| 1 |
24 |
jeremybenn |
/* Vector API for GDB.
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
|
| 3 |
|
|
Contributed by Nathan Sidwell <nathan@codesourcery.com>
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GDB.
|
| 6 |
|
|
|
| 7 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 8 |
|
|
it under the terms of the GNU General Public License as published by
|
| 9 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
| 10 |
|
|
(at your option) any later version.
|
| 11 |
|
|
|
| 12 |
|
|
This program is distributed in the hope that it will be useful,
|
| 13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
GNU General Public License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| 19 |
|
|
|
| 20 |
|
|
#if !defined (GDB_VEC_H)
|
| 21 |
|
|
#define GDB_VEC_H
|
| 22 |
|
|
|
| 23 |
|
|
#include <stddef.h>
|
| 24 |
|
|
#include "gdb_string.h"
|
| 25 |
|
|
#include "gdb_assert.h"
|
| 26 |
|
|
|
| 27 |
|
|
/* The macros here implement a set of templated vector types and
|
| 28 |
|
|
associated interfaces. These templates are implemented with
|
| 29 |
|
|
macros, as we're not in C++ land. The interface functions are
|
| 30 |
|
|
typesafe and use static inline functions, sometimes backed by
|
| 31 |
|
|
out-of-line generic functions.
|
| 32 |
|
|
|
| 33 |
|
|
Because of the different behavior of structure objects, scalar
|
| 34 |
|
|
objects and of pointers, there are three flavors, one for each of
|
| 35 |
|
|
these variants. Both the structure object and pointer variants
|
| 36 |
|
|
pass pointers to objects around -- in the former case the pointers
|
| 37 |
|
|
are stored into the vector and in the latter case the pointers are
|
| 38 |
|
|
dereferenced and the objects copied into the vector. The scalar
|
| 39 |
|
|
object variant is suitable for int-like objects, and the vector
|
| 40 |
|
|
elements are returned by value.
|
| 41 |
|
|
|
| 42 |
|
|
There are both 'index' and 'iterate' accessors. The iterator
|
| 43 |
|
|
returns a boolean iteration condition and updates the iteration
|
| 44 |
|
|
variable passed by reference. Because the iterator will be
|
| 45 |
|
|
inlined, the address-of can be optimized away.
|
| 46 |
|
|
|
| 47 |
|
|
The vectors are implemented using the trailing array idiom, thus
|
| 48 |
|
|
they are not resizeable without changing the address of the vector
|
| 49 |
|
|
object itself. This means you cannot have variables or fields of
|
| 50 |
|
|
vector type -- always use a pointer to a vector. The one exception
|
| 51 |
|
|
is the final field of a structure, which could be a vector type.
|
| 52 |
|
|
You will have to use the embedded_size & embedded_init calls to
|
| 53 |
|
|
create such objects, and they will probably not be resizeable (so
|
| 54 |
|
|
don't use the 'safe' allocation variants). The trailing array
|
| 55 |
|
|
idiom is used (rather than a pointer to an array of data), because,
|
| 56 |
|
|
if we allow NULL to also represent an empty vector, empty vectors
|
| 57 |
|
|
occupy minimal space in the structure containing them.
|
| 58 |
|
|
|
| 59 |
|
|
Each operation that increases the number of active elements is
|
| 60 |
|
|
available in 'quick' and 'safe' variants. The former presumes that
|
| 61 |
|
|
there is sufficient allocated space for the operation to succeed
|
| 62 |
|
|
(it dies if there is not). The latter will reallocate the
|
| 63 |
|
|
vector, if needed. Reallocation causes an exponential increase in
|
| 64 |
|
|
vector size. If you know you will be adding N elements, it would
|
| 65 |
|
|
be more efficient to use the reserve operation before adding the
|
| 66 |
|
|
elements with the 'quick' operation. This will ensure there are at
|
| 67 |
|
|
least as many elements as you ask for, it will exponentially
|
| 68 |
|
|
increase if there are too few spare slots. If you want reserve a
|
| 69 |
|
|
specific number of slots, but do not want the exponential increase
|
| 70 |
|
|
(for instance, you know this is the last allocation), use a
|
| 71 |
|
|
negative number for reservation. You can also create a vector of a
|
| 72 |
|
|
specific size from the get go.
|
| 73 |
|
|
|
| 74 |
|
|
You should prefer the push and pop operations, as they append and
|
| 75 |
|
|
remove from the end of the vector. If you need to remove several
|
| 76 |
|
|
items in one go, use the truncate operation. The insert and remove
|
| 77 |
|
|
operations allow you to change elements in the middle of the
|
| 78 |
|
|
vector. There are two remove operations, one which preserves the
|
| 79 |
|
|
element ordering 'ordered_remove', and one which does not
|
| 80 |
|
|
'unordered_remove'. The latter function copies the end element
|
| 81 |
|
|
into the removed slot, rather than invoke a memmove operation. The
|
| 82 |
|
|
'lower_bound' function will determine where to place an item in the
|
| 83 |
|
|
array using insert that will maintain sorted order.
|
| 84 |
|
|
|
| 85 |
|
|
If you need to directly manipulate a vector, then the 'address'
|
| 86 |
|
|
accessor will return the address of the start of the vector. Also
|
| 87 |
|
|
the 'space' predicate will tell you whether there is spare capacity
|
| 88 |
|
|
in the vector. You will not normally need to use these two functions.
|
| 89 |
|
|
|
| 90 |
|
|
Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro.
|
| 91 |
|
|
Variables of vector type are declared using a VEC(TYPEDEF) macro.
|
| 92 |
|
|
The characters O, P and I indicate whether TYPEDEF is a pointer
|
| 93 |
|
|
(P), object (O) or integral (I) type. Be careful to pick the
|
| 94 |
|
|
correct one, as you'll get an awkward and inefficient API if you
|
| 95 |
|
|
use the wrong one. There is a check, which results in a
|
| 96 |
|
|
compile-time warning, for the P and I versions, but there is no
|
| 97 |
|
|
check for the O versions, as that is not possible in plain C.
|
| 98 |
|
|
|
| 99 |
|
|
An example of their use would be,
|
| 100 |
|
|
|
| 101 |
|
|
DEF_VEC_P(tree); // non-managed tree vector.
|
| 102 |
|
|
|
| 103 |
|
|
struct my_struct {
|
| 104 |
|
|
VEC(tree) *v; // A (pointer to) a vector of tree pointers.
