1 |
24 |
jeremybenn |
/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2003, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
19 |
|
|
|
20 |
|
|
#include "defs.h"
|
21 |
|
|
#include "frame.h"
|
22 |
|
|
#include "symtab.h"
|
23 |
|
|
#include "symfile.h"
|
24 |
|
|
#include "objfiles.h"
|
25 |
|
|
#include "gdbtypes.h"
|
26 |
|
|
#include "gdbcore.h"
|
27 |
|
|
#include "value.h"
|
28 |
|
|
#include "dis-asm.h"
|
29 |
|
|
#include "inferior.h"
|
30 |
|
|
#include "floatformat.h"
|
31 |
|
|
#include "regcache.h"
|
32 |
|
|
#include "reggroups.h"
|
33 |
|
|
#include "regset.h"
|
34 |
|
|
|
35 |
|
|
#include "dummy-frame.h"
|
36 |
|
|
#include "elf/dwarf2.h"
|
37 |
|
|
#include "dwarf2-frame.h"
|
38 |
|
|
#include "dwarf2loc.h"
|
39 |
|
|
#include "frame.h"
|
40 |
|
|
#include "frame-base.h"
|
41 |
|
|
#include "frame-unwind.h"
|
42 |
|
|
|
43 |
|
|
#include "arch-utils.h"
|
44 |
|
|
#include "gdbarch.h"
|
45 |
|
|
#include "remote.h"
|
46 |
|
|
#include "serial.h"
|
47 |
|
|
|
48 |
|
|
#include "command.h"
|
49 |
|
|
#include "gdbcmd.h"
|
50 |
|
|
#include "gdb_assert.h"
|
51 |
|
|
|
52 |
|
|
#include "xtensa-isa.h"
|
53 |
|
|
#include "xtensa-tdep.h"
|
54 |
|
|
#include "xtensa-config.h"
|
55 |
|
|
|
56 |
|
|
|
57 |
|
|
static int xtensa_debug_level = 0;
|
58 |
|
|
|
59 |
|
|
#define DEBUGWARN(args...) \
|
60 |
|
|
if (xtensa_debug_level > 0) \
|
61 |
|
|
fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
|
62 |
|
|
|
63 |
|
|
#define DEBUGINFO(args...) \
|
64 |
|
|
if (xtensa_debug_level > 1) \
|
65 |
|
|
fprintf_unfiltered (gdb_stdlog, "(info ) " args)
|
66 |
|
|
|
67 |
|
|
#define DEBUGTRACE(args...) \
|
68 |
|
|
if (xtensa_debug_level > 2) \
|
69 |
|
|
fprintf_unfiltered (gdb_stdlog, "(trace) " args)
|
70 |
|
|
|
71 |
|
|
#define DEBUGVERB(args...) \
|
72 |
|
|
if (xtensa_debug_level > 3) \
|
73 |
|
|
fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
|
74 |
|
|
|
75 |
|
|
|
76 |
|
|
/* According to the ABI, the SP must be aligned to 16-byte boundaries. */
|
77 |
|
|
#define SP_ALIGNMENT 16
|
78 |
|
|
|
79 |
|
|
|
80 |
|
|
/* On Windowed ABI, we use a6 through a11 for passing arguments
|
81 |
|
|
to a function called by GDB because CALL4 is used. */
|
82 |
|
|
#define ARGS_NUM_REGS 6
|
83 |
|
|
#define REGISTER_SIZE 4
|
84 |
|
|
|
85 |
|
|
|
86 |
|
|
/* Extract the call size from the return address or PS register. */
|
87 |
|
|
#define PS_CALLINC_SHIFT 16
|
88 |
|
|
#define PS_CALLINC_MASK 0x00030000
|
89 |
|
|
#define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
|
90 |
|
|
#define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
|
91 |
|
|
|
92 |
|
|
/* ABI-independent macros. */
|
93 |
|
|
#define ARG_NOF(gdbarch) \
|
94 |
|
|
(gdbarch_tdep (gdbarch)->call_abi \
|
95 |
|
|
== CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
|
96 |
|
|
#define ARG_1ST(gdbarch) \
|
97 |
|
|
(gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
|
98 |
|
|
? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
|
99 |
|
|
: (gdbarch_tdep (gdbarch)->a0_base + 6))
|
100 |
|
|
|
101 |
|
|
/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
|
102 |
|
|
indicates that the instruction is an ENTRY instruction. */
|
103 |
|
|
|
104 |
|
|
#define XTENSA_IS_ENTRY(gdbarch, op1) \
|
105 |
|
|
((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
|
106 |
|
|
? ((op1) == 0x6c) : ((op1) == 0x36))
|
107 |
|
|
|
108 |
|
|
#define XTENSA_ENTRY_LENGTH 3
|
109 |
|
|
|
110 |
|
|
/* windowing_enabled() returns true, if windowing is enabled.
|
111 |
|
|
WOE must be set to 1; EXCM to 0.
|
112 |
|
|
Note: We assume that EXCM is always 0 for XEA1. */
|
113 |
|
|
|
114 |
|
|
#define PS_WOE (1<<18)
|
115 |
|
|
#define PS_EXC (1<<4)
|
116 |
|
|
|
117 |
|
|
/* Convert a live Ax register number to the corresponding Areg number. */
|
118 |
|
|
static int
|
119 |
|
|
areg_number (struct gdbarch *gdbarch, int regnum, ULONGEST wb)
|
120 |
|
|
{
|
121 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
122 |
|
|
int areg;
|
123 |
|
|
|
124 |
|
|
areg = regnum - tdep->a0_base;
|
125 |
|
|
areg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
|
126 |
|
|
areg &= tdep->num_aregs - 1;
|
127 |
|
|
|
128 |
|
|
return areg + tdep->ar_base;
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
static inline int
|
132 |
|
|
windowing_enabled (CORE_ADDR ps)
|
133 |
|
|
{
|
134 |
|
|
return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
|
135 |
|
|
}
|
136 |
|
|
|
137 |
|
|
/* Return the window size of the previous call to the function from which we
|
138 |
|
|
have just returned.
|
139 |
|
|
|
140 |
|
|
This function is used to extract the return value after a called function
|
141 |
|
|
has returned to the caller. On Xtensa, the register that holds the return
|
142 |
|
|
value (from the perspective of the caller) depends on what call
|
143 |
|
|
instruction was used. For now, we are assuming that the call instruction
|
144 |
|
|
precedes the current address, so we simply analyze the call instruction.
|
145 |
|
|
If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
|
146 |
|
|
method to call the inferior function. */
|
147 |
|
|
|
148 |
|
|
static int
|
149 |
|
|
extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
|
150 |
|
|
{
|
151 |
|
|
int winsize = 4;
|
152 |
|
|
int insn;
|
153 |
|
|
gdb_byte buf[4];
|
154 |
|
|
|
155 |
|
|
DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
|
156 |
|
|
|
157 |
|
|
/* Read the previous instruction (should be a call[x]{4|8|12}. */
|
158 |
|
|
read_memory (pc-3, buf, 3);
|
159 |
|
|
insn = extract_unsigned_integer (buf, 3);
|
160 |
|
|
|
161 |
|
|
/* Decode call instruction:
|
162 |
|
|
Little Endian
|
163 |
|
|
call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
|
164 |
|
|
callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
|
165 |
|
|
Big Endian
|
166 |
|
|
call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
|
167 |
|
|
callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
|
168 |
|
|
|
169 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
170 |
|
|
{
|
171 |
|
|
if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
|
172 |
|
|
winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
|
173 |
|
|
}
|
174 |
|
|
else
|
175 |
|
|
{
|
176 |
|
|
if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
|
177 |
|
|
winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
|
178 |
|
|
}
|
179 |
|
|
return winsize;
|
180 |
|
|
}
|
181 |
|
|
|
182 |
|
|
|
183 |
|
|
/* REGISTER INFORMATION */
|
184 |
|
|
|
185 |
|
|
/* Returns the name of a register. */
|
186 |
|
|
static const char *
|
187 |
|
|
xtensa_register_name (struct gdbarch *gdbarch, int regnum)
|
188 |
|
|
{
|
189 |
|
|
/* Return the name stored in the register map. */
|
190 |
|
|
if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
|
191 |
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
192 |
|
|
return gdbarch_tdep (gdbarch)->regmap[regnum].name;
|
193 |
|
|
|
194 |
|
|
internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
|
195 |
|
|
return 0;
|
196 |
|
|
}
|
197 |
|
|
|
198 |
|
|
static unsigned long
|
199 |
|
|
xtensa_read_register (int regnum)
|
200 |
|
|
{
|
201 |
|
|
ULONGEST value;
|
202 |
|
|
|
203 |
|
|
regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
|
204 |
|
|
return (unsigned long) value;
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
/* Return the type of a register. Create a new type, if necessary. */
|
208 |
|
|
|
209 |
|
|
static struct ctype_cache
|
210 |
|
|
{
|
211 |
|
|
struct ctype_cache *next;
|
212 |
|
|
int size;
|
213 |
|
|
struct type *virtual_type;
|
214 |
|
|
} *type_entries = NULL;
|
215 |
|
|
|
216 |
|
|
static struct type *
|
217 |
|
|
xtensa_register_type (struct gdbarch *gdbarch, int regnum)
|
218 |
|
|
{
|
219 |
|
|
/* Return signed integer for ARx and Ax registers. */
|
220 |
|
|
if ((regnum >= gdbarch_tdep (gdbarch)->ar_base
|
221 |
|
|
&& regnum < gdbarch_tdep (gdbarch)->ar_base
|
222 |
|
|
+ gdbarch_tdep (gdbarch)->num_aregs)
|
223 |
|
|
|| (regnum >= gdbarch_tdep (gdbarch)->a0_base
|
224 |
|
|
&& regnum < gdbarch_tdep (gdbarch)->a0_base + 16))
|
225 |
|
|
return builtin_type_int;
|
226 |
|
|
|
227 |
|
|
if (regnum == gdbarch_pc_regnum (gdbarch)
|
228 |
|
|
|| regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
|
229 |
|
|
return lookup_pointer_type (builtin_type_void);
|
230 |
|
|
|
231 |
|
|
/* Return the stored type for all other registers. */
|
232 |
|
|
else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
|
233 |
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
234 |
|
|
{
|
235 |
|
|
xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
|
236 |
|
|
|
237 |
|
|
/* Set ctype for this register (only the first time). */
|
238 |
|
|
|
239 |
|
|
if (reg->ctype == 0)
|
240 |
|
|
{
|
241 |
|
|
struct ctype_cache *tp;
|
242 |
|
|
int size = reg->byte_size;
|
243 |
|
|
|
244 |
|
|
/* We always use the memory representation,
|
245 |
|
|
even if the register width is smaller. */
|
246 |
|
|
switch (size)
|
247 |
|
|
{
|
248 |
|
|
case 1:
|
249 |
|
|
reg->ctype = builtin_type_uint8;
|
250 |
|
|
break;
|
251 |
|
|
|
252 |
|
|
case 2:
|
253 |
|
|
reg->ctype = builtin_type_uint16;
|
254 |
|
|
break;
|
255 |
|
|
|
256 |
|
|
case 4:
|
257 |
|
|
reg->ctype = builtin_type_uint32;
|
258 |
|
|
break;
|
259 |
|
|
|
260 |
|
|
case 8:
|
261 |
|
|
reg->ctype = builtin_type_uint64;
|
262 |
|
|
break;
|
263 |
|
|
|
264 |
|
|
case 16:
|
265 |
|
|
reg->ctype = builtin_type_uint128;
|
266 |
|
|
break;
|
267 |
|
|
|
268 |
|
|
default:
|
269 |
|
|
for (tp = type_entries; tp != NULL; tp = tp->next)
|
270 |
|
|
if (tp->size == size)
|
271 |
|
|
break;
|
272 |
|
|
|
273 |
|
|
if (tp == NULL)
|
274 |
|
|
{
|
275 |
|
|
char *name = xmalloc (16);
|
276 |
|
|
tp = xmalloc (sizeof (struct ctype_cache));
|
277 |
|
|
tp->next = type_entries;
|
278 |
|
|
type_entries = tp;
|
279 |
|
|
tp->size = size;
|
280 |
|
|
|
281 |
|
|
sprintf (name, "int%d", size * 8);
|
282 |
|
|
tp->virtual_type = init_type (TYPE_CODE_INT, size,
|
283 |
|
|
TYPE_FLAG_UNSIGNED, name,
|
284 |
|
|
NULL);
|
285 |
|
|
}
|
286 |
|
|
|
287 |
|
|
reg->ctype = tp->virtual_type;
|
288 |
|
|
}
|
289 |
|
|
}
|
290 |
|
|
return reg->ctype;
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
|
294 |
|
|
return 0;
|
295 |
|
|
}
|
296 |
|
|
|
297 |
|
|
|
298 |
|
|
/* Return the 'local' register number for stubs, dwarf2, etc.
|
299 |
|
|
The debugging information enumerates registers starting from 0 for A0
|
300 |
|
|
to n for An. So, we only have to add the base number for A0. */
|
301 |
|
|
|
302 |
|
|
static int
|
303 |
|
|
xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
|
304 |
|
|
{
|
305 |
|
|
int i;
|
306 |
|
|
|
307 |
|
|
if (regnum >= 0 && regnum < 16)
|
308 |
|
|
return gdbarch_tdep (gdbarch)->a0_base + regnum;
|
309 |
|
|
|
310 |
|
|
for (i = 0;
|
311 |
|
|
i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
|
312 |
|
|
i++)
|
313 |
|
|
if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
|
314 |
|
|
return i;
|
315 |
|
|
|
316 |
|
|
internal_error (__FILE__, __LINE__,
|
317 |
|
|
_("invalid dwarf/stabs register number %d"), regnum);
|
318 |
|
|
return 0;
|
319 |
|
|
}
|
320 |
|
|
|
321 |
|
|
|
322 |
|
|
/* Write the bits of a masked register to the various registers.
