1 |
24 |
jeremybenn |
/* SPU target-dependent code for GDB, the GNU debugger.
|
2 |
|
|
Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
|
5 |
|
|
Based on a port by Sid Manning <sid@us.ibm.com>.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "arch-utils.h"
|
24 |
|
|
#include "gdbtypes.h"
|
25 |
|
|
#include "gdbcmd.h"
|
26 |
|
|
#include "gdbcore.h"
|
27 |
|
|
#include "gdb_string.h"
|
28 |
|
|
#include "gdb_assert.h"
|
29 |
|
|
#include "frame.h"
|
30 |
|
|
#include "frame-unwind.h"
|
31 |
|
|
#include "frame-base.h"
|
32 |
|
|
#include "trad-frame.h"
|
33 |
|
|
#include "symtab.h"
|
34 |
|
|
#include "symfile.h"
|
35 |
|
|
#include "value.h"
|
36 |
|
|
#include "inferior.h"
|
37 |
|
|
#include "dis-asm.h"
|
38 |
|
|
#include "objfiles.h"
|
39 |
|
|
#include "language.h"
|
40 |
|
|
#include "regcache.h"
|
41 |
|
|
#include "reggroups.h"
|
42 |
|
|
#include "floatformat.h"
|
43 |
|
|
#include "observer.h"
|
44 |
|
|
|
45 |
|
|
#include "spu-tdep.h"
|
46 |
|
|
|
47 |
|
|
|
48 |
|
|
/* The tdep structure. */
|
49 |
|
|
struct gdbarch_tdep
|
50 |
|
|
{
|
51 |
|
|
/* SPU-specific vector type. */
|
52 |
|
|
struct type *spu_builtin_type_vec128;
|
53 |
|
|
};
|
54 |
|
|
|
55 |
|
|
|
56 |
|
|
/* SPU-specific vector type. */
|
57 |
|
|
static struct type *
|
58 |
|
|
spu_builtin_type_vec128 (struct gdbarch *gdbarch)
|
59 |
|
|
{
|
60 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
61 |
|
|
|
62 |
|
|
if (!tdep->spu_builtin_type_vec128)
|
63 |
|
|
{
|
64 |
|
|
struct type *t;
|
65 |
|
|
|
66 |
|
|
t = init_composite_type ("__spu_builtin_type_vec128", TYPE_CODE_UNION);
|
67 |
|
|
append_composite_type_field (t, "uint128", builtin_type_int128);
|
68 |
|
|
append_composite_type_field (t, "v2_int64",
|
69 |
|
|
init_vector_type (builtin_type_int64, 2));
|
70 |
|
|
append_composite_type_field (t, "v4_int32",
|
71 |
|
|
init_vector_type (builtin_type_int32, 4));
|
72 |
|
|
append_composite_type_field (t, "v8_int16",
|
73 |
|
|
init_vector_type (builtin_type_int16, 8));
|
74 |
|
|
append_composite_type_field (t, "v16_int8",
|
75 |
|
|
init_vector_type (builtin_type_int8, 16));
|
76 |
|
|
append_composite_type_field (t, "v2_double",
|
77 |
|
|
init_vector_type (builtin_type_double, 2));
|
78 |
|
|
append_composite_type_field (t, "v4_float",
|
79 |
|
|
init_vector_type (builtin_type_float, 4));
|
80 |
|
|
|
81 |
|
|
TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
|
82 |
|
|
TYPE_NAME (t) = "spu_builtin_type_vec128";
|
83 |
|
|
|
84 |
|
|
tdep->spu_builtin_type_vec128 = t;
|
85 |
|
|
}
|
86 |
|
|
|
87 |
|
|
return tdep->spu_builtin_type_vec128;
|
88 |
|
|
}
|
89 |
|
|
|
90 |
|
|
|
91 |
|
|
/* The list of available "info spu " commands. */
|
92 |
|
|
static struct cmd_list_element *infospucmdlist = NULL;
|
93 |
|
|
|
94 |
|
|
/* Registers. */
|
95 |
|
|
|
96 |
|
|
static const char *
|
97 |
|
|
spu_register_name (struct gdbarch *gdbarch, int reg_nr)
|
98 |
|
|
{
|
99 |
|
|
static char *register_names[] =
|
100 |
|
|
{
|
101 |
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
102 |
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
103 |
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
104 |
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
105 |
|
|
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
|
106 |
|
|
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
|
107 |
|
|
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
|
108 |
|
|
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
|
109 |
|
|
"r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
|
110 |
|
|
"r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
|
111 |
|
|
"r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
|
112 |
|
|
"r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
|
113 |
|
|
"r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
|
114 |
|
|
"r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
|
115 |
|
|
"r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
|
116 |
|
|
"r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
|
117 |
|
|
"id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
|
118 |
|
|
};
|
119 |
|
|
|
120 |
|
|
if (reg_nr < 0)
|
121 |
|
|
return NULL;
|
122 |
|
|
if (reg_nr >= sizeof register_names / sizeof *register_names)
|
123 |
|
|
return NULL;
|
124 |
|
|
|
125 |
|
|
return register_names[reg_nr];
|
126 |
|
|
}
|
127 |
|
|
|
128 |
|
|
static struct type *
|
129 |
|
|
spu_register_type (struct gdbarch *gdbarch, int reg_nr)
|
130 |
|
|
{
|
131 |
|
|
if (reg_nr < SPU_NUM_GPRS)
|
132 |
|
|
return spu_builtin_type_vec128 (gdbarch);
|
133 |
|
|
|
134 |
|
|
switch (reg_nr)
|
135 |
|
|
{
|
136 |
|
|
case SPU_ID_REGNUM:
|
137 |
|
|
return builtin_type_uint32;
|
138 |
|
|
|
139 |
|
|
case SPU_PC_REGNUM:
|
140 |
|
|
return builtin_type_void_func_ptr;
|
141 |
|
|
|
142 |
|
|
case SPU_SP_REGNUM:
|
143 |
|
|
return builtin_type_void_data_ptr;
|
144 |
|
|
|
145 |
|
|
case SPU_FPSCR_REGNUM:
|
146 |
|
|
return builtin_type_uint128;
|
147 |
|
|
|
148 |
|
|
case SPU_SRR0_REGNUM:
|
149 |
|
|
return builtin_type_uint32;
|
150 |
|
|
|
151 |
|
|
case SPU_LSLR_REGNUM:
|
152 |
|
|
return builtin_type_uint32;
|
153 |
|
|
|
154 |
|
|
case SPU_DECR_REGNUM:
|
155 |
|
|
return builtin_type_uint32;
|
156 |
|
|
|
157 |
|
|
case SPU_DECR_STATUS_REGNUM:
|
158 |
|
|
return builtin_type_uint32;
|
159 |
|
|
|
160 |
|
|
default:
|
161 |
|
|
internal_error (__FILE__, __LINE__, "invalid regnum");
|
162 |
|
|
}
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
/* Pseudo registers for preferred slots - stack pointer. */
|
166 |
|
|
|
167 |
|
|
static void
|
168 |
|
|
spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
|
169 |
|
|
gdb_byte *buf)
|
170 |
|
|
{
|
171 |
|
|
gdb_byte reg[32];
|
172 |
|
|
char annex[32];
|
173 |
|
|
ULONGEST id;
|
174 |
|
|
|
175 |
|
|
regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
|
176 |
|
|
xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
|
177 |
|
|
memset (reg, 0, sizeof reg);
|
178 |
|
|
target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
179 |
|
|
reg, 0, sizeof reg);
|
180 |
|
|
|
181 |
|
|
store_unsigned_integer (buf, 4, strtoulst (reg, NULL, 16));
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
static void
|
185 |
|
|
spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
186 |
|
|
int regnum, gdb_byte *buf)
|
187 |
|
|
{
|
188 |
|
|
gdb_byte reg[16];
|
189 |
|
|
char annex[32];
|
190 |
|
|
ULONGEST id;
|
191 |
|
|
|
192 |
|
|
switch (regnum)
|
193 |
|
|
{
|
194 |
|
|
case SPU_SP_REGNUM:
|
195 |
|
|
regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
|
196 |
|
|
memcpy (buf, reg, 4);
|
197 |
|
|
break;
|
198 |
|
|
|
199 |
|
|
case SPU_FPSCR_REGNUM:
|
200 |
|
|
regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
|
201 |
|
|
xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
|
202 |
|
|
target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
|
203 |
|
|
break;
|
204 |
|
|
|
205 |
|
|
case SPU_SRR0_REGNUM:
|
206 |
|
|
spu_pseudo_register_read_spu (regcache, "srr0", buf);
|
207 |
|
|
break;
|
208 |
|
|
|
209 |
|
|
case SPU_LSLR_REGNUM:
|
210 |
|
|
spu_pseudo_register_read_spu (regcache, "lslr", buf);
|
211 |
|
|
break;
|
212 |
|
|
|
213 |
|
|
case SPU_DECR_REGNUM:
|
214 |
|
|
spu_pseudo_register_read_spu (regcache, "decr", buf);
|
215 |
|
|
break;
|
216 |
|
|
|
217 |
|
|
case SPU_DECR_STATUS_REGNUM:
|
218 |
|
|
spu_pseudo_register_read_spu (regcache, "decr_status", buf);
|
219 |
|
|
break;
|
220 |
|
|
|
221 |
|
|
default:
|
222 |
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
223 |
|
|
}
|
224 |
|
|
}
|
225 |
|
|
|
226 |
|
|
static void
|
227 |
|
|
spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
|
228 |
|
|
const gdb_byte *buf)
|
229 |
|
|
{
|
230 |
|
|
gdb_byte reg[32];
|
231 |
|
|
char annex[32];
|
232 |
|
|
ULONGEST id;
|
233 |
|
|
|
234 |
|
|
regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
|
235 |
|
|
xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
|
236 |
|
|
xsnprintf (reg, sizeof reg, "0x%s",
|
237 |
|
|
phex_nz (extract_unsigned_integer (buf, 4), 4));
|
238 |
|
|
target_write (¤t_target, TARGET_OBJECT_SPU, annex,
|
239 |
|
|
reg, 0, strlen (reg));
|
240 |
|
|
}
|
241 |
|
|
|
242 |
|
|
static void
|
243 |
|
|
spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
244 |
|
|
int regnum, const gdb_byte *buf)
|
245 |
|
|
{
|
246 |
|
|
gdb_byte reg[16];
|
247 |
|
|
char annex[32];
|
248 |
|
|
ULONGEST id;
|
249 |
|
|
|
250 |
|
|
switch (regnum)
|
251 |
|
|
{
|
252 |
|
|
case SPU_SP_REGNUM:
|
253 |
|
|
regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
|
254 |
|
|
memcpy (reg, buf, 4);
|
255 |
|
|
regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
|
256 |
|
|
break;
|
257 |
|
|
|
258 |
|
|
case SPU_FPSCR_REGNUM:
|
259 |
|
|
regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
|
260 |
|
|
xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
|
261 |
|
|
target_write (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
|
262 |
|
|
break;
|
263 |
|
|
|
264 |
|
|
case SPU_SRR0_REGNUM:
|
265 |
|
|
spu_pseudo_register_write_spu (regcache, "srr0", buf);
|
266 |
|
|
break;
|
267 |
|
|
|
268 |
|
|
case SPU_LSLR_REGNUM:
|
269 |
|
|
spu_pseudo_register_write_spu (regcache, "lslr", buf);
|
270 |
|
|
break;
|
271 |
|
|
|
272 |
|
|
case SPU_DECR_REGNUM:
|
273 |
|
|
spu_pseudo_register_write_spu (regcache, "decr", buf);
|
274 |
|
|
break;
|
275 |
|
|
|
276 |
|
|
case SPU_DECR_STATUS_REGNUM:
|
277 |