|
| 105 |
|
|
};
|
| 106 |
|
|
|
| 107 |
|
|
struct my_struct *s;
|
| 108 |
|
|
|
| 109 |
|
|
if (VEC_length(tree, s->v)) { we have some contents }
|
| 110 |
|
|
VEC_safe_push(tree, s->v, decl); // append some decl onto the end
|
| 111 |
|
|
for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++)
|
| 112 |
|
|
{ do something with elt }
|
| 113 |
|
|
|
| 114 |
|
|
*/
|
| 115 |
|
|
|
| 116 |
|
|
/* Macros to invoke API calls. A single macro works for both pointer
|
| 117 |
|
|
and object vectors, but the argument and return types might well be
|
| 118 |
|
|
different. In each macro, T is the typedef of the vector elements.
|
| 119 |
|
|
Some of these macros pass the vector, V, by reference (by taking
|
| 120 |
|
|
its address), this is noted in the descriptions. */
|
| 121 |
|
|
|
| 122 |
|
|
/* Length of vector
|
| 123 |
|
|
unsigned VEC_T_length(const VEC(T) *v);
|
| 124 |
|
|
|
| 125 |
|
|
Return the number of active elements in V. V can be NULL, in which
|
| 126 |
|
|
case zero is returned. */
|
| 127 |
|
|
|
| 128 |
|
|
#define VEC_length(T,V) (VEC_OP(T,length)(V))
|
| 129 |
|
|
|
| 130 |
|
|
|
| 131 |
|
|
/* Check if vector is empty
|
| 132 |
|
|
int VEC_T_empty(const VEC(T) *v);
|
| 133 |
|
|
|
| 134 |
|
|
Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
|
| 135 |
|
|
|
| 136 |
|
|
#define VEC_empty(T,V) (VEC_length (T,V) == 0)
|
| 137 |
|
|
|
| 138 |
|
|
|
| 139 |
|
|
/* Get the final element of the vector.
|
| 140 |
|
|
T VEC_T_last(VEC(T) *v); // Integer
|
| 141 |
|
|
T VEC_T_last(VEC(T) *v); // Pointer
|
| 142 |
|
|
T *VEC_T_last(VEC(T) *v); // Object
|
| 143 |
|
|
|
| 144 |
|
|
Return the final element. V must not be empty. */
|
| 145 |
|
|
|
| 146 |
|
|
#define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO))
|
| 147 |
|
|
|
| 148 |
|
|
/* Index into vector
|
| 149 |
|
|
T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
|
| 150 |
|
|
T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
|
| 151 |
|
|
T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
|
| 152 |
|
|
|
| 153 |
|
|
Return the IX'th element. If IX must be in the domain of V. */
|
| 154 |
|
|
|
| 155 |
|
|
#define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO))
|
| 156 |
|
|
|
| 157 |
|
|
/* Iterate over vector
|
| 158 |
|
|
int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
|
| 159 |
|
|
int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
|
| 160 |
|
|
int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
|
| 161 |
|
|
|
| 162 |
|
|
Return iteration condition and update PTR to point to the IX'th
|
| 163 |
|
|
element. At the end of iteration, sets PTR to NULL. Use this to
|
| 164 |
|
|
iterate over the elements of a vector as follows,
|
| 165 |
|
|
|
| 166 |
|
|
for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
|
| 167 |
|
|
continue; */
|
| 168 |
|
|
|
| 169 |
|
|
#define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P)))
|
| 170 |
|
|
|
| 171 |
|
|
/* Allocate new vector.
|
| 172 |
|
|
VEC(T,A) *VEC_T_alloc(int reserve);
|
| 173 |
|
|
|
| 174 |
|
|
Allocate a new vector with space for RESERVE objects. If RESERVE
|
| 175 |
|
|
is zero, NO vector is created. */
|
| 176 |
|
|
|
| 177 |
|
|
#define VEC_alloc(T,N) (VEC_OP(T,alloc)(N))
|
| 178 |
|
|
|
| 179 |
|
|
/* Free a vector.
|
| 180 |
|
|
void VEC_T_free(VEC(T,A) *&);
|
| 181 |
|
|
|
| 182 |
|
|
Free a vector and set it to NULL. */
|
| 183 |
|
|
|
| 184 |
|
|
#define VEC_free(T,V) (VEC_OP(T,free)(&V))
|
| 185 |
|
|
|
| 186 |
|
|
/* Use these to determine the required size and initialization of a
|
| 187 |
|
|
vector embedded within another structure (as the final member).
|
| 188 |
|
|
|
| 189 |
|
|
size_t VEC_T_embedded_size(int reserve);
|
| 190 |
|
|
void VEC_T_embedded_init(VEC(T) *v, int reserve);
|
| 191 |
|
|
|
| 192 |
|
|
These allow the caller to perform the memory allocation. */
|
| 193 |
|
|
|
| 194 |
|
|
#define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N))
|
| 195 |
|
|
#define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N))
|
| 196 |
|
|
|
| 197 |
|
|
/* Copy a vector.
|
| 198 |
|
|
VEC(T,A) *VEC_T_copy(VEC(T) *);
|
| 199 |
|
|
|
| 200 |
|
|
Copy the live elements of a vector into a new vector. The new and
|
| 201 |
|
|
old vectors need not be allocated by the same mechanism. */
|
| 202 |
|
|
|
| 203 |
|
|
#define VEC_copy(T,V) (VEC_OP(T,copy)(V))
|
| 204 |
|
|
|
| 205 |
|
|
/* Determine if a vector has additional capacity.
|
| 206 |
|
|
|
| 207 |
|
|
int VEC_T_space (VEC(T) *v,int reserve)
|
| 208 |
|
|
|
| 209 |
|
|
If V has space for RESERVE additional entries, return nonzero. You
|
| 210 |
|
|
usually only need to use this if you are doing your own vector
|
| 211 |
|
|
reallocation, for instance on an embedded vector. This returns
|
| 212 |
|
|
nonzero in exactly the same circumstances that VEC_T_reserve
|
| 213 |
|
|
will. */
|
| 214 |
|
|
|
| 215 |
|
|
#define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO))
|
| 216 |
|
|
|
| 217 |
|
|
/* Reserve space.
