1 |
24 |
jeremybenn |
/* Perform non-arithmetic operations on values, for GDB.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
4 |
|
|
1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
|
5 |
|
|
2008 Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "symtab.h"
|
24 |
|
|
#include "gdbtypes.h"
|
25 |
|
|
#include "value.h"
|
26 |
|
|
#include "frame.h"
|
27 |
|
|
#include "inferior.h"
|
28 |
|
|
#include "gdbcore.h"
|
29 |
|
|
#include "target.h"
|
30 |
|
|
#include "demangle.h"
|
31 |
|
|
#include "language.h"
|
32 |
|
|
#include "gdbcmd.h"
|
33 |
|
|
#include "regcache.h"
|
34 |
|
|
#include "cp-abi.h"
|
35 |
|
|
#include "block.h"
|
36 |
|
|
#include "infcall.h"
|
37 |
|
|
#include "dictionary.h"
|
38 |
|
|
#include "cp-support.h"
|
39 |
|
|
#include "dfp.h"
|
40 |
|
|
|
41 |
|
|
#include <errno.h>
|
42 |
|
|
#include "gdb_string.h"
|
43 |
|
|
#include "gdb_assert.h"
|
44 |
|
|
#include "cp-support.h"
|
45 |
|
|
#include "observer.h"
|
46 |
|
|
|
47 |
|
|
extern int overload_debug;
|
48 |
|
|
/* Local functions. */
|
49 |
|
|
|
50 |
|
|
static int typecmp (int staticp, int varargs, int nargs,
|
51 |
|
|
struct field t1[], struct value *t2[]);
|
52 |
|
|
|
53 |
|
|
static struct value *search_struct_field (char *, struct value *,
|
54 |
|
|
int, struct type *, int);
|
55 |
|
|
|
56 |
|
|
static struct value *search_struct_method (char *, struct value **,
|
57 |
|
|
struct value **,
|
58 |
|
|
int, int *, struct type *);
|
59 |
|
|
|
60 |
|
|
static int find_oload_champ_namespace (struct type **, int,
|
61 |
|
|
const char *, const char *,
|
62 |
|
|
struct symbol ***,
|
63 |
|
|
struct badness_vector **);
|
64 |
|
|
|
65 |
|
|
static
|
66 |
|
|
int find_oload_champ_namespace_loop (struct type **, int,
|
67 |
|
|
const char *, const char *,
|
68 |
|
|
int, struct symbol ***,
|
69 |
|
|
struct badness_vector **, int *);
|
70 |
|
|
|
71 |
|
|
static int find_oload_champ (struct type **, int, int, int,
|
72 |
|
|
struct fn_field *, struct symbol **,
|
73 |
|
|
struct badness_vector **);
|
74 |
|
|
|
75 |
|
|
static int oload_method_static (int, struct fn_field *, int);
|
76 |
|
|
|
77 |
|
|
enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
|
78 |
|
|
|
79 |
|
|
static enum
|
80 |
|
|
oload_classification classify_oload_match (struct badness_vector *,
|
81 |
|
|
int, int);
|
82 |
|
|
|
83 |
|
|
static int check_field_in (struct type *, const char *);
|
84 |
|
|
|
85 |
|
|
static struct value *value_struct_elt_for_reference (struct type *,
|
86 |
|
|
int, struct type *,
|
87 |
|
|
char *,
|
88 |
|
|
struct type *,
|
89 |
|
|
int, enum noside);
|
90 |
|
|
|
91 |
|
|
static struct value *value_namespace_elt (const struct type *,
|
92 |
|
|
char *, int , enum noside);
|
93 |
|
|
|
94 |
|
|
static struct value *value_maybe_namespace_elt (const struct type *,
|
95 |
|
|
char *, int,
|
96 |
|
|
enum noside);
|
97 |
|
|
|
98 |
|
|
static CORE_ADDR allocate_space_in_inferior (int);
|
99 |
|
|
|
100 |
|
|
static struct value *cast_into_complex (struct type *, struct value *);
|
101 |
|
|
|
102 |
|
|
static struct fn_field *find_method_list (struct value **, char *,
|
103 |
|
|
int, struct type *, int *,
|
104 |
|
|
struct type **, int *);
|
105 |
|
|
|
106 |
|
|
void _initialize_valops (void);
|
107 |
|
|
|
108 |
|
|
#if 0
|
109 |
|
|
/* Flag for whether we want to abandon failed expression evals by
|
110 |
|
|
default. */
|
111 |
|
|
|
112 |
|
|
static int auto_abandon = 0;
|
113 |
|
|
#endif
|
114 |
|
|
|
115 |
|
|
int overload_resolution = 0;
|
116 |
|
|
static void
|
117 |
|
|
show_overload_resolution (struct ui_file *file, int from_tty,
|
118 |
|
|
struct cmd_list_element *c,
|
119 |
|
|
const char *value)
|
120 |
|
|
{
|
121 |
|
|
fprintf_filtered (file, _("\
|
122 |
|
|
Overload resolution in evaluating C++ functions is %s.\n"),
|
123 |
|
|
value);
|
124 |
|
|
}
|
125 |
|
|
|
126 |
|
|
/* Find the address of function name NAME in the inferior. */
|
127 |
|
|
|
128 |
|
|
struct value *
|
129 |
|
|
find_function_in_inferior (const char *name)
|
130 |
|
|
{
|
131 |
|
|
struct symbol *sym;
|
132 |
|
|
sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL);
|
133 |
|
|
if (sym != NULL)
|
134 |
|
|
{
|
135 |
|
|
if (SYMBOL_CLASS (sym) != LOC_BLOCK)
|
136 |
|
|
{
|
137 |
|
|
error (_("\"%s\" exists in this program but is not a function."),
|
138 |
|
|
name);
|
139 |
|
|
}
|
140 |
|
|
return value_of_variable (sym, NULL);
|
141 |
|
|
}
|
142 |
|
|
else
|
143 |
|
|
{
|
144 |
|
|
struct minimal_symbol *msymbol =
|
145 |
|
|
lookup_minimal_symbol (name, NULL, NULL);
|
146 |
|
|
if (msymbol != NULL)
|
147 |
|
|
{
|
148 |
|
|
struct type *type;
|
149 |
|
|
CORE_ADDR maddr;
|
150 |
|
|
type = lookup_pointer_type (builtin_type_char);
|
151 |
|
|
type = lookup_function_type (type);
|
152 |
|
|
type = lookup_pointer_type (type);
|
153 |
|
|
maddr = SYMBOL_VALUE_ADDRESS (msymbol);
|
154 |
|
|
return value_from_pointer (type, maddr);
|
155 |
|
|
}
|
156 |
|
|
else
|
157 |
|
|
{
|
158 |
|
|
if (!target_has_execution)
|
159 |
|
|
error (_("evaluation of this expression requires the target program to be active"));
|
160 |
|
|
else
|
161 |
|
|
error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
|
162 |
|
|
}
|
163 |
|
|
}
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
/* Allocate NBYTES of space in the inferior using the inferior's
|
167 |
|
|
malloc and return a value that is a pointer to the allocated
|
168 |
|
|
space. */
|
169 |
|
|
|
170 |
|
|
struct value *
|
171 |
|
|
value_allocate_space_in_inferior (int len)
|
172 |
|
|
{
|
173 |
|
|
struct value *blocklen;
|
174 |
|
|
struct value *val =
|
175 |
|
|
find_function_in_inferior (gdbarch_name_of_malloc (current_gdbarch));
|
176 |
|
|
|
177 |
|
|
blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
|
178 |
|
|
val = call_function_by_hand (val, 1, &blocklen);
|
179 |
|
|
if (value_logical_not (val))
|
180 |
|
|
{
|
181 |
|
|
if (!target_has_execution)
|
182 |
|
|
error (_("No memory available to program now: you need to start the target first"));
|
183 |
|
|
else
|
184 |
|
|
error (_("No memory available to program: call to malloc failed"));
|
185 |
|
|
}
|
186 |
|
|
return val;
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
static CORE_ADDR
|
190 |
|
|
allocate_space_in_inferior (int len)
|
191 |
|
|
{
|
192 |
|
|
return value_as_long (value_allocate_space_in_inferior (len));
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
/* Cast one pointer or reference type to another. Both TYPE and
|
196 |
|
|
the type of ARG2 should be pointer types, or else both should be
|
197 |
|
|
reference types. Returns the new pointer or reference. */
|
198 |
|
|
|
199 |
|
|
struct value *
|
200 |
|
|
value_cast_pointers (struct type *type, struct value *arg2)
|
201 |
|
|
{
|
202 |
|
|
struct type *type2 = check_typedef (value_type (arg2));
|
203 |
|
|
struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
|
204 |
|
|
struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
|
205 |
|
|
|
206 |
|
|
if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
|
207 |
|
|
&& TYPE_CODE (t2) == TYPE_CODE_STRUCT
|
208 |
|
|
&& !value_logical_not (arg2))
|
209 |
|
|
{
|
210 |
|
|
struct value *v;
|
211 |
|
|
|
212 |
|
|
/* Look in the type of the source to see if it contains the
|
213 |
|
|
type of the target as a superclass. If so, we'll need to
|
214 |
|
|
offset the pointer rather than just change its type. */
|
215 |
|
|
if (TYPE_NAME (t1) != NULL)
|
216 |
|
|
{
|
217 |
|
|
struct value *v2;
|
218 |
|
|
|
219 |
|
|
if (TYPE_CODE (type2) == TYPE_CODE_REF)
|
220 |
|
|
v2 = coerce_ref (arg2);
|
221 |
|
|
else
|
222 |
|
|
v2 = value_ind (arg2);
|
223 |
|
|
v = search_struct_field (type_name_no_tag (t1),
|
224 |
|
|
v2, 0, t2, 1);
|
225 |
|
|
if (v)
|
226 |
|
|
{
|
227 |
|
|
v = value_addr (v);
|
228 |
|
|
deprecated_set_value_type (v, type);
|
229 |
|
|
return v;
|
230 |
|
|
}
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
/* Look in the type of the target to see if it contains the
|
234 |
|
|
type of the source as a superclass. If so, we'll need to
|
235 |
|
|
offset the pointer rather than just change its type.
|
236 |
|
|
FIXME: This fails silently with virtual inheritance. */
|
237 |
|
|
if (TYPE_NAME (t2) != NULL)
|
238 |
|
|
{
|
239 |
|
|
v = search_struct_field (type_name_no_tag (t2),
|
240 |
|
|
value_zero (t1, not_lval), 0, t1, 1);
|
241 |
|
|
if (v)
|
242 |
|
|
{
|
243 |
|
|
CORE_ADDR addr2 = value_as_address (arg2);
|
244 |
|
|
addr2 -= (VALUE_ADDRESS (v)
|
245 |
|
|
+ value_offset (v)
|
246 |
|
|
+ value_embedded_offset (v));
|
247 |
|
|
return value_from_pointer (type, addr2);
|
248 |
|
|
}
|
249 |
|
|
}
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
/* No superclass found, just change the pointer type. */
|
253 |
|
|
arg2 = value_copy (arg2);
|
254 |
|
|
deprecated_set_value_type (arg2, type);
|
255 |
|
|
arg2 = value_change_enclosing_type (arg2, type);
|
256 |
|
|
set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
|
257 |
|
|
return arg2;
|
258 |
|
|
}
|
259 |
|
|
|
260 |
|
|
/* Cast value ARG2 to type TYPE and return as a value.
|
261 |
|
|
More general than a C cast: accepts any two types of the same length,
|
262 |
|
|
and if ARG2 is an lvalue it can be cast into anything at all. */
|
263 |
|
|
/* In C++, casts may change pointer or object representations. */
|
264 |
|
|
|
265 |
|
|
struct value *
|
266 |
|
|
value_cast (struct type *type, struct value *arg2)
|
267 |
|
|
{
|
268 |
|
|
enum type_code code1;
|
269 |
|
|
enum type_code code2;
|
270 |
|
|
int scalar;
|
271 |
|
|
struct type *type2;
|
272 |
|
|
|
273 |
|
|
int convert_to_boolean = 0;
|
274 |
|
|
|
275 |
|
|
if (value_type (arg2) == type)
|
276 |
|
|
return arg2;
|
277 |
|
|
|
278 |
|
|
CHECK_TYPEDEF (type);
|
279 |
|
|
code1 = TYPE_CODE (type);
|
280 |
|
|
arg2 = coerce_ref (arg2);
|
281 |
|
|
type2 = check_typedef (value_type (arg2));
|
282 |
|
|
|
283 |
|
|
/* You can't cast to a reference type. See value_cast_pointers
|
284 |
|
|
instead. */
|
285 |
|
|
gdb_assert (code1 != TYPE_CODE_REF);
|
286 |
|
|
|
287 |
|
|
/* A cast to an undetermined-length array_type, such as
|
288 |
|
|
(TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
|
289 |
|
|
where N is sizeof(OBJECT)/sizeof(TYPE). */
|
290 |
|
|
if (code1 == TYPE_CODE_ARRAY)
|
291 |
|
|
{
|
292 |
|
|
struct type *element_type = TYPE_TARGET_TYPE (type);
|
293 |
|
|
unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
|
294 |
|
|
if (element_length > 0
|
295 |
|
|
&& TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
|
296 |
|
|
{
|
297 |
|
|
struct type *range_type = TYPE_INDEX_TYPE (type);
|
298 |
|
|
int val_length = TYPE_LENGTH (type2);
|
299 |
|
|
LONGEST low_bound, high_bound, new_length;
|
300 |
|
|
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
|
301 |
|
|
low_bound = 0, high_bound = 0;
|
302 |
|
|
new_length = val_length / element_length;
|
303 |
|
|
if (val_length % element_length != 0)
|
304 |
|
|
warning (_("array element type size does not divide object size in cast"));
|
305 |
|
|
/* FIXME-type-allocation: need a way to free this type when
|
306 |
|
|
we are done with it. */
|
307 |
|
|
range_type = create_range_type ((struct type *) NULL,
|
308 |
|
|
TYPE_TARGET_TYPE (range_type),
|
309 |
|
|
low_bound,
|
310 |
|
|
new_length + low_bound - 1);
|
311 |
|
|
deprecated_set_value_type (arg2,
|
312 |
|
|
create_array_type ((struct type *) NULL,
|
313 |
|
|
element_type,
|
314 |
|
|
range_type));
|
315 |
|
|
return arg2;
|
316 |
|
|
}
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
if (current_language->c_style_arrays
|
320 |
|
|
&& TYPE_CODE (type2) == TYPE_CODE_ARRAY)
|
321 |
|
|
arg2 = value_coerce_array (arg2);
|
322 |
|
|
|
323 |
|
|
if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
|
324 |
|
|
arg2 = value_coerce_function (arg2);
|
325 |
|
|
|
326 |
|
|
type2 = check_typedef (value_type (arg2));
|
327 |
|
|
code2 = TYPE_CODE (type2);
|
328 |
|
|
|
329 |
|
|
if (code1 == TYPE_CODE_COMPLEX)
|
330 |
|
|
return cast_into_complex (type, arg2);
|
331 |
|
|
if (code1 == TYPE_CODE_BOOL)
|
332 |
|
|
{
|
333 |
|
|
code1 = TYPE_CODE_INT;
|
334 |
|
|
convert_to_boolean = 1;
|
335 |
|
|
}
|
336 |
|
|
if (code1 == TYPE_CODE_CHAR)
|
337 |
|
|
code1 = TYPE_CODE_INT;
|
338 |
|
|
if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
|
339 |
|
|
code2 = TYPE_CODE_INT;
|
340 |
|
|
|
341 |
|
|
scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
|
342 |
|
|
|| code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
|
343 |
|
|
|| code2 == TYPE_CODE_RANGE);
|
344 |
|
|
|
345 |
|
|
if (code1 == TYPE_CODE_STRUCT
|
346 |
|
|
&& code2 == TYPE_CODE_STRUCT
|
347 |
|
|
&& TYPE_NAME (type) != 0)
|
348 |
|
|
{
|
349 |
|
|
/* Look in the type of the source to see if it contains the
|
350 |
|
|
type of the target as a superclass. If so, we'll need to
|
351 |
|
|
offset the object in addition to changing its type. */
|
352 |
|
|
struct value *v = search_struct_field (type_name_no_tag (type),
|
353 |
|
|
arg2, 0, type2, 1);
|
354 |
|
|
if (v)
|
355 |
|
|
{
|
356 |
|
|
deprecated_set_value_type (v, type);
|
357 |
|
|
return v;
|
358 |
|
|
}
|
359 |
|
|
}
|
360 |
|
|
if (code1 == TYPE_CODE_FLT && scalar)
|
361 |
|
|
return value_from_double (type, value_as_double (arg2));
|
362 |
|
|
else if (code1 == TYPE_CODE_DECFLOAT && scalar)
|
363 |
|
|
{
|
364 |
|
|
int dec_len = TYPE_LENGTH (type);
|
365 |
|
|
gdb_byte dec[16];
|
366 |
|
|
|
367 |
|
|
if (code2 == TYPE_CODE_FLT)
|
368 |
|
|
decimal_from_floating (arg2, dec, dec_len);
|
369 |
|
|
else if (code2 == TYPE_CODE_DECFLOAT)
|
370 |
|
|
decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
|
371 |
|
|
dec, dec_len);
|
372 |
|
|
else
|
373 |
|
|
/* The only option left is an integral type. */
|
374 |
|
|
decimal_from_integral (arg2, dec, dec_len);
|
375 |
|
|
|
376 |
|
|
return value_from_decfloat (type, dec);
|
377 |
|
|
}
|
378 |
|
|
else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
|
379 |
|
|
|| code1 == TYPE_CODE_RANGE)
|
380 |
|
|
&& (scalar || code2 == TYPE_CODE_PTR
|
381 |
|
|
|| code2 == TYPE_CODE_MEMBERPTR))
|
382 |
|
|
{
|
383 |
|
|
LONGEST longest;
|
384 |
|
|
|
385 |
|
|
/* When we cast pointers to integers, we mustn't use
|
386 |
|
|
gdbarch_pointer_to_address to find the address the pointer
|
387 |
|
|
represents, as value_as_long would. GDB should evaluate
|
388 |
|
|
expressions just as the compiler would --- and the compiler
|
389 |
|
|
sees a cast as a simple reinterpretation of the pointer's
|
390 |
|
|
bits. */
|
391 |
|
|
if (code2 == TYPE_CODE_PTR)
|
392 |
|
|
longest = extract_unsigned_integer (value_contents (arg2),
|
393 |
|
|
TYPE_LENGTH (type2));
|
394 |
|
|
else
|
395 |
|
|
longest = value_as_long (arg2);
|
396 |
|
|
return value_from_longest (type, convert_to_boolean ?
