OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [gdb/] [solib-irix.c] - Blame information for rev 157

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 24 jeremybenn
/* Shared library support for IRIX.
2
   Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004,
3
   2007, 2008 Free Software Foundation, Inc.
4
 
5
   This file was created using portions of irix5-nat.c originally
6
   contributed to GDB by Ian Lance Taylor.
7
 
8
   This file is part of GDB.
9
 
10
   This program is free software; you can redistribute it and/or modify
11
   it under the terms of the GNU General Public License as published by
12
   the Free Software Foundation; either version 3 of the License, or
13
   (at your option) any later version.
14
 
15
   This program is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
   GNU General Public License for more details.
19
 
20
   You should have received a copy of the GNU General Public License
21
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
 
23
#include "defs.h"
24
 
25
#include "symtab.h"
26
#include "bfd.h"
27
/* FIXME: ezannoni/2004-02-13 Verify that the include below is
28
   really needed.  */
29
#include "symfile.h"
30
#include "objfiles.h"
31
#include "gdbcore.h"
32
#include "target.h"
33
#include "inferior.h"
34
 
35
#include "solist.h"
36
#include "solib.h"
37
#include "solib-irix.h"
38
 
39
 
40
/* Link map info to include in an allocate so_list entry.  Unlike some
41
   of the other solib backends, this (Irix) backend chooses to decode
42
   the link map info obtained from the target and store it as (mostly)
43
   CORE_ADDRs which need no further decoding.  This is more convenient
44
   because there are three different link map formats to worry about.
45
   We use a single routine (fetch_lm_info) to read (and decode) the target
46
   specific link map data.  */
47
 
48
struct lm_info
49
{
50
  CORE_ADDR addr;               /* address of obj_info or obj_list
51
                                   struct on target (from which the
52
                                   following information is obtained).  */
53
  CORE_ADDR next;               /* address of next item in list.  */
54
  CORE_ADDR reloc_offset;       /* amount to relocate by  */
55
  CORE_ADDR pathname_addr;      /* address of pathname  */
56
  int pathname_len;             /* length of pathname */
57
};
58
 
59
/* It's not desirable to use the system header files to obtain the
60
   structure of the obj_list or obj_info structs.  Therefore, we use a
61
   platform neutral representation which has been derived from the IRIX
62
   header files.  */
63
 
64
typedef struct
65
{
66
  gdb_byte b[4];
67
}
68
gdb_int32_bytes;
69
typedef struct
70
{
71
  gdb_byte b[8];
72
}
73
gdb_int64_bytes;
74
 
75
/* The "old" obj_list struct.  This is used with old (o32) binaries.
76
   The ``data'' member points at a much larger and more complicated
77
   struct which we will only refer to by offsets.  See
78
   fetch_lm_info().  */
79
 
80
struct irix_obj_list
81
{
82
  gdb_int32_bytes data;
83
  gdb_int32_bytes next;
84
  gdb_int32_bytes prev;
85
};
86
 
87
/* The ELF32 and ELF64 versions of the above struct.  The oi_magic value
88
   corresponds to the ``data'' value in the "old" struct.  When this value
89
   is 0xffffffff, the data will be in one of the following formats.  The
90
   ``oi_size'' field is used to decide which one we actually have.  */
91
 
92
struct irix_elf32_obj_info
93
{
94
  gdb_int32_bytes oi_magic;
95
  gdb_int32_bytes oi_size;
96
  gdb_int32_bytes oi_next;
97
  gdb_int32_bytes oi_prev;
98
  gdb_int32_bytes oi_ehdr;
99
  gdb_int32_bytes oi_orig_ehdr;
100
  gdb_int32_bytes oi_pathname;
101
  gdb_int32_bytes oi_pathname_len;
102
};
103
 
104
struct irix_elf64_obj_info
105
{
106
  gdb_int32_bytes oi_magic;
107
  gdb_int32_bytes oi_size;
108
  gdb_int64_bytes oi_next;
109
  gdb_int64_bytes oi_prev;
110
  gdb_int64_bytes oi_ehdr;
111
  gdb_int64_bytes oi_orig_ehdr;
112
  gdb_int64_bytes oi_pathname;
113
  gdb_int32_bytes oi_pathname_len;
114
  gdb_int32_bytes padding;
115
};
116
 