|
| 218 |
|
|
int VEC_T_reserve(VEC(T,A) *&v, int reserve);
|
| 219 |
|
|
|
| 220 |
|
|
Ensure that V has at least abs(RESERVE) slots available. The
|
| 221 |
|
|
signedness of RESERVE determines the reallocation behavior. A
|
| 222 |
|
|
negative value will not create additional headroom beyond that
|
| 223 |
|
|
requested. A positive value will create additional headroom. Note
|
| 224 |
|
|
this can cause V to be reallocated. Returns nonzero iff
|
| 225 |
|
|
reallocation actually occurred. */
|
| 226 |
|
|
|
| 227 |
|
|
#define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO))
|
| 228 |
|
|
|
| 229 |
|
|
/* Push object with no reallocation
|
| 230 |
|
|
T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
|
| 231 |
|
|
T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
|
| 232 |
|
|
T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
|
| 233 |
|
|
|
| 234 |
|
|
Push a new element onto the end, returns a pointer to the slot
|
| 235 |
|
|
filled in. For object vectors, the new value can be NULL, in which
|
| 236 |
|
|
case NO initialization is performed. There must
|
| 237 |
|
|
be sufficient space in the vector. */
|
| 238 |
|
|
|
| 239 |
|
|
#define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO))
|
| 240 |
|
|
|
| 241 |
|
|
/* Push object with reallocation
|
| 242 |
|
|
T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer
|
| 243 |
|
|
T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer
|
| 244 |
|
|
T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object
|
| 245 |
|
|
|
| 246 |
|
|
Push a new element onto the end, returns a pointer to the slot
|
| 247 |
|
|
filled in. For object vectors, the new value can be NULL, in which
|
| 248 |
|
|
case NO initialization is performed. Reallocates V, if needed. */
|
| 249 |
|
|
|
| 250 |
|
|
#define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO))
|
| 251 |
|
|
|
| 252 |
|
|
/* Pop element off end
|
| 253 |
|
|
T VEC_T_pop (VEC(T) *v); // Integer
|
| 254 |
|
|
T VEC_T_pop (VEC(T) *v); // Pointer
|
| 255 |
|
|
void VEC_T_pop (VEC(T) *v); // Object
|
| 256 |
|
|
|
| 257 |
|
|
Pop the last element off the end. Returns the element popped, for
|
| 258 |
|
|
pointer vectors. */
|
| 259 |
|
|
|
| 260 |
|
|
#define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO))
|
| 261 |
|
|
|
| 262 |
|
|
/* Truncate to specific length
|
| 263 |
|
|
void VEC_T_truncate (VEC(T) *v, unsigned len);
|
| 264 |
|
|
|
| 265 |
|
|
Set the length as specified. The new length must be less than or
|
| 266 |
|
|
equal to the current length. This is an O(1) operation. */
|
| 267 |
|
|
|
| 268 |
|
|
#define VEC_truncate(T,V,I) \
|
| 269 |
|
|
(VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO))
|
| 270 |
|
|
|
| 271 |
|
|
/* Grow to a specific length.
|
| 272 |
|
|
void VEC_T_safe_grow (VEC(T,A) *&v, int len);
|
| 273 |
|
|
|
| 274 |
|
|
Grow the vector to a specific length. The LEN must be as
|
| 275 |
|
|
long or longer than the current length. The new elements are
|
| 276 |
|
|
uninitialized. */
|
| 277 |
|
|
|
| 278 |
|
|
#define VEC_safe_grow(T,V,I) \
|
| 279 |
|
|
(VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO))
|
| 280 |
|
|
|
| 281 |
|
|
/* Replace element
|
| 282 |
|
|
T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
|
| 283 |
|
|
T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
|
| 284 |
|
|
T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
|
| 285 |
|
|
|
| 286 |
|
|
Replace the IXth element of V with a new value, VAL. For pointer
|
| 287 |
|
|
vectors returns the original value. For object vectors returns a
|
| 288 |
|
|
pointer to the new value. For object vectors the new value can be
|
| 289 |
|
|
NULL, in which case no overwriting of the slot is actually
|
| 290 |
|
|
performed. */
|
| 291 |
|
|
|
| 292 |
|
|
#define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO))
|
| 293 |
|
|
|
| 294 |
|
|
/* Insert object with no reallocation
|
| 295 |
|
|
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
|
| 296 |
|
|
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
|
| 297 |
|
|
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
|
| 298 |
|
|
|
| 299 |
|
|
Insert an element, VAL, at the IXth position of V. Return a pointer
|
| 300 |
|
|
to the slot created. For vectors of object, the new value can be
|
| 301 |
|
|
NULL, in which case no initialization of the inserted slot takes
|
| 302 |
|
|
place. There must be sufficient space. */
|
| 303 |
|
|
|
| 304 |
|
|
#define VEC_quick_insert(T,V,I,O) \
|
| 305 |
|
|
(VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO))
|
| 306 |
|
|
|
| 307 |
|
|
/* Insert object with reallocation
|
| 308 |
|
|
T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
|
| 309 |
|
|
T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
|
| 310 |
|
|
T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
|
| 311 |
|
|
|
| 312 |
|
|
Insert an element, VAL, at the IXth position of V. Return a pointer
|
| 313 |
|
|
to the slot created. For vectors of object, the new value can be
|
| 314 |
|
|
NULL, in which case no initialization of the inserted slot takes
|
| 315 |
|
|
place. Reallocate V, if necessary. */
|
| 316 |
|
|
|
| 317 |
|
|
#define VEC_safe_insert(T,V,I,O) \
|
| 318 |
|
|
(VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO))
|
| 319 |
|
|
|
| 320 |
|
|
/* Remove element retaining order
|
| 321 |
|
|
T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
|
| 322 |
|
|
T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
|
| 323 |
|
|
void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
|
| 324 |
|
|
|
| 325 |
|
|
Remove an element from the IXth position of V. Ordering of
|
| 326 |
|
|
remaining elements is preserved. For pointer vectors returns the
|
| 327 |
|
|
removed object. This is an O(N) operation due to a memmove. */
|
| 328 |
|
|
|
| 329 |
|
|
#define VEC_ordered_remove(T,V,I) \
|
| 330 |
|
|
(VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO))
|
| 331 |
|
|
|
| 332 |
|
|
/* Remove element destroying order
|
| 333 |
|
|
T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
|
| 334 |
|
|
T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
|
| 335 |
|
|
void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
|
| 336 |
|
|
|
| 337 |
|
|
Remove an element from the IXth position of V. Ordering of
|
| 338 |
|
|
remaining elements is destroyed. For pointer vectors returns the
|
| 339 |
|
|
removed object. This is an O(1) operation. */
|
| 340 |
|
|
|
| 341 |
|
|
#define VEC_unordered_remove(T,V,I) \
|
| 342 |
|
|
(VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO))
|
| 343 |
|
|
|
| 344 |
|
|
/* Remove a block of elements
|
| 345 |
|
|
void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
|
| 346 |
|
|
|
| 347 |
|
|
Remove LEN elements starting at the IXth. Ordering is retained.
|
| 348 |
|
|
This is an O(1) operation. */
|
| 349 |
|
|
|
| 350 |
|
|
#define VEC_block_remove(T,V,I,L) \
|
| 351 |
|
|
(VEC_OP(T,block_remove)(V,I,L) VEC_ASSERT_INFO)
|
| 352 |
|
|
|
| 353 |
|
|
/* Get the address of the array of elements
|
| 354 |
|
|
T *VEC_T_address (VEC(T) v)
|
| 355 |
|
|
|
| 356 |
|
|
If you need to directly manipulate the array (for instance, you
|
| 357 |
|
|
want to feed it to qsort), use this accessor. */
|
| 358 |
|
|
|
| 359 |
|
|
#define VEC_address(T,V) (VEC_OP(T,address)(V))
|
| 360 |
|
|
|
| 361 |
|
|
/* Find the first index in the vector not less than the object.