|
397 |
|
|
(LONGEST) (longest ? 1 : 0) : longest);
|
398 |
|
|
}
|
399 |
|
|
else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
|
400 |
|
|
|| code2 == TYPE_CODE_ENUM
|
401 |
|
|
|| code2 == TYPE_CODE_RANGE))
|
402 |
|
|
{
|
403 |
|
|
/* TYPE_LENGTH (type) is the length of a pointer, but we really
|
404 |
|
|
want the length of an address! -- we are really dealing with
|
405 |
|
|
addresses (i.e., gdb representations) not pointers (i.e.,
|
406 |
|
|
target representations) here.
|
407 |
|
|
|
408 |
|
|
This allows things like "print *(int *)0x01000234" to work
|
409 |
|
|
without printing a misleading message -- which would
|
410 |
|
|
otherwise occur when dealing with a target having two byte
|
411 |
|
|
pointers and four byte addresses. */
|
412 |
|
|
|
413 |
|
|
int addr_bit = gdbarch_addr_bit (current_gdbarch);
|
414 |
|
|
|
415 |
|
|
LONGEST longest = value_as_long (arg2);
|
416 |
|
|
if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
|
417 |
|
|
{
|
418 |
|
|
if (longest >= ((LONGEST) 1 << addr_bit)
|
419 |
|
|
|| longest <= -((LONGEST) 1 << addr_bit))
|
420 |
|
|
warning (_("value truncated"));
|
421 |
|
|
}
|
422 |
|
|
return value_from_longest (type, longest);
|
423 |
|
|
}
|
424 |
|
|
else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
|
425 |
|
|
&& value_as_long (arg2) == 0)
|
426 |
|
|
{
|
427 |
|
|
struct value *result = allocate_value (type);
|
428 |
|
|
cplus_make_method_ptr (value_contents_writeable (result), 0, 0);
|
429 |
|
|
return result;
|
430 |
|
|
}
|
431 |
|
|
else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
|
432 |
|
|
&& value_as_long (arg2) == 0)
|
433 |
|
|
{
|
434 |
|
|
/* The Itanium C++ ABI represents NULL pointers to members as
|
435 |
|
|
minus one, instead of biasing the normal case. */
|
436 |
|
|
return value_from_longest (type, -1);
|
437 |
|
|
}
|
438 |
|
|
else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
|
439 |
|
|
{
|
440 |
|
|
if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
|
441 |
|
|
return value_cast_pointers (type, arg2);
|
442 |
|
|
|
443 |
|
|
arg2 = value_copy (arg2);
|
444 |
|
|
deprecated_set_value_type (arg2, type);
|
445 |
|
|
arg2 = value_change_enclosing_type (arg2, type);
|
446 |
|
|
set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
|
447 |
|
|
return arg2;
|
448 |
|
|
}
|
449 |
|
|
else if (VALUE_LVAL (arg2) == lval_memory)
|
450 |
|
|
return value_at_lazy (type,
|
451 |
|
|
VALUE_ADDRESS (arg2) + value_offset (arg2));
|
452 |
|
|
else if (code1 == TYPE_CODE_VOID)
|
453 |
|
|
{
|
454 |
|
|
return value_zero (builtin_type_void, not_lval);
|
455 |
|
|
}
|
456 |
|
|
else
|
457 |
|
|
{
|
458 |
|
|
error (_("Invalid cast."));
|
459 |
|
|
return 0;
|
460 |
|
|
}
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
/* Create a value of type TYPE that is zero, and return it. */
|
464 |
|
|
|
465 |
|
|
struct value *
|
466 |
|
|
value_zero (struct type *type, enum lval_type lv)
|
467 |
|
|
{
|
468 |
|
|
struct value *val = allocate_value (type);
|
469 |
|
|
VALUE_LVAL (val) = lv;
|
470 |
|
|
|
471 |
|
|
return val;
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
/* Create a value of numeric type TYPE that is one, and return it. */
|
475 |
|
|
|
476 |
|
|
struct value *
|
477 |
|
|
value_one (struct type *type, enum lval_type lv)
|
478 |
|
|
{
|
479 |
|
|
struct type *type1 = check_typedef (type);
|
480 |
|
|
struct value *val = NULL; /* avoid -Wall warning */
|
481 |
|
|
|
482 |
|
|
if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
|
483 |
|
|
{
|
484 |
|
|
struct value *int_one = value_from_longest (builtin_type_int, 1);
|
485 |
|
|
struct value *val;
|
486 |
|
|
gdb_byte v[16];
|
487 |
|
|
|
488 |
|
|
decimal_from_integral (int_one, v, TYPE_LENGTH (builtin_type_int));
|
489 |
|
|
val = value_from_decfloat (type, v);
|
490 |
|
|
}
|
491 |
|
|
else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
|
492 |
|
|
{
|
493 |
|
|
val = value_from_double (type, (DOUBLEST) 1);
|
494 |
|
|
}
|
495 |
|
|
else if (is_integral_type (type1))
|
496 |
|
|
{
|
497 |
|
|
val = value_from_longest (type, (LONGEST) 1);
|
498 |
|
|
}
|
499 |
|
|
else
|
500 |
|
|
{
|
501 |
|
|
error (_("Not a numeric type."));
|
502 |
|
|
}
|
503 |
|
|
|
504 |
|
|
VALUE_LVAL (val) = lv;
|
505 |
|
|
return val;
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
/* Return a value with type TYPE located at ADDR.
|
509 |
|
|
|
510 |
|
|
Call value_at only if the data needs to be fetched immediately;
|
511 |
|
|
if we can be 'lazy' and defer the fetch, perhaps indefinately, call
|
512 |
|
|
value_at_lazy instead. value_at_lazy simply records the address of
|
513 |
|
|
the data and sets the lazy-evaluation-required flag. The lazy flag
|
514 |
|
|
is tested in the value_contents macro, which is used if and when
|
515 |
|
|
the contents are actually required.
|
516 |
|
|
|
517 |
|
|
Note: value_at does *NOT* handle embedded offsets; perform such
|
518 |
|
|
adjustments before or after calling it. */
|
519 |
|
|
|
520 |
|
|
struct value *
|
521 |
|
|
value_at (struct type *type, CORE_ADDR addr)
|
522 |
|
|
{
|
523 |
|
|
struct value *val;
|
524 |
|
|
|
525 |
|
|
if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
|
526 |
|
|
error (_("Attempt to dereference a generic pointer."));
|
527 |
|
|
|
528 |
|
|
val = allocate_value (type);
|
529 |
|
|
|
530 |
|
|
read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
|
531 |
|
|
|
532 |
|
|
VALUE_LVAL (val) = lval_memory;
|
533 |
|
|
VALUE_ADDRESS (val) = addr;
|
534 |
|
|
|
535 |
|
|
return val;
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
|
539 |
|
|
|
540 |
|
|
struct value *
|
541 |
|
|
value_at_lazy (struct type *type, CORE_ADDR addr)
|
542 |
|
|
{
|
543 |
|
|
struct value *val;
|
544 |
|
|
|
545 |
|
|
if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
|
546 |
|
|
error (_("Attempt to dereference a generic pointer."));
|
547 |
|
|
|
548 |
|
|
val = allocate_value (type);
|
549 |
|
|
|
550 |
|
|
VALUE_LVAL (val) = lval_memory;
|
551 |
|
|
VALUE_ADDRESS (val) = addr;
|
552 |
|
|
set_value_lazy (val, 1);
|
553 |
|
|
|
554 |
|
|
return val;
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
/* Called only from the value_contents and value_contents_all()
|
558 |
|
|
macros, if the current data for a variable needs to be loaded into
|
559 |
|
|
value_contents(VAL). Fetches the data from the user's process, and
|
560 |
|
|
clears the lazy flag to indicate that the data in the buffer is
|
561 |
|
|
valid.
|
562 |
|
|
|
563 |
|
|
If the value is zero-length, we avoid calling read_memory, which
|
564 |
|
|
would abort. We mark the value as fetched anyway -- all 0 bytes of
|
565 |
|
|
it.
|
566 |
|
|
|
567 |
|
|
This function returns a value because it is used in the
|
568 |
|
|
value_contents macro as part of an expression, where a void would
|
569 |
|
|
not work. The value is ignored. */
|
570 |
|
|
|
571 |
|
|
int
|
572 |
|
|
value_fetch_lazy (struct value *val)
|
573 |
|
|
{
|
574 |
|
|
CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
|
575 |
|
|
int length = TYPE_LENGTH (value_enclosing_type (val));
|
576 |
|
|
|
577 |
|
|
struct type *type = value_type (val);
|
578 |
|
|
if (length)
|
579 |
|
|
read_memory (addr, value_contents_all_raw (val), length);
|
580 |
|
|
|
581 |
|
|
set_value_lazy (val, 0);
|
582 |
|
|
return 0;
|
583 |
|
|
}
|
584 |
|
|
|
585 |
|
|
|
586 |
|
|
/* Store the contents of FROMVAL into the location of TOVAL.
|
587 |
|
|
Return a new value with the location of TOVAL and contents of FROMVAL. */
|
588 |
|
|
|
589 |
|
|
struct value *
|
590 |
|
|
value_assign (struct value *toval, struct value *fromval)
|
591 |
|
|
{
|
592 |
|
|
struct type *type;
|
593 |
|
|
struct value *val;
|
594 |
|
|
struct frame_id old_frame;
|
595 |
|
|
|
596 |
|
|
if (!deprecated_value_modifiable (toval))
|
597 |
|
|
error (_("Left operand of assignment is not a modifiable lvalue."));
|
598 |
|
|
|
599 |
|
|
toval = coerce_ref (toval);
|
600 |
|
|
|
601 |
|
|
type = value_type (toval);
|
602 |
|
|
if (VALUE_LVAL (toval) != lval_internalvar)
|
603 |
|
|
fromval = value_cast (type, fromval);
|
604 |
|
|
else
|
605 |
|
|
fromval = coerce_array (fromval);
|
606 |
|
|
CHECK_TYPEDEF (type);
|
607 |
|
|
|
608 |
|
|
/* Since modifying a register can trash the frame chain, and
|
609 |
|
|
modifying memory can trash the frame cache, we save the old frame
|
610 |
|
|
and then restore the new frame afterwards. */
|
611 |
|
|
old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
|
612 |
|
|
|
613 |
|
|
switch (VALUE_LVAL (toval))
|
614 |
|
|
{
|
615 |
|
|
case lval_internalvar:
|
616 |
|
|
set_internalvar (VALUE_INTERNALVAR (toval), fromval);
|
617 |
|
|
val = value_copy (VALUE_INTERNALVAR (toval)->value);
|
618 |
|
|
val = value_change_enclosing_type (val,
|
619 |
|
|
value_enclosing_type (fromval));
|
620 |
|
|
set_value_embedded_offset (val, value_embedded_offset (fromval));
|
621 |
|
|
set_value_pointed_to_offset (val,
|
622 |
|
|
value_pointed_to_offset (fromval));
|
623 |
|
|
return val;
|
624 |
|
|
|
625 |
|
|
case lval_internalvar_component:
|
626 |
|
|
set_internalvar_component (VALUE_INTERNALVAR (toval),
|
627 |
|
|
value_offset (toval),
|
628 |
|
|
value_bitpos (toval),
|
629 |
|
|
value_bitsize (toval),
|
630 |
|
|
fromval);
|
631 |
|
|
break;
|
632 |
|
|
|
633 |
|
|
case lval_memory:
|
634 |
|
|
{
|
635 |
|
|
const gdb_byte *dest_buffer;
|
636 |
|
|
CORE_ADDR changed_addr;
|
637 |
|
|
int changed_len;
|
638 |
|
|
gdb_byte buffer[sizeof (LONGEST)];
|
639 |
|
|
|
640 |
|
|
if (value_bitsize (toval))
|
641 |
|
|
{
|
642 |
|
|
/* We assume that the argument to read_memory is in units
|
643 |
|
|
of host chars. FIXME: Is that correct? */
|
644 |
|
|
changed_len = (value_bitpos (toval)
|
645 |
|
|
+ value_bitsize (toval)
|
646 |
|
|
+ HOST_CHAR_BIT - 1)
|
647 |
|
|
/ HOST_CHAR_BIT;
|
648 |
|
|
|
649 |
|
|
if (changed_len > (int) sizeof (LONGEST))
|
650 |
|
|
error (_("Can't handle bitfields which don't fit in a %d bit word."),
|
651 |
|
|
(int) sizeof (LONGEST) * HOST_CHAR_BIT);
|
652 |
|
|
|
653 |
|
|
read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
|
654 |
|
|
buffer, changed_len);
|
655 |
|
|
modify_field (buffer, value_as_long (fromval),
|
656 |
|
|
value_bitpos (toval), value_bitsize (toval));
|
657 |
|
|
changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
|
658 |
|
|
dest_buffer = buffer;
|
659 |
|
|
}
|
660 |
|
|
else
|
661 |
|
|
{
|
662 |
|
|
changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
|
663 |
|
|
changed_len = TYPE_LENGTH (type);
|
664 |
|
|
dest_buffer = value_contents (fromval);
|
665 |
|
|
}
|
666 |
|
|
|
667 |
|
|
write_memory (changed_addr, dest_buffer, changed_len);
|
668 |
|
|
if (deprecated_memory_changed_hook)
|
669 |
|
|
deprecated_memory_changed_hook (changed_addr, changed_len);
|
670 |
|
|
}
|
671 |
|
|
break;
|
672 |
|
|
|
673 |
|
|
case lval_register:
|
674 |
|
|
{
|
675 |
|
|
struct frame_info *frame;
|
676 |
|
|
int value_reg;
|
677 |
|
|
|
678 |
|
|
/* Figure out which frame this is in currently. */
|
679 |
|
|
frame = frame_find_by_id (VALUE_FRAME_ID (toval));
|
680 |
|
|
value_reg = VALUE_REGNUM (toval);
|
681 |
|
|
|
682 |
|
|
if (!frame)
|
683 |
|
|
error (_("Value being assigned to is no longer active."));
|
684 |
|
|
|
685 |
|
|
if (gdbarch_convert_register_p
|
686 |
|
|
(current_gdbarch, VALUE_REGNUM (toval), type))
|
687 |
|
|
{
|
688 |
|
|
/* If TOVAL is a special machine register requiring
|
689 |
|
|
conversion of program values to a special raw
|
690 |
|
|
format. */
|
691 |
|
|
gdbarch_value_to_register (current_gdbarch, frame,
|
692 |
|
|
VALUE_REGNUM (toval), type,
|
693 |
|
|
value_contents (fromval));
|
694 |
|
|
}
|
695 |
|
|
else
|
696 |
|
|
{
|
697 |
|
|
if (value_bitsize (toval))
|
698 |
|
|
{
|
699 |
|
|
int changed_len;
|
700 |
|
|
gdb_byte buffer[sizeof (LONGEST)];
|
701 |
|
|
|
702 |
|
|
changed_len = (value_bitpos (toval)
|
703 |
|
|
+ value_bitsize (toval)
|
704 |
|
|
+ HOST_CHAR_BIT - 1)
|
705 |
|
|
/ HOST_CHAR_BIT;
|
706 |
|
|
|
707 |
|
|
if (changed_len > (int) sizeof (LONGEST))
|
708 |
|
|
error (_("Can't handle bitfields which don't fit in a %d bit word."),
|
709 |
|
|
(int) sizeof (LONGEST) * HOST_CHAR_BIT);
|
710 |
|
|
|
711 |
|
|
get_frame_register_bytes (frame, value_reg,
|
712 |
|
|
value_offset (toval),
|
713 |
|
|
changed_len, buffer);
|
714 |
|
|
|
715 |
|
|
modify_field (buffer, value_as_long (fromval),
|
716 |
|
|
value_bitpos (toval),
|
717 |
|
|
value_bitsize (toval));
|
718 |
|
|
|
719 |
|
|
put_frame_register_bytes (frame, value_reg,
|
720 |
|
|
value_offset (toval),
|
721 |
|
|
changed_len, buffer);
|
722 |
|
|
}
|
723 |
|
|
else
|
724 |
|
|
{
|
725 |
|
|
put_frame_register_bytes (frame, value_reg,
|
726 |
|
|
value_offset (toval),
|
727 |
|
|
TYPE_LENGTH (type),
|
728 |
|
|
value_contents (fromval));
|
729 |
|
|
}
|
730 |
|
|
}
|
731 |
|
|
|
732 |
|
|
if (deprecated_register_changed_hook)
|
733 |
|
|
deprecated_register_changed_hook (-1);
|
734 |
|
|
observer_notify_target_changed (¤t_target);
|
735 |
|
|
break;
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
default:
|
739 |
|
|
error (_("Left operand of assignment is not an lvalue."));
|
740 |
|
|
}
|
741 |
|
|
|
742 |
|
|
/* Assigning to the stack pointer, frame pointer, and other
|
743 |
|
|
(architecture and calling convention specific) registers may
|
744 |
|
|
cause the frame cache to be out of date. Assigning to memory
|
745 |
|
|
also can. We just do this on all assignments to registers or
|
746 |
|
|
memory, for simplicity's sake; I doubt the slowdown matters. */
|
747 |
|
|
switch (VALUE_LVAL (toval))
|
748 |
|
|
{
|
749 |
|
|
case lval_memory:
|
750 |
|
|
case lval_register:
|
751 |
|
|
|
752 |
|
|
reinit_frame_cache ();
|
753 |
|
|
|
754 |
|
|
/* Having destroyed the frame cache, restore the selected
|
755 |
|
|
frame. */
|
756 |
|
|
|
757 |
|
|
/* FIXME: cagney/2002-11-02: There has to be a better way of
|
758 |
|
|
doing this. Instead of constantly saving/restoring the
|
759 |
|
|
frame. Why not create a get_selected_frame() function that,
|
760 |
|
|
having saved the selected frame's ID can automatically
|
761 |
|
|
re-find the previously selected frame automatically. */
|
762 |
|
|
|
763 |
|
|
{
|
764 |
|
|
struct frame_info *fi = frame_find_by_id (old_frame);
|
765 |
|
|
if (fi != NULL)
|
766 |
|
|
select_frame (fi);
|
767 |
|
|
}
|
768 |
|
|
|
769 |
|
|
break;
|
770 |
|
|
default:
|
771 |
|
|
break;
|
772 |
|
|
}
|
773 |
|
|
|
774 |
|
|
/* If the field does not entirely fill a LONGEST, then zero the sign
|
775 |
|
|
bits. If the field is signed, and is negative, then sign
|
776 |
|
|
extend. */
|
777 |
|
|
if ((value_bitsize (toval) > 0)
|
778 |
|
|
&& (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
|
779 |
|
|
{
|
780 |
|
|
LONGEST fieldval = value_as_long (fromval);
|
781 |
|
|
LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
|
782 |
|
|
|
783 |
|
|
fieldval &= valmask;
|
784 |
|
|
if (!TYPE_UNSIGNED (type)
|
785 |
|
|
&& (fieldval & (valmask ^ (valmask >> 1))))
|
786 |
|
|
fieldval |= ~valmask;
|
787 |
|
|
|
788 |
|
|
fromval = value_from_longest (type, fieldval);
|
789 |
|
|
}
|
790 |
|
|
|
791 |
|
|
val = value_copy (toval);
|
792 |
|
|
memcpy (value_contents_raw (val), value_contents (fromval),
|
793 |
|
|
TYPE_LENGTH (type));
|
794 |
|
|
deprecated_set_value_type (val, type);
|
795 |
|
|
val = value_change_enclosing_type (val,
|
796 |
|
|
value_enclosing_type (fromval));
|
797 |
|
|
set_value_embedded_offset (val, value_embedded_offset (fromval));
|
798 |
|
|
set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
|
799 |
|
|
|
800 |
|
|
return val;
|
801 |
|
|
}
|
802 |
|
|
|
803 |
|
|
/* Extend a value VAL to COUNT repetitions of its type. */
|
804 |
|
|
|
805 |
|
|
struct value *
|
806 |
|
|
value_repeat (struct value *arg1, int count)
|
807 |
|
|
{
|
808 |
|
|
struct value *val;
|
809 |
|
|
|
810 |
|
|
if (VALUE_LVAL (arg1) != lval_memory)
|
811 |
|
|
error (_("Only values in memory can be extended with '@'."));
|
812 |
|
|
if (count < 1)
|
813 |
|
|
error (_("Invalid number %d of repetitions."), count);
|
814 |
|
|
|
815 |
|
|
val = allocate_repeat_value (value_enclosing_type (arg1), count);
|
816 |
|
|
|
817 |
|
|
read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
|
818 |
|
|
value_contents_all_raw (val),
|
819 |
|
|
TYPE_LENGTH (value_enclosing_type (val)));
|
820 |
|
|
VALUE_LVAL (val) = lval_memory;
|
821 |
|
|
VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
|
822 |
|
|
|
823 |
|
|
return val;
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
struct value *
|
827 |
|
|
value_of_variable (struct symbol *var, struct block *b)
|
828 |
|
|
{
|
829 |
|
|
struct value *val;
|
830 |
|
|
struct frame_info *frame = NULL;
|
831 |
|
|
|
832 |
|
|
if (!b)
|
833 |
|
|
frame = NULL; /* Use selected frame. */
|
834 |
|
|
else if (symbol_read_needs_frame (var))
|
835 |
|
|
{
|
836 |
|
|
frame = block_innermost_frame (b);
|
837 |
|
|
if (!frame)
|
838 |
|
|
{
|
839 |
|
|
if (BLOCK_FUNCTION (b)
|
840 |
|
|
&& SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
|
841 |
|
|
error (_("No frame is currently executing in block %s."),
|
842 |
|
|
SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
|
843 |
|
|
else
|
844 |
|
|
error (_("No frame is currently executing in specified block"));
|
845 |
|
|
}
|
846 |
|
|
}
|
847 |
|
|
|
848 |
|
|
val = read_var_value (var, frame);
|
849 |
|
|
if (!val)
|
850 |
|
|
error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
|
851 |
|
|
|
852 |
|
|
return val;
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
/* Given a value which is an array, return a value which is a pointer
|
856 |
|
|
to its first element, regardless of whether or not the array has a
|
857 |
|
|
nonzero lower bound.