|
323 |
|
|
Only the masked areas of these registers are modified; the other
|
324 |
|
|
fields are untouched. The size of masked registers is always less
|
325 |
|
|
than or equal to 32 bits. */
|
326 |
|
|
|
327 |
|
|
static void
|
328 |
|
|
xtensa_register_write_masked (struct regcache *regcache,
|
329 |
|
|
xtensa_register_t *reg, const gdb_byte *buffer)
|
330 |
|
|
{
|
331 |
|
|
unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
|
332 |
|
|
const xtensa_mask_t *mask = reg->mask;
|
333 |
|
|
|
334 |
|
|
int shift = 0; /* Shift for next mask (mod 32). */
|
335 |
|
|
int start, size; /* Start bit and size of current mask. */
|
336 |
|
|
|
337 |
|
|
unsigned int *ptr = value;
|
338 |
|
|
unsigned int regval, m, mem = 0;
|
339 |
|
|
|
340 |
|
|
int bytesize = reg->byte_size;
|
341 |
|
|
int bitsize = bytesize * 8;
|
342 |
|
|
int i, r;
|
343 |
|
|
|
344 |
|
|
DEBUGTRACE ("xtensa_register_write_masked ()\n");
|
345 |
|
|
|
346 |
|
|
/* Copy the masked register to host byte-order. */
|
347 |
|
|
if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
|
348 |
|
|
for (i = 0; i < bytesize; i++)
|
349 |
|
|
{
|
350 |
|
|
mem >>= 8;
|
351 |
|
|
mem |= (buffer[bytesize - i - 1] << 24);
|
352 |
|
|
if ((i & 3) == 3)
|
353 |
|
|
*ptr++ = mem;
|
354 |
|
|
}
|
355 |
|
|
else
|
356 |
|
|
for (i = 0; i < bytesize; i++)
|
357 |
|
|
{
|
358 |
|
|
mem >>= 8;
|
359 |
|
|
mem |= (buffer[i] << 24);
|
360 |
|
|
if ((i & 3) == 3)
|
361 |
|
|
*ptr++ = mem;
|
362 |
|
|
}
|
363 |
|
|
|
364 |
|
|
/* We might have to shift the final value:
|
365 |
|
|
bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
|
366 |
|
|
bytesize & 3 == x -> shift (4-x) * 8. */
|
367 |
|
|
|
368 |
|
|
*ptr = mem >> (((0 - bytesize) & 3) * 8);
|
369 |
|
|
ptr = value;
|
370 |
|
|
mem = *ptr;
|
371 |
|
|
|
372 |
|
|
/* Write the bits to the masked areas of the other registers. */
|
373 |
|
|
for (i = 0; i < mask->count; i++)
|
374 |
|
|
{
|
375 |
|
|
start = mask->mask[i].bit_start;
|
376 |
|
|
size = mask->mask[i].bit_size;
|
377 |
|
|
regval = mem >> shift;
|
378 |
|
|
|
379 |
|
|
if ((shift += size) > bitsize)
|
380 |
|
|
error (_("size of all masks is larger than the register"));
|
381 |
|
|
|
382 |
|
|
if (shift >= 32)
|
383 |
|
|
{
|
384 |
|
|
mem = *(++ptr);
|
385 |
|
|
shift -= 32;
|
386 |
|
|
bitsize -= 32;
|
387 |
|
|
|
388 |
|
|
if (shift > 0)
|
389 |
|
|
regval |= mem << (size - shift);
|
390 |
|
|
}
|
391 |
|
|
|
392 |
|
|
/* Make sure we have a valid register. */
|
393 |
|
|
r = mask->mask[i].reg_num;
|
394 |
|
|
if (r >= 0 && size > 0)
|
395 |
|
|
{
|
396 |
|
|
/* Don't overwrite the unmasked areas. */
|
397 |
|
|
ULONGEST old_val;
|
398 |
|
|
regcache_cooked_read_unsigned (regcache, r, &old_val);
|
399 |
|
|
m = 0xffffffff >> (32 - size) << start;
|
400 |
|
|
regval <<= start;
|
401 |
|
|
regval = (regval & m) | (old_val & ~m);
|
402 |
|
|
regcache_cooked_write_unsigned (regcache, r, regval);
|
403 |
|
|
}
|
404 |
|
|
}
|
405 |
|
|
}
|
406 |
|
|
|
407 |
|
|
|
408 |
|
|
/* Read a tie state or mapped registers. Read the masked areas
|
409 |
|
|
of the registers and assemble them into a single value. */
|
410 |
|
|
|
411 |
|
|
static void
|
412 |
|
|
xtensa_register_read_masked (struct regcache *regcache,
|
413 |
|
|
xtensa_register_t *reg, gdb_byte *buffer)
|
414 |
|
|
{
|
415 |
|
|
unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
|
416 |
|
|
const xtensa_mask_t *mask = reg->mask;
|
417 |
|
|
|
418 |
|
|
int shift = 0;
|
419 |
|
|
int start, size;
|
420 |
|
|
|
421 |
|
|
unsigned int *ptr = value;
|
422 |
|
|
unsigned int regval, mem = 0;
|
423 |
|
|
|
424 |
|
|
int bytesize = reg->byte_size;
|
425 |
|
|
int bitsize = bytesize * 8;
|
426 |
|
|
int i;
|
427 |
|
|
|
428 |
|
|
DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
|
429 |
|
|
reg->name == 0 ? "" : reg->name);
|
430 |
|
|
|
431 |
|
|
/* Assemble the register from the masked areas of other registers. */
|
432 |
|
|
for (i = 0; i < mask->count; i++)
|
433 |
|
|
{
|
434 |
|
|
int r = mask->mask[i].reg_num;
|
435 |
|
|
if (r >= 0)
|
436 |
|
|
{
|
437 |
|
|
ULONGEST val;
|
438 |
|
|
regcache_cooked_read_unsigned (regcache, r, &val);
|
439 |
|
|
regval = (unsigned int) val;
|
440 |
|
|
}
|
441 |
|
|
else
|
442 |
|
|
regval = 0;
|
443 |
|
|
|
444 |
|
|
start = mask->mask[i].bit_start;
|
445 |
|
|
size = mask->mask[i].bit_size;
|
446 |
|
|
|
447 |
|
|
regval >>= start;
|
448 |
|
|
|
449 |
|
|
if (size < 32)
|
450 |
|
|
regval &= (0xffffffff >> (32 - size));
|
451 |
|
|
|
452 |
|
|
mem |= regval << shift;
|
453 |
|
|
|
454 |
|
|
if ((shift += size) > bitsize)
|
455 |
|
|
error (_("size of all masks is larger than the register"));
|
456 |
|
|
|
457 |
|
|
if (shift >= 32)
|
458 |
|
|
{
|
459 |
|
|
*ptr++ = mem;
|
460 |
|
|
bitsize -= 32;
|
461 |
|
|
shift -= 32;
|
462 |
|
|
|
463 |
|
|
if (shift == 0)
|
464 |
|
|
mem = 0;
|
465 |
|
|
else
|
466 |
|
|
mem = regval >> (size - shift);
|
467 |
|
|
}
|
468 |
|
|
}
|
469 |
|
|
|
470 |
|
|
if (shift > 0)
|
471 |
|
|
*ptr = mem;
|
472 |
|
|
|
473 |
|
|
/* Copy value to target byte order. */
|
474 |
|
|
ptr = value;
|
475 |
|
|
mem = *ptr;
|
476 |
|
|
|
477 |
|
|
if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
|
478 |
|
|
for (i = 0; i < bytesize; i++)
|
479 |
|
|
{
|
480 |
|
|
if ((i & 3) == 0)
|
481 |
|
|
mem = *ptr++;
|
482 |
|
|
buffer[bytesize - i - 1] = mem & 0xff;
|
483 |
|
|
mem >>= 8;
|
484 |
|
|
}
|
485 |
|
|
else
|
486 |
|
|
for (i = 0; i < bytesize; i++)
|
487 |
|
|
{
|
488 |
|
|
if ((i & 3) == 0)
|
489 |
|
|
mem = *ptr++;
|
490 |
|
|
buffer[i] = mem & 0xff;
|
491 |
|
|
mem >>= 8;
|
492 |
|
|
}
|
493 |
|
|
}
|
494 |
|
|
|
495 |
|
|
|
496 |
|
|
/* Read pseudo registers. */
|
497 |
|
|
|
498 |
|
|
static void
|
499 |
|
|
xtensa_pseudo_register_read (struct gdbarch *gdbarch,
|
500 |
|
|
struct regcache *regcache,
|
501 |
|
|
int regnum,
|
502 |
|
|
gdb_byte *buffer)
|
503 |
|
|
{
|
504 |
|
|
DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
|
505 |
|
|
regnum, xtensa_register_name (gdbarch, regnum));
|
506 |
|
|
|
507 |
|
|
if (regnum == gdbarch_num_regs (gdbarch)
|
508 |
|
|
+ gdbarch_num_pseudo_regs (gdbarch) - 1)
|
509 |
|
|
regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
|
510 |
|
|
|
511 |
|
|
/* Read aliases a0..a15, if this is a Windowed ABI. */
|
512 |
|
|
if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
|
513 |
|
|
&& (regnum >= gdbarch_tdep (gdbarch)->a0_base)
|
514 |
|
|
&& (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
|
515 |
|
|
{
|
516 |
|
|
gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
|
517 |
|
|
|
518 |
|
|
regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
|
519 |
|
|
regnum = areg_number (gdbarch, regnum, extract_unsigned_integer (buf, 4));
|
520 |
|
|
}
|
521 |
|
|
|
522 |
|
|
/* We can always read non-pseudo registers. */
|
523 |
|
|
if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
|
524 |
|
|
regcache_raw_read (regcache, regnum, buffer);
|
525 |
|
|
|
526 |
|
|
|
527 |
|
|
/* We have to find out how to deal with priveleged registers.
|
528 |
|
|
Let's treat them as pseudo-registers, but we cannot read/write them. */
|
529 |
|
|
|
530 |
|
|
else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
|
531 |
|
|
{
|
532 |
|
|
buffer[0] = (gdb_byte)0;
|
533 |
|
|
buffer[1] = (gdb_byte)0;
|
534 |
|
|
buffer[2] = (gdb_byte)0;
|
535 |
|
|
buffer[3] = (gdb_byte)0;
|
536 |
|
|
}
|
537 |
|
|
/* Pseudo registers. */
|
538 |
|
|
else if (regnum >= 0
|
539 |
|
|
&& regnum < gdbarch_num_regs (gdbarch)
|
540 |
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
541 |
|
|
{
|
542 |
|
|
xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
|
543 |
|
|
xtensa_register_type_t type = reg->type;
|
544 |
|
|
int flags = gdbarch_tdep (gdbarch)->target_flags;
|
545 |
|
|
|
546 |
|
|
/* We cannot read Unknown or Unmapped registers. */
|
547 |
|
|
if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
|
548 |
|
|
{
|
549 |
|
|
if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
|
550 |
|
|
{
|
551 |
|
|
warning (_("cannot read register %s"),
|
552 |
|
|
xtensa_register_name (gdbarch, regnum));
|
553 |
|
|
return;
|
554 |
|
|
}
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
/* Some targets cannot read TIE register files. */
|
558 |
|
|
else if (type == xtRegisterTypeTieRegfile)
|
559 |
|
|
{
|
560 |
|
|
/* Use 'fetch' to get register? */
|
561 |
|
|
if (flags & xtTargetFlagsUseFetchStore)
|
562 |
|
|
{
|
563 |
|
|
warning (_("cannot read register"));
|
564 |
|
|
return;
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
/* On some targets (esp. simulators), we can always read the reg. */
|
568 |
|
|
else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
|
569 |
|
|
{
|
570 |
|
|
warning (_("cannot read register"));
|
571 |
|
|
return;
|
572 |
|
|
}
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
/* We can always read mapped registers. */
|
576 |
|
|
else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
|
577 |
|
|
{
|
578 |
|
|
xtensa_register_read_masked (regcache, reg, buffer);
|
579 |
|
|
return;
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
/* Assume that we can read the register. */
|
583 |
|
|
regcache_raw_read (regcache, regnum, buffer);
|
584 |
|
|
}
|
585 |
|
|
else
|
586 |
|
|
internal_error (__FILE__, __LINE__,
|
587 |
|
|
_("invalid register number %d"), regnum);
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
|
591 |
|
|
/* Write pseudo registers. */
|
592 |
|
|
|
593 |
|
|
static void
|
594 |
|
|
xtensa_pseudo_register_write (struct gdbarch *gdbarch,
|
595 |
|
|
struct regcache *regcache,
|
596 |
|
|
int regnum,
|
597 |
|
|
const gdb_byte *buffer)
|
598 |
|
|
{
|
599 |
|
|
DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
|
600 |
|
|
regnum, xtensa_register_name (gdbarch, regnum));
|
601 |
|
|
|
602 |
|
|
if (regnum == gdbarch_num_regs (gdbarch)
|
603 |
|
|
+ gdbarch_num_pseudo_regs (gdbarch) -1)
|
604 |
|
|
regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
|
605 |
|
|
|
606 |
|
|
/* Renumber register, if aliase a0..a15 on Windowed ABI. */
|
607 |
|
|
if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
|
608 |
|
|
&& (regnum >= gdbarch_tdep (gdbarch)->a0_base)
|
609 |
|
|
&& (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
|
610 |
|
|
{
|
611 |
|
|
gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
|
612 |
|
|
unsigned int wb;
|
613 |
|
|
|
614 |
|
|
regcache_raw_read (regcache,
|
615 |
|
|
gdbarch_tdep (gdbarch)->wb_regnum, buf);
|
616 |
|
|
regnum = areg_number (gdbarch, regnum, extract_unsigned_integer (buf, 4));
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
/* We can always write 'core' registers.
|
620 |
|
|
Note: We might have converted Ax->ARy. */
|
621 |
|
|
if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
|
622 |
|
|
regcache_raw_write (regcache, regnum, buffer);
|
623 |
|
|
|
624 |
|
|
/* We have to find out how to deal with priveleged registers.
|
625 |
|
|
Let's treat them as pseudo-registers, but we cannot read/write them. */
|
626 |
|
|
|
627 |
|
|
else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
|
628 |
|
|
{
|
629 |
|
|
return;
|
630 |
|
|
}
|
631 |
|
|
/* Pseudo registers. */
|
632 |
|
|
else if (regnum >= 0
|
633 |
|
|
&& regnum < gdbarch_num_regs (gdbarch)
|
634 |
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
635 |
|
|
{
|
636 |
|
|
xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
|
637 |
|
|
xtensa_register_type_t type = reg->type;
|
638 |
|
|
int flags = gdbarch_tdep (gdbarch)->target_flags;
|
639 |
|
|
|
640 |
|
|
/* On most targets, we cannot write registers
|
641 |
|
|
of type "Unknown" or "Unmapped". */
|
642 |
|
|
if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
|
643 |
|
|
{
|
644 |
|
|
if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
|
645 |
|
|
{
|
646 |
|
|
warning (_("cannot write register %s"),
|
647 |
|
|
xtensa_register_name (gdbarch, regnum));
|
648 |
|
|
return;
|
649 |
|
|
}
|
650 |
|
|
}
|
651 |
|
|
|
652 |
|
|
/* Some targets cannot read TIE register files. */
|
653 |
|
|
else if (type == xtRegisterTypeTieRegfile)
|
654 |
|
|
{
|
655 |
|
|
/* Use 'store' to get register? */
|
656 |
|
|
if (flags & xtTargetFlagsUseFetchStore)
|
657 |
|
|
{
|
658 |
|
|
warning (_("cannot write register"));
|
659 |
|
|
return;
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
/* On some targets (esp. simulators), we can always write
|
663 |
|
|
the register. */
|
664 |
|
|
else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
|
665 |
|
|
{
|
666 |
|
|
warning (_("cannot write register"));
|
667 |
|
|
return;
|
668 |
|
|
}
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
/* We can always write mapped registers. */
|
672 |
|
|
else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
|
673 |
|
|
{
|
674 |
|
|
xtensa_register_write_masked (regcache, reg, buffer);
|
675 |
|
|
return;
|
676 |
|
|
}
|
677 |
|
|
|
678 |
|
|
/* Assume that we can write the register. */
|
679 |
|
|
regcache_raw_write (regcache, regnum, buffer);
|
680 |
|
|
}
|
681 |
|
|
else
|
682 |
|
|
internal_error (__FILE__, __LINE__,
|
683 |
|
|
_("invalid register number %d"), regnum);
|
684 |
|
|
}
|
685 |
|
|
|
686 |
|
|
static struct reggroup *xtensa_ar_reggroup;
|
687 |
|
|
static struct reggroup *xtensa_user_reggroup;
|
688 |
|
|
static struct reggroup *xtensa_vectra_reggroup;
|
689 |
|
|
static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
|
690 |
|
|
|
691 |
|
|
static void
|
692 |
|
|
xtensa_init_reggroups (void)
|
693 |
|
|
{
|
694 |
|
|
xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
|
695 |
|
|
xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
|
696 |
|
|
xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
|
697 |
|
|
|
698 |
|
|
xtensa_cp[0] = reggroup_new ("cp0", USER_REGGROUP);
|
699 |
|
|