|
| 362 |
|
|
unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
|
| 363 |
|
|
int (*lessthan) (const T, const T)); // Integer
|
| 364 |
|
|
unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
|
| 365 |
|
|
int (*lessthan) (const T, const T)); // Pointer
|
| 366 |
|
|
unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
|
| 367 |
|
|
int (*lessthan) (const T*, const T*)); // Object
|
| 368 |
|
|
|
| 369 |
|
|
Find the first position in which VAL could be inserted without
|
| 370 |
|
|
changing the ordering of V. LESSTHAN is a function that returns
|
| 371 |
|
|
true if the first argument is strictly less than the second. */
|
| 372 |
|
|
|
| 373 |
|
|
#define VEC_lower_bound(T,V,O,LT) \
|
| 374 |
|
|
(VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO))
|
| 375 |
|
|
|
| 376 |
|
|
/* Reallocate an array of elements with prefix. */
|
| 377 |
|
|
extern void *vec_p_reserve (void *, int);
|
| 378 |
|
|
extern void *vec_o_reserve (void *, int, size_t, size_t);
|
| 379 |
|
|
#define vec_free_(V) xfree (V)
|
| 380 |
|
|
|
| 381 |
|
|
#define VEC_ASSERT_INFO ,__FILE__,__LINE__
|
| 382 |
|
|
#define VEC_ASSERT_DECL ,const char *file_,unsigned line_
|
| 383 |
|
|
#define VEC_ASSERT_PASS ,file_,line_
|
| 384 |
|
|
#define vec_assert(expr, op) \
|
| 385 |
|
|
((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, ASSERT_FUNCTION), 0)))
|
| 386 |
|
|
|
| 387 |
|
|
#define VEC(T) VEC_##T
|
| 388 |
|
|
#define VEC_OP(T,OP) VEC_##T##_##OP
|
| 389 |
|
|
|
| 390 |
|
|
#define VEC_T(T) \
|
| 391 |
|
|
typedef struct VEC(T) \
|
| 392 |
|
|
{ \
|
| 393 |
|
|
unsigned num; \
|
| 394 |
|
|
unsigned alloc; \
|
| 395 |
|
|
T vec[1]; \
|
| 396 |
|
|
} VEC(T)
|
| 397 |
|
|
|
| 398 |
|
|
/* Vector of integer-like object. */
|
| 399 |
|
|
#define DEF_VEC_I(T) \
|
| 400 |
|
|
static inline void VEC_OP (T,must_be_integral_type) (void) \
|
| 401 |
|
|
{ \
|
| 402 |
|
|
(void)~(T)0; \
|
| 403 |
|
|
} \
|
| 404 |
|
|
\
|
| 405 |
|
|
VEC_T(T); \
|
| 406 |
|
|
DEF_VEC_FUNC_P(T) \
|
| 407 |
|
|
DEF_VEC_ALLOC_FUNC_I(T) \
|
| 408 |
|
|
struct vec_swallow_trailing_semi
|
| 409 |
|
|
|
| 410 |
|
|
/* Vector of pointer to object. */
|
| 411 |
|
|
#define DEF_VEC_P(T) \
|
| 412 |
|
|
static inline void VEC_OP (T,must_be_pointer_type) (void) \
|
| 413 |
|
|
{ \
|
| 414 |
|
|
(void)((T)1 == (void *)1); \
|
| 415 |
|
|
} \
|
| 416 |
|
|
\
|
| 417 |
|
|
VEC_T(T); \
|
| 418 |
|
|
DEF_VEC_FUNC_P(T) \
|
| 419 |
|
|
DEF_VEC_ALLOC_FUNC_P(T) \
|
| 420 |
|
|
struct vec_swallow_trailing_semi
|
| 421 |
|
|
|
| 422 |
|
|
/* Vector of object. */
|
| 423 |
|
|
#define DEF_VEC_O(T) \
|
| 424 |
|
|
VEC_T(T); \
|
| 425 |
|
|
DEF_VEC_FUNC_O(T) \
|
| 426 |
|
|
DEF_VEC_ALLOC_FUNC_O(T) \
|
| 427 |
|
|
struct vec_swallow_trailing_semi
|
| 428 |
|
|
|
| 429 |
|
|
#define DEF_VEC_ALLOC_FUNC_I(T) \
|
| 430 |
|
|
static inline VEC(T) *VEC_OP (T,alloc) \
|
| 431 |
|
|
(int alloc_) \
|
| 432 |
|
|
{ \
|
| 433 |
|
|
/* We must request exact size allocation, hence the negation. */ \
|
| 434 |
|
|
return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
|
| 435 |
|
|
offsetof (VEC(T),vec), sizeof (T)); \
|
| 436 |
|
|
} \
|
| 437 |
|
|
\
|
| 438 |
|
|
static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
|
| 439 |
|
|
{ \
|
| 440 |
|
|
size_t len_ = vec_ ? vec_->num : 0; \
|
| 441 |
|
|
VEC (T) *new_vec_ = NULL; \
|
| 442 |
|
|
\
|
| 443 |
|
|
if (len_) \
|
| 444 |
|
|
{ \
|
| 445 |
|
|
/* We must request exact size allocation, hence the negation. */ \
|
| 446 |
|
|
new_vec_ = (VEC (T) *) \
|
| 447 |
|
|
vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
|
| 448 |
|
|
\
|
| 449 |
|
|
new_vec_->num = len_; \
|
| 450 |
|
|
memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
|
| 451 |
|
|
} \
|
| 452 |
|
|
return new_vec_; \
|
| 453 |
|
|
} \
|
| 454 |
|
|
\
|
| 455 |
|
|
static inline void VEC_OP (T,free) \
|
| 456 |
|
|
(VEC(T) **vec_) \
|
| 457 |
|
|
{ \
|
| 458 |
|
|
if (*vec_) \
|
| 459 |
|
|
vec_free_ (*vec_); \
|
| 460 |
|
|
*vec_ = NULL; \
|
| 461 |
|
|
} \
|
| 462 |
|
|
\
|
| 463 |
|
|
static inline int VEC_OP (T,reserve) \
|
| 464 |
|
|
(VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
|
| 465 |
|
|
{ \
|
| 466 |
|
|
int extend = !VEC_OP (T,space) \
|
| 467 |
|
|
(*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
|
| 468 |
|
|
\
|
| 469 |
|
|
if (extend) \
|
| 470 |
|
|
*vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \
|
| 471 |
|
|
offsetof (VEC(T),vec), sizeof (T)); \
|
| 472 |
|
|
\
|
| 473 |
|
|
return extend; \
|
| 474 |
|
|
} \
|
| 475 |
|
|
\
|
| 476 |
|
|
static inline void VEC_OP (T,safe_grow) \
|
| 477 |
|
|
(VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
|
| 478 |
|
|
{ \
|
| 479 |
|
|
vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