|
858 |
|
|
|
859 |
|
|
FIXME: A previous comment here indicated that this routine should
|
860 |
|
|
be substracting the array's lower bound. It's not clear to me that
|
861 |
|
|
this is correct. Given an array subscripting operation, it would
|
862 |
|
|
certainly work to do the adjustment here, essentially computing:
|
863 |
|
|
|
864 |
|
|
(&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
|
865 |
|
|
|
866 |
|
|
However I believe a more appropriate and logical place to account
|
867 |
|
|
for the lower bound is to do so in value_subscript, essentially
|
868 |
|
|
computing:
|
869 |
|
|
|
870 |
|
|
(&array[0] + ((index - lowerbound) * sizeof array[0]))
|
871 |
|
|
|
872 |
|
|
As further evidence consider what would happen with operations
|
873 |
|
|
other than array subscripting, where the caller would get back a
|
874 |
|
|
value that had an address somewhere before the actual first element
|
875 |
|
|
of the array, and the information about the lower bound would be
|
876 |
|
|
lost because of the coercion to pointer type.
|
877 |
|
|
*/
|
878 |
|
|
|
879 |
|
|
struct value *
|
880 |
|
|
value_coerce_array (struct value *arg1)
|
881 |
|
|
{
|
882 |
|
|
struct type *type = check_typedef (value_type (arg1));
|
883 |
|
|
|
884 |
|
|
if (VALUE_LVAL (arg1) != lval_memory)
|
885 |
|
|
error (_("Attempt to take address of value not located in memory."));
|
886 |
|
|
|
887 |
|
|
return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
888 |
|
|
(VALUE_ADDRESS (arg1) + value_offset (arg1)));
|
889 |
|
|
}
|
890 |
|
|
|
891 |
|
|
/* Given a value which is a function, return a value which is a pointer
|
892 |
|
|
to it. */
|
893 |
|
|
|
894 |
|
|
struct value *
|
895 |
|
|
value_coerce_function (struct value *arg1)
|
896 |
|
|
{
|
897 |
|
|
struct value *retval;
|
898 |
|
|
|
899 |
|
|
if (VALUE_LVAL (arg1) != lval_memory)
|
900 |
|
|
error (_("Attempt to take address of value not located in memory."));
|
901 |
|
|
|
902 |
|
|
retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
|
903 |
|
|
(VALUE_ADDRESS (arg1) + value_offset (arg1)));
|
904 |
|
|
return retval;
|
905 |
|
|
}
|
906 |
|
|
|
907 |
|
|
/* Return a pointer value for the object for which ARG1 is the
|
908 |
|
|
contents. */
|
909 |
|
|
|
910 |
|
|
struct value *
|
911 |
|
|
value_addr (struct value *arg1)
|
912 |
|
|
{
|
913 |
|
|
struct value *arg2;
|
914 |
|
|
|
915 |
|
|
struct type *type = check_typedef (value_type (arg1));
|
916 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
917 |
|
|
{
|
918 |
|
|
/* Copy the value, but change the type from (T&) to (T*). We
|
919 |
|
|
keep the same location information, which is efficient, and
|
920 |
|
|
allows &(&X) to get the location containing the reference. */
|
921 |
|
|
arg2 = value_copy (arg1);
|
922 |
|
|
deprecated_set_value_type (arg2,
|
923 |
|
|
lookup_pointer_type (TYPE_TARGET_TYPE (type)));
|
924 |
|
|
return arg2;
|
925 |
|
|
}
|
926 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FUNC)
|
927 |
|
|
return value_coerce_function (arg1);
|
928 |
|
|
|
929 |
|
|
if (VALUE_LVAL (arg1) != lval_memory)
|
930 |
|
|
error (_("Attempt to take address of value not located in memory."));
|
931 |
|
|
|
932 |
|
|
/* Get target memory address */
|
933 |
|
|
arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
|
934 |
|
|
(VALUE_ADDRESS (arg1)
|
935 |
|
|
+ value_offset (arg1)
|
936 |
|
|
+ value_embedded_offset (arg1)));
|
937 |
|
|
|
938 |
|
|
/* This may be a pointer to a base subobject; so remember the
|
939 |
|
|
full derived object's type ... */
|
940 |
|
|
arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
|
941 |
|
|
/* ... and also the relative position of the subobject in the full
|
942 |
|
|
object. */
|
943 |
|
|
set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
|
944 |
|
|
return arg2;
|
945 |
|
|
}
|
946 |
|
|
|
947 |
|
|
/* Return a reference value for the object for which ARG1 is the
|
948 |
|
|
contents. */
|
949 |
|
|
|
950 |
|
|
struct value *
|
951 |
|
|
value_ref (struct value *arg1)
|
952 |
|
|
{
|
953 |
|
|
struct value *arg2;
|
954 |
|
|
|
955 |
|
|
struct type *type = check_typedef (value_type (arg1));
|
956 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
957 |
|
|
return arg1;
|
958 |
|
|
|
959 |
|
|
arg2 = value_addr (arg1);
|
960 |
|
|
deprecated_set_value_type (arg2, lookup_reference_type (type));
|
961 |
|
|
return arg2;
|
962 |
|
|
}
|
963 |
|
|
|
964 |
|
|
/* Given a value of a pointer type, apply the C unary * operator to
|
965 |
|
|
it. */
|
966 |
|
|
|
967 |
|
|
struct value *
|
968 |
|
|
value_ind (struct value *arg1)
|
969 |
|
|
{
|
970 |
|
|
struct type *base_type;
|
971 |
|
|
struct value *arg2;
|
972 |
|
|
|
973 |
|
|
arg1 = coerce_array (arg1);
|
974 |
|
|
|
975 |
|
|
base_type = check_typedef (value_type (arg1));
|
976 |
|
|
|
977 |
|
|
/* Allow * on an integer so we can cast it to whatever we want.
|
978 |
|
|
This returns an int, which seems like the most C-like thing to
|
979 |
|
|
do. "long long" variables are rare enough that
|
980 |
|
|
BUILTIN_TYPE_LONGEST would seem to be a mistake. */
|
981 |
|
|
if (TYPE_CODE (base_type) == TYPE_CODE_INT)
|
982 |
|
|
return value_at_lazy (builtin_type_int,
|
983 |
|
|
(CORE_ADDR) value_as_address (arg1));
|
984 |
|
|
else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
|
985 |
|
|
{
|
986 |
|
|
struct type *enc_type;
|
987 |
|
|
/* We may be pointing to something embedded in a larger object.
|
988 |
|
|
Get the real type of the enclosing object. */
|
989 |
|
|
enc_type = check_typedef (value_enclosing_type (arg1));
|
990 |
|
|
enc_type = TYPE_TARGET_TYPE (enc_type);
|
991 |
|
|
|
992 |
|
|
if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
|
993 |
|
|
|| TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
|
994 |
|
|
/* For functions, go through find_function_addr, which knows
|
995 |
|
|
how to handle function descriptors. */
|
996 |
|
|
arg2 = value_at_lazy (enc_type,
|
997 |
|
|
find_function_addr (arg1, NULL));
|
998 |
|
|
else
|
999 |
|
|
/* Retrieve the enclosing object pointed to */
|
1000 |
|
|
arg2 = value_at_lazy (enc_type,
|
1001 |
|
|
(value_as_address (arg1)
|
1002 |
|
|
- value_pointed_to_offset (arg1)));
|
1003 |
|
|
|
1004 |
|
|
/* Re-adjust type. */
|
1005 |
|
|
deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
|
1006 |
|
|
/* Add embedding info. */
|
1007 |
|
|
arg2 = value_change_enclosing_type (arg2, enc_type);
|
1008 |
|
|
set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
|
1009 |
|
|
|
1010 |
|
|
/* We may be pointing to an object of some derived type. */
|
1011 |
|
|
arg2 = value_full_object (arg2, NULL, 0, 0, 0);
|
1012 |
|
|
return arg2;
|
1013 |
|
|
}
|
1014 |
|
|
|
1015 |
|
|
error (_("Attempt to take contents of a non-pointer value."));
|
1016 |
|
|
return 0; /* For lint -- never reached. */
|
1017 |
|
|
}
|
1018 |
|
|
|
1019 |
|
|
/* Create a value for an array by allocating space in the inferior,
|
1020 |
|
|
copying the data into that space, and then setting up an array
|
1021 |
|
|
value.
|
1022 |
|
|
|
1023 |
|
|
The array bounds are set from LOWBOUND and HIGHBOUND, and the array
|
1024 |
|
|
is populated from the values passed in ELEMVEC.
|
1025 |
|
|
|
1026 |
|
|
The element type of the array is inherited from the type of the
|
1027 |
|
|
first element, and all elements must have the same size (though we
|
1028 |
|
|
don't currently enforce any restriction on their types). */
|
1029 |
|
|
|
1030 |
|
|
struct value *
|
1031 |
|
|
value_array (int lowbound, int highbound, struct value **elemvec)
|
1032 |
|
|
{
|
1033 |
|
|
int nelem;
|
1034 |
|
|
int idx;
|
1035 |
|
|
unsigned int typelength;
|
1036 |
|
|
struct value *val;
|
1037 |
|
|
struct type *rangetype;
|
1038 |
|
|
struct type *arraytype;
|
1039 |
|
|
CORE_ADDR addr;
|
1040 |
|
|
|
1041 |
|
|
/* Validate that the bounds are reasonable and that each of the
|
1042 |
|
|
elements have the same size. */
|
1043 |
|
|
|
1044 |
|
|
nelem = highbound - lowbound + 1;
|
1045 |
|
|
if (nelem <= 0)
|
1046 |
|
|
{
|
1047 |
|
|
error (_("bad array bounds (%d, %d)"), lowbound, highbound);
|
1048 |
|
|
}
|
1049 |
|
|
typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
|
1050 |
|
|
for (idx = 1; idx < nelem; idx++)
|
1051 |
|
|
{
|
1052 |
|
|
if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
|
1053 |
|
|
{
|
1054 |
|
|
error (_("array elements must all be the same size"));
|
1055 |
|
|
}
|
1056 |
|
|
}
|
1057 |
|
|
|
1058 |
|
|
rangetype = create_range_type ((struct type *) NULL,
|
1059 |
|
|
builtin_type_int,
|
1060 |
|
|
lowbound, highbound);
|
1061 |
|
|
arraytype = create_array_type ((struct type *) NULL,
|
1062 |
|
|
value_enclosing_type (elemvec[0]),
|
1063 |
|
|
rangetype);
|
1064 |
|
|
|
1065 |
|
|
if (!current_language->c_style_arrays)
|
1066 |
|
|
{
|
1067 |
|
|
val = allocate_value (arraytype);
|
1068 |
|
|
for (idx = 0; idx < nelem; idx++)
|
1069 |
|
|
{
|
1070 |
|
|
memcpy (value_contents_all_raw (val) + (idx * typelength),
|
1071 |
|
|
value_contents_all (elemvec[idx]),
|
1072 |
|
|
typelength);
|
1073 |
|
|
}
|
1074 |
|
|
return val;
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
/* Allocate space to store the array in the inferior, and then
|
1078 |
|
|
initialize it by copying in each element. FIXME: Is it worth it
|
1079 |
|
|
to create a local buffer in which to collect each value and then
|
1080 |
|
|
write all the bytes in one operation? */
|
1081 |
|
|
|
1082 |
|
|
addr = allocate_space_in_inferior (nelem * typelength);
|
1083 |
|
|
for (idx = 0; idx < nelem; idx++)
|
1084 |
|
|
{
|
1085 |
|
|
write_memory (addr + (idx * typelength),
|
1086 |
|
|
value_contents_all (elemvec[idx]),
|
1087 |
|
|
typelength);
|
1088 |
|
|
}
|
1089 |
|
|
|
1090 |
|
|
/* Create the array type and set up an array value to be evaluated
|
1091 |
|
|
lazily. */
|
1092 |
|
|
|
1093 |
|
|
val = value_at_lazy (arraytype, addr);
|
1094 |
|
|
return (val);
|
1095 |
|
|
}
|
1096 |
|
|
|
1097 |
|
|
/* Create a value for a string constant by allocating space in the
|
1098 |
|
|
inferior, copying the data into that space, and returning the
|
1099 |
|
|
address with type TYPE_CODE_STRING. PTR points to the string
|
1100 |
|
|
constant data; LEN is number of characters.
