1035 |
|
|
if (got_sym == 0)
|
1036 |
|
|
return 0;
|
1037 |
|
|
|
1038 |
|
|
return SYMBOL_VALUE_ADDRESS (got_sym);
|
1039 |
|
|
}
|
1040 |
|
|
|
1041 |
|
|
/* Find the global pointer for the given function address ADDR. */
|
1042 |
|
|
|
1043 |
|
|
CORE_ADDR
|
1044 |
|
|
frv_fdpic_find_global_pointer (CORE_ADDR addr)
|
1045 |
|
|
{
|
1046 |
|
|
struct so_list *so;
|
1047 |
|
|
|
1048 |
|
|
so = master_so_list ();
|
1049 |
|
|
while (so)
|
1050 |
|
|
{
|
1051 |
|
|
int seg;
|
1052 |
|
|
struct int_elf32_fdpic_loadmap *map;
|
1053 |
|
|
|
1054 |
|
|
map = so->lm_info->map;
|
1055 |
|
|
|
1056 |
|
|
for (seg = 0; seg < map->nsegs; seg++)
|
1057 |
|
|
{
|
1058 |
|
|
if (map->segs[seg].addr <= addr
|
1059 |
|
|
&& addr < map->segs[seg].addr + map->segs[seg].p_memsz)
|
1060 |
|
|
return so->lm_info->got_value;
|
1061 |
|
|
}
|
1062 |
|
|
|
1063 |
|
|
so = so->next;
|
1064 |
|
|
}
|
1065 |
|
|
|
1066 |
|
|
/* Didn't find it it any of the shared objects. So assume it's in the
|
1067 |
|
|
main executable. */
|
1068 |
|
|
return main_got ();
|
1069 |
|
|
}
|
1070 |
|
|
|
1071 |
|
|
/* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
|
1072 |
|
|
static CORE_ADDR find_canonical_descriptor_in_load_object
|
1073 |
|
|
(CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
|
1074 |
|
|
|
1075 |
|
|
/* Given a function entry point, attempt to find the canonical descriptor
|
1076 |
|
|
associated with that entry point. Return 0 if no canonical descriptor
|
1077 |
|
|
could be found. */
|
1078 |
|
|
|
1079 |
|
|
CORE_ADDR
|
1080 |
|
|
frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
|
1081 |
|
|
{
|
1082 |
|
|
char *name;
|
1083 |
|
|
CORE_ADDR addr;
|
1084 |
|
|
CORE_ADDR got_value;
|
1085 |
|
|
struct int_elf32_fdpic_loadmap *ldm = 0;
|
1086 |
|
|
struct symbol *sym;
|
1087 |
|
|
int status;
|
1088 |
|
|
CORE_ADDR exec_loadmap_addr;
|
1089 |
|
|
|
1090 |
|
|
/* Fetch the corresponding global pointer for the entry point. */
|
1091 |
|
|
got_value = frv_fdpic_find_global_pointer (entry_point);
|
1092 |
|
|
|
1093 |
|
|
/* Attempt to find the name of the function. If the name is available,
|
1094 |
|
|
it'll be used as an aid in finding matching functions in the dynamic
|
1095 |
|
|
symbol table. */
|
1096 |
|
|
sym = find_pc_function (entry_point);
|
1097 |
|
|
if (sym == 0)
|
1098 |
|
|
name = 0;
|
1099 |
|
|
else
|
1100 |
|
|
name = SYMBOL_LINKAGE_NAME (sym);
|
1101 |
|
|
|
1102 |
|
|
/* Check the main executable. */
|
1103 |
|
|
addr = find_canonical_descriptor_in_load_object
|
1104 |
|
|
(entry_point, got_value, name, symfile_objfile->obfd,
|
1105 |
|
|
main_executable_lm_info);
|
1106 |
|
|
|
1107 |
|
|
/* If descriptor not found via main executable, check each load object
|
1108 |
|
|
in list of shared objects. */
|
1109 |
|
|
if (addr == 0)
|
1110 |
|
|
{
|
1111 |
|
|
struct so_list *so;
|
1112 |
|
|
|
1113 |
|
|
so = master_so_list ();
|
1114 |
|
|
while (so)
|
1115 |
|
|
{
|
1116 |
|
|
addr = find_canonical_descriptor_in_load_object
|
1117 |
|
|
(entry_point, got_value, name, so->abfd, so->lm_info);
|
1118 |
|
|
|
1119 |
|
|
if (addr != 0)
|
1120 |
|
|
break;
|
1121 |
|
|
|
1122 |
|
|
so = so->next;
|
1123 |
|
|
}
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
return addr;
|
1127 |
|
|
}
|
1128 |
|
|