|
|
spu_pseudo_register_write_spu (regcache, "decr_status", buf);
|
278 |
|
|
break;
|
279 |
|
|
|
280 |
|
|
default:
|
281 |
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
282 |
|
|
}
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
/* Value conversion -- access scalar values at the preferred slot. */
|
286 |
|
|
|
287 |
|
|
static struct value *
|
288 |
|
|
spu_value_from_register (struct type *type, int regnum,
|
289 |
|
|
struct frame_info *frame)
|
290 |
|
|
{
|
291 |
|
|
struct value *value = default_value_from_register (type, regnum, frame);
|
292 |
|
|
int len = TYPE_LENGTH (type);
|
293 |
|
|
|
294 |
|
|
if (regnum < SPU_NUM_GPRS && len < 16)
|
295 |
|
|
{
|
296 |
|
|
int preferred_slot = len < 4 ? 4 - len : 0;
|
297 |
|
|
set_value_offset (value, preferred_slot);
|
298 |
|
|
}
|
299 |
|
|
|
300 |
|
|
return value;
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
/* Register groups. */
|
304 |
|
|
|
305 |
|
|
static int
|
306 |
|
|
spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
307 |
|
|
struct reggroup *group)
|
308 |
|
|
{
|
309 |
|
|
/* Registers displayed via 'info regs'. */
|
310 |
|
|
if (group == general_reggroup)
|
311 |
|
|
return 1;
|
312 |
|
|
|
313 |
|
|
/* Registers displayed via 'info float'. */
|
314 |
|
|
if (group == float_reggroup)
|
315 |
|
|
return 0;
|
316 |
|
|
|
317 |
|
|
/* Registers that need to be saved/restored in order to
|
318 |
|
|
push or pop frames. */
|
319 |
|
|
if (group == save_reggroup || group == restore_reggroup)
|
320 |
|
|
return 1;
|
321 |
|
|
|
322 |
|
|
return default_register_reggroup_p (gdbarch, regnum, group);
|
323 |
|
|
}
|
324 |
|
|
|
325 |
|
|
/* Address conversion. */
|
326 |
|
|
|
327 |
|
|
static CORE_ADDR
|
328 |
|
|
spu_pointer_to_address (struct type *type, const gdb_byte *buf)
|
329 |
|
|
{
|
330 |
|
|
ULONGEST addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
|
331 |
|
|
ULONGEST lslr = SPU_LS_SIZE - 1; /* Hard-wired LS size. */
|
332 |
|
|
|
333 |
|
|
if (target_has_registers && target_has_stack && target_has_memory)
|
334 |
|
|
lslr = get_frame_register_unsigned (get_selected_frame (NULL),
|
335 |
|
|
SPU_LSLR_REGNUM);
|
336 |
|
|
|
337 |
|
|
return addr & lslr;
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
static CORE_ADDR
|
341 |
|
|
spu_integer_to_address (struct gdbarch *gdbarch,
|
342 |
|
|
struct type *type, const gdb_byte *buf)
|
343 |
|
|
{
|
344 |
|
|
ULONGEST addr = unpack_long (type, buf);
|
345 |
|
|
ULONGEST lslr = SPU_LS_SIZE - 1; /* Hard-wired LS size. */
|
346 |
|
|
|
347 |
|
|
if (target_has_registers && target_has_stack && target_has_memory)
|
348 |
|
|
lslr = get_frame_register_unsigned (get_selected_frame (NULL),
|
349 |
|
|
SPU_LSLR_REGNUM);
|
350 |
|
|
|
351 |
|
|
return addr & lslr;
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
|
355 |
|
|
/* Decoding SPU instructions. */
|
356 |
|
|
|
357 |
|
|
enum
|
358 |
|
|
{
|
359 |
|
|
op_lqd = 0x34,
|
360 |
|
|
op_lqx = 0x3c4,
|
361 |
|
|
op_lqa = 0x61,
|
362 |
|
|
op_lqr = 0x67,
|
363 |
|
|
op_stqd = 0x24,
|
364 |
|
|
op_stqx = 0x144,
|
365 |
|
|
op_stqa = 0x41,
|
366 |
|
|
op_stqr = 0x47,
|
367 |
|
|
|
368 |
|
|
op_il = 0x081,
|
369 |
|
|
op_ila = 0x21,
|
370 |
|
|
op_a = 0x0c0,
|
371 |
|
|
op_ai = 0x1c,
|
372 |
|
|
|
373 |
|
|
op_selb = 0x4,
|
374 |
|
|
|
375 |
|
|
op_br = 0x64,
|
376 |
|
|
op_bra = 0x60,
|
377 |
|
|
op_brsl = 0x66,
|
378 |
|
|
op_brasl = 0x62,
|
379 |
|
|
op_brnz = 0x42,
|
380 |
|
|
op_brz = 0x40,
|
381 |
|
|
op_brhnz = 0x46,
|
382 |
|
|
op_brhz = 0x44,
|
383 |
|
|
op_bi = 0x1a8,
|
384 |
|
|
op_bisl = 0x1a9,
|
385 |
|
|
op_biz = 0x128,
|
386 |
|
|
op_binz = 0x129,
|
387 |
|
|
op_bihz = 0x12a,
|
388 |
|
|
op_bihnz = 0x12b,
|
389 |
|
|
};
|
390 |
|
|
|
391 |
|
|
static int
|
392 |
|
|
is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
|
393 |
|
|
{
|
394 |
|
|
if ((insn >> 21) == op)
|
395 |
|
|
{
|
396 |
|
|
*rt = insn & 127;
|
397 |
|
|
*ra = (insn >> 7) & 127;
|
398 |
|
|
*rb = (insn >> 14) & 127;
|
399 |
|
|
return 1;
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
return 0;
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
static int
|
406 |
|
|
is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
|
407 |
|
|
{
|
408 |
|
|
if ((insn >> 28) == op)
|
409 |
|
|
{
|
410 |
|
|
*rt = (insn >> 21) & 127;
|
411 |
|
|
*ra = (insn >> 7) & 127;
|
412 |
|
|
*rb = (insn >> 14) & 127;
|
413 |
|
|
*rc = insn & 127;
|
414 |
|
|
return 1;
|
415 |
|
|
}
|
416 |
|
|
|
417 |
|
|
return 0;
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
static int
|
421 |
|
|
is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
|
422 |
|
|
{
|
423 |
|
|
if ((insn >> 21) == op)
|
424 |
|
|
{
|
425 |
|
|
*rt = insn & 127;
|
426 |
|
|
*ra = (insn >> 7) & 127;
|
427 |
|
|
*i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
|
428 |
|
|
return 1;
|
429 |
|
|
}
|
430 |
|
|
|
431 |
|
|
return 0;
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
static int
|
435 |
|
|
is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
|
436 |
|
|
{
|
437 |
|
|
if ((insn >> 24) == op)
|
438 |
|
|
{
|
439 |
|
|
*rt = insn & 127;
|
440 |
|
|
*ra = (insn >> 7) & 127;
|
441 |
|
|
*i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
|
442 |
|
|
return 1;
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
return 0;
|
446 |
|
|
}
|
447 |
|
|
|
448 |
|
|
static int
|
449 |
|
|
is_ri16 (unsigned int insn, int op, int *rt, int *i16)
|
450 |
|
|
{
|
451 |
|
|
if ((insn >> 23) == op)
|
452 |
|
|
{
|
453 |
|
|
*rt = insn & 127;
|
454 |
|
|
*i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
|
455 |
|
|
return 1;
|
456 |
|
|
}
|
457 |
|
|
|
458 |
|
|
return 0;
|
459 |
|
|
}
|
460 |
|
|
|
461 |
|
|
static int
|
462 |
|
|
is_ri18 (unsigned int insn, int op, int *rt, int *i18)
|
463 |
|
|
{
|
464 |
|
|
if ((insn >> 25) == op)
|
465 |
|
|
{
|
466 |
|
|
*rt = insn & 127;
|
467 |
|
|
*i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
|
468 |
|
|
return 1;
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
return 0;
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
static int
|
475 |
|
|
is_branch (unsigned int insn, int *offset, int *reg)
|
476 |
|
|
{
|
477 |
|
|
int rt, i7, i16;
|
478 |
|
|
|
479 |
|
|
if (is_ri16 (insn, op_br, &rt, &i16)
|
480 |
|
|
|| is_ri16 (insn, op_brsl, &rt, &i16)
|
481 |
|
|
|| is_ri16 (insn, op_brnz, &rt, &i16)
|
482 |
|
|
|| is_ri16 (insn, op_brz, &rt, &i16)
|
483 |
|
|
|| is_ri16 (insn, op_brhnz, &rt, &i16)
|
484 |
|
|
|| is_ri16 (insn, op_brhz, &rt, &i16))
|
485 |
|
|
{
|
486 |
|
|
*reg = SPU_PC_REGNUM;
|
487 |
|
|
*offset = i16 << 2;
|
488 |
|
|
return 1;
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
if (is_ri16 (insn, op_bra, &rt, &i16)
|
492 |
|
|
|| is_ri16 (insn, op_brasl, &rt, &i16))
|
493 |
|
|
{
|
494 |
|
|
*reg = -1;
|
495 |
|
|
*offset = i16 << 2;
|
496 |
|
|
return 1;
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
if (is_ri7 (insn, op_bi, &rt, reg, &i7)
|
500 |
|
|
|| is_ri7 (insn, op_bisl, &rt, reg, &i7)
|
501 |
|
|
|| is_ri7 (insn, op_biz, &rt, reg, &i7)
|
502 |
|
|
|| is_ri7 (insn, op_binz, &rt, reg, &i7)
|
503 |
|
|
|| is_ri7 (insn, op_bihz, &rt, reg, &i7)
|
504 |
|
|
|| is_ri7 (insn, op_bihnz, &rt, reg, &i7))
|
505 |
|
|
{
|
506 |
|
|
*offset = 0;
|
507 |
|
|
return 1;
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
return 0;
|
511 |
|
|
}
|
512 |
|
|
|
513 |
|
|
|
514 |
|
|
/* Prolog parsing. */
|
515 |
|
|
|
516 |
|
|
struct spu_prologue_data
|
517 |
|
|
{
|
518 |
|
|
/* Stack frame size. -1 if analysis was unsuccessful. */
|
519 |
|
|
int size;
|
520 |
|
|
|
521 |
|
|
/* How to find the CFA. The CFA is equal to SP at function entry. */
|
522 |
|
|
int cfa_reg;
|
523 |
|
|
int cfa_offset;
|
524 |
|
|
|
525 |
|
|
/* Offset relative to CFA where a register is saved. -1 if invalid. */
|
526 |
|
|
int reg_offset[SPU_NUM_GPRS];
|
527 |
|
|
};
|
528 |
|
|
|
529 |
|
|
static CORE_ADDR
|
530 |
|
|
spu_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR end_pc,
|
531 |
|
|
struct spu_prologue_data *data)
|
532 |
|
|
{
|
533 |
|
|
int found_sp = 0;
|
534 |
|
|
int found_fp = 0;
|
535 |
|
|
int found_lr = 0;
|
536 |
|
|
int reg_immed[SPU_NUM_GPRS];
|
537 |
|
|
gdb_byte buf[16];
|
538 |
|
|
CORE_ADDR prolog_pc = start_pc;
|
539 |
|
|
CORE_ADDR pc;
|
540 |
|
|
int i;
|
541 |
|
|
|
542 |
|
|
|
543 |
|
|
/* Initialize DATA to default values. */
|
544 |
|
|
data->size = -1;
|
545 |
|
|
|
546 |
|
|
data->cfa_reg = SPU_RAW_SP_REGNUM;
|
547 |
|
|
data->cfa_offset = 0;
|
548 |
|
|
|
549 |
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
550 |
|
|
data->reg_offset[i] = -1;
|
551 |
|
|
|
552 |
|
|
/* Set up REG_IMMED array. This is non-zero for a register if we know its
|
553 |
|
|
preferred slot currently holds this immediate value. */
|
554 |
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
555 |
|
|
reg_immed[i] = 0;
|
556 |
|
|
|
557 |
|
|
/* Scan instructions until the first branch.
|
558 |
|
|
|
559 |
|
|
The following instructions are important prolog components:
|
560 |
|
|
|
561 |
|
|
- The first instruction to set up the stack pointer.
|
562 |
|
|
- The first instruction to set up the frame pointer.
|
563 |
|
|
- The first instruction to save the link register.
|
564 |
|
|
|
565 |
|
|
We return the instruction after the latest of these three,
|
566 |
|
|
or the incoming PC if none is found. The first instruction
|
567 |
|
|
to set up the stack pointer also defines the frame size.
