OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [libiberty/] [splay-tree.c] - Blame information for rev 280

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 24 jeremybenn
/* A splay-tree datatype.
2
   Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
   Contributed by Mark Mitchell (mark@markmitchell.com).
4
 
5
This file is part of GNU CC.
6
 
7
GNU CC is free software; you can redistribute it and/or modify it
8
under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 2, or (at your option)
10
any later version.
11
 
12
GNU CC is distributed in the hope that it will be useful, but
13
WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
General Public License for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GNU CC; see the file COPYING.  If not, write to
19
the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20
Boston, MA 02110-1301, USA.  */
21
 
22
/* For an easily readable description of splay-trees, see:
23
 
24
     Lewis, Harry R. and Denenberg, Larry.  Data Structures and Their
25
     Algorithms.  Harper-Collins, Inc.  1991.  */
26
 
27
#ifdef HAVE_CONFIG_H
28
#include "config.h"
29
#endif
30
 
31
#ifdef HAVE_STDLIB_H
32
#include <stdlib.h>
33
#endif
34
 
35
#include <stdio.h>
36
 
37
#include "libiberty.h"
38
#include "splay-tree.h"
39
 
40
static void splay_tree_delete_helper (splay_tree, splay_tree_node);
41
static inline void rotate_left (splay_tree_node *,
42
                                splay_tree_node, splay_tree_node);
43
static inline void rotate_right (splay_tree_node *,
44
                                splay_tree_node, splay_tree_node);
45
static void splay_tree_splay (splay_tree, splay_tree_key);
46
static int splay_tree_foreach_helper (splay_tree, splay_tree_node,
47
                                      splay_tree_foreach_fn, void*);
48
 
49
/* Deallocate NODE (a member of SP), and all its sub-trees.  */
50
 
51
static void
52
splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
53
{
54
  splay_tree_node pending = 0;
55
  splay_tree_node active = 0;
56
 
57
  if (!node)
58
    return;
59
 
60
#define KDEL(x)  if (sp->delete_key) (*sp->delete_key)(x);
61
#define VDEL(x)  if (sp->delete_value) (*sp->delete_value)(x);
62
 
63
  KDEL (node->key);
64
  VDEL (node->value);
65
 
66
  /* We use the "key" field to hold the "next" pointer.  */
67
  node->key = (splay_tree_key)pending;
68
  pending = (splay_tree_node)node;
69
 
70
  /* Now, keep processing the pending list until there aren't any
71
     more.  This is a little more complicated than just recursing, but
72
     it doesn't toast the stack for large trees.  */
73
 
74
  while (pending)
75
    {
76
      active = pending;
77
      pending = 0;
78
      while (active)
79
        {
80
          splay_tree_node temp;
81
 
82
          /* active points to a node which has its key and value
83
             deallocated, we just need to process left and right.  */
84
 
85
          if (active->left)
86
            {
87
              KDEL (active->left->key);
88
              VDEL (active->left->value);
89
              active->left->key = (splay_tree_key)pending;
90
              pending = (splay_tree_node)(active->left);
91
            }
92
          if (active->right)
93
            {
94
              KDEL (active->right->key);
95
              VDEL (active->right->value);
96
              active->right->key = (splay_tree_key)pending;
97
              pending = (splay_tree_node)(active->right);
98
            }
99
 
100
          temp = active;
101
          active = (splay_tree_node)(temp->key);
102
          (*sp->deallocate) ((char*) temp, sp->allocate_data);
103
        }
104
    }
105
#undef KDEL
106
#undef VDEL
107
}
108
 
109
/* Rotate the edge joining the left child N with its parent P.  PP is the
110
   grandparents' pointer to P.  */
111
 
112
static inline void
113
rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
114
{
115
  splay_tree_node tmp;
116
  tmp = n->right;
117
  n->right = p;
118
  p->left = tmp;
119
  *pp = n;
120
}
121
 
122
/* Rotate the edge joining the right child N with its parent P.  PP is the
123
   grandparents' pointer to P.  */
124
 