|
| 480 |
|
|
"safe_grow"); \
|
| 481 |
|
|
VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \
|
| 482 |
|
|
VEC_ASSERT_PASS); \
|
| 483 |
|
|
(*vec_)->num = size_; \
|
| 484 |
|
|
} \
|
| 485 |
|
|
\
|
| 486 |
|
|
static inline T *VEC_OP (T,safe_push) \
|
| 487 |
|
|
(VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \
|
| 488 |
|
|
{ \
|
| 489 |
|
|
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
|
| 490 |
|
|
\
|
| 491 |
|
|
return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
|
| 492 |
|
|
} \
|
| 493 |
|
|
\
|
| 494 |
|
|
static inline T *VEC_OP (T,safe_insert) \
|
| 495 |
|
|
(VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \
|
| 496 |
|
|
{ \
|
| 497 |
|
|
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
|
| 498 |
|
|
\
|
| 499 |
|
|
return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
|
| 500 |
|
|
}
|
| 501 |
|
|
|
| 502 |
|
|
#define DEF_VEC_FUNC_P(T) \
|
| 503 |
|
|
static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
|
| 504 |
|
|
{ \
|
| 505 |
|
|
return vec_ ? vec_->num : 0; \
|
| 506 |
|
|
} \
|
| 507 |
|
|
\
|
| 508 |
|
|
static inline T VEC_OP (T,last) \
|
| 509 |
|
|
(const VEC(T) *vec_ VEC_ASSERT_DECL) \
|
| 510 |
|
|
{ \
|
| 511 |
|
|
vec_assert (vec_ && vec_->num, "last"); \
|
| 512 |
|
|
\
|
| 513 |
|
|
return vec_->vec[vec_->num - 1]; \
|
| 514 |
|
|
} \
|
| 515 |
|
|
\
|
| 516 |
|
|
static inline T VEC_OP (T,index) \
|
| 517 |
|
|
(const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
|
| 518 |
|
|
{ \
|
| 519 |
|
|
vec_assert (vec_ && ix_ < vec_->num, "index"); \
|
| 520 |
|
|
\
|
| 521 |
|
|
return vec_->vec[ix_]; \
|
| 522 |
|
|
} \
|
| 523 |
|
|
\
|
| 524 |
|
|
static inline int VEC_OP (T,iterate) \
|
| 525 |
|
|
(const VEC(T) *vec_, unsigned ix_, T *ptr) \
|
| 526 |
|
|
{ \
|
| 527 |
|
|
if (vec_ && ix_ < vec_->num) \
|
| 528 |
|
|
{ \
|
| 529 |
|
|
*ptr = vec_->vec[ix_]; \
|
| 530 |
|
|
return 1; \
|
| 531 |
|
|
} \
|
| 532 |
|
|
else \
|
| 533 |
|
|
{ \
|
| 534 |
|
|
*ptr = 0; \
|
| 535 |
|
|
return 0; \
|
| 536 |
|
|
} \
|
| 537 |
|
|
} \
|
| 538 |
|
|
\
|
| 539 |
|
|
static inline size_t VEC_OP (T,embedded_size) \
|
| 540 |
|
|
(int alloc_) \
|
| 541 |
|
|
{ \
|
| 542 |
|
|
return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
|
| 543 |
|
|
} \
|
| 544 |
|
|
\
|
| 545 |
|
|
static inline void VEC_OP (T,embedded_init) \
|
| 546 |
|
|
(VEC(T) *vec_, int alloc_) \
|
| 547 |
|
|
{ \
|
| 548 |
|
|
vec_->num = 0; \
|
| 549 |
|
|
vec_->alloc = alloc_; \
|
| 550 |
|
|
} \
|
| 551 |
|
|
\
|
| 552 |
|
|
static inline int VEC_OP (T,space) \
|
| 553 |
|
|
(VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
|
| 554 |
|
|
{ \
|
| 555 |
|
|
vec_assert (alloc_ >= 0, "space"); \
|
| 556 |
|
|
return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
|
| 557 |
|
|
} \
|
| 558 |
|
|
\
|
| 559 |
|
|
static inline T *VEC_OP (T,quick_push) \
|
| 560 |
|
|
(VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \
|
| 561 |
|
|
{ \
|
| 562 |
|
|
T *slot_; \
|
| 563 |
|
|
\
|
| 564 |
|
|
vec_assert (vec_->num < vec_->alloc, "quick_push"); \
|
| 565 |
|
|
slot_ = &vec_->vec[vec_->num++]; \
|
| 566 |
|
|
*slot_ = obj_; \
|
| 567 |
|
|
\
|
| 568 |
|
|
return slot_; \
|
| 569 |
|
|
} \
|
| 570 |
|
|
\
|
| 571 |
|
|
static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
|
| 572 |
|
|
{ \
|
| 573 |
|
|
T obj_; \
|
| 574 |
|
|
\
|
| 575 |
|
|
vec_assert (vec_->num, "pop"); \
|
| 576 |
|
|
obj_ = vec_->vec[--vec_->num]; \
|
| 577 |
|
|
\
|
| 578 |
|
|
return obj_; \
|
| 579 |
|
|
} \
|
| 580 |
|
|
\
|
| 581 |
|
|
static inline void VEC_OP (T,truncate) \
|
| 582 |
|
|
(VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
|
| 583 |
|
|
{ \
|
| 584 |
|
|
vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
|
| 585 |
|
|
if (vec_) \
|
| 586 |
|
|
vec_->num = size_; \
|
| 587 |
|
|
} \
|
| 588 |
|
|
\
|
| 589 |
|
|
static inline T VEC_OP (T,replace) \
|
| 590 |
|
|
(VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
|
| 591 |
|
|
{ \
|
| 592 |
|
|
T old_obj_; \
|
| 593 |
|
|
\
|
| 594 |
|
|
vec_assert (ix_ < vec_->num, "replace"); \
|
| 595 |
|
|
old_obj_ = vec_->vec[ix_]; \
|
| 596 |
|
|
vec_->vec[ix_] = obj_; \
|
| 597 |
|
|
\
|
| 598 |
|
|
return old_obj_; \
|
| 599 |
|
|
} \
|
| 600 |
|
|
\
|
| 601 |
|
|
static inline T *VEC_OP (T,quick_insert) \
|
| 602 |
|
|
(VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
|
| 603 |
|
|
{ \
|
| 604 |
|
|
T *slot_; \
|
| 605 |
|
|
\
|
| 606 |
|
|
vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
|
| 607 |
|
|
slot_ = &vec_->vec[ix_]; \
|
| 608 |
|
|
memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
|
| 609 |
|
|
*slot_ = obj_; \
|
| 610 |
|
|
\
|
| 611 |
|
|
return slot_; \
|
| 612 |
