1 |
24 |
jeremybenn |
/* frv cache model.
|
2 |
|
|
Copyright (C) 1999, 2000, 2001, 2003, 2007, 2008
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Red Hat.
|
5 |
|
|
|
6 |
|
|
This file is part of the GNU simulators.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#define WANT_CPU frvbf
|
22 |
|
|
#define WANT_CPU_FRVBF
|
23 |
|
|
|
24 |
|
|
#include "libiberty.h"
|
25 |
|
|
#include "sim-main.h"
|
26 |
|
|
#include "cache.h"
|
27 |
|
|
#include "bfd.h"
|
28 |
|
|
|
29 |
|
|
void
|
30 |
|
|
frv_cache_init (SIM_CPU *cpu, FRV_CACHE *cache)
|
31 |
|
|
{
|
32 |
|
|
int elements;
|
33 |
|
|
int i, j;
|
34 |
|
|
SIM_DESC sd;
|
35 |
|
|
|
36 |
|
|
/* Set defaults for fields which are not initialized. */
|
37 |
|
|
sd = CPU_STATE (cpu);
|
38 |
|
|
switch (STATE_ARCHITECTURE (sd)->mach)
|
39 |
|
|
{
|
40 |
|
|
case bfd_mach_fr400:
|
41 |
|
|
case bfd_mach_fr450:
|
42 |
|
|
if (cache->configured_sets == 0)
|
43 |
|
|
cache->configured_sets = 512;
|
44 |
|
|
if (cache->configured_ways == 0)
|
45 |
|
|
cache->configured_ways = 2;
|
46 |
|
|
if (cache->line_size == 0)
|
47 |
|
|
cache->line_size = 32;
|
48 |
|
|
if (cache->memory_latency == 0)
|
49 |
|
|
cache->memory_latency = 20;
|
50 |
|
|
break;
|
51 |
|
|
case bfd_mach_fr550:
|
52 |
|
|
if (cache->configured_sets == 0)
|
53 |
|
|
cache->configured_sets = 128;
|
54 |
|
|
if (cache->configured_ways == 0)
|
55 |
|
|
cache->configured_ways = 4;
|
56 |
|
|
if (cache->line_size == 0)
|
57 |
|
|
cache->line_size = 64;
|
58 |
|
|
if (cache->memory_latency == 0)
|
59 |
|
|
cache->memory_latency = 20;
|
60 |
|
|
break;
|
61 |
|
|
default:
|
62 |
|
|
if (cache->configured_sets == 0)
|
63 |
|
|
cache->configured_sets = 64;
|
64 |
|
|
if (cache->configured_ways == 0)
|
65 |
|
|
cache->configured_ways = 4;
|
66 |
|
|
if (cache->line_size == 0)
|
67 |
|
|
cache->line_size = 64;
|
68 |
|
|
if (cache->memory_latency == 0)
|
69 |
|
|
cache->memory_latency = 20;
|
70 |
|
|
break;
|
71 |
|
|
}
|
72 |
|
|
|
73 |
|
|
frv_cache_reconfigure (cpu, cache);
|
74 |
|
|
|
75 |
|
|
/* First allocate the cache storage based on the given dimensions. */
|
76 |
|
|
elements = cache->sets * cache->ways;
|
77 |
|
|
cache->tag_storage = (FRV_CACHE_TAG *)
|
78 |
|
|
zalloc (elements * sizeof (*cache->tag_storage));
|
79 |
|
|
cache->data_storage = (char *) xmalloc (elements * cache->line_size);
|
80 |
|
|
|
81 |
|
|
/* Initialize the pipelines and status buffers. */
|
82 |
|
|
for (i = LS; i < FRV_CACHE_PIPELINES; ++i)
|
83 |
|
|
{
|
84 |
|
|
cache->pipeline[i].requests = NULL;
|
85 |
|
|
cache->pipeline[i].status.flush.valid = 0;
|
86 |
|
|
cache->pipeline[i].status.return_buffer.valid = 0;
|
87 |
|
|
cache->pipeline[i].status.return_buffer.data
|
88 |
|
|
= (char *) xmalloc (cache->line_size);
|
89 |
|
|
for (j = FIRST_STAGE; j < FRV_CACHE_STAGES; ++j)
|
90 |
|
|
cache->pipeline[i].stages[j].request = NULL;
|
91 |
|
|
}
|
92 |
|
|
cache->BARS.valid = 0;
|
93 |
|
|
cache->NARS.valid = 0;
|
94 |
|
|
|
95 |
|
|
/* Now set the cache state. */
|
96 |
|
|
cache->cpu = cpu;
|
97 |
|
|
cache->statistics.accesses = 0;
|
98 |
|
|
cache->statistics.hits = 0;
|
99 |
|
|
}
|
100 |
|
|
|
101 |
|
|
void
|
102 |
|
|
frv_cache_term (FRV_CACHE *cache)
|
103 |
|
|
{
|
104 |
|
|
/* Free the cache storage. */
|
105 |
|
|
free (cache->tag_storage);
|
106 |
|
|
free (cache->data_storage);
|
107 |
|
|
free (cache->pipeline[LS].status.return_buffer.data);
|
108 |
|
|
free (cache->pipeline[LD].status.return_buffer.data);
|
109 |
|
|
}
|
110 |
|
|
|
111 |
|
|
/* Reset the cache configuration based on registers in the cpu. */
|
112 |
|
|
void
|
113 |
|
|
frv_cache_reconfigure (SIM_CPU *current_cpu, FRV_CACHE *cache)
|
114 |
|
|
{
|
115 |
|
|
int ihsr8;
|
116 |
|
|
int icdm;
|
117 |
|
|
SIM_DESC sd;
|
118 |
|
|
|
119 |
|
|
/* Set defaults for fields which are not initialized. */
|
120 |
|
|
sd = CPU_STATE (current_cpu);
|
121 |
|
|
switch (STATE_ARCHITECTURE (sd)->mach)
|
122 |
|
|
{
|
123 |
|
|
case bfd_mach_fr550:
|
124 |
|
|
if (cache == CPU_INSN_CACHE (current_cpu))
|
125 |
|
|
{
|
126 |
|
|
ihsr8 = GET_IHSR8 ();
|
127 |
|
|
icdm = GET_IHSR8_ICDM (ihsr8);
|
128 |
|
|
/* If IHSR8.ICDM is set, then the cache becomes a one way cache. */
|
129 |
|
|
if (icdm)
|
130 |
|
|
{
|
131 |
|
|