|
568 |
|
|
|
569 |
|
|
Note that instructions saving incoming arguments to their stack
|
570 |
|
|
slots are not counted as important, because they are hard to
|
571 |
|
|
identify with certainty. This should not matter much, because
|
572 |
|
|
arguments are relevant only in code compiled with debug data,
|
573 |
|
|
and in such code the GDB core will advance until the first source
|
574 |
|
|
line anyway, using SAL data.
|
575 |
|
|
|
576 |
|
|
For purposes of stack unwinding, we analyze the following types
|
577 |
|
|
of instructions in addition:
|
578 |
|
|
|
579 |
|
|
- Any instruction adding to the current frame pointer.
|
580 |
|
|
- Any instruction loading an immediate constant into a register.
|
581 |
|
|
- Any instruction storing a register onto the stack.
|
582 |
|
|
|
583 |
|
|
These are used to compute the CFA and REG_OFFSET output. */
|
584 |
|
|
|
585 |
|
|
for (pc = start_pc; pc < end_pc; pc += 4)
|
586 |
|
|
{
|
587 |
|
|
unsigned int insn;
|
588 |
|
|
int rt, ra, rb, rc, immed;
|
589 |
|
|
|
590 |
|
|
if (target_read_memory (pc, buf, 4))
|
591 |
|
|
break;
|
592 |
|
|
insn = extract_unsigned_integer (buf, 4);
|
593 |
|
|
|
594 |
|
|
/* AI is the typical instruction to set up a stack frame.
|
595 |
|
|
It is also used to initialize the frame pointer. */
|
596 |
|
|
if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
|
597 |
|
|
{
|
598 |
|
|
if (rt == data->cfa_reg && ra == data->cfa_reg)
|
599 |
|
|
data->cfa_offset -= immed;
|
600 |
|
|
|
601 |
|
|
if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
|
602 |
|
|
&& !found_sp)
|
603 |
|
|
{
|
604 |
|
|
found_sp = 1;
|
605 |
|
|
prolog_pc = pc + 4;
|
606 |
|
|
|
607 |
|
|
data->size = -immed;
|
608 |
|
|
}
|
609 |
|
|
else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
|
610 |
|
|
&& !found_fp)
|
611 |
|
|
{
|
612 |
|
|
found_fp = 1;
|
613 |
|
|
prolog_pc = pc + 4;
|
614 |
|
|
|
615 |
|
|
data->cfa_reg = SPU_FP_REGNUM;
|
616 |
|
|
data->cfa_offset -= immed;
|
617 |
|
|
}
|
618 |
|
|
}
|
619 |
|
|
|
620 |
|
|
/* A is used to set up stack frames of size >= 512 bytes.
|
621 |
|
|
If we have tracked the contents of the addend register,
|
622 |
|
|
we can handle this as well. */
|
623 |
|
|
else if (is_rr (insn, op_a, &rt, &ra, &rb))
|
624 |
|
|
{
|
625 |
|
|
if (rt == data->cfa_reg && ra == data->cfa_reg)
|
626 |
|
|
{
|
627 |
|
|
if (reg_immed[rb] != 0)
|
628 |
|
|
data->cfa_offset -= reg_immed[rb];
|
629 |
|
|
else
|
630 |
|
|
data->cfa_reg = -1; /* We don't know the CFA any more. */
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
|
634 |
|
|
&& !found_sp)
|
635 |
|
|
{
|
636 |
|
|
found_sp = 1;
|
637 |
|
|
prolog_pc = pc + 4;
|
638 |
|
|
|
639 |
|
|
if (reg_immed[rb] != 0)
|
640 |
|
|
data->size = -reg_immed[rb];
|
641 |
|
|
}
|
642 |
|
|
}
|
643 |
|
|
|
644 |
|
|
/* We need to track IL and ILA used to load immediate constants
|
645 |
|
|
in case they are later used as input to an A instruction. */
|
646 |
|
|
else if (is_ri16 (insn, op_il, &rt, &immed))
|
647 |
|
|
{
|
648 |
|
|
reg_immed[rt] = immed;
|
649 |
|
|
|
650 |
|
|
if (rt == SPU_RAW_SP_REGNUM && !found_sp)
|
651 |
|
|
found_sp = 1;
|
652 |
|
|
}
|
653 |
|
|
|
654 |
|
|
else if (is_ri18 (insn, op_ila, &rt, &immed))
|
655 |
|
|
{
|
656 |
|
|
reg_immed[rt] = immed & 0x3ffff;
|
657 |
|
|
|
658 |
|
|
if (rt == SPU_RAW_SP_REGNUM && !found_sp)
|
659 |
|
|
found_sp = 1;
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
/* STQD is used to save registers to the stack. */
|
663 |
|
|
else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
|
664 |
|
|
{
|
665 |
|
|
if (ra == data->cfa_reg)
|
666 |
|
|
data->reg_offset[rt] = data->cfa_offset - (immed << 4);
|
667 |
|
|
|
668 |
|
|
if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
|
669 |
|
|
&& !found_lr)
|
670 |
|
|
{
|
671 |
|
|
found_lr = 1;
|
672 |
|
|
prolog_pc = pc + 4;
|
673 |
|
|
}
|
674 |
|
|
}
|
675 |
|
|
|
676 |
|
|
/* _start uses SELB to set up the stack pointer. */
|
677 |
|
|
else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
|
678 |
|
|
{
|
679 |
|
|
if (rt == SPU_RAW_SP_REGNUM && !found_sp)
|
680 |
|
|
found_sp = 1;
|
681 |
|
|
}
|
682 |
|
|
|
683 |
|
|
/* We terminate if we find a branch. */
|
684 |
|
|
else if (is_branch (insn, &immed, &ra))
|
685 |
|
|
break;
|
686 |
|
|
}
|
687 |
|
|
|
688 |
|
|
|
689 |
|
|
/* If we successfully parsed until here, and didn't find any instruction
|
690 |
|
|
modifying SP, we assume we have a frameless function. */
|
691 |
|
|
if (!found_sp)
|
692 |
|
|
data->size = 0;
|
693 |
|
|
|
694 |
|
|
/* Return cooked instead of raw SP. */
|
695 |
|
|
if (data->cfa_reg == SPU_RAW_SP_REGNUM)
|
696 |
|
|
data->cfa_reg = SPU_SP_REGNUM;
|
697 |
|
|
|
698 |
|
|
return prolog_pc;
|
699 |
|
|
}
|
700 |
|
|
|
701 |
|
|
/* Return the first instruction after the prologue starting at PC. */
|
702 |
|
|
static CORE_ADDR
|
703 |
|
|
spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
704 |
|
|
{
|
705 |
|
|
struct spu_prologue_data data;
|
706 |
|
|
return spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
|
707 |
|
|
}
|
708 |
|
|
|
709 |
|
|
/* Return the frame pointer in use at address PC. */
|
710 |
|
|
static void
|
711 |
|
|
spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
|
712 |
|
|
int *reg, LONGEST *offset)
|
713 |
|
|
{
|
714 |
|
|
struct spu_prologue_data data;
|
715 |
|
|
spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
|
716 |
|
|
|
717 |
|
|
if (data.size != -1 && data.cfa_reg != -1)
|
718 |
|
|
{
|
719 |
|
|
/* The 'frame pointer' address is CFA minus frame size. */
|
720 |
|
|
*reg = data.cfa_reg;
|
721 |
|
|
*offset = data.cfa_offset - data.size;
|
722 |
|
|
}
|
723 |
|
|
else
|
724 |
|
|
{
|
725 |
|
|
/* ??? We don't really know ... */
|
726 |
|
|
*reg = SPU_SP_REGNUM;
|
727 |
|
|
*offset = 0;
|
728 |
|
|
}
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
/* Return true if we are in the function's epilogue, i.e. after the
|
732 |
|
|
instruction that destroyed the function's stack frame.
|
733 |
|
|
|
734 |
|
|
1) scan forward from the point of execution:
|
735 |
|
|
a) If you find an instruction that modifies the stack pointer
|
736 |
|
|
or transfers control (except a return), execution is not in
|
737 |
|
|
an epilogue, return.
|
738 |
|
|
b) Stop scanning if you find a return instruction or reach the
|
739 |
|
|
end of the function or reach the hard limit for the size of
|
740 |
|
|
an epilogue.
|
741 |
|
|
2) scan backward from the point of execution:
|
742 |
|
|
a) If you find an instruction that modifies the stack pointer,
|
743 |
|
|
execution *is* in an epilogue, return.
|
744 |
|
|
b) Stop scanning if you reach an instruction that transfers
|
745 |
|
|
control or the beginning of the function or reach the hard
|
746 |
|
|
limit for the size of an epilogue. */
|
747 |
|
|
|
748 |
|
|
static int
|
749 |
|
|
spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
750 |
|
|
{
|
751 |
|
|
CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
|
752 |
|
|
bfd_byte buf[4];
|
753 |
|
|
unsigned int insn;
|
754 |
|
|
int rt, ra, rb, rc, immed;
|
755 |
|
|
|
756 |
|
|
/* Find the search limits based on function boundaries and hard limit.