|
1101 |
|
|
|
1102 |
|
|
Note that string types are like array of char types with a lower
|
1103 |
|
|
bound of zero and an upper bound of LEN - 1. Also note that the
|
1104 |
|
|
string may contain embedded null bytes. */
|
1105 |
|
|
|
1106 |
|
|
struct value *
|
1107 |
|
|
value_string (char *ptr, int len)
|
1108 |
|
|
{
|
1109 |
|
|
struct value *val;
|
1110 |
|
|
int lowbound = current_language->string_lower_bound;
|
1111 |
|
|
struct type *rangetype = create_range_type ((struct type *) NULL,
|
1112 |
|
|
builtin_type_int,
|
1113 |
|
|
lowbound,
|
1114 |
|
|
len + lowbound - 1);
|
1115 |
|
|
struct type *stringtype
|
1116 |
|
|
= create_string_type ((struct type *) NULL, rangetype);
|
1117 |
|
|
CORE_ADDR addr;
|
1118 |
|
|
|
1119 |
|
|
if (current_language->c_style_arrays == 0)
|
1120 |
|
|
{
|
1121 |
|
|
val = allocate_value (stringtype);
|
1122 |
|
|
memcpy (value_contents_raw (val), ptr, len);
|
1123 |
|
|
return val;
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
|
1127 |
|
|
/* Allocate space to store the string in the inferior, and then copy
|
1128 |
|
|
LEN bytes from PTR in gdb to that address in the inferior. */
|
1129 |
|
|
|
1130 |
|
|
addr = allocate_space_in_inferior (len);
|
1131 |
|
|
write_memory (addr, (gdb_byte *) ptr, len);
|
1132 |
|
|
|
1133 |
|
|
val = value_at_lazy (stringtype, addr);
|
1134 |
|
|
return (val);
|
1135 |
|
|
}
|
1136 |
|
|
|
1137 |
|
|
struct value *
|
1138 |
|
|
value_bitstring (char *ptr, int len)
|
1139 |
|
|
{
|
1140 |
|
|
struct value *val;
|
1141 |
|
|
struct type *domain_type = create_range_type (NULL,
|
1142 |
|
|
builtin_type_int,
|
1143 |
|
|
0, len - 1);
|
1144 |
|
|
struct type *type = create_set_type ((struct type *) NULL,
|
1145 |
|
|
domain_type);
|
1146 |
|
|
TYPE_CODE (type) = TYPE_CODE_BITSTRING;
|
1147 |
|
|
val = allocate_value (type);
|
1148 |
|
|
memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
|
1149 |
|
|
return val;
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
/* See if we can pass arguments in T2 to a function which takes
|
1153 |
|
|
arguments of types T1. T1 is a list of NARGS arguments, and T2 is
|
1154 |
|
|
a NULL-terminated vector. If some arguments need coercion of some
|
1155 |
|
|
sort, then the coerced values are written into T2. Return value is
|
1156 |
|
|
|
1157 |
|
|
differ if not.
|
1158 |
|
|
|
1159 |
|
|
STATICP is nonzero if the T1 argument list came from a static
|
1160 |
|
|
member function. T2 will still include the ``this'' pointer, but
|
1161 |
|
|
it will be skipped.
|
1162 |
|
|
|
1163 |
|
|
For non-static member functions, we ignore the first argument,
|
1164 |
|
|
which is the type of the instance variable. This is because we
|
1165 |
|
|
want to handle calls with objects from derived classes. This is
|
1166 |
|
|
not entirely correct: we should actually check to make sure that a
|
1167 |
|
|
requested operation is type secure, shouldn't we? FIXME. */
|
1168 |
|
|
|
1169 |
|
|
static int
|
1170 |
|
|
typecmp (int staticp, int varargs, int nargs,
|
1171 |
|
|
struct field t1[], struct value *t2[])
|
1172 |
|
|
{
|
1173 |
|
|
int i;
|
1174 |
|
|
|
1175 |
|
|
if (t2 == 0)
|
1176 |
|
|
internal_error (__FILE__, __LINE__,
|
1177 |
|
|
_("typecmp: no argument list"));
|
1178 |
|
|
|
1179 |
|
|
/* Skip ``this'' argument if applicable. T2 will always include
|
1180 |
|
|
THIS. */
|
1181 |
|
|
if (staticp)
|
1182 |
|
|
t2 ++;
|
1183 |
|
|
|
1184 |
|
|
for (i = 0;
|
1185 |
|
|
(i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
|
1186 |
|
|
i++)
|
1187 |
|
|
{
|
1188 |
|
|
struct type *tt1, *tt2;
|
1189 |
|
|
|
1190 |
|
|
if (!t2[i])
|
1191 |
|
|
return i + 1;
|
1192 |
|
|
|
1193 |
|
|
tt1 = check_typedef (t1[i].type);
|
1194 |
|
|
tt2 = check_typedef (value_type (t2[i]));
|
1195 |
|
|
|
1196 |
|
|
if (TYPE_CODE (tt1) == TYPE_CODE_REF
|
1197 |
|
|
/* We should be doing hairy argument matching, as below. */
|
1198 |
|
|
&& (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
|
1199 |
|
|
{
|
1200 |
|
|
if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
|
1201 |
|
|
t2[i] = value_coerce_array (t2[i]);
|
1202 |
|
|
else
|
1203 |
|
|
t2[i] = value_ref (t2[i]);
|
1204 |
|
|
continue;
|
1205 |
|
|
}
|
1206 |
|
|
|
1207 |
|
|
/* djb - 20000715 - Until the new type structure is in the
|
1208 |
|
|
place, and we can attempt things like implicit conversions,
|
1209 |
|
|
we need to do this so you can take something like a map<const
|
1210 |
|
|
char *>, and properly access map["hello"], because the
|
1211 |
|
|
argument to [] will be a reference to a pointer to a char,
|
1212 |
|
|
and the argument will be a pointer to a char. */
|
1213 |
|
|
while (TYPE_CODE(tt1) == TYPE_CODE_REF
|
1214 |
|
|
|| TYPE_CODE (tt1) == TYPE_CODE_PTR)
|
1215 |
|
|
{
|
1216 |
|
|
tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
|
1217 |
|
|
}
|
1218 |
|
|
while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
|
1219 |
|
|
|| TYPE_CODE(tt2) == TYPE_CODE_PTR
|
1220 |
|
|
|| TYPE_CODE(tt2) == TYPE_CODE_REF)
|
1221 |
|
|
{
|
1222 |
|
|
tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
|
1223 |
|
|
}
|
1224 |
|
|
if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
|
1225 |
|
|
continue;
|
1226 |
|
|
/* Array to pointer is a `trivial conversion' according to the
|
1227 |
|
|
ARM. */
|
1228 |
|
|
|
1229 |
|
|
/* We should be doing much hairier argument matching (see
|
1230 |
|
|
section 13.2 of the ARM), but as a quick kludge, just check
|
1231 |
|
|
for the same type code. */
|
1232 |
|
|
if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
|
1233 |
|
|
return i + 1;
|
1234 |
|
|
}
|
1235 |
|
|
if (varargs || t2[i] == NULL)
|
1236 |
|
|
return 0;
|
1237 |
|
|
return i + 1;
|
1238 |
|
|
}
|
1239 |
|
|
|
1240 |
|
|
/* Helper function used by value_struct_elt to recurse through
|
1241 |
|
|
baseclasses. Look for a field NAME in ARG1. Adjust the address of
|
1242 |
|
|
ARG1 by OFFSET bytes, and search in it assuming it has (class) type
|
1243 |
|
|
TYPE. If found, return value, else return NULL.
|
1244 |
|
|
|
1245 |
|
|
If LOOKING_FOR_BASECLASS, then instead of looking for struct
|
1246 |
|
|
fields, look for a baseclass named NAME. */
|
1247 |
|
|
|
1248 |
|
|
static struct value *
|
1249 |
|
|
search_struct_field (char *name, struct value *arg1, int offset,
|
1250 |
|
|
struct type *type, int looking_for_baseclass)
|
1251 |
|
|
{
|
1252 |
|
|
int i;
|
1253 |
|
|
int nbases = TYPE_N_BASECLASSES (type);
|
1254 |
|
|
|
1255 |
|
|
CHECK_TYPEDEF (type);
|
1256 |
|
|
|
1257 |
|
|
if (!looking_for_baseclass)
|
1258 |
|
|
for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
|
1259 |
|
|
{
|
1260 |
|
|
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
1261 |
|
|
|
1262 |
|
|
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
1263 |
|
|
{
|
1264 |
|
|
struct value *v;
|
1265 |
|
|
if (TYPE_FIELD_STATIC (type, i))
|
1266 |
|
|
{
|
1267 |
|
|
v = value_static_field (type, i);
|
1268 |
|
|
if (v == 0)
|
1269 |
|
|
error (_("field %s is nonexistent or has been optimised out"),
|
1270 |
|
|
name);
|
1271 |
|
|
}
|
1272 |
|
|
else
|
1273 |
|
|
{
|
1274 |
|
|
v = value_primitive_field (arg1, offset, i, type);
|
1275 |
|
|
if (v == 0)
|
1276 |
|
|
error (_("there is no field named %s"), name);
|
1277 |
|
|
}
|
1278 |
|
|
return v;
|
1279 |
|
|
}
|
1280 |
|
|
|
1281 |
|
|
if (t_field_name
|
1282 |
|
|
&& (t_field_name[0] == '\0'
|
1283 |
|
|
|| (TYPE_CODE (type) == TYPE_CODE_UNION
|
1284 |
|
|
&& (strcmp_iw (t_field_name, "else") == 0))))
|
1285 |
|
|
{
|
1286 |
|
|
struct type *field_type = TYPE_FIELD_TYPE (type, i);
|
1287 |
|
|
if (TYPE_CODE (field_type) == TYPE_CODE_UNION
|
1288 |
|
|
|| TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
|
1289 |
|
|
{
|
1290 |
|
|
/* Look for a match through the fields of an anonymous
|
1291 |
|
|
union, or anonymous struct. C++ provides anonymous
|
1292 |
|
|
unions.
|
1293 |
|
|
|
1294 |
|
|
In the GNU Chill (now deleted from GDB)
|
1295 |
|
|
implementation of variant record types, each
|
1296 |
|
|
<alternative field> has an (anonymous) union type,
|
1297 |
|
|
each member of the union represents a <variant
|
1298 |
|
|
alternative>. Each <variant alternative> is
|
1299 |
|
|
represented as a struct, with a member for each
|
1300 |
|
|
<variant field>. */
|
1301 |
|
|
|
1302 |
|
|
struct value *v;
|
1303 |
|
|
int new_offset = offset;
|
1304 |
|
|
|
1305 |
|
|
/* This is pretty gross. In G++, the offset in an
|
1306 |
|
|
anonymous union is relative to the beginning of the
|
1307 |
|
|
enclosing struct. In the GNU Chill (now deleted
|
1308 |
|
|
from GDB) implementation of variant records, the
|
1309 |
|
|
bitpos is zero in an anonymous union field, so we
|
1310 |
|
|
have to add the offset of the union here. */
|
1311 |
|
|
if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
|
1312 |
|
|
|| (TYPE_NFIELDS (field_type) > 0
|
1313 |
|
|
&& TYPE_FIELD_BITPOS (field_type, 0) == 0))
|
1314 |
|
|
new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
|
1315 |
|
|
|
1316 |
|
|
v = search_struct_field (name, arg1, new_offset,
|
1317 |
|
|
field_type,
|
1318 |
|
|
looking_for_baseclass);
|
1319 |
|
|
if (v)
|
1320 |
|
|
return v;
|
1321 |
|
|
}
|
1322 |
|
|
}
|
1323 |
|
|
}
|
1324 |
|
|
|
1325 |
|
|
for (i = 0; i < nbases; i++)
|
1326 |
|
|
{
|
1327 |
|
|
struct value *v;
|
1328 |
|
|
struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
|
1329 |
|
|
/* If we are looking for baseclasses, this is what we get when
|
1330 |
|
|
we hit them. But it could happen that the base part's member
|
1331 |
|
|
name is not yet filled in. */
|
1332 |
|
|
int found_baseclass = (looking_for_baseclass
|
1333 |
|
|
&& TYPE_BASECLASS_NAME (type, i) != NULL
|
1334 |
|
|
&& (strcmp_iw (name,
|
1335 |
|
|
TYPE_BASECLASS_NAME (type,
|
1336 |
|
|
i)) == 0));
|
1337 |
|
|
|
1338 |
|
|
if (BASETYPE_VIA_VIRTUAL (type, i))
|
1339 |
|
|
{
|
1340 |
|
|
int boffset;
|
1341 |
|
|
struct value *v2 = allocate_value (basetype);
|
1342 |
|
|
|
1343 |
|
|
boffset = baseclass_offset (type, i,
|
1344 |
|
|
value_contents (arg1) + offset,
|
1345 |
|
|
VALUE_ADDRESS (arg1)
|
1346 |
|
|
+ value_offset (arg1) + offset);
|
1347 |
|
|
if (boffset == -1)
|
1348 |
|
|
error (_("virtual baseclass botch"));
|
1349 |
|
|
|
1350 |
|
|
/* The virtual base class pointer might have been clobbered
|
1351 |
|
|
by the user program. Make sure that it still points to a
|
1352 |
|
|
valid memory location. */
|
1353 |
|
|
|
1354 |
|
|
boffset += offset;
|
1355 |
|
|
if (boffset < 0 || boffset >= TYPE_LENGTH (type))
|
1356 |
|
|
{
|
1357 |
|
|
CORE_ADDR base_addr;
|
1358 |
|
|
|
1359 |
|
|
base_addr =
|
1360 |
|
|
VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
|
1361 |
|
|
if (target_read_memory (base_addr,
|
1362 |
|
|
value_contents_raw (v2),
|
1363 |
|
|
TYPE_LENGTH (basetype)) != 0)
|
1364 |
|
|
error (_("virtual baseclass botch"));
|
1365 |
|
|
VALUE_LVAL (v2) = lval_memory;
|
1366 |
|
|
VALUE_ADDRESS (v2) = base_addr;
|
1367 |
|
|
}
|
1368 |
|
|
else
|
1369 |
|
|
{
|
1370 |
|
|
VALUE_LVAL (v2) = VALUE_LVAL (arg1);
|
1371 |
|
|
VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
|
1372 |
|
|
VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
|
1373 |
|
|
set_value_offset (v2, value_offset (arg1) + boffset);
|
1374 |
|
|
if (value_lazy (arg1))
|
1375 |
|
|
set_value_lazy (v2, 1);
|
1376 |
|
|
else
|
1377 |
|
|
memcpy (value_contents_raw (v2),
|
1378 |
|
|
value_contents_raw (arg1) + boffset,
|
1379 |
|
|
TYPE_LENGTH (basetype));
|
1380 |
|
|
}
|
1381 |
|
|
|
1382 |
|
|
if (found_baseclass)
|
1383 |
|
|
return v2;
|
1384 |
|
|
v = search_struct_field (name, v2, 0,
|
1385 |
|
|
TYPE_BASECLASS (type, i),
|
1386 |
|
|
looking_for_baseclass);
|
1387 |
|
|
}
|
1388 |
|
|
else if (found_baseclass)
|
1389 |
|
|
v = value_primitive_field (arg1, offset, i, type);
|
1390 |
|
|
else
|
1391 |
|
|
v = search_struct_field (name, arg1,
|
1392 |
|
|
offset + TYPE_BASECLASS_BITPOS (type,
|
1393 |
|
|
i) / 8,
|
1394 |
|
|
basetype, looking_for_baseclass);
|
1395 |
|
|
if (v)
|
1396 |
|
|
return v;
|
1397 |
|
|
}
|
1398 |
|
|
return NULL;
|
1399 |
|
|
}
|
1400 |
|
|
|
1401 |
|
|
/* Helper function used by value_struct_elt to recurse through
|
1402 |
|
|
baseclasses. Look for a field NAME in ARG1. Adjust the address of
|
1403 |
|
|
ARG1 by OFFSET bytes, and search in it assuming it has (class) type
|
1404 |
|
|
TYPE.