cache->sets = cache->sets * cache->ways;
|
132 |
|
|
cache->ways = 1;
|
133 |
|
|
break;
|
134 |
|
|
}
|
135 |
|
|
}
|
136 |
|
|
/* fall through */
|
137 |
|
|
default:
|
138 |
|
|
/* Set the cache to its original settings. */
|
139 |
|
|
cache->sets = cache->configured_sets;
|
140 |
|
|
cache->ways = cache->configured_ways;
|
141 |
|
|
break;
|
142 |
|
|
}
|
143 |
|
|
}
|
144 |
|
|
|
145 |
|
|
/* Determine whether the given cache is enabled. */
|
146 |
|
|
int
|
147 |
|
|
frv_cache_enabled (FRV_CACHE *cache)
|
148 |
|
|
{
|
149 |
|
|
SIM_CPU *current_cpu = cache->cpu;
|
150 |
|
|
int hsr0 = GET_HSR0 ();
|
151 |
|
|
if (GET_HSR0_ICE (hsr0) && cache == CPU_INSN_CACHE (current_cpu))
|
152 |
|
|
return 1;
|
153 |
|
|
if (GET_HSR0_DCE (hsr0) && cache == CPU_DATA_CACHE (current_cpu))
|
154 |
|
|
return 1;
|
155 |
|
|
return 0;
|
156 |
|
|
}
|
157 |
|
|
|
158 |
|
|
/* Determine whether the given address is RAM access, assuming that HSR0.RME
|
159 |
|
|
is set. */
|
160 |
|
|
static int
|
161 |
|
|
ram_access (FRV_CACHE *cache, USI address)
|
162 |
|
|
{
|
163 |
|
|
int ihsr8;
|
164 |
|
|
int cwe;
|
165 |
|
|
USI start, end, way_size;
|
166 |
|
|
SIM_CPU *current_cpu = cache->cpu;
|
167 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
168 |
|
|
|
169 |
|
|
switch (STATE_ARCHITECTURE (sd)->mach)
|
170 |
|
|
{
|
171 |
|
|
case bfd_mach_fr550:
|
172 |
|
|
/* IHSR8.DCWE or IHSR8.ICWE deternines which ways get RAM access. */
|
173 |
|
|
ihsr8 = GET_IHSR8 ();
|
174 |
|
|
if (cache == CPU_INSN_CACHE (current_cpu))
|
175 |
|
|
{
|
176 |
|
|
start = 0xfe000000;
|
177 |
|
|
end = 0xfe008000;
|
178 |
|
|
cwe = GET_IHSR8_ICWE (ihsr8);
|
179 |
|
|
}
|
180 |
|
|
else
|
181 |
|
|
{
|
182 |
|
|
start = 0xfe400000;
|
183 |
|
|
end = 0xfe408000;
|
184 |
|
|
cwe = GET_IHSR8_DCWE (ihsr8);
|
185 |
|
|
}
|
186 |
|
|
way_size = (end - start) / 4;
|
187 |
|
|
end -= way_size * cwe;
|
188 |
|
|
return address >= start && address < end;
|
189 |
|
|
default:
|
190 |
|
|
break;
|
191 |
|
|
}
|
192 |
|
|
|
193 |
|
|
return 1; /* RAM access */
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
/* Determine whether the given address should be accessed without using
|
197 |
|
|
the cache. */
|
198 |
|
|
static int
|
199 |
|
|
non_cache_access (FRV_CACHE *cache, USI address)
|
200 |
|
|
{
|
201 |
|
|
int hsr0;
|
202 |
|
|
SIM_DESC sd;
|
203 |
|
|
SIM_CPU *current_cpu = cache->cpu;
|
204 |
|
|
|
205 |
|
|
sd = CPU_STATE (current_cpu);
|
206 |
|
|
switch (STATE_ARCHITECTURE (sd)->mach)
|
207 |
|
|
{
|
208 |
|
|
case bfd_mach_fr400:
|
209 |
|
|
case bfd_mach_fr450:
|
210 |
|
|
if (address >= 0xff000000
|
211 |
|
|
|| address >= 0xfe000000 && address <= 0xfeffffff)
|
212 |
|
|
return 1; /* non-cache access */
|
213 |
|
|
break;
|
214 |
|
|
case bfd_mach_fr550:
|
215 |
|
|
if (address >= 0xff000000
|
216 |
|
|
|| address >= 0xfeff0000 && address <= 0xfeffffff)
|
217 |
|
|
return 1; /* non-cache access */
|
218 |
|
|
if (cache == CPU_INSN_CACHE (current_cpu))
|
219 |
|
|
{
|
220 |
|
|
if (address >= 0xfe000000 && address <= 0xfe007fff)
|
221 |
|
|
return 1; /* non-cache access */
|
222 |
|
|
}
|
223 |
|
|
else if (address >= 0xfe400000 && address <= 0xfe407fff)
|
224 |
|
|
return 1; /* non-cache access */
|
225 |
|
|
break;
|
226 |
|
|
default:
|
227 |
|
|
if (address >= 0xff000000
|
228 |
|
|
|| address >= 0xfeff0000 && address <= 0xfeffffff)
|
229 |
|
|
return 1; /* non-cache access */
|
230 |
|
|
if (cache == CPU_INSN_CACHE (current_cpu))
|
231 |
|
|
{
|
232 |
|
|
if (address >= 0xfe000000 && address <= 0xfe003fff)
|
233 |
|
|
return 1; /* non-cache access */
|
234 |
|
|
}
|
235 |
|
|
else if (address >= 0xfe400000 && address <= 0xfe403fff)
|
236 |
|
|
return 1; /* non-cache access */
|
237 |
|
|
break;
|
238 |
|
|
}
|
239 |
|
|
|
240 |
|
|
hsr0 = GET_HSR0 ();
|
241 |
|
|
if (GET_HSR0_RME (hsr0))
|
242 |
|
|
return ram_access (cache, address);
|
243 |
|
|
|
244 |
|
|
return 0; /* cache-access */
|
245 |
|
|
}
|
246 |
|
|
|
247 |
|
|
/* Find the cache line corresponding to the given address.
|
248 |
|
|
If it is found then 'return_tag' is set to point to the tag for that line
|
249 |
|
|
and 1 is returned.
|
250 |
|
|
If it is not found, 'return_tag' is set to point to the tag for the least
|
251 |
|
|
recently used line and 0 is returned.