xtensa_cp[1] = reggroup_new ("cp1", USER_REGGROUP);
|
700 |
|
|
xtensa_cp[2] = reggroup_new ("cp2", USER_REGGROUP);
|
701 |
|
|
xtensa_cp[3] = reggroup_new ("cp3", USER_REGGROUP);
|
702 |
|
|
xtensa_cp[4] = reggroup_new ("cp4", USER_REGGROUP);
|
703 |
|
|
xtensa_cp[5] = reggroup_new ("cp5", USER_REGGROUP);
|
704 |
|
|
xtensa_cp[6] = reggroup_new ("cp6", USER_REGGROUP);
|
705 |
|
|
xtensa_cp[7] = reggroup_new ("cp7", USER_REGGROUP);
|
706 |
|
|
}
|
707 |
|
|
|
708 |
|
|
static void
|
709 |
|
|
xtensa_add_reggroups (struct gdbarch *gdbarch)
|
710 |
|
|
{
|
711 |
|
|
int i;
|
712 |
|
|
|
713 |
|
|
/* Predefined groups. */
|
714 |
|
|
reggroup_add (gdbarch, all_reggroup);
|
715 |
|
|
reggroup_add (gdbarch, save_reggroup);
|
716 |
|
|
reggroup_add (gdbarch, restore_reggroup);
|
717 |
|
|
reggroup_add (gdbarch, system_reggroup);
|
718 |
|
|
reggroup_add (gdbarch, vector_reggroup);
|
719 |
|
|
reggroup_add (gdbarch, general_reggroup);
|
720 |
|
|
reggroup_add (gdbarch, float_reggroup);
|
721 |
|
|
|
722 |
|
|
/* Xtensa-specific groups. */
|
723 |
|
|
reggroup_add (gdbarch, xtensa_ar_reggroup);
|
724 |
|
|
reggroup_add (gdbarch, xtensa_user_reggroup);
|
725 |
|
|
reggroup_add (gdbarch, xtensa_vectra_reggroup);
|
726 |
|
|
|
727 |
|
|
for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
|
728 |
|
|
reggroup_add (gdbarch, xtensa_cp[i]);
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
static int
|
732 |
|
|
xtensa_coprocessor_register_group (struct reggroup *group)
|
733 |
|
|
{
|
734 |
|
|
int i;
|
735 |
|
|
|
736 |
|
|
for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
|
737 |
|
|
if (group == xtensa_cp[i])
|
738 |
|
|
return i;
|
739 |
|
|
|
740 |
|
|
return -1;
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
|
744 |
|
|
| XTENSA_REGISTER_FLAGS_WRITABLE \
|
745 |
|
|
| XTENSA_REGISTER_FLAGS_VOLATILE)
|
746 |
|
|
|
747 |
|
|
#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
|
748 |
|
|
| XTENSA_REGISTER_FLAGS_WRITABLE)
|
749 |
|
|
|
750 |
|
|
static int
|
751 |
|
|
xtensa_register_reggroup_p (struct gdbarch *gdbarch,
|
752 |
|
|
int regnum,
|
753 |
|
|
struct reggroup *group)
|
754 |
|
|
{
|
755 |
|
|
xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
|
756 |
|
|
xtensa_register_type_t type = reg->type;
|
757 |
|
|
xtensa_register_group_t rg = reg->group;
|
758 |
|
|
int cp_number;
|
759 |
|
|
|
760 |
|
|
/* First, skip registers that are not visible to this target
|
761 |
|
|
(unknown and unmapped registers when not using ISS). */
|
762 |
|
|
|
763 |
|
|
if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
|
764 |
|
|
return 0;
|
765 |
|
|
if (group == all_reggroup)
|
766 |
|
|
return 1;
|
767 |
|
|
if (group == xtensa_ar_reggroup)
|
768 |
|
|
return rg & xtRegisterGroupAddrReg;
|
769 |
|
|
if (group == xtensa_user_reggroup)
|
770 |
|
|
return rg & xtRegisterGroupUser;
|
771 |
|
|
if (group == float_reggroup)
|
772 |
|
|
return rg & xtRegisterGroupFloat;
|
773 |
|
|
if (group == general_reggroup)
|
774 |
|
|
return rg & xtRegisterGroupGeneral;
|
775 |
|
|
if (group == float_reggroup)
|
776 |
|
|
return rg & xtRegisterGroupFloat;
|
777 |
|
|
if (group == system_reggroup)
|
778 |
|
|
return rg & xtRegisterGroupState;
|
779 |
|
|
if (group == vector_reggroup || group == xtensa_vectra_reggroup)
|
780 |
|
|
return rg & xtRegisterGroupVectra;
|
781 |
|
|
if (group == save_reggroup || group == restore_reggroup)
|
782 |
|
|
return (regnum < gdbarch_num_regs (gdbarch)
|
783 |
|
|
&& (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
|
784 |
|
|
if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
|
785 |
|
|
return rg & (xtRegisterGroupCP0 << cp_number);
|
786 |
|
|
else
|
787 |
|
|
return 1;
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
|
791 |
|
|
/* Supply register REGNUM from the buffer specified by GREGS and LEN
|
792 |
|
|
in the general-purpose register set REGSET to register cache
|
793 |
|
|
REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
|
794 |
|
|
|
795 |
|
|
static void
|
796 |
|
|
xtensa_supply_gregset (const struct regset *regset,
|
797 |
|
|
struct regcache *rc,
|
798 |
|
|
int regnum,
|
799 |
|
|
const void *gregs,
|
800 |
|
|
size_t len)
|
801 |
|
|
{
|
802 |
|
|
const xtensa_elf_gregset_t *regs = gregs;
|
803 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (rc);
|
804 |
|
|
int i;
|
805 |
|
|
|
806 |
|
|
DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
|
807 |
|
|
|
808 |
|
|
if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
|
809 |
|
|
regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) ®s->pc);
|
810 |
|
|
if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
|
811 |
|
|
regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) ®s->ps);
|
812 |
|
|
if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
|
813 |
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
|
814 |
|
|
(char *) ®s->windowbase);
|
815 |
|
|
if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
|
816 |
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
|
817 |
|
|
(char *) ®s->windowstart);
|
818 |
|
|
if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
|
819 |
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
|
820 |
|
|
(char *) ®s->lbeg);
|
821 |
|
|
if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
|
822 |
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
|
823 |
|
|
(char *) ®s->lend);
|
824 |
|
|
if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
|
825 |
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
|
826 |
|
|
(char *) ®s->lcount);
|
827 |
|
|
if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
|
828 |
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
|
829 |
|
|
(char *) ®s->sar);
|
830 |
|
|
if (regnum >=gdbarch_tdep (gdbarch)->ar_base
|
831 |
|
|
&& regnum < gdbarch_tdep (gdbarch)->ar_base
|
832 |
|
|
+ gdbarch_tdep (gdbarch)->num_aregs)
|
833 |
|
|
regcache_raw_supply (rc, regnum,
|
834 |
|
|
(char *) ®s->ar[regnum - gdbarch_tdep
|
835 |
|
|
(gdbarch)->ar_base]);
|
836 |
|
|
else if (regnum == -1)
|
837 |
|
|
{
|
838 |
|
|
for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
|
839 |
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
|
840 |
|
|
(char *) ®s->ar[i]);
|
841 |
|
|
}
|
842 |
|
|
}
|
843 |
|
|
|
844 |
|
|
|
845 |
|
|
/* Xtensa register set. */
|
846 |
|
|
|
847 |
|
|
static struct regset
|
848 |
|
|
xtensa_gregset =
|
849 |
|
|
{
|
850 |
|
|
NULL,
|
851 |
|
|
xtensa_supply_gregset
|
852 |
|
|
};
|
853 |
|
|
|
854 |
|
|
|
855 |
|
|
/* Return the appropriate register set for the core
|
856 |
|
|
section identified by SECT_NAME and SECT_SIZE. */
|
857 |
|
|
|
858 |
|
|
static const struct regset *
|
859 |
|
|
xtensa_regset_from_core_section (struct gdbarch *core_arch,
|
860 |
|
|
const char *sect_name,
|
861 |
|
|
size_t sect_size)
|
862 |
|
|
{
|
863 |
|
|
DEBUGTRACE ("xtensa_regset_from_core_section "
|
864 |
|
|
"(..., sect_name==\"%s\", sect_size==%x) \n",
|
865 |
|
|
sect_name, (unsigned int) sect_size);
|
866 |
|
|
|
867 |
|
|
if (strcmp (sect_name, ".reg") == 0
|
868 |
|
|
&& sect_size >= sizeof(xtensa_elf_gregset_t))
|
869 |
|
|
return &xtensa_gregset;
|
870 |
|
|
|
871 |
|
|
return NULL;
|
872 |
|
|
}
|
873 |
|
|
|
874 |
|
|
|
875 |
|
|
/* Handling frames. */
|
876 |
|
|
|
877 |
|
|
/* Number of registers to save in case of Windowed ABI. */
|
878 |
|
|
#define XTENSA_NUM_SAVED_AREGS 12
|
879 |
|
|
|
880 |
|
|
/* Frame cache part for Windowed ABI. */
|
881 |
|
|
typedef struct xtensa_windowed_frame_cache
|
882 |
|
|
{
|
883 |
|
|
int wb; /* Base for this frame; -1 if not in regfile. */
|
884 |
|
|
int callsize; /* Call size to next frame. */
|
885 |
|
|
int ws;
|
886 |
|
|
CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
|
887 |
|
|
} xtensa_windowed_frame_cache_t;
|
888 |
|
|
|
889 |
|
|
/* Call0 ABI Definitions. */
|
890 |
|
|
|
891 |
|
|
#define C0_MAXOPDS 3 /* Maximum number of operands for prologue analysis. */
|
892 |
|
|
#define C0_NREGS 16 /* Number of A-registers to track. */
|
893 |
|
|
#define C0_CLESV 12 /* Callee-saved registers are here and up. */
|
894 |
|
|
#define C0_SP 1 /* Register used as SP. */
|
895 |
|
|
#define C0_FP 15 /* Register used as FP. */
|
896 |
|
|
#define C0_RA 0 /* Register used as return address. */
|
897 |
|
|
#define C0_ARGS 2 /* Register used as first arg/retval. */
|
898 |
|
|
#define C0_NARGS 6 /* Number of A-regs for args/retvals. */
|
899 |
|
|
|
900 |
|
|
/* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
|
901 |
|
|
A-register where the current content of the reg came from (in terms
|
902 |
|
|
of an original reg and a constant). Negative values of c0_rt[n].fp_reg
|
903 |
|
|
mean that the orignal content of the register was saved to the stack.
|
904 |
|
|
c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
|
905 |
|
|
know where SP will end up until the entire prologue has been analyzed. */
|
906 |
|
|
|
907 |
|
|
#define C0_CONST -1 /* fr_reg value if register contains a constant. */
|
908 |
|
|
#define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
|
909 |
|
|
#define C0_NOSTK -1 /* to_stk value if register has not been stored. */
|
910 |
|
|
|
911 |
|
|
extern xtensa_isa xtensa_default_isa;
|
912 |
|
|
|
913 |
|
|
typedef struct xtensa_c0reg
|
914 |
|
|
{
|
915 |
|
|
int fr_reg; /* original register from which register content
|
916 |
|
|
is derived, or C0_CONST, or C0_INEXP. */
|
917 |
|
|
int fr_ofs; /* constant offset from reg, or immediate value. */
|
918 |
|
|
int to_stk; /* offset from original SP to register (4-byte aligned),
|
919 |
|
|
or C0_NOSTK if register has not been saved. */
|
920 |
|
|
} xtensa_c0reg_t;
|
921 |
|
|
|
922 |
|
|
|
923 |
|
|
/* Frame cache part for Call0 ABI. */
|
924 |
|
|
typedef struct xtensa_call0_frame_cache
|
925 |
|
|
{
|
926 |
|
|
int c0_frmsz; /* Stack frame size. */
|
927 |
|
|
int c0_hasfp; /* Current frame uses frame pointer. */
|
928 |
|
|
int fp_regnum; /* A-register used as FP. */
|
929 |
|
|
int c0_fp; /* Actual value of frame pointer. */
|
930 |
|
|
xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
|
931 |
|
|
} xtensa_call0_frame_cache_t;
|
932 |
|
|
|
933 |
|
|
typedef struct xtensa_frame_cache
|
934 |
|
|
{
|
935 |
|
|
CORE_ADDR base; /* Stack pointer of the next frame. */
|
936 |
|
|
CORE_ADDR pc; /* PC at the entry point to the function. */
|
937 |
|
|
CORE_ADDR ra; /* The raw return address. */
|
938 |
|
|
CORE_ADDR ps; /* The PS register of the frame. */
|
939 |
|
|
CORE_ADDR prev_sp; /* Stack Pointer of the frame. */
|
940 |
|
|
int call0; /* It's a call0 framework (else windowed). */
|
941 |
|
|
union
|
942 |
|
|
{
|
943 |
|
|
xtensa_windowed_frame_cache_t wd; /* call0 == false. */
|
944 |
|
|
xtensa_call0_frame_cache_t c0; /* call0 == true. */
|
945 |
|
|
};
|
946 |
|
|
} xtensa_frame_cache_t;
|
947 |
|
|
|
948 |
|
|
|
949 |
|
|
static struct xtensa_frame_cache *
|
950 |
|
|
xtensa_alloc_frame_cache (int windowed)
|
951 |
|
|
{
|
952 |
|
|
xtensa_frame_cache_t *cache;
|
953 |
|
|
int i;
|
954 |
|
|
|
955 |
|
|
DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
|
956 |
|
|
|
957 |
|
|
cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
|
958 |
|
|
|
959 |
|
|
cache->base = 0;
|
960 |
|
|
cache->pc = 0;
|
961 |
|
|
cache->ra = 0;
|
962 |
|
|
cache->ps = 0;
|
963 |
|
|
cache->prev_sp = 0;
|
964 |
|
|
cache->call0 = !windowed;
|
965 |
|
|
if (cache->call0)
|
966 |
|
|
{
|
967 |
|
|
cache->c0.c0_frmsz = -1;
|
968 |
|
|
cache->c0.c0_hasfp = 0;
|
969 |
|
|
cache->c0.fp_regnum = -1;
|
970 |
|
|
cache->c0.c0_fp = -1;
|
971 |
|
|
|
972 |
|
|
for (i = 0; i < C0_NREGS; i++)
|
973 |
|
|
{
|
974 |
|
|
cache->c0.c0_rt[i].fr_reg = i;
|
975 |
|
|
cache->c0.c0_rt[i].fr_ofs = 0;
|
976 |
|
|
cache->c0.c0_rt[i].to_stk = C0_NOSTK;
|
977 |
|
|
}
|
978 |
|
|
}
|
979 |
|
|
else
|
980 |
|
|
{
|
981 |
|
|
cache->wd.wb = 0;
|
982 |
|
|
cache->wd.callsize = -1;
|
983 |
|
|
|
984 |
|
|
for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
|
985 |
|
|
cache->wd.aregs[i] = -1;
|
986 |
|
|
}
|
987 |
|
|
return cache;
|
988 |
|
|
}
|
989 |
|
|
|
990 |
|
|
|
991 |
|
|
static CORE_ADDR
|
992 |
|
|
xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
|
993 |
|
|
{
|
994 |
|
|
return address & ~15;
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
|
998 |
|
|
static CORE_ADDR
|
999 |
|
|
xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1000 |
|
|
{
|
1001 |
|
|
gdb_byte buf[8];
|
1002 |
|
|
|
1003 |
|
|
DEBUGTRACE ("xtensa_unwind_pc (next_frame = %p)\n", next_frame);
|
1004 |
|
|
|
1005 |
|
|
frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
|
1006 |
|
|
|
1007 |
|
|
DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int)
|
1008 |
|
|
extract_typed_address (buf, builtin_type_void_func_ptr));
|
1009 |
|
|
|
1010 |
|
|
return extract_typed_address (buf, builtin_type_void_func_ptr);
|
1011 |
|
|
}
|
1012 |
|
|
|
1013 |
|
|
|
1014 |
|
|
static struct frame_id
|
1015 |
|
|
xtensa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1016 |
|
|
{
|
1017 |
|
|
CORE_ADDR pc, fp;
|
1018 |
|
|
|
1019 |
|
|
/* next_frame->prev is a dummy frame. Return a frame ID of that frame. */
|
1020 |
|
|
|
1021 |
|
|
DEBUGTRACE ("xtensa_unwind_dummy_id ()\n");
|
1022 |
|
|
|
1023 |
|
|
pc = frame_pc_unwind (next_frame);
|
1024 |
|
|
fp = frame_unwind_register_unsigned
|
1025 |
|
|
(next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
|
1026 |
|
|
|
1027 |
|
|
/* Make dummy frame ID unique by adding a constant. */
|
1028 |
|
|
return frame_id_build (fp + SP_ALIGNMENT, pc);
|
1029 |
|
|
}
|
1030 |
|
|
|
1031 |
|
|
/* The key values to identify the frame using "cache" are
|
1032 |
|
|
|
1033 |
|
|
cache->base = SP of this frame;
|
1034 |
|
|
cache->pc = entry-PC (entry point of the frame function);
|
1035 |
|
|
cache->prev_sp = SP of the previous frame.
