1 |
24 |
jeremybenn |
/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
|
4 |
|
|
2001, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
|
23 |
|
|
#include "elf/external.h"
|
24 |
|
|
#include "elf/common.h"
|
25 |
|
|
#include "elf/mips.h"
|
26 |
|
|
|
27 |
|
|
#include "symtab.h"
|
28 |
|
|
#include "bfd.h"
|
29 |
|
|
#include "symfile.h"
|
30 |
|
|
#include "objfiles.h"
|
31 |
|
|
#include "gdbcore.h"
|
32 |
|
|
#include "target.h"
|
33 |
|
|
#include "inferior.h"
|
34 |
|
|
|
35 |
|
|
#include "gdb_assert.h"
|
36 |
|
|
|
37 |
|
|
#include "solist.h"
|
38 |
|
|
#include "solib.h"
|
39 |
|
|
#include "solib-svr4.h"
|
40 |
|
|
|
41 |
|
|
#include "bfd-target.h"
|
42 |
|
|
#include "elf-bfd.h"
|
43 |
|
|
#include "exec.h"
|
44 |
|
|
#include "auxv.h"
|
45 |
|
|
|
46 |
|
|
static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
|
47 |
|
|
static int svr4_have_link_map_offsets (void);
|
48 |
|
|
|
49 |
|
|
/* Link map info to include in an allocated so_list entry */
|
50 |
|
|
|
51 |
|
|
struct lm_info
|
52 |
|
|
{
|
53 |
|
|
/* Pointer to copy of link map from inferior. The type is char *
|
54 |
|
|
rather than void *, so that we may use byte offsets to find the
|
55 |
|
|
various fields without the need for a cast. */
|
56 |
|
|
gdb_byte *lm;
|
57 |
|
|
|
58 |
|
|
/* Amount by which addresses in the binary should be relocated to
|
59 |
|
|
match the inferior. This could most often be taken directly
|
60 |
|
|
from lm, but when prelinking is involved and the prelink base
|
61 |
|
|
address changes, we may need a different offset, we want to
|
62 |
|
|
warn about the difference and compute it only once. */
|
63 |
|
|
CORE_ADDR l_addr;
|
64 |
|
|
};
|
65 |
|
|
|
66 |
|
|
/* On SVR4 systems, a list of symbols in the dynamic linker where
|
67 |
|
|
GDB can try to place a breakpoint to monitor shared library
|
68 |
|
|
events.
|
69 |
|
|
|
70 |
|
|
If none of these symbols are found, or other errors occur, then
|
71 |
|
|
SVR4 systems will fall back to using a symbol as the "startup
|
72 |
|
|
mapping complete" breakpoint address. */
|
73 |
|
|
|
74 |
|
|
static char *solib_break_names[] =
|
75 |
|
|
{
|
76 |
|
|
"r_debug_state",
|
77 |
|
|
"_r_debug_state",
|
78 |
|
|
"_dl_debug_state",
|
79 |
|
|
"rtld_db_dlactivity",
|
80 |
|
|
"_rtld_debug_state",
|
81 |
|
|
|
82 |
|
|
NULL
|
83 |
|
|
};
|
84 |
|
|
|
85 |
|
|
#define BKPT_AT_SYMBOL 1
|
86 |
|
|
|
87 |
|
|
#if defined (BKPT_AT_SYMBOL)
|
88 |
|
|
static char *bkpt_names[] =
|
89 |
|
|
{
|
90 |
|
|
#ifdef SOLIB_BKPT_NAME
|
91 |
|
|
SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
|
92 |
|
|
#endif
|
93 |
|
|
"_start",
|
94 |
|
|
"__start",
|
95 |
|
|
"main",
|
96 |
|
|
NULL
|
97 |
|
|
};
|
98 |
|
|
#endif
|
99 |
|
|
|
100 |
|
|
static char *main_name_list[] =
|
101 |
|
|
{
|
102 |
|
|
"main_$main",
|
103 |
|
|
NULL
|
104 |
|
|
};
|
105 |
|
|
|
106 |
|
|
/* link map access functions */
|
107 |
|
|
|
108 |
|
|
static CORE_ADDR
|
109 |
|
|
LM_ADDR_FROM_LINK_MAP (struct so_list *so)
|
110 |
|
|
{
|
111 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
112 |
|
|
|
113 |
|
|
return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
|
114 |
|
|
builtin_type_void_data_ptr);
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
static int
|
118 |
|
|
HAS_LM_DYNAMIC_FROM_LINK_MAP ()
|
119 |
|
|
{
|
120 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
121 |
|
|
|
122 |
|
|
return lmo->l_ld_offset >= 0;
|
123 |
|
|
}
|
124 |
|
|
|
125 |
|
|
static CORE_ADDR
|
126 |
|
|
LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
|
127 |
|
|
{
|
128 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
129 |
|
|
|
130 |
|
|
return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
|
131 |
|
|
builtin_type_void_data_ptr);
|
132 |
|
|
}
|
133 |
|
|
|
134 |
|
|
static CORE_ADDR
|
135 |
|
|
LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
|
136 |
|
|
{
|
137 |
|
|
if (so->lm_info->l_addr == (CORE_ADDR)-1)
|
138 |
|
|
{
|
139 |
|
|
struct bfd_section *dyninfo_sect;
|
140 |
|
|
CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
|
141 |
|
|
|
142 |
|
|
l_addr = LM_ADDR_FROM_LINK_MAP (so);
|
143 |
|
|
|
144 |
|
|
if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
|
145 |
|
|
goto set_addr;
|
146 |
|
|
|
147 |
|
|
l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
|
148 |
|
|
|
149 |
|
|
dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
|
150 |
|
|
if (dyninfo_sect == NULL)
|
151 |
|
|
goto set_addr;
|
152 |
|
|
|
153 |
|
|
dynaddr = bfd_section_vma (abfd, dyninfo_sect);
|
154 |
|
|
|
155 |
|
|
if (dynaddr + l_addr != l_dynaddr)
|
156 |
|
|
{
|
157 |
|
|
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
|
158 |
|
|
{
|
159 |
|
|
Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
|
160 |
|
|
Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
|
161 |
|
|
int i;
|
162 |
|
|
|
163 |
|
|
align = 1;
|
164 |
|
|
|
165 |
|
|
for (i = 0; i < ehdr->e_phnum; i++)
|
166 |
|
|
if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
|
167 |
|
|
align = phdr[i].p_align;
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
/* Turn it into a mask. */
|
171 |
|
|
align--;
|
172 |
|
|
|
173 |
|
|
/* If the changes match the alignment requirements, we
|
174 |
|
|
assume we're using a core file that was generated by the
|
175 |
|
|
same binary, just prelinked with a different base offset.
|
176 |
|
|
If it doesn't match, we may have a different binary, the
|
177 |
|
|
same binary with the dynamic table loaded at an unrelated
|
178 |
|
|
location, or anything, really. To avoid regressions,
|
179 |
|
|
don't adjust the base offset in the latter case, although
|
180 |
|
|
odds are that, if things really changed, debugging won't
|
181 |
|
|
quite work. */
|
182 |
|
|
if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
|
183 |
|
|
{
|
184 |
|
|
l_addr = l_dynaddr - dynaddr;
|
185 |
|
|
|
186 |
|
|
warning (_(".dynamic section for \"%s\" "
|
187 |
|
|
"is not at the expected address"), so->so_name);
|
188 |
|
|
warning (_("difference appears to be caused by prelink, "
|
189 |
|
|
"adjusting expectations"));
|
190 |
|
|
}
|
191 |
|
|
else
|
192 |
|
|
warning (_(".dynamic section for \"%s\" "
|
193 |
|
|
"is not at the expected address "
|
194 |
|
|
"(wrong library or version mismatch?)"), so->so_name);
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
set_addr:
|
198 |
|
|
so->lm_info->l_addr = l_addr;
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
return so->lm_info->l_addr;
|
202 |
|
|
}
|
203 |
|
|
|
204 |
|
|
static CORE_ADDR
|
205 |
|
|
LM_NEXT (struct so_list *so)
|
206 |
|
|
{
|
207 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
208 |
|
|
|
209 |
|
|
return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
|
210 |
|
|
builtin_type_void_data_ptr);
|
211 |
|
|
}
|
212 |
|
|
|
213 |
|
|
static CORE_ADDR
|
214 |
|
|
LM_NAME (struct so_list *so)
|
215 |
|
|
{
|
216 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
217 |
|
|
|
218 |
|
|
return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
|
219 |
|
|
builtin_type_void_data_ptr);
|
220 |
|
|
}
|
221 |
|
|
|
222 |
|
|
static int
|
223 |
|
|
IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
|
224 |
|
|
{
|
225 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
226 |
|
|
|
227 |
|
|
/* Assume that everything is a library if the dynamic loader was loaded
|
228 |
|
|
late by a static executable. */
|
229 |
|
|
if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
|
230 |
|
|
return 0;
|
231 |
|
|
|
232 |
|
|
return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
|
233 |
|
|
builtin_type_void_data_ptr) == 0;
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
static CORE_ADDR debug_base; /* Base of dynamic linker structures */
|
237 |
|
|
|
238 |
|
|
/* Validity flag for debug_loader_offset. */
|
239 |
|
|
static int debug_loader_offset_p;
|
240 |
|
|
|
241 |
|
|
/* Load address for the dynamic linker, inferred. */
|
242 |
|
|
static CORE_ADDR debug_loader_offset;
|
243 |
|
|
|
244 |
|
|
/* Name of the dynamic linker, valid if debug_loader_offset_p. */
|
245 |
|
|
static char *debug_loader_name;
|
246 |
|
|
|
247 |
|
|
/* Local function prototypes */
|
248 |
|
|
|
249 |
|
|
static int match_main (char *);
|
250 |
|
|
|
251 |
|
|
static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
|
252 |
|
|
|
253 |
|
|
/*
|
254 |
|
|
|
255 |
|
|
LOCAL FUNCTION
|
256 |
|
|
|
257 |
|
|
bfd_lookup_symbol -- lookup the value for a specific symbol
|
258 |
|
|
|
259 |
|
|
SYNOPSIS
|
260 |
|
|
|
261 |
|
|
CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
|
262 |
|
|
|
263 |
|
|
DESCRIPTION
|
264 |
|
|
|
265 |
|
|
An expensive way to lookup the value of a single symbol for
|
266 |
|
|
bfd's that are only temporary anyway. This is used by the
|
267 |
|
|
shared library support to find the address of the debugger
|
268 |
|
|
notification routine in the shared library.
