1 |
24 |
jeremybenn |
/* Low level packing and unpacking of values for GDB, the GNU Debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
4 |
|
|
1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "gdb_string.h"
|
24 |
|
|
#include "symtab.h"
|
25 |
|
|
#include "gdbtypes.h"
|
26 |
|
|
#include "value.h"
|
27 |
|
|
#include "gdbcore.h"
|
28 |
|
|
#include "command.h"
|
29 |
|
|
#include "gdbcmd.h"
|
30 |
|
|
#include "target.h"
|
31 |
|
|
#include "language.h"
|
32 |
|
|
#include "demangle.h"
|
33 |
|
|
#include "doublest.h"
|
34 |
|
|
#include "gdb_assert.h"
|
35 |
|
|
#include "regcache.h"
|
36 |
|
|
#include "block.h"
|
37 |
|
|
#include "dfp.h"
|
38 |
|
|
|
39 |
|
|
/* Prototypes for exported functions. */
|
40 |
|
|
|
41 |
|
|
void _initialize_values (void);
|
42 |
|
|
|
43 |
|
|
struct value
|
44 |
|
|
{
|
45 |
|
|
/* Type of value; either not an lval, or one of the various
|
46 |
|
|
different possible kinds of lval. */
|
47 |
|
|
enum lval_type lval;
|
48 |
|
|
|
49 |
|
|
/* Is it modifiable? Only relevant if lval != not_lval. */
|
50 |
|
|
int modifiable;
|
51 |
|
|
|
52 |
|
|
/* Location of value (if lval). */
|
53 |
|
|
union
|
54 |
|
|
{
|
55 |
|
|
/* If lval == lval_memory, this is the address in the inferior.
|
56 |
|
|
If lval == lval_register, this is the byte offset into the
|
57 |
|
|
registers structure. */
|
58 |
|
|
CORE_ADDR address;
|
59 |
|
|
|
60 |
|
|
/* Pointer to internal variable. */
|
61 |
|
|
struct internalvar *internalvar;
|
62 |
|
|
} location;
|
63 |
|
|
|
64 |
|
|
/* Describes offset of a value within lval of a structure in bytes.
|
65 |
|
|
If lval == lval_memory, this is an offset to the address. If
|
66 |
|
|
lval == lval_register, this is a further offset from
|
67 |
|
|
location.address within the registers structure. Note also the
|
68 |
|
|
member embedded_offset below. */
|
69 |
|
|
int offset;
|
70 |
|
|
|
71 |
|
|
/* Only used for bitfields; number of bits contained in them. */
|
72 |
|
|
int bitsize;
|
73 |
|
|
|
74 |
|
|
/* Only used for bitfields; position of start of field. For
|
75 |
|
|
gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
|
76 |
|
|
gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
|
77 |
|
|
int bitpos;
|
78 |
|
|
|
79 |
|
|
/* Frame register value is relative to. This will be described in
|
80 |
|
|
the lval enum above as "lval_register". */
|
81 |
|
|
struct frame_id frame_id;
|
82 |
|
|
|
83 |
|
|
/* Type of the value. */
|
84 |
|
|
struct type *type;
|
85 |
|
|
|
86 |
|
|
/* If a value represents a C++ object, then the `type' field gives
|
87 |
|
|
the object's compile-time type. If the object actually belongs
|
88 |
|
|
to some class derived from `type', perhaps with other base
|
89 |
|
|
classes and additional members, then `type' is just a subobject
|
90 |
|
|
of the real thing, and the full object is probably larger than
|
91 |
|
|
`type' would suggest.
|
92 |
|
|
|
93 |
|
|
If `type' is a dynamic class (i.e. one with a vtable), then GDB
|
94 |
|
|
can actually determine the object's run-time type by looking at
|
95 |
|
|
the run-time type information in the vtable. When this
|
96 |
|
|
information is available, we may elect to read in the entire
|
97 |
|
|
object, for several reasons:
|
98 |
|
|
|
99 |
|
|
- When printing the value, the user would probably rather see the
|
100 |
|
|
full object, not just the limited portion apparent from the
|
101 |
|
|
compile-time type.
|
102 |
|
|
|
103 |
|
|
- If `type' has virtual base classes, then even printing `type'
|
104 |
|
|
alone may require reaching outside the `type' portion of the
|
105 |
|
|
object to wherever the virtual base class has been stored.
|
106 |
|
|
|
107 |
|
|
When we store the entire object, `enclosing_type' is the run-time
|
108 |
|
|
type -- the complete object -- and `embedded_offset' is the
|
109 |
|
|
offset of `type' within that larger type, in bytes. The
|
110 |
|
|
value_contents() macro takes `embedded_offset' into account, so
|
111 |
|
|
most GDB code continues to see the `type' portion of the value,
|
112 |
|
|
just as the inferior would.
|
113 |
|
|
|
114 |
|
|
If `type' is a pointer to an object, then `enclosing_type' is a
|
115 |
|
|
pointer to the object's run-time type, and `pointed_to_offset' is
|
116 |
|
|
the offset in bytes from the full object to the pointed-to object
|
117 |
|
|
-- that is, the value `embedded_offset' would have if we followed
|
118 |
|
|
the pointer and fetched the complete object. (I don't really see
|
119 |
|
|
the point. Why not just determine the run-time type when you
|
120 |
|
|
indirect, and avoid the special case? The contents don't matter
|
121 |
|
|
until you indirect anyway.)
|
122 |
|
|
|
123 |
|
|
If we're not doing anything fancy, `enclosing_type' is equal to
|
124 |
|
|
`type', and `embedded_offset' is zero, so everything works
|
125 |
|
|
normally. */
|
126 |
|
|
struct type *enclosing_type;
|
127 |
|
|
int embedded_offset;
|
128 |
|
|
int pointed_to_offset;
|
129 |
|
|
|
130 |
|
|
/* Values are stored in a chain, so that they can be deleted easily
|
131 |
|
|
over calls to the inferior. Values assigned to internal
|
132 |
|
|
variables or put into the value history are taken off this
|
133 |
|
|
list. */
|
134 |
|
|
struct value *next;
|
135 |
|
|
|
136 |
|
|
/* Register number if the value is from a register. */
|
137 |
|
|
short regnum;
|
138 |
|
|
|
139 |
|
|
/* If zero, contents of this value are in the contents field. If
|
140 |
|
|
nonzero, contents are in inferior memory at address in the
|
141 |
|
|
location.address field plus the offset field (and the lval field
|
142 |
|
|
should be lval_memory).
|
143 |
|
|
|
144 |
|
|
WARNING: This field is used by the code which handles watchpoints
|
145 |
|
|
(see breakpoint.c) to decide whether a particular value can be
|
146 |
|
|
watched by hardware watchpoints. If the lazy flag is set for
|
147 |
|
|
some member of a value chain, it is assumed that this member of
|
148 |
|
|
the chain doesn't need to be watched as part of watching the
|
149 |
|
|
value itself. This is how GDB avoids watching the entire struct
|
150 |
|
|
or array when the user wants to watch a single struct member or
|
151 |
|
|
array element. If you ever change the way lazy flag is set and
|
152 |
|
|
reset, be sure to consider this use as well! */
|
153 |
|
|
char lazy;
|
154 |
|
|
|
155 |
|
|
/* If nonzero, this is the value of a variable which does not
|
156 |
|
|
actually exist in the program. */
|
157 |
|
|
char optimized_out;
|
158 |
|
|
|
159 |
|
|
/* If value is a variable, is it initialized or not. */
|
160 |
|
|
int initialized;
|
161 |
|
|
|
162 |
|
|
/* Actual contents of the value. For use of this value; setting it
|
163 |
|
|
uses the stuff above. Not valid if lazy is nonzero. Target
|
164 |
|
|
byte-order. We force it to be aligned properly for any possible
|
165 |
|
|
value. Note that a value therefore extends beyond what is
|
166 |
|
|
declared here. */
|
167 |
|
|
union
|
168 |
|
|
{
|
169 |
|
|
gdb_byte contents[1];
|
170 |
|
|
DOUBLEST force_doublest_align;
|
171 |
|
|
LONGEST force_longest_align;
|
172 |
|
|
CORE_ADDR force_core_addr_align;
|
173 |
|
|
void *force_pointer_align;
|
174 |
|
|
} aligner;
|
175 |
|
|
/* Do not add any new members here -- contents above will trash
|
176 |
|
|
them. */
|
177 |
|
|
};
|
178 |
|
|
|
179 |
|
|
/* Prototypes for local functions. */
|
180 |
|
|
|
181 |
|
|
static void show_values (char *, int);
|
182 |
|
|
|
183 |
|
|
static void show_convenience (char *, int);
|
184 |
|
|
|
185 |
|
|
|
186 |
|
|
/* The value-history records all the values printed
|
187 |
|
|
by print commands during this session. Each chunk
|
188 |
|
|
records 60 consecutive values. The first chunk on
|
189 |
|
|
the chain records the most recent values.