|
252 |
|
|
*/
|
253 |
|
|
static int
|
254 |
|
|
get_tag (FRV_CACHE *cache, SI address, FRV_CACHE_TAG **return_tag)
|
255 |
|
|
{
|
256 |
|
|
int set;
|
257 |
|
|
int way;
|
258 |
|
|
int bits;
|
259 |
|
|
USI tag;
|
260 |
|
|
FRV_CACHE_TAG *found;
|
261 |
|
|
FRV_CACHE_TAG *available;
|
262 |
|
|
|
263 |
|
|
++cache->statistics.accesses;
|
264 |
|
|
|
265 |
|
|
/* First calculate which set this address will fall into. Do this by
|
266 |
|
|
shifting out the bits representing the offset within the line and
|
267 |
|
|
then keeping enough bits to index the set. */
|
268 |
|
|
set = address & ~(cache->line_size - 1);
|
269 |
|
|
for (bits = cache->line_size - 1; bits != 0; bits >>= 1)
|
270 |
|
|
set >>= 1;
|
271 |
|
|
set &= (cache->sets - 1);
|
272 |
|
|
|
273 |
|
|
/* Now search the set for a valid tag which matches this address. At the
|
274 |
|
|
same time make note of the least recently used tag, which we will return
|
275 |
|
|
if no match is found. */
|
276 |
|
|
available = NULL;
|
277 |
|
|
tag = CACHE_ADDRESS_TAG (cache, address);
|
278 |
|
|
for (way = 0; way < cache->ways; ++way)
|
279 |
|
|
{
|
280 |
|
|
found = CACHE_TAG (cache, set, way);
|
281 |
|
|
/* This tag is available as the least recently used if it is the
|
282 |
|
|
least recently used seen so far and it is not locked. */
|
283 |
|
|
if (! found->locked && (available == NULL || available->lru > found->lru))
|
284 |
|
|
available = found;
|
285 |
|
|
if (found->valid && found->tag == tag)
|
286 |
|
|
{
|
287 |
|
|
*return_tag = found;
|
288 |
|
|
++cache->statistics.hits;
|
289 |
|
|
return 1; /* found it */
|
290 |
|
|
}
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
*return_tag = available;
|
294 |
|
|
return 0; /* not found */
|
295 |
|
|
}
|
296 |
|
|
|
297 |
|
|
/* Write the given data out to memory. */
|
298 |
|
|
static void
|
299 |
|
|
write_data_to_memory (FRV_CACHE *cache, SI address, char *data, int length)
|
300 |
|
|
{
|
301 |
|
|
SIM_CPU *cpu = cache->cpu;
|
302 |
|
|
IADDR pc = CPU_PC_GET (cpu);
|
303 |
|
|
int write_index = 0;
|
304 |
|
|
|
305 |
|
|
switch (length)
|
306 |
|
|
{
|
307 |
|
|
case 1:
|
308 |
|
|
default:
|
309 |
|
|
PROFILE_COUNT_WRITE (cpu, address, MODE_QI);
|
310 |
|
|
break;
|
311 |
|
|
case 2:
|
312 |
|
|
PROFILE_COUNT_WRITE (cpu, address, MODE_HI);
|
313 |
|
|
break;
|
314 |
|
|
case 4:
|
315 |
|
|
PROFILE_COUNT_WRITE (cpu, address, MODE_SI);
|
316 |
|
|
break;
|
317 |
|
|
case 8:
|
318 |
|
|
PROFILE_COUNT_WRITE (cpu, address, MODE_DI);
|
319 |
|
|
break;
|
320 |
|
|
}
|
321 |
|
|
|
322 |
|
|
for (write_index = 0; write_index < length; ++write_index)
|
323 |
|
|
{
|
324 |
|
|
/* TODO: Better way to copy memory than a byte at a time? */
|
325 |
|
|
sim_core_write_unaligned_1 (cpu, pc, write_map, address + write_index,
|
326 |
|
|
data[write_index]);
|
327 |
|
|
}
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
/* Write a cache line out to memory. */
|
331 |
|
|
static void
|
332 |
|
|
write_line_to_memory (FRV_CACHE *cache, FRV_CACHE_TAG *tag)
|
333 |
|
|
{
|
334 |
|
|
SI address = tag->tag;
|
335 |
|
|
int set = CACHE_TAG_SET_NUMBER (cache, tag);
|
336 |
|
|
int bits;
|
337 |
|
|
for (bits = cache->line_size - 1; bits != 0; bits >>= 1)
|
338 |
|
|
set <<= 1;
|
339 |
|
|
address |= set;
|
340 |
|
|
write_data_to_memory (cache, address, tag->line, cache->line_size);
|
341 |
|
|
}
|
342 |
|
|
|
343 |
|
|
static void
|
344 |
|
|
read_data_from_memory (SIM_CPU *current_cpu, SI address, char *buffer,
|
345 |
|
|
int length)
|
346 |
|
|
{
|
347 |
|
|
PCADDR pc = CPU_PC_GET (current_cpu);
|
348 |
|
|
int i;
|
349 |
|
|
PROFILE_COUNT_READ (current_cpu, address, MODE_QI);
|
350 |
|
|
for (i = 0; i < length; ++i)
|
351 |
|
|
{
|
352 |
|
|
/* TODO: Better way to copy memory than a byte at a time? */
|
353 |
|
|
buffer[i] = sim_core_read_unaligned_1 (current_cpu, pc, read_map,
|
354 |
|
|
address + i);
|
355 |
|
|
}
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
/* Fill the given cache line from memory. */
|
359 |
|
|
static void
|
360 |
|
|
fill_line_from_memory (FRV_CACHE *cache, FRV_CACHE_TAG *tag, SI address)
|
361 |
|
|
{
|
362 |
|
|
PCADDR pc;
|
363 |
|
|
int line_alignment;
|
364 |
|
|
SI read_address;
|
365 |
|
|
SIM_CPU *current_cpu = cache->cpu;
|
366 |
|
|
|
367 |
|
|
/* If this line is already valid and the cache is in copy-back mode, then
|
368 |
|
|
write this line to memory before refilling it.
|
369 |
|
|
Check the dirty bit first, since it is less likely to be set. */
|
370 |
|
|
if (tag->dirty && tag->valid)
|
371 |
|
|
{
|
372 |
|
|
int hsr0 = GET_HSR0 ();
|
373 |
|
|
if (GET_HSR0_CBM (hsr0))
|
374 |
|
|
write_line_to_memory (cache, tag);
|
375 |
|
|
}
|
376 |
|
|
else if (tag->line == NULL)
|
377 |
|
|
{
|
378 |
|
|
int line_index = tag - cache->tag_storage;
|
379 |
|
|
tag->line = cache->data_storage + (line_index * cache->line_size);
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
pc = CPU_PC_GET (current_cpu);
|
383 |
|
|
line_alignment = cache->line_size - 1;
|
384 |
|
|
read_address = address & ~line_alignment;
|
385 |
|
|
read_data_from_memory (current_cpu, read_address, tag->line,
|
386 |
|
|
cache->line_size);
|
387 |
|
|
tag->tag = CACHE_ADDRESS_TAG (cache, address);
|
388 |
|
|
tag->valid = 1;
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
/* Update the LRU information for the tags in the same set as the given tag. */
|
392 |
|
|
static void
|
393 |
|
|
set_most_recently_used (FRV_CACHE *cache, FRV_CACHE_TAG *tag)
|
394 |
|
|
{
|
395 |
|
|
/* All tags in the same set are contiguous, so find the beginning of the
|
396 |
|
|
set by aligning to the size of a set. */
|
397 |
|
|
FRV_CACHE_TAG *item = cache->tag_storage + CACHE_TAG_SET_START (cache, tag);
|
398 |
|
|
FRV_CACHE_TAG *limit = item + cache->ways;
|
399 |
|
|
|
400 |
|
|
while (item < limit)
|
401 |
|
|
{
|
402 |
|
|
if (item->lru > tag->lru)
|
403 |
|
|
--item->lru;
|
404 |
|
|
++item;
|
405 |
|
|
}
|
406 |
|
|
tag->lru = cache->ways; /* Mark as most recently used. */
|
407 |
|
|
}
|
408 |
|
|
|
409 |
|
|
/* Update the LRU information for the tags in the same set as the given tag. */
|
410 |
|
|
static void
|
411 |
|
|
set_least_recently_used (FRV_CACHE *cache, FRV_CACHE_TAG *tag)
|
412 |
|
|
{
|
413 |
|
|
/* All tags in the same set are contiguous, so find the beginning of the
|
414 |
|
|
set by aligning to the size of a set. */
|
415 |
|
|
FRV_CACHE_TAG *item = cache->tag_storage + CACHE_TAG_SET_START (cache, tag);
|
416 |
|
|
FRV_CACHE_TAG *limit = item + cache->ways;
|
417 |
|
|
|
418 |
|
|
while (item < limit)
|
419 |
|
|
{
|
420 |
|
|
if (item->lru != 0 && item->lru < tag->lru)
|
421 |
|
|
++item->lru;
|
422 |
|
|
++item;
|
423 |
|
|
}
|
424 |
|
|
tag->lru = 0; /* Mark as least recently used. */
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
/* Find the line containing the given address and load it if it is not
|
428 |
|
|
already loaded.