|
1036 |
|
|
*/
|
1037 |
|
|
|
1038 |
|
|
static void
|
1039 |
|
|
call0_frame_cache (struct frame_info *next_frame,
|
1040 |
|
|
xtensa_frame_cache_t *cache,
|
1041 |
|
|
CORE_ADDR pc);
|
1042 |
|
|
|
1043 |
|
|
static struct xtensa_frame_cache *
|
1044 |
|
|
xtensa_frame_cache (struct frame_info *next_frame, void **this_cache)
|
1045 |
|
|
{
|
1046 |
|
|
xtensa_frame_cache_t *cache;
|
1047 |
|
|
CORE_ADDR ra, wb, ws, pc, sp, ps;
|
1048 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
1049 |
|
|
unsigned int ps_regnum = gdbarch_ps_regnum (gdbarch);
|
1050 |
|
|
char op1;
|
1051 |
|
|
int windowed;
|
1052 |
|
|
|
1053 |
|
|
DEBUGTRACE ("xtensa_frame_cache (next_frame %p, *this_cache %p)\n",
|
1054 |
|
|
next_frame, this_cache ? *this_cache : (void*)0xdeadbeef);
|
1055 |
|
|
|
1056 |
|
|
if (*this_cache)
|
1057 |
|
|
return *this_cache;
|
1058 |
|
|
|
1059 |
|
|
windowed = windowing_enabled (xtensa_read_register (ps_regnum));
|
1060 |
|
|
|
1061 |
|
|
/* Get pristine xtensa-frame. */
|
1062 |
|
|
cache = xtensa_alloc_frame_cache (windowed);
|
1063 |
|
|
*this_cache = cache;
|
1064 |
|
|
|
1065 |
|
|
pc = frame_unwind_register_unsigned (next_frame,
|
1066 |
|
|
gdbarch_pc_regnum (gdbarch));
|
1067 |
|
|
|
1068 |
|
|
if (windowed)
|
1069 |
|
|
{
|
1070 |
|
|
/* Get WINDOWBASE, WINDOWSTART, and PS registers. */
|
1071 |
|
|
wb = frame_unwind_register_unsigned
|
1072 |
|
|
(next_frame, gdbarch_tdep (gdbarch)->wb_regnum);
|
1073 |
|
|
ws = frame_unwind_register_unsigned
|
1074 |
|
|
(next_frame, gdbarch_tdep (gdbarch)->ws_regnum);
|
1075 |
|
|
ps = frame_unwind_register_unsigned (next_frame, ps_regnum);
|
1076 |
|
|
|
1077 |
|
|
op1 = read_memory_integer (pc, 1);
|
1078 |
|
|
if (XTENSA_IS_ENTRY (gdbarch, op1))
|
1079 |
|
|
{
|
1080 |
|
|
int callinc = CALLINC (ps);
|
1081 |
|
|
ra = frame_unwind_register_unsigned
|
1082 |
|
|
(next_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
|
1083 |
|
|
|
1084 |
|
|
DEBUGINFO("[xtensa_frame_cache] 'entry' at 0x%08x\n (callinc = %d)",
|
1085 |
|
|
(int)pc, callinc);
|
1086 |
|
|
|
1087 |
|
|
/* ENTRY hasn't been executed yet, therefore callsize is still 0. */
|
1088 |
|
|
cache->wd.callsize = 0;
|
1089 |
|
|
cache->wd.wb = wb;
|
1090 |
|
|
cache->wd.ws = ws;
|
1091 |
|
|
cache->prev_sp = frame_unwind_register_unsigned
|
1092 |
|
|
(next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
|
1093 |
|
|
}
|
1094 |
|
|
else
|
1095 |
|
|
{
|
1096 |
|
|
ra = frame_unwind_register_unsigned
|
1097 |
|
|
(next_frame, gdbarch_tdep (gdbarch)->a0_base);
|
1098 |
|
|
cache->wd.callsize = WINSIZE (ra);
|
1099 |
|
|
cache->wd.wb = (wb - cache->wd.callsize / 4)
|
1100 |
|
|
& (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
|
1101 |
|
|
cache->wd.ws = ws & ~(1 << wb);
|
1102 |
|
|
}
|
1103 |
|
|
|
1104 |
|
|
cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
|
1105 |
|
|
cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
|
1106 |
|
|
cache->ps = (ps & ~PS_CALLINC_MASK)
|
1107 |
|
|
| ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
|
1108 |
|
|
|
1109 |
|
|
if (cache->wd.ws == 0)
|
1110 |
|
|
{
|
1111 |
|
|
int i;
|
1112 |
|
|
|
1113 |
|
|
/* Set A0...A3. */
|
1114 |
|
|
sp = frame_unwind_register_unsigned
|
1115 |
|
|
(next_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
|
1116 |
|
|
|
1117 |
|
|
for (i = 0; i < 4; i++, sp += 4)
|
1118 |
|
|
{
|
1119 |
|
|
cache->wd.aregs[i] = sp;
|
1120 |
|
|
}
|
1121 |
|
|
|
1122 |
|
|
if (cache->wd.callsize > 4)
|
1123 |
|
|
{
|
1124 |
|
|
/* Set A4...A7/A11. */
|
1125 |
|
|
/* Read an SP of the previous frame. */
|
1126 |
|
|
sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
|
1127 |
|
|
sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
|
1128 |
|
|
sp -= cache->wd.callsize * 4;
|
1129 |
|
|
|
1130 |
|
|
for ( /* i=4 */ ; i < cache->wd.callsize; i++, sp += 4)
|
1131 |
|
|
{
|
1132 |
|
|
cache->wd.aregs[i] = sp;
|
1133 |
|
|
}
|
1134 |
|
|
}
|
1135 |
|
|
}
|
1136 |
|
|
|
1137 |
|
|
if ((cache->prev_sp == 0) && ( ra != 0 ))
|
1138 |
|
|
/* If RA is equal to 0 this frame is an outermost frame. Leave
|
1139 |
|
|
cache->prev_sp unchanged marking the boundary of the frame stack. */
|
1140 |
|
|
{
|
1141 |
|
|
if (cache->wd.ws == 0)
|
1142 |
|
|
{
|
1143 |
|
|
/* Register window overflow already happened.
|
1144 |
|
|
We can read caller's SP from the proper spill loction. */
|
1145 |
|
|
cache->prev_sp =
|
1146 |
|
|
read_memory_integer (cache->wd.aregs[1],
|
1147 |
|
|
register_size (gdbarch,
|
1148 |
|
|
gdbarch_tdep (gdbarch)->a0_base + 1));
|
1149 |
|
|
}
|
1150 |
|
|
else
|
1151 |
|
|
{
|
1152 |
|
|
/* Read caller's frame SP directly from the previous window. */
|
1153 |
|
|
int regnum = areg_number
|
1154 |
|
|
(gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
|
1155 |
|
|
cache->wd.wb);
|
1156 |
|
|
|
1157 |
|
|
cache->prev_sp = xtensa_read_register (regnum);
|
1158 |
|
|
}
|
1159 |
|
|
}
|
1160 |
|
|
}
|
1161 |
|
|
else /* Call0 framework. */
|
1162 |
|
|
{
|
1163 |
|
|
call0_frame_cache (next_frame, cache, pc);
|
1164 |
|
|
}
|
1165 |
|
|
|
1166 |
|
|
cache->base = frame_unwind_register_unsigned
|
1167 |
|
|
(next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
|
1168 |
|
|
|
1169 |
|
|
return cache;
|
1170 |
|
|
}
|
1171 |
|
|
|
1172 |
|
|
static void
|
1173 |
|
|
xtensa_frame_this_id (struct frame_info *next_frame,
|
1174 |
|
|
void **this_cache,
|
1175 |
|
|
struct frame_id *this_id)
|
1176 |
|
|
{
|
1177 |
|
|
struct xtensa_frame_cache *cache =
|
1178 |
|
|
xtensa_frame_cache (next_frame, this_cache);
|
1179 |
|
|
struct frame_id id;
|
1180 |
|
|
|
1181 |
|
|
DEBUGTRACE ("xtensa_frame_this_id (next 0x%lx, *this 0x%lx)\n",
|
1182 |
|
|
(unsigned long) next_frame, (unsigned long) *this_cache);
|
1183 |
|
|
|
1184 |
|
|
if (cache->prev_sp == 0)
|
1185 |
|
|
return;
|
1186 |
|
|
|
1187 |
|
|
id = frame_id_build (cache->prev_sp, cache->pc);
|
1188 |
|
|
if (frame_id_eq (id, get_frame_id(next_frame)))
|
1189 |
|
|
{
|
1190 |
|
|
warning(_("\
|
1191 |
|
|
Frame stack is corrupted. That could happen because of \
|
1192 |
|
|
setting register(s) from GDB or stopping execution \
|
1193 |
|
|
inside exception handler. Frame backtracing has stopped. \
|
1194 |
|
|
It can make some GDB commands work inappropriately.\n"));
|
1195 |
|
|
cache->prev_sp = 0;
|
1196 |
|
|
return;
|
1197 |
|
|
}
|
1198 |
|
|
(*this_id) = id;
|
1199 |
|
|
}
|
1200 |
|
|
|
1201 |
|
|
static int
|
1202 |
|
|
call0_frame_get_reg_at_entry (struct frame_info *next_frame,
|
1203 |
|
|
struct xtensa_frame_cache *cache,
|
1204 |
|
|
int regnum,
|
1205 |
|
|
CORE_ADDR *addrp,
|
1206 |
|
|
enum lval_type *lval,
|
1207 |
|
|
gdb_byte *valuep)
|
1208 |
|
|
{
|
1209 |
|
|
CORE_ADDR fp, spe;
|
1210 |
|
|
int stkofs;
|
1211 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
1212 |
|
|
int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
|
1213 |
|
|
&& regnum <= (gdbarch_tdep (gdbarch)->ar_base + C0_NREGS))
|
1214 |
|
|
? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
|
1215 |
|
|
|
1216 |
|
|
/* Determine stack pointer on entry to this function, based on FP. */
|
1217 |
|
|
spe = cache->c0.c0_fp - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
|
1218 |
|
|
|
1219 |
|
|
/* If register was saved to the stack frame in the prologue, retrieve it. */
|
1220 |
|
|
stkofs = cache->c0.c0_rt[reg].to_stk;
|
1221 |
|
|
if (stkofs != C0_NOSTK)
|
1222 |
|
|
{
|
1223 |
|
|
*lval = lval_memory;
|
1224 |
|
|
*addrp = spe + stkofs;
|
1225 |
|
|
|
1226 |
|
|
if (valuep)
|
1227 |
|
|
read_memory (*addrp, valuep, register_size (gdbarch, regnum));
|
1228 |
|
|
|
1229 |
|
|
return 1;
|
1230 |
|
|
}
|
1231 |
|
|
|
1232 |
|
|
/* If not callee-saved or if known to have been overwritten, give up. */
|
1233 |
|
|
if (reg < C0_CLESV
|
1234 |
|
|
|| cache->c0.c0_rt[reg].fr_reg != reg
|
1235 |
|
|
|| cache->c0.c0_rt[reg].fr_ofs != 0)
|
1236 |
|
|
return 0;
|
1237 |
|
|
|
1238 |
|
|
if (get_frame_type (next_frame) != NORMAL_FRAME)
|
1239 |
|
|
/* TODO: Do we need a special case for DUMMY_FRAME here? */
|
1240 |
|
|
return 0;
|
1241 |
|
|
|
1242 |
|
|
return call0_frame_get_reg_at_entry (get_next_frame(next_frame),
|
1243 |
|
|
cache, regnum, addrp, lval, valuep);
|
1244 |
|
|
}
|
1245 |
|
|
|
1246 |
|
|
static void
|
1247 |
|
|
xtensa_frame_prev_register (struct frame_info *next_frame,
|
1248 |
|
|
void **this_cache,
|
1249 |
|
|
int regnum,
|
1250 |
|
|
int *optimizedp,
|
1251 |
|
|
enum lval_type *lvalp,
|
1252 |
|
|
CORE_ADDR *addrp,
|
1253 |
|
|
int *realnump,
|
1254 |
|
|
gdb_byte *valuep)
|
1255 |
|
|
{
|
1256 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
1257 |
|
|
struct xtensa_frame_cache *cache =
|
1258 |
|
|
xtensa_frame_cache (next_frame, this_cache);
|
1259 |
|
|
CORE_ADDR saved_reg = 0;
|
1260 |
|
|
int done = 1;
|
1261 |
|
|
|
1262 |
|
|
DEBUGTRACE ("xtensa_frame_prev_register (next 0x%lx, "
|
1263 |
|
|
"*this 0x%lx, regnum %d (%s), ...)\n",
|
1264 |
|
|
(unsigned long) next_frame,
|
1265 |
|
|
*this_cache ? (unsigned long) *this_cache : 0, regnum,
|
1266 |
|
|
xtensa_register_name (gdbarch, regnum));
|
1267 |
|
|
|
1268 |
|
|
if (regnum ==gdbarch_pc_regnum (gdbarch))
|
1269 |
|
|
saved_reg = cache->ra;
|
1270 |
|
|
else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
|
1271 |
|
|
saved_reg = cache->prev_sp;
|
1272 |
|
|
else if (!cache->call0)
|
1273 |
|
|
{
|
1274 |
|
|
if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
|
1275 |
|
|
{
|
1276 |
|
|
if (cache->wd.ws != 0)
|
1277 |
|
|
saved_reg = cache->wd.ws;
|
1278 |
|
|
else
|
1279 |
|
|
saved_reg = 1 << cache->wd.wb;
|
1280 |
|
|
}
|
1281 |
|
|
else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
|
1282 |
|
|
saved_reg = cache->wd.wb;
|
1283 |
|
|
else if (regnum == gdbarch_ps_regnum (gdbarch))
|
1284 |
|
|
saved_reg = cache->ps;
|
1285 |
|
|
else
|
1286 |
|
|
done = 0;
|
1287 |
|
|
}
|
1288 |
|
|
else
|
1289 |
|
|
done = 0;
|
1290 |
|
|
|
1291 |
|
|
if (done)
|
1292 |
|
|
{
|
1293 |
|
|
*optimizedp = 0;
|
1294 |
|
|
*lvalp = not_lval;
|
1295 |
|
|
*addrp = 0;
|
1296 |
|
|
*realnump = -1;
|
1297 |
|
|
if (valuep)
|
1298 |
|
|
store_unsigned_integer (valuep, 4, saved_reg);
|
1299 |
|
|
|
1300 |
|
|
return;
|
1301 |
|
|
}
|
1302 |
|
|
|
1303 |
|
|
if (!cache->call0) /* Windowed ABI. */
|
1304 |
|
|
{
|
1305 |
|
|
/* Convert A-register numbers to AR-register numbers. */
|
1306 |
|
|
if (regnum >= gdbarch_tdep (gdbarch)->a0_base
|
1307 |
|
|
&& regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
|
1308 |
|
|
regnum = areg_number (gdbarch, regnum, cache->wd.wb);
|
1309 |
|
|
|
1310 |
|
|
/* Check if AR-register has been saved to stack. */
|
1311 |
|
|
if (regnum >= gdbarch_tdep (gdbarch)->ar_base
|
1312 |
|
|
&& regnum <= (gdbarch_tdep (gdbarch)->ar_base
|
1313 |
|
|
+ gdbarch_tdep (gdbarch)->num_aregs))
|
1314 |
|
|
{
|
1315 |
|
|
int areg = regnum - gdbarch_tdep (gdbarch)->ar_base
|
1316 |
|
|
- (cache->wd.wb * 4);
|
1317 |
|
|
|
1318 |
|
|
if (areg >= 0
|
1319 |
|
|
&& areg < XTENSA_NUM_SAVED_AREGS
|
1320 |
|
|
&& cache->wd.aregs[areg] != -1)
|
1321 |
|
|
{
|
1322 |
|
|
*optimizedp = 0;
|
1323 |
|
|
*lvalp = lval_memory;
|
1324 |
|
|
*addrp = cache->wd.aregs[areg];
|
1325 |
|
|
*realnump = -1;
|
1326 |
|
|
|
1327 |
|
|
if (valuep)
|
1328 |
|
|
read_memory (*addrp, valuep,
|
1329 |
|
|
register_size (gdbarch, regnum));
|
1330 |
|
|
|
1331 |
|
|
DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
|
1332 |
|
|
return;
|
1333 |
|
|
}
|
1334 |
|
|
}
|
1335 |
|
|
}
|
1336 |
|
|
else /* Call0 ABI. */
|
1337 |
|
|
{
|
1338 |
|
|
int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
|
1339 |
|
|
&& regnum <= (gdbarch_tdep (gdbarch)->ar_base
|
1340 |
|
|
+ C0_NREGS))
|
1341 |
|
|
? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
|
1342 |
|
|
|
1343 |
|
|
if (reg < C0_NREGS)
|
1344 |
|
|
{
|
1345 |
|
|
CORE_ADDR spe;
|
1346 |
|
|
int stkofs;
|
1347 |
|
|
|
1348 |
|
|
/* If register was saved in the prologue, retrieve it. */
|
1349 |
|
|
stkofs = cache->c0.c0_rt[reg].to_stk;
|
1350 |
|
|
if (stkofs != C0_NOSTK)
|
1351 |
|
|
{
|
1352 |
|
|
/* Determine SP on entry based on FP. */
|
1353 |
|
|
spe = cache->c0.c0_fp
|
1354 |
|
|
- cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
|
1355 |
|
|
*optimizedp = 0;
|
1356 |
|
|
*lvalp = lval_memory;
|
1357 |
|
|
*addrp = spe + stkofs;
|
1358 |
|
|
*realnump = -1;
|
1359 |
|
|
|
1360 |
|
|
if (valuep)
|
1361 |
|
|
read_memory (*addrp, valuep,
|
1362 |
|
|
register_size (gdbarch, regnum));
|
1363 |
|
|
|
1364 |
|
|
DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
|
1365 |
|
|
return;
|
1366 |
|
|
}
|
1367 |
|
|
}
|
1368 |
|
|
}
|
1369 |
|
|
|
1370 |
|
|
/* All other registers have been either saved to
|
1371 |
|
|
the stack or are still alive in the processor. */
|
1372 |
|
|
|
1373 |
|
|
*optimizedp = 0;
|
1374 |
|
|
*lvalp = lval_register;
|
1375 |
|
|
*addrp = 0;
|
1376 |
|
|
*realnump = regnum;
|
1377 |
|
|
if (valuep)
|
1378 |
|
|
frame_unwind_register (next_frame, (*realnump), valuep);
|
1379 |
|
|
}
|
1380 |
|
|
|
1381 |
|
|
|
1382 |
|
|
static const struct frame_unwind
|
1383 |
|
|
xtensa_frame_unwind =
|
1384 |
|
|
{
|
1385 |
|
|
NORMAL_FRAME,
|
1386 |
|
|
xtensa_frame_this_id,
|
1387 |
|
|
xtensa_frame_prev_register
|
1388 |
|
|
};
|
1389 |
|
|
|
1390 |
|
|
static const struct frame_unwind *
|
1391 |
|
|
xtensa_frame_sniffer (struct frame_info *next_frame)
|
1392 |
|
|
{
|
1393 |
|
|
return &xtensa_frame_unwind;
|
1394 |
|
|
}
|
1395 |
|
|
|
1396 |
|
|
static CORE_ADDR
|
1397 |
|
|
xtensa_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