|
190 |
|
|
The total number of values is in value_history_count. */
|
191 |
|
|
|
192 |
|
|
#define VALUE_HISTORY_CHUNK 60
|
193 |
|
|
|
194 |
|
|
struct value_history_chunk
|
195 |
|
|
{
|
196 |
|
|
struct value_history_chunk *next;
|
197 |
|
|
struct value *values[VALUE_HISTORY_CHUNK];
|
198 |
|
|
};
|
199 |
|
|
|
200 |
|
|
/* Chain of chunks now in use. */
|
201 |
|
|
|
202 |
|
|
static struct value_history_chunk *value_history_chain;
|
203 |
|
|
|
204 |
|
|
static int value_history_count; /* Abs number of last entry stored */
|
205 |
|
|
|
206 |
|
|
/* List of all value objects currently allocated
|
207 |
|
|
(except for those released by calls to release_value)
|
208 |
|
|
This is so they can be freed after each command. */
|
209 |
|
|
|
210 |
|
|
static struct value *all_values;
|
211 |
|
|
|
212 |
|
|
/* Allocate a value that has the correct length for type TYPE. */
|
213 |
|
|
|
214 |
|
|
struct value *
|
215 |
|
|
allocate_value (struct type *type)
|
216 |
|
|
{
|
217 |
|
|
struct value *val;
|
218 |
|
|
struct type *atype = check_typedef (type);
|
219 |
|
|
|
220 |
|
|
val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
|
221 |
|
|
val->next = all_values;
|
222 |
|
|
all_values = val;
|
223 |
|
|
val->type = type;
|
224 |
|
|
val->enclosing_type = type;
|
225 |
|
|
VALUE_LVAL (val) = not_lval;
|
226 |
|
|
VALUE_ADDRESS (val) = 0;
|
227 |
|
|
VALUE_FRAME_ID (val) = null_frame_id;
|
228 |
|
|
val->offset = 0;
|
229 |
|
|
val->bitpos = 0;
|
230 |
|
|
val->bitsize = 0;
|
231 |
|
|
VALUE_REGNUM (val) = -1;
|
232 |
|
|
val->lazy = 0;
|
233 |
|
|
val->optimized_out = 0;
|
234 |
|
|
val->embedded_offset = 0;
|
235 |
|
|
val->pointed_to_offset = 0;
|
236 |
|
|
val->modifiable = 1;
|
237 |
|
|
val->initialized = 1; /* Default to initialized. */
|
238 |
|
|
return val;
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
/* Allocate a value that has the correct length
|
242 |
|
|
for COUNT repetitions type TYPE. */
|
243 |
|
|
|
244 |
|
|
struct value *
|
245 |
|
|
allocate_repeat_value (struct type *type, int count)
|
246 |
|
|
{
|
247 |
|
|
int low_bound = current_language->string_lower_bound; /* ??? */
|
248 |
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
249 |
|
|
done with it. */
|
250 |
|
|
struct type *range_type
|
251 |
|
|
= create_range_type ((struct type *) NULL, builtin_type_int,
|
252 |
|
|
low_bound, count + low_bound - 1);
|
253 |
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
254 |
|
|
done with it. */
|
255 |
|
|
return allocate_value (create_array_type ((struct type *) NULL,
|
256 |
|
|
type, range_type));
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
/* Accessor methods. */
|
260 |
|
|
|
261 |
|
|
struct value *
|
262 |
|
|
value_next (struct value *value)
|
263 |
|
|
{
|
264 |
|
|
return value->next;
|
265 |
|
|
}
|
266 |
|
|
|
267 |
|
|
struct type *
|
268 |
|
|
value_type (struct value *value)
|
269 |
|
|
{
|
270 |
|
|
return value->type;
|
271 |
|
|
}
|
272 |
|
|
void
|
273 |
|
|
deprecated_set_value_type (struct value *value, struct type *type)
|
274 |
|
|
{
|
275 |
|
|
value->type = type;
|
276 |
|
|
}
|
277 |
|
|
|
278 |
|
|
int
|
279 |
|
|
value_offset (struct value *value)
|
280 |
|
|
{
|
281 |
|
|
return value->offset;
|
282 |
|
|
}
|
283 |
|
|
void
|
284 |
|
|
set_value_offset (struct value *value, int offset)
|
285 |
|
|
{
|
286 |
|
|
value->offset = offset;
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
int
|
290 |
|
|
value_bitpos (struct value *value)
|
291 |
|
|
{
|
292 |
|
|
return value->bitpos;
|
293 |
|
|
}
|
294 |
|
|
void
|
295 |
|
|
set_value_bitpos (struct value *value, int bit)
|
296 |
|
|
{
|
297 |
|
|
value->bitpos = bit;
|
298 |
|
|
}
|
299 |
|
|
|
300 |
|
|
int
|
301 |
|
|
value_bitsize (struct value *value)
|
302 |
|
|
{
|
303 |
|
|
return value->bitsize;
|
304 |
|
|
}
|
305 |
|
|
void
|
306 |
|
|
set_value_bitsize (struct value *value, int bit)
|
307 |
|
|
{
|
308 |
|
|
value->bitsize = bit;
|
309 |
|
|
}
|
310 |
|
|
|
311 |
|
|
gdb_byte *
|
312 |
|
|
value_contents_raw (struct value *value)
|
313 |
|
|
{
|
314 |
|
|
return value->aligner.contents + value->embedded_offset;
|
315 |
|
|
}
|
316 |
|
|
|
317 |
|
|
gdb_byte *
|
318 |
|
|
value_contents_all_raw (struct value *value)
|
319 |
|
|
{
|
320 |
|
|
return value->aligner.contents;
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
struct type *
|
324 |
|
|
value_enclosing_type (struct value *value)
|
325 |
|
|
{
|
326 |
|
|
return value->enclosing_type;
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
const gdb_byte *
|
330 |
|
|
value_contents_all (struct value *value)
|
331 |
|
|
{
|
332 |
|
|
if (value->lazy)
|
333 |
|
|
value_fetch_lazy (value);
|
334 |
|
|
return value->aligner.contents;
|
335 |
|
|
}
|
336 |
|
|
|
337 |
|
|
int
|
338 |
|
|
value_lazy (struct value *value)
|
339 |
|
|
{
|
340 |
|
|
return value->lazy;
|
341 |
|
|
}
|
342 |
|
|
|
343 |
|
|
void
|
344 |
|
|
set_value_lazy (struct value *value, int val)
|
345 |
|
|
{
|
346 |
|
|
value->lazy = val;
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
const gdb_byte *
|
350 |
|
|
value_contents (struct value *value)
|
351 |
|
|
{
|
352 |
|
|
return value_contents_writeable (value);
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
gdb_byte *
|
356 |
|
|
value_contents_writeable (struct value *value)
|
357 |
|
|
{
|
358 |
|
|
if (value->lazy)
|
359 |
|
|
value_fetch_lazy (value);
|
360 |
|
|
return value_contents_raw (value);
|
361 |
|
|
}
|
362 |
|
|
|
363 |
|
|
/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
|
364 |
|
|
this function is different from value_equal; in C the operator ==
|
365 |
|
|
can return 0 even if the two values being compared are equal. */
|
366 |
|
|
|
367 |
|
|
int
|
368 |
|
|
value_contents_equal (struct value *val1, struct value *val2)
|
369 |
|
|
{
|
370 |
|
|
struct type *type1;
|
371 |
|
|
struct type *type2;
|
372 |
|
|
int len;
|
373 |
|
|
|
374 |
|
|
type1 = check_typedef (value_type (val1));
|
375 |
|
|
type2 = check_typedef (value_type (val2));
|
376 |
|
|
len = TYPE_LENGTH (type1);
|
377 |
|
|
if (len != TYPE_LENGTH (type2))
|
378 |
|
|
return 0;
|
379 |
|
|
|
380 |
|
|
return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
|
381 |
|
|
}
|
382 |
|
|
|
383 |
|
|
int
|
384 |
|
|
value_optimized_out (struct value *value)
|
385 |
|
|
{
|
386 |
|
|
return value->optimized_out;
|
387 |
|
|
}
|
388 |
|
|
|
389 |
|
|
void
|
390 |
|
|
set_value_optimized_out (struct value *value, int val)
|
391 |
|
|
{
|
392 |
|
|
value->optimized_out = val;
|
393 |
|
|
}
|
394 |
|
|
|
395 |
|
|
int
|
396 |
|
|
value_embedded_offset (struct value *value)
|
397 |
|
|
{
|
398 |
|
|
return value->embedded_offset;
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
void
|
402 |
|
|
set_value_embedded_offset (struct value *value, int val)
|
403 |
|
|
{
|
404 |
|
|
value->embedded_offset = val;
|
405 |
|
|
}
|
406 |
|
|
|
407 |
|
|
int
|
408 |
|
|
value_pointed_to_offset (struct value *value)
|
409 |
|
|
{
|
410 |
|
|
return value->pointed_to_offset;
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
void
|
414 |
|
|
set_value_pointed_to_offset (struct value *value, int val)
|
415 |
|
|
{
|
416 |
|
|
value->pointed_to_offset = val;
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
enum lval_type *
|
420 |
|
|
deprecated_value_lval_hack (struct value *value)
|
421 |
|
|
{
|
422 |
|
|
return &value->lval;
|
423 |
|
|
}
|
424 |
|
|
|
425 |
|
|
CORE_ADDR *
|
426 |
|
|
deprecated_value_address_hack (struct value *value)
|
427 |
|
|
{
|
428 |
|
|
return &value->location.address;
|
429 |
|
|
}
|
430 |
|
|
|
431 |
|
|
struct internalvar **
|
432 |
|
|
deprecated_value_internalvar_hack (struct value *value)
|
433 |
|
|
{
|
434 |
|
|
return &value->location.internalvar;
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
struct frame_id *
|
438 |
|
|
deprecated_value_frame_id_hack (struct value *value)
|
439 |
|
|
{
|
440 |
|
|
return &value->frame_id;
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
short *
|
444 |
|
|
deprecated_value_regnum_hack (struct value *value)
|
445 |
|
|
{
|
446 |
|
|
return &value->regnum;
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
int
|
450 |
|
|
deprecated_value_modifiable (struct value *value)
|
451 |
|
|
{
|
452 |
|
|
return value->modifiable;
|
453 |
|
|
}
|
454 |
|
|
void
|
455 |
|
|
deprecated_set_value_modifiable (struct value *value, int modifiable)
|
456 |
|
|
{
|
457 |
|
|
value->modifiable = modifiable;
|
458 |
|
|
}
|
459 |
|
|
|
460 |
|
|
/* Return a mark in the value chain. All values allocated after the
|
461 |
|
|
mark is obtained (except for those released) are subject to being freed
|
462 |
|
|
if a subsequent value_free_to_mark is passed the mark. */
|
463 |
|
|
struct value *
|
464 |
|
|
value_mark (void)
|
465 |
|
|
{
|
466 |
|
|
return all_values;
|
467 |
|
|
}
|
468 |
|
|
|
469 |
|
|
/* Free all values allocated since MARK was obtained by value_mark
|
470 |
|
|
(except for those released). */
|
471 |
|
|
void
|
472 |
|
|
value_free_to_mark (struct value *mark)
|
473 |
|
|
{
|
474 |
|
|
struct value *val;
|
475 |
|
|
struct value *next;
|
476 |
|
|
|
477 |
|
|
for (val = all_values; val && val != mark; val = next)
|
478 |
|
|
{
|
479 |
|
|
next = val->next;
|
480 |
|
|
value_free (val);
|
481 |
|
|
}
|
482 |
|
|
all_values = val;
|
483 |
|
|
}
|
484 |
|
|
|
485 |
|
|
/* Free all the values that have been allocated (except for those released).