|
269 |
|
|
|
270 |
|
|
The returned symbol may be in a code or data section; functions
|
271 |
|
|
will normally be in a code section, but may be in a data section
|
272 |
|
|
if this architecture uses function descriptors.
|
273 |
|
|
|
274 |
|
|
Note that 0 is specifically allowed as an error return (no
|
275 |
|
|
such symbol).
|
276 |
|
|
*/
|
277 |
|
|
|
278 |
|
|
static CORE_ADDR
|
279 |
|
|
bfd_lookup_symbol (bfd *abfd, char *symname)
|
280 |
|
|
{
|
281 |
|
|
long storage_needed;
|
282 |
|
|
asymbol *sym;
|
283 |
|
|
asymbol **symbol_table;
|
284 |
|
|
unsigned int number_of_symbols;
|
285 |
|
|
unsigned int i;
|
286 |
|
|
struct cleanup *back_to;
|
287 |
|
|
CORE_ADDR symaddr = 0;
|
288 |
|
|
|
289 |
|
|
storage_needed = bfd_get_symtab_upper_bound (abfd);
|
290 |
|
|
|
291 |
|
|
if (storage_needed > 0)
|
292 |
|
|
{
|
293 |
|
|
symbol_table = (asymbol **) xmalloc (storage_needed);
|
294 |
|
|
back_to = make_cleanup (xfree, symbol_table);
|
295 |
|
|
number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
|
296 |
|
|
|
297 |
|
|
for (i = 0; i < number_of_symbols; i++)
|
298 |
|
|
{
|
299 |
|
|
sym = *symbol_table++;
|
300 |
|
|
if (strcmp (sym->name, symname) == 0
|
301 |
|
|
&& (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
|
302 |
|
|
{
|
303 |
|
|
/* BFD symbols are section relative. */
|
304 |
|
|
symaddr = sym->value + sym->section->vma;
|
305 |
|
|
break;
|
306 |
|
|
}
|
307 |
|
|
}
|
308 |
|
|
do_cleanups (back_to);
|
309 |
|
|
}
|
310 |
|
|
|
311 |
|
|
if (symaddr)
|
312 |
|
|
return symaddr;
|
313 |
|
|
|
314 |
|
|
/* On FreeBSD, the dynamic linker is stripped by default. So we'll
|
315 |
|
|
have to check the dynamic string table too. */
|
316 |
|
|
|
317 |
|
|
storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
|
318 |
|
|
|
319 |
|
|
if (storage_needed > 0)
|
320 |
|
|
{
|
321 |
|
|
symbol_table = (asymbol **) xmalloc (storage_needed);
|
322 |
|
|
back_to = make_cleanup (xfree, symbol_table);
|
323 |
|
|
number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
|
324 |
|
|
|
325 |
|
|
for (i = 0; i < number_of_symbols; i++)
|
326 |
|
|
{
|
327 |
|
|
sym = *symbol_table++;
|
328 |
|
|
|
329 |
|
|
if (strcmp (sym->name, symname) == 0
|
330 |
|
|
&& (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
|
331 |
|
|
{
|
332 |
|
|
/* BFD symbols are section relative. */
|
333 |
|
|
symaddr = sym->value + sym->section->vma;
|
334 |
|
|
break;
|
335 |
|
|
}
|
336 |
|
|
}
|
337 |
|
|
do_cleanups (back_to);
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
return symaddr;
|
341 |
|
|
}
|
342 |
|
|
|
343 |
|
|
/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
|
344 |
|
|
returned and the corresponding PTR is set. */
|
345 |
|
|
|
346 |
|
|
static int
|
347 |
|
|
scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
|
348 |
|
|
{
|
349 |
|
|
int arch_size, step, sect_size;
|
350 |
|
|
long dyn_tag;
|
351 |
|
|
CORE_ADDR dyn_ptr, dyn_addr;
|
352 |
|
|
gdb_byte *bufend, *bufstart, *buf;
|
353 |
|
|
Elf32_External_Dyn *x_dynp_32;
|
354 |
|
|
Elf64_External_Dyn *x_dynp_64;
|
355 |
|
|
struct bfd_section *sect;
|
356 |
|
|
|
357 |
|
|
if (abfd == NULL)
|
358 |
|
|
return 0;
|
359 |
|
|
arch_size = bfd_get_arch_size (abfd);
|
360 |
|
|
if (arch_size == -1)
|
361 |
|
|
return 0;
|
362 |
|
|
|
363 |
|
|
/* Find the start address of the .dynamic section. */
|
364 |
|
|
sect = bfd_get_section_by_name (abfd, ".dynamic");
|
365 |
|
|
if (sect == NULL)
|
366 |
|
|
return 0;
|
367 |
|
|
dyn_addr = bfd_section_vma (abfd, sect);
|
368 |
|
|
|
369 |
|
|
/* Read in .dynamic from the BFD. We will get the actual value
|
370 |
|
|
from memory later. */
|
371 |
|
|
sect_size = bfd_section_size (abfd, sect);
|
372 |
|
|
buf = bufstart = alloca (sect_size);
|
373 |
|
|
if (!bfd_get_section_contents (abfd, sect,
|
374 |
|
|
buf, 0, sect_size))
|
375 |
|
|
return 0;
|
376 |
|
|
|
377 |
|
|
/* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
|
378 |
|
|
step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
|
379 |
|
|
: sizeof (Elf64_External_Dyn);
|
380 |
|
|
for (bufend = buf + sect_size;
|
381 |
|
|
buf < bufend;
|
382 |
|
|
buf += step)
|
383 |
|
|
{
|
384 |
|
|
if (arch_size == 32)
|
385 |
|
|
{
|
386 |
|
|
x_dynp_32 = (Elf32_External_Dyn *) buf;
|
387 |
|
|
dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
|
388 |
|
|
dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
|
389 |
|
|
}
|
390 |
|
|
else
|
391 |
|
|
{
|
392 |
|
|
x_dynp_64 = (Elf64_External_Dyn *) buf;
|
393 |
|
|
dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
|
394 |
|
|
dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
|
395 |
|
|
}
|
396 |
|
|
if (dyn_tag == DT_NULL)
|
397 |
|
|
return 0;
|
398 |
|
|
if (dyn_tag == dyntag)
|
399 |
|
|
{
|
400 |
|
|
/* If requested, try to read the runtime value of this .dynamic
|
401 |
|
|
entry. */
|
402 |
|
|
if (ptr)
|
403 |
|
|
{
|
404 |
|
|
gdb_byte ptr_buf[8];
|
405 |
|
|
CORE_ADDR ptr_addr;
|
406 |
|
|
|
407 |
|
|
ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
|
408 |
|
|
if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
|
409 |
|
|
dyn_ptr = extract_typed_address (ptr_buf,
|
410 |
|
|
builtin_type_void_data_ptr);
|
411 |
|
|
*ptr = dyn_ptr;
|
412 |
|
|
}
|
413 |
|
|
return 1;
|
414 |
|
|
}
|
415 |
|
|
}
|
416 |
|
|
|
417 |
|
|
return 0;
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
|
421 |
|
|
/*
|
422 |
|
|
|
423 |
|
|
LOCAL FUNCTION
|
424 |
|
|
|
425 |
|
|
elf_locate_base -- locate the base address of dynamic linker structs
|
426 |
|
|
for SVR4 elf targets.
|
427 |
|
|
|
428 |
|
|
SYNOPSIS
|
429 |
|
|
|
430 |
|
|
CORE_ADDR elf_locate_base (void)
|
431 |
|
|
|
432 |
|
|
DESCRIPTION
|
433 |
|
|
|
434 |
|
|
For SVR4 elf targets the address of the dynamic linker's runtime
|
435 |
|
|
structure is contained within the dynamic info section in the
|
436 |
|
|
executable file. The dynamic section is also mapped into the
|
437 |
|
|
inferior address space. Because the runtime loader fills in the
|
438 |
|
|
real address before starting the inferior, we have to read in the
|
439 |
|
|
dynamic info section from the inferior address space.
|
440 |
|
|
If there are any errors while trying to find the address, we
|
441 |
|
|
silently return 0, otherwise the found address is returned.
|
442 |
|
|
|
443 |
|
|
*/
|
444 |
|
|
|
445 |
|
|
static CORE_ADDR
|
446 |
|
|
elf_locate_base (void)
|
447 |
|
|
{
|
448 |
|
|
struct minimal_symbol *msymbol;
|
449 |
|
|
CORE_ADDR dyn_ptr;
|
450 |
|
|
|
451 |
|
|
/* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
|
452 |
|
|
instead of DT_DEBUG, although they sometimes contain an unused
|
453 |
|
|
DT_DEBUG. */
|
454 |
|
|
if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr))
|
455 |
|
|
{
|
456 |
|
|
gdb_byte *pbuf;
|
457 |
|
|
int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
|
458 |
|
|
pbuf = alloca (pbuf_size);
|
459 |
|
|
/* DT_MIPS_RLD_MAP contains a pointer to the address
|
460 |
|
|
of the dynamic link structure. */
|
461 |
|
|
if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
|
462 |
|
|
return 0;
|
463 |
|
|
return extract_typed_address (pbuf, builtin_type_void_data_ptr);
|
464 |
|
|
}
|
465 |
|
|
|
466 |
|
|
/* Find DT_DEBUG. */
|
467 |
|
|
if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr))
|
468 |
|
|
return dyn_ptr;
|
469 |
|
|
|
470 |
|
|
/* This may be a static executable. Look for the symbol
|
471 |
|
|
conventionally named _r_debug, as a last resort. */
|
472 |
|
|
msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
|
473 |
|
|
if (msymbol != NULL)
|
474 |
|
|
return SYMBOL_VALUE_ADDRESS (msymbol);
|
475 |
|
|
|
476 |
|
|
/* DT_DEBUG entry not found. */
|
477 |
|
|
return 0;
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
/*
|
481 |
|
|
|
482 |
|
|
LOCAL FUNCTION
|
483 |
|
|
|
484 |
|
|
locate_base -- locate the base address of dynamic linker structs
|
485 |
|
|
|
486 |
|
|
SYNOPSIS
|
487 |
|
|
|
488 |
|
|
CORE_ADDR locate_base (void)
|
489 |
|
|
|
490 |
|
|
DESCRIPTION
|
491 |
|
|
|
492 |
|
|
For both the SunOS and SVR4 shared library implementations, if the
|
493 |
|
|
inferior executable has been linked dynamically, there is a single
|
494 |
|
|
address somewhere in the inferior's data space which is the key to
|
495 |
|
|
locating all of the dynamic linker's runtime structures. This
|
496 |
|
|
address is the value of the debug base symbol. The job of this
|
497 |
|
|
function is to find and return that address, or to return 0 if there
|
498 |
|
|
is no such address (the executable is statically linked for example).