|
757 |
|
|
We assume the epilogue can be up to 64 instructions long. */
|
758 |
|
|
|
759 |
|
|
const int spu_max_epilogue_size = 64 * 4;
|
760 |
|
|
|
761 |
|
|
if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
|
762 |
|
|
return 0;
|
763 |
|
|
|
764 |
|
|
if (pc - func_start < spu_max_epilogue_size)
|
765 |
|
|
epilogue_start = func_start;
|
766 |
|
|
else
|
767 |
|
|
epilogue_start = pc - spu_max_epilogue_size;
|
768 |
|
|
|
769 |
|
|
if (func_end - pc < spu_max_epilogue_size)
|
770 |
|
|
epilogue_end = func_end;
|
771 |
|
|
else
|
772 |
|
|
epilogue_end = pc + spu_max_epilogue_size;
|
773 |
|
|
|
774 |
|
|
/* Scan forward until next 'bi $0'. */
|
775 |
|
|
|
776 |
|
|
for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
|
777 |
|
|
{
|
778 |
|
|
if (target_read_memory (scan_pc, buf, 4))
|
779 |
|
|
return 0;
|
780 |
|
|
insn = extract_unsigned_integer (buf, 4);
|
781 |
|
|
|
782 |
|
|
if (is_branch (insn, &immed, &ra))
|
783 |
|
|
{
|
784 |
|
|
if (immed == 0 && ra == SPU_LR_REGNUM)
|
785 |
|
|
break;
|
786 |
|
|
|
787 |
|
|
return 0;
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
|
791 |
|
|
|| is_rr (insn, op_a, &rt, &ra, &rb)
|
792 |
|
|
|| is_ri10 (insn, op_lqd, &rt, &ra, &immed))
|
793 |
|
|
{
|
794 |
|
|
if (rt == SPU_RAW_SP_REGNUM)
|
795 |
|
|
return 0;
|
796 |
|
|
}
|
797 |
|
|
}
|
798 |
|
|
|
799 |
|
|
if (scan_pc >= epilogue_end)
|
800 |
|
|
return 0;
|
801 |
|
|
|
802 |
|
|
/* Scan backward until adjustment to stack pointer (R1). */
|
803 |
|
|
|
804 |
|
|
for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
|
805 |
|
|
{
|
806 |
|
|
if (target_read_memory (scan_pc, buf, 4))
|
807 |
|
|
return 0;
|
808 |
|
|
insn = extract_unsigned_integer (buf, 4);
|
809 |
|
|
|
810 |
|
|
if (is_branch (insn, &immed, &ra))
|
811 |
|
|
return 0;
|
812 |
|
|
|
813 |
|
|
if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
|
814 |
|
|
|| is_rr (insn, op_a, &rt, &ra, &rb)
|
815 |
|
|
|| is_ri10 (insn, op_lqd, &rt, &ra, &immed))
|
816 |
|
|
{
|
817 |
|
|
if (rt == SPU_RAW_SP_REGNUM)
|
818 |
|
|
return 1;
|
819 |
|
|
}
|
820 |
|
|
}
|
821 |
|
|
|
822 |
|
|
return 0;
|
823 |
|
|
}
|
824 |
|
|
|
825 |
|
|
|
826 |
|
|
/* Normal stack frames. */
|
827 |
|
|
|
828 |
|
|
struct spu_unwind_cache
|
829 |
|
|
{
|
830 |
|
|
CORE_ADDR func;
|
831 |
|
|
CORE_ADDR frame_base;
|
832 |
|
|
CORE_ADDR local_base;
|
833 |
|
|
|
834 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
835 |
|
|
};
|
836 |
|
|
|
837 |
|
|
static struct spu_unwind_cache *
|
838 |
|
|
spu_frame_unwind_cache (struct frame_info *next_frame,
|
839 |
|
|
void **this_prologue_cache)
|
840 |
|
|
{
|
841 |
|
|
struct spu_unwind_cache *info;
|
842 |
|
|
struct spu_prologue_data data;
|
843 |
|
|
gdb_byte buf[16];
|
844 |
|
|
|
845 |
|
|
if (*this_prologue_cache)
|
846 |
|
|
return *this_prologue_cache;
|
847 |
|
|
|
848 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
|
849 |
|
|
*this_prologue_cache = info;
|
850 |
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
851 |
|
|
info->frame_base = 0;
|
852 |
|
|
info->local_base = 0;
|
853 |
|
|
|
854 |
|
|
/* Find the start of the current function, and analyze its prologue. */
|
855 |
|
|
info->func = frame_func_unwind (next_frame, NORMAL_FRAME);
|
856 |
|
|
if (info->func == 0)
|
857 |
|
|
{
|
858 |
|
|
/* Fall back to using the current PC as frame ID. */
|
859 |
|
|
info->func = frame_pc_unwind (next_frame);
|
860 |
|
|
data.size = -1;
|
861 |
|
|
}
|
862 |
|
|
else
|
863 |
|
|
spu_analyze_prologue (info->func, frame_pc_unwind (next_frame), &data);
|
864 |
|
|
|
865 |
|
|
|
866 |
|
|
/* If successful, use prologue analysis data. */
|
867 |
|
|
if (data.size != -1 && data.cfa_reg != -1)
|
868 |
|
|
{
|
869 |
|
|
CORE_ADDR cfa;
|
870 |
|
|
int i;
|
871 |
|
|
|
872 |
|
|
/* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
|
873 |
|
|
frame_unwind_register (next_frame, data.cfa_reg, buf);
|
874 |
|
|
cfa = extract_unsigned_integer (buf, 4) + data.cfa_offset;
|
875 |
|
|
|
876 |
|
|
/* Call-saved register slots. */
|
877 |
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
878 |
|
|
if (i == SPU_LR_REGNUM
|
879 |
|
|
|| (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
|
880 |
|
|
if (data.reg_offset[i] != -1)
|
881 |
|
|
info->saved_regs[i].addr = cfa - data.reg_offset[i];
|
882 |
|
|
|
883 |
|
|
/* Frame bases. */
|
884 |
|
|
info->frame_base = cfa;
|
885 |
|
|
info->local_base = cfa - data.size;
|
886 |
|
|
}
|
887 |
|
|
|
888 |
|
|
/* Otherwise, fall back to reading the backchain link. */
|
889 |
|
|
else
|
890 |
|
|
{
|
891 |
|
|
CORE_ADDR reg, backchain;
|
892 |
|
|
|
893 |
|
|
/* Get the backchain. */
|
894 |
|
|
reg = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
|
895 |
|
|
backchain = read_memory_unsigned_integer (reg, 4);
|
896 |
|
|
|
897 |
|
|
/* A zero backchain terminates the frame chain. Also, sanity
|
898 |
|
|
check against the local store size limit. */
|
899 |
|
|
if (backchain != 0 && backchain < SPU_LS_SIZE)
|
900 |
|
|
{
|
901 |
|
|
/* Assume the link register is saved into its slot. */
|
902 |
|
|
if (backchain + 16 < SPU_LS_SIZE)
|
903 |
|
|
info->saved_regs[SPU_LR_REGNUM].addr = backchain + 16;
|
904 |
|
|
|
905 |
|
|
/* Frame bases. */
|
906 |
|
|
info->frame_base = backchain;
|
907 |
|
|
info->local_base = reg;
|
908 |
|
|
}
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
/* The previous SP is equal to the CFA. */
|
912 |
|
|
trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, info->frame_base);
|
913 |
|
|
|
914 |
|
|
/* Read full contents of the unwound link register in order to
|
915 |
|
|
be able to determine the return address. */
|
916 |
|
|
if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
|
917 |
|
|
target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
|
918 |
|
|
else
|
919 |
|
|
frame_unwind_register (next_frame, SPU_LR_REGNUM, buf);
|
920 |
|
|
|
921 |
|
|
/* Normally, the return address is contained in the slot 0 of the
|
922 |
|
|
link register, and slots 1-3 are zero. For an overlay return,
|
923 |
|
|
slot 0 contains the address of the overlay manager return stub,
|
924 |
|
|
slot 1 contains the partition number of the overlay section to
|
925 |
|
|
be returned to, and slot 2 contains the return address within
|
926 |
|
|
that section. Return the latter address in that case. */
|
927 |
|
|
if (extract_unsigned_integer (buf + 8, 4) != 0)
|
928 |
|
|
trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
|
929 |
|
|
extract_unsigned_integer (buf + 8, 4));
|
930 |
|
|
else
|
931 |
|
|
trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
|
932 |
|
|
extract_unsigned_integer (buf, 4));
|
933 |
|
|
|
934 |
|
|
return info;
|
935 |
|
|
}
|
936 |
|
|
|
937 |
|
|
static void
|
938 |
|
|
spu_frame_this_id (struct frame_info *next_frame,
|
939 |
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
940 |
|
|
{
|
941 |
|
|
struct spu_unwind_cache *info =
|
942 |
|
|
spu_frame_unwind_cache (next_frame, this_prologue_cache);
|
943 |
|
|
|
944 |
|
|
if (info->frame_base == 0)
|
945 |
|
|
return;
|
946 |
|
|
|
947 |
|
|
*this_id = frame_id_build (info->frame_base, info->func);
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
static void
|
951 |
|
|
spu_frame_prev_register (struct frame_info *next_frame,
|
952 |
|
|
void **this_prologue_cache,
|
953 |
|
|
int regnum, int *optimizedp,
|
954 |
|
|
enum lval_type *lvalp, CORE_ADDR * addrp,
|
955 |
|
|
int *realnump, gdb_byte *bufferp)
|
956 |
|
|
{
|
957 |
|
|
struct spu_unwind_cache *info
|
958 |
|
|
= spu_frame_unwind_cache (next_frame, this_prologue_cache);
|
959 |
|
|
|
960 |
|
|
/* Special-case the stack pointer. */
|
961 |
|
|
if (regnum == SPU_RAW_SP_REGNUM)
|
962 |
|
|
regnum = SPU_SP_REGNUM;
|
963 |
|
|
|
964 |
|
|
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
|
965 |
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
966 |
|
|
}
|
967 |
|
|
|
968 |
|
|
static const struct frame_unwind spu_frame_unwind = {
|
969 |
|
|
NORMAL_FRAME,
|
970 |
|
|
spu_frame_this_id,
|
971 |
|
|
spu_frame_prev_register
|
972 |
|
|
};
|
973 |
|
|
|
974 |
|
|
const struct frame_unwind *
|
975 |
|
|
spu_frame_sniffer (struct frame_info *next_frame)
|
976 |
|
|
{
|
977 |
|
|
return &spu_frame_unwind;
|
978 |
|
|
}
|
979 |
|
|
|
980 |
|
|
static CORE_ADDR
|
981 |
|
|
spu_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
982 |
|
|
{
|
983 |
|
|
struct spu_unwind_cache *info
|
984 |
|
|
= spu_frame_unwind_cache (next_frame, this_cache);
|
985 |
|
|
return info->local_base;
|
986 |
|
|
}
|
987 |
|
|
|
988 |
|
|
static const struct frame_base spu_frame_base = {
|
989 |
|
|
&spu_frame_unwind,
|
990 |
|
|
spu_frame_base_address,
|
991 |
|
|
spu_frame_base_address,
|
992 |
|
|
spu_frame_base_address
|
993 |
|
|
};
|
994 |
|
|
|
995 |
|
|
static CORE_ADDR
|
996 |
|
|
spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
997 |
|
|
{
|
998 |
|
|
CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
|
999 |
|
|
/* Mask off interrupt enable bit. */
|
1000 |
|
|
return pc & -4;
|
1001 |
|
|
}
|
1002 |
|
|
|
1003 |
|
|
static CORE_ADDR
|
1004 |
|
|
spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1005 |
|
|
{
|
1006 |
|
|
return frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
|
1007 |
|
|
}
|
1008 |
|
|
|
1009 |
|
|
static CORE_ADDR
|
1010 |
|
|
spu_read_pc (struct regcache *regcache)
|
1011 |
|
|
{
|
1012 |
|
|
ULONGEST pc;
|
1013 |
|
|
regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
|
1014 |
|
|
/* Mask off interrupt enable bit. */
|
1015 |
|
|
return pc & -4;
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
static void
|
1019 |
|
|
spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
1020 |
|
|
{
|
1021 |
|
|
/* Keep interrupt enabled state unchanged. */
|
1022 |
|
|
ULONGEST old_pc;
|
1023 |
|
|
regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
|
1024 |
|
|
regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
|
1025 |
|
|
(pc & -4) | (old_pc & 3));
|
1026 |
|
|
}
|
1027 |
|
|
|
1028 |
|
|
|
1029 |
|
|
/* Function calling convention. */
|
1030 |
|
|
|
1031 |
|
|
static CORE_ADDR
|
1032 |
|
|
spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
1033 |
|
|
{
|
1034 |
|
|
return sp & ~15;
|
1035 |
|
|
}
|
1036 |
|
|
|
1037 |
|
|
static int
|
1038 |
|
|
spu_scalar_value_p (struct type *type)
|
1039 |
|
|
{
|
1040 |
|
|
switch (TYPE_CODE (type))
|
1041 |
|
|
{
|
1042 |
|
|
case TYPE_CODE_INT:
|
1043 |
|
|
case TYPE_CODE_ENUM:
|
1044 |
|
|
case TYPE_CODE_RANGE:
|
1045 |
|
|
case TYPE_CODE_CHAR:
|
1046 |
|
|
case TYPE_CODE_BOOL:
|
1047 |
|
|
case TYPE_CODE_PTR:
|
1048 |
|
|
case TYPE_CODE_REF:
|
1049 |
|
|
return TYPE_LENGTH (type) <= 16;
|
1050 |
|
|
|
1051 |
|
|
default:
|
1052 |
|
|
return 0;
|
1053 |
|
|
}
|
1054 |
|
|
}
|
1055 |
|
|
|
1056 |
|
|
static void
|
1057 |
|
|
spu_value_to_regcache (struct regcache *regcache, int regnum,
|
1058 |
|
|
struct type *type, const gdb_byte *in)
|
1059 |
|
|
{
|
1060 |
|
|
int len = TYPE_LENGTH (type);
|
1061 |
|
|
|
1062 |
|
|
if (spu_scalar_value_p (type))
|
1063 |
|
|
{
|
1064 |
|
|
int preferred_slot = len < 4 ? 4 - len : 0;
|
1065 |
|
|
regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
|
1066 |
|
|
}
|
1067 |
|
|
else
|
1068 |
|
|
{
|
1069 |
|
|
while (len >= 16)
|
1070 |
|
|
{
|
1071 |
|
|
regcache_cooked_write (regcache, regnum++, in);
|
1072 |
|
|
in += 16;
|
1073 |
|
|
len -= 16;
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
if (len > 0)
|
1077 |
|
|
regcache_cooked_write_part (regcache, regnum, 0, len, in);
|
1078 |
|
|
}
|
1079 |
|
|
}
|
1080 |
|
|
|
1081 |
|
|
static void
|
1082 |
|
|
spu_regcache_to_value (struct regcache *regcache, int regnum,
|
1083 |
|
|
struct type *type, gdb_byte *out)
|
1084 |
|
|
{
|
1085 |
|
|
int len = TYPE_LENGTH (type);
|
1086 |
|
|
|
1087 |
|
|
if (spu_scalar_value_p (type))
|
1088 |
|
|
{
|
1089 |
|
|
int preferred_slot = len < 4 ? 4 - len : 0;
|
1090 |
|
|
regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
|
1091 |
|
|
}
|
1092 |
|
|
else
|
1093 |
|
|
{
|
1094 |
|
|
while (len >= 16)
|
1095 |
|
|
{
|
1096 |
|
|
regcache_cooked_read (regcache, regnum++, out);
|
1097 |
|
|
out += 16;
|
1098 |
|
|
len -= 16;
|
1099 |
|
|
}
|
1100 |
|
|
|
1101 |
|
|
if (len > 0)
|
1102 |
|
|
regcache_cooked_read_part (regcache, regnum, 0, len, out);
|
1103 |
|
|
}
|
1104 |
|
|
}
|
1105 |
|
|
|
1106 |
|
|
static CORE_ADDR
|
1107 |
|
|
spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
1108 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
1109 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
1110 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
1111 |
|
|
{
|
1112 |
|
|
int i;
|
1113 |
|
|
int regnum = SPU_ARG1_REGNUM;
|
1114 |
|
|
int stack_arg = -1;
|
1115 |
|
|
gdb_byte buf[16];
|
1116 |
|
|
|
1117 |
|
|
/* Set the return address. */
|
1118 |
|
|
memset (buf, 0, sizeof buf);
|
1119 |
|
|
store_unsigned_integer (buf, 4, bp_addr);
|
1120 |
|
|
regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
|
1121 |
|
|
|
1122 |
|
|
/* If STRUCT_RETURN is true, then the struct return address (in
|
1123 |
|
|
STRUCT_ADDR) will consume the first argument-passing register.