117
/* Union of all of the above (plus a split out magic field).  */
118
 
119
union irix_obj_info
120
{
121
  gdb_int32_bytes magic;
122
  struct irix_obj_list ol32;
123
  struct irix_elf32_obj_info oi32;
124
  struct irix_elf64_obj_info oi64;
125
};
126
 
127
/* MIPS sign extends its 32 bit addresses.  We could conceivably use
128
   extract_typed_address here, but to do so, we'd have to construct an
129
   appropriate type.  Calling extract_signed_integer seems simpler.  */
130
 
131
static CORE_ADDR
132
extract_mips_address (void *addr, int len)
133
{
134
  return extract_signed_integer (addr, len);
135
}
136
 
137
/* Fetch and return the link map data associated with ADDR.  Note that
138
   this routine automatically determines which (of three) link map
139
   formats is in use by the target.  */
140
 
141
struct lm_info
142
fetch_lm_info (CORE_ADDR addr)
143
{
144
  struct lm_info li;
145
  union irix_obj_info buf;
146
 
147
  li.addr = addr;
148
 
149
  /* The smallest region that we'll need is for buf.ol32.  We'll read
150
     that first.  We'll read more of the buffer later if we have to deal
151
     with one of the other cases.  (We don't want to incur a memory error
152
     if we were to read a larger region that generates an error due to
153
     being at the end of a page or the like.)  */
154
  read_memory (addr, (char *) &buf, sizeof (buf.ol32));
155
 
156
  if (extract_unsigned_integer (buf.magic.b, sizeof (buf.magic)) != 0xffffffff)
157
    {
158
      /* Use buf.ol32... */
159
      char obj_buf[432];
160
      CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
161
                                                 sizeof (buf.ol32.data));
162
      li.next = extract_mips_address (&buf.ol32.next, sizeof (buf.ol32.next));
163
 
164
      read_memory (obj_addr, obj_buf, sizeof (obj_buf));
165
 
166
      li.pathname_addr = extract_mips_address (&obj_buf[236], 4);
167
      li.pathname_len = 0;       /* unknown */
168
      li.reloc_offset = extract_mips_address (&obj_buf[196], 4)
169
        - extract_mips_address (&obj_buf[248], 4);
170
 
171
    }
172
  else if (extract_unsigned_integer (buf.oi32.oi_size.b,
173
                                     sizeof (buf.oi32.oi_size))
174
           == sizeof (buf.oi32))
175
    {
176
      /* Use buf.oi32...  */
177
 
178
      /* Read rest of buffer.  */
179
      read_memory (addr + sizeof (buf.ol32),
180
                   ((char *) &buf) + sizeof (buf.ol32),
181
                   sizeof (buf.oi32) - sizeof (buf.ol32));
182
 
183
      /* Fill in fields using buffer contents.  */
184
      li.next = extract_mips_address (&buf.oi32.oi_next,
185
                                      sizeof (buf.oi32.oi_next));
186
      li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
187
                                              sizeof (buf.oi32.oi_ehdr))
188
        - extract_mips_address (&buf.oi32.oi_orig_ehdr,
189
                                sizeof (buf.oi32.oi_orig_ehdr));
190
      li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
191
                                               sizeof (buf.oi32.oi_pathname));
192
      li.pathname_len = extract_unsigned_integer (buf.oi32.oi_pathname_len.b,
193
                                                  sizeof (buf.oi32.
194
                                                          oi_pathname_len));
195
    }
196
  else if (extract_unsigned_integer (buf.oi64.oi_size.b,
197
                                     sizeof (buf.oi64.oi_size))
198
           == sizeof (buf.oi64))
199
    {
200
      /* Use buf.oi64...  */
201
 
202
      /* Read rest of buffer.  */
203
      read_memory (addr + sizeof (buf.ol32),
204
                   ((char *) &buf) + sizeof (buf.ol32),
205
                   sizeof (buf.oi64) - sizeof (buf.ol32));
206
 