|
429 |
|
|
Returns the tag of the requested line. */
|
430 |
|
|
static FRV_CACHE_TAG *
|
431 |
|
|
find_or_retrieve_cache_line (FRV_CACHE *cache, SI address)
|
432 |
|
|
{
|
433 |
|
|
/* See if this data is already in the cache. */
|
434 |
|
|
FRV_CACHE_TAG *tag;
|
435 |
|
|
int found = get_tag (cache, address, &tag);
|
436 |
|
|
|
437 |
|
|
/* Fill the line from memory, if it is not valid. */
|
438 |
|
|
if (! found)
|
439 |
|
|
{
|
440 |
|
|
/* The tag could be NULL is all ways in the set were used and locked. */
|
441 |
|
|
if (tag == NULL)
|
442 |
|
|
return tag;
|
443 |
|
|
|
444 |
|
|
fill_line_from_memory (cache, tag, address);
|
445 |
|
|
tag->dirty = 0;
|
446 |
|
|
}
|
447 |
|
|
|
448 |
|
|
/* Update the LRU information for the tags in this set. */
|
449 |
|
|
set_most_recently_used (cache, tag);
|
450 |
|
|
|
451 |
|
|
return tag;
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
static void
|
455 |
|
|
copy_line_to_return_buffer (FRV_CACHE *cache, int pipe, FRV_CACHE_TAG *tag,
|
456 |
|
|
SI address)
|
457 |
|
|
{
|
458 |
|
|
/* A cache line was available for the data.
|
459 |
|
|
Copy the data from the cache line to the output buffer. */
|
460 |
|
|
memcpy (cache->pipeline[pipe].status.return_buffer.data,
|
461 |
|
|
tag->line, cache->line_size);
|
462 |
|
|
cache->pipeline[pipe].status.return_buffer.address
|
463 |
|
|
= address & ~(cache->line_size - 1);
|
464 |
|
|
cache->pipeline[pipe].status.return_buffer.valid = 1;
|
465 |
|
|
}
|
466 |
|
|
|
467 |
|
|
static void
|
468 |
|
|
copy_memory_to_return_buffer (FRV_CACHE *cache, int pipe, SI address)
|
469 |
|
|
{
|
470 |
|
|
address &= ~(cache->line_size - 1);
|
471 |
|
|
read_data_from_memory (cache->cpu, address,
|
472 |
|
|
cache->pipeline[pipe].status.return_buffer.data,
|
473 |
|
|
cache->line_size);
|
474 |
|
|
cache->pipeline[pipe].status.return_buffer.address = address;
|
475 |
|
|
cache->pipeline[pipe].status.return_buffer.valid = 1;
|
476 |
|
|
}
|
477 |
|
|
|
478 |
|
|
static void
|
479 |
|
|
set_return_buffer_reqno (FRV_CACHE *cache, int pipe, unsigned reqno)
|
480 |
|
|
{
|
481 |
|
|
cache->pipeline[pipe].status.return_buffer.reqno = reqno;
|
482 |
|
|
}
|
483 |
|
|
|
484 |
|
|
/* Read data from the given cache.
|
485 |
|
|
Returns the number of cycles required to obtain the data. */
|
486 |
|
|
int
|
487 |
|
|
frv_cache_read (FRV_CACHE *cache, int pipe, SI address)
|
488 |
|
|
{
|
489 |
|
|
FRV_CACHE_TAG *tag;
|
490 |
|
|
|
491 |
|
|
if (non_cache_access (cache, address))
|
492 |
|
|
{
|
493 |
|
|
copy_memory_to_return_buffer (cache, pipe, address);
|
494 |
|
|
return 1;
|
495 |
|
|
}
|
496 |
|
|
|
497 |
|
|
tag = find_or_retrieve_cache_line (cache, address);
|
498 |
|
|
|
499 |
|
|
if (tag == NULL)
|
500 |
|
|
return 0; /* Indicate non-cache-access. */
|
501 |
|
|
|
502 |
|
|
/* A cache line was available for the data.
|
503 |
|
|
Copy the data from the cache line to the output buffer. */
|
504 |
|
|
copy_line_to_return_buffer (cache, pipe, tag, address);
|
505 |
|
|
|
506 |
|
|
return 1; /* TODO - number of cycles unknown */
|
507 |
|
|
}
|
508 |
|
|
|
509 |
|
|
/* Writes data through the given cache.
|
510 |
|
|
The data is assumed to be in target endian order.
|
511 |
|
|
Returns the number of cycles required to write the data. */
|
512 |
|
|
int
|
513 |
|
|
frv_cache_write (FRV_CACHE *cache, SI address, char *data, unsigned length)
|
514 |
|
|
{
|
515 |
|
|
int copy_back;
|
516 |
|
|
|
517 |
|
|
/* See if this data is already in the cache. */
|
518 |
|
|
SIM_CPU *current_cpu = cache->cpu;
|
519 |
|
|
USI hsr0 = GET_HSR0 ();
|
520 |
|
|
FRV_CACHE_TAG *tag;
|
521 |
|
|
int found;
|
522 |
|
|
|
523 |
|
|
if (non_cache_access (cache, address))
|
524 |
|
|
{
|
525 |
|
|
write_data_to_memory (cache, address, data, length);
|
526 |
|
|
return 1;
|
527 |
|
|
}
|
528 |
|
|
|
529 |
|
|
found = get_tag (cache, address, &tag);
|
530 |
|
|
|
531 |
|
|
/* Write the data to the cache line if one was available and if it is
|
532 |
|
|
either a hit or a miss in copy-back mode.
|
533 |
|
|
The tag may be NULL if all ways were in use and locked on a miss.
|
534 |
|
|
*/
|
535 |
|
|
copy_back = GET_HSR0_CBM (GET_HSR0 ());
|
536 |
|
|
if (tag != NULL && (found || copy_back))
|
537 |
|
|
{
|
538 |
|
|
int line_offset;
|
539 |
|
|
/* Load the line from memory first, if it was a miss. */
|
540 |
|
|
if (! found)
|
541 |
|
|
fill_line_from_memory (cache, tag, address);
|
542 |
|
|
line_offset = address & (cache->line_size - 1);
|
543 |
|
|
memcpy (tag->line + line_offset, data, length);
|
544 |
|
|
tag->dirty = 1;
|
545 |
|
|
|
546 |
|
|
/* Update the LRU information for the tags in this set. */
|
547 |
|
|
set_most_recently_used (cache, tag);
|
548 |
|
|
}
|
549 |
|
|
|
550 |
|
|
/* Write the data to memory if there was no line available or we are in
|
551 |
|
|
write-through (not copy-back mode). */
|
552 |
|
|
if (tag == NULL || ! copy_back)
|
553 |
|
|
{
|
554 |
|
|
write_data_to_memory (cache, address, data, length);
|
555 |
|
|
if (tag != NULL)
|
556 |
|
|
tag->dirty = 0;
|
557 |
|
|
}
|
558 |
|
|
|
559 |
|
|
return 1; /* TODO - number of cycles unknown */
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
/* Preload the cache line containing the given address. Lock the
|
563 |
|
|
data if requested.