|
1124 |
|
|
Both adjust the register count and store that value. */
|
1125 |
|
|
if (struct_return)
|
1126 |
|
|
{
|
1127 |
|
|
memset (buf, 0, sizeof buf);
|
1128 |
|
|
store_unsigned_integer (buf, 4, struct_addr);
|
1129 |
|
|
regcache_cooked_write (regcache, regnum++, buf);
|
1130 |
|
|
}
|
1131 |
|
|
|
1132 |
|
|
/* Fill in argument registers. */
|
1133 |
|
|
for (i = 0; i < nargs; i++)
|
1134 |
|
|
{
|
1135 |
|
|
struct value *arg = args[i];
|
1136 |
|
|
struct type *type = check_typedef (value_type (arg));
|
1137 |
|
|
const gdb_byte *contents = value_contents (arg);
|
1138 |
|
|
int len = TYPE_LENGTH (type);
|
1139 |
|
|
int n_regs = align_up (len, 16) / 16;
|
1140 |
|
|
|
1141 |
|
|
/* If the argument doesn't wholly fit into registers, it and
|
1142 |
|
|
all subsequent arguments go to the stack. */
|
1143 |
|
|
if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
|
1144 |
|
|
{
|
1145 |
|
|
stack_arg = i;
|
1146 |
|
|
break;
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
spu_value_to_regcache (regcache, regnum, type, contents);
|
1150 |
|
|
regnum += n_regs;
|
1151 |
|
|
}
|
1152 |
|
|
|
1153 |
|
|
/* Overflow arguments go to the stack. */
|
1154 |
|
|
if (stack_arg != -1)
|
1155 |
|
|
{
|
1156 |
|
|
CORE_ADDR ap;
|
1157 |
|
|
|
1158 |
|
|
/* Allocate all required stack size. */
|
1159 |
|
|
for (i = stack_arg; i < nargs; i++)
|
1160 |
|
|
{
|
1161 |
|
|
struct type *type = check_typedef (value_type (args[i]));
|
1162 |
|
|
sp -= align_up (TYPE_LENGTH (type), 16);
|
1163 |
|
|
}
|
1164 |
|
|
|
1165 |
|
|
/* Fill in stack arguments. */
|
1166 |
|
|
ap = sp;
|
1167 |
|
|
for (i = stack_arg; i < nargs; i++)
|
1168 |
|
|
{
|
1169 |
|
|
struct value *arg = args[i];
|
1170 |
|
|
struct type *type = check_typedef (value_type (arg));
|
1171 |
|
|
int len = TYPE_LENGTH (type);
|
1172 |
|
|
int preferred_slot;
|
1173 |
|
|
|
1174 |
|
|
if (spu_scalar_value_p (type))
|
1175 |
|
|
preferred_slot = len < 4 ? 4 - len : 0;
|
1176 |
|
|
else
|
1177 |
|
|
preferred_slot = 0;
|
1178 |
|
|
|
1179 |
|
|
target_write_memory (ap + preferred_slot, value_contents (arg), len);
|
1180 |
|
|
ap += align_up (TYPE_LENGTH (type), 16);
|
1181 |
|
|
}
|
1182 |
|
|
}
|
1183 |
|
|
|
1184 |
|
|
/* Allocate stack frame header. */
|
1185 |
|
|
sp -= 32;
|
1186 |
|
|
|
1187 |
|
|
/* Store stack back chain. */
|
1188 |
|
|
regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
|
1189 |
|
|
target_write_memory (sp, buf, 16);
|
1190 |
|
|
|
1191 |
|
|
/* Finally, update the SP register. */
|
1192 |
|
|
regcache_cooked_write_unsigned (regcache, SPU_SP_REGNUM, sp);
|
1193 |
|
|
|
1194 |
|
|
return sp;
|
1195 |
|
|
}
|
1196 |
|
|
|
1197 |
|
|
static struct frame_id
|
1198 |
|
|
spu_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1199 |
|
|
{
|
1200 |
|
|
return frame_id_build (spu_unwind_sp (gdbarch, next_frame),
|
1201 |
|
|
spu_unwind_pc (gdbarch, next_frame));
|
1202 |
|
|
}
|
1203 |
|
|
|
1204 |
|
|
/* Function return value access. */
|
1205 |
|
|
|
1206 |
|
|
static enum return_value_convention
|
1207 |
|
|
spu_return_value (struct gdbarch *gdbarch, struct type *type,
|
1208 |
|
|
struct regcache *regcache, gdb_byte *out, const gdb_byte *in)
|
1209 |
|
|
{
|
1210 |
|
|
enum return_value_convention rvc;
|
1211 |
|
|
|
1212 |
|
|
if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
|
1213 |
|
|
rvc = RETURN_VALUE_REGISTER_CONVENTION;
|
1214 |
|
|
else
|
1215 |
|
|
rvc = RETURN_VALUE_STRUCT_CONVENTION;
|
1216 |
|
|
|
1217 |
|
|
if (in)
|
1218 |
|
|
{
|
1219 |
|
|
switch (rvc)
|
1220 |
|
|
{
|
1221 |
|
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
1222 |
|
|
spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
|
1223 |
|
|
break;
|
1224 |
|
|
|
1225 |
|
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
1226 |
|
|
error ("Cannot set function return value.");
|
1227 |
|
|
break;
|
1228 |
|
|
}
|
1229 |
|
|
}
|
1230 |
|
|
else if (out)
|
1231 |
|
|
{
|
1232 |
|
|
switch (rvc)
|
1233 |
|
|
{
|
1234 |
|
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
1235 |
|
|
spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
|
1236 |
|
|
break;
|
1237 |
|
|
|
1238 |
|
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
1239 |
|
|
error ("Function return value unknown.");
|
1240 |
|
|
break;
|
1241 |
|
|
}
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
return rvc;
|
1245 |
|
|
}
|
1246 |
|
|
|
1247 |
|
|
|
1248 |
|
|
/* Breakpoints. */
|
1249 |
|
|
|
1250 |
|
|
static const gdb_byte *
|
1251 |
|
|
spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
|
1252 |
|
|
{
|
1253 |
|
|
static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
|
1254 |
|
|
|
1255 |
|
|
*lenptr = sizeof breakpoint;
|
1256 |
|
|
return breakpoint;
|
1257 |
|
|
}
|
1258 |
|
|
|
1259 |
|
|
|
1260 |
|
|
/* Software single-stepping support. */
|
1261 |
|
|
|
1262 |
|
|
int
|
1263 |
|
|
spu_software_single_step (struct frame_info *frame)
|
1264 |
|
|
{
|
1265 |
|
|
CORE_ADDR pc, next_pc;
|
1266 |
|
|
unsigned int insn;
|
1267 |
|
|
int offset, reg;
|
1268 |
|
|
gdb_byte buf[4];
|
1269 |
|
|
|
1270 |
|
|
pc = get_frame_pc (frame);
|
1271 |
|
|
|
1272 |
|
|
if (target_read_memory (pc, buf, 4))
|
1273 |
|
|
return 1;
|
1274 |
|
|
insn = extract_unsigned_integer (buf, 4);
|
1275 |
|
|
|
1276 |
|
|
/* Next sequential instruction is at PC + 4, except if the current
|
1277 |
|
|
instruction is a PPE-assisted call, in which case it is at PC + 8.
|
1278 |
|
|
Wrap around LS limit to be on the safe side. */
|
1279 |
|
|
if ((insn & 0xffffff00) == 0x00002100)
|
1280 |
|
|
next_pc = (pc + 8) & (SPU_LS_SIZE - 1);
|
1281 |
|
|
else
|
1282 |
|
|
next_pc = (pc + 4) & (SPU_LS_SIZE - 1);
|
1283 |
|
|
|
1284 |
|
|
insert_single_step_breakpoint (next_pc);
|
1285 |
|
|
|
1286 |
|
|
if (is_branch (insn, &offset, ®))
|
1287 |
|
|
{
|
1288 |
|
|
CORE_ADDR target = offset;
|
1289 |
|
|
|
1290 |
|
|
if (reg == SPU_PC_REGNUM)
|
1291 |
|
|
target += pc;
|
1292 |
|
|
else if (reg != -1)
|
1293 |
|
|
{
|
1294 |
|
|
get_frame_register_bytes (frame, reg, 0, 4, buf);
|
1295 |
|
|
target += extract_unsigned_integer (buf, 4) & -4;
|
1296 |
|
|
}
|
1297 |
|
|
|
1298 |
|
|
target = target & (SPU_LS_SIZE - 1);
|
1299 |
|
|
if (target != next_pc)
|
1300 |
|
|
insert_single_step_breakpoint (target);
|
1301 |
|
|
}
|
1302 |
|
|
|
1303 |
|
|
return 1;
|
1304 |
|
|
}
|
1305 |
|
|
|
1306 |
|
|
/* Target overlays for the SPU overlay manager.
|
1307 |
|
|
|
1308 |
|
|
See the documentation of simple_overlay_update for how the
|
1309 |
|
|
interface is supposed to work.
|
1310 |
|
|
|
1311 |
|
|
Data structures used by the overlay manager:
|
1312 |
|
|
|
1313 |
|
|
struct ovly_table
|
1314 |
|
|
{
|
1315 |
|
|
u32 vma;
|
1316 |
|
|
u32 size;
|
1317 |
|
|
u32 pos;
|
1318 |
|
|
u32 buf;
|
1319 |
|
|
} _ovly_table[]; -- one entry per overlay section
|
1320 |
|
|
|
1321 |
|
|
struct ovly_buf_table
|
1322 |
|
|
{
|
1323 |
|
|
u32 mapped;
|
1324 |
|
|
} _ovly_buf_table[]; -- one entry per overlay buffer
|
1325 |
|
|
|
1326 |
|
|
_ovly_table should never change.