|
1405 |
|
|
|
1406 |
|
|
If found, return value, else if name matched and args not return
|
1407 |
|
|
(value) -1, else return NULL. */
|
1408 |
|
|
|
1409 |
|
|
static struct value *
|
1410 |
|
|
search_struct_method (char *name, struct value **arg1p,
|
1411 |
|
|
struct value **args, int offset,
|
1412 |
|
|
int *static_memfuncp, struct type *type)
|
1413 |
|
|
{
|
1414 |
|
|
int i;
|
1415 |
|
|
struct value *v;
|
1416 |
|
|
int name_matched = 0;
|
1417 |
|
|
char dem_opname[64];
|
1418 |
|
|
|
1419 |
|
|
CHECK_TYPEDEF (type);
|
1420 |
|
|
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
|
1421 |
|
|
{
|
1422 |
|
|
char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
|
1423 |
|
|
/* FIXME! May need to check for ARM demangling here */
|
1424 |
|
|
if (strncmp (t_field_name, "__", 2) == 0 ||
|
1425 |
|
|
strncmp (t_field_name, "op", 2) == 0 ||
|
1426 |
|
|
strncmp (t_field_name, "type", 4) == 0)
|
1427 |
|
|
{
|
1428 |
|
|
if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
|
1429 |
|
|
t_field_name = dem_opname;
|
1430 |
|
|
else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
|
1431 |
|
|
t_field_name = dem_opname;
|
1432 |
|
|
}
|
1433 |
|
|
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
1434 |
|
|
{
|
1435 |
|
|
int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
|
1436 |
|
|
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
|
1437 |
|
|
name_matched = 1;
|
1438 |
|
|
|
1439 |
|
|
check_stub_method_group (type, i);
|
1440 |
|
|
if (j > 0 && args == 0)
|
1441 |
|
|
error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
|
1442 |
|
|
else if (j == 0 && args == 0)
|
1443 |
|
|
{
|
1444 |
|
|
v = value_fn_field (arg1p, f, j, type, offset);
|
1445 |
|
|
if (v != NULL)
|
1446 |
|
|
return v;
|
1447 |
|
|
}
|
1448 |
|
|
else
|
1449 |
|
|
while (j >= 0)
|
1450 |
|
|
{
|
1451 |
|
|
if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
|
1452 |
|
|
TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
|
1453 |
|
|
TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
|
1454 |
|
|
TYPE_FN_FIELD_ARGS (f, j), args))
|
1455 |
|
|
{
|
1456 |
|
|
if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
|
1457 |
|
|
return value_virtual_fn_field (arg1p, f, j,
|
1458 |
|
|
type, offset);
|
1459 |
|
|
if (TYPE_FN_FIELD_STATIC_P (f, j)
|
1460 |
|
|
&& static_memfuncp)
|
1461 |
|
|
*static_memfuncp = 1;
|
1462 |
|
|
v = value_fn_field (arg1p, f, j, type, offset);
|
1463 |
|
|
if (v != NULL)
|
1464 |
|
|
return v;
|
1465 |
|
|
}
|
1466 |
|
|
j--;
|
1467 |
|
|
}
|
1468 |
|
|
}
|
1469 |
|
|
}
|
1470 |
|
|
|
1471 |
|
|
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
1472 |
|
|
{
|
1473 |
|
|
int base_offset;
|
1474 |
|
|
|
1475 |
|
|
if (BASETYPE_VIA_VIRTUAL (type, i))
|
1476 |
|
|
{
|
1477 |
|
|
struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
|
1478 |
|
|
const gdb_byte *base_valaddr;
|
1479 |
|
|
|
1480 |
|
|
/* The virtual base class pointer might have been
|
1481 |
|
|
clobbered by the user program. Make sure that it
|
1482 |
|
|
still points to a valid memory location. */
|
1483 |
|
|
|
1484 |
|
|
if (offset < 0 || offset >= TYPE_LENGTH (type))
|
1485 |
|
|
{
|
1486 |
|
|
gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
|
1487 |
|
|
if (target_read_memory (VALUE_ADDRESS (*arg1p)
|
1488 |
|
|
+ value_offset (*arg1p) + offset,
|
1489 |
|
|
tmp, TYPE_LENGTH (baseclass)) != 0)
|
1490 |
|
|
error (_("virtual baseclass botch"));
|
1491 |
|
|
base_valaddr = tmp;
|
1492 |
|
|
}
|
1493 |
|
|
else
|
1494 |
|
|
base_valaddr = value_contents (*arg1p) + offset;
|
1495 |
|
|
|
1496 |
|
|
base_offset = baseclass_offset (type, i, base_valaddr,
|
1497 |
|
|
VALUE_ADDRESS (*arg1p)
|
1498 |
|
|
+ value_offset (*arg1p) + offset);
|
1499 |
|
|
if (base_offset == -1)
|
1500 |
|
|
error (_("virtual baseclass botch"));
|
1501 |
|
|
}
|
1502 |
|
|
else
|
1503 |
|
|
{
|
1504 |
|
|
base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
|
1505 |
|
|
}
|
1506 |
|
|
v = search_struct_method (name, arg1p, args, base_offset + offset,
|
1507 |
|
|
static_memfuncp, TYPE_BASECLASS (type, i));
|
1508 |
|
|
if (v == (struct value *) - 1)
|
1509 |
|
|
{
|
1510 |
|
|
name_matched = 1;
|
1511 |
|
|
}
|
1512 |
|
|
else if (v)
|
1513 |
|
|
{
|
1514 |
|
|
/* FIXME-bothner: Why is this commented out? Why is it here? */
|
1515 |
|
|
/* *arg1p = arg1_tmp; */
|
1516 |
|
|
return v;
|
1517 |
|
|
}
|
1518 |
|
|
}
|
1519 |
|
|
if (name_matched)
|
1520 |
|
|
return (struct value *) - 1;
|
1521 |
|
|
else
|
1522 |
|
|
return NULL;
|
1523 |
|
|
}
|
1524 |
|
|
|
1525 |
|
|
/* Given *ARGP, a value of type (pointer to a)* structure/union,
|
1526 |
|
|
extract the component named NAME from the ultimate target
|
1527 |
|
|
structure/union and return it as a value with its appropriate type.
|
1528 |
|
|
ERR is used in the error message if *ARGP's type is wrong.
|
1529 |
|
|
|
1530 |
|
|
C++: ARGS is a list of argument types to aid in the selection of
|
1531 |
|
|
an appropriate method. Also, handle derived types.
|
1532 |
|
|
|
1533 |
|
|
STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
|
1534 |
|
|
where the truthvalue of whether the function that was resolved was
|
1535 |
|
|
a static member function or not is stored.
|
1536 |
|
|
|
1537 |
|
|
ERR is an error message to be printed in case the field is not
|
1538 |
|
|
found. */
|
1539 |
|
|
|
1540 |
|
|
struct value *
|
1541 |
|
|
value_struct_elt (struct value **argp, struct value **args,
|
1542 |
|
|
char *name, int *static_memfuncp, char *err)
|
1543 |
|
|
{
|
1544 |
|
|
struct type *t;
|
1545 |
|
|
struct value *v;
|
1546 |
|
|
|
1547 |
|
|
*argp = coerce_array (*argp);
|
1548 |
|
|
|
1549 |
|
|
t = check_typedef (value_type (*argp));
|
1550 |
|
|
|
1551 |
|
|
/* Follow pointers until we get to a non-pointer. */
|
1552 |
|
|
|
1553 |
|
|
while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
|
1554 |
|
|
{
|
1555 |
|
|
*argp = value_ind (*argp);
|
1556 |
|
|
/* Don't coerce fn pointer to fn and then back again! */
|
1557 |
|
|
if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
|
1558 |
|
|
*argp = coerce_array (*argp);
|
1559 |
|
|
t = check_typedef (value_type (*argp));
|
1560 |
|
|
}
|
1561 |
|
|
|
1562 |
|
|
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
1563 |
|
|
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
1564 |
|
|
error (_("Attempt to extract a component of a value that is not a %s."), err);
|
1565 |
|
|
|
1566 |
|
|
/* Assume it's not, unless we see that it is. */
|
1567 |
|
|
if (static_memfuncp)
|
1568 |
|
|
*static_memfuncp = 0;
|
1569 |
|
|
|
1570 |
|
|
if (!args)
|
1571 |
|
|
{
|
1572 |
|
|
/* if there are no arguments ...do this... */
|
1573 |
|
|
|
1574 |
|
|
/* Try as a field first, because if we succeed, there is less
|
1575 |
|
|
work to be done. */
|
1576 |
|
|
v = search_struct_field (name, *argp, 0, t, 0);
|
1577 |
|
|
if (v)
|
1578 |
|
|
return v;
|
1579 |
|
|
|
1580 |
|
|
/* C++: If it was not found as a data field, then try to
|
1581 |
|
|
return it as a pointer to a method. */
|
1582 |
|
|
|
1583 |
|
|
if (destructor_name_p (name, t))
|
1584 |
|
|
error (_("Cannot get value of destructor"));
|
1585 |
|
|
|
1586 |
|
|
v = search_struct_method (name, argp, args, 0,
|
1587 |
|
|
static_memfuncp, t);
|
1588 |
|
|
|
1589 |
|
|
if (v == (struct value *) - 1)
|
1590 |
|
|
error (_("Cannot take address of method %s."), name);
|
1591 |
|
|
else if (v == 0)
|
1592 |
|
|
{
|
1593 |
|
|
if (TYPE_NFN_FIELDS (t))
|
1594 |
|
|
error (_("There is no member or method named %s."), name);
|
1595 |
|
|
else
|
1596 |
|
|
error (_("There is no member named %s."), name);
|
1597 |
|
|
}
|
1598 |
|
|
return v;
|
1599 |
|
|
}
|
1600 |
|
|
|
1601 |
|
|
if (destructor_name_p (name, t))
|
1602 |
|
|
{
|
1603 |
|
|
if (!args[1])
|
1604 |
|
|
{
|
1605 |
|
|
/* Destructors are a special case. */
|
1606 |
|
|
int m_index, f_index;
|
1607 |
|
|
|
1608 |
|
|
v = NULL;
|
1609 |
|
|
if (get_destructor_fn_field (t, &m_index, &f_index))
|
1610 |
|
|
{
|
1611 |
|
|
v = value_fn_field (NULL,
|
1612 |
|
|
TYPE_FN_FIELDLIST1 (t, m_index),
|
1613 |
|
|
f_index, NULL, 0);
|
1614 |
|
|
}
|
1615 |
|
|
if (v == NULL)
|
1616 |
|
|
error (_("could not find destructor function named %s."),
|
1617 |
|
|
name);
|
1618 |
|
|
else
|
1619 |
|
|
return v;
|
1620 |
|
|
}
|
1621 |
|
|
else
|
1622 |
|
|
{
|
1623 |
|
|
error (_("destructor should not have any argument"));
|
1624 |
|
|
}
|
1625 |
|
|
}
|
1626 |
|
|
else
|
1627 |
|
|
v = search_struct_method (name, argp, args, 0,
|
1628 |
|
|
static_memfuncp, t);
|
1629 |
|
|
|
1630 |
|
|
if (v == (struct value *) - 1)
|
1631 |
|
|
{
|
1632 |
|
|
error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
|
1633 |
|
|
}
|
1634 |
|
|
else if (v == 0)
|
1635 |
|
|
{
|
1636 |
|
|
/* See if user tried to invoke data as function. If so, hand it
|
1637 |
|
|
back. If it's not callable (i.e., a pointer to function),
|
1638 |
|
|
gdb should give an error. */
|
1639 |
|
|
v = search_struct_field (name, *argp, 0, t, 0);
|
1640 |
|
|
}
|
1641 |
|
|
|
1642 |
|
|
if (!v)
|
1643 |
|
|
error (_("Structure has no component named %s."), name);
|
1644 |
|
|
return v;
|
1645 |
|
|
}
|
1646 |
|
|
|
1647 |
|
|
/* Search through the methods of an object (and its bases) to find a
|
1648 |
|
|
specified method. Return the pointer to the fn_field list of
|
1649 |
|
|
overloaded instances.
|
1650 |
|
|
|
1651 |
|
|
Helper function for value_find_oload_list.
|
1652 |
|
|
ARGP is a pointer to a pointer to a value (the object).
|
1653 |
|
|
METHOD is a string containing the method name.
|
1654 |
|
|
OFFSET is the offset within the value.
|
1655 |
|
|
TYPE is the assumed type of the object.
|
1656 |
|
|
NUM_FNS is the number of overloaded instances.
|
1657 |
|
|
BASETYPE is set to the actual type of the subobject where the
|
1658 |
|
|
method is found.
|
1659 |
|
|
BOFFSET is the offset of the base subobject where the method is found.
|
1660 |
|
|
*/
|
1661 |
|
|
|
1662 |
|
|
static struct fn_field *
|
1663 |
|
|
find_method_list (struct value **argp, char *method,
|
1664 |
|
|
int offset, struct type *type, int *num_fns,
|
1665 |
|
|
struct type **basetype, int *boffset)
|
1666 |
|
|
{
|
1667 |
|
|
int i;
|
1668 |
|
|
struct fn_field *f;
|
1669 |
|
|
CHECK_TYPEDEF (type);
|
1670 |
|
|
|
1671 |
|
|
*num_fns = 0;
|
1672 |
|
|
|
1673 |
|
|
/* First check in object itself. */
|
1674 |
|
|
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
|
1675 |
|
|
{
|
1676 |
|
|
/* pai: FIXME What about operators and type conversions? */
|
1677 |
|
|
char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
|
1678 |
|
|
if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
|
1679 |
|
|
{
|
1680 |
|
|
int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
|
1681 |
|
|
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
|
1682 |
|
|
|
1683 |
|
|
*num_fns = len;
|
1684 |
|
|
*basetype = type;
|
1685 |
|
|
*boffset = offset;
|
1686 |
|
|
|
1687 |
|
|
/* Resolve any stub methods. */
|
1688 |
|
|
check_stub_method_group (type, i);
|
1689 |
|
|
|
1690 |
|
|
return f;
|
1691 |
|
|
}
|
1692 |
|
|
}
|
1693 |
|
|
|
1694 |
|
|
/* Not found in object, check in base subobjects. */
|
1695 |
|
|
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
1696 |
|
|
{
|
1697 |
|
|
int base_offset;
|
1698 |
|
|
if (BASETYPE_VIA_VIRTUAL (type, i))
|
1699 |
|
|
{
|
1700 |
|
|
base_offset = value_offset (*argp) + offset;
|
1701 |
|
|
base_offset = baseclass_offset (type, i,
|
1702 |
|
|
value_contents (*argp) + base_offset,
|
1703 |
|
|
VALUE_ADDRESS (*argp) + base_offset);
|
1704 |
|
|
if (base_offset == -1)
|
1705 |
|
|
error (_("virtual baseclass botch"));
|
1706 |
|
|
}
|
1707 |
|
|
else /* Non-virtual base, simply use bit position from debug
|
1708 |
|
|
info. */
|
1709 |
|
|
{
|
1710 |
|
|
base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
|
1711 |
|
|
}
|
1712 |
|
|
f = find_method_list (argp, method, base_offset + offset,
|
1713 |
|
|
TYPE_BASECLASS (type, i), num_fns,
|
1714 |
|
|
basetype, boffset);
|
1715 |
|
|
if (f)
|
1716 |
|
|
return f;
|
1717 |
|
|
}
|
1718 |
|
|
return NULL;
|
1719 |
|
|
}
|
1720 |
|
|
|
1721 |
|
|
/* Return the list of overloaded methods of a specified name.
|
1722 |
|
|
|
1723 |
|
|
ARGP is a pointer to a pointer to a value (the object).
|
1724 |
|
|
METHOD is the method name.
|
1725 |
|
|
OFFSET is the offset within the value contents.
|
1726 |
|
|
NUM_FNS is the number of overloaded instances.
|
1727 |
|
|
BASETYPE is set to the type of the base subobject that defines the
|
1728 |
|
|
method.
|
1729 |
|
|
BOFFSET is the offset of the base subobject which defines the method.
|
1730 |
|
|
*/
|
1731 |
|
|
|
1732 |
|
|
struct fn_field *
|
1733 |
|
|
value_find_oload_method_list (struct value **argp, char *method,
|
1734 |
|
|
int offset, int *num_fns,
|
1735 |
|
|
struct type **basetype, int *boffset)
|
1736 |
|
|
{
|
1737 |
|
|
struct type *t;
|
1738 |
|
|
|
1739 |
|
|
t = check_typedef (value_type (*argp));
|
1740 |
|
|
|
1741 |
|
|
/* Code snarfed from value_struct_elt. */
|
1742 |
|
|
while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
|
1743 |
|
|
{
|
1744 |
|
|
*argp = value_ind (*argp);
|
1745 |
|
|
/* Don't coerce fn pointer to fn and then back again! */
|
1746 |
|
|
if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
|
1747 |
|
|
*argp = coerce_array (*argp);
|
1748 |
|
|
t = check_typedef (value_type (*argp));
|
1749 |
|
|
}
|
1750 |
|
|
|
1751 |
|
|
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
1752 |
|
|
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
1753 |
|
|
error (_("Attempt to extract a component of a value that is not a struct or union"));
|
1754 |
|
|
|
1755 |
|
|
return find_method_list (argp, method, 0, t, num_fns,
|
1756 |
|
|
basetype, boffset);
|
1757 |
|
|
}
|
1758 |
|
|
|
1759 |
|
|
/* Given an array of argument types (ARGTYPES) (which includes an
|
1760 |
|
|
entry for "this" in the case of C++ methods), the number of
|
1761 |
|
|
arguments NARGS, the NAME of a function whether it's a method or
|
1762 |
|
|
not (METHOD), and the degree of laxness (LAX) in conforming to
|
1763 |
|
|
overload resolution rules in ANSI C++, find the best function that
|
1764 |
|
|
matches on the argument types according to the overload resolution
|
1765 |
|
|
rules.
|
1766 |
|
|
|
1767 |
|
|
In the case of class methods, the parameter OBJ is an object value
|
1768 |
|
|
in which to search for overloaded methods.
|
1769 |
|
|
|
1770 |
|
|
In the case of non-method functions, the parameter FSYM is a symbol
|
1771 |
|
|
corresponding to one of the overloaded functions.
|
1772 |
|
|
|
1773 |
|
|
Return value is an integer: 0 -> good match, 10 -> debugger applied
|
1774 |
|
|
non-standard coercions, 100 -> incompatible.
|
1775 |
|
|
|
1776 |
|
|
If a method is being searched for, VALP will hold the value.
|
1777 |
|
|
If a non-method is being searched for, SYMP will hold the symbol
|
1778 |
|
|
for it.
|
1779 |
|
|
|
1780 |
|
|
If a method is being searched for, and it is a static method,
|
1781 |
|
|
then STATICP will point to a non-zero value.
|
1782 |
|
|
|
1783 |
|
|
Note: This function does *not* check the value of
|
1784 |
|
|
overload_resolution. Caller must check it to see whether overload
|
1785 |
|
|
resolution is permitted.