|
499 |
|
|
|
500 |
|
|
For SunOS, the job is almost trivial, since the dynamic linker and
|
501 |
|
|
all of it's structures are statically linked to the executable at
|
502 |
|
|
link time. Thus the symbol for the address we are looking for has
|
503 |
|
|
already been added to the minimal symbol table for the executable's
|
504 |
|
|
objfile at the time the symbol file's symbols were read, and all we
|
505 |
|
|
have to do is look it up there. Note that we explicitly do NOT want
|
506 |
|
|
to find the copies in the shared library.
|
507 |
|
|
|
508 |
|
|
The SVR4 version is a bit more complicated because the address
|
509 |
|
|
is contained somewhere in the dynamic info section. We have to go
|
510 |
|
|
to a lot more work to discover the address of the debug base symbol.
|
511 |
|
|
Because of this complexity, we cache the value we find and return that
|
512 |
|
|
value on subsequent invocations. Note there is no copy in the
|
513 |
|
|
executable symbol tables.
|
514 |
|
|
|
515 |
|
|
*/
|
516 |
|
|
|
517 |
|
|
static CORE_ADDR
|
518 |
|
|
locate_base (void)
|
519 |
|
|
{
|
520 |
|
|
/* Check to see if we have a currently valid address, and if so, avoid
|
521 |
|
|
doing all this work again and just return the cached address. If
|
522 |
|
|
we have no cached address, try to locate it in the dynamic info
|
523 |
|
|
section for ELF executables. There's no point in doing any of this
|
524 |
|
|
though if we don't have some link map offsets to work with. */
|
525 |
|
|
|
526 |
|
|
if (debug_base == 0 && svr4_have_link_map_offsets ())
|
527 |
|
|
{
|
528 |
|
|
if (exec_bfd != NULL
|
529 |
|
|
&& bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
|
530 |
|
|
debug_base = elf_locate_base ();
|
531 |
|
|
}
|
532 |
|
|
return (debug_base);
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
/* Find the first element in the inferior's dynamic link map, and
|
536 |
|
|
return its address in the inferior.
|
537 |
|
|
|
538 |
|
|
FIXME: Perhaps we should validate the info somehow, perhaps by
|
539 |
|
|
checking r_version for a known version number, or r_state for
|
540 |
|
|
RT_CONSISTENT. */
|
541 |
|
|
|
542 |
|
|
static CORE_ADDR
|
543 |
|
|
solib_svr4_r_map (void)
|
544 |
|
|
{
|
545 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
546 |
|
|
|
547 |
|
|
return read_memory_typed_address (debug_base + lmo->r_map_offset,
|
548 |
|
|
builtin_type_void_data_ptr);
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
/* Find r_brk from the inferior's debug base. */
|
552 |
|
|
|
553 |
|
|
static CORE_ADDR
|
554 |
|
|
solib_svr4_r_brk (void)
|
555 |
|
|
{
|
556 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
557 |
|
|
|
558 |
|
|
return read_memory_typed_address (debug_base + lmo->r_brk_offset,
|
559 |
|
|
builtin_type_void_data_ptr);
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
/* Find the link map for the dynamic linker (if it is not in the
|
563 |
|
|
normal list of loaded shared objects). */
|
564 |
|
|
|
565 |
|
|
static CORE_ADDR
|
566 |
|
|
solib_svr4_r_ldsomap (void)
|
567 |
|
|
{
|
568 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
569 |
|
|
ULONGEST version;
|
570 |
|
|
|
571 |
|
|
/* Check version, and return zero if `struct r_debug' doesn't have
|
572 |
|
|
the r_ldsomap member. */
|
573 |
|
|
version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
|
574 |
|
|
lmo->r_version_size);
|
575 |
|
|
if (version < 2 || lmo->r_ldsomap_offset == -1)
|
576 |
|
|
return 0;
|
577 |
|
|
|
578 |
|
|
return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
|
579 |
|
|
builtin_type_void_data_ptr);
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
/*
|
583 |
|
|
|
584 |
|
|
LOCAL FUNCTION
|
585 |
|
|
|
586 |
|
|
open_symbol_file_object
|
587 |
|
|
|
588 |
|
|
SYNOPSIS
|
589 |
|
|
|
590 |
|
|
void open_symbol_file_object (void *from_tty)
|
591 |
|
|
|
592 |
|
|
DESCRIPTION
|
593 |
|
|
|
594 |
|
|
If no open symbol file, attempt to locate and open the main symbol
|
595 |
|
|
file. On SVR4 systems, this is the first link map entry. If its
|
596 |
|
|
name is here, we can open it. Useful when attaching to a process
|
597 |
|
|
without first loading its symbol file.
|
598 |
|
|
|
599 |
|
|
If FROM_TTYP dereferences to a non-zero integer, allow messages to
|
600 |
|
|
be printed. This parameter is a pointer rather than an int because
|
601 |
|
|
open_symbol_file_object() is called via catch_errors() and
|
602 |
|
|
catch_errors() requires a pointer argument. */
|
603 |
|
|
|
604 |
|
|
static int
|
605 |
|
|
open_symbol_file_object (void *from_ttyp)
|
606 |
|
|
{
|
607 |
|
|
CORE_ADDR lm, l_name;
|
608 |
|
|
char *filename;
|
609 |
|
|
int errcode;
|
610 |
|
|
int from_tty = *(int *)from_ttyp;
|
611 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
612 |
|
|
int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
|
613 |
|
|
gdb_byte *l_name_buf = xmalloc (l_name_size);
|
614 |
|
|
struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
|
615 |
|
|
|
616 |
|
|
if (symfile_objfile)
|
617 |
|
|
if (!query ("Attempt to reload symbols from process? "))
|
618 |
|
|
return 0;
|
619 |
|
|
|
620 |
|
|
/* Always locate the debug struct, in case it has moved. */
|
621 |
|
|
debug_base = 0;
|
622 |
|
|
if (locate_base () == 0)
|
623 |
|
|
return 0; /* failed somehow... */
|
624 |
|
|
|
625 |
|
|
/* First link map member should be the executable. */
|
626 |
|
|
lm = solib_svr4_r_map ();
|
627 |
|
|
if (lm == 0)
|
628 |
|
|
return 0; /* failed somehow... */
|
629 |
|
|
|
630 |
|
|
/* Read address of name from target memory to GDB. */
|
631 |
|
|
read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
|
632 |
|
|
|
633 |
|
|
/* Convert the address to host format. */
|
634 |
|
|
l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr);
|
635 |
|
|
|
636 |
|
|
/* Free l_name_buf. */
|
637 |
|
|
do_cleanups (cleanups);
|
638 |
|
|
|
639 |
|
|
if (l_name == 0)
|
640 |
|
|
return 0; /* No filename. */
|
641 |
|
|
|
642 |
|
|
/* Now fetch the filename from target memory. */
|
643 |
|
|
target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
|
644 |
|
|
make_cleanup (xfree, filename);
|
645 |
|
|
|
646 |
|
|
if (errcode)
|
647 |
|
|
{
|
648 |
|
|
warning (_("failed to read exec filename from attached file: %s"),
|
649 |
|
|
safe_strerror (errcode));
|
650 |
|
|
return 0;
|
651 |
|
|
}
|
652 |
|
|
|
653 |
|
|
/* Have a pathname: read the symbol file. */
|
654 |
|
|
symbol_file_add_main (filename, from_tty);
|
655 |
|
|
|
656 |
|
|
return 1;
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
/* If no shared library information is available from the dynamic
|
660 |
|
|
linker, build a fallback list from other sources. */
|
661 |
|
|
|
662 |
|
|
static struct so_list *
|
663 |
|
|
svr4_default_sos (void)
|
664 |
|
|
{
|
665 |
|
|
struct so_list *head = NULL;
|
666 |
|
|
struct so_list **link_ptr = &head;
|
667 |
|
|
|
668 |
|
|
if (debug_loader_offset_p)
|
669 |
|
|
{
|
670 |
|
|
struct so_list *new = XZALLOC (struct so_list);
|
671 |
|
|
|
672 |
|
|
new->lm_info = xmalloc (sizeof (struct lm_info));
|
673 |
|
|
|
674 |
|
|
/* Nothing will ever check the cached copy of the link
|
675 |
|
|
map if we set l_addr. */
|
676 |
|
|
new->lm_info->l_addr = debug_loader_offset;
|
677 |
|
|
new->lm_info->lm = NULL;
|
678 |
|
|
|
679 |
|
|
strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
|
680 |
|
|
new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
|
681 |
|
|
strcpy (new->so_original_name, new->so_name);
|
682 |
|
|
|
683 |
|
|
*link_ptr = new;
|
684 |
|
|
link_ptr = &new->next;
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
return head;
|
688 |
|
|
}
|
689 |
|
|
|
690 |
|
|
/* LOCAL FUNCTION
|
691 |
|
|
|
692 |
|
|
current_sos -- build a list of currently loaded shared objects
|
693 |
|
|
|
694 |
|
|
SYNOPSIS
|
695 |
|
|
|
696 |
|
|
struct so_list *current_sos ()
|
697 |
|
|
|
698 |
|
|
DESCRIPTION
|
699 |
|
|
|
700 |
|
|
Build a list of `struct so_list' objects describing the shared
|
701 |
|
|
objects currently loaded in the inferior. This list does not
|
702 |
|
|
include an entry for the main executable file.