125
static inline void
126
rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
127
{
128
  splay_tree_node tmp;
129
  tmp = n->left;
130
  n->left = p;
131
  p->right = tmp;
132
  *pp = n;
133
}
134
 
135
/* Bottom up splay of key.  */
136
 
137
static void
138
splay_tree_splay (splay_tree sp, splay_tree_key key)
139
{
140
  if (sp->root == 0)
141
    return;
142
 
143
  do {
144
    int cmp1, cmp2;
145
    splay_tree_node n, c;
146
 
147
    n = sp->root;
148
    cmp1 = (*sp->comp) (key, n->key);
149
 
150
    /* Found.  */
151
    if (cmp1 == 0)
152
      return;
153
 
154
    /* Left or right?  If no child, then we're done.  */
155
    if (cmp1 < 0)
156
      c = n->left;
157
    else
158
      c = n->right;
159
    if (!c)
160
      return;
161
 
162
    /* Next one left or right?  If found or no child, we're done
163
       after one rotation.  */
164
    cmp2 = (*sp->comp) (key, c->key);
165
    if (cmp2 == 0
166
        || (cmp2 < 0 && !c->left)
167
        || (cmp2 > 0 && !c->right))
168
      {
169
        if (cmp1 < 0)
170
          rotate_left (&sp->root, n, c);
171
        else
172
          rotate_right (&sp->root, n, c);
173
        return;
174
      }
175
 
176
    /* Now we have the four cases of double-rotation.  */
177
    if (cmp1 < 0 && cmp2 < 0)
178
      {
179
        rotate_left (&n->left, c, c->left);
180
        rotate_left (&sp->root, n, n->left);
181
      }
182
    else if (cmp1 > 0 && cmp2 > 0)
183
      {
184
        rotate_right (&n->right, c, c->right);
185
        rotate_right (&sp->root, n, n->right);
186
      }
187
    else if (cmp1 < 0 && cmp2 > 0)
188
      {
189
        rotate_right (&n->left, c, c->right);
190
        rotate_left (&sp->root, n, n->left);
191
      }
192
    else if (cmp1 > 0 && cmp2 < 0)
193
      {
194
        rotate_left (&n->right, c, c->left);
195
        rotate_right (&sp->root, n, n->right);
196
      }
197
  } while (1);
198
}
199
 
200
/* Call FN, passing it the DATA, for every node below NODE, all of
201
   which are from SP, following an in-order traversal.  If FN every
202
   returns a non-zero value, the iteration ceases immediately, and the
203
   value is returned.  Otherwise, this function returns 0.  */
204
 
205
static int
206
splay_tree_foreach_helper (splay_tree sp, splay_tree_node node,
207
                           splay_tree_foreach_fn fn, void *data)
208
{
209
  int val;
210
 
211
  if (!node)
212
    return 0;
213
 
214
  val = splay_tree_foreach_helper (sp, node->left, fn, data);
215
  if (val)
216
    return val;
217
 
218
  val = (*fn)(node, data);
219
  if (val)
220
    return val;
221
 
222
  return splay_tree_foreach_helper (sp, node->right, fn, data);
223
}
224
 
225
 
226
/* An allocator and deallocator based on xmalloc.  */
227
static void *
228
splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
229
{
230
  return (void *) xmalloc (size);
231
}
232
 
233
static void
234
splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
235
{
236
  free (object);
237
}
238
 
239
 
240
/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
241
   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
242
   values.  Use xmalloc to allocate the splay tree structure, and any
243
   nodes added.  */
244
 
245
splay_tree
246
splay_tree_new (splay_tree_compare_fn compare_fn,
247
                splay_tree_delete_key_fn delete_key_fn,
248
                splay_tree_delete_value_fn delete_value_fn)
249
{
250
  return (splay_tree_new_with_allocator
251
          (compare_fn, delete_key_fn, delete_value_fn,
252
           splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
253
}
254
 