|
1129 |
|
|
static CORE_ADDR
|
1130 |
|
|
find_canonical_descriptor_in_load_object
|
1131 |
|
|
(CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
|
1132 |
|
|
struct lm_info *lm)
|
1133 |
|
|
{
|
1134 |
|
|
arelent *rel;
|
1135 |
|
|
unsigned int i;
|
1136 |
|
|
CORE_ADDR addr = 0;
|
1137 |
|
|
|
1138 |
|
|
/* Nothing to do if no bfd. */
|
1139 |
|
|
if (abfd == 0)
|
1140 |
|
|
return 0;
|
1141 |
|
|
|
1142 |
|
|
/* Nothing to do if no link map. */
|
1143 |
|
|
if (lm == 0)
|
1144 |
|
|
return 0;
|
1145 |
|
|
|
1146 |
|
|
/* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
|
1147 |
|
|
(More about this later.) But in order to fetch the relocs, we
|
1148 |
|
|
need to first fetch the dynamic symbols. These symbols need to
|
1149 |
|
|
be cached due to the way that bfd_canonicalize_dynamic_reloc()
|
1150 |
|
|
works. (See the comments in the declaration of struct lm_info
|
1151 |
|
|
for more information.) */
|
1152 |
|
|
if (lm->dyn_syms == NULL)
|
1153 |
|
|
{
|
1154 |
|
|
long storage_needed;
|
1155 |
|
|
unsigned int number_of_symbols;
|
1156 |
|
|
|
1157 |
|
|
/* Determine amount of space needed to hold the dynamic symbol table. */
|
1158 |
|
|
storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
|
1159 |
|
|
|
1160 |
|
|
/* If there are no dynamic symbols, there's nothing to do. */
|
1161 |
|
|
if (storage_needed <= 0)
|
1162 |
|
|
return 0;
|
1163 |
|
|
|
1164 |
|
|
/* Allocate space for the dynamic symbol table. */
|
1165 |
|
|
lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
|
1166 |
|
|
|
1167 |
|
|
/* Fetch the dynamic symbol table. */
|
1168 |
|
|
number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
|
1169 |
|
|
|
1170 |
|
|
if (number_of_symbols == 0)
|
1171 |
|
|
return 0;
|
1172 |
|
|
}
|
1173 |
|
|
|
1174 |
|
|
/* Fetch the dynamic relocations if not already cached. */
|
1175 |
|
|
if (lm->dyn_relocs == NULL)
|
1176 |
|
|
{
|
1177 |
|
|
long storage_needed;
|
1178 |
|
|
|
1179 |
|
|
/* Determine amount of space needed to hold the dynamic relocs. */
|
1180 |
|
|
storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
|
1181 |
|
|
|
1182 |
|
|
/* Bail out if there are no dynamic relocs. */
|
1183 |
|
|
if (storage_needed <= 0)
|
1184 |
|
|
return 0;
|
1185 |
|
|
|
1186 |
|
|
/* Allocate space for the relocs. */
|
1187 |
|
|
lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
|
1188 |
|
|
|
1189 |
|
|
/* Fetch the dynamic relocs. */
|
1190 |
|
|
lm->dyn_reloc_count
|
1191 |
|
|
= bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
|
1192 |
|
|
}
|
1193 |
|
|
|
1194 |
|
|
/* Search the dynamic relocs. */
|
1195 |
|
|
for (i = 0; i < lm->dyn_reloc_count; i++)
|
1196 |
|
|
{
|
1197 |
|
|
rel = lm->dyn_relocs[i];
|
1198 |
|
|
|
1199 |
|
|
/* Relocs of interest are those which meet the following
|
1200 |
|
|
criteria:
|
1201 |
|
|
|
1202 |
|
|
- the names match (assuming the caller could provide
|
1203 |
|
|
a name which matches ``entry_point'').
|
1204 |
|
|
- the relocation type must be R_FRV_FUNCDESC. Relocs
|
1205 |
|
|
of this type are used (by the dynamic linker) to
|
1206 |
|
|
look up the address of a canonical descriptor (allocating
|
1207 |
|
|
it if need be) and initializing the GOT entry referred
|
1208 |
|
|
to by the offset to the address of the descriptor.