|
703 |
|
|
|
704 |
|
|
Note that we only gather information directly available from the
|
705 |
|
|
inferior --- we don't examine any of the shared library files
|
706 |
|
|
themselves. The declaration of `struct so_list' says which fields
|
707 |
|
|
we provide values for. */
|
708 |
|
|
|
709 |
|
|
static struct so_list *
|
710 |
|
|
svr4_current_sos (void)
|
711 |
|
|
{
|
712 |
|
|
CORE_ADDR lm;
|
713 |
|
|
struct so_list *head = 0;
|
714 |
|
|
struct so_list **link_ptr = &head;
|
715 |
|
|
CORE_ADDR ldsomap = 0;
|
716 |
|
|
|
717 |
|
|
/* Always locate the debug struct, in case it has moved. */
|
718 |
|
|
debug_base = 0;
|
719 |
|
|
locate_base ();
|
720 |
|
|
|
721 |
|
|
/* If we can't find the dynamic linker's base structure, this
|
722 |
|
|
must not be a dynamically linked executable. Hmm. */
|
723 |
|
|
if (! debug_base)
|
724 |
|
|
return svr4_default_sos ();
|
725 |
|
|
|
726 |
|
|
/* Walk the inferior's link map list, and build our list of
|
727 |
|
|
`struct so_list' nodes. */
|
728 |
|
|
lm = solib_svr4_r_map ();
|
729 |
|
|
|
730 |
|
|
while (lm)
|
731 |
|
|
{
|
732 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
733 |
|
|
struct so_list *new = XZALLOC (struct so_list);
|
734 |
|
|
struct cleanup *old_chain = make_cleanup (xfree, new);
|
735 |
|
|
|
736 |
|
|
new->lm_info = xmalloc (sizeof (struct lm_info));
|
737 |
|
|
make_cleanup (xfree, new->lm_info);
|
738 |
|
|
|
739 |
|
|
new->lm_info->l_addr = (CORE_ADDR)-1;
|
740 |
|
|
new->lm_info->lm = xzalloc (lmo->link_map_size);
|
741 |
|
|
make_cleanup (xfree, new->lm_info->lm);
|
742 |
|
|
|
743 |
|
|
read_memory (lm, new->lm_info->lm, lmo->link_map_size);
|
744 |
|
|
|
745 |
|
|
lm = LM_NEXT (new);
|
746 |
|
|
|
747 |
|
|
/* For SVR4 versions, the first entry in the link map is for the
|
748 |
|
|
inferior executable, so we must ignore it. For some versions of
|
749 |
|
|
SVR4, it has no name. For others (Solaris 2.3 for example), it
|
750 |
|
|
does have a name, so we can no longer use a missing name to
|
751 |
|
|
decide when to ignore it. */
|
752 |
|
|
if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
|
753 |
|
|
free_so (new);
|
754 |
|
|
else
|
755 |
|
|
{
|
756 |
|
|
int errcode;
|
757 |
|
|
char *buffer;
|
758 |
|
|
|
759 |
|
|
/* Extract this shared object's name. */
|
760 |
|
|
target_read_string (LM_NAME (new), &buffer,
|
761 |
|
|
SO_NAME_MAX_PATH_SIZE - 1, &errcode);
|
762 |
|
|
if (errcode != 0)
|
763 |
|
|
warning (_("Can't read pathname for load map: %s."),
|
764 |
|
|
safe_strerror (errcode));
|
765 |
|
|
else
|
766 |
|
|
{
|
767 |
|
|
strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
|
768 |
|
|
new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
|
769 |
|
|
strcpy (new->so_original_name, new->so_name);
|
770 |
|
|
}
|
771 |
|
|
xfree (buffer);
|
772 |
|
|
|
773 |
|
|
/* If this entry has no name, or its name matches the name
|
774 |
|
|
for the main executable, don't include it in the list. */
|
775 |
|
|
if (! new->so_name[0]
|
776 |
|
|
|| match_main (new->so_name))
|
777 |
|
|
free_so (new);
|
778 |
|
|
else
|
779 |
|
|
{
|
780 |
|
|
new->next = 0;
|
781 |
|
|
*link_ptr = new;
|
782 |
|
|
link_ptr = &new->next;
|
783 |
|
|
}
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
/* On Solaris, the dynamic linker is not in the normal list of
|
787 |
|
|
shared objects, so make sure we pick it up too. Having
|
788 |
|
|
symbol information for the dynamic linker is quite crucial
|
789 |
|
|
for skipping dynamic linker resolver code. */
|
790 |
|
|
if (lm == 0 && ldsomap == 0)
|
791 |
|
|
lm = ldsomap = solib_svr4_r_ldsomap ();
|
792 |
|
|
|
793 |
|
|
discard_cleanups (old_chain);
|
794 |
|
|
}
|
795 |
|
|
|
796 |
|
|
if (head == NULL)
|
797 |
|
|
return svr4_default_sos ();
|
798 |
|
|
|
799 |
|
|
return head;
|
800 |
|
|
}
|
801 |
|
|
|
802 |
|
|
/* Get the address of the link_map for a given OBJFILE. Loop through
|
803 |
|
|
the link maps, and return the address of the one corresponding to
|
804 |
|
|
the given objfile. Note that this function takes into account that
|
805 |
|
|
objfile can be the main executable, not just a shared library. The
|
806 |
|
|
main executable has always an empty name field in the linkmap. */
|
807 |
|
|
|
808 |
|
|
CORE_ADDR
|
809 |
|
|
svr4_fetch_objfile_link_map (struct objfile *objfile)
|
810 |
|
|
{
|
811 |
|
|
CORE_ADDR lm;
|
812 |
|
|
|
813 |
|
|
if (locate_base () == 0)
|
814 |
|
|
return 0; /* failed somehow... */
|
815 |
|
|
|
816 |
|
|
/* Position ourselves on the first link map. */
|
817 |
|
|
lm = solib_svr4_r_map ();
|
818 |
|
|
while (lm)
|
819 |
|
|
{
|
820 |
|
|
/* Get info on the layout of the r_debug and link_map structures. */
|
821 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
822 |
|
|
int errcode;
|
823 |
|
|
char *buffer;
|
824 |
|
|
struct lm_info objfile_lm_info;
|
825 |
|
|
struct cleanup *old_chain;
|
826 |
|
|
CORE_ADDR name_address;
|
827 |
|
|
int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
|
828 |
|
|
gdb_byte *l_name_buf = xmalloc (l_name_size);
|
829 |
|
|
old_chain = make_cleanup (xfree, l_name_buf);
|
830 |
|
|
|
831 |
|
|
/* Set up the buffer to contain the portion of the link_map
|
832 |
|
|
structure that gdb cares about. Note that this is not the
|
833 |
|
|
whole link_map structure. */
|
834 |
|
|
objfile_lm_info.lm = xzalloc (lmo->link_map_size);
|
835 |
|
|
make_cleanup (xfree, objfile_lm_info.lm);
|
836 |
|
|
|
837 |
|
|
/* Read the link map into our internal structure. */
|
838 |
|
|
read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
|
839 |
|
|
|
840 |
|
|
/* Read address of name from target memory to GDB. */
|
841 |
|
|
read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
|
842 |
|
|
|
843 |
|
|
/* Extract this object's name. */
|
844 |
|
|
name_address = extract_typed_address (l_name_buf,
|
845 |
|
|
builtin_type_void_data_ptr);
|
846 |
|
|
target_read_string (name_address, &buffer,
|
847 |
|
|
SO_NAME_MAX_PATH_SIZE - 1, &errcode);
|
848 |
|
|
make_cleanup (xfree, buffer);
|
849 |
|
|
if (errcode != 0)
|
850 |
|
|
warning (_("Can't read pathname for load map: %s."),
|
851 |
|
|
safe_strerror (errcode));
|
852 |
|
|
else
|
853 |
|
|
{
|
854 |
|
|
/* Is this the linkmap for the file we want? */
|
855 |
|
|
/* If the file is not a shared library and has no name,
|
856 |
|
|
we are sure it is the main executable, so we return that. */
|
857 |
|
|
|
858 |
|
|
if (buffer
|
859 |
|
|
&& ((strcmp (buffer, objfile->name) == 0)
|
860 |
|
|
|| (!(objfile->flags & OBJF_SHARED)
|
861 |
|
|
&& (strcmp (buffer, "") == 0))))
|
862 |
|
|
{
|
863 |
|
|
do_cleanups (old_chain);
|
864 |
|
|
return lm;
|
865 |
|
|
}
|
866 |
|
|
}
|
867 |
|
|
/* Not the file we wanted, continue checking. */
|
868 |
|
|
lm = extract_typed_address (objfile_lm_info.lm + lmo->l_next_offset,
|
869 |
|
|
builtin_type_void_data_ptr);
|
870 |
|
|
do_cleanups (old_chain);
|
871 |
|
|
}
|
872 |
|
|
return 0;
|
873 |
|
|
}
|
874 |
|
|
|
875 |
|
|
/* On some systems, the only way to recognize the link map entry for
|
876 |
|
|
the main executable file is by looking at its name. Return
|
877 |
|
|
non-zero iff SONAME matches one of the known main executable names. */
|
878 |
|
|
|
879 |
|
|
static int
|
880 |
|
|
match_main (char *soname)
|
881 |
|
|
{
|
882 |
|
|
char **mainp;
|
883 |
|
|
|
884 |
|
|
for (mainp = main_name_list; *mainp != NULL; mainp++)
|
885 |
|
|
{
|
886 |
|
|
if (strcmp (soname, *mainp) == 0)
|
887 |
|
|
return (1);
|
888 |
|
|
}
|
889 |
|
|
|
890 |
|
|
return (0);
|
891 |
|
|
}
|
892 |
|
|
|
893 |
|
|
/* Return 1 if PC lies in the dynamic symbol resolution code of the
|
894 |
|
|
SVR4 run time loader. */
|
895 |
|
|
static CORE_ADDR interp_text_sect_low;
|
896 |
|
|
static CORE_ADDR interp_text_sect_high;
|
897 |
|
|
static CORE_ADDR interp_plt_sect_low;
|
898 |
|
|
static CORE_ADDR interp_plt_sect_high;
|
899 |
|
|
|
900 |
|
|
int
|
901 |
|
|
svr4_in_dynsym_resolve_code (CORE_ADDR pc)
|
902 |
|
|
{
|
903 |
|
|
return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
|
904 |
|
|
|| (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
|
905 |
|
|
|| in_plt_section (pc, NULL));
|
906 |
|
|
}
|
907 |
|
|
|
908 |
|
|
/* Given an executable's ABFD and target, compute the entry-point
|
909 |
|
|
address. */
|
910 |
|
|
|
911 |
|
|
static CORE_ADDR
|
912 |
|
|
exec_entry_point (struct bfd *abfd, struct target_ops *targ)
|
913 |
|
|
{
|
914 |
|
|
/* KevinB wrote ... for most targets, the address returned by
|
915 |
|
|
bfd_get_start_address() is the entry point for the start
|
916 |
|
|
function. But, for some targets, bfd_get_start_address() returns
|
917 |
|
|
the address of a function descriptor from which the entry point
|
918 |
|
|
address may be extracted. This address is extracted by
|
919 |
|
|
gdbarch_convert_from_func_ptr_addr(). The method
|
920 |
|
|
gdbarch_convert_from_func_ptr_addr() is the merely the identify
|
921 |
|
|
function for targets which don't use function descriptors. */
|
922 |
|
|
return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
|
923 |
|
|
bfd_get_start_address (abfd),
|
924 |
|
|
targ);
|
925 |
|
|
}
|
926 |
|
|
|
927 |
|
|
/*
|
928 |
|
|
|
929 |
|
|
LOCAL FUNCTION
|
930 |
|
|
|
931 |
|
|
enable_break -- arrange for dynamic linker to hit breakpoint
|
932 |
|
|
|
933 |
|
|
SYNOPSIS
|
934 |
|
|
|
935 |
|
|
int enable_break (void)
|
936 |
|
|
|
937 |
|
|
DESCRIPTION
|
938 |
|
|
|
939 |
|
|
Both the SunOS and the SVR4 dynamic linkers have, as part of their
|
940 |
|
|
debugger interface, support for arranging for the inferior to hit
|
941 |
|
|
a breakpoint after mapping in the shared libraries. This function
|
942 |
|
|
enables that breakpoint.