207
      /* Fill in fields using buffer contents.  */
208
      li.next = extract_mips_address (&buf.oi64.oi_next,
209
                                      sizeof (buf.oi64.oi_next));
210
      li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
211
                                              sizeof (buf.oi64.oi_ehdr))
212
        - extract_mips_address (&buf.oi64.oi_orig_ehdr,
213
                                sizeof (buf.oi64.oi_orig_ehdr));
214
      li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
215
                                               sizeof (buf.oi64.oi_pathname));
216
      li.pathname_len = extract_unsigned_integer (buf.oi64.oi_pathname_len.b,
217
                                                  sizeof (buf.oi64.
218
                                                          oi_pathname_len));
219
    }
220
  else
221
    {
222
      error (_("Unable to fetch shared library obj_info or obj_list info."));
223
    }
224
 
225
  return li;
226
}
227
 
228
/* The symbol which starts off the list of shared libraries.  */
229
#define DEBUG_BASE "__rld_obj_head"
230
 
231
static void *base_breakpoint;
232
 
233
static CORE_ADDR debug_base;    /* Base of dynamic linker structures */
234
 
235
/*
236
 
237
   LOCAL FUNCTION
238
 
239
   locate_base -- locate the base address of dynamic linker structs
240
 
241
   SYNOPSIS
242
 
243
   CORE_ADDR locate_base (void)
244
 
245
   DESCRIPTION
246
 
247
   For both the SunOS and SVR4 shared library implementations, if the
248
   inferior executable has been linked dynamically, there is a single
249
   address somewhere in the inferior's data space which is the key to
250
   locating all of the dynamic linker's runtime structures.  This
251
   address is the value of the symbol defined by the macro DEBUG_BASE.
252
   The job of this function is to find and return that address, or to
253
   return 0 if there is no such address (the executable is statically
254
   linked for example).
255
 
256
   For SunOS, the job is almost trivial, since the dynamic linker and
257
   all of it's structures are statically linked to the executable at
258
   link time.  Thus the symbol for the address we are looking for has
259
   already been added to the minimal symbol table for the executable's
260
   objfile at the time the symbol file's symbols were read, and all we
261
   have to do is look it up there.  Note that we explicitly do NOT want
262
   to find the copies in the shared library.
263
 
264
   The SVR4 version is much more complicated because the dynamic linker
265
   and it's structures are located in the shared C library, which gets
266
   run as the executable's "interpreter" by the kernel.  We have to go
267
   to a lot more work to discover the address of DEBUG_BASE.  Because
268
   of this complexity, we cache the value we find and return that value
269
   on subsequent invocations.  Note there is no copy in the executable
270
   symbol tables.
271
 
272
   Irix 5 is basically like SunOS.
273
 
274
   Note that we can assume nothing about the process state at the time
275
   we need to find this address.  We may be stopped on the first instruc-
276
   tion of the interpreter (C shared library), the first instruction of
277
   the executable itself, or somewhere else entirely (if we attached
278
   to the process for example).
279
 
280
 */
281
 
282
static CORE_ADDR
283
locate_base (void)
284
{
285
  struct minimal_symbol *msymbol;
286
  CORE_ADDR address = 0;
287
 
288
  msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
289
  if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
290
    {
291
      address = SYMBOL_VALUE_ADDRESS (msymbol);
292
    }
293
  return (address);
294
}
295
 
296
/*
297
 
298
   LOCAL FUNCTION
299
 
300
   disable_break -- remove the "mapping changed" breakpoint
301
 
302
   SYNOPSIS
303
 
304
   static int disable_break ()
305
 
306
   DESCRIPTION
307
 
308
   Removes the breakpoint that gets hit when the dynamic linker
309
   completes a mapping change.
310
 
311
 */
312
 
313
static int
314
disable_break (void)
315
{
316
  int status = 1;
317
 
318
 
319
  /* Note that breakpoint address and original contents are in our address
320
     space, so we just need to write the original contents back. */
321
 
322
  if (deprecated_remove_raw_breakpoint (base_breakpoint) != 0)
323
    {
324
      status = 0;
325
    }
326
 
327
  base_breakpoint = NULL;
328
 
329
  /* Note that it is possible that we have stopped at a location that
330
     is different from the location where we inserted our breakpoint.
331
     On mips-irix, we can actually land in __dbx_init(), so we should
332
     not check the PC against our breakpoint address here.  See procfs.c
333
     for more details.  */
334
 