|
486 |
|
|
Called after each command, successful or not. */
|
487 |
|
|
|
488 |
|
|
void
|
489 |
|
|
free_all_values (void)
|
490 |
|
|
{
|
491 |
|
|
struct value *val;
|
492 |
|
|
struct value *next;
|
493 |
|
|
|
494 |
|
|
for (val = all_values; val; val = next)
|
495 |
|
|
{
|
496 |
|
|
next = val->next;
|
497 |
|
|
value_free (val);
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
all_values = 0;
|
501 |
|
|
}
|
502 |
|
|
|
503 |
|
|
/* Remove VAL from the chain all_values
|
504 |
|
|
so it will not be freed automatically. */
|
505 |
|
|
|
506 |
|
|
void
|
507 |
|
|
release_value (struct value *val)
|
508 |
|
|
{
|
509 |
|
|
struct value *v;
|
510 |
|
|
|
511 |
|
|
if (all_values == val)
|
512 |
|
|
{
|
513 |
|
|
all_values = val->next;
|
514 |
|
|
return;
|
515 |
|
|
}
|
516 |
|
|
|
517 |
|
|
for (v = all_values; v; v = v->next)
|
518 |
|
|
{
|
519 |
|
|
if (v->next == val)
|
520 |
|
|
{
|
521 |
|
|
v->next = val->next;
|
522 |
|
|
break;
|
523 |
|
|
}
|
524 |
|
|
}
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
/* Release all values up to mark */
|
528 |
|
|
struct value *
|
529 |
|
|
value_release_to_mark (struct value *mark)
|
530 |
|
|
{
|
531 |
|
|
struct value *val;
|
532 |
|
|
struct value *next;
|
533 |
|
|
|
534 |
|
|
for (val = next = all_values; next; next = next->next)
|
535 |
|
|
if (next->next == mark)
|
536 |
|
|
{
|
537 |
|
|
all_values = next->next;
|
538 |
|
|
next->next = NULL;
|
539 |
|
|
return val;
|
540 |
|
|
}
|
541 |
|
|
all_values = 0;
|
542 |
|
|
return val;
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
/* Return a copy of the value ARG.
|
546 |
|
|
It contains the same contents, for same memory address,
|
547 |
|
|
but it's a different block of storage. */
|
548 |
|
|
|
549 |
|
|
struct value *
|
550 |
|
|
value_copy (struct value *arg)
|
551 |
|
|
{
|
552 |
|
|
struct type *encl_type = value_enclosing_type (arg);
|
553 |
|
|
struct value *val = allocate_value (encl_type);
|
554 |
|
|
val->type = arg->type;
|
555 |
|
|
VALUE_LVAL (val) = VALUE_LVAL (arg);
|
556 |
|
|
val->location = arg->location;
|
557 |
|
|
val->offset = arg->offset;
|
558 |
|
|
val->bitpos = arg->bitpos;
|
559 |
|
|
val->bitsize = arg->bitsize;
|
560 |
|
|
VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
|
561 |
|
|
VALUE_REGNUM (val) = VALUE_REGNUM (arg);
|
562 |
|
|
val->lazy = arg->lazy;
|
563 |
|
|
val->optimized_out = arg->optimized_out;
|
564 |
|
|
val->embedded_offset = value_embedded_offset (arg);
|
565 |
|
|
val->pointed_to_offset = arg->pointed_to_offset;
|
566 |
|
|
val->modifiable = arg->modifiable;
|
567 |
|
|
if (!value_lazy (val))
|
568 |
|
|
{
|
569 |
|
|
memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
|
570 |
|
|
TYPE_LENGTH (value_enclosing_type (arg)));
|
571 |
|
|
|
572 |
|
|
}
|
573 |
|
|
return val;
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
/* Access to the value history. */
|
577 |
|
|
|
578 |
|
|
/* Record a new value in the value history.
|
579 |
|
|
Returns the absolute history index of the entry.
|
580 |
|
|
Result of -1 indicates the value was not saved; otherwise it is the
|
581 |
|
|
value history index of this new item. */
|
582 |
|
|
|
583 |
|
|
int
|
584 |
|
|
record_latest_value (struct value *val)
|
585 |
|
|
{
|
586 |
|
|
int i;
|
587 |
|
|
|
588 |
|
|
/* We don't want this value to have anything to do with the inferior anymore.
|
589 |
|
|
In particular, "set $1 = 50" should not affect the variable from which
|
590 |
|
|
the value was taken, and fast watchpoints should be able to assume that
|
591 |
|
|
a value on the value history never changes. */
|
592 |
|
|
if (value_lazy (val))
|
593 |
|
|
value_fetch_lazy (val);
|
594 |
|
|
/* We preserve VALUE_LVAL so that the user can find out where it was fetched
|
595 |
|
|
from. This is a bit dubious, because then *&$1 does not just return $1
|
596 |
|
|
but the current contents of that location. c'est la vie... */
|
597 |
|
|
val->modifiable = 0;
|
598 |
|
|
release_value (val);
|
599 |
|
|
|
600 |
|
|
/* Here we treat value_history_count as origin-zero
|
601 |
|
|
and applying to the value being stored now. */
|
602 |
|
|
|
603 |
|
|
i = value_history_count % VALUE_HISTORY_CHUNK;
|
604 |
|
|
if (i == 0)
|
605 |
|
|
{
|
606 |
|
|
struct value_history_chunk *new
|
607 |
|
|
= (struct value_history_chunk *)
|
608 |
|
|
xmalloc (sizeof (struct value_history_chunk));
|
609 |
|
|
memset (new->values, 0, sizeof new->values);
|
610 |
|
|
new->next = value_history_chain;
|
611 |
|
|
value_history_chain = new;
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
value_history_chain->values[i] = val;
|
615 |
|
|
|
616 |
|
|
/* Now we regard value_history_count as origin-one
|
617 |
|
|
and applying to the value just stored. */
|
618 |
|
|
|
619 |
|
|
return ++value_history_count;
|
620 |
|
|
}
|
621 |
|
|
|
622 |
|
|
/* Return a copy of the value in the history with sequence number NUM. */
|
623 |
|
|
|
624 |
|
|
struct value *
|
625 |
|
|
access_value_history (int num)
|
626 |
|
|
{
|
627 |
|
|
struct value_history_chunk *chunk;
|
628 |
|
|
int i;
|
629 |
|
|
int absnum = num;
|
630 |
|
|
|
631 |
|
|
if (absnum <= 0)
|
632 |
|
|
absnum += value_history_count;
|
633 |
|
|
|
634 |
|
|
if (absnum <= 0)
|
635 |
|
|
{
|
636 |
|
|
if (num == 0)
|
637 |
|
|
error (_("The history is empty."));
|
638 |
|
|
else if (num == 1)
|
639 |
|
|
error (_("There is only one value in the history."));
|
640 |
|
|
else
|
641 |
|
|
error (_("History does not go back to $$%d."), -num);
|
642 |
|
|
}
|
643 |
|
|
if (absnum > value_history_count)
|
644 |
|
|
error (_("History has not yet reached $%d."), absnum);
|
645 |
|
|
|
646 |
|
|
absnum--;
|
647 |
|
|
|
648 |
|
|
/* Now absnum is always absolute and origin zero. */
|
649 |
|
|
|
650 |
|
|
chunk = value_history_chain;
|
651 |
|
|
for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
|
652 |
|
|
i > 0; i--)
|
653 |
|
|
chunk = chunk->next;
|
654 |
|
|
|
655 |
|
|
return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
|
656 |
|
|
}
|
657 |
|
|
|
658 |
|
|
static void
|
659 |
|
|
show_values (char *num_exp, int from_tty)
|
660 |
|
|
{
|
661 |
|
|
int i;
|
662 |
|
|
struct value *val;
|
663 |
|
|
static int num = 1;
|
664 |
|
|
|
665 |
|
|
if (num_exp)
|
666 |
|
|
{
|
667 |
|
|
/* "info history +" should print from the stored position.
|
668 |
|
|
"info history <exp>" should print around value number <exp>. */
|
669 |
|
|
if (num_exp[0] != '+' || num_exp[1] != '\0')
|
670 |
|
|
num = parse_and_eval_long (num_exp) - 5;
|
671 |
|
|
}
|
672 |
|
|
else
|
673 |
|
|
{
|
674 |
|
|
/* "info history" means print the last 10 values. */
|
675 |
|
|
num = value_history_count - 9;
|
676 |
|
|
}
|
677 |
|
|
|
678 |
|
|
if (num <= 0)
|
679 |
|
|
num = 1;
|
680 |
|
|
|
681 |
|
|
for (i = num; i < num + 10 && i <= value_history_count; i++)
|
682 |
|
|
{
|
683 |
|
|
val = access_value_history (i);
|
684 |
|
|
printf_filtered (("$%d = "), i);
|
685 |
|
|
value_print (val, gdb_stdout, 0, Val_pretty_default);
|
686 |
|
|
printf_filtered (("\n"));
|
687 |
|
|
}
|
688 |
|
|
|
689 |
|
|
/* The next "info history +" should start after what we just printed. */
|
690 |
|
|
num += 10;
|
691 |
|
|
|
692 |
|
|
/* Hitting just return after this command should do the same thing as
|
693 |
|
|
"info history +". If num_exp is null, this is unnecessary, since
|
694 |
|
|
"info history +" is not useful after "info history". */
|
695 |
|
|
if (from_tty && num_exp)
|
696 |
|
|
{
|
697 |
|
|
num_exp[0] = '+';
|
698 |
|
|
num_exp[1] = '\0';
|
699 |
|
|
}
|
700 |
|
|
}
|
701 |
|
|
|
702 |
|
|
/* Internal variables. These are variables within the debugger
|
703 |
|
|
that hold values assigned by debugger commands.
|
704 |
|
|
The user refers to them with a '$' prefix
|
705 |
|
|
that does not appear in the variable names stored internally. */
|
706 |
|
|
|
707 |
|
|
static struct internalvar *internalvars;
|
708 |
|
|
|
709 |
|
|
/* If the variable does not already exist create it and give it the value given.
|
710 |
|
|
If no value is given then the default is zero. */
|
711 |
|
|
static void
|
712 |
|
|
init_if_undefined_command (char* args, int from_tty)
|
713 |
|
|
{
|
714 |
|
|
struct internalvar* intvar;
|
715 |
|
|
|
716 |
|
|
/* Parse the expression - this is taken from set_command(). */
|
717 |
|
|
struct expression *expr = parse_expression (args);
|
718 |
|
|
register struct cleanup *old_chain =
|
719 |
|
|
make_cleanup (free_current_contents, &expr);
|
720 |
|
|
|
721 |
|
|
/* Validate the expression.
|
722 |
|
|
Was the expression an assignment?
|
723 |
|
|
Or even an expression at all? */
|
724 |
|
|
if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
|
725 |
|
|
error (_("Init-if-undefined requires an assignment expression."));
|
726 |
|
|
|
727 |
|
|
/* Extract the variable from the parsed expression.