|
1327 |
|
|
|
1328 |
|
|
Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
|
1329 |
|
|
and _ovly_buf_table are of type STT_OBJECT and their size set to the size
|
1330 |
|
|
of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
|
1331 |
|
|
|
1332 |
|
|
mapped is an index into _ovly_table. Both the mapped and buf indices start
|
1333 |
|
|
from one to reference the first entry in their respective tables. */
|
1334 |
|
|
|
1335 |
|
|
/* Using the per-objfile private data mechanism, we store for each
|
1336 |
|
|
objfile an array of "struct spu_overlay_table" structures, one
|
1337 |
|
|
for each obj_section of the objfile. This structure holds two
|
1338 |
|
|
fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
|
1339 |
|
|
is *not* an overlay section. If it is non-zero, it represents
|
1340 |
|
|
a target address. The overlay section is mapped iff the target
|
1341 |
|
|
integer at this location equals MAPPED_VAL. */
|
1342 |
|
|
|
1343 |
|
|
static const struct objfile_data *spu_overlay_data;
|
1344 |
|
|
|
1345 |
|
|
struct spu_overlay_table
|
1346 |
|
|
{
|
1347 |
|
|
CORE_ADDR mapped_ptr;
|
1348 |
|
|
CORE_ADDR mapped_val;
|
1349 |
|
|
};
|
1350 |
|
|
|
1351 |
|
|
/* Retrieve the overlay table for OBJFILE. If not already cached, read
|
1352 |
|
|
the _ovly_table data structure from the target and initialize the
|
1353 |
|
|
spu_overlay_table data structure from it. */
|
1354 |
|
|
static struct spu_overlay_table *
|
1355 |
|
|
spu_get_overlay_table (struct objfile *objfile)
|
1356 |
|
|
{
|
1357 |
|
|
struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
|
1358 |
|
|
CORE_ADDR ovly_table_base, ovly_buf_table_base;
|
1359 |
|
|
unsigned ovly_table_size, ovly_buf_table_size;
|
1360 |
|
|
struct spu_overlay_table *tbl;
|
1361 |
|
|
struct obj_section *osect;
|
1362 |
|
|
char *ovly_table;
|
1363 |
|
|
int i;
|
1364 |
|
|
|
1365 |
|
|
tbl = objfile_data (objfile, spu_overlay_data);
|
1366 |
|
|
if (tbl)
|
1367 |
|
|
return tbl;
|
1368 |
|
|
|
1369 |
|
|
ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
|
1370 |
|
|
if (!ovly_table_msym)
|
1371 |
|
|
return NULL;
|
1372 |
|
|
|
1373 |
|
|
ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
|
1374 |
|
|
if (!ovly_buf_table_msym)
|
1375 |
|
|
return NULL;
|
1376 |
|
|
|
1377 |
|
|
ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
|
1378 |
|
|
ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
|
1379 |
|
|
|
1380 |
|
|
ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
|
1381 |
|
|
ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
|
1382 |
|
|
|
1383 |
|
|
ovly_table = xmalloc (ovly_table_size);
|
1384 |
|
|
read_memory (ovly_table_base, ovly_table, ovly_table_size);
|
1385 |
|
|
|
1386 |
|
|
tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
|
1387 |
|
|
objfile->sections_end - objfile->sections,
|
1388 |
|
|
struct spu_overlay_table);
|
1389 |
|
|
|
1390 |
|
|
for (i = 0; i < ovly_table_size / 16; i++)
|
1391 |
|
|
{
|
1392 |
|
|
CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0, 4);
|
1393 |
|
|
CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4, 4);
|
1394 |
|
|
CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8, 4);
|
1395 |
|
|
CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12, 4);
|
1396 |
|
|
|
1397 |
|
|
if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
|
1398 |
|
|
continue;
|
1399 |
|
|
|
1400 |
|
|
ALL_OBJFILE_OSECTIONS (objfile, osect)
|
1401 |
|
|
if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
|
1402 |
|
|
&& pos == osect->the_bfd_section->filepos)
|
1403 |
|
|
{
|
1404 |
|
|
int ndx = osect - objfile->sections;
|
1405 |
|
|
tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
|
1406 |
|
|
tbl[ndx].mapped_val = i + 1;
|
1407 |
|
|
break;
|
1408 |
|
|
}
|
1409 |
|
|
}
|
1410 |
|
|
|
1411 |
|
|
xfree (ovly_table);
|
1412 |
|
|
set_objfile_data (objfile, spu_overlay_data, tbl);
|
1413 |
|
|
return tbl;
|
1414 |
|
|
}
|
1415 |
|
|
|
1416 |
|
|
/* Read _ovly_buf_table entry from the target to dermine whether
|
1417 |
|
|
OSECT is currently mapped, and update the mapped state. */
|
1418 |
|
|
static void
|
1419 |
|
|
spu_overlay_update_osect (struct obj_section *osect)
|
1420 |
|
|
{
|
1421 |
|
|
struct spu_overlay_table *ovly_table;
|
1422 |
|
|
CORE_ADDR val;
|
1423 |
|
|
|
1424 |
|
|
ovly_table = spu_get_overlay_table (osect->objfile);
|
1425 |
|
|
if (!ovly_table)
|
1426 |
|
|
return;
|
1427 |
|
|
|
1428 |
|
|
ovly_table += osect - osect->objfile->sections;
|
1429 |
|
|
if (ovly_table->mapped_ptr == 0)
|
1430 |
|
|
return;
|
1431 |
|
|
|
1432 |
|
|
val = read_memory_unsigned_integer (ovly_table->mapped_ptr, 4);
|
1433 |
|
|
osect->ovly_mapped = (val == ovly_table->mapped_val);
|
1434 |
|
|
}
|
1435 |
|
|
|
1436 |
|
|
/* If OSECT is NULL, then update all sections' mapped state.
|
1437 |
|
|
If OSECT is non-NULL, then update only OSECT's mapped state. */
|
1438 |
|
|
static void
|
1439 |
|
|
spu_overlay_update (struct obj_section *osect)
|
1440 |
|
|
{
|
1441 |
|
|
/* Just one section. */
|
1442 |
|
|
if (osect)
|
1443 |
|
|
spu_overlay_update_osect (osect);
|
1444 |
|
|
|
1445 |
|
|
/* All sections. */
|
1446 |
|
|
else
|
1447 |
|
|
{
|
1448 |
|
|
struct objfile *objfile;
|
1449 |
|
|
|
1450 |
|
|
ALL_OBJSECTIONS (objfile, osect)
|
1451 |
|
|
if (section_is_overlay (osect->the_bfd_section))
|
1452 |
|
|
spu_overlay_update_osect (osect);
|
1453 |
|
|
}
|
1454 |
|
|
}
|
1455 |
|
|
|
1456 |
|
|
/* Whenever a new objfile is loaded, read the target's _ovly_table.
|
1457 |
|
|
If there is one, go through all sections and make sure for non-
|
1458 |
|
|
overlay sections LMA equals VMA, while for overlay sections LMA
|
1459 |
|
|
is larger than local store size. */
|
1460 |
|
|
static void
|
1461 |
|
|
spu_overlay_new_objfile (struct objfile *objfile)
|
1462 |
|
|
{
|
1463 |
|
|
struct spu_overlay_table *ovly_table;
|
1464 |
|
|
struct obj_section *osect;
|
1465 |
|
|
|
1466 |
|
|
/* If we've already touched this file, do nothing. */
|
1467 |
|
|
if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
|
1468 |
|
|
return;
|
1469 |
|
|
|
1470 |
|
|
/* Check if this objfile has overlays. */
|
1471 |
|
|
ovly_table = spu_get_overlay_table (objfile);
|
1472 |
|
|
if (!ovly_table)
|
1473 |
|
|
return;
|
1474 |
|
|
|
1475 |
|
|
/* Now go and fiddle with all the LMAs. */
|
1476 |
|
|
ALL_OBJFILE_OSECTIONS (objfile, osect)
|
1477 |
|
|
{
|
1478 |
|
|
bfd *obfd = objfile->obfd;
|
1479 |
|
|
asection *bsect = osect->the_bfd_section;
|
1480 |
|
|
int ndx = osect - objfile->sections;
|
1481 |
|
|
|
1482 |
|
|
if (ovly_table[ndx].mapped_ptr == 0)
|
1483 |
|
|
bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
|
1484 |
|
|
else
|
1485 |
|
|
bfd_section_lma (obfd, bsect) = bsect->filepos + SPU_LS_SIZE;
|
1486 |
|
|
}
|
1487 |
|
|
}
|
1488 |
|
|
|
1489 |
|
|
|
1490 |
|
|
/* "info spu" commands. */
|
1491 |
|
|
|
1492 |
|
|
static void
|
1493 |
|
|
info_spu_event_command (char *args, int from_tty)
|
1494 |
|
|
{
|
1495 |
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
1496 |
|
|
ULONGEST event_status = 0;
|
1497 |
|
|
ULONGEST event_mask = 0;
|
1498 |
|
|
struct cleanup *chain;
|
1499 |
|
|
gdb_byte buf[100];
|
1500 |
|
|
char annex[32];
|
1501 |
|
|
LONGEST len;
|
1502 |
|
|
int rc, id;
|
1503 |
|
|
|
1504 |
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
1505 |
|
|
|
1506 |
|
|
xsnprintf (annex, sizeof annex, "%d/event_status", id);
|
1507 |
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
1508 |
|
|
buf, 0, sizeof buf);
|
1509 |
|
|
if (len <= 0)
|
1510 |
|
|
error (_("Could not read event_status."));
|
1511 |
|
|
event_status = strtoulst (buf, NULL, 16);
|
1512 |
|
|
|
1513 |
|
|
xsnprintf (annex, sizeof annex, "%d/event_mask", id);
|
1514 |
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
1515 |
|
|
buf, 0, sizeof buf);
|
1516 |
|
|
if (len <= 0)
|
1517 |
|
|
error (_("Could not read event_mask."));
|
1518 |
|
|
event_mask = strtoulst (buf, NULL, 16);
|
1519 |
|
|
|
1520 |
|
|
chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
|
1521 |
|
|
|
1522 |
|
|
if (ui_out_is_mi_like_p (uiout))
|
1523 |
|
|
{
|
1524 |
|
|
ui_out_field_fmt (uiout, "event_status",
|
1525 |
|
|
"0x%s", phex_nz (event_status, 4));
|
1526 |
|
|
ui_out_field_fmt (uiout, "event_mask",
|
1527 |
|
|
"0x%s", phex_nz (event_mask, 4));
|
1528 |
|
|
}
|
1529 |
|
|
else
|
1530 |
|
|
{
|
1531 |
|
|
printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
|
1532 |
|
|
printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
|
1533 |
|
|
}
|
1534 |
|
|
|
1535 |
|
|
do_cleanups (chain);
|
1536 |
|
|
}
|
1537 |
|
|
|
1538 |
|
|
static void
|
1539 |
|
|
info_spu_signal_command (char *args, int from_tty)
|
1540 |
|
|
{
|
1541 |
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
1542 |
|
|
ULONGEST signal1 = 0;
|
1543 |
|
|
ULONGEST signal1_type = 0;
|
1544 |
|
|
int signal1_pending = 0;
|
1545 |
|
|
ULONGEST signal2 = 0;
|
1546 |
|
|
ULONGEST signal2_type = 0;
|
1547 |
|
|
int signal2_pending = 0;
|
1548 |
|
|
struct cleanup *chain;
|
1549 |
|
|
char annex[32];
|
1550 |
|
|
gdb_byte buf[100];
|
1551 |
|
|
LONGEST len;
|
1552 |
|
|
int rc, id;
|
1553 |
|
|
|
1554 |
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
1555 |
|
|
|
1556 |
|
|
xsnprintf (annex, sizeof annex, "%d/signal1", id);
|
1557 |
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
|
1558 |
|
|
if (len < 0)
|
1559 |
|
|
error (_("Could not read signal1."));
|
1560 |
|
|
else if (len == 4)
|
1561 |
|
|
{
|
1562 |
|
|
signal1 = extract_unsigned_integer (buf, 4);
|
1563 |
|
|
signal1_pending = 1;
|
1564 |
|
|
}
|
1565 |
|
|
|
1566 |
|
|
xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
|
1567 |
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
1568 |
|
|
buf, 0, sizeof buf);
|
1569 |
|
|
if (len <= 0)
|
1570 |
|
|
error (_("Could not read signal1_type."));
|
1571 |
|
|
signal1_type = strtoulst (buf, NULL, 16);
|
1572 |
|
|
|
1573 |
|
|
xsnprintf (annex, sizeof annex, "%d/signal2", id);
|
1574 |
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
|
1575 |
|
|
if (len < 0)
|
1576 |
|
|
error (_("Could not read signal2."));
|
1577 |
|
|
else if (len == 4)
|
1578 |
|
|
{
|
1579 |
|
|
signal2 = extract_unsigned_integer (buf, 4);
|
1580 |
|
|
signal2_pending = 1;
|
1581 |
|
|
}
|
1582 |
|
|
|
1583 |
|
|
xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
|
1584 |
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
1585 |
|
|
buf, 0, sizeof buf);
|
1586 |
|
|
if (len <= 0)
|
1587 |
|
|
error (_("Could not read signal2_type."));
|
1588 |
|
|
signal2_type = strtoulst (buf, NULL, 16);
|
1589 |
|
|
|
1590 |
|
|
chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
|
1591 |
|
|
|
1592 |
|
|
if (ui_out_is_mi_like_p (uiout))
|
1593 |
|
|
{
|
1594 |
|
|
ui_out_field_int (uiout, "signal1_pending", signal1_pending);
|
1595 |
|
|
ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
|
1596 |
|
|
ui_out_field_int (uiout, "signal1_type", signal1_type);
|
1597 |
|
|
ui_out_field_int (uiout, "signal2_pending", signal2_pending);
|
1598 |
|
|
ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
|
1599 |
|
|
ui_out_field_int (uiout, "signal2_type", signal2_type);
|
1600 |
|
|
}
|
1601 |
|
|
else
|
1602 |
|
|
{
|
1603 |
|
|
if (signal1_pending)
|
1604 |
|
|
printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
|
1605 |
|
|
else
|
1606 |
|
|
printf_filtered (_("Signal 1 not pending "));
|
1607 |
|
|
|
1608 |
|
|
if (signal1_type)
|
1609 |
|
|
printf_filtered (_("(Type Or)\n"));
|
1610 |
|
|
else
|
1611 |
|
|
printf_filtered (_("(Type Overwrite)\n"));
|
1612 |
|
|
|
1613 |
|
|
if (signal2_pending)
|
1614 |
|
|
printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
|
1615 |
|
|
else
|
1616 |
|
|
printf_filtered (_("Signal 2 not pending "));
|
1617 |
|
|
|
1618 |
|
|
if (signal2_type)
|
1619 |
|
|
printf_filtered (_("(Type Or)\n"));
|
1620 |
|
|
else
|
1621 |
|
|
printf_filtered (_("(Type Overwrite)\n"));
|
1622 |
|
|
}
|
1623 |
|
|
|
1624 |
|
|
do_cleanups (chain);
|
1625 |
|
|
}
|
1626 |
|
|
|
1627 |
|
|
static void
|
1628 |
|
|
info_spu_mailbox_list (gdb_byte *buf, int nr,
|
1629 |
|
|
const char *field, const char *msg)
|
1630 |
|
|
{
|
1631 |
|
|
struct cleanup *chain;
|
1632 |
|
|
int i;
|
1633 |
|
|
|
1634 |
|
|
if (nr <= 0)
|
1635 |
|
|
return;
|
1636 |
|
|
|
1637 |
|
|
chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
|
1638 |
|
|
|
1639 |
|
|
ui_out_table_header (uiout, 32, ui_left, field, msg);
|
1640 |
|
|
ui_out_table_body (uiout);
|
1641 |
|
|
|
1642 |
|
|
for (i = 0; i < nr; i++)
|
1643 |
|
|
{
|
1644 |
|
|
struct cleanup *val_chain;
|
1645 |
|
|
ULONGEST val;
|
1646 |
|
|
val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
|
1647 |
|
|
val = extract_unsigned_integer (buf + 4*i, 4);
|
1648 |
|
|
ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
|
1649 |
|
|
do_cleanups (val_chain);
|
1650 |
|
|
|
1651 |
|
|
if (!ui_out_is_mi_like_p (uiout))
|
1652 |
|
|
printf_filtered ("\n");
|
1653 |
|
|
}
|
1654 |
|
|
|
1655 |
|
|
do_cleanups (chain);
|
1656 |
|
|
}
|
1657 |
|
|
|
1658 |
|
|
static void
|
1659 |
|
|
info_spu_mailbox_command (char *args, int from_tty)
|
1660 |
|
|
{
|
1661 |
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
1662 |
|
|
struct cleanup *chain;
|
1663 |
|
|
char annex[32];
|
1664 |
|
|
gdb_byte buf[1024];
|
1665 |
|
|
LONGEST len;
|
1666 |
|
|
int i, id;
|
1667 |
|
|
|
1668 |
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
1669 |
|
|
|
1670 |
|
|
chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
|
1671 |
|
|
|
1672 |
|
|
xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
|
1673 |
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
1674 |
|
|
buf, 0, sizeof buf);
|
1675 |
|
|
if (len < 0)
|
1676 |
|
|
error (_("Could not read mbox_info."));
|
1677 |
|
|
|
1678 |
|
|
info_spu_mailbox_list (buf, len / 4, "mbox", "SPU Outbound Mailbox");
|
1679 |
|
|
|
1680 |
|
|
xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
|
1681 |
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
1682 |
|
|
buf, 0, sizeof buf);
|
1683 |
|
|
if (len < 0)
|
1684 |
|
|
error (_("Could not read ibox_info."));
|
1685 |
|
|
|
1686 |
|
|
info_spu_mailbox_list (buf, len / 4, "ibox", "SPU Outbound Interrupt Mailbox");
|
1687 |
|
|
|
1688 |
|
|
xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
|
1689 |
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
1690 |
|
|
buf, 0, sizeof buf);
|
1691 |
|
|
if (len < 0)
|
1692 |
|
|
error (_("Could not read wbox_info."));
|
1693 |
|
|
|
1694 |
|
|
info_spu_mailbox_list (buf, len / 4, "wbox", "SPU Inbound Mailbox");
|
1695 |
|
|
|
1696 |
|
|
do_cleanups (chain);
|
1697 |
|
|
}
|
1698 |
|
|
|
1699 |
|
|
static ULONGEST
|
1700 |
|
|
spu_mfc_get_bitfield (ULONGEST word, int first, int last)
|
1701 |
|
|
{
|
1702 |
|
|
ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
|
1703 |
|
|
return (word >> (63 - last)) & mask;
|
1704 |
|
|
}
|
1705 |
|
|
|
1706 |
|
|
static void
|
1707 |
|
|
info_spu_dma_cmdlist (gdb_byte *buf, int nr)
|
1708 |
|
|
{
|
1709 |
|
|
static char *spu_mfc_opcode[256] =
|
1710 |
|
|
{
|
1711 |
|
|
/* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1712 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1713 |
|
|
/* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1714 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1715 |
|
|
/* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
|
1716 |
|
|
"puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
|
1717 |
|
|
/* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
|
1718 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1719 |
|
|
/* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
|
1720 |
|
|
"gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
|
1721 |
|
|
/* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1722 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1723 |
|
|
/* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1724 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1725 |
|
|
/* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1726 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1727 |
|
|
/* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
|
1728 |
|
|
NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
|
1729 |
|
|
/* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1730 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1731 |
|
|
/* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
|
1732 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1733 |
|
|
/* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
|
1734 |
|
|
"putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1735 |
|
|
/* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1736 |
|
|
"mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
|
1737 |
|
|
/* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1738 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1739 |
|
|
/* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1740 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1741 |
|
|
/* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1742 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
1743 |
|
|
};
|
1744 |
|
|
|
1745 |
|
|
struct cleanup *chain;
|
1746 |
|
|
int i;
|
1747 |
|
|
|
1748 |
|
|
chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
|
1749 |
|
|
|
1750 |
|
|
ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
|
1751 |
|
|
ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
|
1752 |
|
|
ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
|
1753 |
|
|
ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
|
1754 |
|
|
ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
|
1755 |
|
|
ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
|
1756 |
|
|
ui_out_table_header (uiout, 7, ui_left, "size", "Size");
|
1757 |
|
|
ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
|
1758 |
|
|
ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
|
1759 |
|
|
ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
|
1760 |
|
|
|
1761 |
|
|
ui_out_table_body (uiout);
|
1762 |
|
|
|
1763 |
|
|
for (i = 0; i < nr; i++)
|
1764 |
|
|
{
|
1765 |
|
|
struct cleanup *cmd_chain;
|
1766 |
|
|
ULONGEST mfc_cq_dw0;
|
1767 |
|
|
ULONGEST mfc_cq_dw1;
|
1768 |
|
|
ULONGEST mfc_cq_dw2;
|
1769 |
|
|
ULONGEST mfc_cq_dw3;
|
1770 |
|
|
int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
|
1771 |
|
|
int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
|
1772 |
|
|
ULONGEST mfc_ea;
|
1773 |
|
|
int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
|
1774 |
|
|
|
1775 |
|
|
/* Decode contents of MFC Command Queue Context Save/Restore Registers.
|
1776 |
|
|
See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
|
1777 |
|
|
|
1778 |
|
|
mfc_cq_dw0 = extract_unsigned_integer (buf + 32*i, 8);
|
1779 |
|
|
mfc_cq_dw1 = extract_unsigned_integer (buf + 32*i + 8, 8);
|
1780 |
|
|
mfc_cq_dw2 = extract_unsigned_integer (buf + 32*i + 16, 8);
|
1781 |
|
|
mfc_cq_dw3 = extract_unsigned_integer (buf + 32*i + 24, 8);
|
1782 |
|
|
|
1783 |
|
|
list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
|
1784 |
|
|
list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
|
1785 |
|
|
mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
|
1786 |
|
|
mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
|
1787 |
|
|
list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
|
1788 |
|
|
rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
|
1789 |
|
|
tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
|
1790 |
|
|
|
1791 |
|
|
mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
|
1792 |
|
|
| spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
|
1793 |
|
|
|
1794 |
|
|
mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
|
1795 |
|
|
mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
|
1796 |
|
|
noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
|
1797 |
|
|
qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
|
1798 |
|
|
ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
|
1799 |
|
|
cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
|
1800 |
|
|
|
1801 |
|
|
cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
|
1802 |
|
|
|
1803 |
|
|
if (spu_mfc_opcode[mfc_cmd_opcode])
|
1804 |
|
|
ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
|
1805 |
|
|
else
|
1806 |
|
|
ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
|
1807 |
|
|
|
1808 |
|
|
ui_out_field_int (uiout, "tag", mfc_cmd_tag);
|
1809 |
|
|
ui_out_field_int (uiout, "tid", tclass_id);
|
1810 |
|
|
ui_out_field_int (uiout, "rid", rclass_id);
|
1811 |
|
|
|
1812 |
|
|
if (ea_valid_p)
|
1813 |
|
|
ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
|
1814 |
|
|
else
|
1815 |
|
|
ui_out_field_skip (uiout, "ea");
|
1816 |
|
|
|
1817 |
|
|
ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
|
1818 |
|
|
if (qw_valid_p)
|
1819 |
|
|
ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
|
1820 |
|
|
else
|
1821 |
|
|
ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
|
1822 |
|
|
|
1823 |
|
|
if (list_valid_p)
|
1824 |
|
|
{
|
1825 |
|
|
ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
|
1826 |
|
|
ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
|
1827 |
|
|
}
|
1828 |
|
|
else
|
1829 |
|
|
{
|
1830 |
|
|
ui_out_field_skip (uiout, "lstaddr");
|
1831 |
|
|
ui_out_field_skip (uiout, "lstsize");
|
1832 |
|
|
}
|
1833 |
|
|
|
1834 |
|
|
if (cmd_error_p)
|
1835 |
|
|
ui_out_field_string (uiout, "error_p", "*");
|
1836 |
|
|
else
|
1837 |
|
|
ui_out_field_skip (uiout, "error_p");
|
1838 |
|
|
|
1839 |
|
|
do_cleanups (cmd_chain);
|
1840 |
|
|
|
1841 |
|
|
if (!ui_out_is_mi_like_p (uiout))
|
1842 |
|
|
printf_filtered ("\n");
|
1843 |
|
|
}
|
1844 |
|
|
|
1845 |
|
|
do_cleanups (chain);
|
1846 |
|
|
}
|
1847 |
|
|
|
1848 |
|
|
static void
|
1849 |
|
|
info_spu_dma_command (char *args, int from_tty)
|
1850 |
|
|
{
|
1851 |
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
1852 |
|
|
ULONGEST dma_info_type;
|
1853 |
|
|
ULONGEST dma_info_mask;
|
1854 |
|
|
ULONGEST dma_info_status;
|
1855 |
|
|
ULONGEST dma_info_stall_and_notify;
|
1856 |
|
|
ULONGEST dma_info_atomic_command_status;