335
  return (status);
336
}
337
 
338
/*
339
 
340
   LOCAL FUNCTION
341
 
342
   enable_break -- arrange for dynamic linker to hit breakpoint
343
 
344
   SYNOPSIS
345
 
346
   int enable_break (void)
347
 
348
   DESCRIPTION
349
 
350
   This functions inserts a breakpoint at the entry point of the
351
   main executable, where all shared libraries are mapped in.
352
 */
353
 
354
static int
355
enable_break (void)
356
{
357
  if (symfile_objfile != NULL)
358
    {
359
      base_breakpoint
360
        = deprecated_insert_raw_breakpoint (entry_point_address ());
361
 
362
      if (base_breakpoint != NULL)
363
        return 1;
364
    }
365
 
366
  return 0;
367
}
368
 
369
/*
370
 
371
   LOCAL FUNCTION
372
 
373
   irix_solib_create_inferior_hook -- shared library startup support
374
 
375
   SYNOPSIS
376
 
377
   void solib_create_inferior_hook ()
378
 
379
   DESCRIPTION
380
 
381
   When gdb starts up the inferior, it nurses it along (through the
382
   shell) until it is ready to execute it's first instruction.  At this
383
   point, this function gets called via expansion of the macro
384
   SOLIB_CREATE_INFERIOR_HOOK.
385
 
386
   For SunOS executables, this first instruction is typically the
387
   one at "_start", or a similar text label, regardless of whether
388
   the executable is statically or dynamically linked.  The runtime
389
   startup code takes care of dynamically linking in any shared
390
   libraries, once gdb allows the inferior to continue.
391
 
392
   For SVR4 executables, this first instruction is either the first
393
   instruction in the dynamic linker (for dynamically linked
394
   executables) or the instruction at "start" for statically linked
395
   executables.  For dynamically linked executables, the system
396
   first exec's /lib/libc.so.N, which contains the dynamic linker,
397
   and starts it running.  The dynamic linker maps in any needed
398
   shared libraries, maps in the actual user executable, and then
399
   jumps to "start" in the user executable.
400
 
401
   For both SunOS shared libraries, and SVR4 shared libraries, we
402
   can arrange to cooperate with the dynamic linker to discover the
403
   names of shared libraries that are dynamically linked, and the
404
   base addresses to which they are linked.
405
 
406
   This function is responsible for discovering those names and
407
   addresses, and saving sufficient information about them to allow
408
   their symbols to be read at a later time.
409
 
410
   FIXME
411
 
412
   Between enable_break() and disable_break(), this code does not
413
   properly handle hitting breakpoints which the user might have
414
   set in the startup code or in the dynamic linker itself.  Proper
415
   handling will probably have to wait until the implementation is
416
   changed to use the "breakpoint handler function" method.
417
 
418
   Also, what if child has exit()ed?  Must exit loop somehow.
419
 */
420
 
421
static void
422
irix_solib_create_inferior_hook (void)
423
{
424
  if (!enable_break ())
425
    {
426
      warning (_("shared library handler failed to enable breakpoint"));
427
      return;
428
    }
429
 
430
  /* Now run the target.  It will eventually hit the breakpoint, at
431
     which point all of the libraries will have been mapped in and we
432
     can go groveling around in the dynamic linker structures to find
433
     out what we need to know about them. */
434
 
435
  clear_proceed_status ();
436
  stop_soon = STOP_QUIETLY;
437
  stop_signal = TARGET_SIGNAL_0;
438
  do
439
    {
440
      target_resume (pid_to_ptid (-1), 0, stop_signal);
441
      wait_for_inferior (0);
442
    }
443
  while (stop_signal != TARGET_SIGNAL_TRAP);
444
 
445
  /* We are now either at the "mapping complete" breakpoint (or somewhere
446
     else, a condition we aren't prepared to deal with anyway), so adjust
447
     the PC as necessary after a breakpoint, disable the breakpoint, and
448
     add any shared libraries that were mapped in. */
449
 
450
  if (!disable_break ())
451
    {
452
      warning (_("shared library handler failed to disable breakpoint"));
453
    }
454
 