|
1786 |
|
|
*/
|
1787 |
|
|
|
1788 |
|
|
int
|
1789 |
|
|
find_overload_match (struct type **arg_types, int nargs,
|
1790 |
|
|
char *name, int method, int lax,
|
1791 |
|
|
struct value **objp, struct symbol *fsym,
|
1792 |
|
|
struct value **valp, struct symbol **symp,
|
1793 |
|
|
int *staticp)
|
1794 |
|
|
{
|
1795 |
|
|
struct value *obj = (objp ? *objp : NULL);
|
1796 |
|
|
/* Index of best overloaded function. */
|
1797 |
|
|
int oload_champ;
|
1798 |
|
|
/* The measure for the current best match. */
|
1799 |
|
|
struct badness_vector *oload_champ_bv = NULL;
|
1800 |
|
|
struct value *temp = obj;
|
1801 |
|
|
/* For methods, the list of overloaded methods. */
|
1802 |
|
|
struct fn_field *fns_ptr = NULL;
|
1803 |
|
|
/* For non-methods, the list of overloaded function symbols. */
|
1804 |
|
|
struct symbol **oload_syms = NULL;
|
1805 |
|
|
/* Number of overloaded instances being considered. */
|
1806 |
|
|
int num_fns = 0;
|
1807 |
|
|
struct type *basetype = NULL;
|
1808 |
|
|
int boffset;
|
1809 |
|
|
int ix;
|
1810 |
|
|
int static_offset;
|
1811 |
|
|
struct cleanup *old_cleanups = NULL;
|
1812 |
|
|
|
1813 |
|
|
const char *obj_type_name = NULL;
|
1814 |
|
|
char *func_name = NULL;
|
1815 |
|
|
enum oload_classification match_quality;
|
1816 |
|
|
|
1817 |
|
|
/* Get the list of overloaded methods or functions. */
|
1818 |
|
|
if (method)
|
1819 |
|
|
{
|
1820 |
|
|
gdb_assert (obj);
|
1821 |
|
|
obj_type_name = TYPE_NAME (value_type (obj));
|
1822 |
|
|
/* Hack: evaluate_subexp_standard often passes in a pointer
|
1823 |
|
|
value rather than the object itself, so try again. */
|
1824 |
|
|
if ((!obj_type_name || !*obj_type_name)
|
1825 |
|
|
&& (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
|
1826 |
|
|
obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
|
1827 |
|
|
|
1828 |
|
|
fns_ptr = value_find_oload_method_list (&temp, name,
|
1829 |
|
|
0, &num_fns,
|
1830 |
|
|
&basetype, &boffset);
|
1831 |
|
|
if (!fns_ptr || !num_fns)
|
1832 |
|
|
error (_("Couldn't find method %s%s%s"),
|
1833 |
|
|
obj_type_name,
|
1834 |
|
|
(obj_type_name && *obj_type_name) ? "::" : "",
|
1835 |
|
|
name);
|
1836 |
|
|
/* If we are dealing with stub method types, they should have
|
1837 |
|
|
been resolved by find_method_list via
|
1838 |
|
|
value_find_oload_method_list above. */
|
1839 |
|
|
gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
|
1840 |
|
|
oload_champ = find_oload_champ (arg_types, nargs, method,
|
1841 |
|
|
num_fns, fns_ptr,
|
1842 |
|
|
oload_syms, &oload_champ_bv);
|
1843 |
|
|
}
|
1844 |
|
|
else
|
1845 |
|
|
{
|
1846 |
|
|
const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
|
1847 |
|
|
|
1848 |
|
|
/* If we have a C++ name, try to extract just the function
|
1849 |
|
|
part. */
|
1850 |
|
|
if (qualified_name)
|
1851 |
|
|
func_name = cp_func_name (qualified_name);
|
1852 |
|
|
|
1853 |
|
|
/* If there was no C++ name, this must be a C-style function.
|
1854 |
|
|
Just return the same symbol. Do the same if cp_func_name
|
1855 |
|
|
fails for some reason. */
|
1856 |
|
|
if (func_name == NULL)
|
1857 |
|
|
{
|
1858 |
|
|
*symp = fsym;
|
1859 |
|
|
return 0;
|
1860 |
|
|
}
|
1861 |
|
|
|
1862 |
|
|
old_cleanups = make_cleanup (xfree, func_name);
|
1863 |
|
|
make_cleanup (xfree, oload_syms);
|
1864 |
|
|
make_cleanup (xfree, oload_champ_bv);
|
1865 |
|
|
|
1866 |
|
|
oload_champ = find_oload_champ_namespace (arg_types, nargs,
|
1867 |
|
|
func_name,
|
1868 |
|
|
qualified_name,
|
1869 |
|
|
&oload_syms,
|
1870 |
|
|
&oload_champ_bv);
|
1871 |
|
|
}
|
1872 |
|
|
|
1873 |
|
|
/* Check how bad the best match is. */
|
1874 |
|
|
|
1875 |
|
|
match_quality =
|
1876 |
|
|
classify_oload_match (oload_champ_bv, nargs,
|
1877 |
|
|
oload_method_static (method, fns_ptr,
|
1878 |
|
|
oload_champ));
|
1879 |
|
|
|
1880 |
|
|
if (match_quality == INCOMPATIBLE)
|
1881 |
|
|
{
|
1882 |
|
|
if (method)
|
1883 |
|
|
error (_("Cannot resolve method %s%s%s to any overloaded instance"),
|
1884 |
|
|
obj_type_name,
|
1885 |
|
|
(obj_type_name && *obj_type_name) ? "::" : "",
|
1886 |
|
|
name);
|
1887 |
|
|
else
|
1888 |
|
|
error (_("Cannot resolve function %s to any overloaded instance"),
|
1889 |
|
|
func_name);
|
1890 |
|
|
}
|
1891 |
|
|
else if (match_quality == NON_STANDARD)
|
1892 |
|
|
{
|
1893 |
|
|
if (method)
|
1894 |
|
|
warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
|
1895 |
|
|
obj_type_name,
|
1896 |
|
|
(obj_type_name && *obj_type_name) ? "::" : "",
|
1897 |
|
|
name);
|
1898 |
|
|
else
|
1899 |
|
|
warning (_("Using non-standard conversion to match function %s to supplied arguments"),
|
1900 |
|
|
func_name);
|
1901 |
|
|
}
|
1902 |
|
|
|
1903 |
|
|
if (method)
|
1904 |
|
|
{
|
1905 |
|
|
if (staticp != NULL)
|
1906 |
|
|
*staticp = oload_method_static (method, fns_ptr, oload_champ);
|
1907 |
|
|
if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
|
1908 |
|
|
*valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
|
1909 |
|
|
basetype, boffset);
|
1910 |
|
|
else
|
1911 |
|
|
*valp = value_fn_field (&temp, fns_ptr, oload_champ,
|
1912 |
|
|
basetype, boffset);
|
1913 |
|
|
}
|
1914 |
|
|
else
|
1915 |
|
|
{
|
1916 |
|
|
*symp = oload_syms[oload_champ];
|
1917 |
|
|
}
|
1918 |
|
|
|
1919 |
|
|
if (objp)
|
1920 |
|
|
{
|
1921 |
|
|
if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
|
1922 |
|
|
&& TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR)
|
1923 |
|
|
{
|
1924 |
|
|
temp = value_addr (temp);
|
1925 |
|
|
}
|
1926 |
|
|
*objp = temp;
|
1927 |
|
|
}
|
1928 |
|
|
if (old_cleanups != NULL)
|
1929 |
|
|
do_cleanups (old_cleanups);
|
1930 |
|
|
|
1931 |
|
|
switch (match_quality)
|
1932 |
|
|
{
|
1933 |
|
|
case INCOMPATIBLE:
|
1934 |
|
|
return 100;
|
1935 |
|
|
case NON_STANDARD:
|
1936 |
|
|
return 10;
|
1937 |
|
|
default: /* STANDARD */
|
1938 |
|
|
return 0;
|
1939 |
|
|
}
|
1940 |
|
|
}
|
1941 |
|
|
|
1942 |
|
|
/* Find the best overload match, searching for FUNC_NAME in namespaces
|
1943 |
|
|
contained in QUALIFIED_NAME until it either finds a good match or
|
1944 |
|
|
runs out of namespaces. It stores the overloaded functions in
|
1945 |
|
|
*OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
|
1946 |
|
|
calling function is responsible for freeing *OLOAD_SYMS and
|
1947 |
|
|
*OLOAD_CHAMP_BV. */
|
1948 |
|
|
|
1949 |
|
|
static int
|
1950 |
|
|
find_oload_champ_namespace (struct type **arg_types, int nargs,
|
1951 |
|
|
const char *func_name,
|
1952 |
|
|
const char *qualified_name,
|
1953 |
|
|
struct symbol ***oload_syms,
|
1954 |
|
|
struct badness_vector **oload_champ_bv)
|
1955 |
|
|
{
|
1956 |
|
|
int oload_champ;
|
1957 |
|
|
|
1958 |
|
|
find_oload_champ_namespace_loop (arg_types, nargs,
|
1959 |
|
|
func_name,
|
1960 |
|
|
qualified_name, 0,
|
1961 |
|
|
oload_syms, oload_champ_bv,
|
1962 |
|
|
&oload_champ);
|
1963 |
|
|
|
1964 |
|
|
return oload_champ;
|
1965 |
|
|
}
|
1966 |
|
|
|
1967 |
|
|
/* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
|
1968 |
|
|
how deep we've looked for namespaces, and the champ is stored in
|
1969 |
|
|
OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
|
1970 |
|
|
if it isn't.
|
1971 |
|
|
|
1972 |
|
|
It is the caller's responsibility to free *OLOAD_SYMS and
|
1973 |
|
|
*OLOAD_CHAMP_BV. */
|
1974 |
|
|
|
1975 |
|
|
static int
|
1976 |
|
|
find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
|
1977 |
|
|
const char *func_name,
|
1978 |
|
|
const char *qualified_name,
|
1979 |
|
|
int namespace_len,
|
1980 |
|
|
struct symbol ***oload_syms,
|
1981 |
|
|
struct badness_vector **oload_champ_bv,
|
1982 |
|
|
int *oload_champ)
|
1983 |
|
|
{
|
1984 |
|
|
int next_namespace_len = namespace_len;
|
1985 |
|
|
int searched_deeper = 0;
|
1986 |
|
|
int num_fns = 0;
|
1987 |
|
|
struct cleanup *old_cleanups;
|
1988 |
|
|
int new_oload_champ;
|
1989 |
|
|
struct symbol **new_oload_syms;
|
1990 |
|
|
struct badness_vector *new_oload_champ_bv;
|
1991 |
|
|
char *new_namespace;
|
1992 |
|
|
|
1993 |
|
|
if (next_namespace_len != 0)
|
1994 |
|
|
{
|
1995 |
|
|
gdb_assert (qualified_name[next_namespace_len] == ':');
|
1996 |
|
|
next_namespace_len += 2;
|
1997 |
|
|
}
|
1998 |
|
|
next_namespace_len +=
|
1999 |
|
|
cp_find_first_component (qualified_name + next_namespace_len);
|
2000 |
|
|
|
2001 |
|
|
/* Initialize these to values that can safely be xfree'd. */
|
2002 |
|
|
*oload_syms = NULL;
|
2003 |
|
|
*oload_champ_bv = NULL;
|
2004 |
|
|
|
2005 |
|
|
/* First, see if we have a deeper namespace we can search in.
|
2006 |
|
|
If we get a good match there, use it. */
|
2007 |
|
|
|
2008 |
|
|
if (qualified_name[next_namespace_len] == ':')
|
2009 |
|
|
{
|
2010 |
|
|
searched_deeper = 1;
|
2011 |
|
|
|
2012 |
|
|
if (find_oload_champ_namespace_loop (arg_types, nargs,
|
2013 |
|
|
func_name, qualified_name,
|
2014 |
|
|
next_namespace_len,
|
2015 |
|
|
oload_syms, oload_champ_bv,
|
2016 |
|
|
oload_champ))
|
2017 |
|
|
{
|
2018 |
|
|
return 1;
|
2019 |
|
|
}
|
2020 |
|
|
};
|
2021 |
|
|
|
2022 |
|
|
/* If we reach here, either we're in the deepest namespace or we
|
2023 |
|
|
didn't find a good match in a deeper namespace. But, in the
|
2024 |
|
|
latter case, we still have a bad match in a deeper namespace;
|
2025 |
|
|
note that we might not find any match at all in the current
|
2026 |
|
|
namespace. (There's always a match in the deepest namespace,
|
2027 |
|
|
because this overload mechanism only gets called if there's a
|
2028 |
|
|
function symbol to start off with.) */
|
2029 |
|
|
|
2030 |
|
|
old_cleanups = make_cleanup (xfree, *oload_syms);
|
2031 |
|
|
old_cleanups = make_cleanup (xfree, *oload_champ_bv);
|
2032 |
|
|
new_namespace = alloca (namespace_len + 1);
|
2033 |
|
|
strncpy (new_namespace, qualified_name, namespace_len);
|
2034 |
|
|
new_namespace[namespace_len] = '\0';
|
2035 |
|
|
new_oload_syms = make_symbol_overload_list (func_name,
|
2036 |
|
|
new_namespace);
|
2037 |
|
|
while (new_oload_syms[num_fns])
|
2038 |
|
|
++num_fns;
|
2039 |
|
|
|
2040 |
|
|
new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
|
2041 |
|
|
NULL, new_oload_syms,
|
2042 |
|
|
&new_oload_champ_bv);
|
2043 |
|
|
|
2044 |
|
|
/* Case 1: We found a good match. Free earlier matches (if any),
|
2045 |
|
|
and return it. Case 2: We didn't find a good match, but we're
|
2046 |
|
|
not the deepest function. Then go with the bad match that the
|
2047 |
|
|
deeper function found. Case 3: We found a bad match, and we're
|
2048 |
|
|
the deepest function. Then return what we found, even though
|
2049 |
|
|
it's a bad match. */
|
2050 |
|
|
|
2051 |
|
|
if (new_oload_champ != -1
|
2052 |
|
|
&& classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
|
2053 |
|
|
{
|
2054 |
|
|
*oload_syms = new_oload_syms;
|
2055 |
|
|
*oload_champ = new_oload_champ;
|
2056 |
|
|
*oload_champ_bv = new_oload_champ_bv;
|
2057 |
|
|
do_cleanups (old_cleanups);
|
2058 |
|
|
return 1;
|
2059 |
|
|
}
|
2060 |
|
|
else if (searched_deeper)
|
2061 |
|
|
{
|
2062 |
|
|
xfree (new_oload_syms);
|
2063 |
|
|
xfree (new_oload_champ_bv);
|
2064 |
|
|
discard_cleanups (old_cleanups);
|
2065 |
|
|
return 0;
|
2066 |
|
|
}
|
2067 |
|
|
else
|
2068 |
|
|
{
|
2069 |
|
|
gdb_assert (new_oload_champ != -1);
|
2070 |
|
|
*oload_syms = new_oload_syms;
|
2071 |
|
|
*oload_champ = new_oload_champ;
|
2072 |
|
|
*oload_champ_bv = new_oload_champ_bv;
|
2073 |
|
|
discard_cleanups (old_cleanups);
|
2074 |
|
|
return 0;
|
2075 |
|
|
}
|
2076 |
|
|
}
|
2077 |
|
|
|
2078 |
|
|
/* Look for a function to take NARGS args of types ARG_TYPES. Find
|
2079 |
|
|
the best match from among the overloaded methods or functions
|
2080 |
|
|
(depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
|
2081 |
|
|
The number of methods/functions in the list is given by NUM_FNS.
|
2082 |
|
|
Return the index of the best match; store an indication of the
|
2083 |
|
|
quality of the match in OLOAD_CHAMP_BV.