1398 |
|
|
{
|
1399 |
|
|
struct xtensa_frame_cache *cache =
|
1400 |
|
|
xtensa_frame_cache (next_frame, this_cache);
|
1401 |
|
|
|
1402 |
|
|
return cache->base;
|
1403 |
|
|
}
|
1404 |
|
|
|
1405 |
|
|
static const struct frame_base
|
1406 |
|
|
xtensa_frame_base =
|
1407 |
|
|
{
|
1408 |
|
|
&xtensa_frame_unwind,
|
1409 |
|
|
xtensa_frame_base_address,
|
1410 |
|
|
xtensa_frame_base_address,
|
1411 |
|
|
xtensa_frame_base_address
|
1412 |
|
|
};
|
1413 |
|
|
|
1414 |
|
|
|
1415 |
|
|
static void
|
1416 |
|
|
xtensa_extract_return_value (struct type *type,
|
1417 |
|
|
struct regcache *regcache,
|
1418 |
|
|
void *dst)
|
1419 |
|
|
{
|
1420 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
1421 |
|
|
bfd_byte *valbuf = dst;
|
1422 |
|
|
int len = TYPE_LENGTH (type);
|
1423 |
|
|
ULONGEST pc, wb;
|
1424 |
|
|
int callsize, areg;
|
1425 |
|
|
int offset = 0;
|
1426 |
|
|
|
1427 |
|
|
DEBUGTRACE ("xtensa_extract_return_value (...)\n");
|
1428 |
|
|
|
1429 |
|
|
gdb_assert(len > 0);
|
1430 |
|
|
|
1431 |
|
|
if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
|
1432 |
|
|
{
|
1433 |
|
|
/* First, we have to find the caller window in the register file. */
|
1434 |
|
|
regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
|
1435 |
|
|
callsize = extract_call_winsize (gdbarch, pc);
|
1436 |
|
|
|
1437 |
|
|
/* On Xtensa, we can return up to 4 words (or 2 for call12). */
|
1438 |
|
|
if (len > (callsize > 8 ? 8 : 16))
|
1439 |
|
|
internal_error (__FILE__, __LINE__,
|
1440 |
|
|
_("cannot extract return value of %d bytes long"), len);
|
1441 |
|
|
|
1442 |
|
|
/* Get the register offset of the return
|
1443 |
|
|
register (A2) in the caller window. */
|
1444 |
|
|
regcache_raw_read_unsigned
|
1445 |
|
|
(regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
|
1446 |
|
|
areg = areg_number (gdbarch,
|
1447 |
|
|
gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
|
1448 |
|
|
}
|
1449 |
|
|
else
|
1450 |
|
|
{
|
1451 |
|
|
/* No windowing hardware - Call0 ABI. */
|
1452 |
|
|
areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
|
1453 |
|
|
}
|
1454 |
|
|
|
1455 |
|
|
DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
|
1456 |
|
|
|
1457 |
|
|
if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
1458 |
|
|
offset = 4 - len;
|
1459 |
|
|
|
1460 |
|
|
for (; len > 0; len -= 4, areg++, valbuf += 4)
|
1461 |
|
|
{
|
1462 |
|
|
if (len < 4)
|
1463 |
|
|
regcache_raw_read_part (regcache, areg, offset, len, valbuf);
|
1464 |
|
|
else
|
1465 |
|
|
regcache_raw_read (regcache, areg, valbuf);
|
1466 |
|
|
}
|
1467 |
|
|
}
|
1468 |
|
|
|
1469 |
|
|
|
1470 |
|
|
static void
|
1471 |
|
|
xtensa_store_return_value (struct type *type,
|
1472 |
|
|
struct regcache *regcache,
|
1473 |
|
|
const void *dst)
|
1474 |
|
|
{
|
1475 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
1476 |
|
|
const bfd_byte *valbuf = dst;
|
1477 |
|
|
unsigned int areg;
|
1478 |
|
|
ULONGEST pc, wb;
|
1479 |
|
|
int callsize;
|
1480 |
|
|
int len = TYPE_LENGTH (type);
|
1481 |
|
|
int offset = 0;
|
1482 |
|
|
|
1483 |
|
|
DEBUGTRACE ("xtensa_store_return_value (...)\n");
|
1484 |
|
|
|
1485 |
|
|
if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
|
1486 |
|
|
{
|
1487 |
|
|
regcache_raw_read_unsigned
|
1488 |
|
|
(regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
|
1489 |
|
|
regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
|
1490 |
|
|
callsize = extract_call_winsize (gdbarch, pc);
|
1491 |
|
|
|
1492 |
|
|
if (len > (callsize > 8 ? 8 : 16))
|
1493 |
|
|
internal_error (__FILE__, __LINE__,
|
1494 |
|
|
_("unimplemented for this length: %d"),
|
1495 |
|
|
TYPE_LENGTH (type));
|
1496 |
|
|
areg = areg_number (gdbarch,
|
1497 |
|
|
gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
|
1498 |
|
|
|
1499 |
|
|
DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
|
1500 |
|
|
callsize, (int) wb);
|
1501 |
|
|
}
|
1502 |
|
|
else
|
1503 |
|
|
{
|
1504 |
|
|
areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
|
1505 |
|
|
}
|
1506 |
|
|
|
1507 |
|
|
if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
1508 |
|
|
offset = 4 - len;
|
1509 |
|
|
|
1510 |
|
|
for (; len > 0; len -= 4, areg++, valbuf += 4)
|
1511 |
|
|
{
|
1512 |
|
|
if (len < 4)
|
1513 |
|
|
regcache_raw_write_part (regcache, areg, offset, len, valbuf);
|
1514 |
|
|
else
|
1515 |
|
|
regcache_raw_write (regcache, areg, valbuf);
|
1516 |
|
|
}
|
1517 |
|
|
}
|
1518 |
|
|
|
1519 |
|
|
|
1520 |
|
|
static enum return_value_convention
|
1521 |
|
|
xtensa_return_value (struct gdbarch *gdbarch,
|
1522 |
|
|
struct type *valtype,
|
1523 |
|
|
struct regcache *regcache,
|
1524 |
|
|
gdb_byte *readbuf,
|
1525 |
|
|
const gdb_byte *writebuf)
|
1526 |
|
|
{
|
1527 |
|
|
/* Structures up to 16 bytes are returned in registers. */
|
1528 |
|
|
|
1529 |
|
|
int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
1530 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|
1531 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
|
1532 |
|
|
&& TYPE_LENGTH (valtype) > 16);
|
1533 |
|
|
|
1534 |
|
|
if (struct_return)
|
1535 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
1536 |
|
|
|
1537 |
|
|
DEBUGTRACE ("xtensa_return_value(...)\n");
|
1538 |
|
|
|
1539 |
|
|
if (writebuf != NULL)
|
1540 |
|
|
{
|
1541 |
|
|
xtensa_store_return_value (valtype, regcache, writebuf);
|
1542 |
|
|
}
|
1543 |
|
|
|
1544 |
|
|
if (readbuf != NULL)
|
1545 |
|
|
{
|
1546 |
|
|
gdb_assert (!struct_return);
|
1547 |
|
|
xtensa_extract_return_value (valtype, regcache, readbuf);
|
1548 |
|
|
}
|
1549 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
1550 |
|
|
}
|
1551 |
|
|
|
1552 |
|
|
|
1553 |
|
|
/* DUMMY FRAME */
|
1554 |
|
|
|
1555 |
|
|
static CORE_ADDR
|
1556 |
|
|
xtensa_push_dummy_call (struct gdbarch *gdbarch,
|
1557 |
|
|
struct value *function,
|
1558 |
|
|
struct regcache *regcache,
|
1559 |
|
|
CORE_ADDR bp_addr,
|
1560 |
|
|
int nargs,
|
1561 |
|
|
struct value **args,
|
1562 |
|
|
CORE_ADDR sp,
|
1563 |
|
|
int struct_return,
|
1564 |
|
|
CORE_ADDR struct_addr)
|
1565 |
|
|
{
|
1566 |
|
|
int i;
|
1567 |
|
|
int size, onstack_size;
|
1568 |
|
|
gdb_byte *buf = (gdb_byte *) alloca (16);
|
1569 |
|
|
CORE_ADDR ra, ps;
|
1570 |
|
|
struct argument_info
|
1571 |
|
|
{
|
1572 |
|
|
const bfd_byte *contents;
|
1573 |
|
|
int length;
|
1574 |
|
|
int onstack; /* onstack == 0 => in reg */
|
1575 |
|
|
int align; /* alignment */
|
1576 |
|
|
union
|
1577 |
|
|
{
|
1578 |
|
|
int offset; /* stack offset if on stack */
|
1579 |
|
|
int regno; /* regno if in register */
|
1580 |
|
|
} u;
|
1581 |
|
|
};
|
1582 |
|
|
|
1583 |
|
|
struct argument_info *arg_info =
|
1584 |
|
|
(struct argument_info *) alloca (nargs * sizeof (struct argument_info));
|
1585 |
|
|
|
1586 |
|
|
CORE_ADDR osp = sp;
|
1587 |
|
|
|
1588 |
|
|
DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
|
1589 |
|
|
|
1590 |
|
|
if (xtensa_debug_level > 3)
|
1591 |
|
|
{
|
1592 |
|
|
int i;
|
1593 |
|
|
DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
|
1594 |
|
|
DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
|
1595 |
|
|
"struct_addr=0x%x\n",
|
1596 |
|
|
(int) sp, (int) struct_return, (int) struct_addr);
|
1597 |
|
|
|
1598 |
|
|
for (i = 0; i < nargs; i++)
|
1599 |
|
|
{
|
1600 |
|
|
struct value *arg = args[i];
|
1601 |
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
1602 |
|
|
fprintf_unfiltered (gdb_stdlog, "%2d: 0x%lx %3d ",
|
1603 |
|
|
i, (unsigned long) arg, TYPE_LENGTH (arg_type));
|
1604 |
|
|
switch (TYPE_CODE (arg_type))
|
1605 |
|
|
{
|
1606 |
|
|
case TYPE_CODE_INT:
|
1607 |
|
|
fprintf_unfiltered (gdb_stdlog, "int");
|
1608 |
|
|
break;
|
1609 |
|
|
case TYPE_CODE_STRUCT:
|
1610 |
|
|
fprintf_unfiltered (gdb_stdlog, "struct");
|
1611 |
|
|
break;
|
1612 |
|
|
default:
|
1613 |
|
|
fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
|
1614 |
|
|
break;
|
1615 |
|
|
}
|
1616 |
|
|
fprintf_unfiltered (gdb_stdlog, " 0x%lx\n",
|
1617 |
|
|
(unsigned long) value_contents (arg));
|
1618 |
|
|
}
|
1619 |
|
|
}
|
1620 |
|
|
|
1621 |
|
|
/* First loop: collect information.
|
1622 |
|
|
Cast into type_long. (This shouldn't happen often for C because
|
1623 |
|
|
GDB already does this earlier.) It's possible that GDB could
|
1624 |
|
|
do it all the time but it's harmless to leave this code here. */
|
1625 |
|
|
|
1626 |
|
|
size = 0;
|
1627 |
|
|
onstack_size = 0;
|
1628 |
|
|
i = 0;
|
1629 |
|
|
|
1630 |
|
|
if (struct_return)
|
1631 |
|
|
size = REGISTER_SIZE;
|
1632 |
|
|
|
1633 |
|
|
for (i = 0; i < nargs; i++)
|
1634 |
|
|
{
|
1635 |
|
|
struct argument_info *info = &arg_info[i];
|
1636 |
|
|
struct value *arg = args[i];
|
1637 |
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
1638 |
|
|
|
1639 |
|
|
switch (TYPE_CODE (arg_type))
|
1640 |
|
|
{
|
1641 |
|
|
case TYPE_CODE_INT:
|
1642 |
|
|
case TYPE_CODE_BOOL:
|
1643 |
|
|
case TYPE_CODE_CHAR:
|
1644 |
|
|
case TYPE_CODE_RANGE:
|
1645 |
|
|
case TYPE_CODE_ENUM:
|
1646 |
|
|
|
1647 |
|
|
/* Cast argument to long if necessary as the mask does it too. */
|
1648 |
|
|
if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
|
1649 |
|
|
{
|
1650 |
|
|
arg_type = builtin_type_long;
|
1651 |
|
|
arg = value_cast (arg_type, arg);
|
1652 |
|
|
}
|
1653 |
|
|
/* Aligment is equal to the type length for the basic types. */
|
1654 |
|
|
info->align = TYPE_LENGTH (arg_type);
|
1655 |
|
|
break;
|
1656 |
|
|
|
1657 |
|
|
case TYPE_CODE_FLT:
|
1658 |
|
|
|
1659 |
|
|
/* Align doubles correctly. */
|
1660 |
|
|
if (TYPE_LENGTH (arg_type) == TYPE_LENGTH (builtin_type_double))
|
1661 |
|
|
info->align = TYPE_LENGTH (builtin_type_double);
|
1662 |
|
|
else
|
1663 |
|
|
info->align = TYPE_LENGTH (builtin_type_long);
|
1664 |
|
|
break;
|
1665 |
|
|
|
1666 |
|
|
case TYPE_CODE_STRUCT:
|
1667 |
|
|
default:
|
1668 |
|
|
info->align = TYPE_LENGTH (builtin_type_long);
|
1669 |
|
|
break;
|
1670 |
|
|
}
|
1671 |
|
|
info->length = TYPE_LENGTH (arg_type);
|
1672 |
|
|
info->contents = value_contents (arg);
|
1673 |
|
|
|
1674 |
|
|
/* Align size and onstack_size. */
|
1675 |
|
|
size = (size + info->align - 1) & ~(info->align - 1);
|
1676 |
|
|
onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
|
1677 |
|
|
|
1678 |
|
|
if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
|
1679 |
|
|
{
|
1680 |
|
|
info->onstack = 1;
|
1681 |
|
|
info->u.offset = onstack_size;
|
1682 |
|
|
onstack_size += info->length;
|
1683 |
|
|
}
|
1684 |
|
|
else
|
1685 |
|
|
{
|
1686 |
|
|
info->onstack = 0;
|
1687 |
|
|
info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
|
1688 |
|
|
}
|
1689 |
|
|
size += info->length;
|
1690 |
|
|
}
|
1691 |
|
|
|
1692 |
|
|
/* Adjust the stack pointer and align it. */
|
1693 |
|
|
sp = align_down (sp - onstack_size, SP_ALIGNMENT);
|
1694 |
|
|
|
1695 |
|
|
/* Simulate MOVSP, if Windowed ABI. */
|
1696 |
|
|
if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
|
1697 |
|
|
&& (sp != osp))
|
1698 |
|
|
{
|
1699 |
|
|
read_memory (osp - 16, buf, 16);
|
1700 |
|
|
write_memory (sp - 16, buf, 16);
|
1701 |
|
|
}
|
1702 |
|
|
|
1703 |
|
|
/* Second Loop: Load arguments. */
|
1704 |
|
|
|
1705 |
|
|
if (struct_return)
|
1706 |
|
|
{
|
1707 |
|
|
store_unsigned_integer (buf, REGISTER_SIZE, struct_addr);
|
1708 |
|
|
regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
|
1709 |
|
|
}
|
1710 |
|
|
|
1711 |
|
|
for (i = 0; i < nargs; i++)
|
1712 |
|
|
{
|
1713 |
|
|
struct argument_info *info = &arg_info[i];
|
1714 |
|
|
|
1715 |
|
|
if (info->onstack)
|
1716 |
|
|
{
|
1717 |
|
|
int n = info->length;
|
1718 |
|
|
CORE_ADDR offset = sp + info->u.offset;
|
1719 |
|
|
|
1720 |
|
|
/* Odd-sized structs are aligned to the lower side of a memory
|
1721 |
|
|
word in big-endian mode and require a shift. This only
|
1722 |
|
|
applies for structures smaller than one word. */
|
1723 |
|
|
|
1724 |
|
|
if (n < REGISTER_SIZE
|
1725 |
|
|
&& gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
1726 |
|
|
offset += (REGISTER_SIZE - n);
|
1727 |
|
|
|
1728 |
|
|
write_memory (offset, info->contents, info->length);
|
1729 |
|
|
|
1730 |
|
|
}
|
1731 |
|
|
else
|
1732 |
|
|
{
|
1733 |
|
|
int n = info->length;
|
1734 |
|
|
const bfd_byte *cp = info->contents;
|
1735 |
|
|
int r = info->u.regno;
|
1736 |
|
|
|
1737 |
|
|
/* Odd-sized structs are aligned to the lower side of registers in
|
1738 |
|
|
big-endian mode and require a shift. The odd-sized leftover will
|
1739 |
|
|
be at the end. Note that this is only true for structures smaller
|
1740 |
|
|
than REGISTER_SIZE; for larger odd-sized structures the excess
|
1741 |
|
|
will be left-aligned in the register on both endiannesses. */
|
1742 |
|
|
|
1743 |
|
|
if (n < REGISTER_SIZE
|
1744 |
|
|
&& gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
1745 |
|
|
{
|
1746 |
|
|
ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);
|
1747 |
|
|
v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
|
1748 |
|
|
|
1749 |
|
|
store_unsigned_integer (buf, REGISTER_SIZE, v);
|
1750 |
|
|
regcache_cooked_write (regcache, r, buf);
|
1751 |
|
|
|
1752 |
|
|
cp += REGISTER_SIZE;
|
1753 |
|
|
n -= REGISTER_SIZE;
|
1754 |
|
|
r++;
|
1755 |
|
|
}
|
1756 |
|
|
else
|
1757 |
|
|
while (n > 0)
|
1758 |
|
|
{
|
1759 |
|
|
regcache_cooked_write (regcache, r, cp);
|
1760 |
|
|
|
1761 |
|
|
cp += REGISTER_SIZE;
|
1762 |
|
|
n -= REGISTER_SIZE;
|
1763 |
|
|
r++;
|
1764 |
|
|
}
|
1765 |
|
|
}
|
1766 |
|
|
}
|
1767 |
|
|
|
1768 |
|
|
/* Set the return address of dummy frame to the dummy address.