|
728 |
|
|
In the case of an assign the lvalue will be in elts[1] and elts[2]. */
|
729 |
|
|
if (expr->elts[1].opcode != OP_INTERNALVAR)
|
730 |
|
|
error (_("The first parameter to init-if-undefined should be a GDB variable."));
|
731 |
|
|
intvar = expr->elts[2].internalvar;
|
732 |
|
|
|
733 |
|
|
/* Only evaluate the expression if the lvalue is void.
|
734 |
|
|
This may still fail if the expresssion is invalid. */
|
735 |
|
|
if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
|
736 |
|
|
evaluate_expression (expr);
|
737 |
|
|
|
738 |
|
|
do_cleanups (old_chain);
|
739 |
|
|
}
|
740 |
|
|
|
741 |
|
|
|
742 |
|
|
/* Look up an internal variable with name NAME. NAME should not
|
743 |
|
|
normally include a dollar sign.
|
744 |
|
|
|
745 |
|
|
If the specified internal variable does not exist,
|
746 |
|
|
the return value is NULL. */
|
747 |
|
|
|
748 |
|
|
struct internalvar *
|
749 |
|
|
lookup_only_internalvar (char *name)
|
750 |
|
|
{
|
751 |
|
|
struct internalvar *var;
|
752 |
|
|
|
753 |
|
|
for (var = internalvars; var; var = var->next)
|
754 |
|
|
if (strcmp (var->name, name) == 0)
|
755 |
|
|
return var;
|
756 |
|
|
|
757 |
|
|
return NULL;
|
758 |
|
|
}
|
759 |
|
|
|
760 |
|
|
|
761 |
|
|
/* Create an internal variable with name NAME and with a void value.
|
762 |
|
|
NAME should not normally include a dollar sign. */
|
763 |
|
|
|
764 |
|
|
struct internalvar *
|
765 |
|
|
create_internalvar (char *name)
|
766 |
|
|
{
|
767 |
|
|
struct internalvar *var;
|
768 |
|
|
var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
|
769 |
|
|
var->name = concat (name, (char *)NULL);
|
770 |
|
|
var->value = allocate_value (builtin_type_void);
|
771 |
|
|
var->endian = gdbarch_byte_order (current_gdbarch);
|
772 |
|
|
release_value (var->value);
|
773 |
|
|
var->next = internalvars;
|
774 |
|
|
internalvars = var;
|
775 |
|
|
return var;
|
776 |
|
|
}
|
777 |
|
|
|
778 |
|
|
|
779 |
|
|
/* Look up an internal variable with name NAME. NAME should not
|
780 |
|
|
normally include a dollar sign.
|
781 |
|
|
|
782 |
|
|
If the specified internal variable does not exist,
|
783 |
|
|
one is created, with a void value. */
|
784 |
|
|
|
785 |
|
|
struct internalvar *
|
786 |
|
|
lookup_internalvar (char *name)
|
787 |
|
|
{
|
788 |
|
|
struct internalvar *var;
|
789 |
|
|
|
790 |
|
|
var = lookup_only_internalvar (name);
|
791 |
|
|
if (var)
|
792 |
|
|
return var;
|
793 |
|
|
|
794 |
|
|
return create_internalvar (name);
|
795 |
|
|
}
|
796 |
|
|
|
797 |
|
|
struct value *
|
798 |
|
|
value_of_internalvar (struct internalvar *var)
|
799 |
|
|
{
|
800 |
|
|
struct value *val;
|
801 |
|
|
int i, j;
|
802 |
|
|
gdb_byte temp;
|
803 |
|
|
|
804 |
|
|
val = value_copy (var->value);
|
805 |
|
|
if (value_lazy (val))
|
806 |
|
|
value_fetch_lazy (val);
|
807 |
|
|
VALUE_LVAL (val) = lval_internalvar;
|
808 |
|
|
VALUE_INTERNALVAR (val) = var;
|
809 |
|
|
|
810 |
|
|
/* Values are always stored in the target's byte order. When connected to a
|
811 |
|
|
target this will most likely always be correct, so there's normally no
|
812 |
|
|
need to worry about it.
|
813 |
|
|
|
814 |
|
|
However, internal variables can be set up before the target endian is
|
815 |
|
|
known and so may become out of date. Fix it up before anybody sees.
|
816 |
|
|
|
817 |
|
|
Internal variables usually hold simple scalar values, and we can
|
818 |
|
|
correct those. More complex values (e.g. structures and floating
|
819 |
|
|
point types) are left alone, because they would be too complicated
|
820 |
|
|
to correct. */
|
821 |
|
|
|
822 |
|
|
if (var->endian != gdbarch_byte_order (current_gdbarch))
|
823 |
|
|
{
|
824 |
|
|
gdb_byte *array = value_contents_raw (val);
|
825 |
|
|
struct type *type = check_typedef (value_enclosing_type (val));
|
826 |
|
|
switch (TYPE_CODE (type))
|
827 |
|
|
{
|
828 |
|
|
case TYPE_CODE_INT:
|
829 |
|
|
case TYPE_CODE_PTR:
|
830 |
|
|
/* Reverse the bytes. */
|
831 |
|
|
for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
|
832 |
|
|
{
|
833 |
|
|
temp = array[j];
|
834 |
|
|
array[j] = array[i];
|
835 |
|
|
array[i] = temp;
|
836 |
|
|
}
|
837 |
|
|
break;
|
838 |
|
|
}
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
return val;
|
842 |
|
|
}
|
843 |
|
|
|
844 |
|
|
void
|
845 |
|
|
set_internalvar_component (struct internalvar *var, int offset, int bitpos,
|
846 |
|
|
int bitsize, struct value *newval)
|
847 |
|
|
{
|
848 |
|
|
gdb_byte *addr = value_contents_writeable (var->value) + offset;
|
849 |
|
|
|
850 |
|
|
if (bitsize)
|
851 |
|
|
modify_field (addr, value_as_long (newval),
|
852 |
|
|
bitpos, bitsize);
|
853 |
|
|
else
|
854 |
|
|
memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
void
|
858 |
|
|
set_internalvar (struct internalvar *var, struct value *val)
|
859 |
|
|
{
|
860 |
|
|
struct value *newval;
|
861 |
|
|
|
862 |
|
|
newval = value_copy (val);
|
863 |
|
|
newval->modifiable = 1;
|
864 |
|
|
|
865 |
|
|
/* Force the value to be fetched from the target now, to avoid problems
|
866 |
|
|
later when this internalvar is referenced and the target is gone or
|
867 |
|
|
has changed. */
|
868 |
|
|
if (value_lazy (newval))
|
869 |
|
|
value_fetch_lazy (newval);
|
870 |
|
|
|
871 |
|
|
/* Begin code which must not call error(). If var->value points to
|
872 |
|
|
something free'd, an error() obviously leaves a dangling pointer.
|
873 |
|
|
But we also get a danling pointer if var->value points to
|
874 |
|
|
something in the value chain (i.e., before release_value is
|
875 |
|
|
called), because after the error free_all_values will get called before
|
876 |
|
|
long. */
|
877 |
|
|
xfree (var->value);
|
878 |
|
|
var->value = newval;
|
879 |
|
|
var->endian = gdbarch_byte_order (current_gdbarch);
|
880 |
|
|
release_value (newval);
|
881 |
|
|
/* End code which must not call error(). */
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
char *
|
885 |
|
|
internalvar_name (struct internalvar *var)
|
886 |
|
|
{
|
887 |
|
|
return var->name;
|
888 |
|
|
}
|
889 |
|
|
|
890 |
|
|
/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
|
891 |
|
|
prevent cycles / duplicates. */
|
892 |
|
|
|
893 |
|
|
static void
|
894 |
|
|
preserve_one_value (struct value *value, struct objfile *objfile,
|
895 |
|
|
htab_t copied_types)
|
896 |
|
|
{
|
897 |
|
|
if (TYPE_OBJFILE (value->type) == objfile)
|
898 |
|
|
value->type = copy_type_recursive (objfile, value->type, copied_types);
|
899 |
|
|
|
900 |
|
|
if (TYPE_OBJFILE (value->enclosing_type) == objfile)
|
901 |
|
|
value->enclosing_type = copy_type_recursive (objfile,
|
902 |
|
|
value->enclosing_type,
|
903 |
|
|
copied_types);
|
904 |
|
|
}
|
905 |
|
|
|
906 |
|
|
/* Update the internal variables and value history when OBJFILE is
|
907 |
|
|
discarded; we must copy the types out of the objfile. New global types
|
908 |
|
|
will be created for every convenience variable which currently points to
|
909 |
|
|
this objfile's types, and the convenience variables will be adjusted to
|
910 |
|
|
use the new global types. */
|
911 |
|
|
|
912 |
|
|
void
|
913 |
|
|
preserve_values (struct objfile *objfile)
|
914 |
|
|
{
|
915 |
|
|
htab_t copied_types;
|
916 |
|
|
struct value_history_chunk *cur;
|
917 |
|
|
struct internalvar *var;
|
918 |
|
|
int i;
|
919 |
|
|
|
920 |
|
|
/* Create the hash table. We allocate on the objfile's obstack, since
|
921 |
|
|
it is soon to be deleted. */
|
922 |
|
|
copied_types = create_copied_types_hash (objfile);
|
923 |
|
|
|
924 |
|
|
for (cur = value_history_chain; cur; cur = cur->next)
|
925 |
|
|
for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
|
926 |
|
|
if (cur->values[i])
|
927 |
|
|
preserve_one_value (cur->values[i], objfile, copied_types);
|
928 |
|
|
|
929 |
|
|
for (var = internalvars; var; var = var->next)
|
930 |
|
|
preserve_one_value (var->value, objfile, copied_types);
|
931 |
|
|
|
932 |
|
|
htab_delete (copied_types);
|
933 |
|
|
}
|
934 |
|
|
|
935 |
|
|
static void
|
936 |
|
|
show_convenience (char *ignore, int from_tty)
|
937 |
|
|
{
|
938 |
|
|
struct internalvar *var;
|
939 |
|
|
int varseen = 0;
|
940 |
|
|
|
941 |
|
|
for (var = internalvars; var; var = var->next)
|
942 |
|
|
{
|
943 |
|
|
if (!varseen)
|
944 |
|
|
{
|
945 |
|
|
varseen = 1;
|
946 |
|
|
}
|
947 |
|
|
printf_filtered (("$%s = "), var->name);
|
948 |
|
|
value_print (value_of_internalvar (var), gdb_stdout,
|
949 |
|
|
0, Val_pretty_default);
|
950 |
|
|
printf_filtered (("\n"));
|
951 |
|
|
}
|
952 |
|
|
if (!varseen)
|
953 |
|
|
printf_unfiltered (_("\
|
954 |
|
|
No debugger convenience variables now defined.\n\
|
955 |
|
|
Convenience variables have names starting with \"$\";\n\
|
956 |
|
|
use \"set\" as in \"set $foo = 5\" to define them.\n"));
|
957 |
|
|
}
|
958 |
|
|
|
959 |
|
|
/* Extract a value as a C number (either long or double).