|
564 |
|
|
Returns the number of cycles required to write the data. */
|
565 |
|
|
int
|
566 |
|
|
frv_cache_preload (FRV_CACHE *cache, SI address, USI length, int lock)
|
567 |
|
|
{
|
568 |
|
|
int offset;
|
569 |
|
|
int lines;
|
570 |
|
|
|
571 |
|
|
if (non_cache_access (cache, address))
|
572 |
|
|
return 1;
|
573 |
|
|
|
574 |
|
|
/* preload at least 1 line. */
|
575 |
|
|
if (length == 0)
|
576 |
|
|
length = 1;
|
577 |
|
|
|
578 |
|
|
offset = address & (cache->line_size - 1);
|
579 |
|
|
lines = 1 + (offset + length - 1) / cache->line_size;
|
580 |
|
|
|
581 |
|
|
/* Careful with this loop -- length is unsigned. */
|
582 |
|
|
for (/**/; lines > 0; --lines)
|
583 |
|
|
{
|
584 |
|
|
FRV_CACHE_TAG *tag = find_or_retrieve_cache_line (cache, address);
|
585 |
|
|
if (lock && tag != NULL)
|
586 |
|
|
tag->locked = 1;
|
587 |
|
|
address += cache->line_size;
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
return 1; /* TODO - number of cycles unknown */
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
/* Unlock the cache line containing the given address.
|
594 |
|
|
Returns the number of cycles required to unlock the line. */
|
595 |
|
|
int
|
596 |
|
|
frv_cache_unlock (FRV_CACHE *cache, SI address)
|
597 |
|
|
{
|
598 |
|
|
FRV_CACHE_TAG *tag;
|
599 |
|
|
int found;
|
600 |
|
|
|
601 |
|
|
if (non_cache_access (cache, address))
|
602 |
|
|
return 1;
|
603 |
|
|
|
604 |
|
|
found = get_tag (cache, address, &tag);
|
605 |
|
|
|
606 |
|
|
if (found)
|
607 |
|
|
tag->locked = 0;
|
608 |
|
|
|
609 |
|
|
return 1; /* TODO - number of cycles unknown */
|
610 |
|
|
}
|
611 |
|
|
|
612 |
|
|
static void
|
613 |
|
|
invalidate_return_buffer (FRV_CACHE *cache, SI address)
|
614 |
|
|
{
|
615 |
|
|
/* If this address is in one of the return buffers, then invalidate that
|
616 |
|
|
return buffer. */
|
617 |
|
|
address &= ~(cache->line_size - 1);
|
618 |
|
|
if (address == cache->pipeline[LS].status.return_buffer.address)
|
619 |
|
|
cache->pipeline[LS].status.return_buffer.valid = 0;
|
620 |
|
|
if (address == cache->pipeline[LD].status.return_buffer.address)
|
621 |
|
|
cache->pipeline[LD].status.return_buffer.valid = 0;
|
622 |
|
|
}
|
623 |
|
|
|
624 |
|
|
/* Invalidate the cache line containing the given address. Flush the
|
625 |
|
|
data if requested.
|
626 |
|
|
Returns the number of cycles required to write the data. */
|
627 |
|
|
int
|
628 |
|
|
frv_cache_invalidate (FRV_CACHE *cache, SI address, int flush)
|
629 |
|
|
{
|
630 |
|
|
/* See if this data is already in the cache. */
|
631 |
|
|
FRV_CACHE_TAG *tag;
|
632 |
|
|
int found;
|
633 |
|
|
|
634 |
|
|
/* Check for non-cache access. This operation is still perfromed even if
|
635 |
|
|
the cache is not currently enabled. */
|
636 |
|
|
if (non_cache_access (cache, address))
|
637 |
|
|
return 1;
|
638 |
|
|
|
639 |
|
|
/* If the line is found, invalidate it. If a flush is requested, then flush
|
640 |
|
|
it if it is dirty. */
|
641 |
|
|
found = get_tag (cache, address, &tag);
|
642 |
|
|
if (found)
|
643 |
|
|
{
|
644 |
|
|
SIM_CPU *cpu;
|
645 |
|
|
/* If a flush is requested, then flush it if it is dirty. */
|
646 |
|
|
if (tag->dirty && flush)
|
647 |
|
|
write_line_to_memory (cache, tag);
|
648 |
|
|
set_least_recently_used (cache, tag);
|
649 |
|
|
tag->valid = 0;
|
650 |
|
|
tag->locked = 0;
|
651 |
|
|
|
652 |
|
|
/* If this is the insn cache, then flush the cpu's scache as well. */
|
653 |
|
|
cpu = cache->cpu;
|
654 |
|
|
if (cache == CPU_INSN_CACHE (cpu))
|
655 |
|
|
scache_flush_cpu (cpu);
|
656 |
|
|
}
|
657 |
|
|
|
658 |
|
|
invalidate_return_buffer (cache, address);
|
659 |
|
|
|
660 |
|
|
return 1; /* TODO - number of cycles unknown */
|
661 |
|
|
}
|
662 |
|
|
|
663 |
|
|
/* Invalidate the entire cache. Flush the data if requested. */
|
664 |
|
|
int
|
665 |
|
|
frv_cache_invalidate_all (FRV_CACHE *cache, int flush)
|
666 |
|
|
{
|
667 |
|
|
/* See if this data is already in the cache. */
|
668 |
|
|
int elements = cache->sets * cache->ways;
|
669 |
|
|
FRV_CACHE_TAG *tag = cache->tag_storage;
|
670 |
|
|
SIM_CPU *cpu;
|
671 |
|
|
int i;
|
672 |
|
|
|
673 |
|
|
for(i = 0; i < elements; ++i, ++tag)
|
674 |
|
|
{
|
675 |
|
|
/* If a flush is requested, then flush it if it is dirty. */
|
676 |
|
|
if (tag->valid && tag->dirty && flush)
|
677 |
|
|
write_line_to_memory (cache, tag);
|
678 |
|
|
tag->valid = 0;
|
679 |
|
|
tag->locked = 0;
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
|
683 |
|
|
/* If this is the insn cache, then flush the cpu's scache as well. */
|
684 |
|
|
cpu = cache->cpu;
|
685 |
|
|
if (cache == CPU_INSN_CACHE (cpu))
|
686 |
|
|
scache_flush_cpu (cpu);
|
687 |
|
|
|
688 |
|
|
/* Invalidate both return buffers. */
|
689 |
|
|
cache->pipeline[LS].status.return_buffer.valid = 0;
|
690 |
|
|
cache->pipeline[LD].status.return_buffer.valid = 0;
|
691 |
|
|
|
692 |
|
|
return 1; /* TODO - number of cycles unknown */
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
/* ---------------------------------------------------------------------------
|
696 |
|
|
Functions for operating the cache in cycle accurate mode.