|
|
} \
|
| 613 |
|
|
\
|
| 614 |
|
|
static inline T VEC_OP (T,ordered_remove) \
|
| 615 |
|
|
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
|
| 616 |
|
|
{ \
|
| 617 |
|
|
T *slot_; \
|
| 618 |
|
|
T obj_; \
|
| 619 |
|
|
\
|
| 620 |
|
|
vec_assert (ix_ < vec_->num, "ordered_remove"); \
|
| 621 |
|
|
slot_ = &vec_->vec[ix_]; \
|
| 622 |
|
|
obj_ = *slot_; \
|
| 623 |
|
|
memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
|
| 624 |
|
|
\
|
| 625 |
|
|
return obj_; \
|
| 626 |
|
|
} \
|
| 627 |
|
|
\
|
| 628 |
|
|
static inline T VEC_OP (T,unordered_remove) \
|
| 629 |
|
|
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
|
| 630 |
|
|
{ \
|
| 631 |
|
|
T *slot_; \
|
| 632 |
|
|
T obj_; \
|
| 633 |
|
|
\
|
| 634 |
|
|
vec_assert (ix_ < vec_->num, "unordered_remove"); \
|
| 635 |
|
|
slot_ = &vec_->vec[ix_]; \
|
| 636 |
|
|
obj_ = *slot_; \
|
| 637 |
|
|
*slot_ = vec_->vec[--vec_->num]; \
|
| 638 |
|
|
\
|
| 639 |
|
|
return obj_; \
|
| 640 |
|
|
} \
|
| 641 |
|
|
\
|
| 642 |
|
|
static inline void VEC_OP (T,block_remove) \
|
| 643 |
|
|
(VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
|
| 644 |
|
|
{ \
|
| 645 |
|
|
T *slot_; \
|
| 646 |
|
|
\
|
| 647 |
|
|
vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
|
| 648 |
|
|
slot_ = &vec_->vec[ix_]; \
|
| 649 |
|
|
vec_->num -= len_; \
|
| 650 |
|
|
memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
|
| 651 |
|
|
} \
|
| 652 |
|
|
\
|
| 653 |
|
|
static inline T *VEC_OP (T,address) \
|
| 654 |
|
|
(VEC(T) *vec_) \
|
| 655 |
|
|
{ \
|
| 656 |
|
|
return vec_ ? vec_->vec : 0; \
|
| 657 |
|
|
} \
|
| 658 |
|
|
\
|
| 659 |
|
|
static inline unsigned VEC_OP (T,lower_bound) \
|
| 660 |
|
|
(VEC(T) *vec_, const T obj_, \
|
| 661 |
|
|
int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \
|
| 662 |
|
|
{ \
|
| 663 |
|
|
unsigned int len_ = VEC_OP (T, length) (vec_); \
|
| 664 |
|
|
unsigned int half_, middle_; \
|
| 665 |
|
|
unsigned int first_ = 0; \
|
| 666 |
|
|
while (len_ > 0) \
|
| 667 |
|
|
{ \
|
| 668 |
|
|
T middle_elem_; \
|
| 669 |
|
|
half_ = len_ >> 1; \
|
| 670 |
|
|
middle_ = first_; \
|
| 671 |
|
|
middle_ += half_; \
|
| 672 |
|
|
middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
|
| 673 |
|
|
if (lessthan_ (middle_elem_, obj_)) \
|
| 674 |
|
|
{ \
|
| 675 |
|
|
first_ = middle_; \
|
| 676 |
|
|
++first_; \
|
| 677 |
|
|
len_ = len_ - half_ - 1; \
|
| 678 |
|
|
} \
|
| 679 |
|
|
else \
|
| 680 |
|
|
len_ = half_; \
|
| 681 |
|
|
} \
|
| 682 |
|
|
return first_; \
|
| 683 |
|
|
}
|
| 684 |
|
|
|
| 685 |
|
|
#define DEF_VEC_ALLOC_FUNC_P(T) \
|
| 686 |
|
|
static inline VEC(T) *VEC_OP (T,alloc) \
|
| 687 |
|
|
(int alloc_) \
|
| 688 |
|
|
{ \
|
| 689 |
|
|
/* We must request exact size allocation, hence the negation. */ \
|
| 690 |
|
|
return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \
|
| 691 |
|
|
} \
|
| 692 |
|
|
\
|
| 693 |
|
|
static inline void VEC_OP (T,free) \
|
| 694 |
|
|
(VEC(T) **vec_) \
|
| 695 |
|
|
{ \
|
| 696 |
|
|
if (*vec_) \
|
| 697 |
|
|
vec_free_ (*vec_); \
|
| 698 |
|
|
*vec_ = NULL; \
|
| 699 |
|
|
} \
|
| 700 |
|
|
\
|
| 701 |
|
|
static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
|
| 702 |
|
|
{ \
|
| 703 |
|
|
size_t len_ = vec_ ? vec_->num : 0; \
|
| 704 |
|
|
VEC (T) *new_vec_ = NULL; \
|
| 705 |
|
|
\
|
| 706 |
|
|
if (len_) \
|
| 707 |
|
|
{ \
|
| 708 |
|
|
/* We must request exact size allocation, hence the negation. */ \
|
| 709 |
|
|
new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \
|
| 710 |
|
|
\
|
| 711 |
|
|
new_vec_->num = len_; \
|
| 712 |
|
|
memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
|
| 713 |
|
|
} \
|
| 714 |
|
|
return new_vec_; \
|
| 715 |
|
|
} \
|
| 716 |
|
|
\
|
| 717 |
|
|
static inline int VEC_OP (T,reserve) \
|
| 718 |
|
|
(VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
|
| 719 |
|
|
{ \
|
| 720 |
|
|
int extend = !VEC_OP (T,space) \
|
| 721 |
|
|
(*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
|
| 722 |
|
|
\
|
| 723 |
|
|
if (extend) \
|
| 724 |
|
|
*vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \
|
| 725 |
|
|
\
|
| 726 |
|
|
return extend; \
|
| 727 |
|
|
} \
|
| 728 |
|
|
\
|
| 729 |
|
|
static inline void VEC_OP (T,safe_grow) \
|
| 730 |
|
|
(VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
|
| 731 |
|
|
{ \
|
| 732 |
|
|
vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
|
| 733 |
|
|
"safe_grow"); \
|
| 734 |
|
|
VEC_OP (T,reserve) \
|
| 735 |
|
|
(vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
|
| 736 |
|
|
(*vec_)->num = size_; \
|
| 737 |
|
|
} \
|
| 738 |
|
|
\
|
| 739 |
|
|
static inline T *VEC_OP (T,safe_push) \
|
| 740 |
|
|
(VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \
|