|
1769 |
|
|
The return address for the current function (in A0) is
|
1770 |
|
|
saved in the dummy frame, so we can savely overwrite A0 here. */
|
1771 |
|
|
|
1772 |
|
|
if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
|
1773 |
|
|
{
|
1774 |
|
|
ra = (bp_addr & 0x3fffffff) | 0x40000000;
|
1775 |
|
|
regcache_raw_read (regcache, gdbarch_ps_regnum (gdbarch), buf);
|
1776 |
|
|
ps = extract_unsigned_integer (buf, 4) & ~0x00030000;
|
1777 |
|
|
regcache_cooked_write_unsigned
|
1778 |
|
|
(regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
|
1779 |
|
|
regcache_cooked_write_unsigned (regcache,
|
1780 |
|
|
gdbarch_ps_regnum (gdbarch),
|
1781 |
|
|
ps | 0x00010000);
|
1782 |
|
|
|
1783 |
|
|
/* All the registers have been saved. After executing
|
1784 |
|
|
dummy call, they all will be restored. So it's safe
|
1785 |
|
|
to modify WINDOWSTART register to make it look like there
|
1786 |
|
|
is only one register window corresponding to WINDOWEBASE. */
|
1787 |
|
|
|
1788 |
|
|
regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
|
1789 |
|
|
regcache_cooked_write_unsigned (regcache,
|
1790 |
|
|
gdbarch_tdep (gdbarch)->ws_regnum,
|
1791 |
|
|
1 << extract_unsigned_integer (buf, 4));
|
1792 |
|
|
}
|
1793 |
|
|
else
|
1794 |
|
|
{
|
1795 |
|
|
/* Simulate CALL0: write RA into A0 register. */
|
1796 |
|
|
regcache_cooked_write_unsigned
|
1797 |
|
|
(regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
|
1798 |
|
|
}
|
1799 |
|
|
|
1800 |
|
|
/* Set new stack pointer and return it. */
|
1801 |
|
|
regcache_cooked_write_unsigned (regcache,
|
1802 |
|
|
gdbarch_tdep (gdbarch)->a0_base + 1, sp);
|
1803 |
|
|
/* Make dummy frame ID unique by adding a constant. */
|
1804 |
|
|
return sp + SP_ALIGNMENT;
|
1805 |
|
|
}
|
1806 |
|
|
|
1807 |
|
|
|
1808 |
|
|
/* Return a breakpoint for the current location of PC. We always use
|
1809 |
|
|
the density version if we have density instructions (regardless of the
|
1810 |
|
|
current instruction at PC), and use regular instructions otherwise. */
|
1811 |
|
|
|
1812 |
|
|
#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
|
1813 |
|
|
#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
|
1814 |
|
|
#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
|
1815 |
|
|
#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
|
1816 |
|
|
|
1817 |
|
|
static const unsigned char *
|
1818 |
|
|
xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
|
1819 |
|
|
int *lenptr)
|
1820 |
|
|
{
|
1821 |
|
|
static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
|
1822 |
|
|
static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
|
1823 |
|
|
static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
|
1824 |
|
|
static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
|
1825 |
|
|
|
1826 |
|
|
DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
|
1827 |
|
|
|
1828 |
|
|
if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
|
1829 |
|
|
{
|
1830 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
1831 |
|
|
{
|
1832 |
|
|
*lenptr = sizeof (density_big_breakpoint);
|
1833 |
|
|
return density_big_breakpoint;
|
1834 |
|
|
}
|
1835 |
|
|
else
|
1836 |
|
|
{
|
1837 |
|
|
*lenptr = sizeof (density_little_breakpoint);
|
1838 |
|
|
return density_little_breakpoint;
|
1839 |
|
|
}
|
1840 |
|
|
}
|
1841 |
|
|
else
|
1842 |
|
|
{
|
1843 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
1844 |
|
|
{
|
1845 |
|
|
*lenptr = sizeof (big_breakpoint);
|
1846 |
|
|
return big_breakpoint;
|
1847 |
|
|
}
|
1848 |
|
|
else
|
1849 |
|
|
{
|
1850 |
|
|
*lenptr = sizeof (little_breakpoint);
|
1851 |
|
|
return little_breakpoint;
|
1852 |
|
|
}
|
1853 |
|
|
}
|
1854 |
|
|
}
|
1855 |
|
|
|
1856 |
|
|
/* Call0 ABI support routines. */
|
1857 |
|
|
|
1858 |
|
|
/* Call0 opcode class. Opcodes are preclassified according to what they
|
1859 |
|
|
mean for Call0 prologue analysis, and their number of significant operands.
|
1860 |
|
|
The purpose of this is to simplify prologue analysis by separating
|
1861 |
|
|
instruction decoding (libisa) from the semantics of prologue analysis. */
|
1862 |
|
|
|
1863 |
|
|
typedef enum {
|
1864 |
|
|
c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
|
1865 |
|
|
c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
|
1866 |
|
|
c0opc_flow, /* Flow control insn. */
|
1867 |
|
|
c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
|
1868 |
|
|
c0opc_break, /* Debugger software breakpoints. */
|
1869 |
|
|
c0opc_add, /* Adding two registers. */
|
1870 |
|
|
c0opc_addi, /* Adding a register and an immediate. */
|
1871 |
|
|
c0opc_sub, /* Subtracting a register from a register. */
|
1872 |
|
|
c0opc_mov, /* Moving a register to a register. */
|
1873 |
|
|
c0opc_movi, /* Moving an immediate to a register. */
|
1874 |
|
|
c0opc_l32r, /* Loading a literal. */
|
1875 |
|
|
c0opc_s32i, /* Storing word at fixed offset from a base register. */
|
1876 |
|
|
c0opc_NrOf /* Number of opcode classifications. */
|
1877 |
|
|
} xtensa_insn_kind;
|
1878 |
|
|
|
1879 |
|
|
|
1880 |
|
|
/* Classify an opcode based on what it means for Call0 prologue analysis. */
|
1881 |
|
|
|
1882 |
|
|
static xtensa_insn_kind
|
1883 |
|
|
call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
|
1884 |
|
|
{
|
1885 |
|
|
const char *opcname;
|
1886 |
|
|
xtensa_insn_kind opclass = c0opc_uninteresting;
|
1887 |
|
|
|
1888 |
|
|
DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
|
1889 |
|
|
|
1890 |
|
|
/* Get opcode name and handle special classifications. */
|
1891 |
|
|
|
1892 |
|
|
opcname = xtensa_opcode_name (isa, opc);
|
1893 |
|
|
|
1894 |
|
|
if (opcname == NULL
|
1895 |
|
|
|| strcasecmp (opcname, "ill") == 0
|
1896 |
|
|
|| strcasecmp (opcname, "ill.n") == 0)
|
1897 |
|
|
opclass = c0opc_illegal;
|
1898 |
|
|
else if (strcasecmp (opcname, "break") == 0
|
1899 |
|
|
|| strcasecmp (opcname, "break.n") == 0)
|
1900 |
|
|
opclass = c0opc_break;
|
1901 |
|
|
else if (strcasecmp (opcname, "entry") == 0)
|
1902 |
|
|
opclass = c0opc_entry;
|
1903 |
|
|
else if (xtensa_opcode_is_branch (isa, opc) > 0
|
1904 |
|
|
|| xtensa_opcode_is_jump (isa, opc) > 0
|
1905 |
|
|
|| xtensa_opcode_is_loop (isa, opc) > 0
|
1906 |
|
|
|| xtensa_opcode_is_call (isa, opc) > 0
|
1907 |
|
|
|| strcasecmp (opcname, "simcall") == 0
|
1908 |
|
|
|| strcasecmp (opcname, "syscall") == 0)
|
1909 |
|
|
opclass = c0opc_flow;
|
1910 |
|
|
|
1911 |
|
|
/* Also, classify specific opcodes that need to be tracked. */
|
1912 |
|
|
else if (strcasecmp (opcname, "add") == 0
|
1913 |
|
|
|| strcasecmp (opcname, "add.n") == 0)
|
1914 |
|
|
opclass = c0opc_add;
|
1915 |
|
|
else if (strcasecmp (opcname, "addi") == 0
|
1916 |
|
|
|| strcasecmp (opcname, "addi.n") == 0
|
1917 |
|
|
|| strcasecmp (opcname, "addmi") == 0)
|
1918 |
|
|
opclass = c0opc_addi;
|
1919 |
|
|
else if (strcasecmp (opcname, "sub") == 0)
|
1920 |
|
|
opclass = c0opc_sub;
|
1921 |
|
|
else if (strcasecmp (opcname, "mov.n") == 0
|
1922 |
|
|
|| strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
|
1923 |
|
|
opclass = c0opc_mov;
|
1924 |
|
|
else if (strcasecmp (opcname, "movi") == 0
|
1925 |
|
|
|| strcasecmp (opcname, "movi.n") == 0)
|
1926 |
|
|
opclass = c0opc_movi;
|
1927 |
|
|
else if (strcasecmp (opcname, "l32r") == 0)
|
1928 |
|
|
opclass = c0opc_l32r;
|
1929 |
|
|
else if (strcasecmp (opcname, "s32i") == 0
|
1930 |
|
|
|| strcasecmp (opcname, "s32i.n") == 0)
|
1931 |
|
|
opclass = c0opc_s32i;
|
1932 |
|
|
|
1933 |
|
|
return opclass;
|
1934 |
|
|
}
|
1935 |
|
|
|
1936 |
|
|
/* Tracks register movement/mutation for a given operation, which may
|
1937 |
|
|
be within a bundle. Updates the destination register tracking info
|
1938 |
|
|
accordingly. The pc is needed only for pc-relative load instructions
|
1939 |
|
|
(eg. l32r). The SP register number is needed to identify stores to
|
1940 |
|
|
the stack frame. */
|
1941 |
|
|
|
1942 |
|
|
static void
|
1943 |
|
|
call0_track_op (xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
|
1944 |
|
|
xtensa_insn_kind opclass, int nods, unsigned odv[],
|
1945 |
|
|
CORE_ADDR pc, int spreg)
|
1946 |
|
|
{
|
1947 |
|
|
unsigned litbase, litaddr, litval;
|
1948 |
|
|
|
1949 |
|
|
switch (opclass)
|
1950 |
|
|
{
|
1951 |
|
|
case c0opc_addi:
|
1952 |
|
|
/* 3 operands: dst, src, imm. */
|
1953 |
|
|
gdb_assert (nods == 3);
|
1954 |
|
|
dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
|
1955 |
|
|
dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
|
1956 |
|
|
break;
|
1957 |
|
|
case c0opc_add:
|
1958 |
|
|
/* 3 operands: dst, src1, src2. */
|
1959 |
|
|
gdb_assert (nods == 3);
|
1960 |
|
|
if (src[odv[1]].fr_reg == C0_CONST)
|
1961 |
|
|
{
|
1962 |
|
|
dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
|
1963 |
|
|
dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
|
1964 |
|
|
}
|
1965 |
|
|
else if (src[odv[2]].fr_reg == C0_CONST)
|
1966 |
|
|
{
|
1967 |
|
|
dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
|
1968 |
|
|
dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
|
1969 |
|
|
}
|
1970 |
|
|
else dst[odv[0]].fr_reg = C0_INEXP;
|
1971 |
|
|
break;
|
1972 |
|
|
case c0opc_sub:
|
1973 |
|
|
/* 3 operands: dst, src1, src2. */
|
1974 |
|
|
gdb_assert (nods == 3);
|
1975 |
|
|
if (src[odv[2]].fr_reg == C0_CONST)
|
1976 |
|
|
{
|
1977 |
|
|
dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
|
1978 |
|
|
dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
|
1979 |
|
|
}
|
1980 |
|
|
else dst[odv[0]].fr_reg = C0_INEXP;
|
1981 |
|
|
break;
|
1982 |
|
|
case c0opc_mov:
|
1983 |
|
|
/* 2 operands: dst, src [, src]. */
|
1984 |
|
|
gdb_assert (nods == 2);
|
1985 |
|
|
dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
|
1986 |
|
|
dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
|
1987 |
|
|
break;
|
1988 |
|
|
case c0opc_movi:
|
1989 |
|
|
/* 2 operands: dst, imm. */
|
1990 |
|
|
gdb_assert (nods == 2);
|
1991 |
|
|
dst[odv[0]].fr_reg = C0_CONST;
|
1992 |
|
|
dst[odv[0]].fr_ofs = odv[1];
|
1993 |
|
|
break;
|
1994 |
|
|
case c0opc_l32r:
|
1995 |
|
|
/* 2 operands: dst, literal offset. */
|
1996 |
|
|
gdb_assert (nods == 2);
|
1997 |
|
|
/* litbase = xtensa_get_litbase (pc); can be also used. */
|
1998 |
|
|
litbase = (gdbarch_tdep (current_gdbarch)->litbase_regnum == -1)
|
1999 |
|
|
? 0 : xtensa_read_register
|
2000 |
|
|
(gdbarch_tdep (current_gdbarch)->litbase_regnum);
|
2001 |
|
|
litaddr = litbase & 1
|
2002 |
|
|
? (litbase & ~1) + (signed)odv[1]
|
2003 |
|
|
: (pc + 3 + (signed)odv[1]) & ~3;
|
2004 |
|
|
litval = read_memory_integer(litaddr, 4);
|
2005 |
|
|
dst[odv[0]].fr_reg = C0_CONST;
|
2006 |
|
|
dst[odv[0]].fr_ofs = litval;
|
2007 |
|
|
break;
|
2008 |
|
|
case c0opc_s32i:
|
2009 |
|
|
/* 3 operands: value, base, offset. */
|
2010 |
|
|
gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
|
2011 |
|
|
if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
|
2012 |
|
|
&& (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
|
2013 |
|
|
&& src[odv[0]].fr_reg >= 0 /* Value is from a register. */
|
2014 |
|
|
&& src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
|
2015 |
|
|
&& src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
|
2016 |
|
|
{
|
2017 |
|
|
/* ISA encoding guarantees alignment. But, check it anyway. */
|
2018 |
|
|
gdb_assert ((odv[2] & 3) == 0);
|
2019 |
|
|
dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
|
2020 |
|
|
}
|
2021 |
|
|
break;
|
2022 |
|
|
default:
|
2023 |
|
|
gdb_assert (0);
|
2024 |
|
|
}
|
2025 |
|
|
}
|
2026 |
|
|
|
2027 |
|
|
/* Analyze prologue of the function at start address to determine if it uses
|
2028 |
|
|
the Call0 ABI, and if so track register moves and linear modifications
|
2029 |
|
|
in the prologue up to the PC or just beyond the prologue, whichever is first.
|
2030 |
|
|
An 'entry' instruction indicates non-Call0 ABI and the end of the prologue.
|
2031 |
|
|
The prologue may overlap non-prologue instructions but is guaranteed to end
|
2032 |
|
|
by the first flow-control instruction (jump, branch, call or return).
|
2033 |
|
|
Since an optimized function may move information around and change the
|
2034 |
|
|
stack frame arbitrarily during the prologue, the information is guaranteed
|
2035 |
|
|
valid only at the point in the function indicated by the PC.
|
2036 |
|
|
May be used to skip the prologue or identify the ABI, w/o tracking.
|
2037 |
|
|
|
2038 |
|
|
Returns: Address of first instruction after prologue, or PC (whichever
|
2039 |
|
|
is first), or 0, if decoding failed (in libisa).
|
2040 |
|
|
Input args:
|
2041 |
|
|
start Start address of function/prologue.
|
2042 |
|
|
pc Program counter to stop at. Use 0 to continue to end of prologue.
|
2043 |
|
|
If 0, avoids infinite run-on in corrupt code memory by bounding
|
2044 |
|
|
the scan to the end of the function if that can be determined.
|
2045 |
|
|
nregs Number of general registers to track (size of rt[] array).