|
1857 |
|
|
struct cleanup *chain;
|
1858 |
|
|
char annex[32];
|
1859 |
|
|
gdb_byte buf[1024];
|
1860 |
|
|
LONGEST len;
|
1861 |
|
|
int i, id;
|
1862 |
|
|
|
1863 |
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
1864 |
|
|
|
1865 |
|
|
xsnprintf (annex, sizeof annex, "%d/dma_info", id);
|
1866 |
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
1867 |
|
|
buf, 0, 40 + 16 * 32);
|
1868 |
|
|
if (len <= 0)
|
1869 |
|
|
error (_("Could not read dma_info."));
|
1870 |
|
|
|
1871 |
|
|
dma_info_type = extract_unsigned_integer (buf, 8);
|
1872 |
|
|
dma_info_mask = extract_unsigned_integer (buf + 8, 8);
|
1873 |
|
|
dma_info_status = extract_unsigned_integer (buf + 16, 8);
|
1874 |
|
|
dma_info_stall_and_notify = extract_unsigned_integer (buf + 24, 8);
|
1875 |
|
|
dma_info_atomic_command_status = extract_unsigned_integer (buf + 32, 8);
|
1876 |
|
|
|
1877 |
|
|
chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
|
1878 |
|
|
|
1879 |
|
|
if (ui_out_is_mi_like_p (uiout))
|
1880 |
|
|
{
|
1881 |
|
|
ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
|
1882 |
|
|
phex_nz (dma_info_type, 4));
|
1883 |
|
|
ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
|
1884 |
|
|
phex_nz (dma_info_mask, 4));
|
1885 |
|
|
ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
|
1886 |
|
|
phex_nz (dma_info_status, 4));
|
1887 |
|
|
ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
|
1888 |
|
|
phex_nz (dma_info_stall_and_notify, 4));
|
1889 |
|
|
ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
|
1890 |
|
|
phex_nz (dma_info_atomic_command_status, 4));
|
1891 |
|
|
}
|
1892 |
|
|
else
|
1893 |
|
|
{
|
1894 |
|
|
const char *query_msg;
|
1895 |
|
|
|
1896 |
|
|
switch (dma_info_type)
|
1897 |
|
|
{
|
1898 |
|
|
case 0: query_msg = _("no query pending"); break;
|
1899 |
|
|
case 1: query_msg = _("'any' query pending"); break;
|
1900 |
|
|
case 2: query_msg = _("'all' query pending"); break;
|
1901 |
|
|
default: query_msg = _("undefined query type"); break;
|
1902 |
|
|
}
|
1903 |
|
|
|
1904 |
|
|
printf_filtered (_("Tag-Group Status 0x%s\n"),
|
1905 |
|
|
phex (dma_info_status, 4));
|
1906 |
|
|
printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
|
1907 |
|
|
phex (dma_info_mask, 4), query_msg);
|
1908 |
|
|
printf_filtered (_("Stall-and-Notify 0x%s\n"),
|
1909 |
|
|
phex (dma_info_stall_and_notify, 4));
|
1910 |
|
|
printf_filtered (_("Atomic Cmd Status 0x%s\n"),
|
1911 |
|
|
phex (dma_info_atomic_command_status, 4));
|
1912 |
|
|
printf_filtered ("\n");
|
1913 |
|
|
}
|
1914 |
|
|
|
1915 |
|
|
info_spu_dma_cmdlist (buf + 40, 16);
|
1916 |
|
|
do_cleanups (chain);
|
1917 |
|
|
}
|
1918 |
|
|
|
1919 |
|
|
static void
|
1920 |
|
|
info_spu_proxydma_command (char *args, int from_tty)
|
1921 |
|
|
{
|
1922 |
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
1923 |
|
|
ULONGEST dma_info_type;
|
1924 |
|
|
ULONGEST dma_info_mask;
|
1925 |
|
|
ULONGEST dma_info_status;
|
1926 |
|
|
struct cleanup *chain;
|
1927 |
|
|
char annex[32];
|
1928 |
|
|
gdb_byte buf[1024];
|
1929 |
|
|
LONGEST len;
|
1930 |
|
|
int i, id;
|
1931 |
|
|
|
1932 |
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
1933 |
|
|
|
1934 |
|
|
xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
|
1935 |
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
1936 |
|
|
buf, 0, 24 + 8 * 32);
|
1937 |
|
|
if (len <= 0)
|
1938 |
|
|
error (_("Could not read proxydma_info."));
|
1939 |
|
|
|
1940 |
|
|
dma_info_type = extract_unsigned_integer (buf, 8);
|
1941 |
|
|
dma_info_mask = extract_unsigned_integer (buf + 8, 8);
|
1942 |
|
|
dma_info_status = extract_unsigned_integer (buf + 16, 8);
|
1943 |
|
|
|
1944 |
|
|
chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
|
1945 |
|
|
|
1946 |
|
|
if (ui_out_is_mi_like_p (uiout))
|
1947 |
|
|
{
|
1948 |
|
|
ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
|
1949 |
|
|
phex_nz (dma_info_type, 4));
|
1950 |
|
|
ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
|
1951 |
|
|
phex_nz (dma_info_mask, 4));
|
1952 |
|
|
ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
|
1953 |
|
|
phex_nz (dma_info_status, 4));
|
1954 |
|
|
}
|
1955 |
|
|
else
|
1956 |
|
|
{
|
1957 |
|
|
const char *query_msg;
|
1958 |
|
|
|
1959 |
|
|
switch (dma_info_type)
|
1960 |
|
|
{
|
1961 |
|
|
case 0: query_msg = _("no query pending"); break;
|
1962 |
|
|
case 1: query_msg = _("'any' query pending"); break;
|
1963 |
|
|
case 2: query_msg = _("'all' query pending"); break;
|
1964 |
|
|
default: query_msg = _("undefined query type"); break;
|
1965 |
|
|
}
|
1966 |
|
|
|
1967 |
|
|
printf_filtered (_("Tag-Group Status 0x%s\n"),
|
1968 |
|
|
phex (dma_info_status, 4));
|
1969 |
|
|
printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
|
1970 |
|
|
phex (dma_info_mask, 4), query_msg);
|
1971 |
|
|
printf_filtered ("\n");
|
1972 |
|
|
}
|
1973 |
|
|
|
1974 |
|
|
info_spu_dma_cmdlist (buf + 24, 8);
|
1975 |
|
|
do_cleanups (chain);
|
1976 |
|
|
}
|
1977 |
|
|
|
1978 |
|
|
static void
|
1979 |
|
|
info_spu_command (char *args, int from_tty)
|
1980 |
|
|
{
|
1981 |
|
|
printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
|
1982 |
|
|
help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
|
1983 |
|
|
}
|
1984 |
|
|
|
1985 |
|
|
|
1986 |
|
|
/* Set up gdbarch struct. */
|
1987 |
|
|
|
1988 |
|
|
static struct gdbarch *
|
1989 |
|
|
spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
1990 |
|
|
{
|
1991 |
|
|
struct gdbarch *gdbarch;
|
1992 |
|
|
struct gdbarch_tdep *tdep;
|
1993 |
|
|
|
1994 |
|
|
/* Find a candidate among the list of pre-declared architectures. */
|
1995 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
1996 |
|
|
if (arches != NULL)
|
1997 |
|
|
return arches->gdbarch;
|
1998 |
|
|
|
1999 |
|
|
/* Is is for us? */
|
2000 |
|
|
if (info.bfd_arch_info->mach != bfd_mach_spu)
|
2001 |
|
|
return NULL;
|
2002 |
|
|
|
2003 |
|
|
/* Yes, create a new architecture. */
|
2004 |
|
|
tdep = XCALLOC (1, struct gdbarch_tdep);
|
2005 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
2006 |
|
|
|
2007 |
|
|
/* Disassembler. */
|
2008 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_spu);
|
2009 |
|
|
|
2010 |
|
|
/* Registers. */
|
2011 |
|
|
set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
|
2012 |
|
|
set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
|
2013 |
|
|
set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
|
2014 |
|
|
set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
|
2015 |
|
|
set_gdbarch_read_pc (gdbarch, spu_read_pc);
|
2016 |
|
|
set_gdbarch_write_pc (gdbarch, spu_write_pc);
|
2017 |
|
|
set_gdbarch_register_name (gdbarch, spu_register_name);
|
2018 |
|
|
set_gdbarch_register_type (gdbarch, spu_register_type);
|
2019 |
|
|
set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
|
2020 |
|
|
set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
|
2021 |
|
|
set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
|
2022 |
|
|
set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
|
2023 |
|
|
|
2024 |
|
|
/* Data types. */
|
2025 |
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
2026 |
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
2027 |
|
|
set_gdbarch_addr_bit (gdbarch, 32);
|
2028 |
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
2029 |
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
2030 |
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
2031 |
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
2032 |
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
2033 |
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
2034 |
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
2035 |
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
2036 |
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
|
2037 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
2038 |
|
|
|
2039 |
|
|
/* Address conversion. */
|
2040 |
|
|
set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
|
2041 |
|
|
set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
|
2042 |
|
|
|
2043 |
|
|
/* Inferior function calls. */
|
2044 |
|
|
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
|
2045 |
|
|
set_gdbarch_frame_align (gdbarch, spu_frame_align);
|
2046 |
|
|
set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
|
2047 |
|
|
set_gdbarch_unwind_dummy_id (gdbarch, spu_unwind_dummy_id);
|
2048 |
|
|
set_gdbarch_return_value (gdbarch, spu_return_value);
|
2049 |
|
|
|
2050 |
|
|
/* Frame handling. */
|
2051 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
2052 |
|
|
frame_unwind_append_sniffer (gdbarch, spu_frame_sniffer);
|
2053 |
|
|
frame_base_set_default (gdbarch, &spu_frame_base);
|
2054 |
|
|
set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
|
2055 |
|
|
set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
|
2056 |
|
|
set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
|
2057 |
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
2058 |
|
|
set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
|
2059 |
|
|
set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
|
2060 |
|
|
|
2061 |
|
|
/* Breakpoints. */
|
2062 |
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 4);
|
2063 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
|
2064 |
|
|
set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
|
2065 |
|
|
set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
|
2066 |
|
|
|
2067 |
|
|
/* Overlays. */
|
2068 |
|
|
set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
|
2069 |
|
|
|
2070 |
|
|
return gdbarch;
|
2071 |
|
|
}
|
2072 |
|
|
|
2073 |
|
|
void
|
2074 |
|
|
_initialize_spu_tdep (void)
|
2075 |
|
|
{
|
2076 |
|
|
register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
|
2077 |
|
|
|
2078 |
|
|
/* Add ourselves to objfile event chain. */
|
2079 |
|
|
observer_attach_new_objfile (spu_overlay_new_objfile);
|
2080 |
|
|
spu_overlay_data = register_objfile_data ();
|
2081 |
|
|
|
2082 |
|
|
/* Add root prefix command for all "info spu" commands. */
|
2083 |
|
|
add_prefix_cmd ("spu", class_info, info_spu_command,
|
2084 |
|
|
_("Various SPU specific commands."),
|
2085 |
|
|
&infospucmdlist, "info spu ", 0, &infolist);
|
2086 |
|
|
|
2087 |
|
|
/* Add various "info spu" commands. */
|
2088 |
|
|
add_cmd ("event", class_info, info_spu_event_command,
|
2089 |
|
|
_("Display SPU event facility status.\n"),
|
2090 |
|
|
&infospucmdlist);
|
2091 |
|
|
add_cmd ("signal", class_info, info_spu_signal_command,
|
2092 |
|
|
_("Display SPU signal notification facility status.\n"),
|
2093 |
|
|
&infospucmdlist);
|
2094 |
|
|
add_cmd ("mailbox", class_info, info_spu_mailbox_command,
|
2095 |
|
|
_("Display SPU mailbox facility status.\n"),
|
2096 |
|
|
&infospucmdlist);
|
2097 |
|
|
add_cmd ("dma", class_info, info_spu_dma_command,
|
2098 |
|
|
_("Display MFC DMA status.\n"),
|
2099 |
|
|
&infospucmdlist);
|
2100 |
|
|
add_cmd ("proxydma", class_info, info_spu_proxydma_command,
|
2101 |
|
|
_("Display MFC Proxy-DMA status.\n"),
|
2102 |
|
|
&infospucmdlist);
|
2103 |
|
|
}
|