| 741 |
|
|
{ \
|
| 742 |
|
|
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
|
| 743 |
|
|
\
|
| 744 |
|
|
return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
|
| 745 |
|
|
} \
|
| 746 |
|
|
\
|
| 747 |
|
|
static inline T *VEC_OP (T,safe_insert) \
|
| 748 |
|
|
(VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
|
| 749 |
|
|
{ \
|
| 750 |
|
|
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
|
| 751 |
|
|
\
|
| 752 |
|
|
return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
|
| 753 |
|
|
}
|
| 754 |
|
|
|
| 755 |
|
|
#define DEF_VEC_FUNC_O(T) \
|
| 756 |
|
|
static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
|
| 757 |
|
|
{ \
|
| 758 |
|
|
return vec_ ? vec_->num : 0; \
|
| 759 |
|
|
} \
|
| 760 |
|
|
\
|
| 761 |
|
|
static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \
|
| 762 |
|
|
{ \
|
| 763 |
|
|
vec_assert (vec_ && vec_->num, "last"); \
|
| 764 |
|
|
\
|
| 765 |
|
|
return &vec_->vec[vec_->num - 1]; \
|
| 766 |
|
|
} \
|
| 767 |
|
|
\
|
| 768 |
|
|
static inline T *VEC_OP (T,index) \
|
| 769 |
|
|
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
|
| 770 |
|
|
{ \
|
| 771 |
|
|
vec_assert (vec_ && ix_ < vec_->num, "index"); \
|
| 772 |
|
|
\
|
| 773 |
|
|
return &vec_->vec[ix_]; \
|
| 774 |
|
|
} \
|
| 775 |
|
|
\
|
| 776 |
|
|
static inline int VEC_OP (T,iterate) \
|
| 777 |
|
|
(VEC(T) *vec_, unsigned ix_, T **ptr) \
|
| 778 |
|
|
{ \
|
| 779 |
|
|
if (vec_ && ix_ < vec_->num) \
|
| 780 |
|
|
{ \
|
| 781 |
|
|
*ptr = &vec_->vec[ix_]; \
|
| 782 |
|
|
return 1; \
|
| 783 |
|
|
} \
|
| 784 |
|
|
else \
|
| 785 |
|
|
{ \
|
| 786 |
|
|
*ptr = 0; \
|
| 787 |
|
|
return 0; \
|
| 788 |
|
|
} \
|
| 789 |
|
|
} \
|
| 790 |
|
|
\
|
| 791 |
|
|
static inline size_t VEC_OP (T,embedded_size) \
|
| 792 |
|
|
(int alloc_) \
|
| 793 |
|
|
{ \
|
| 794 |
|
|
return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
|
| 795 |
|
|
} \
|
| 796 |
|
|
\
|
| 797 |
|
|
static inline void VEC_OP (T,embedded_init) \
|
| 798 |
|
|
(VEC(T) *vec_, int alloc_) \
|
| 799 |
|
|
{ \
|
| 800 |
|
|
vec_->num = 0; \
|
| 801 |
|
|
vec_->alloc = alloc_; \
|
| 802 |
|
|
} \
|
| 803 |
|
|
\
|
| 804 |
|
|
static inline int VEC_OP (T,space) \
|
| 805 |
|
|
(VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
|
| 806 |
|
|
{ \
|
| 807 |
|
|
vec_assert (alloc_ >= 0, "space"); \
|
| 808 |
|
|
return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
|
| 809 |
|
|
} \
|
| 810 |
|
|
\
|
| 811 |
|
|
static inline T *VEC_OP (T,quick_push) \
|
| 812 |
|
|
(VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \
|
| 813 |
|
|
{ \
|
| 814 |
|
|
T *slot_; \
|
| 815 |
|
|
\
|
| 816 |
|
|
vec_assert (vec_->num < vec_->alloc, "quick_push"); \
|
| 817 |
|
|
slot_ = &vec_->vec[vec_->num++]; \
|
| 818 |
|
|
if (obj_) \
|
| 819 |
|
|
*slot_ = *obj_; \
|
| 820 |
|
|
\
|
| 821 |
|
|
return slot_; \
|
| 822 |
|
|
} \
|
| 823 |
|
|
\
|
| 824 |
|
|
static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
|
| 825 |
|
|
{ \
|
| 826 |
|
|
vec_assert (vec_->num, "pop"); \
|
| 827 |
|
|
--vec_->num; \
|
| 828 |
|
|
} \
|
| 829 |
|
|
\
|
| 830 |
|
|
static inline void VEC_OP (T,truncate) \
|
| 831 |
|
|
(VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
|
| 832 |
|
|
{ \
|
| 833 |
|
|
vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
|
| 834 |
|
|
if (vec_) \
|
| 835 |
|
|
vec_->num = size_; \
|
| 836 |
|
|
} \
|
| 837 |
|
|
\
|
| 838 |
|
|
static inline T *VEC_OP (T,replace) \
|
| 839 |
|
|
(VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
|
| 840 |
|
|
{ \
|
| 841 |
|
|
T *slot_; \
|
| 842 |
|
|
\
|
| 843 |
|
|
vec_assert (ix_ < vec_->num, "replace"); \
|
| 844 |
|
|
slot_ = &vec_->vec[ix_]; \
|
| 845 |
|
|
if (obj_) \
|
| 846 |
|
|
*slot_ = *obj_; \
|
| 847 |
|
|
\
|
| 848 |
|
|
return slot_; \
|
| 849 |
|
|
} \
|
| 850 |
|
|
\
|
| 851 |
|
|
static inline T *VEC_OP (T,quick_insert) \
|
| 852 |
|
|
(VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
|
| 853 |
|
|
{ \
|
| 854 |
|
|
T *slot_; \
|
| 855 |
|
|
\
|
| 856 |
|
|
vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
|
| 857 |
|
|
slot_ = &vec_->vec[ix_]; \
|
| 858 |
|
|
memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
|
| 859 |
|
|
if (obj_) \
|
| 860 |
|
|
*slot_ = *obj_; \
|
| 861 |
|
|
\
|
| 862 |
|
|
return slot_; \
|
| 863 |
|
|
} \
|
| 864 |
|
|
\
|
| 865 |
|
|
static inline void VEC_OP (T,ordered_remove) \
|
| 866 |
|
|
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
|
| 867 |
|
|
{ \
|
| 868 |
|
|
T *slot_; \
|
| 869 |
|
|
\
|
| 870 |
|
|
vec_assert (ix_ < vec_->num, "ordered_remove"); \
|
| 871 |
|
|
slot_ = &vec_->vec[ix_]; \
|
| 872 |
|
|
memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
|
| 873 |
|
|
} \
|
| 874 |
|
|