|
943 |
|
|
|
944 |
|
|
For SunOS, there is a special flag location (in_debugger) which we
|
945 |
|
|
set to 1. When the dynamic linker sees this flag set, it will set
|
946 |
|
|
a breakpoint at a location known only to itself, after saving the
|
947 |
|
|
original contents of that place and the breakpoint address itself,
|
948 |
|
|
in it's own internal structures. When we resume the inferior, it
|
949 |
|
|
will eventually take a SIGTRAP when it runs into the breakpoint.
|
950 |
|
|
We handle this (in a different place) by restoring the contents of
|
951 |
|
|
the breakpointed location (which is only known after it stops),
|
952 |
|
|
chasing around to locate the shared libraries that have been
|
953 |
|
|
loaded, then resuming.
|
954 |
|
|
|
955 |
|
|
For SVR4, the debugger interface structure contains a member (r_brk)
|
956 |
|
|
which is statically initialized at the time the shared library is
|
957 |
|
|
built, to the offset of a function (_r_debug_state) which is guaran-
|
958 |
|
|
teed to be called once before mapping in a library, and again when
|
959 |
|
|
the mapping is complete. At the time we are examining this member,
|
960 |
|
|
it contains only the unrelocated offset of the function, so we have
|
961 |
|
|
to do our own relocation. Later, when the dynamic linker actually
|
962 |
|
|
runs, it relocates r_brk to be the actual address of _r_debug_state().
|
963 |
|
|
|
964 |
|
|
The debugger interface structure also contains an enumeration which
|
965 |
|
|
is set to either RT_ADD or RT_DELETE prior to changing the mapping,
|
966 |
|
|
depending upon whether or not the library is being mapped or unmapped,
|
967 |
|
|
and then set to RT_CONSISTENT after the library is mapped/unmapped.
|
968 |
|
|
*/
|
969 |
|
|
|
970 |
|
|
static int
|
971 |
|
|
enable_break (void)
|
972 |
|
|
{
|
973 |
|
|
#ifdef BKPT_AT_SYMBOL
|
974 |
|
|
|
975 |
|
|
struct minimal_symbol *msymbol;
|
976 |
|
|
char **bkpt_namep;
|
977 |
|
|
asection *interp_sect;
|
978 |
|
|
CORE_ADDR sym_addr;
|
979 |
|
|
|
980 |
|
|
/* First, remove all the solib event breakpoints. Their addresses
|
981 |
|
|
may have changed since the last time we ran the program. */
|
982 |
|
|
remove_solib_event_breakpoints ();
|
983 |
|
|
|
984 |
|
|
interp_text_sect_low = interp_text_sect_high = 0;
|
985 |
|
|
interp_plt_sect_low = interp_plt_sect_high = 0;
|
986 |
|
|
|
987 |
|
|
/* If we already have a shared library list in the target, and
|
988 |
|
|
r_debug contains r_brk, set the breakpoint there - this should
|
989 |
|
|
mean r_brk has already been relocated. Assume the dynamic linker
|
990 |
|
|
is the object containing r_brk. */
|
991 |
|
|
|
992 |
|
|
solib_add (NULL, 0, ¤t_target, auto_solib_add);
|
993 |
|
|
sym_addr = 0;
|
994 |
|
|
if (debug_base && solib_svr4_r_map () != 0)
|
995 |
|
|
sym_addr = solib_svr4_r_brk ();
|
996 |
|
|
|
997 |
|
|
if (sym_addr != 0)
|
998 |
|
|
{
|
999 |
|
|
struct obj_section *os;
|
1000 |
|
|
|
1001 |
|
|
sym_addr = gdbarch_addr_bits_remove
|
1002 |
|
|
(current_gdbarch, gdbarch_convert_from_func_ptr_addr (current_gdbarch,
|
1003 |
|
|
sym_addr,
|
1004 |
|
|
¤t_target));
|
1005 |
|
|
|
1006 |
|
|
os = find_pc_section (sym_addr);
|
1007 |
|
|
if (os != NULL)
|
1008 |
|
|
{
|
1009 |
|
|
/* Record the relocated start and end address of the dynamic linker
|
1010 |
|
|
text and plt section for svr4_in_dynsym_resolve_code. */
|
1011 |
|
|
bfd *tmp_bfd;
|
1012 |
|
|
CORE_ADDR load_addr;
|
1013 |
|
|
|
1014 |
|
|
tmp_bfd = os->objfile->obfd;
|
1015 |
|
|
load_addr = ANOFFSET (os->objfile->section_offsets,
|
1016 |
|
|
os->objfile->sect_index_text);
|
1017 |
|
|
|
1018 |
|
|
interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
|
1019 |
|
|
if (interp_sect)
|
1020 |
|
|
{
|
1021 |
|
|
interp_text_sect_low =
|
1022 |
|
|
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
|
1023 |
|
|
interp_text_sect_high =
|
1024 |
|
|
interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
|
1025 |
|
|
}
|
1026 |
|
|
interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
|
1027 |
|
|
if (interp_sect)
|
1028 |
|
|
{
|
1029 |
|
|
interp_plt_sect_low =
|
1030 |
|
|
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
|
1031 |
|
|
interp_plt_sect_high =
|
1032 |
|
|
interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
|
1033 |
|
|
}
|
1034 |
|
|
|
1035 |
|
|
create_solib_event_breakpoint (sym_addr);
|
1036 |
|
|
return 1;
|
1037 |
|
|
}
|
1038 |
|
|
}
|
1039 |
|
|
|
1040 |
|
|
/* Find the .interp section; if not found, warn the user and drop
|
1041 |
|
|
into the old breakpoint at symbol code. */
|
1042 |
|
|
interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
|
1043 |
|
|
if (interp_sect)
|
1044 |
|
|
{
|
1045 |
|
|
unsigned int interp_sect_size;
|
1046 |
|
|
char *buf;
|
1047 |
|
|
CORE_ADDR load_addr = 0;
|
1048 |
|
|
int load_addr_found = 0;
|
1049 |
|
|
int loader_found_in_list = 0;
|
1050 |
|
|
struct so_list *so;
|
1051 |
|
|
bfd *tmp_bfd = NULL;
|
1052 |
|
|
struct target_ops *tmp_bfd_target;
|
1053 |
|
|
int tmp_fd = -1;
|
1054 |
|
|
char *tmp_pathname = NULL;
|
1055 |
|
|
|
1056 |
|
|
/* Read the contents of the .interp section into a local buffer;
|
1057 |
|
|
the contents specify the dynamic linker this program uses. */
|
1058 |
|
|
sym_addr = 0;
|
1059 |
|
|
interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
|
1060 |
|
|
buf = alloca (interp_sect_size);
|
1061 |
|
|
bfd_get_section_contents (exec_bfd, interp_sect,
|
1062 |
|
|
buf, 0, interp_sect_size);
|
1063 |
|
|
|
1064 |
|
|
/* Now we need to figure out where the dynamic linker was
|
1065 |
|
|
loaded so that we can load its symbols and place a breakpoint
|
1066 |
|
|
in the dynamic linker itself.