|
960 |
|
|
Knows how to convert fixed values to double, or
|
961 |
|
|
floating values to long.
|
962 |
|
|
Does not deallocate the value. */
|
963 |
|
|
|
964 |
|
|
LONGEST
|
965 |
|
|
value_as_long (struct value *val)
|
966 |
|
|
{
|
967 |
|
|
/* This coerces arrays and functions, which is necessary (e.g.
|
968 |
|
|
in disassemble_command). It also dereferences references, which
|
969 |
|
|
I suspect is the most logical thing to do. */
|
970 |
|
|
val = coerce_array (val);
|
971 |
|
|
return unpack_long (value_type (val), value_contents (val));
|
972 |
|
|
}
|
973 |
|
|
|
974 |
|
|
DOUBLEST
|
975 |
|
|
value_as_double (struct value *val)
|
976 |
|
|
{
|
977 |
|
|
DOUBLEST foo;
|
978 |
|
|
int inv;
|
979 |
|
|
|
980 |
|
|
foo = unpack_double (value_type (val), value_contents (val), &inv);
|
981 |
|
|
if (inv)
|
982 |
|
|
error (_("Invalid floating value found in program."));
|
983 |
|
|
return foo;
|
984 |
|
|
}
|
985 |
|
|
|
986 |
|
|
/* Extract a value as a C pointer. Does not deallocate the value.
|
987 |
|
|
Note that val's type may not actually be a pointer; value_as_long
|
988 |
|
|
handles all the cases. */
|
989 |
|
|
CORE_ADDR
|
990 |
|
|
value_as_address (struct value *val)
|
991 |
|
|
{
|
992 |
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
993 |
|
|
whether we want this to be true eventually. */
|
994 |
|
|
#if 0
|
995 |
|
|
/* gdbarch_addr_bits_remove is wrong if we are being called for a
|
996 |
|
|
non-address (e.g. argument to "signal", "info break", etc.), or
|
997 |
|
|
for pointers to char, in which the low bits *are* significant. */
|
998 |
|
|
return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
|
999 |
|
|
#else
|
1000 |
|
|
|
1001 |
|
|
/* There are several targets (IA-64, PowerPC, and others) which
|
1002 |
|
|
don't represent pointers to functions as simply the address of
|
1003 |
|
|
the function's entry point. For example, on the IA-64, a
|
1004 |
|
|
function pointer points to a two-word descriptor, generated by
|
1005 |
|
|
the linker, which contains the function's entry point, and the
|
1006 |
|
|
value the IA-64 "global pointer" register should have --- to
|
1007 |
|
|
support position-independent code. The linker generates
|
1008 |
|
|
descriptors only for those functions whose addresses are taken.
|
1009 |
|
|
|
1010 |
|
|
On such targets, it's difficult for GDB to convert an arbitrary
|
1011 |
|
|
function address into a function pointer; it has to either find
|
1012 |
|
|
an existing descriptor for that function, or call malloc and
|
1013 |
|
|
build its own. On some targets, it is impossible for GDB to
|
1014 |
|
|
build a descriptor at all: the descriptor must contain a jump
|
1015 |
|
|
instruction; data memory cannot be executed; and code memory
|
1016 |
|
|
cannot be modified.
|
1017 |
|
|
|
1018 |
|
|
Upon entry to this function, if VAL is a value of type `function'
|
1019 |
|
|
(that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
|
1020 |
|
|
VALUE_ADDRESS (val) is the address of the function. This is what
|
1021 |
|
|
you'll get if you evaluate an expression like `main'. The call
|
1022 |
|
|
to COERCE_ARRAY below actually does all the usual unary
|
1023 |
|
|
conversions, which includes converting values of type `function'
|
1024 |
|
|
to `pointer to function'. This is the challenging conversion
|
1025 |
|
|
discussed above. Then, `unpack_long' will convert that pointer
|
1026 |
|
|
back into an address.
|
1027 |
|
|
|
1028 |
|
|
So, suppose the user types `disassemble foo' on an architecture
|
1029 |
|
|
with a strange function pointer representation, on which GDB
|
1030 |
|
|
cannot build its own descriptors, and suppose further that `foo'
|
1031 |
|
|
has no linker-built descriptor. The address->pointer conversion
|
1032 |
|
|
will signal an error and prevent the command from running, even
|
1033 |
|
|
though the next step would have been to convert the pointer
|
1034 |
|
|
directly back into the same address.
|
1035 |
|
|
|
1036 |
|
|
The following shortcut avoids this whole mess. If VAL is a
|
1037 |
|
|
function, just return its address directly. */
|
1038 |
|
|
if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
|
1039 |
|
|
|| TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
|
1040 |
|
|
return VALUE_ADDRESS (val);
|
1041 |
|
|
|
1042 |
|
|
val = coerce_array (val);
|
1043 |
|
|
|
1044 |
|
|
/* Some architectures (e.g. Harvard), map instruction and data
|
1045 |
|
|
addresses onto a single large unified address space. For
|
1046 |
|
|
instance: An architecture may consider a large integer in the
|
1047 |
|
|
range 0x10000000 .. 0x1000ffff to already represent a data
|
1048 |
|
|
addresses (hence not need a pointer to address conversion) while
|
1049 |
|
|
a small integer would still need to be converted integer to
|
1050 |
|
|
pointer to address. Just assume such architectures handle all
|
1051 |
|
|
integer conversions in a single function. */
|
1052 |
|
|
|
1053 |
|
|
/* JimB writes:
|
1054 |
|
|
|
1055 |
|
|
I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
|
1056 |
|
|
must admonish GDB hackers to make sure its behavior matches the
|
1057 |
|
|
compiler's, whenever possible.
|
1058 |
|
|
|
1059 |
|
|
In general, I think GDB should evaluate expressions the same way
|
1060 |
|
|
the compiler does. When the user copies an expression out of
|
1061 |
|
|
their source code and hands it to a `print' command, they should
|
1062 |
|
|
get the same value the compiler would have computed. Any
|
1063 |
|
|
deviation from this rule can cause major confusion and annoyance,
|
1064 |
|
|
and needs to be justified carefully. In other words, GDB doesn't
|
1065 |
|
|
really have the freedom to do these conversions in clever and
|
1066 |
|
|
useful ways.
|
1067 |
|
|
|
1068 |
|
|
AndrewC pointed out that users aren't complaining about how GDB
|
1069 |
|
|
casts integers to pointers; they are complaining that they can't
|
1070 |
|
|
take an address from a disassembly listing and give it to `x/i'.
|
1071 |
|
|
This is certainly important.
|
1072 |
|
|
|
1073 |
|
|
Adding an architecture method like integer_to_address() certainly
|
1074 |
|
|
makes it possible for GDB to "get it right" in all circumstances
|
1075 |
|
|
--- the target has complete control over how things get done, so
|
1076 |
|
|
people can Do The Right Thing for their target without breaking
|
1077 |
|
|
anyone else. The standard doesn't specify how integers get
|
1078 |
|
|
converted to pointers; usually, the ABI doesn't either, but
|
1079 |
|
|
ABI-specific code is a more reasonable place to handle it. */
|
1080 |
|
|
|
1081 |
|
|
if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
|
1082 |
|
|
&& TYPE_CODE (value_type (val)) != TYPE_CODE_REF
|
1083 |
|
|
&& gdbarch_integer_to_address_p (current_gdbarch))
|
1084 |
|
|
return gdbarch_integer_to_address (current_gdbarch, value_type (val),
|
1085 |
|
|
value_contents (val));
|
1086 |
|
|
|
1087 |
|
|
return unpack_long (value_type (val), value_contents (val));
|
1088 |
|
|
#endif
|
1089 |
|
|
}
|
1090 |
|
|
|
1091 |
|
|
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
|
1092 |
|
|
as a long, or as a double, assuming the raw data is described
|
1093 |
|
|
by type TYPE. Knows how to convert different sizes of values
|
1094 |
|
|
and can convert between fixed and floating point. We don't assume
|
1095 |
|
|
any alignment for the raw data. Return value is in host byte order.
|
1096 |
|
|
|
1097 |
|
|
If you want functions and arrays to be coerced to pointers, and
|
1098 |
|
|
references to be dereferenced, call value_as_long() instead.
|
1099 |
|
|
|
1100 |
|
|
C++: It is assumed that the front-end has taken care of
|
1101 |
|
|
all matters concerning pointers to members. A pointer
|
1102 |
|
|
to member which reaches here is considered to be equivalent
|
1103 |
|
|
to an INT (or some size). After all, it is only an offset. */
|
1104 |
|
|
|
1105 |
|
|
LONGEST
|
1106 |
|
|
unpack_long (struct type *type, const gdb_byte *valaddr)
|
1107 |
|
|
{
|
1108 |
|
|
enum type_code code = TYPE_CODE (type);
|
1109 |
|
|
int len = TYPE_LENGTH (type);
|
1110 |
|
|
int nosign = TYPE_UNSIGNED (type);
|
1111 |
|
|
|
1112 |
|
|
switch (code)
|
1113 |
|
|
{
|
1114 |
|
|
case TYPE_CODE_TYPEDEF:
|
1115 |
|
|
return unpack_long (check_typedef (type), valaddr);
|
1116 |
|
|
case TYPE_CODE_ENUM:
|
1117 |
|
|
case TYPE_CODE_FLAGS:
|
1118 |
|
|
case TYPE_CODE_BOOL:
|
1119 |
|
|
case TYPE_CODE_INT:
|
1120 |
|
|
case TYPE_CODE_CHAR:
|
1121 |
|
|
case TYPE_CODE_RANGE:
|
1122 |
|
|
case TYPE_CODE_MEMBERPTR:
|
1123 |
|
|
if (nosign)
|
1124 |
|
|
return extract_unsigned_integer (valaddr, len);
|
1125 |
|
|
else
|
1126 |
|
|
return extract_signed_integer (valaddr, len);
|
1127 |
|
|
|
1128 |
|
|
case TYPE_CODE_FLT:
|
1129 |
|
|
return extract_typed_floating (valaddr, type);
|
1130 |
|
|
|
1131 |
|
|
case TYPE_CODE_DECFLOAT:
|
1132 |
|
|
/* libdecnumber has a function to convert from decimal to integer, but
|
1133 |
|
|
it doesn't work when the decimal number has a fractional part. */
|
1134 |
|
|
return decimal_to_doublest (valaddr, len);
|
1135 |
|
|
|
1136 |
|
|
case TYPE_CODE_PTR:
|
1137 |
|
|
case TYPE_CODE_REF:
|
1138 |
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
1139 |
|
|
whether we want this to be true eventually. */
|
1140 |
|
|
return extract_typed_address (valaddr, type);
|
1141 |
|
|
|
1142 |
|
|
default:
|
1143 |
|
|
error (_("Value can't be converted to integer."));
|
1144 |
|
|
}
|
1145 |
|
|
return 0; /* Placate lint. */
|
1146 |
|
|
}
|
1147 |
|
|
|
1148 |
|
|
/* Return a double value from the specified type and address.