|
2084 |
|
|
|
2085 |
|
|
It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
|
2086 |
|
|
|
2087 |
|
|
static int
|
2088 |
|
|
find_oload_champ (struct type **arg_types, int nargs, int method,
|
2089 |
|
|
int num_fns, struct fn_field *fns_ptr,
|
2090 |
|
|
struct symbol **oload_syms,
|
2091 |
|
|
struct badness_vector **oload_champ_bv)
|
2092 |
|
|
{
|
2093 |
|
|
int ix;
|
2094 |
|
|
/* A measure of how good an overloaded instance is. */
|
2095 |
|
|
struct badness_vector *bv;
|
2096 |
|
|
/* Index of best overloaded function. */
|
2097 |
|
|
int oload_champ = -1;
|
2098 |
|
|
/* Current ambiguity state for overload resolution. */
|
2099 |
|
|
int oload_ambiguous = 0;
|
2100 |
|
|
/* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
|
2101 |
|
|
|
2102 |
|
|
*oload_champ_bv = NULL;
|
2103 |
|
|
|
2104 |
|
|
/* Consider each candidate in turn. */
|
2105 |
|
|
for (ix = 0; ix < num_fns; ix++)
|
2106 |
|
|
{
|
2107 |
|
|
int jj;
|
2108 |
|
|
int static_offset = oload_method_static (method, fns_ptr, ix);
|
2109 |
|
|
int nparms;
|
2110 |
|
|
struct type **parm_types;
|
2111 |
|
|
|
2112 |
|
|
if (method)
|
2113 |
|
|
{
|
2114 |
|
|
nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
|
2115 |
|
|
}
|
2116 |
|
|
else
|
2117 |
|
|
{
|
2118 |
|
|
/* If it's not a method, this is the proper place. */
|
2119 |
|
|
nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
|
2120 |
|
|
}
|
2121 |
|
|
|
2122 |
|
|
/* Prepare array of parameter types. */
|
2123 |
|
|
parm_types = (struct type **)
|
2124 |
|
|
xmalloc (nparms * (sizeof (struct type *)));
|
2125 |
|
|
for (jj = 0; jj < nparms; jj++)
|
2126 |
|
|
parm_types[jj] = (method
|
2127 |
|
|
? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
|
2128 |
|
|
: TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
|
2129 |
|
|
jj));
|
2130 |
|
|
|
2131 |
|
|
/* Compare parameter types to supplied argument types. Skip
|
2132 |
|
|
THIS for static methods. */
|
2133 |
|
|
bv = rank_function (parm_types, nparms,
|
2134 |
|
|
arg_types + static_offset,
|
2135 |
|
|
nargs - static_offset);
|
2136 |
|
|
|
2137 |
|
|
if (!*oload_champ_bv)
|
2138 |
|
|
{
|
2139 |
|
|
*oload_champ_bv = bv;
|
2140 |
|
|
oload_champ = 0;
|
2141 |
|
|
}
|
2142 |
|
|
else /* See whether current candidate is better or worse than
|
2143 |
|
|
previous best. */
|
2144 |
|
|
switch (compare_badness (bv, *oload_champ_bv))
|
2145 |
|
|
{
|
2146 |
|
|
case 0: /* Top two contenders are equally good. */
|
2147 |
|
|
oload_ambiguous = 1;
|
2148 |
|
|
break;
|
2149 |
|
|
case 1: /* Incomparable top contenders. */
|
2150 |
|
|
oload_ambiguous = 2;
|
2151 |
|
|
break;
|
2152 |
|
|
case 2: /* New champion, record details. */
|
2153 |
|
|
*oload_champ_bv = bv;
|
2154 |
|
|
oload_ambiguous = 0;
|
2155 |
|
|
oload_champ = ix;
|
2156 |
|
|
break;
|
2157 |
|
|
case 3:
|
2158 |
|
|
default:
|
2159 |
|
|
break;
|
2160 |
|
|
}
|
2161 |
|
|
xfree (parm_types);
|
2162 |
|
|
if (overload_debug)
|
2163 |
|
|
{
|
2164 |
|
|
if (method)
|
2165 |
|
|
fprintf_filtered (gdb_stderr,
|
2166 |
|
|
"Overloaded method instance %s, # of parms %d\n",
|
2167 |
|
|
fns_ptr[ix].physname, nparms);
|
2168 |
|
|
else
|
2169 |
|
|
fprintf_filtered (gdb_stderr,
|
2170 |
|
|
"Overloaded function instance %s # of parms %d\n",
|
2171 |
|
|
SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
|
2172 |
|
|
nparms);
|
2173 |
|
|
for (jj = 0; jj < nargs - static_offset; jj++)
|
2174 |
|
|
fprintf_filtered (gdb_stderr,
|
2175 |
|
|
"...Badness @ %d : %d\n",
|
2176 |
|
|
jj, bv->rank[jj]);
|
2177 |
|
|
fprintf_filtered (gdb_stderr,
|
2178 |
|
|
"Overload resolution champion is %d, ambiguous? %d\n",
|
2179 |
|
|
oload_champ, oload_ambiguous);
|
2180 |
|
|
}
|
2181 |
|
|
}
|
2182 |
|
|
|
2183 |
|
|
return oload_champ;
|
2184 |
|
|
}
|
2185 |
|
|
|
2186 |
|
|
/* Return 1 if we're looking at a static method, 0 if we're looking at
|
2187 |
|
|
a non-static method or a function that isn't a method. */
|
2188 |
|
|
|
2189 |
|
|
static int
|
2190 |
|
|
oload_method_static (int method, struct fn_field *fns_ptr, int index)
|
2191 |
|
|
{
|
2192 |
|
|
if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
|
2193 |
|
|
return 1;
|
2194 |
|
|
else
|
2195 |
|
|
return 0;
|
2196 |
|
|
}
|
2197 |
|
|
|
2198 |
|
|
/* Check how good an overload match OLOAD_CHAMP_BV represents. */
|
2199 |
|
|
|
2200 |
|
|
static enum oload_classification
|
2201 |
|
|
classify_oload_match (struct badness_vector *oload_champ_bv,
|
2202 |
|
|
int nargs,
|
2203 |
|
|
int static_offset)
|
2204 |
|
|
{
|
2205 |
|
|
int ix;
|
2206 |
|
|
|
2207 |
|
|
for (ix = 1; ix <= nargs - static_offset; ix++)
|
2208 |
|
|
{
|
2209 |
|
|
if (oload_champ_bv->rank[ix] >= 100)
|
2210 |
|
|
return INCOMPATIBLE; /* Truly mismatched types. */
|
2211 |
|
|
else if (oload_champ_bv->rank[ix] >= 10)
|
2212 |
|
|
return NON_STANDARD; /* Non-standard type conversions
|
2213 |
|
|
needed. */
|
2214 |
|
|
}
|
2215 |
|
|
|
2216 |
|
|
return STANDARD; /* Only standard conversions needed. */
|
2217 |
|
|
}
|
2218 |
|
|
|
2219 |
|
|
/* C++: return 1 is NAME is a legitimate name for the destructor of
|
2220 |
|
|
type TYPE. If TYPE does not have a destructor, or if NAME is
|
2221 |
|
|
inappropriate for TYPE, an error is signaled. */
|
2222 |
|
|
int
|
2223 |
|
|
destructor_name_p (const char *name, const struct type *type)
|
2224 |
|
|
{
|
2225 |
|
|
/* Destructors are a special case. */
|
2226 |
|
|
|
2227 |
|
|
if (name[0] == '~')
|
2228 |
|
|
{
|
2229 |
|
|
char *dname = type_name_no_tag (type);
|
2230 |
|
|
char *cp = strchr (dname, '<');
|
2231 |
|
|
unsigned int len;
|
2232 |
|
|
|
2233 |
|
|
/* Do not compare the template part for template classes. */
|
2234 |
|
|
if (cp == NULL)
|
2235 |
|
|
len = strlen (dname);
|
2236 |
|
|
else
|
2237 |
|
|
len = cp - dname;
|
2238 |
|
|
if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
|
2239 |
|
|
error (_("name of destructor must equal name of class"));
|
2240 |
|
|
else
|
2241 |
|
|
return 1;
|
2242 |
|
|
}
|
2243 |
|
|
return 0;
|
2244 |
|
|
}
|
2245 |
|
|
|
2246 |
|
|
/* Helper function for check_field: Given TYPE, a structure/union,
|
2247 |
|
|
return 1 if the component named NAME from the ultimate target
|
2248 |
|
|
structure/union is defined, otherwise, return 0. */
|
2249 |
|
|
|
2250 |
|
|
static int
|
2251 |
|
|
check_field_in (struct type *type, const char *name)
|
2252 |
|
|
{
|
2253 |
|
|
int i;
|
2254 |
|
|
|
2255 |
|
|
for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
|
2256 |
|
|
{
|
2257 |
|
|
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
2258 |
|
|
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
2259 |
|
|
return 1;
|
2260 |
|
|
}
|
2261 |
|
|
|
2262 |
|
|
/* C++: If it was not found as a data field, then try to return it
|
2263 |
|
|
as a pointer to a method. */
|
2264 |
|
|
|
2265 |
|
|
/* Destructors are a special case. */
|
2266 |
|
|
if (destructor_name_p (name, type))
|
2267 |
|
|
{
|
2268 |
|
|
int m_index, f_index;
|
2269 |
|
|
|
2270 |
|
|
return get_destructor_fn_field (type, &m_index, &f_index);
|
2271 |
|
|
}
|
2272 |
|
|
|
2273 |
|
|
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
|
2274 |
|
|
{
|
2275 |
|
|
if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
|
2276 |
|
|
return 1;
|
2277 |
|
|
}
|
2278 |
|
|
|
2279 |
|
|
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
2280 |
|
|
if (check_field_in (TYPE_BASECLASS (type, i), name))
|
2281 |
|
|
return 1;
|
2282 |
|
|
|
2283 |
|
|
return 0;
|
2284 |
|
|
}
|
2285 |
|
|
|
2286 |
|
|
|
2287 |
|
|
/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
|
2288 |
|
|
return 1 if the component named NAME from the ultimate target
|
2289 |
|
|
structure/union is defined, otherwise, return 0. */
|
2290 |
|
|
|
2291 |
|
|
int
|
2292 |
|
|
check_field (struct value *arg1, const char *name)
|
2293 |
|
|
{
|
2294 |
|
|
struct type *t;
|
2295 |
|
|
|
2296 |
|
|
arg1 = coerce_array (arg1);
|
2297 |
|
|
|
2298 |
|
|
t = value_type (arg1);
|
2299 |
|
|
|
2300 |
|
|
/* Follow pointers until we get to a non-pointer. */
|
2301 |
|
|
|
2302 |
|
|
for (;;)
|
2303 |
|
|
{
|
2304 |
|
|
CHECK_TYPEDEF (t);
|
2305 |
|
|
if (TYPE_CODE (t) != TYPE_CODE_PTR
|
2306 |
|
|
&& TYPE_CODE (t) != TYPE_CODE_REF)
|
2307 |
|
|
break;
|
2308 |
|
|
t = TYPE_TARGET_TYPE (t);
|
2309 |
|
|
}
|
2310 |
|
|
|
2311 |
|
|
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
2312 |
|
|
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
2313 |
|
|
error (_("Internal error: `this' is not an aggregate"));
|
2314 |
|
|
|
2315 |
|
|
return check_field_in (t, name);
|
2316 |
|
|
}
|
2317 |
|
|
|
2318 |
|
|
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
|
2319 |
|
|
return the appropriate member (or the address of the member, if
|
2320 |
|
|
WANT_ADDRESS). This function is used to resolve user expressions
|
2321 |
|
|
of the form "DOMAIN::NAME". For more details on what happens, see
|
2322 |
|
|
the comment before value_struct_elt_for_reference. */
|
2323 |
|
|
|
2324 |
|
|
struct value *
|
2325 |
|
|
value_aggregate_elt (struct type *curtype,
|
2326 |
|
|
char *name, int want_address,
|
2327 |
|
|
enum noside noside)
|
2328 |
|
|
{
|
2329 |
|
|
switch (TYPE_CODE (curtype))
|
2330 |
|
|
{
|
2331 |
|
|
case TYPE_CODE_STRUCT:
|
2332 |
|
|
case TYPE_CODE_UNION:
|
2333 |
|
|
return value_struct_elt_for_reference (curtype, 0, curtype,
|
2334 |
|
|
name, NULL,
|
2335 |
|
|
want_address, noside);
|
2336 |
|
|
case TYPE_CODE_NAMESPACE:
|
2337 |
|
|
return value_namespace_elt (curtype, name,
|
2338 |
|
|
want_address, noside);
|
2339 |
|
|
default:
|
2340 |
|
|
internal_error (__FILE__, __LINE__,
|
2341 |
|
|
_("non-aggregate type in value_aggregate_elt"));
|
2342 |
|
|
}
|
2343 |
|
|
}
|
2344 |
|
|
|
2345 |
|
|
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
|
2346 |
|
|
return the address of this member as a "pointer to member" type.
|
2347 |
|
|
If INTYPE is non-null, then it will be the type of the member we
|
2348 |
|
|
are looking for. This will help us resolve "pointers to member
|
2349 |
|
|
functions". This function is used to resolve user expressions of
|
2350 |
|
|
the form "DOMAIN::NAME". */
|
2351 |
|
|
|
2352 |
|
|
static struct value *
|
2353 |
|
|
value_struct_elt_for_reference (struct type *domain, int offset,
|
2354 |
|
|
struct type *curtype, char *name,
|
2355 |
|
|
struct type *intype,
|
2356 |
|
|
int want_address,
|
2357 |
|
|
enum noside noside)
|
2358 |
|
|
{
|
2359 |
|
|
struct type *t = curtype;
|
2360 |
|
|
int i;
|
2361 |
|
|
struct value *v, *result;
|
2362 |
|
|
|
2363 |
|
|
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
2364 |
|
|
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
2365 |
|
|
error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
|
2366 |
|
|
|
2367 |
|
|
for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
|
2368 |
|
|
{
|
2369 |
|
|
char *t_field_name = TYPE_FIELD_NAME (t, i);
|
2370 |
|
|
|
2371 |
|
|
if (t_field_name && strcmp (t_field_name, name) == 0)
|
2372 |
|
|
{
|
2373 |
|
|
if (TYPE_FIELD_STATIC (t, i))
|
2374 |
|
|
{
|
2375 |
|
|
v = value_static_field (t, i);
|
2376 |
|
|
if (v == NULL)
|
2377 |
|
|
error (_("static field %s has been optimized out"),
|
2378 |
|
|
name);
|
2379 |
|
|
if (want_address)
|
2380 |
|
|
v = value_addr (v);
|
2381 |
|
|
return v;
|
2382 |
|
|
}
|
2383 |
|
|
if (TYPE_FIELD_PACKED (t, i))
|
2384 |
|
|
error (_("pointers to bitfield members not allowed"));
|
2385 |
|
|
|
2386 |
|
|
if (want_address)
|
2387 |
|
|
return value_from_longest
|
2388 |
|
|
(lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
|
2389 |
|
|
offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
|
2390 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
2391 |
|
|
return allocate_value (TYPE_FIELD_TYPE (t, i));
|
2392 |
|
|
else
|
2393 |
|
|
error (_("Cannot reference non-static field \"%s\""), name);
|
2394 |
|
|
}
|
2395 |
|
|
}
|
2396 |
|
|
|
2397 |
|
|
/* C++: If it was not found as a data field, then try to return it
|
2398 |
|
|
as a pointer to a method. */
|
2399 |
|
|
|
2400 |
|
|
/* Destructors are a special case. */
|
2401 |
|
|
if (destructor_name_p (name, t))
|
2402 |
|
|
{
|
2403 |
|
|
error (_("member pointers to destructors not implemented yet"));
|
2404 |
|
|
}
|
2405 |
|
|
|
2406 |
|
|
/* Perform all necessary dereferencing. */
|
2407 |
|
|
while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
|
2408 |
|
|
intype = TYPE_TARGET_TYPE (intype);
|
2409 |
|
|
|
2410 |
|
|
for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
|
2411 |
|
|
{
|
2412 |
|
|
char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
|
2413 |
|
|
char dem_opname[64];
|
2414 |
|
|
|
2415 |
|
|
if (strncmp (t_field_name, "__", 2) == 0
|
2416 |
|
|
|| strncmp (t_field_name, "op", 2) == 0
|
2417 |
|
|
|| strncmp (t_field_name, "type", 4) == 0)
|
2418 |
|
|
{
|
2419 |
|
|
if (cplus_demangle_opname (t_field_name,
|
2420 |
|
|
dem_opname, DMGL_ANSI))
|
2421 |
|
|
t_field_name = dem_opname;
|
2422 |
|
|
else if (cplus_demangle_opname (t_field_name,
|
2423 |
|
|
dem_opname, 0))
|
2424 |
|
|
t_field_name = dem_opname;
|
2425 |
|
|
}
|
2426 |
|
|
if (t_field_name && strcmp (t_field_name, name) == 0)
|
2427 |
|
|
{
|
2428 |
|
|
int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
|
2429 |
|
|
struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
|
2430 |
|
|
|
2431 |
|
|
check_stub_method_group (t, i);
|
2432 |
|
|
|
2433 |
|
|
if (intype == 0 && j > 1)
|
2434 |
|
|
error (_("non-unique member `%s' requires type instantiation"), name);
|
2435 |
|
|
if (intype)
|
2436 |
|
|
{
|
2437 |
|
|
while (j--)
|
2438 |
|
|
if (TYPE_FN_FIELD_TYPE (f, j) == intype)
|
2439 |
|
|
break;
|
2440 |
|
|
if (j < 0)
|
2441 |
|
|
error (_("no member function matches that type instantiation"));
|
2442 |
|
|
}
|
2443 |
|
|
else
|
2444 |
|
|
j = 0;
|
2445 |
|
|
|
2446 |
|
|
if (TYPE_FN_FIELD_STATIC_P (f, j))
|
2447 |
|
|
{
|
2448 |
|
|
struct symbol *s =
|
2449 |
|
|
lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
|
2450 |
|
|
0, VAR_DOMAIN, 0, NULL);
|
2451 |
|
|
if (s == NULL)
|
2452 |
|
|
return NULL;
|
2453 |
|
|
|
2454 |
|
|
if (want_address)
|
2455 |
|
|
return value_addr (read_var_value (s, 0));
|
2456 |
|
|
else
|
2457 |
|
|
return read_var_value (s, 0);
|
2458 |
|
|
}
|
2459 |
|
|
|
2460 |
|
|
if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
|
2461 |
|
|
{
|
2462 |
|
|
if (want_address)
|
2463 |
|
|
{
|
2464 |
|
|
result = allocate_value
|
2465 |
|
|
(lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
|
2466 |
|
|
cplus_make_method_ptr (value_contents_writeable (result),
|
2467 |
|
|
TYPE_FN_FIELD_VOFFSET (f, j), 1);
|
2468 |
|
|
}
|
2469 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
2470 |
|
|
return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
|
2471 |
|
|
else
|
2472 |
|
|
error (_("Cannot reference virtual member function \"%s\""),
|
2473 |
|
|
name);
|
2474 |
|
|
}
|
2475 |
|
|
else
|
2476 |
|
|
{
|
2477 |
|
|
struct symbol *s =
|
2478 |
|
|
lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
|
2479 |
|
|
0, VAR_DOMAIN, 0, NULL);
|
2480 |
|
|
if (s == NULL)
|
2481 |
|
|
return NULL;
|
2482 |
|
|
|
2483 |
|
|
v = read_var_value (s, 0);
|
2484 |
|
|
if (!want_address)
|
2485 |
|
|
result = v;
|
2486 |
|
|
else
|
2487 |
|
|
{
|
2488 |
|
|
result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
|
2489 |
|
|
cplus_make_method_ptr (value_contents_writeable (result),
|
2490 |
|
|
VALUE_ADDRESS (v), 0);
|
2491 |
|
|
}
|
2492 |
|
|
}
|
2493 |
|
|
return result;
|
2494 |
|
|
}
|
2495 |
|
|
}
|
2496 |
|
|
for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
|
2497 |
|
|
{
|
2498 |
|
|
struct value *v;
|
2499 |
|
|
int base_offset;
|
2500 |
|
|
|
2501 |
|
|
if (BASETYPE_VIA_VIRTUAL (t, i))
|
2502 |
|
|
base_offset = 0;
|
2503 |
|
|
else
|
2504 |
|
|
base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
|
2505 |
|
|
v = value_struct_elt_for_reference (domain,
|
2506 |
|
|
offset + base_offset,
|
2507 |
|
|
TYPE_BASECLASS (t, i),
|
2508 |
|
|
name, intype,
|
2509 |
|
|
want_address, noside);
|
2510 |
|
|
if (v)
|
2511 |
|
|
return v;
|
2512 |
|
|
}
|
2513 |
|
|
|
2514 |
|
|
/* As a last chance, pretend that CURTYPE is a namespace, and look
|
2515 |
|
|
it up that way; this (frequently) works for types nested inside
|
2516 |
|
|
classes. */
|
2517 |
|
|
|
2518 |
|
|
return value_maybe_namespace_elt (curtype, name,
|
2519 |
|
|
want_address, noside);
|
2520 |
|
|
}
|
2521 |
|
|
|
2522 |
|
|
/* C++: Return the member NAME of the namespace given by the type
|
2523 |
|
|
CURTYPE. */
|
2524 |
|
|
|
2525 |
|
|
static struct value *
|
2526 |
|
|
value_namespace_elt (const struct type *curtype,
|
2527 |
|
|
char *name, int want_address,
|
2528 |
|
|
enum noside noside)
|
2529 |
|
|
{
|
2530 |
|
|
struct value *retval = value_maybe_namespace_elt (curtype, name,
|
2531 |
|
|
want_address,
|
2532 |
|
|
noside);
|
2533 |
|
|
|
2534 |
|
|
if (retval == NULL)
|
2535 |
|
|
error (_("No symbol \"%s\" in namespace \"%s\"."),
|
2536 |
|
|
name, TYPE_TAG_NAME (curtype));
|
2537 |
|
|
|
2538 |
|
|
return retval;
|
2539 |
|
|
}
|
2540 |
|
|
|
2541 |
|
|
/* A helper function used by value_namespace_elt and
|
2542 |
|
|
value_struct_elt_for_reference. It looks up NAME inside the
|
2543 |
|
|
context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
|
2544 |
|
|
is a class and NAME refers to a type in CURTYPE itself (as opposed
|
2545 |
|
|
to, say, some base class of CURTYPE). */
|
2546 |
|
|
|
2547 |
|
|
static struct value *
|
2548 |
|
|
value_maybe_namespace_elt (const struct type *curtype,
|
2549 |
|
|
char *name, int want_address,
|
2550 |
|
|
enum noside noside)
|
2551 |
|
|
{
|
2552 |
|
|
const char *namespace_name = TYPE_TAG_NAME (curtype);
|
2553 |
|
|
struct symbol *sym;
|
2554 |
|
|
struct value *result;
|
2555 |
|
|
|
2556 |
|
|
sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
|
2557 |
|
|
get_selected_block (0),
|
2558 |
|
|
VAR_DOMAIN, NULL);
|
2559 |
|
|
|
2560 |
|
|
if (sym == NULL)
|
2561 |
|
|
return NULL;
|
2562 |
|
|
else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
|
2563 |
|
|
&& (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
|
2564 |
|
|
result = allocate_value (SYMBOL_TYPE (sym));
|
2565 |
|
|
else
|
2566 |
|
|
result = value_of_variable (sym, get_selected_block (0));
|
2567 |
|
|
|
2568 |
|
|
if (result && want_address)
|
2569 |
|
|
result = value_addr (result);
|
2570 |
|
|
|
2571 |
|
|
return result;
|
2572 |
|
|
}
|
2573 |
|
|
|
2574 |
|
|
/* Given a pointer value V, find the real (RTTI) type of the object it
|
2575 |
|
|
points to.