|
1067 |
|
|
|
1068 |
|
|
This address is stored on the stack. However, I've been unable
|
1069 |
|
|
to find any magic formula to find it for Solaris (appears to
|
1070 |
|
|
be trivial on GNU/Linux). Therefore, we have to try an alternate
|
1071 |
|
|
mechanism to find the dynamic linker's base address. */
|
1072 |
|
|
|
1073 |
|
|
tmp_fd = solib_open (buf, &tmp_pathname);
|
1074 |
|
|
if (tmp_fd >= 0)
|
1075 |
|
|
tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
|
1076 |
|
|
|
1077 |
|
|
if (tmp_bfd == NULL)
|
1078 |
|
|
goto bkpt_at_symbol;
|
1079 |
|
|
|
1080 |
|
|
/* Make sure the dynamic linker's really a useful object. */
|
1081 |
|
|
if (!bfd_check_format (tmp_bfd, bfd_object))
|
1082 |
|
|
{
|
1083 |
|
|
warning (_("Unable to grok dynamic linker %s as an object file"), buf);
|
1084 |
|
|
bfd_close (tmp_bfd);
|
1085 |
|
|
goto bkpt_at_symbol;
|
1086 |
|
|
}
|
1087 |
|
|
|
1088 |
|
|
/* Now convert the TMP_BFD into a target. That way target, as
|
1089 |
|
|
well as BFD operations can be used. Note that closing the
|
1090 |
|
|
target will also close the underlying bfd. */
|
1091 |
|
|
tmp_bfd_target = target_bfd_reopen (tmp_bfd);
|
1092 |
|
|
|
1093 |
|
|
/* On a running target, we can get the dynamic linker's base
|
1094 |
|
|
address from the shared library table. */
|
1095 |
|
|
so = master_so_list ();
|
1096 |
|
|
while (so)
|
1097 |
|
|
{
|
1098 |
|
|
if (strcmp (buf, so->so_original_name) == 0)
|
1099 |
|
|
{
|
1100 |
|
|
load_addr_found = 1;
|
1101 |
|
|
loader_found_in_list = 1;
|
1102 |
|
|
load_addr = LM_ADDR_CHECK (so, tmp_bfd);
|
1103 |
|
|
break;
|
1104 |
|
|
}
|
1105 |
|
|
so = so->next;
|
1106 |
|
|
}
|
1107 |
|
|
|
1108 |
|
|
/* If we were not able to find the base address of the loader
|
1109 |
|
|
from our so_list, then try using the AT_BASE auxilliary entry. */
|
1110 |
|
|
if (!load_addr_found)
|
1111 |
|
|
if (target_auxv_search (¤t_target, AT_BASE, &load_addr) > 0)
|
1112 |
|
|
load_addr_found = 1;
|
1113 |
|
|
|
1114 |
|
|
/* Otherwise we find the dynamic linker's base address by examining
|
1115 |
|
|
the current pc (which should point at the entry point for the
|
1116 |
|
|
dynamic linker) and subtracting the offset of the entry point.
|
1117 |
|
|
|
1118 |
|
|
This is more fragile than the previous approaches, but is a good
|
1119 |
|
|
fallback method because it has actually been working well in
|
1120 |
|
|
most cases. */
|
1121 |
|
|
if (!load_addr_found)
|
1122 |
|
|
load_addr = (read_pc ()
|
1123 |
|
|
- exec_entry_point (tmp_bfd, tmp_bfd_target));
|
1124 |
|
|
|
1125 |
|
|
if (!loader_found_in_list)
|
1126 |
|
|
{
|
1127 |
|
|
debug_loader_name = xstrdup (buf);
|
1128 |
|
|
debug_loader_offset_p = 1;
|
1129 |
|
|
debug_loader_offset = load_addr;
|
1130 |
|
|
solib_add (NULL, 0, ¤t_target, auto_solib_add);
|
1131 |
|
|
}
|
1132 |
|
|
|
1133 |
|
|
/* Record the relocated start and end address of the dynamic linker
|
1134 |
|
|
text and plt section for svr4_in_dynsym_resolve_code. */
|
1135 |
|
|
interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
|
1136 |
|
|
if (interp_sect)
|
1137 |
|
|
{
|
1138 |
|
|
interp_text_sect_low =
|
1139 |
|
|
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
|
1140 |
|
|
interp_text_sect_high =
|
1141 |
|
|
interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
|
1142 |
|
|
}
|
1143 |
|
|
interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
|
1144 |
|
|
if (interp_sect)
|
1145 |
|
|
{
|
1146 |
|
|
interp_plt_sect_low =
|
1147 |
|
|
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
|
1148 |
|
|
interp_plt_sect_high =
|
1149 |
|
|
interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
/* Now try to set a breakpoint in the dynamic linker. */
|
1153 |
|
|
for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
|
1154 |
|
|
{
|
1155 |
|
|
sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
|
1156 |
|
|
if (sym_addr != 0)
|
1157 |
|
|
break;
|
1158 |
|
|
}
|
1159 |
|
|
|
1160 |
|
|
if (sym_addr != 0)
|
1161 |
|
|
/* Convert 'sym_addr' from a function pointer to an address.
|
1162 |
|
|
Because we pass tmp_bfd_target instead of the current
|
1163 |
|
|
target, this will always produce an unrelocated value. */
|
1164 |
|
|
sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
|
1165 |
|
|
sym_addr,
|
1166 |
|
|
tmp_bfd_target);
|
1167 |
|
|
|
1168 |
|
|
/* We're done with both the temporary bfd and target. Remember,
|
1169 |
|
|
closing the target closes the underlying bfd. */
|
1170 |
|
|
target_close (tmp_bfd_target, 0);
|
1171 |
|
|
|
1172 |
|
|
if (sym_addr != 0)
|
1173 |
|
|
{
|
1174 |
|
|
create_solib_event_breakpoint (load_addr + sym_addr);
|
1175 |
|
|
return 1;
|
1176 |
|
|
}
|
1177 |
|
|
|
1178 |
|
|
/* For whatever reason we couldn't set a breakpoint in the dynamic
|
1179 |
|
|
linker. Warn and drop into the old code. */
|
1180 |
|
|
bkpt_at_symbol:
|
1181 |
|
|
xfree (tmp_pathname);
|
1182 |
|
|
warning (_("Unable to find dynamic linker breakpoint function.\n"
|
1183 |
|
|
"GDB will be unable to debug shared library initializers\n"
|
1184 |
|
|
"and track explicitly loaded dynamic code."));
|
1185 |
|
|
}
|
1186 |
|
|
|
1187 |
|
|
/* Scan through the lists of symbols, trying to look up the symbol and
|
1188 |
|
|
set a breakpoint there. Terminate loop when we/if we succeed. */
|
1189 |
|
|
|
1190 |
|
|
for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
|
1191 |
|
|
{
|
1192 |
|
|
msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
|
1193 |
|
|
if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
|
1194 |
|
|
{
|
1195 |
|
|
create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
|
1196 |
|
|
return 1;
|
1197 |
|
|
}
|
1198 |
|
|
}
|
1199 |
|
|
|
1200 |
|
|
for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
|
1201 |
|
|
{
|
1202 |
|
|
msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
|
1203 |
|
|
if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
|
1204 |
|
|
{
|
1205 |
|
|
create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
|
1206 |
|
|
return 1;
|
1207 |
|
|
}
|
1208 |
|
|
}
|
1209 |
|
|
#endif /* BKPT_AT_SYMBOL */
|
1210 |
|
|
|
1211 |
|
|
return 0;
|
1212 |
|
|
}
|
1213 |
|
|
|
1214 |
|
|
/*
|
1215 |
|
|
|
1216 |
|
|
LOCAL FUNCTION
|
1217 |
|
|
|
1218 |
|
|
special_symbol_handling -- additional shared library symbol handling
|
1219 |
|
|
|
1220 |
|
|
SYNOPSIS
|
1221 |
|
|
|
1222 |
|
|
void special_symbol_handling ()
|
1223 |
|
|
|
1224 |
|
|
DESCRIPTION
|
1225 |
|
|
|
1226 |
|
|
Once the symbols from a shared object have been loaded in the usual
|
1227 |
|
|
way, we are called to do any system specific symbol handling that
|
1228 |
|
|
is needed.
|
1229 |
|
|
|
1230 |
|
|
For SunOS4, this consisted of grunging around in the dynamic
|
1231 |
|
|
linkers structures to find symbol definitions for "common" symbols
|
1232 |
|
|
and adding them to the minimal symbol table for the runtime common
|
1233 |
|
|
objfile.
|
1234 |
|
|
|
1235 |
|
|
However, for SVR4, there's nothing to do.
|
1236 |
|
|
|
1237 |
|
|
*/
|
1238 |
|
|
|
1239 |
|
|
static void
|
1240 |
|
|
svr4_special_symbol_handling (void)
|
1241 |
|
|
{
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
/* Relocate the main executable. This function should be called upon
|
1245 |
|
|
stopping the inferior process at the entry point to the program.
|
1246 |
|
|
The entry point from BFD is compared to the PC and if they are
|
1247 |
|
|
different, the main executable is relocated by the proper amount.
|
1248 |
|
|
|
1249 |
|
|
As written it will only attempt to relocate executables which
|
1250 |
|
|
lack interpreter sections. It seems likely that only dynamic
|
1251 |
|
|
linker executables will get relocated, though it should work
|
1252 |
|
|
properly for a position-independent static executable as well. */
|
1253 |
|
|
|
1254 |
|
|
static void
|
1255 |
|
|
svr4_relocate_main_executable (void)
|
1256 |
|
|
{
|
1257 |
|
|
asection *interp_sect;
|
1258 |
|
|
CORE_ADDR pc = read_pc ();
|
1259 |
|
|
|
1260 |
|
|
/* Decide if the objfile needs to be relocated. As indicated above,
|
1261 |
|
|
we will only be here when execution is stopped at the beginning
|
1262 |
|
|
of the program. Relocation is necessary if the address at which
|
1263 |
|
|
we are presently stopped differs from the start address stored in
|
1264 |
|
|
the executable AND there's no interpreter section. The condition
|
1265 |
|
|
regarding the interpreter section is very important because if
|
1266 |
|
|
there *is* an interpreter section, execution will begin there
|
1267 |
|
|
instead. When there is an interpreter section, the start address
|
1268 |
|
|
is (presumably) used by the interpreter at some point to start
|
1269 |
|
|
execution of the program.
|
1270 |
|
|
|
1271 |
|
|
If there is an interpreter, it is normal for it to be set to an
|
1272 |
|
|
arbitrary address at the outset. The job of finding it is
|
1273 |
|
|
handled in enable_break().
|
1274 |
|
|
|
1275 |
|
|
So, to summarize, relocations are necessary when there is no
|
1276 |
|
|
interpreter section and the start address obtained from the
|
1277 |
|
|
executable is different from the address at which GDB is
|
1278 |
|
|
currently stopped.