|
2046 |
|
|
InOut args:
|
2047 |
|
|
rt[] Array[nregs] of xtensa_c0reg structures for register tracking info.
|
2048 |
|
|
If NULL, registers are not tracked.
|
2049 |
|
|
Output args:
|
2050 |
|
|
call0 If != NULL, *call0 is set non-zero if Call0 ABI used, else 0
|
2051 |
|
|
(more accurately, non-zero until 'entry' insn is encountered).
|
2052 |
|
|
|
2053 |
|
|
Note that these may produce useful results even if decoding fails
|
2054 |
|
|
because they begin with default assumptions that analysis may change. */
|
2055 |
|
|
|
2056 |
|
|
static CORE_ADDR
|
2057 |
|
|
call0_analyze_prologue (CORE_ADDR start, CORE_ADDR pc,
|
2058 |
|
|
int nregs, xtensa_c0reg_t rt[], int *call0)
|
2059 |
|
|
{
|
2060 |
|
|
CORE_ADDR ia; /* Current insn address in prologue. */
|
2061 |
|
|
CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
|
2062 |
|
|
CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
|
2063 |
|
|
#define BSZ 32 /* Instruction buffer size. */
|
2064 |
|
|
char ibuf[BSZ]; /* Instruction buffer for decoding prologue. */
|
2065 |
|
|
xtensa_isa isa; /* libisa ISA handle. */
|
2066 |
|
|
xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
|
2067 |
|
|
xtensa_format ifmt; /* libisa instruction format. */
|
2068 |
|
|
int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
|
2069 |
|
|
xtensa_opcode opc; /* Opcode in current slot. */
|
2070 |
|
|
xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
|
2071 |
|
|
int nods; /* Opcode number of operands. */
|
2072 |
|
|
unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
|
2073 |
|
|
xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
|
2074 |
|
|
int j; /* General loop counter. */
|
2075 |
|
|
int fail = 0; /* Set non-zero and exit, if decoding fails. */
|
2076 |
|
|
CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
|
2077 |
|
|
CORE_ADDR end_pc; /* The PC for the lust function insn. */
|
2078 |
|
|
|
2079 |
|
|
struct symtab_and_line prologue_sal;
|
2080 |
|
|
|
2081 |
|
|
DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
|
2082 |
|
|
(int)start, (int)pc);
|
2083 |
|
|
|
2084 |
|
|
/* Try to limit the scan to the end of the function if a non-zero pc
|
2085 |
|
|
arg was not supplied to avoid probing beyond the end of valid memory.
|
2086 |
|
|
If memory is full of garbage that classifies as c0opc_uninteresting.
|
2087 |
|
|
If this fails (eg. if no symbols) pc ends up 0 as it was.
|
2088 |
|
|
Intialize the Call0 frame and register tracking info.
|
2089 |
|
|
Assume it's Call0 until an 'entry' instruction is encountered.
|
2090 |
|
|
Assume we may be in the prologue until we hit a flow control instr. */
|
2091 |
|
|
|
2092 |
|
|
rtmp = NULL;
|
2093 |
|
|
body_pc = INT_MAX;
|
2094 |
|
|
end_pc = 0;
|
2095 |
|
|
|
2096 |
|
|
/* Find out, if we have an information about the prologue from DWARF. */
|
2097 |
|
|
prologue_sal = find_pc_line (start, 0);
|
2098 |
|
|
if (prologue_sal.line != 0) /* Found debug info. */
|
2099 |
|
|
body_pc = prologue_sal.end;
|
2100 |
|
|
|
2101 |
|
|
/* If we are going to analyze the prologue in general without knowing about
|
2102 |
|
|
the current PC, make the best assumtion for the end of the prologue. */
|
2103 |
|
|
if (pc == 0)
|
2104 |
|
|
{
|
2105 |
|
|
find_pc_partial_function (start, 0, NULL, &end_pc);
|
2106 |
|
|
body_pc = min (end_pc, body_pc);
|
2107 |
|
|
}
|
2108 |
|
|
else
|
2109 |
|
|
body_pc = min (pc, body_pc);
|
2110 |
|
|
|
2111 |
|
|
if (call0 != NULL)
|
2112 |
|
|
*call0 = 1;
|
2113 |
|
|
|
2114 |
|
|
if (rt != NULL)
|
2115 |
|
|
{
|
2116 |
|
|
rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
|
2117 |
|
|
/* rt is already initialized in xtensa_alloc_frame_cache(). */
|
2118 |
|
|
}
|
2119 |
|
|
else nregs = 0;
|
2120 |
|
|
|
2121 |
|
|
if (!xtensa_default_isa)
|
2122 |
|
|
xtensa_default_isa = xtensa_isa_init (0, 0);
|
2123 |
|
|
isa = xtensa_default_isa;
|
2124 |
|
|
gdb_assert (BSZ >= xtensa_isa_maxlength (isa));
|
2125 |
|
|
ins = xtensa_insnbuf_alloc (isa);
|
2126 |
|
|
slot = xtensa_insnbuf_alloc (isa);
|
2127 |
|
|
|
2128 |
|
|
for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
|
2129 |
|
|
{
|
2130 |
|
|
/* (Re)fill instruction buffer from memory if necessary, but do not
|
2131 |
|
|
read memory beyond PC to be sure we stay within text section
|
2132 |
|
|
(this protection only works if a non-zero pc is supplied). */
|
2133 |
|
|
|
2134 |
|
|
if (ia + xtensa_isa_maxlength (isa) > bt)
|
2135 |
|
|
{
|
2136 |
|
|
ba = ia;
|
2137 |
|
|
bt = (ba + BSZ) < body_pc ? ba + BSZ : body_pc;
|
2138 |
|
|
read_memory (ba, ibuf, bt - ba);
|
2139 |
|
|
}
|
2140 |
|
|
|
2141 |
|
|
/* Decode format information. */
|
2142 |
|
|
|
2143 |
|
|
xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
|
2144 |
|
|
ifmt = xtensa_format_decode (isa, ins);
|
2145 |
|
|
if (ifmt == XTENSA_UNDEFINED)
|
2146 |
|
|
{
|
2147 |
|
|
fail = 1;
|
2148 |
|
|
goto done;
|
2149 |
|
|
}
|
2150 |
|
|
ilen = xtensa_format_length (isa, ifmt);
|
2151 |
|
|
if (ilen == XTENSA_UNDEFINED)
|
2152 |
|
|
{
|
2153 |
|
|
fail = 1;
|
2154 |
|
|
goto done;
|
2155 |
|
|
}
|
2156 |
|
|
islots = xtensa_format_num_slots (isa, ifmt);
|
2157 |
|
|
if (islots == XTENSA_UNDEFINED)
|
2158 |
|
|
{
|
2159 |
|
|
fail = 1;
|
2160 |
|
|
goto done;
|
2161 |
|
|
}
|
2162 |
|
|
|
2163 |
|
|
/* Analyze a bundle or a single instruction, using a snapshot of
|
2164 |
|
|
the register tracking info as input for the entire bundle so that
|
2165 |
|
|
register changes do not take effect within this bundle. */
|
2166 |
|
|
|
2167 |
|
|
for (j = 0; j < nregs; ++j)
|
2168 |
|
|
rtmp[j] = rt[j];
|
2169 |
|
|
|
2170 |
|
|
for (is = 0; is < islots; ++is)
|
2171 |
|
|
{
|
2172 |
|
|
/* Decode a slot and classify the opcode. */
|
2173 |
|
|
|
2174 |
|
|
fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
|
2175 |
|
|
if (fail)
|
2176 |
|
|
goto done;
|
2177 |
|
|
|
2178 |
|
|
opc = xtensa_opcode_decode (isa, ifmt, is, slot);
|
2179 |
|
|
DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
|
2180 |
|
|
(unsigned)ia, opc);
|
2181 |
|
|
if (opc == XTENSA_UNDEFINED)
|
2182 |
|
|
opclass = c0opc_illegal;
|
2183 |
|
|
else
|
2184 |
|
|
opclass = call0_classify_opcode (isa, opc);
|
2185 |
|
|
|
2186 |
|
|
/* Decide whether to track this opcode, ignore it, or bail out. */
|
2187 |
|
|
|
2188 |
|
|
switch (opclass)
|
2189 |
|
|
{
|
2190 |
|
|
case c0opc_illegal:
|
2191 |
|
|
case c0opc_break:
|
2192 |
|
|
fail = 1;
|
2193 |
|
|
goto done;
|
2194 |
|
|
|
2195 |
|
|
case c0opc_uninteresting:
|
2196 |
|
|
continue;
|
2197 |
|
|
|
2198 |
|
|
case c0opc_flow:
|
2199 |
|
|
goto done;
|
2200 |
|
|
|
2201 |
|
|
case c0opc_entry:
|
2202 |
|
|
if (call0 != NULL)
|
2203 |
|
|
*call0 = 0;
|
2204 |
|
|
ia += ilen; /* Skip over 'entry' insn. */
|
2205 |
|
|
goto done;
|
2206 |
|
|
|
2207 |
|
|
default:
|
2208 |
|
|
if (call0 != NULL)
|
2209 |
|
|
*call0 = 1;
|
2210 |
|
|
}
|
2211 |
|
|
|
2212 |
|
|
/* Only expected opcodes should get this far. */
|
2213 |
|
|
if (rt == NULL)
|
2214 |
|
|
continue;
|
2215 |
|
|
|
2216 |
|
|
/* Extract and decode the operands. */
|
2217 |
|
|
nods = xtensa_opcode_num_operands (isa, opc);
|
2218 |
|
|
if (nods == XTENSA_UNDEFINED)
|
2219 |
|
|
{
|
2220 |
|
|
fail = 1;
|
2221 |
|
|
goto done;
|
2222 |
|
|
}
|
2223 |
|
|
|
2224 |
|
|
for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
|
2225 |
|
|
{
|
2226 |
|
|
fail = xtensa_operand_get_field (isa, opc, j, ifmt,
|
2227 |
|
|
is, slot, &odv[j]);
|
2228 |
|
|
if (fail)
|
2229 |
|
|
goto done;
|
2230 |
|
|
|
2231 |
|
|
fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
|
2232 |
|
|
if (fail)
|
2233 |
|
|
goto done;
|
2234 |
|
|
}
|
2235 |
|
|
|
2236 |
|
|
/* Check operands to verify use of 'mov' assembler macro. */
|
2237 |
|
|
if (opclass == c0opc_mov && nods == 3)
|
2238 |
|
|
{
|
2239 |
|
|
if (odv[2] == odv[1])
|
2240 |
|
|
nods = 2;
|
2241 |
|
|
else
|
2242 |
|
|
{
|
2243 |
|
|
opclass = c0opc_uninteresting;
|
2244 |
|
|
continue;
|
2245 |
|
|
}
|
2246 |
|
|
}
|
2247 |
|
|
|
2248 |
|
|
/* Track register movement and modification for this operation. */
|
2249 |
|
|
call0_track_op (rt, rtmp, opclass, nods, odv, ia, 1);
|
2250 |
|
|
}
|
2251 |
|
|
}
|
2252 |
|
|
done:
|
2253 |
|
|
DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
|
2254 |
|
|
(unsigned)ia, fail ? "failed" : "succeeded");
|
2255 |
|
|
xtensa_insnbuf_free(isa, slot);
|
2256 |
|
|
xtensa_insnbuf_free(isa, ins);
|
2257 |
|
|
return fail ? 0 : ia;
|
2258 |
|
|
}
|
2259 |
|
|
|
2260 |
|
|
/* Initialize frame cache for the current frame. The "next_frame" is the next
|
2261 |
|
|
one relative to current frame. "cache" is the pointer to the data structure
|
2262 |
|
|
we have to initialize. "pc" is curretnt PC. */
|
2263 |
|
|
|
2264 |
|
|
static void
|
2265 |
|
|
call0_frame_cache (struct frame_info *next_frame,
|
2266 |
|
|
xtensa_frame_cache_t *cache, CORE_ADDR pc)
|
2267 |
|
|
{
|
2268 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
2269 |
|
|
CORE_ADDR start_pc; /* The beginning of the function. */
|
2270 |
|
|
CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
|
2271 |
|
|
CORE_ADDR sp, fp, ra;
|
2272 |
|
|
int fp_regnum, c0_hasfp, c0_frmsz, prev_sp, to_stk;
|
2273 |
|
|
|
2274 |
|
|
/* Find the beginning of the prologue of the function containing the PC
|
2275 |
|
|
and analyze it up to the PC or the end of the prologue. */
|
2276 |
|
|
|
2277 |
|
|
if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
|
2278 |
|
|
{
|
2279 |
|
|
body_pc = call0_analyze_prologue (start_pc, pc, C0_NREGS,
|
2280 |
|
|
&cache->c0.c0_rt[0],
|
2281 |
|
|
&cache->call0);
|
2282 |
|
|
}
|
2283 |
|
|
|
2284 |
|
|
sp = frame_unwind_register_unsigned
|
2285 |
|
|
(next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
|
2286 |
|
|
fp = sp; /* Assume FP == SP until proven otherwise. */
|
2287 |
|
|
|
2288 |
|
|
/* Get the frame information and FP (if used) at the current PC.
|
2289 |
|
|
If PC is in the prologue, the prologue analysis is more reliable
|
2290 |
|
|
than DWARF info. We don't not know for sure if PC is in the prologue,
|
2291 |
|
|
but we know no calls have yet taken place, so we can almost
|
2292 |
|
|
certainly rely on the prologue analysis. */
|
2293 |
|
|
|
2294 |
|
|
if (body_pc <= pc)
|
2295 |
|
|
{
|
2296 |
|
|
/* Prologue analysis was successful up to the PC.
|
2297 |
|
|
It includes the cases when PC == START_PC. */
|
2298 |
|
|
c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
|
2299 |
|
|
/* c0_hasfp == true means there is a frame pointer because
|
2300 |
|
|
we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
|
2301 |
|
|
was derived from SP. Otherwise, it would be C0_FP. */
|
2302 |
|
|
fp_regnum = c0_hasfp ? C0_FP : C0_SP;
|
2303 |
|
|
c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
|
2304 |
|
|
fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
|
2305 |
|
|
}
|
2306 |
|
|
else /* No data from the prologue analysis. */
|
2307 |
|
|
{
|
2308 |
|
|
c0_hasfp = 0;
|
2309 |
|
|
fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
|
2310 |
|
|
c0_frmsz = 0;
|
2311 |
|
|
start_pc = pc;
|
2312 |
|
|
}
|
2313 |
|
|
|
2314 |
|
|
prev_sp = fp + c0_frmsz;
|
2315 |
|
|
|
2316 |
|
|
/* Frame size from debug info or prologue tracking does not account for
|
2317 |
|
|
alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
|
2318 |
|
|
if (c0_hasfp)
|
2319 |
|
|
{
|
2320 |
|
|
fp = frame_unwind_register_unsigned (next_frame, fp_regnum);
|
2321 |
|
|
|
2322 |
|
|
/* Recalculate previous SP. */
|
2323 |
|
|
prev_sp = fp + c0_frmsz;
|
2324 |
|
|
/* Update the stack frame size. */
|
2325 |
|
|
c0_frmsz += fp - sp;
|
2326 |
|
|
}
|
2327 |
|
|
|
2328 |
|
|
/* Get the return address (RA) from the stack if saved,
|
2329 |
|
|
or try to get it from a register. */
|
2330 |
|
|
|
2331 |
|
|
to_stk = cache->c0.c0_rt[C0_RA].to_stk;
|
2332 |
|
|
if (to_stk != C0_NOSTK)
|
2333 |
|
|
ra = (CORE_ADDR)
|
2334 |
|
|
read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk, 4);
|
2335 |
|
|
|
2336 |
|
|
else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
|
2337 |
|
|
&& cache->c0.c0_rt[C0_RA].fr_ofs == 0)
|
2338 |
|
|
{
|
2339 |
|
|
/* Special case for terminating backtrace at a function that wants to
|
2340 |
|
|
be seen as the outermost. Such a function will clear it's RA (A0)
|
2341 |
|
|
register to 0 in the prologue instead of saving its original value. */
|
2342 |
|
|
ra = 0;
|
2343 |
|
|
}
|
2344 |
|
|
else
|
2345 |
|
|
{
|
2346 |
|
|
/* RA was copied to another register or (before any function call) may
|
2347 |
|
|
still be in the original RA register. This is not always reliable:
|
2348 |
|
|
even in a leaf function, register tracking stops after prologue, and
|
2349 |
|
|
even in prologue, non-prologue instructions (not tracked) may overwrite
|
2350 |
|
|
RA or any register it was copied to. If likely in prologue or before
|
2351 |
|
|
any call, use retracking info and hope for the best (compiler should
|
2352 |
|
|
have saved RA in stack if not in a leaf function). If not in prologue,
|
2353 |
|
|
too bad. */
|
2354 |
|
|
|
2355 |
|
|
int i;
|
2356 |
|
|
for (i = 0;
|
2357 |
|
|
(i < C0_NREGS) &&
|
2358 |
|
|
(i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
|
2359 |
|
|
++i);
|
2360 |
|
|
if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
|
2361 |
|
|
i = C0_RA;
|
2362 |
|
|
if (i < C0_NREGS) /* Read from the next_frame. */
|
2363 |
|
|
{
|
2364 |
|
|
ra = frame_unwind_register_unsigned
|
2365 |
|
|
(next_frame,
|
2366 |
|
|
gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
|
2367 |
|
|
}
|
2368 |
|
|
else ra = 0;
|
2369 |
|
|
}
|
2370 |
|
|
|
2371 |
|
|
cache->pc = start_pc;
|
2372 |
|
|
cache->ra = ra;
|
2373 |
|
|
/* RA == 0 marks the outermost frame. Do not go past it. */
|
2374 |
|
|
cache->prev_sp = (ra != 0) ? prev_sp : 0;
|
2375 |
|
|
cache->c0.fp_regnum = fp_regnum;
|
2376 |
|
|
cache->c0.c0_frmsz = c0_frmsz;
|
2377 |
|
|
cache->c0.c0_hasfp = c0_hasfp;
|
2378 |
|
|
cache->c0.c0_fp = fp;
|
2379 |
|
|
}
|
2380 |
|
|
|
2381 |
|
|
|
2382 |
|
|
/* Skip function prologue.