|
1149 |
|
|
INVP points to an int which is set to 0 for valid value,
|
1150 |
|
|
1 for invalid value (bad float format). In either case,
|
1151 |
|
|
the returned double is OK to use. Argument is in target
|
1152 |
|
|
format, result is in host format. */
|
1153 |
|
|
|
1154 |
|
|
DOUBLEST
|
1155 |
|
|
unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
|
1156 |
|
|
{
|
1157 |
|
|
enum type_code code;
|
1158 |
|
|
int len;
|
1159 |
|
|
int nosign;
|
1160 |
|
|
|
1161 |
|
|
*invp = 0; /* Assume valid. */
|
1162 |
|
|
CHECK_TYPEDEF (type);
|
1163 |
|
|
code = TYPE_CODE (type);
|
1164 |
|
|
len = TYPE_LENGTH (type);
|
1165 |
|
|
nosign = TYPE_UNSIGNED (type);
|
1166 |
|
|
if (code == TYPE_CODE_FLT)
|
1167 |
|
|
{
|
1168 |
|
|
/* NOTE: cagney/2002-02-19: There was a test here to see if the
|
1169 |
|
|
floating-point value was valid (using the macro
|
1170 |
|
|
INVALID_FLOAT). That test/macro have been removed.
|
1171 |
|
|
|
1172 |
|
|
It turns out that only the VAX defined this macro and then
|
1173 |
|
|
only in a non-portable way. Fixing the portability problem
|
1174 |
|
|
wouldn't help since the VAX floating-point code is also badly
|
1175 |
|
|
bit-rotten. The target needs to add definitions for the
|
1176 |
|
|
methods gdbarch_float_format and gdbarch_double_format - these
|
1177 |
|
|
exactly describe the target floating-point format. The
|
1178 |
|
|
problem here is that the corresponding floatformat_vax_f and
|
1179 |
|
|
floatformat_vax_d values these methods should be set to are
|
1180 |
|
|
also not defined either. Oops!
|
1181 |
|
|
|
1182 |
|
|
Hopefully someone will add both the missing floatformat
|
1183 |
|
|
definitions and the new cases for floatformat_is_valid (). */
|
1184 |
|
|
|
1185 |
|
|
if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
|
1186 |
|
|
{
|
1187 |
|
|
*invp = 1;
|
1188 |
|
|
return 0.0;
|
1189 |
|
|
}
|
1190 |
|
|
|
1191 |
|
|
return extract_typed_floating (valaddr, type);
|
1192 |
|
|
}
|
1193 |
|
|
else if (code == TYPE_CODE_DECFLOAT)
|
1194 |
|
|
return decimal_to_doublest (valaddr, len);
|
1195 |
|
|
else if (nosign)
|
1196 |
|
|
{
|
1197 |
|
|
/* Unsigned -- be sure we compensate for signed LONGEST. */
|
1198 |
|
|
return (ULONGEST) unpack_long (type, valaddr);
|
1199 |
|
|
}
|
1200 |
|
|
else
|
1201 |
|
|
{
|
1202 |
|
|
/* Signed -- we are OK with unpack_long. */
|
1203 |
|
|
return unpack_long (type, valaddr);
|
1204 |
|
|
}
|
1205 |
|
|
}
|
1206 |
|
|
|
1207 |
|
|
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
|
1208 |
|
|
as a CORE_ADDR, assuming the raw data is described by type TYPE.
|
1209 |
|
|
We don't assume any alignment for the raw data. Return value is in
|
1210 |
|
|
host byte order.
|
1211 |
|
|
|
1212 |
|
|
If you want functions and arrays to be coerced to pointers, and
|
1213 |
|
|
references to be dereferenced, call value_as_address() instead.
|
1214 |
|
|
|
1215 |
|
|
C++: It is assumed that the front-end has taken care of
|
1216 |
|
|
all matters concerning pointers to members. A pointer
|
1217 |
|
|
to member which reaches here is considered to be equivalent
|
1218 |
|
|
to an INT (or some size). After all, it is only an offset. */
|
1219 |
|
|
|
1220 |
|
|
CORE_ADDR
|
1221 |
|
|
unpack_pointer (struct type *type, const gdb_byte *valaddr)
|
1222 |
|
|
{
|
1223 |
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
1224 |
|
|
whether we want this to be true eventually. */
|
1225 |
|
|
return unpack_long (type, valaddr);
|
1226 |
|
|
}
|
1227 |
|
|
|
1228 |
|
|
|
1229 |
|
|
/* Get the value of the FIELDN'th field (which must be static) of
|
1230 |
|
|
TYPE. Return NULL if the field doesn't exist or has been
|
1231 |
|
|
optimized out. */
|
1232 |
|
|
|
1233 |
|
|
struct value *
|
1234 |
|
|
value_static_field (struct type *type, int fieldno)
|
1235 |
|
|
{
|
1236 |
|
|
struct value *retval;
|
1237 |
|
|
|
1238 |
|
|
if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
|
1239 |
|
|
{
|
1240 |
|
|
retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
|
1241 |
|
|
TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
|
1242 |
|
|
}
|
1243 |
|
|
else
|
1244 |
|
|
{
|
1245 |
|
|
char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
|
1246 |
|
|
struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
|
1247 |
|
|
if (sym == NULL)
|
1248 |
|
|
{
|
1249 |
|
|
/* With some compilers, e.g. HP aCC, static data members are reported
|
1250 |
|
|
as non-debuggable symbols */
|
1251 |
|
|
struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
|
1252 |
|
|
if (!msym)
|
1253 |
|
|
return NULL;
|
1254 |
|
|
else
|
1255 |
|
|
{
|
1256 |
|
|
retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
|
1257 |
|
|
SYMBOL_VALUE_ADDRESS (msym));
|
1258 |
|
|
}
|
1259 |
|
|
}
|
1260 |
|
|
else
|
1261 |
|
|
{
|
1262 |
|
|
/* SYM should never have a SYMBOL_CLASS which will require
|
1263 |
|
|
read_var_value to use the FRAME parameter. */
|
1264 |
|
|
if (symbol_read_needs_frame (sym))
|
1265 |
|
|
warning (_("static field's value depends on the current "
|
1266 |
|
|
"frame - bad debug info?"));
|
1267 |
|
|
retval = read_var_value (sym, NULL);
|
1268 |
|
|
}
|
1269 |
|
|
if (retval && VALUE_LVAL (retval) == lval_memory)
|
1270 |
|
|
SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
|
1271 |
|
|
VALUE_ADDRESS (retval));
|
1272 |
|
|
}
|
1273 |
|
|
return retval;
|
1274 |
|
|
}
|
1275 |
|
|
|
1276 |
|
|
/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
|
1277 |
|
|
You have to be careful here, since the size of the data area for the value
|
1278 |
|
|
is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
|
1279 |
|
|
than the old enclosing type, you have to allocate more space for the data.
|
1280 |
|
|
The return value is a pointer to the new version of this value structure. */
|
1281 |
|
|
|
1282 |
|
|
struct value *
|
1283 |
|
|
value_change_enclosing_type (struct value *val, struct type *new_encl_type)
|
1284 |
|
|
{
|
1285 |
|
|
if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
|
1286 |
|
|
{
|
1287 |
|
|
val->enclosing_type = new_encl_type;
|
1288 |
|
|
return val;
|
1289 |
|
|
}
|
1290 |
|
|
else
|
1291 |
|
|
{
|
1292 |
|
|
struct value *new_val;
|
1293 |
|
|
struct value *prev;
|
1294 |
|
|
|
1295 |
|
|
new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
|
1296 |
|
|
|
1297 |
|
|
new_val->enclosing_type = new_encl_type;
|
1298 |
|
|
|
1299 |
|
|
/* We have to make sure this ends up in the same place in the value
|
1300 |
|
|
chain as the original copy, so it's clean-up behavior is the same.
|
1301 |
|
|
If the value has been released, this is a waste of time, but there
|
1302 |
|
|
is no way to tell that in advance, so... */
|
1303 |
|
|
|
1304 |
|
|
if (val != all_values)
|
1305 |
|
|
{
|
1306 |
|
|
for (prev = all_values; prev != NULL; prev = prev->next)
|
1307 |
|
|
{
|
1308 |
|
|
if (prev->next == val)
|
1309 |
|
|
{
|
1310 |
|
|
prev->next = new_val;
|
1311 |
|
|
break;
|
1312 |
|
|
}
|
1313 |
|
|
}
|
1314 |
|
|
}
|
1315 |
|
|
|
1316 |
|
|
return new_val;
|
1317 |
|
|
}
|
1318 |
|
|
}
|
1319 |
|
|
|
1320 |
|
|
/* Given a value ARG1 (offset by OFFSET bytes)
|
1321 |
|
|
of a struct or union type ARG_TYPE,
|
1322 |
|
|
extract and return the value of one of its (non-static) fields.