|
1279 |
|
|
|
1280 |
|
|
[ The astute reader will note that we also test to make sure that
|
1281 |
|
|
the executable in question has the DYNAMIC flag set. It is my
|
1282 |
|
|
opinion that this test is unnecessary (undesirable even). It
|
1283 |
|
|
was added to avoid inadvertent relocation of an executable
|
1284 |
|
|
whose e_type member in the ELF header is not ET_DYN. There may
|
1285 |
|
|
be a time in the future when it is desirable to do relocations
|
1286 |
|
|
on other types of files as well in which case this condition
|
1287 |
|
|
should either be removed or modified to accomodate the new file
|
1288 |
|
|
type. (E.g, an ET_EXEC executable which has been built to be
|
1289 |
|
|
position-independent could safely be relocated by the OS if
|
1290 |
|
|
desired. It is true that this violates the ABI, but the ABI
|
1291 |
|
|
has been known to be bent from time to time.) - Kevin, Nov 2000. ]
|
1292 |
|
|
*/
|
1293 |
|
|
|
1294 |
|
|
interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
|
1295 |
|
|
if (interp_sect == NULL
|
1296 |
|
|
&& (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
|
1297 |
|
|
&& (exec_entry_point (exec_bfd, &exec_ops) != pc))
|
1298 |
|
|
{
|
1299 |
|
|
struct cleanup *old_chain;
|
1300 |
|
|
struct section_offsets *new_offsets;
|
1301 |
|
|
int i, changed;
|
1302 |
|
|
CORE_ADDR displacement;
|
1303 |
|
|
|
1304 |
|
|
/* It is necessary to relocate the objfile. The amount to
|
1305 |
|
|
relocate by is simply the address at which we are stopped
|
1306 |
|
|
minus the starting address from the executable.
|
1307 |
|
|
|
1308 |
|
|
We relocate all of the sections by the same amount. This
|
1309 |
|
|
behavior is mandated by recent editions of the System V ABI.
|
1310 |
|
|
According to the System V Application Binary Interface,
|
1311 |
|
|
Edition 4.1, page 5-5:
|
1312 |
|
|
|
1313 |
|
|
... Though the system chooses virtual addresses for
|
1314 |
|
|
individual processes, it maintains the segments' relative
|
1315 |
|
|
positions. Because position-independent code uses relative
|
1316 |
|
|
addressesing between segments, the difference between
|
1317 |
|
|
virtual addresses in memory must match the difference
|
1318 |
|
|
between virtual addresses in the file. The difference
|
1319 |
|
|
between the virtual address of any segment in memory and
|
1320 |
|
|
the corresponding virtual address in the file is thus a
|
1321 |
|
|
single constant value for any one executable or shared
|
1322 |
|
|
object in a given process. This difference is the base
|
1323 |
|
|
address. One use of the base address is to relocate the
|
1324 |
|
|
memory image of the program during dynamic linking.
|
1325 |
|
|
|
1326 |
|
|
The same language also appears in Edition 4.0 of the System V
|
1327 |
|
|
ABI and is left unspecified in some of the earlier editions. */
|
1328 |
|
|
|
1329 |
|
|
displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
|
1330 |
|
|
changed = 0;
|
1331 |
|
|
|
1332 |
|
|
new_offsets = xcalloc (symfile_objfile->num_sections,
|
1333 |
|
|
sizeof (struct section_offsets));
|
1334 |
|
|
old_chain = make_cleanup (xfree, new_offsets);
|
1335 |
|
|
|
1336 |
|
|
for (i = 0; i < symfile_objfile->num_sections; i++)
|
1337 |
|
|
{
|
1338 |
|
|
if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
|
1339 |
|
|
changed = 1;
|
1340 |
|
|
new_offsets->offsets[i] = displacement;
|
1341 |
|
|
}
|
1342 |
|
|
|
1343 |
|
|
if (changed)
|
1344 |
|
|
objfile_relocate (symfile_objfile, new_offsets);
|
1345 |
|
|
|
1346 |
|
|
do_cleanups (old_chain);
|
1347 |
|
|
}
|
1348 |
|
|
}
|
1349 |
|
|
|
1350 |
|
|
/*
|
1351 |
|
|
|
1352 |
|
|
GLOBAL FUNCTION
|
1353 |
|
|
|
1354 |
|
|
svr4_solib_create_inferior_hook -- shared library startup support
|
1355 |
|
|
|
1356 |
|
|
SYNOPSIS
|
1357 |
|
|
|
1358 |
|
|
void svr4_solib_create_inferior_hook ()
|
1359 |
|
|
|
1360 |
|
|
DESCRIPTION
|
1361 |
|
|
|
1362 |
|
|
When gdb starts up the inferior, it nurses it along (through the
|
1363 |
|
|
shell) until it is ready to execute it's first instruction. At this
|
1364 |
|
|
point, this function gets called via expansion of the macro
|
1365 |
|
|
SOLIB_CREATE_INFERIOR_HOOK.
|
1366 |
|
|
|
1367 |
|
|
For SunOS executables, this first instruction is typically the
|
1368 |
|
|
one at "_start", or a similar text label, regardless of whether
|
1369 |
|
|
the executable is statically or dynamically linked. The runtime
|
1370 |
|
|
startup code takes care of dynamically linking in any shared
|
1371 |
|
|
libraries, once gdb allows the inferior to continue.
|
1372 |
|
|
|
1373 |
|
|
For SVR4 executables, this first instruction is either the first
|
1374 |
|
|
instruction in the dynamic linker (for dynamically linked
|
1375 |
|
|
executables) or the instruction at "start" for statically linked
|
1376 |
|
|
executables. For dynamically linked executables, the system
|
1377 |
|
|
first exec's /lib/libc.so.N, which contains the dynamic linker,
|
1378 |
|
|
and starts it running. The dynamic linker maps in any needed
|
1379 |
|
|
shared libraries, maps in the actual user executable, and then
|
1380 |
|
|
jumps to "start" in the user executable.
|
1381 |
|
|
|
1382 |
|
|
For both SunOS shared libraries, and SVR4 shared libraries, we
|
1383 |
|
|
can arrange to cooperate with the dynamic linker to discover the
|
1384 |
|
|
names of shared libraries that are dynamically linked, and the
|
1385 |
|
|
base addresses to which they are linked.
|
1386 |
|
|
|
1387 |
|
|
This function is responsible for discovering those names and
|
1388 |
|
|
addresses, and saving sufficient information about them to allow
|
1389 |
|
|
their symbols to be read at a later time.
|
1390 |
|
|
|
1391 |
|
|
FIXME
|
1392 |
|
|
|
1393 |
|
|
Between enable_break() and disable_break(), this code does not
|
1394 |
|
|
properly handle hitting breakpoints which the user might have
|
1395 |
|
|
set in the startup code or in the dynamic linker itself. Proper
|
1396 |
|
|
handling will probably have to wait until the implementation is
|
1397 |
|
|
changed to use the "breakpoint handler function" method.
|
1398 |
|
|
|
1399 |
|
|
Also, what if child has exit()ed? Must exit loop somehow.
|
1400 |
|
|
*/
|
1401 |
|
|
|
1402 |
|
|
static void
|
1403 |
|
|
svr4_solib_create_inferior_hook (void)
|
1404 |
|
|
{
|
1405 |
|
|
/* Relocate the main executable if necessary. */
|
1406 |
|
|
svr4_relocate_main_executable ();
|
1407 |
|
|
|
1408 |
|
|
if (!svr4_have_link_map_offsets ())
|
1409 |
|
|
return;
|
1410 |
|
|
|
1411 |
|
|
if (!enable_break ())
|
1412 |
|
|
return;
|
1413 |
|
|
|
1414 |
|
|
#if defined(_SCO_DS)
|
1415 |
|
|
/* SCO needs the loop below, other systems should be using the
|
1416 |
|
|
special shared library breakpoints and the shared library breakpoint
|
1417 |
|
|
service routine.
|
1418 |
|
|
|
1419 |
|
|
Now run the target. It will eventually hit the breakpoint, at
|
1420 |
|
|
which point all of the libraries will have been mapped in and we
|
1421 |
|
|
can go groveling around in the dynamic linker structures to find
|
1422 |
|
|
out what we need to know about them. */
|
1423 |
|
|
|
1424 |
|
|
clear_proceed_status ();
|
1425 |
|
|
stop_soon = STOP_QUIETLY;
|
1426 |
|
|
stop_signal = TARGET_SIGNAL_0;
|
1427 |
|
|
do
|
1428 |
|
|
{
|
1429 |
|
|
target_resume (pid_to_ptid (-1), 0, stop_signal);
|
1430 |
|
|
wait_for_inferior (0);
|
1431 |
|
|
}
|
1432 |
|
|
while (stop_signal != TARGET_SIGNAL_TRAP);
|
1433 |
|
|
stop_soon = NO_STOP_QUIETLY;
|
1434 |
|
|
#endif /* defined(_SCO_DS) */
|
1435 |
|
|
}
|
1436 |
|
|
|
1437 |
|
|
static void
|
1438 |
|
|
svr4_clear_solib (void)
|
1439 |
|
|
{
|
1440 |
|
|
debug_base = 0;
|
1441 |
|
|
debug_loader_offset_p = 0;
|
1442 |
|
|
debug_loader_offset = 0;
|
1443 |
|
|
xfree (debug_loader_name);
|
1444 |
|
|
debug_loader_name = NULL;
|
1445 |
|
|
}
|
1446 |
|
|
|
1447 |
|
|
static void
|
1448 |
|
|
svr4_free_so (struct so_list *so)
|
1449 |
|
|
{
|
1450 |
|
|
xfree (so->lm_info->lm);
|
1451 |
|
|
xfree (so->lm_info);
|
1452 |
|
|
}
|
1453 |
|
|
|
1454 |
|
|
|
1455 |
|
|
/* Clear any bits of ADDR that wouldn't fit in a target-format
|
1456 |
|
|
data pointer. "Data pointer" here refers to whatever sort of
|
1457 |
|
|
address the dynamic linker uses to manage its sections. At the
|
1458 |
|
|
moment, we don't support shared libraries on any processors where
|
1459 |
|
|
code and data pointers are different sizes.