455
  /* solib_add will call reinit_frame_cache.
456
     But we are stopped in the startup code and we might not have symbols
457
     for the startup code, so heuristic_proc_start could be called
458
     and will put out an annoying warning.
459
     Delaying the resetting of stop_soon until after symbol loading
460
     suppresses the warning.  */
461
  solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
462
  stop_soon = NO_STOP_QUIETLY;
463
}
464
 
465
/* LOCAL FUNCTION
466
 
467
   current_sos -- build a list of currently loaded shared objects
468
 
469
   SYNOPSIS
470
 
471
   struct so_list *current_sos ()
472
 
473
   DESCRIPTION
474
 
475
   Build a list of `struct so_list' objects describing the shared
476
   objects currently loaded in the inferior.  This list does not
477
   include an entry for the main executable file.
478
 
479
   Note that we only gather information directly available from the
480
   inferior --- we don't examine any of the shared library files
481
   themselves.  The declaration of `struct so_list' says which fields
482
   we provide values for.  */
483
 
484
static struct so_list *
485
irix_current_sos (void)
486
{
487
  CORE_ADDR lma;
488
  char addr_buf[8];
489
  struct so_list *head = 0;
490
  struct so_list **link_ptr = &head;
491
  int is_first = 1;
492
  struct lm_info lm;
493
 
494
  /* Make sure we've looked up the inferior's dynamic linker's base
495
     structure.  */
496
  if (!debug_base)
497
    {
498
      debug_base = locate_base ();
499
 
500
      /* If we can't find the dynamic linker's base structure, this
501
         must not be a dynamically linked executable.  Hmm.  */
502
      if (!debug_base)
503
        return 0;
504
    }
505
 
506
  read_memory (debug_base,
507
               addr_buf,
508
               gdbarch_addr_bit (current_gdbarch) / TARGET_CHAR_BIT);
509
  lma = extract_mips_address (addr_buf,
510
                              gdbarch_addr_bit (current_gdbarch)
511
                                / TARGET_CHAR_BIT);
512
 
513
  while (lma)
514
    {
515
      lm = fetch_lm_info (lma);
516
      if (!is_first)
517
        {
518
          int errcode;
519
          char *name_buf;
520
          int name_size;
521
          struct so_list *new
522
            = (struct so_list *) xmalloc (sizeof (struct so_list));
523
          struct cleanup *old_chain = make_cleanup (xfree, new);
524
 
525
          memset (new, 0, sizeof (*new));
526
 
527
          new->lm_info = xmalloc (sizeof (struct lm_info));
528
          make_cleanup (xfree, new->lm_info);
529
 
530
          *new->lm_info = lm;
531
 
532
          /* Extract this shared object's name.  */
533
          name_size = lm.pathname_len;
534
          if (name_size == 0)
535
            name_size = SO_NAME_MAX_PATH_SIZE - 1;
536
 
537
          if (name_size >= SO_NAME_MAX_PATH_SIZE)
538
            {
539
              name_size = SO_NAME_MAX_PATH_SIZE - 1;
540
              warning
541
                ("current_sos: truncating name of %d characters to only %d characters",
542
                 lm.pathname_len, name_size);
543
            }
544
 
545
          target_read_string (lm.pathname_addr, &name_buf,
546
                              name_size, &errcode);
547
          if (errcode != 0)
548
            warning (_("Can't read pathname for load map: %s."),
549
                       safe_strerror (errcode));
550
          else
551
            {
552
              strncpy (new->so_name, name_buf, name_size);
553
              new->so_name[name_size] = '\0';
554
              xfree (name_buf);
555
              strcpy (new->so_original_name, new->so_name);
556
            }
557
 
558
          new->next = 0;
559
          *link_ptr = new;
560
          link_ptr = &new->next;
561
 
562
          discard_cleanups (old_chain);
563
        }
564
      is_first = 0;
565
      lma = lm.next;
566
    }
567
 
568
  return head;
569
}
570
 
571
/*
572
 
573
  LOCAL FUNCTION
574
 
575
  irix_open_symbol_file_object
576
 
577
  SYNOPSIS
578
 
579
  void irix_open_symbol_file_object (void *from_tty)
580
 
581
  DESCRIPTION
582
 
583
  If no open symbol file, attempt to locate and open the main symbol
584
  file.  On IRIX, this is the first link map entry.  If its name is
585
  here, we can open it.  Useful when attaching to a process without
586
  first loading its symbol file.
587
 