|
1323 |
|
|
FIELDNO says which field. */
|
1324 |
|
|
|
1325 |
|
|
struct value *
|
1326 |
|
|
value_primitive_field (struct value *arg1, int offset,
|
1327 |
|
|
int fieldno, struct type *arg_type)
|
1328 |
|
|
{
|
1329 |
|
|
struct value *v;
|
1330 |
|
|
struct type *type;
|
1331 |
|
|
|
1332 |
|
|
CHECK_TYPEDEF (arg_type);
|
1333 |
|
|
type = TYPE_FIELD_TYPE (arg_type, fieldno);
|
1334 |
|
|
|
1335 |
|
|
/* Handle packed fields */
|
1336 |
|
|
|
1337 |
|
|
if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
|
1338 |
|
|
{
|
1339 |
|
|
v = value_from_longest (type,
|
1340 |
|
|
unpack_field_as_long (arg_type,
|
1341 |
|
|
value_contents (arg1)
|
1342 |
|
|
+ offset,
|
1343 |
|
|
fieldno));
|
1344 |
|
|
v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
|
1345 |
|
|
v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
|
1346 |
|
|
v->offset = value_offset (arg1) + offset
|
1347 |
|
|
+ TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
|
1348 |
|
|
}
|
1349 |
|
|
else if (fieldno < TYPE_N_BASECLASSES (arg_type))
|
1350 |
|
|
{
|
1351 |
|
|
/* This field is actually a base subobject, so preserve the
|
1352 |
|
|
entire object's contents for later references to virtual
|
1353 |
|
|
bases, etc. */
|
1354 |
|
|
v = allocate_value (value_enclosing_type (arg1));
|
1355 |
|
|
v->type = type;
|
1356 |
|
|
if (value_lazy (arg1))
|
1357 |
|
|
set_value_lazy (v, 1);
|
1358 |
|
|
else
|
1359 |
|
|
memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
|
1360 |
|
|
TYPE_LENGTH (value_enclosing_type (arg1)));
|
1361 |
|
|
v->offset = value_offset (arg1);
|
1362 |
|
|
v->embedded_offset = (offset + value_embedded_offset (arg1)
|
1363 |
|
|
+ TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
|
1364 |
|
|
}
|
1365 |
|
|
else
|
1366 |
|
|
{
|
1367 |
|
|
/* Plain old data member */
|
1368 |
|
|
offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
|
1369 |
|
|
v = allocate_value (type);
|
1370 |
|
|
if (value_lazy (arg1))
|
1371 |
|
|
set_value_lazy (v, 1);
|
1372 |
|
|
else
|
1373 |
|
|
memcpy (value_contents_raw (v),
|
1374 |
|
|
value_contents_raw (arg1) + offset,
|
1375 |
|
|
TYPE_LENGTH (type));
|
1376 |
|
|
v->offset = (value_offset (arg1) + offset
|
1377 |
|
|
+ value_embedded_offset (arg1));
|
1378 |
|
|
}
|
1379 |
|
|
VALUE_LVAL (v) = VALUE_LVAL (arg1);
|
1380 |
|
|
if (VALUE_LVAL (arg1) == lval_internalvar)
|
1381 |
|
|
VALUE_LVAL (v) = lval_internalvar_component;
|
1382 |
|
|
v->location = arg1->location;
|
1383 |
|
|
VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
|
1384 |
|
|
VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
|
1385 |
|
|
return v;
|
1386 |
|
|
}
|
1387 |
|
|
|
1388 |
|
|
/* Given a value ARG1 of a struct or union type,
|
1389 |
|
|
extract and return the value of one of its (non-static) fields.
|
1390 |
|
|
FIELDNO says which field. */
|
1391 |
|
|
|
1392 |
|
|
struct value *
|
1393 |
|
|
value_field (struct value *arg1, int fieldno)
|
1394 |
|
|
{
|
1395 |
|
|
return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
|
1396 |
|
|
}
|
1397 |
|
|
|
1398 |
|
|
/* Return a non-virtual function as a value.
|
1399 |
|
|
F is the list of member functions which contains the desired method.
|
1400 |
|
|
J is an index into F which provides the desired method.
|
1401 |
|
|
|
1402 |
|
|
We only use the symbol for its address, so be happy with either a
|
1403 |
|
|
full symbol or a minimal symbol.
|
1404 |
|
|
*/
|
1405 |
|
|
|
1406 |
|
|
struct value *
|
1407 |
|
|
value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
|
1408 |
|
|
int offset)
|
1409 |
|
|
{
|
1410 |
|
|
struct value *v;
|
1411 |
|
|
struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
|
1412 |
|
|
char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
|
1413 |
|
|
struct symbol *sym;
|
1414 |
|
|
struct minimal_symbol *msym;
|
1415 |
|
|
|
1416 |
|
|
sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
|
1417 |
|
|
if (sym != NULL)
|
1418 |
|
|
{
|
1419 |
|
|
msym = NULL;
|
1420 |
|
|
}
|
1421 |
|
|
else
|
1422 |
|
|
{
|
1423 |
|
|
gdb_assert (sym == NULL);
|
1424 |
|
|
msym = lookup_minimal_symbol (physname, NULL, NULL);
|
1425 |
|
|
if (msym == NULL)
|
1426 |
|
|
return NULL;
|
1427 |
|
|
}
|
1428 |
|
|
|
1429 |
|
|
v = allocate_value (ftype);
|
1430 |
|
|
if (sym)
|
1431 |
|
|
{
|
1432 |
|
|
VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
|
1433 |
|
|
}
|
1434 |
|
|
else
|
1435 |
|
|
{
|
1436 |
|
|
VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
|
1437 |
|
|
}
|
1438 |
|
|
|
1439 |
|
|
if (arg1p)
|
1440 |
|
|
{
|
1441 |
|
|
if (type != value_type (*arg1p))
|
1442 |
|
|
*arg1p = value_ind (value_cast (lookup_pointer_type (type),
|
1443 |
|
|
value_addr (*arg1p)));
|
1444 |
|
|
|
1445 |
|
|
/* Move the `this' pointer according to the offset.
|
1446 |
|
|
VALUE_OFFSET (*arg1p) += offset;
|
1447 |
|
|
*/
|
1448 |
|
|
}
|
1449 |
|
|
|
1450 |
|
|
return v;
|
1451 |
|
|
}
|
1452 |
|
|
|
1453 |
|
|
|
1454 |
|
|
/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
|
1455 |
|
|
VALADDR.
|
1456 |
|
|
|
1457 |
|
|
Extracting bits depends on endianness of the machine. Compute the
|
1458 |
|
|
number of least significant bits to discard. For big endian machines,
|
1459 |
|
|
we compute the total number of bits in the anonymous object, subtract
|
1460 |
|
|
off the bit count from the MSB of the object to the MSB of the
|
1461 |
|
|
bitfield, then the size of the bitfield, which leaves the LSB discard
|
1462 |
|
|
count. For little endian machines, the discard count is simply the
|
1463 |
|
|
number of bits from the LSB of the anonymous object to the LSB of the
|
1464 |
|
|
bitfield.
|
1465 |
|
|
|
1466 |
|
|
If the field is signed, we also do sign extension. */
|
1467 |
|
|
|
1468 |
|
|
LONGEST
|
1469 |
|
|
unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
|
1470 |
|
|
{
|
1471 |
|
|
ULONGEST val;
|
1472 |
|
|
ULONGEST valmask;
|
1473 |
|
|
int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
|
1474 |
|
|
int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
|
1475 |
|
|
int lsbcount;
|
1476 |
|
|
struct type *field_type;
|
1477 |
|
|
|
1478 |
|
|
val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
|
1479 |
|
|
field_type = TYPE_FIELD_TYPE (type, fieldno);
|
1480 |
|
|
CHECK_TYPEDEF (field_type);
|
1481 |
|
|
|
1482 |
|
|
/* Extract bits. See comment above. */
|
1483 |
|
|
|
1484 |
|
|
if (gdbarch_bits_big_endian (current_gdbarch))
|
1485 |
|
|
lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
|
1486 |
|
|
else
|
1487 |
|
|
lsbcount = (bitpos % 8);
|
1488 |
|
|
val >>= lsbcount;
|
1489 |
|
|
|
1490 |
|
|
/* If the field does not entirely fill a LONGEST, then zero the sign bits.
|
1491 |
|
|
If the field is signed, and is negative, then sign extend. */
|
1492 |
|
|
|
1493 |
|
|
if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
|
1494 |
|
|
{
|
1495 |
|
|
valmask = (((ULONGEST) 1) << bitsize) - 1;
|
1496 |
|
|
val &= valmask;
|
1497 |
|
|
if (!TYPE_UNSIGNED (field_type))
|
1498 |
|
|
{
|
1499 |
|
|
if (val & (valmask ^ (valmask >> 1)))
|
1500 |
|
|
{
|
1501 |
|
|
val |= ~valmask;
|
1502 |
|
|
}
|
1503 |
|
|
}
|
1504 |
|
|
}
|
1505 |
|
|
return (val);
|
1506 |
|
|
}
|
1507 |
|
|
|
1508 |
|
|
/* Modify the value of a bitfield. ADDR points to a block of memory in
|
1509 |
|
|
target byte order; the bitfield starts in the byte pointed to. FIELDVAL
|
1510 |
|
|
is the desired value of the field, in host byte order. BITPOS and BITSIZE
|
1511 |
|
|
indicate which bits (in target bit order) comprise the bitfield.