|
697 |
|
|
------------------------------------------------------------------------- */
|
698 |
|
|
/* Convert a VLIW slot to a cache pipeline index. */
|
699 |
|
|
static int
|
700 |
|
|
convert_slot_to_index (int slot)
|
701 |
|
|
{
|
702 |
|
|
switch (slot)
|
703 |
|
|
{
|
704 |
|
|
case UNIT_I0:
|
705 |
|
|
case UNIT_C:
|
706 |
|
|
return LS;
|
707 |
|
|
case UNIT_I1:
|
708 |
|
|
return LD;
|
709 |
|
|
default:
|
710 |
|
|
abort ();
|
711 |
|
|
}
|
712 |
|
|
return 0;
|
713 |
|
|
}
|
714 |
|
|
|
715 |
|
|
/* Allocate free chains of cache requests. */
|
716 |
|
|
#define FREE_CHAIN_SIZE 16
|
717 |
|
|
static FRV_CACHE_REQUEST *frv_cache_request_free_chain = NULL;
|
718 |
|
|
static FRV_CACHE_REQUEST *frv_store_request_free_chain = NULL;
|
719 |
|
|
|
720 |
|
|
static void
|
721 |
|
|
allocate_new_cache_requests (void)
|
722 |
|
|
{
|
723 |
|
|
int i;
|
724 |
|
|
frv_cache_request_free_chain = xmalloc (FREE_CHAIN_SIZE
|
725 |
|
|
* sizeof (FRV_CACHE_REQUEST));
|
726 |
|
|
for (i = 0; i < FREE_CHAIN_SIZE - 1; ++i)
|
727 |
|
|
{
|
728 |
|
|
frv_cache_request_free_chain[i].next
|
729 |
|
|
= & frv_cache_request_free_chain[i + 1];
|
730 |
|
|
}
|
731 |
|
|
|
732 |
|
|
frv_cache_request_free_chain[FREE_CHAIN_SIZE - 1].next = NULL;
|
733 |
|
|
}
|
734 |
|
|
|
735 |
|
|
/* Return the next free request in the queue for the given cache pipeline. */
|
736 |
|
|
static FRV_CACHE_REQUEST *
|
737 |
|
|
new_cache_request (void)
|
738 |
|
|
{
|
739 |
|
|
FRV_CACHE_REQUEST *req;
|
740 |
|
|
|
741 |
|
|
/* Allocate new elements for the free chain if necessary. */
|
742 |
|
|
if (frv_cache_request_free_chain == NULL)
|
743 |
|
|
allocate_new_cache_requests ();
|
744 |
|
|
|
745 |
|
|
req = frv_cache_request_free_chain;
|
746 |
|
|
frv_cache_request_free_chain = req->next;
|
747 |
|
|
|
748 |
|
|
return req;
|
749 |
|
|
}
|
750 |
|
|
|
751 |
|
|
/* Return the given cache request to the free chain. */
|
752 |
|
|
static void
|
753 |
|
|
free_cache_request (FRV_CACHE_REQUEST *req)
|
754 |
|
|
{
|
755 |
|
|
if (req->kind == req_store)
|
756 |
|
|
{
|
757 |
|
|
req->next = frv_store_request_free_chain;
|
758 |
|
|
frv_store_request_free_chain = req;
|
759 |
|
|
}
|
760 |
|
|
else
|
761 |
|
|
{
|
762 |
|
|
req->next = frv_cache_request_free_chain;
|
763 |
|
|
frv_cache_request_free_chain = req;
|
764 |
|
|
}
|
765 |
|
|
}
|
766 |
|
|
|
767 |
|
|
/* Search the free chain for an existing store request with a buffer that's
|
768 |
|
|
large enough. */
|
769 |
|
|
static FRV_CACHE_REQUEST *
|
770 |
|
|
new_store_request (int length)
|
771 |
|
|
{
|
772 |
|
|
FRV_CACHE_REQUEST *prev = NULL;
|
773 |
|
|
FRV_CACHE_REQUEST *req;
|
774 |
|
|
for (req = frv_store_request_free_chain; req != NULL; req = req->next)
|
775 |
|
|
{
|
776 |
|
|
if (req->u.store.length == length)
|
777 |
|
|
break;
|
778 |
|
|
prev = req;
|
779 |
|
|
}
|
780 |
|
|
if (req != NULL)
|
781 |
|
|
{
|
782 |
|
|
if (prev == NULL)
|
783 |
|
|
frv_store_request_free_chain = req->next;
|
784 |
|
|
else
|
785 |
|
|
prev->next = req->next;
|
786 |
|
|
return req;
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
/* No existing request buffer was found, so make a new one. */
|
790 |
|
|
req = new_cache_request ();
|
791 |
|
|
req->kind = req_store;
|
792 |
|
|
req->u.store.data = xmalloc (length);
|
793 |
|
|
req->u.store.length = length;
|
794 |
|
|
return req;
|
795 |
|
|
}
|
796 |
|
|
|
797 |
|
|
/* Remove the given request from the given pipeline. */
|
798 |
|
|
static void
|
799 |
|
|
pipeline_remove_request (FRV_CACHE_PIPELINE *p, FRV_CACHE_REQUEST *request)
|
800 |
|
|
{
|
801 |
|
|
FRV_CACHE_REQUEST *next = request->next;
|
802 |
|
|
FRV_CACHE_REQUEST *prev = request->prev;
|
803 |
|
|
|
804 |
|
|
if (prev == NULL)
|
805 |
|
|
p->requests = next;
|
806 |
|
|
else
|
807 |
|
|
prev->next = next;
|
808 |
|
|
|
809 |
|
|
if (next != NULL)
|
810 |
|
|
next->prev = prev;
|
811 |
|
|
}
|
812 |
|
|
|
813 |
|
|
/* Add the given request to the given pipeline. */
|
814 |
|
|
static void
|
815 |
|
|
pipeline_add_request (FRV_CACHE_PIPELINE *p, FRV_CACHE_REQUEST *request)
|
816 |
|
|
{
|
817 |
|
|
FRV_CACHE_REQUEST *prev = NULL;
|
818 |
|
|
FRV_CACHE_REQUEST *item;
|
819 |
|
|
|
820 |
|
|
/* Add the request in priority order. 0 is the highest priority. */
|
821 |
|
|
for (item = p->requests; item != NULL; item = item->next)
|
822 |
|
|
{
|
823 |
|
|
if (item->priority > request->priority)
|
824 |
|
|
break;
|
825 |
|
|
prev = item;
|
826 |
|
|
}
|
827 |
|
|
|
828 |
|
|
request->next = item;
|
829 |
|
|
request->prev = prev;
|
830 |
|
|
if (prev == NULL)
|
831 |
|
|
p->requests = request;
|
832 |
|
|
else
|
833 |
|
|
prev->next = request;
|
834 |
|
|
if (item != NULL)
|
835 |
|
|
item->prev = request;
|
836 |
|
|
}
|
837 |
|
|
|
838 |
|
|
/* Requeu the given request from the last of the given pipeline. */
|
839 |
|
|
static void
|
840 |
|
|
pipeline_requeue_request (FRV_CACHE_PIPELINE *p)
|
841 |
|
|
{
|
842 |
|
|
FRV_CACHE_STAGE *stage = & p->stages[LAST_STAGE];
|
843 |
|
|
FRV_CACHE_REQUEST *req = stage->request;
|
844 |
|
|
stage->request = NULL;
|
845 |
|
|
pipeline_add_request (p, req);
|
846 |
|
|
}
|
847 |
|
|
|
848 |
|
|
/* Return the priority lower than the lowest one in this cache pipeline.