\
|
| 875 |
|
|
static inline void VEC_OP (T,unordered_remove) \
|
| 876 |
|
|
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
|
| 877 |
|
|
{ \
|
| 878 |
|
|
vec_assert (ix_ < vec_->num, "unordered_remove"); \
|
| 879 |
|
|
vec_->vec[ix_] = vec_->vec[--vec_->num]; \
|
| 880 |
|
|
} \
|
| 881 |
|
|
\
|
| 882 |
|
|
static inline void VEC_OP (T,block_remove) \
|
| 883 |
|
|
(VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
|
| 884 |
|
|
{ \
|
| 885 |
|
|
T *slot_; \
|
| 886 |
|
|
\
|
| 887 |
|
|
vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
|
| 888 |
|
|
slot_ = &vec_->vec[ix_]; \
|
| 889 |
|
|
vec_->num -= len_; \
|
| 890 |
|
|
memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
|
| 891 |
|
|
} \
|
| 892 |
|
|
\
|
| 893 |
|
|
static inline T *VEC_OP (T,address) \
|
| 894 |
|
|
(VEC(T) *vec_) \
|
| 895 |
|
|
{ \
|
| 896 |
|
|
return vec_ ? vec_->vec : 0; \
|
| 897 |
|
|
} \
|
| 898 |
|
|
\
|
| 899 |
|
|
static inline unsigned VEC_OP (T,lower_bound) \
|
| 900 |
|
|
(VEC(T) *vec_, const T *obj_, \
|
| 901 |
|
|
int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \
|
| 902 |
|
|
{ \
|
| 903 |
|
|
unsigned int len_ = VEC_OP (T, length) (vec_); \
|
| 904 |
|
|
unsigned int half_, middle_; \
|
| 905 |
|
|
unsigned int first_ = 0; \
|
| 906 |
|
|
while (len_ > 0) \
|
| 907 |
|
|
{ \
|
| 908 |
|
|
T *middle_elem_; \
|
| 909 |
|
|
half_ = len_ >> 1; \
|
| 910 |
|
|
middle_ = first_; \
|
| 911 |
|
|
middle_ += half_; \
|
| 912 |
|
|
middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
|
| 913 |
|
|
if (lessthan_ (middle_elem_, obj_)) \
|
| 914 |
|
|
{ \
|
| 915 |
|
|
first_ = middle_; \
|
| 916 |
|
|
++first_; \
|
| 917 |
|
|
len_ = len_ - half_ - 1; \
|
| 918 |
|
|
} \
|
| 919 |
|
|
else \
|
| 920 |
|
|
len_ = half_; \
|
| 921 |
|
|
} \
|
| 922 |
|
|
return first_; \
|
| 923 |
|
|
}
|
| 924 |
|
|
|
| 925 |
|
|
#define DEF_VEC_ALLOC_FUNC_O(T) \
|
| 926 |
|
|
static inline VEC(T) *VEC_OP (T,alloc) \
|
| 927 |
|
|
(int alloc_) \
|
| 928 |
|
|
{ \
|
| 929 |
|
|
/* We must request exact size allocation, hence the negation. */ \
|
| 930 |
|
|
return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
|
| 931 |
|
|
offsetof (VEC(T),vec), sizeof (T)); \
|
| 932 |
|
|
} \
|
| 933 |
|
|
\
|
| 934 |
|
|
static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
|
| 935 |
|
|
{ \
|
| 936 |
|
|
size_t len_ = vec_ ? vec_->num : 0; \
|
| 937 |
|
|
VEC (T) *new_vec_ = NULL; \
|
| 938 |
|
|
\
|
| 939 |
|
|
if (len_) \
|
| 940 |
|
|
{ \
|
| 941 |
|
|
/* We must request exact size allocation, hence the negation. */ \
|
| 942 |
|
|
new_vec_ = (VEC (T) *) \
|
| 943 |
|
|
vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
|
| 944 |
|
|
\
|
| 945 |
|
|
new_vec_->num = len_; \
|
| 946 |
|
|
memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
|
| 947 |
|
|
} \
|
| 948 |
|
|
return new_vec_; \
|
| 949 |
|
|
} \
|
| 950 |
|
|
\
|
| 951 |
|
|
static inline void VEC_OP (T,free) \
|
| 952 |
|
|
(VEC(T) **vec_) \
|
| 953 |
|
|
{ \
|
| 954 |
|
|
if (*vec_) \
|
| 955 |
|
|
vec_free_ (*vec_); \
|
| 956 |
|
|
*vec_ = NULL; \
|
| 957 |
|
|
} \
|
| 958 |
|
|
\
|
| 959 |
|
|
static inline int VEC_OP (T,reserve) \
|
| 960 |
|
|
(VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
|
| 961 |
|
|
{ \
|
| 962 |
|
|
int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \
|
| 963 |
|
|
VEC_ASSERT_PASS); \
|
| 964 |
|
|
\
|
| 965 |
|
|
if (extend) \
|
| 966 |
|
|
*vec_ = (VEC(T) *) \
|
| 967 |
|
|
vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \
|
| 968 |
|
|
\
|
| 969 |
|
|
return extend; \
|
| 970 |
|
|
} \
|
| 971 |
|
|
\
|
| 972 |
|
|
static inline void VEC_OP (T,safe_grow) \
|
| 973 |
|
|
(VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
|
| 974 |
|
|
{ \
|
| 975 |
|
|
vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
|
| 976 |
|
|
"safe_grow"); \
|
| 977 |
|
|
VEC_OP (T,reserve) \
|
| 978 |
|
|
(vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
|
| 979 |
|
|
(*vec_)->num = size_; \
|
| 980 |
|
|
} \
|
| 981 |
|
|
\
|
| 982 |
|
|
static inline T *VEC_OP (T,safe_push) \
|
| 983 |
|
|
(VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \
|
| 984 |
|
|
{ \
|
| 985 |
|
|
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
|
| 986 |
|
|
\
|
| 987 |
|
|
return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
|
| 988 |
|
|
} \
|
| 989 |
|
|
\
|
| 990 |
|
|
static inline T *VEC_OP (T,safe_insert) \
|
| 991 |
|
|
(VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
|
| 992 |
|
|
{ \
|
| 993 |
|
|
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
|
| 994 |
|
|
\
|
| 995 |
|
|
return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
|
| 996 |
|
|
}
|
| 997 |
|
|
|
| 998 |
|
|
#endif /* GDB_VEC_H */
|