|
2383 |
|
|
|
2384 |
|
|
Return the pc of the first instruction after prologue. GDB calls this to
|
2385 |
|
|
find the address of the first line of the function or (if there is no line
|
2386 |
|
|
number information) to skip the prologue for planting breakpoints on
|
2387 |
|
|
function entries. Use debug info (if present) or prologue analysis to skip
|
2388 |
|
|
the prologue to achieve reliable debugging behavior. For windowed ABI,
|
2389 |
|
|
only the 'entry' instruction is skipped. It is not strictly necessary to
|
2390 |
|
|
skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
|
2391 |
|
|
backtrace at any point in the prologue, however certain potential hazards
|
2392 |
|
|
are avoided and a more "normal" debugging experience is ensured by
|
2393 |
|
|
skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
|
2394 |
|
|
For example, if we don't skip the prologue:
|
2395 |
|
|
- Some args may not yet have been saved to the stack where the debug
|
2396 |
|
|
info expects to find them (true anyway when only 'entry' is skipped);
|
2397 |
|
|
- Software breakpoints ('break' instrs) may not have been unplanted
|
2398 |
|
|
when the prologue analysis is done on initializing the frame cache,
|
2399 |
|
|
and breaks in the prologue will throw off the analysis.
|
2400 |
|
|
|
2401 |
|
|
If we have debug info ( line-number info, in particular ) we simply skip
|
2402 |
|
|
the code associated with the first function line effectively skipping
|
2403 |
|
|
the prologue code. It works even in cases like
|
2404 |
|
|
|
2405 |
|
|
int main()
|
2406 |
|
|
{ int local_var = 1;
|
2407 |
|
|
....
|
2408 |
|
|
}
|
2409 |
|
|
|
2410 |
|
|
because, for this source code, both Xtensa compilers will generate two
|
2411 |
|
|
separate entries ( with the same line number ) in dwarf line-number
|
2412 |
|
|
section to make sure there is a boundary between the prologue code and
|
2413 |
|
|
the rest of the function.
|
2414 |
|
|
|
2415 |
|
|
If there is no debug info, we need to analyze the code. */
|
2416 |
|
|
|
2417 |
|
|
/* #define DONT_SKIP_PROLOGUE */
|
2418 |
|
|
|
2419 |
|
|
CORE_ADDR
|
2420 |
|
|
xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
|
2421 |
|
|
{
|
2422 |
|
|
struct symtab_and_line prologue_sal;
|
2423 |
|
|
CORE_ADDR body_pc;
|
2424 |
|
|
|
2425 |
|
|
DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
|
2426 |
|
|
|
2427 |
|
|
#if DONT_SKIP_PROLOGUE
|
2428 |
|
|
return start_pc;
|
2429 |
|
|
#endif
|
2430 |
|
|
|
2431 |
|
|
/* Try to find first body line from debug info. */
|
2432 |
|
|
|
2433 |
|
|
prologue_sal = find_pc_line (start_pc, 0);
|
2434 |
|
|
if (prologue_sal.line != 0) /* Found debug info. */
|
2435 |
|
|
{
|
2436 |
|
|
/* In Call0, it is possible to have a function with only one instruction
|
2437 |
|
|
('ret') resulting from a 1-line optimized function that does nothing.
|
2438 |
|
|
In that case, prologue_sal.end may actually point to the start of the
|
2439 |
|
|
next function in the text section, causing a breakpoint to be set at
|
2440 |
|
|
the wrong place. Check if the end address is in a different function,
|
2441 |
|
|
and if so return the start PC. We know we have symbol info. */
|
2442 |
|
|
|
2443 |
|
|
CORE_ADDR end_func;
|
2444 |
|
|
|
2445 |
|
|
find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
|
2446 |
|
|
if (end_func != start_pc)
|
2447 |
|
|
return start_pc;
|
2448 |
|
|
|
2449 |
|
|
return prologue_sal.end;
|
2450 |
|
|
}
|
2451 |
|
|
|
2452 |
|
|
/* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
|
2453 |
|
|
body_pc = call0_analyze_prologue(start_pc, 0, 0, NULL, NULL);
|
2454 |
|
|
return body_pc != 0 ? body_pc : start_pc;
|
2455 |
|
|
}
|
2456 |
|
|
|
2457 |
|
|
/* Verify the current configuration. */
|
2458 |
|
|
static void
|
2459 |
|
|
xtensa_verify_config (struct gdbarch *gdbarch)
|
2460 |
|
|
{
|
2461 |
|
|
struct ui_file *log;
|
2462 |
|
|
struct cleanup *cleanups;
|
2463 |
|
|
struct gdbarch_tdep *tdep;
|
2464 |
|
|
long dummy;
|
2465 |
|
|
char *buf;
|
2466 |
|
|
|
2467 |
|
|
tdep = gdbarch_tdep (gdbarch);
|
2468 |
|
|
log = mem_fileopen ();
|
2469 |
|
|
cleanups = make_cleanup_ui_file_delete (log);
|
2470 |
|
|
|
2471 |
|
|
/* Verify that we got a reasonable number of AREGS. */
|
2472 |
|
|
if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
|
2473 |
|
|
fprintf_unfiltered (log, _("\
|
2474 |
|
|
\n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
|
2475 |
|
|
tdep->num_aregs);
|
2476 |
|
|
|
2477 |
|
|
/* Verify that certain registers exist. */
|
2478 |
|
|
|
2479 |
|
|
if (tdep->pc_regnum == -1)
|
2480 |
|
|
fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
|
2481 |
|
|
if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
|
2482 |
|
|
fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
|
2483 |
|
|
|
2484 |
|
|
if (tdep->isa_use_windowed_registers)
|
2485 |
|
|
{
|
2486 |
|
|
if (tdep->wb_regnum == -1)
|
2487 |
|
|
fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
|
2488 |
|
|
if (tdep->ws_regnum == -1)
|
2489 |
|
|
fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
|
2490 |
|
|
if (tdep->ar_base == -1)
|
2491 |
|
|
fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
|
2492 |
|
|
}
|
2493 |
|
|
|
2494 |
|
|
if (tdep->a0_base == -1)
|
2495 |
|
|
fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
|
2496 |
|
|
|
2497 |
|
|
buf = ui_file_xstrdup (log, &dummy);
|
2498 |
|
|
make_cleanup (xfree, buf);
|
2499 |
|
|
if (strlen (buf) > 0)
|
2500 |
|
|
internal_error (__FILE__, __LINE__,
|
2501 |
|
|
_("the following are invalid: %s"), buf);
|
2502 |
|
|
do_cleanups (cleanups);
|
2503 |
|
|
}
|
2504 |
|
|
|
2505 |
|
|
|
2506 |
|
|
/* Derive specific register numbers from the array of registers. */
|
2507 |
|
|
|
2508 |
|
|
void
|
2509 |
|
|
xtensa_derive_tdep (struct gdbarch_tdep *tdep)
|
2510 |
|
|
{
|
2511 |
|
|
xtensa_register_t* rmap;
|
2512 |
|
|
int n, max_size = 4;
|
2513 |
|
|
|
2514 |
|
|
tdep->num_regs = 0;
|
2515 |
|
|
tdep->num_nopriv_regs = 0;
|
2516 |
|
|
|
2517 |
|
|
/* Special registers 0..255 (core). */
|
2518 |
|
|
#define XTENSA_DBREGN_SREG(n) (0x0200+(n))
|
2519 |
|
|
|
2520 |
|
|
for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
|
2521 |
|
|
{
|
2522 |
|
|
if (rmap->target_number == 0x0020)
|
2523 |
|
|
tdep->pc_regnum = n;
|
2524 |
|
|
else if (rmap->target_number == 0x0100)
|
2525 |
|
|
tdep->ar_base = n;
|
2526 |
|
|
else if (rmap->target_number == 0x0000)
|
2527 |
|
|
tdep->a0_base = n;
|
2528 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
|
2529 |
|
|
tdep->wb_regnum = n;
|
2530 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
|
2531 |
|
|
tdep->ws_regnum = n;
|
2532 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
|
2533 |
|
|
tdep->debugcause_regnum = n;
|
2534 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
|
2535 |
|
|
tdep->exccause_regnum = n;
|
2536 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
|
2537 |
|
|
tdep->excvaddr_regnum = n;
|
2538 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
|
2539 |
|
|
tdep->lbeg_regnum = n;
|
2540 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
|
2541 |
|
|
tdep->lend_regnum = n;
|
2542 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
|
2543 |
|
|
tdep->lcount_regnum = n;
|
2544 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
|
2545 |
|
|
tdep->sar_regnum = n;
|
2546 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
|
2547 |
|
|
tdep->litbase_regnum = n;
|
2548 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
|
2549 |
|
|
tdep->ps_regnum = n;
|
2550 |
|
|
#if 0
|
2551 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
|
2552 |
|
|
tdep->interrupt_regnum = n;
|
2553 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
|
2554 |
|
|
tdep->interrupt2_regnum = n;
|
2555 |
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
|
2556 |
|
|
tdep->cpenable_regnum = n;
|
2557 |
|
|
#endif
|
2558 |
|
|
|
2559 |
|
|
if (rmap->byte_size > max_size)
|
2560 |
|
|
max_size = rmap->byte_size;
|
2561 |
|
|
if (rmap->mask != 0 && tdep->num_regs == 0)
|
2562 |
|
|
tdep->num_regs = n;
|
2563 |
|
|
/* Find out out how to deal with priveleged registers.
|
2564 |
|
|
|
2565 |
|
|
if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
|
2566 |
|
|
&& tdep->num_nopriv_regs == 0)
|
2567 |
|
|
tdep->num_nopriv_regs = n;
|
2568 |
|
|
*/
|
2569 |
|
|
if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
|
2570 |
|
|
&& tdep->num_regs == 0)
|
2571 |
|
|
tdep->num_regs = n;
|
2572 |
|
|
}
|
2573 |
|
|
|
2574 |
|
|
/* Number of pseudo registers. */
|
2575 |
|
|
tdep->num_pseudo_regs = n - tdep->num_regs;
|
2576 |
|
|
|
2577 |
|
|
/* Empirically determined maximum sizes. */
|
2578 |
|
|
tdep->max_register_raw_size = max_size;
|
2579 |
|
|
tdep->max_register_virtual_size = max_size;
|
2580 |
|
|
}
|
2581 |
|
|
|
2582 |
|
|
/* Module "constructor" function. */
|
2583 |
|
|
|
2584 |
|
|
extern struct gdbarch_tdep xtensa_tdep;
|
2585 |
|
|
|
2586 |
|
|
static struct gdbarch *
|
2587 |
|
|
xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
2588 |
|
|
{
|
2589 |
|
|
struct gdbarch_tdep *tdep;
|
2590 |
|
|
struct gdbarch *gdbarch;
|
2591 |
|
|
struct xtensa_abi_handler *abi_handler;
|
2592 |
|
|
|
2593 |
|
|
DEBUGTRACE ("gdbarch_init()\n");
|
2594 |
|
|
|
2595 |
|
|
/* We have to set the byte order before we call gdbarch_alloc. */
|
2596 |
|
|
info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
|
2597 |
|
|
|
2598 |
|
|
tdep = &xtensa_tdep;
|
2599 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
2600 |
|
|
xtensa_derive_tdep (tdep);
|
2601 |
|
|
|
2602 |
|
|
/* Verify our configuration. */
|
2603 |
|
|
xtensa_verify_config (gdbarch);
|
2604 |
|
|
|
2605 |
|
|
/* Pseudo-Register read/write. */
|
2606 |
|
|
set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
|
2607 |
|
|
set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
|
2608 |
|
|
|
2609 |
|
|
/* Set target information. */
|
2610 |
|
|
set_gdbarch_num_regs (gdbarch, tdep->num_regs);
|
2611 |
|
|
set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
|
2612 |
|
|
set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
|
2613 |
|
|
set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
|
2614 |
|
|
set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
|
2615 |
|
|
|
2616 |
|
|
/* Renumber registers for known formats (stab, dwarf, and dwarf2). */
|
2617 |
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
|
2618 |
|
|
set_gdbarch_dwarf_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
|
2619 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
|
2620 |
|
|
|
2621 |
|
|
/* We provide our own function to get register information. */
|
2622 |
|
|
set_gdbarch_register_name (gdbarch, xtensa_register_name);
|
2623 |
|
|
set_gdbarch_register_type (gdbarch, xtensa_register_type);
|
2624 |
|
|
|
2625 |
|
|
/* To call functions from GDB using dummy frame */
|
2626 |
|
|
set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
|
2627 |
|
|
|
2628 |
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
2629 |
|
|
|
2630 |
|
|
set_gdbarch_return_value (gdbarch, xtensa_return_value);
|
2631 |
|
|
|
2632 |
|
|
/* Advance PC across any prologue instructions to reach "real" code. */
|
2633 |
|
|
set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
|
2634 |
|
|
|
2635 |
|
|
/* Stack grows downward. */
|
2636 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
2637 |
|
|
|
2638 |
|
|
/* Set breakpoints. */
|
2639 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
|
2640 |
|
|
|
2641 |
|
|
/* After breakpoint instruction or illegal instruction, pc still
|
2642 |
|
|
points at break instruction, so don't decrement. */
|
2643 |
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
2644 |
|
|
|
2645 |
|
|
/* We don't skip args. */
|
2646 |
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
2647 |
|
|
|
2648 |
|
|
set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
|
2649 |
|
|
|
2650 |
|
|
set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
|
2651 |
|
|
|
2652 |
|
|
set_gdbarch_unwind_dummy_id (gdbarch, xtensa_unwind_dummy_id);
|
2653 |
|
|
|
2654 |
|
|
/* Frame handling. */
|
2655 |
|
|
frame_base_set_default (gdbarch, &xtensa_frame_base);
|
2656 |
|
|
frame_unwind_append_sniffer (gdbarch, xtensa_frame_sniffer);
|
2657 |
|
|
|
2658 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
|
2659 |
|
|
|
2660 |
|
|
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
2661 |
|
|
|
2662 |
|
|
xtensa_add_reggroups (gdbarch);
|
2663 |
|
|
set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
|
2664 |
|
|
|
2665 |
|
|
set_gdbarch_regset_from_core_section (gdbarch,
|
2666 |
|
|
xtensa_regset_from_core_section);
|
2667 |
|
|
|
2668 |
|
|
return gdbarch;
|
2669 |
|
|
}
|
2670 |
|
|
|
2671 |
|
|
static void
|
2672 |
|
|
xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
2673 |
|
|
{
|
2674 |
|
|
error (_("xtensa_dump_tdep(): not implemented"));
|
2675 |
|
|
}
|
2676 |
|
|
|
2677 |
|
|
void
|
2678 |
|
|
_initialize_xtensa_tdep (void)
|
2679 |
|
|
{
|
2680 |
|
|
struct cmd_list_element *c;
|
2681 |
|
|
|
2682 |
|
|
gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
|
2683 |
|
|
xtensa_init_reggroups ();
|
2684 |
|
|
|
2685 |
|
|
add_setshow_zinteger_cmd ("xtensa",
|
2686 |
|
|
class_maintenance,
|
2687 |
|
|
&xtensa_debug_level, _("\
|
2688 |
|
|
Set Xtensa debugging."), _("\
|
2689 |
|
|
Show Xtensa debugging."), _("\
|
2690 |
|
|
When non-zero, Xtensa-specific debugging is enabled. \
|
2691 |
|
|
Can be 1, 2, 3, or 4 indicating the level of debugging."),
|
2692 |
|
|
NULL,
|
2693 |
|
|
NULL,
|
2694 |
|
|
&setdebuglist, &showdebuglist);
|
2695 |
|
|
}
|