|
849 |
|
|
|
850 |
|
|
static int
|
851 |
|
|
next_priority (FRV_CACHE *cache, FRV_CACHE_PIPELINE *pipeline)
|
852 |
|
|
{
|
853 |
|
|
int i, j;
|
854 |
|
|
int pipe;
|
855 |
|
|
int lowest = 0;
|
856 |
|
|
FRV_CACHE_REQUEST *req;
|
857 |
|
|
|
858 |
|
|
/* Check the priorities of any queued items. */
|
859 |
|
|
for (req = pipeline->requests; req != NULL; req = req->next)
|
860 |
|
|
if (req->priority > lowest)
|
861 |
|
|
lowest = req->priority;
|
862 |
|
|
|
863 |
|
|
/* Check the priorities of items in the pipeline stages. */
|
864 |
|
|
for (i = FIRST_STAGE; i < FRV_CACHE_STAGES; ++i)
|
865 |
|
|
{
|
866 |
|
|
FRV_CACHE_STAGE *stage = & pipeline->stages[i];
|
867 |
|
|
if (stage->request != NULL && stage->request->priority > lowest)
|
868 |
|
|
lowest = stage->request->priority;
|
869 |
|
|
}
|
870 |
|
|
|
871 |
|
|
/* Check the priorities of load requests waiting in WAR. These are one
|
872 |
|
|
higher than the request that spawned them. */
|
873 |
|
|
for (i = 0; i < NUM_WARS; ++i)
|
874 |
|
|
{
|
875 |
|
|
FRV_CACHE_WAR *war = & pipeline->WAR[i];
|
876 |
|
|
if (war->valid && war->priority > lowest)
|
877 |
|
|
lowest = war->priority + 1;
|
878 |
|
|
}
|
879 |
|
|
|
880 |
|
|
/* Check the priorities of any BARS or NARS associated with this pipeline.
|
881 |
|
|
These are one higher than the request that spawned them. */
|
882 |
|
|
pipe = pipeline - cache->pipeline;
|
883 |
|
|
if (cache->BARS.valid && cache->BARS.pipe == pipe
|
884 |
|
|
&& cache->BARS.priority > lowest)
|
885 |
|
|
lowest = cache->BARS.priority + 1;
|
886 |
|
|
if (cache->NARS.valid && cache->NARS.pipe == pipe
|
887 |
|
|
&& cache->NARS.priority > lowest)
|
888 |
|
|
lowest = cache->NARS.priority + 1;
|
889 |
|
|
|
890 |
|
|
/* Return a priority 2 lower than the lowest found. This allows a WAR
|
891 |
|
|
request to be generated with a priority greater than this but less than
|
892 |
|
|
the next higher priority request. */
|
893 |
|
|
return lowest + 2;
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
static void
|
897 |
|
|
add_WAR_request (FRV_CACHE_PIPELINE* pipeline, FRV_CACHE_WAR *war)
|
898 |
|
|
{
|
899 |
|
|
/* Add the load request to the indexed pipeline. */
|
900 |
|
|
FRV_CACHE_REQUEST *req = new_cache_request ();
|
901 |
|
|
req->kind = req_WAR;
|
902 |
|
|
req->reqno = war->reqno;
|
903 |
|
|
req->priority = war->priority;
|
904 |
|
|
req->address = war->address;
|
905 |
|
|
req->u.WAR.preload = war->preload;
|
906 |
|
|
req->u.WAR.lock = war->lock;
|
907 |
|
|
pipeline_add_request (pipeline, req);
|
908 |
|
|
}
|
909 |
|
|
|
910 |
|
|
/* Remove the next request from the given pipeline and return it. */
|
911 |
|
|
static FRV_CACHE_REQUEST *
|
912 |
|
|
pipeline_next_request (FRV_CACHE_PIPELINE *p)
|
913 |
|
|
{
|
914 |
|
|
FRV_CACHE_REQUEST *first = p->requests;
|
915 |
|
|
if (first != NULL)
|
916 |
|
|
pipeline_remove_request (p, first);
|
917 |
|
|
return first;
|
918 |
|
|
}
|
919 |
|
|
|
920 |
|
|
/* Return the request which is at the given stage of the given pipeline. */
|
921 |
|
|
static FRV_CACHE_REQUEST *
|
922 |
|
|
pipeline_stage_request (FRV_CACHE_PIPELINE *p, int stage)
|
923 |
|
|
{
|
924 |
|
|
return p->stages[stage].request;
|
925 |
|
|
}
|
926 |
|
|
|
927 |
|
|
static void
|
928 |
|
|
advance_pipelines (FRV_CACHE *cache)
|
929 |
|
|
{
|
930 |
|
|
int stage;
|
931 |
|
|
int pipe;
|
932 |
|
|
FRV_CACHE_PIPELINE *pipelines = cache->pipeline;
|
933 |
|
|
|
934 |
|
|
/* Free the final stage requests. */
|
935 |
|
|
for (pipe = 0; pipe < FRV_CACHE_PIPELINES; ++pipe)
|
936 |
|
|
{
|
937 |
|
|
FRV_CACHE_REQUEST *req = pipelines[pipe].stages[LAST_STAGE].request;
|
938 |
|
|
if (req != NULL)
|
939 |
|
|
free_cache_request (req);
|
940 |
|
|
}
|
941 |
|
|
|
942 |
|
|
/* Shuffle the requests along the pipeline. */
|
943 |
|
|
for (stage = LAST_STAGE; stage > FIRST_STAGE; --stage)
|
944 |
|
|
{
|
945 |
|
|
for (pipe = 0; pipe < FRV_CACHE_PIPELINES; ++pipe)
|
946 |
|
|
pipelines[pipe].stages[stage] = pipelines[pipe].stages[stage - 1];
|
947 |
|
|
}
|
948 |
|
|
|
949 |
|
|
/* Add a new request to the pipeline. */
|
950 |
|
|
for (pipe = 0; pipe < FRV_CACHE_PIPELINES; ++pipe)
|
951 |
|
|
pipelines[pipe].stages[FIRST_STAGE].request
|
952 |
|
|
= pipeline_next_request (& pipelines[pipe]);
|
953 |
|
|
}
|
954 |
|
|
|
955 |
|
|
/* Handle a request for a load from the given address. */
|
956 |
|
|
void
|
957 |
|
|
frv_cache_request_load (FRV_CACHE *cache, unsigned reqno, SI address, int slot)
|
958 |
|
|
{
|
959 |
|
|
FRV_CACHE_REQUEST *req;
|
960 |
|
|
|
961 |
|
|
/* slot is a UNIT_*. Convert it to a cache pipeline index. */
|
962 |
|
|
int pipe = convert_slot_to_index (slot);
|
963 |
|
|
FRV_CACHE_PIPELINE *pipeline = & cache->pipeline[pipe];
|
964 |
|
|
|
965 |
|
|
/* Add the load request to the indexed pipeline. */
|
966 |
|
|
req = new_cache_request ();
|
967 |
|
|
req->kind = req_load;
|
968 |
|
|
req->reqno = reqno;
|
969 |
|
|
req->priority = next_priority (cache, pipeline);
|
970 |
|
|
req->address = address;
|
971 |
|
|
|
972 |
|
|
pipeline_add_request (pipeline, req);
|
973 |
|
|
}
|
974 |
|
|
|
975 |
|
|
void
|
976 |
|
|
frv_cache_request_store (FRV_CACHE *cache, SI address,
|
977 |
|
|
int slot, char *data, unsigned length)
|
978 |
|
|
{
|
979 |
|
|
FRV_CACHE_REQUEST *req;
|
980 |
|
|
|
981 |
|
|
/* slot is a UNIT_*. Convert it to a cache pipeline index. */
|
982 |
|
|
int pipe = convert_slot_to_index (slot);
|
983 |
|
|
FRV_CACHE_PIPELINE *pipeline = & cache->pipeline[pipe];
|
984 |
|
|
|
985 |
|
|
/* Add the load request to the indexed pipeline. */
|
986 |
|
|
req = new_store_request (length);
|
987 |
|
|
req->kind = req_store;
|
988 |
|
|
req->reqno = NO_REQNO;
|
989 |
|
|
req->priority = next_priority (cache, pipeline);
|
990 |
|
|
req->address = address;
|
991 |
|
|
req->u.store.length = length;
|
992 |
|
|
memcpy (req->u.store.data, data, length);
|
993 |
|
|
|
994 |
|
|
pipeline_add_request (pipeline, req);
|
995 |
|
|
invalidate_return_buffer (cache, address);
|
996 |
|
|
}
|
997 |
|
|
|
998 |
|
|
/* Handle a request to invalidate the cache line containing the given address.