|
1460 |
|
|
|
1461 |
|
|
This isn't really the right solution. What we really need here is
|
1462 |
|
|
a way to do arithmetic on CORE_ADDR values that respects the
|
1463 |
|
|
natural pointer/address correspondence. (For example, on the MIPS,
|
1464 |
|
|
converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
|
1465 |
|
|
sign-extend the value. There, simply truncating the bits above
|
1466 |
|
|
gdbarch_ptr_bit, as we do below, is no good.) This should probably
|
1467 |
|
|
be a new gdbarch method or something. */
|
1468 |
|
|
static CORE_ADDR
|
1469 |
|
|
svr4_truncate_ptr (CORE_ADDR addr)
|
1470 |
|
|
{
|
1471 |
|
|
if (gdbarch_ptr_bit (current_gdbarch) == sizeof (CORE_ADDR) * 8)
|
1472 |
|
|
/* We don't need to truncate anything, and the bit twiddling below
|
1473 |
|
|
will fail due to overflow problems. */
|
1474 |
|
|
return addr;
|
1475 |
|
|
else
|
1476 |
|
|
return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (current_gdbarch)) - 1);
|
1477 |
|
|
}
|
1478 |
|
|
|
1479 |
|
|
|
1480 |
|
|
static void
|
1481 |
|
|
svr4_relocate_section_addresses (struct so_list *so,
|
1482 |
|
|
struct section_table *sec)
|
1483 |
|
|
{
|
1484 |
|
|
sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
|
1485 |
|
|
sec->bfd));
|
1486 |
|
|
sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
|
1487 |
|
|
sec->bfd));
|
1488 |
|
|
}
|
1489 |
|
|
|
1490 |
|
|
|
1491 |
|
|
/* Architecture-specific operations. */
|
1492 |
|
|
|
1493 |
|
|
/* Per-architecture data key. */
|
1494 |
|
|
static struct gdbarch_data *solib_svr4_data;
|
1495 |
|
|
|
1496 |
|
|
struct solib_svr4_ops
|
1497 |
|
|
{
|
1498 |
|
|
/* Return a description of the layout of `struct link_map'. */
|
1499 |
|
|
struct link_map_offsets *(*fetch_link_map_offsets)(void);
|
1500 |
|
|
};
|
1501 |
|
|
|
1502 |
|
|
/* Return a default for the architecture-specific operations. */
|
1503 |
|
|
|
1504 |
|
|
static void *
|
1505 |
|
|
solib_svr4_init (struct obstack *obstack)
|
1506 |
|
|
{
|
1507 |
|
|
struct solib_svr4_ops *ops;
|
1508 |
|
|
|
1509 |
|
|
ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
|
1510 |
|
|
ops->fetch_link_map_offsets = NULL;
|
1511 |
|
|
return ops;
|
1512 |
|
|
}
|
1513 |
|
|
|
1514 |
|
|
/* Set the architecture-specific `struct link_map_offsets' fetcher for
|
1515 |
|
|
GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
|
1516 |
|
|
|
1517 |
|
|
void
|
1518 |
|
|
set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
|
1519 |
|
|
struct link_map_offsets *(*flmo) (void))
|
1520 |
|
|
{
|
1521 |
|
|
struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
|
1522 |
|
|
|
1523 |
|
|
ops->fetch_link_map_offsets = flmo;
|
1524 |
|
|
|
1525 |
|
|
set_solib_ops (gdbarch, &svr4_so_ops);
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
/* Fetch a link_map_offsets structure using the architecture-specific
|
1529 |
|
|
`struct link_map_offsets' fetcher. */
|
1530 |
|
|
|
1531 |
|
|
static struct link_map_offsets *
|
1532 |
|
|
svr4_fetch_link_map_offsets (void)
|
1533 |
|
|
{
|
1534 |
|
|
struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
|
1535 |
|
|
|
1536 |
|
|
gdb_assert (ops->fetch_link_map_offsets);
|
1537 |
|
|
return ops->fetch_link_map_offsets ();
|
1538 |
|
|
}
|
1539 |
|
|
|
1540 |
|
|
/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
|
1541 |
|
|
|
1542 |
|
|
static int
|
1543 |
|
|
svr4_have_link_map_offsets (void)
|
1544 |
|
|
{
|
1545 |
|
|
struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
|
1546 |
|
|
return (ops->fetch_link_map_offsets != NULL);
|
1547 |
|
|
}
|
1548 |
|
|
|
1549 |
|
|
|
1550 |
|
|
/* Most OS'es that have SVR4-style ELF dynamic libraries define a
|
1551 |
|
|
`struct r_debug' and a `struct link_map' that are binary compatible
|
1552 |
|
|
with the origional SVR4 implementation. */
|
1553 |
|
|
|
1554 |
|
|
/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
|
1555 |
|
|
for an ILP32 SVR4 system. */
|
1556 |
|
|
|
1557 |
|
|
struct link_map_offsets *
|
1558 |
|
|
svr4_ilp32_fetch_link_map_offsets (void)
|
1559 |
|
|
{
|
1560 |
|
|
static struct link_map_offsets lmo;
|
1561 |
|
|
static struct link_map_offsets *lmp = NULL;
|
1562 |
|
|
|
1563 |
|
|
if (lmp == NULL)
|
1564 |
|
|
{
|
1565 |
|
|
lmp = &lmo;
|
1566 |
|
|
|
1567 |
|
|
lmo.r_version_offset = 0;
|
1568 |
|
|
lmo.r_version_size = 4;
|
1569 |
|
|
lmo.r_map_offset = 4;
|
1570 |
|
|
lmo.r_brk_offset = 8;
|
1571 |
|
|
lmo.r_ldsomap_offset = 20;
|
1572 |
|
|
|
1573 |
|
|
/* Everything we need is in the first 20 bytes. */
|
1574 |
|
|
lmo.link_map_size = 20;
|
1575 |
|
|
lmo.l_addr_offset = 0;
|
1576 |
|
|
lmo.l_name_offset = 4;
|
1577 |
|
|
lmo.l_ld_offset = 8;
|
1578 |
|
|
lmo.l_next_offset = 12;
|
1579 |
|
|
lmo.l_prev_offset = 16;
|
1580 |
|
|
}
|
1581 |
|
|
|
1582 |
|
|
return lmp;
|
1583 |
|
|
}
|
1584 |
|
|
|
1585 |
|
|
/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
|
1586 |
|
|
for an LP64 SVR4 system. */
|
1587 |
|
|
|
1588 |
|
|
struct link_map_offsets *
|
1589 |
|
|
svr4_lp64_fetch_link_map_offsets (void)
|
1590 |
|
|
{
|
1591 |
|
|
static struct link_map_offsets lmo;
|
1592 |
|
|
static struct link_map_offsets *lmp = NULL;
|
1593 |
|
|
|
1594 |
|
|
if (lmp == NULL)
|
1595 |
|
|
{
|
1596 |
|
|
lmp = &lmo;
|
1597 |
|
|
|
1598 |
|
|
lmo.r_version_offset = 0;
|
1599 |
|
|
lmo.r_version_size = 4;
|
1600 |
|
|
lmo.r_map_offset = 8;
|
1601 |
|
|
lmo.r_brk_offset = 16;
|
1602 |
|
|
lmo.r_ldsomap_offset = 40;
|
1603 |
|
|
|
1604 |
|
|
/* Everything we need is in the first 40 bytes. */
|
1605 |
|
|
lmo.link_map_size = 40;
|
1606 |
|
|
lmo.l_addr_offset = 0;
|
1607 |
|
|
lmo.l_name_offset = 8;
|
1608 |
|
|
lmo.l_ld_offset = 16;
|
1609 |
|
|
lmo.l_next_offset = 24;
|
1610 |
|
|
lmo.l_prev_offset = 32;
|
1611 |
|
|
}
|
1612 |
|
|
|
1613 |
|
|
return lmp;
|
1614 |
|
|
}
|
1615 |
|
|
|
1616 |
|
|
|
1617 |
|
|
struct target_so_ops svr4_so_ops;
|
1618 |
|
|
|
1619 |
|
|
/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
|
1620 |
|
|
different rule for symbol lookup. The lookup begins here in the DSO, not in
|
1621 |
|
|
the main executable. */
|
1622 |
|
|
|
1623 |
|
|
static struct symbol *
|
1624 |
|
|
elf_lookup_lib_symbol (const struct objfile *objfile,
|
1625 |
|
|
const char *name,
|
1626 |
|
|
const char *linkage_name,
|
1627 |
|
|
const domain_enum domain, struct symtab **symtab)
|
1628 |
|
|
{
|
1629 |
|
|
if (objfile->obfd == NULL
|
1630 |
|
|
|| scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
|
1631 |
|
|
return NULL;
|
1632 |
|
|
|
1633 |
|
|
return lookup_global_symbol_from_objfile
|
1634 |
|
|
(objfile, name, linkage_name, domain, symtab);
|
1635 |
|
|
}
|
1636 |
|
|
|
1637 |
|
|
static int
|
1638 |
|
|
svr4_same (struct so_list *gdb, struct so_list *inferior)
|
1639 |
|
|
{
|
1640 |
|
|
if (! strcmp (gdb->so_original_name, inferior->so_original_name))
|
1641 |
|
|
return 1;
|
1642 |
|
|
|
1643 |
|
|
/* On Solaris, when starting inferior we think that dynamic linker is
|
1644 |
|
|
/usr/lib/ld.so.1, but later on, the table of loaded shared libraries
|
1645 |
|
|
contains /lib/ld.so.1. Sometimes one file is a link to another, but
|
1646 |
|
|
sometimes they have identical content, but are not linked to each
|
1647 |
|
|
other. We don't restrict this check for Solaris, but the chances
|
1648 |
|
|
of running into this situation elsewhere are very low. */
|
1649 |
|
|
if (strcmp (gdb->so_original_name, "/usr/lib/ld.so.1") == 0
|
1650 |
|
|
&& strcmp (inferior->so_original_name, "/lib/ld.so.1") == 0)
|
1651 |
|
|
return 1;
|
1652 |
|
|
|
1653 |
|
|
return 0;
|
1654 |
|
|
}
|
1655 |
|
|
|
1656 |
|
|
extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
|
1657 |
|
|
|
1658 |
|
|
void
|
1659 |
|
|
_initialize_svr4_solib (void)
|
1660 |
|
|
{
|
1661 |
|
|
solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
|
1662 |
|
|
|
1663 |
|
|
svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
|
1664 |
|
|
svr4_so_ops.free_so = svr4_free_so;
|
1665 |
|
|
svr4_so_ops.clear_solib = svr4_clear_solib;
|
1666 |
|
|
svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
|
1667 |
|
|
svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
|
1668 |
|
|
svr4_so_ops.current_sos = svr4_current_sos;
|
1669 |
|
|
svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
|
1670 |
|
|
svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
|
1671 |
|
|
svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
|
1672 |
|
|
svr4_so_ops.same = svr4_same;
|
1673 |
|
|
}
|