|
1512 |
|
|
Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
|
1513 |
|
|
|
1514 |
|
|
|
1515 |
|
|
void
|
1516 |
|
|
modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
|
1517 |
|
|
{
|
1518 |
|
|
ULONGEST oword;
|
1519 |
|
|
ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
|
1520 |
|
|
|
1521 |
|
|
/* If a negative fieldval fits in the field in question, chop
|
1522 |
|
|
off the sign extension bits. */
|
1523 |
|
|
if ((~fieldval & ~(mask >> 1)) == 0)
|
1524 |
|
|
fieldval &= mask;
|
1525 |
|
|
|
1526 |
|
|
/* Warn if value is too big to fit in the field in question. */
|
1527 |
|
|
if (0 != (fieldval & ~mask))
|
1528 |
|
|
{
|
1529 |
|
|
/* FIXME: would like to include fieldval in the message, but
|
1530 |
|
|
we don't have a sprintf_longest. */
|
1531 |
|
|
warning (_("Value does not fit in %d bits."), bitsize);
|
1532 |
|
|
|
1533 |
|
|
/* Truncate it, otherwise adjoining fields may be corrupted. */
|
1534 |
|
|
fieldval &= mask;
|
1535 |
|
|
}
|
1536 |
|
|
|
1537 |
|
|
oword = extract_unsigned_integer (addr, sizeof oword);
|
1538 |
|
|
|
1539 |
|
|
/* Shifting for bit field depends on endianness of the target machine. */
|
1540 |
|
|
if (gdbarch_bits_big_endian (current_gdbarch))
|
1541 |
|
|
bitpos = sizeof (oword) * 8 - bitpos - bitsize;
|
1542 |
|
|
|
1543 |
|
|
oword &= ~(mask << bitpos);
|
1544 |
|
|
oword |= fieldval << bitpos;
|
1545 |
|
|
|
1546 |
|
|
store_unsigned_integer (addr, sizeof oword, oword);
|
1547 |
|
|
}
|
1548 |
|
|
|
1549 |
|
|
/* Pack NUM into BUF using a target format of TYPE. */
|
1550 |
|
|
|
1551 |
|
|
void
|
1552 |
|
|
pack_long (gdb_byte *buf, struct type *type, LONGEST num)
|
1553 |
|
|
{
|
1554 |
|
|
int len;
|
1555 |
|
|
|
1556 |
|
|
type = check_typedef (type);
|
1557 |
|
|
len = TYPE_LENGTH (type);
|
1558 |
|
|
|
1559 |
|
|
switch (TYPE_CODE (type))
|
1560 |
|
|
{
|
1561 |
|
|
case TYPE_CODE_INT:
|
1562 |
|
|
case TYPE_CODE_CHAR:
|
1563 |
|
|
case TYPE_CODE_ENUM:
|
1564 |
|
|
case TYPE_CODE_FLAGS:
|
1565 |
|
|
case TYPE_CODE_BOOL:
|
1566 |
|
|
case TYPE_CODE_RANGE:
|
1567 |
|
|
case TYPE_CODE_MEMBERPTR:
|
1568 |
|
|
store_signed_integer (buf, len, num);
|
1569 |
|
|
break;
|
1570 |
|
|
|
1571 |
|
|
case TYPE_CODE_REF:
|
1572 |
|
|
case TYPE_CODE_PTR:
|
1573 |
|
|
store_typed_address (buf, type, (CORE_ADDR) num);
|
1574 |
|
|
break;
|
1575 |
|
|
|
1576 |
|
|
default:
|
1577 |
|
|
error (_("Unexpected type (%d) encountered for integer constant."),
|
1578 |
|
|
TYPE_CODE (type));
|
1579 |
|
|
}
|
1580 |
|
|
}
|
1581 |
|
|
|
1582 |
|
|
|
1583 |
|
|
/* Convert C numbers into newly allocated values. */
|
1584 |
|
|
|
1585 |
|
|
struct value *
|
1586 |
|
|
value_from_longest (struct type *type, LONGEST num)
|
1587 |
|
|
{
|
1588 |
|
|
struct value *val = allocate_value (type);
|
1589 |
|
|
|
1590 |
|
|
pack_long (value_contents_raw (val), type, num);
|
1591 |
|
|
|
1592 |
|
|
return val;
|
1593 |
|
|
}
|
1594 |
|
|
|
1595 |
|
|
|
1596 |
|
|
/* Create a value representing a pointer of type TYPE to the address
|
1597 |
|
|
ADDR. */
|
1598 |
|
|
struct value *
|
1599 |
|
|
value_from_pointer (struct type *type, CORE_ADDR addr)
|
1600 |
|
|
{
|
1601 |
|
|
struct value *val = allocate_value (type);
|
1602 |
|
|
store_typed_address (value_contents_raw (val), type, addr);
|
1603 |
|
|
return val;
|
1604 |
|
|
}
|
1605 |
|
|
|
1606 |
|
|
|
1607 |
|
|
/* Create a value for a string constant to be stored locally
|
1608 |
|
|
(not in the inferior's memory space, but in GDB memory).
|
1609 |
|
|
This is analogous to value_from_longest, which also does not
|
1610 |
|
|
use inferior memory. String shall NOT contain embedded nulls. */
|
1611 |
|
|
|
1612 |
|
|
struct value *
|
1613 |
|
|
value_from_string (char *ptr)
|
1614 |
|
|
{
|
1615 |
|
|
struct value *val;
|
1616 |
|
|
int len = strlen (ptr);
|
1617 |
|
|
int lowbound = current_language->string_lower_bound;
|
1618 |
|
|
struct type *string_char_type;
|
1619 |
|
|
struct type *rangetype;
|
1620 |
|
|
struct type *stringtype;
|
1621 |
|
|
|
1622 |
|
|
rangetype = create_range_type ((struct type *) NULL,
|
1623 |
|
|
builtin_type_int,
|
1624 |
|
|
lowbound, len + lowbound - 1);
|
1625 |
|
|
string_char_type = language_string_char_type (current_language,
|
1626 |
|
|
current_gdbarch);
|
1627 |
|
|
stringtype = create_array_type ((struct type *) NULL,
|
1628 |
|
|
string_char_type,
|
1629 |
|
|
rangetype);
|
1630 |
|
|
val = allocate_value (stringtype);
|
1631 |
|
|
memcpy (value_contents_raw (val), ptr, len);
|
1632 |
|
|
return val;
|
1633 |
|
|
}
|
1634 |
|
|
|
1635 |
|
|
struct value *
|
1636 |
|
|
value_from_double (struct type *type, DOUBLEST num)
|
1637 |
|
|
{
|
1638 |
|
|
struct value *val = allocate_value (type);
|
1639 |
|
|
struct type *base_type = check_typedef (type);
|
1640 |
|
|
enum type_code code = TYPE_CODE (base_type);
|
1641 |
|
|
int len = TYPE_LENGTH (base_type);
|
1642 |
|
|
|
1643 |
|
|
if (code == TYPE_CODE_FLT)
|
1644 |
|
|
{
|
1645 |
|
|
store_typed_floating (value_contents_raw (val), base_type, num);
|
1646 |
|
|
}
|
1647 |
|
|
else
|
1648 |
|
|
error (_("Unexpected type encountered for floating constant."));
|
1649 |
|
|
|
1650 |
|
|
return val;
|
1651 |
|
|
}
|
1652 |
|
|
|
1653 |
|
|
struct value *
|
1654 |
|
|
value_from_decfloat (struct type *type, const gdb_byte *dec)
|
1655 |
|
|
{
|
1656 |
|
|
struct value *val = allocate_value (type);
|
1657 |
|
|
|
1658 |
|
|
memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
|
1659 |
|
|
|
1660 |
|
|
return val;
|
1661 |
|
|
}
|
1662 |
|
|
|
1663 |
|
|
struct value *
|
1664 |
|
|
coerce_ref (struct value *arg)
|
1665 |
|
|
{
|
1666 |
|
|
struct type *value_type_arg_tmp = check_typedef (value_type (arg));
|
1667 |
|
|
if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
|
1668 |
|
|
arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
|
1669 |
|
|
unpack_pointer (value_type (arg),
|
1670 |
|
|
value_contents (arg)));
|
1671 |
|
|
return arg;
|
1672 |
|
|
}
|
1673 |
|
|
|
1674 |
|
|
struct value *
|
1675 |
|
|
coerce_array (struct value *arg)
|
1676 |
|
|
{
|
1677 |
|
|
arg = coerce_ref (arg);
|
1678 |
|
|
if (current_language->c_style_arrays
|
1679 |
|
|
&& TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
|
1680 |
|
|
arg = value_coerce_array (arg);
|
1681 |
|
|
if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
|
1682 |
|
|
arg = value_coerce_function (arg);
|
1683 |
|
|
return arg;
|
1684 |
|
|
}
|
1685 |
|
|
|
1686 |
|
|
struct value *
|
1687 |
|
|
coerce_number (struct value *arg)
|
1688 |
|
|
{
|
1689 |
|
|
arg = coerce_array (arg);
|
1690 |
|
|
arg = coerce_enum (arg);
|
1691 |
|
|
return arg;
|
1692 |
|
|
}
|
1693 |
|
|
|
1694 |
|
|
struct value *
|
1695 |
|
|
coerce_enum (struct value *arg)
|
1696 |
|
|
{
|
1697 |
|
|
if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
|
1698 |
|
|
arg = value_cast (builtin_type_unsigned_int, arg);
|
1699 |
|
|
return arg;
|
1700 |
|
|
}
|
1701 |
|
|
|
1702 |
|
|
|
1703 |
|
|
/* Return true if the function returning the specified type is using
|
1704 |
|
|
the convention of returning structures in memory (passing in the
|
1705 |
|
|
address as a hidden first parameter). */
|
1706 |
|
|
|
1707 |
|
|
int
|
1708 |
|
|
using_struct_return (struct type *value_type)
|
1709 |
|
|
{
|
1710 |
|
|
enum type_code code = TYPE_CODE (value_type);
|
1711 |
|
|
|
1712 |
|
|
if (code == TYPE_CODE_ERROR)
|
1713 |
|
|
error (_("Function return type unknown."));
|
1714 |
|
|
|
1715 |
|
|
if (code == TYPE_CODE_VOID)
|
1716 |
|
|
/* A void return value is never in memory. See also corresponding
|
1717 |
|
|
code in "print_return_value". */
|
1718 |
|
|
return 0;
|
1719 |
|
|
|
1720 |
|
|
/* Probe the architecture for the return-value convention. */
|
1721 |
|
|
return (gdbarch_return_value (current_gdbarch, value_type,
|
1722 |
|
|
NULL, NULL, NULL)
|
1723 |
|
|
!= RETURN_VALUE_REGISTER_CONVENTION);
|
1724 |
|
|
}
|
1725 |
|
|
|
1726 |
|
|
/* Set the initialized field in a value struct. */
|
1727 |
|
|
|
1728 |
|
|
void
|
1729 |
|
|
set_value_initialized (struct value *val, int status)
|
1730 |
|
|
{
|
1731 |
|
|
val->initialized = status;
|
1732 |
|
|
}
|
1733 |
|
|
|
1734 |
|
|
/* Return the initialized field in a value struct. */
|
1735 |
|
|
|
1736 |
|
|
int
|
1737 |
|
|
value_initialized (struct value *val)
|
1738 |
|
|
{
|
1739 |
|
|
return val->initialized;
|
1740 |
|
|
}
|
1741 |
|
|
|
1742 |
|
|
void
|
1743 |
|
|
_initialize_values (void)
|
1744 |
|
|
{
|
1745 |
|
|
add_cmd ("convenience", no_class, show_convenience, _("\
|
1746 |
|
|
Debugger convenience (\"$foo\") variables.\n\
|
1747 |
|
|
These variables are created when you assign them values;\n\
|
1748 |
|
|
thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
|
1749 |
|
|
\n\
|
1750 |
|
|
A few convenience variables are given values automatically:\n\
|
1751 |
|
|
\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
|
1752 |
|
|
\"$__\" holds the contents of the last address examined with \"x\"."),
|
1753 |
|
|
&showlist);
|
1754 |
|
|
|
1755 |
|
|
add_cmd ("values", no_class, show_values,
|
1756 |
|
|
_("Elements of value history around item number IDX (or last ten)."),
|
1757 |
|
|
&showlist);
|
1758 |
|
|
|
1759 |
|
|
add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
|
1760 |
|
|
Initialize a convenience variable if necessary.\n\
|
1761 |
|
|
init-if-undefined VARIABLE = EXPRESSION\n\
|
1762 |
|
|
Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
|
1763 |
|
|
exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
|
1764 |
|
|
VARIABLE is already initialized."));
|
1765 |
|
|
}
|