255
 
256
/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
257
   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
258
   values.  */
259
 
260
splay_tree
261
splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
262
                               splay_tree_delete_key_fn delete_key_fn,
263
                               splay_tree_delete_value_fn delete_value_fn,
264
                               splay_tree_allocate_fn allocate_fn,
265
                               splay_tree_deallocate_fn deallocate_fn,
266
                               void *allocate_data)
267
{
268
  splay_tree sp = (splay_tree) (*allocate_fn) (sizeof (struct splay_tree_s),
269
                                               allocate_data);
270
  sp->root = 0;
271
  sp->comp = compare_fn;
272
  sp->delete_key = delete_key_fn;
273
  sp->delete_value = delete_value_fn;
274
  sp->allocate = allocate_fn;
275
  sp->deallocate = deallocate_fn;
276
  sp->allocate_data = allocate_data;
277
 
278
  return sp;
279
}
280
 
281
/* Deallocate SP.  */
282
 
283
void
284
splay_tree_delete (splay_tree sp)
285
{
286
  splay_tree_delete_helper (sp, sp->root);
287
  (*sp->deallocate) ((char*) sp, sp->allocate_data);
288
}
289
 
290
/* Insert a new node (associating KEY with DATA) into SP.  If a
291
   previous node with the indicated KEY exists, its data is replaced
292
   with the new value.  Returns the new node.  */
293
 
294
splay_tree_node
295
splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
296
{
297
  int comparison = 0;
298
 
299
  splay_tree_splay (sp, key);
300
 
301
  if (sp->root)
302
    comparison = (*sp->comp)(sp->root->key, key);
303
 
304
  if (sp->root && comparison == 0)
305
    {
306
      /* If the root of the tree already has the indicated KEY, just
307
         replace the value with VALUE.  */
308
      if (sp->delete_value)
309
        (*sp->delete_value)(sp->root->value);
310
      sp->root->value = value;
311
    }
312
  else
313
    {
314
      /* Create a new node, and insert it at the root.  */
315
      splay_tree_node node;
316
 
317
      node = ((splay_tree_node)
318
              (*sp->allocate) (sizeof (struct splay_tree_node_s),
319
                               sp->allocate_data));
320
      node->key = key;
321
      node->value = value;
322
 
323
      if (!sp->root)
324
        node->left = node->right = 0;
325
      else if (comparison < 0)
326
        {
327
          node->left = sp->root;
328
          node->right = node->left->right;
329
          node->left->right = 0;
330
        }
331
      else
332
        {
333
          node->right = sp->root;
334
          node->left = node->right->left;
335
          node->right->left = 0;
336
        }
337
 
338
      sp->root = node;
339
    }
340
 
341
  return sp->root;
342
}
343
 
344
/* Remove KEY from SP.  It is not an error if it did not exist.  */
345
 
346
void
347
splay_tree_remove (splay_tree sp, splay_tree_key key)
348
{
349
  splay_tree_splay (sp, key);
350
 
351
  if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
352
    {
353
      splay_tree_node left, right;
354
 
355
      left = sp->root->left;
356
      right = sp->root->right;
357
 
358
      /* Delete the root node itself.  */
359
      if (sp->delete_value)
360
        (*sp->delete_value) (sp->root->value);
361
      (*sp->deallocate) (sp->root, sp->allocate_data);
362
 
363
      /* One of the children is now the root.  Doesn't matter much
364
         which, so long as we preserve the properties of the tree.  */
365
      if (left)
366
        {
367
          sp->root = left;
368
 
369
          /* If there was a right child as well, hang it off the
370
             right-most leaf of the left child.  */
371
          if (right)
372
            {
373
              while (left->right)
374
                left = left->right;
375
              left->right = right;
376
            }
377
        }
378
      else
379
        sp->root = right;
380
    }
381
}
382
 
383
/* Lookup KEY in SP, returning VALUE if present, and NULL
384
   otherwise.  */
385
 