|
1209 |
|
|
|
1210 |
|
|
These relocs of interest may be used to obtain a
|
1211 |
|
|
candidate descriptor by first adjusting the reloc's
|
1212 |
|
|
address according to the link map and then dereferencing
|
1213 |
|
|
this address (which is a GOT entry) to obtain a descriptor
|
1214 |
|
|
address. */
|
1215 |
|
|
if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
|
1216 |
|
|
&& rel->howto->type == R_FRV_FUNCDESC)
|
1217 |
|
|
{
|
1218 |
|
|
gdb_byte buf [FRV_PTR_SIZE];
|
1219 |
|
|
|
1220 |
|
|
/* Compute address of address of candidate descriptor. */
|
1221 |
|
|
addr = rel->address + displacement_from_map (lm->map, rel->address);
|
1222 |
|
|
|
1223 |
|
|
/* Fetch address of candidate descriptor. */
|
1224 |
|
|
if (target_read_memory (addr, buf, sizeof buf) != 0)
|
1225 |
|
|
continue;
|
1226 |
|
|
addr = extract_unsigned_integer (buf, sizeof buf);
|
1227 |
|
|
|
1228 |
|
|
/* Check for matching entry point. */
|
1229 |
|
|
if (target_read_memory (addr, buf, sizeof buf) != 0)
|
1230 |
|
|
continue;
|
1231 |
|
|
if (extract_unsigned_integer (buf, sizeof buf) != entry_point)
|
1232 |
|
|
continue;
|
1233 |
|
|
|
1234 |
|
|
/* Check for matching got value. */
|
1235 |
|
|
if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
|
1236 |
|
|
continue;
|
1237 |
|
|
if (extract_unsigned_integer (buf, sizeof buf) != got_value)
|
1238 |
|
|
continue;
|
1239 |
|
|
|
1240 |
|
|
/* Match was successful! Exit loop. */
|
1241 |
|
|
break;
|
1242 |
|
|
}
|
1243 |
|
|
}
|
1244 |
|
|
|
1245 |
|
|
return addr;
|
1246 |
|
|
}
|
1247 |
|
|
|
1248 |
|
|
/* Given an objfile, return the address of its link map. This value is
|
1249 |
|
|
needed for TLS support. */
|
1250 |
|
|
CORE_ADDR
|
1251 |
|
|
frv_fetch_objfile_link_map (struct objfile *objfile)
|
1252 |
|
|
{
|
1253 |
|
|
struct so_list *so;
|
1254 |
|
|
|
1255 |
|
|
/* Cause frv_current_sos() to be run if it hasn't been already. */
|
1256 |
|
|
if (main_lm_addr == 0)
|
1257 |
|
|
solib_add (0, 0, 0, 1);
|
1258 |
|
|
|
1259 |
|
|
/* frv_current_sos() will set main_lm_addr for the main executable. */
|
1260 |
|
|
if (objfile == symfile_objfile)
|
1261 |
|
|
return main_lm_addr;
|
1262 |
|
|
|
1263 |
|
|
/* The other link map addresses may be found by examining the list
|
1264 |
|
|
of shared libraries. */
|
1265 |
|
|
for (so = master_so_list (); so; so = so->next)
|
1266 |
|
|
{
|
1267 |
|
|
if (so->objfile == objfile)
|
1268 |
|
|
return so->lm_info->lm_addr;
|
1269 |
|
|
}
|
1270 |
|
|
|
1271 |
|
|
/* Not found! */
|
1272 |
|
|
return 0;
|
1273 |
|
|
}
|
1274 |
|
|
|
1275 |
|
|
struct target_so_ops frv_so_ops;
|
1276 |
|
|
|
1277 |
|
|
void
|
1278 |
|
|
_initialize_frv_solib (void)
|
1279 |
|
|
{
|
1280 |
|
|
frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
|
1281 |
|
|
frv_so_ops.free_so = frv_free_so;
|
1282 |
|
|
frv_so_ops.clear_solib = frv_clear_solib;
|
1283 |
|
|
frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
|
1284 |
|
|
frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
|
1285 |
|
|
frv_so_ops.current_sos = frv_current_sos;
|
1286 |
|
|
frv_so_ops.open_symbol_file_object = open_symbol_file_object;
|
1287 |
|
|
frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
|
1288 |
|
|
|
1289 |
|
|
/* Debug this file's internals. */
|
1290 |
|
|
add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
|
1291 |
|
|
&solib_frv_debug, _("\
|
1292 |
|
|
Set internal debugging of shared library code for FR-V."), _("\
|
1293 |
|
|
Show internal debugging of shared library code for FR-V."), _("\
|
1294 |
|
|
When non-zero, FR-V solib specific internal debugging is enabled."),
|
1295 |
|
|
NULL,
|
1296 |
|
|
NULL, /* FIXME: i18n: */
|
1297 |
|
|
&setdebuglist, &showdebuglist);
|
1298 |
|
|
}
|