|
2576 |
|
|
|
2577 |
|
|
Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
|
2578 |
|
|
and refer to the values computed for the object pointed to. */
|
2579 |
|
|
|
2580 |
|
|
struct type *
|
2581 |
|
|
value_rtti_target_type (struct value *v, int *full,
|
2582 |
|
|
int *top, int *using_enc)
|
2583 |
|
|
{
|
2584 |
|
|
struct value *target;
|
2585 |
|
|
|
2586 |
|
|
target = value_ind (v);
|
2587 |
|
|
|
2588 |
|
|
return value_rtti_type (target, full, top, using_enc);
|
2589 |
|
|
}
|
2590 |
|
|
|
2591 |
|
|
/* Given a value pointed to by ARGP, check its real run-time type, and
|
2592 |
|
|
if that is different from the enclosing type, create a new value
|
2593 |
|
|
using the real run-time type as the enclosing type (and of the same
|
2594 |
|
|
type as ARGP) and return it, with the embedded offset adjusted to
|
2595 |
|
|
be the correct offset to the enclosed object. RTYPE is the type,
|
2596 |
|
|
and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
|
2597 |
|
|
by value_rtti_type(). If these are available, they can be supplied
|
2598 |
|
|
and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
|
2599 |
|
|
NULL if they're not available. */
|
2600 |
|
|
|
2601 |
|
|
struct value *
|
2602 |
|
|
value_full_object (struct value *argp,
|
2603 |
|
|
struct type *rtype,
|
2604 |
|
|
int xfull, int xtop,
|
2605 |
|
|
int xusing_enc)
|
2606 |
|
|
{
|
2607 |
|
|
struct type *real_type;
|
2608 |
|
|
int full = 0;
|
2609 |
|
|
int top = -1;
|
2610 |
|
|
int using_enc = 0;
|
2611 |
|
|
struct value *new_val;
|
2612 |
|
|
|
2613 |
|
|
if (rtype)
|
2614 |
|
|
{
|
2615 |
|
|
real_type = rtype;
|
2616 |
|
|
full = xfull;
|
2617 |
|
|
top = xtop;
|
2618 |
|
|
using_enc = xusing_enc;
|
2619 |
|
|
}
|
2620 |
|
|
else
|
2621 |
|
|
real_type = value_rtti_type (argp, &full, &top, &using_enc);
|
2622 |
|
|
|
2623 |
|
|
/* If no RTTI data, or if object is already complete, do nothing. */
|
2624 |
|
|
if (!real_type || real_type == value_enclosing_type (argp))
|
2625 |
|
|
return argp;
|
2626 |
|
|
|
2627 |
|
|
/* If we have the full object, but for some reason the enclosing
|
2628 |
|
|
type is wrong, set it. */
|
2629 |
|
|
/* pai: FIXME -- sounds iffy */
|
2630 |
|
|
if (full)
|
2631 |
|
|
{
|
2632 |
|
|
argp = value_change_enclosing_type (argp, real_type);
|
2633 |
|
|
return argp;
|
2634 |
|
|
}
|
2635 |
|
|
|
2636 |
|
|
/* Check if object is in memory */
|
2637 |
|
|
if (VALUE_LVAL (argp) != lval_memory)
|
2638 |
|
|
{
|
2639 |
|
|
warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
|
2640 |
|
|
TYPE_NAME (real_type));
|
2641 |
|
|
|
2642 |
|
|
return argp;
|
2643 |
|
|
}
|
2644 |
|
|
|
2645 |
|
|
/* All other cases -- retrieve the complete object. */
|
2646 |
|
|
/* Go back by the computed top_offset from the beginning of the
|
2647 |
|
|
object, adjusting for the embedded offset of argp if that's what
|
2648 |
|
|
value_rtti_type used for its computation. */
|
2649 |
|
|
new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
|
2650 |
|
|
(using_enc ? 0 : value_embedded_offset (argp)));
|
2651 |
|
|
deprecated_set_value_type (new_val, value_type (argp));
|
2652 |
|
|
set_value_embedded_offset (new_val, (using_enc
|
2653 |
|
|
? top + value_embedded_offset (argp)
|
2654 |
|
|
: top));
|
2655 |
|
|
return new_val;
|
2656 |
|
|
}
|
2657 |
|
|
|
2658 |
|
|
|
2659 |
|
|
/* Return the value of the local variable, if one exists.
|
2660 |
|
|
Flag COMPLAIN signals an error if the request is made in an
|
2661 |
|
|
inappropriate context. */
|
2662 |
|
|
|
2663 |
|
|
struct value *
|
2664 |
|
|
value_of_local (const char *name, int complain)
|
2665 |
|
|
{
|
2666 |
|
|
struct symbol *func, *sym;
|
2667 |
|
|
struct block *b;
|
2668 |
|
|
struct value * ret;
|
2669 |
|
|
struct frame_info *frame;
|
2670 |
|
|
|
2671 |
|
|
if (complain)
|
2672 |
|
|
frame = get_selected_frame (_("no frame selected"));
|
2673 |
|
|
else
|
2674 |
|
|
{
|
2675 |
|
|
frame = deprecated_safe_get_selected_frame ();
|
2676 |
|
|
if (frame == 0)
|
2677 |
|
|
return 0;
|
2678 |
|
|
}
|
2679 |
|
|
|
2680 |
|
|
func = get_frame_function (frame);
|
2681 |
|
|
if (!func)
|
2682 |
|
|
{
|
2683 |
|
|
if (complain)
|
2684 |
|
|
error (_("no `%s' in nameless context"), name);
|
2685 |
|
|
else
|
2686 |
|
|
return 0;
|
2687 |
|
|
}
|
2688 |
|
|
|
2689 |
|
|
b = SYMBOL_BLOCK_VALUE (func);
|
2690 |
|
|
if (dict_empty (BLOCK_DICT (b)))
|
2691 |
|
|
{
|
2692 |
|
|
if (complain)
|
2693 |
|
|
error (_("no args, no `%s'"), name);
|
2694 |
|
|
else
|
2695 |
|
|
return 0;
|
2696 |
|
|
}
|
2697 |
|
|
|
2698 |
|
|
/* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
|
2699 |
|
|
symbol instead of the LOC_ARG one (if both exist). */
|
2700 |
|
|
sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
|
2701 |
|
|
if (sym == NULL)
|
2702 |
|
|
{
|
2703 |
|
|
if (complain)
|
2704 |
|
|
error (_("current stack frame does not contain a variable named `%s'"),
|
2705 |
|
|
name);
|
2706 |
|
|
else
|
2707 |
|
|
return NULL;
|
2708 |
|
|
}
|
2709 |
|
|
|
2710 |
|
|
ret = read_var_value (sym, frame);
|
2711 |
|
|
if (ret == 0 && complain)
|
2712 |
|
|
error (_("`%s' argument unreadable"), name);
|
2713 |
|
|
return ret;
|
2714 |
|
|
}
|
2715 |
|
|
|
2716 |
|
|
/* C++/Objective-C: return the value of the class instance variable,
|
2717 |
|
|
if one exists. Flag COMPLAIN signals an error if the request is
|
2718 |
|
|
made in an inappropriate context. */
|
2719 |
|
|
|
2720 |
|
|
struct value *
|
2721 |
|
|
value_of_this (int complain)
|
2722 |
|
|
{
|
2723 |
|
|
if (current_language->la_language == language_objc)
|
2724 |
|
|
return value_of_local ("self", complain);
|
2725 |
|
|
else
|
2726 |
|
|
return value_of_local ("this", complain);
|
2727 |
|
|
}
|
2728 |
|
|
|
2729 |
|
|
/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
|
2730 |
|
|
elements long, starting at LOWBOUND. The result has the same lower
|
2731 |
|
|
bound as the original ARRAY. */
|
2732 |
|
|
|
2733 |
|
|
struct value *
|
2734 |
|
|
value_slice (struct value *array, int lowbound, int length)
|
2735 |
|
|
{
|
2736 |
|
|
struct type *slice_range_type, *slice_type, *range_type;
|
2737 |
|
|
LONGEST lowerbound, upperbound;
|
2738 |
|
|
struct value *slice;
|
2739 |
|
|
struct type *array_type;
|
2740 |
|
|
|
2741 |
|
|
array_type = check_typedef (value_type (array));
|
2742 |
|
|
if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
|
2743 |
|
|
&& TYPE_CODE (array_type) != TYPE_CODE_STRING
|
2744 |
|
|
&& TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
|
2745 |
|
|
error (_("cannot take slice of non-array"));
|
2746 |
|
|
|
2747 |
|
|
range_type = TYPE_INDEX_TYPE (array_type);
|
2748 |
|
|
if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
|
2749 |
|
|
error (_("slice from bad array or bitstring"));
|
2750 |
|
|
|
2751 |
|
|
if (lowbound < lowerbound || length < 0
|
2752 |
|
|
|| lowbound + length - 1 > upperbound)
|
2753 |
|
|
error (_("slice out of range"));
|
2754 |
|
|
|
2755 |
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
2756 |
|
|
done with it. */
|
2757 |
|
|
slice_range_type = create_range_type ((struct type *) NULL,
|
2758 |
|
|
TYPE_TARGET_TYPE (range_type),
|
2759 |
|
|
lowbound,
|
2760 |
|
|
lowbound + length - 1);
|
2761 |
|
|
if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
|
2762 |
|
|
{
|
2763 |
|
|
int i;
|
2764 |
|
|
|
2765 |
|
|
slice_type = create_set_type ((struct type *) NULL,
|
2766 |
|
|
slice_range_type);
|
2767 |
|
|
TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
|
2768 |
|
|
slice = value_zero (slice_type, not_lval);
|
2769 |
|
|
|
2770 |
|
|
for (i = 0; i < length; i++)
|
2771 |
|
|
{
|
2772 |
|
|
int element = value_bit_index (array_type,
|
2773 |
|
|
value_contents (array),
|
2774 |
|
|
lowbound + i);
|
2775 |
|
|
if (element < 0)
|
2776 |
|
|
error (_("internal error accessing bitstring"));
|
2777 |
|
|
else if (element > 0)
|
2778 |
|
|
{
|
2779 |
|
|
int j = i % TARGET_CHAR_BIT;
|
2780 |
|
|
if (gdbarch_bits_big_endian (current_gdbarch))
|
2781 |
|
|
j = TARGET_CHAR_BIT - 1 - j;
|
2782 |
|
|
value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
|
2783 |
|
|
}
|
2784 |
|
|
}
|
2785 |
|
|
/* We should set the address, bitssize, and bitspos, so the
|
2786 |
|
|
slice can be used on the LHS, but that may require extensions
|
2787 |
|
|
to value_assign. For now, just leave as a non_lval.
|
2788 |
|
|
FIXME. */
|
2789 |
|
|
}
|
2790 |
|
|
else
|
2791 |
|
|
{
|
2792 |
|
|
struct type *element_type = TYPE_TARGET_TYPE (array_type);
|
2793 |
|
|
LONGEST offset =
|
2794 |
|
|
(lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
|
2795 |
|
|
|
2796 |
|
|
slice_type = create_array_type ((struct type *) NULL,
|
2797 |
|
|
element_type,
|
2798 |
|
|
slice_range_type);
|
2799 |
|
|
TYPE_CODE (slice_type) = TYPE_CODE (array_type);
|
2800 |
|
|
|
2801 |
|
|
slice = allocate_value (slice_type);
|
2802 |
|
|
if (value_lazy (array))
|
2803 |
|
|
set_value_lazy (slice, 1);
|
2804 |
|
|
else
|
2805 |
|
|
memcpy (value_contents_writeable (slice),
|
2806 |
|
|
value_contents (array) + offset,
|
2807 |
|
|
TYPE_LENGTH (slice_type));
|
2808 |
|
|
|
2809 |
|
|
if (VALUE_LVAL (array) == lval_internalvar)
|
2810 |
|
|
VALUE_LVAL (slice) = lval_internalvar_component;
|
2811 |
|
|
else
|
2812 |
|
|
VALUE_LVAL (slice) = VALUE_LVAL (array);
|
2813 |
|
|
|
2814 |
|
|
VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
|
2815 |
|
|
VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
|
2816 |
|
|
set_value_offset (slice, value_offset (array) + offset);
|
2817 |
|
|
}
|
2818 |
|
|
return slice;
|
2819 |
|
|
}
|
2820 |
|
|
|
2821 |
|
|
/* Create a value for a FORTRAN complex number. Currently most of the
|
2822 |
|
|
time values are coerced to COMPLEX*16 (i.e. a complex number
|
2823 |
|
|
composed of 2 doubles. This really should be a smarter routine
|
2824 |
|
|
that figures out precision inteligently as opposed to assuming
|
2825 |
|
|
doubles. FIXME: fmb */
|
2826 |
|
|
|
2827 |
|
|
struct value *
|
2828 |
|
|
value_literal_complex (struct value *arg1,
|
2829 |
|
|
struct value *arg2,
|
2830 |
|
|
struct type *type)
|
2831 |
|
|
{
|
2832 |
|
|
struct value *val;
|
2833 |
|
|
struct type *real_type = TYPE_TARGET_TYPE (type);
|
2834 |
|
|
|
2835 |
|
|
val = allocate_value (type);
|
2836 |
|
|
arg1 = value_cast (real_type, arg1);
|
2837 |
|
|
arg2 = value_cast (real_type, arg2);
|
2838 |
|
|
|
2839 |
|
|
memcpy (value_contents_raw (val),
|
2840 |
|
|
value_contents (arg1), TYPE_LENGTH (real_type));
|
2841 |
|
|
memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
|
2842 |
|
|
value_contents (arg2), TYPE_LENGTH (real_type));
|
2843 |
|
|
return val;
|
2844 |
|
|
}
|
2845 |
|
|
|
2846 |
|
|
/* Cast a value into the appropriate complex data type. */
|
2847 |
|
|
|
2848 |
|
|
static struct value *
|
2849 |
|
|
cast_into_complex (struct type *type, struct value *val)
|
2850 |
|
|
{
|
2851 |
|
|
struct type *real_type = TYPE_TARGET_TYPE (type);
|
2852 |
|
|
|
2853 |
|
|
if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
|
2854 |
|
|
{
|
2855 |
|
|
struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
|
2856 |
|
|
struct value *re_val = allocate_value (val_real_type);
|
2857 |
|
|
struct value *im_val = allocate_value (val_real_type);
|
2858 |
|
|
|
2859 |
|
|
memcpy (value_contents_raw (re_val),
|
2860 |
|
|
value_contents (val), TYPE_LENGTH (val_real_type));
|
2861 |
|
|
memcpy (value_contents_raw (im_val),
|
2862 |
|
|
value_contents (val) + TYPE_LENGTH (val_real_type),
|
2863 |
|
|
TYPE_LENGTH (val_real_type));
|
2864 |
|
|
|
2865 |
|
|
return value_literal_complex (re_val, im_val, type);
|
2866 |
|
|
}
|
2867 |
|
|
else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
|
2868 |
|
|
|| TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
|
2869 |
|
|
return value_literal_complex (val,
|
2870 |
|
|
value_zero (real_type, not_lval),
|
2871 |
|
|
type);
|
2872 |
|
|
else
|
2873 |
|
|
error (_("cannot cast non-number to complex"));
|
2874 |
|
|
}
|
2875 |
|
|
|
2876 |
|
|
void
|
2877 |
|
|
_initialize_valops (void)
|
2878 |
|
|
{
|
2879 |
|
|
add_setshow_boolean_cmd ("overload-resolution", class_support,
|
2880 |
|
|
&overload_resolution, _("\
|
2881 |
|
|
Set overload resolution in evaluating C++ functions."), _("\
|
2882 |
|
|
Show overload resolution in evaluating C++ functions."),
|
2883 |
|
|
NULL, NULL,
|
2884 |
|
|
show_overload_resolution,
|
2885 |
|
|
&setlist, &showlist);
|
2886 |
|
|
overload_resolution = 1;
|
2887 |
|
|
}
|