386
splay_tree_node
387
splay_tree_lookup (splay_tree sp, splay_tree_key key)
388
{
389
  splay_tree_splay (sp, key);
390
 
391
  if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
392
    return sp->root;
393
  else
394
    return 0;
395
}
396
 
397
/* Return the node in SP with the greatest key.  */
398
 
399
splay_tree_node
400
splay_tree_max (splay_tree sp)
401
{
402
  splay_tree_node n = sp->root;
403
 
404
  if (!n)
405
    return NULL;
406
 
407
  while (n->right)
408
    n = n->right;
409
 
410
  return n;
411
}
412
 
413
/* Return the node in SP with the smallest key.  */
414
 
415
splay_tree_node
416
splay_tree_min (splay_tree sp)
417
{
418
  splay_tree_node n = sp->root;
419
 
420
  if (!n)
421
    return NULL;
422
 
423
  while (n->left)
424
    n = n->left;
425
 
426
  return n;
427
}
428
 
429
/* Return the immediate predecessor KEY, or NULL if there is no
430
   predecessor.  KEY need not be present in the tree.  */
431
 
432
splay_tree_node
433
splay_tree_predecessor (splay_tree sp, splay_tree_key key)
434
{
435
  int comparison;
436
  splay_tree_node node;
437
 
438
  /* If the tree is empty, there is certainly no predecessor.  */
439
  if (!sp->root)
440
    return NULL;
441
 
442
  /* Splay the tree around KEY.  That will leave either the KEY
443
     itself, its predecessor, or its successor at the root.  */
444
  splay_tree_splay (sp, key);
445
  comparison = (*sp->comp)(sp->root->key, key);
446
 
447
  /* If the predecessor is at the root, just return it.  */
448
  if (comparison < 0)
449
    return sp->root;
450
 
451
  /* Otherwise, find the rightmost element of the left subtree.  */
452
  node = sp->root->left;
453
  if (node)
454
    while (node->right)
455
      node = node->right;
456
 
457
  return node;
458
}
459
 
460
/* Return the immediate successor KEY, or NULL if there is no
461
   successor.  KEY need not be present in the tree.  */
462
 
463
splay_tree_node
464
splay_tree_successor (splay_tree sp, splay_tree_key key)
465
{
466
  int comparison;
467
  splay_tree_node node;
468
 
469
  /* If the tree is empty, there is certainly no successor.  */
470
  if (!sp->root)
471
    return NULL;
472
 
473
  /* Splay the tree around KEY.  That will leave either the KEY
474
     itself, its predecessor, or its successor at the root.  */
475
  splay_tree_splay (sp, key);
476
  comparison = (*sp->comp)(sp->root->key, key);
477
 
478
  /* If the successor is at the root, just return it.  */
479
  if (comparison > 0)
480
    return sp->root;
481
 
482
  /* Otherwise, find the leftmost element of the right subtree.  */
483
  node = sp->root->right;
484
  if (node)
485
    while (node->left)
486
      node = node->left;
487
 
488
  return node;
489
}
490
 
491
/* Call FN, passing it the DATA, for every node in SP, following an
492
   in-order traversal.  If FN every returns a non-zero value, the
493
   iteration ceases immediately, and the value is returned.
494
   Otherwise, this function returns 0.  */
495
 
496
int
497
splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
498
{
499
  return splay_tree_foreach_helper (sp, sp->root, fn, data);
500
}
501
 
502
/* Splay-tree comparison function, treating the keys as ints.  */
503
 
504
int
505
splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
506
{
507
  if ((int) k1 < (int) k2)
508
    return -1;
509
  else if ((int) k1 > (int) k2)
510
    return 1;
511
  else
512
    return 0;
513
}
514
 
515
/* Splay-tree comparison function, treating the keys as pointers.  */
516
 
517
int
518
splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
519
{
520
  if ((char*) k1 < (char*) k2)
521
    return -1;
522
  else if ((char*) k1 > (char*) k2)
523
    return 1;
524
  else
525
    return 0;
526
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.