588
  If FROM_TTYP dereferences to a non-zero integer, allow messages to
589
  be printed.  This parameter is a pointer rather than an int because
590
  open_symbol_file_object() is called via catch_errors() and
591
  catch_errors() requires a pointer argument. */
592
 
593
static int
594
irix_open_symbol_file_object (void *from_ttyp)
595
{
596
  CORE_ADDR lma;
597
  char addr_buf[8];
598
  struct lm_info lm;
599
  struct cleanup *cleanups;
600
  int errcode;
601
  int from_tty = *(int *) from_ttyp;
602
  char *filename;
603
 
604
  if (symfile_objfile)
605
    if (!query ("Attempt to reload symbols from process? "))
606
      return 0;
607
 
608
  if ((debug_base = locate_base ()) == 0)
609
    return 0;                    /* failed somehow...  */
610
 
611
  /* First link map member should be the executable.  */
612
  read_memory (debug_base,
613
               addr_buf,
614
               gdbarch_addr_bit (current_gdbarch) / TARGET_CHAR_BIT);
615
  lma = extract_mips_address (addr_buf,
616
                              gdbarch_addr_bit (current_gdbarch)
617
                                / TARGET_CHAR_BIT);
618
  if (lma == 0)
619
    return 0;                    /* failed somehow...  */
620
 
621
  lm = fetch_lm_info (lma);
622
 
623
  if (lm.pathname_addr == 0)
624
    return 0;                    /* No filename.  */
625
 
626
  /* Now fetch the filename from target memory.  */
627
  target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
628
                      &errcode);
629
 
630
  if (errcode)
631
    {
632
      warning (_("failed to read exec filename from attached file: %s"),
633
               safe_strerror (errcode));
634
      return 0;
635
    }
636
 
637
  cleanups = make_cleanup (xfree, filename);
638
  /* Have a pathname: read the symbol file.  */
639
  symbol_file_add_main (filename, from_tty);
640
 
641
  do_cleanups (cleanups);
642
 
643
  return 1;
644
}
645
 
646
 
647
/*
648
 
649
   LOCAL FUNCTION
650
 
651
   irix_special_symbol_handling -- additional shared library symbol handling
652
 
653
   SYNOPSIS
654
 
655
   void irix_special_symbol_handling ()
656
 
657
   DESCRIPTION
658
 
659
   Once the symbols from a shared object have been loaded in the usual
660
   way, we are called to do any system specific symbol handling that
661
   is needed.
662
 
663
   For SunOS4, this consisted of grunging around in the dynamic
664
   linkers structures to find symbol definitions for "common" symbols
665
   and adding them to the minimal symbol table for the runtime common
666
   objfile.
667
 
668
   However, for IRIX, there's nothing to do.
669
 
670
 */
671
 
672
static void
673
irix_special_symbol_handling (void)
674
{
675
}
676
 
677
/* Using the solist entry SO, relocate the addresses in SEC.  */
678
 
679
static void
680
irix_relocate_section_addresses (struct so_list *so,
681
                                 struct section_table *sec)
682
{
683
  sec->addr += so->lm_info->reloc_offset;
684
  sec->endaddr += so->lm_info->reloc_offset;
685
}
686
 
687
/* Free the lm_info struct.  */
688
 
689
static void
690
irix_free_so (struct so_list *so)
691
{
692
  xfree (so->lm_info);
693
}
694
 
695
/* Clear backend specific state.  */
696
 
697
static void
698
irix_clear_solib (void)
699
{
700
  debug_base = 0;
701
}
702
 
703
/* Return 1 if PC lies in the dynamic symbol resolution code of the
704
   run time loader.  */
705
static int
706
irix_in_dynsym_resolve_code (CORE_ADDR pc)
707
{
708
  return 0;
709
}
710
 
711
struct target_so_ops irix_so_ops;
712
 
713
void
714
_initialize_irix_solib (void)
715
{
716
  irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
717
  irix_so_ops.free_so = irix_free_so;
718
  irix_so_ops.clear_solib = irix_clear_solib;
719
  irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
720
  irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
721
  irix_so_ops.current_sos = irix_current_sos;
722
  irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
723
  irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
724
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.