|
999 |
|
|
Flush the data if requested. */
|
1000 |
|
|
void
|
1001 |
|
|
frv_cache_request_invalidate (FRV_CACHE *cache, unsigned reqno, SI address,
|
1002 |
|
|
int slot, int all, int flush)
|
1003 |
|
|
{
|
1004 |
|
|
FRV_CACHE_REQUEST *req;
|
1005 |
|
|
|
1006 |
|
|
/* slot is a UNIT_*. Convert it to a cache pipeline index. */
|
1007 |
|
|
int pipe = convert_slot_to_index (slot);
|
1008 |
|
|
FRV_CACHE_PIPELINE *pipeline = & cache->pipeline[pipe];
|
1009 |
|
|
|
1010 |
|
|
/* Add the load request to the indexed pipeline. */
|
1011 |
|
|
req = new_cache_request ();
|
1012 |
|
|
req->kind = req_invalidate;
|
1013 |
|
|
req->reqno = reqno;
|
1014 |
|
|
req->priority = next_priority (cache, pipeline);
|
1015 |
|
|
req->address = address;
|
1016 |
|
|
req->u.invalidate.all = all;
|
1017 |
|
|
req->u.invalidate.flush = flush;
|
1018 |
|
|
|
1019 |
|
|
pipeline_add_request (pipeline, req);
|
1020 |
|
|
}
|
1021 |
|
|
|
1022 |
|
|
/* Handle a request to preload the cache line containing the given address. */
|
1023 |
|
|
void
|
1024 |
|
|
frv_cache_request_preload (FRV_CACHE *cache, SI address,
|
1025 |
|
|
int slot, int length, int lock)
|
1026 |
|
|
{
|
1027 |
|
|
FRV_CACHE_REQUEST *req;
|
1028 |
|
|
|
1029 |
|
|
/* slot is a UNIT_*. Convert it to a cache pipeline index. */
|
1030 |
|
|
int pipe = convert_slot_to_index (slot);
|
1031 |
|
|
FRV_CACHE_PIPELINE *pipeline = & cache->pipeline[pipe];
|
1032 |
|
|
|
1033 |
|
|
/* Add the load request to the indexed pipeline. */
|
1034 |
|
|
req = new_cache_request ();
|
1035 |
|
|
req->kind = req_preload;
|
1036 |
|
|
req->reqno = NO_REQNO;
|
1037 |
|
|
req->priority = next_priority (cache, pipeline);
|
1038 |
|
|
req->address = address;
|
1039 |
|
|
req->u.preload.length = length;
|
1040 |
|
|
req->u.preload.lock = lock;
|
1041 |
|
|
|
1042 |
|
|
pipeline_add_request (pipeline, req);
|
1043 |
|
|
invalidate_return_buffer (cache, address);
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
/* Handle a request to unlock the cache line containing the given address. */
|
1047 |
|
|
void
|
1048 |
|
|
frv_cache_request_unlock (FRV_CACHE *cache, SI address, int slot)
|
1049 |
|
|
{
|
1050 |
|
|
FRV_CACHE_REQUEST *req;
|
1051 |
|
|
|
1052 |
|
|
/* slot is a UNIT_*. Convert it to a cache pipeline index. */
|
1053 |
|
|
int pipe = convert_slot_to_index (slot);
|
1054 |
|
|
FRV_CACHE_PIPELINE *pipeline = & cache->pipeline[pipe];
|
1055 |
|
|
|
1056 |
|
|
/* Add the load request to the indexed pipeline. */
|
1057 |
|
|
req = new_cache_request ();
|
1058 |
|
|
req->kind = req_unlock;
|
1059 |
|
|
req->reqno = NO_REQNO;
|
1060 |
|
|
req->priority = next_priority (cache, pipeline);
|
1061 |
|
|
req->address = address;
|
1062 |
|
|
|
1063 |
|
|
pipeline_add_request (pipeline, req);
|
1064 |
|
|
}
|
1065 |
|
|
|
1066 |
|
|
/* Check whether this address interferes with a pending request of
|
1067 |
|
|
higher priority. */
|
1068 |
|
|
static int
|
1069 |
|
|
address_interference (FRV_CACHE *cache, SI address, FRV_CACHE_REQUEST *req,
|
1070 |
|
|
int pipe)
|
1071 |
|
|
{
|
1072 |
|
|
int i, j;
|
1073 |
|
|
int line_mask = ~(cache->line_size - 1);
|
1074 |
|
|
int other_pipe;
|
1075 |
|
|
int priority = req->priority;
|
1076 |
|
|
FRV_CACHE_REQUEST *other_req;
|
1077 |
|
|
SI other_address;
|
1078 |
|
|
SI all_address;
|
1079 |
|
|
|
1080 |
|
|
address &= line_mask;
|
1081 |
|
|
all_address = -1 & line_mask;
|
1082 |
|
|
|
1083 |
|
|
/* Check for collisions in the queue for this pipeline. */
|
1084 |
|
|
for (other_req = cache->pipeline[pipe].requests;
|
1085 |
|
|
other_req != NULL;
|
1086 |
|
|
other_req = other_req->next)
|
1087 |
|
|
{
|
1088 |
|
|
other_address = other_req->address & line_mask;
|
1089 |
|
|
if ((address == other_address || address == all_address)
|
1090 |
|
|
&& priority > other_req->priority)
|
1091 |
|
|
return 1;
|
1092 |
|
|
}
|
1093 |
|
|
|
1094 |
|
|
/* Check for a collision in the the other pipeline. */
|
1095 |
|
|
other_pipe = pipe ^ 1;
|
1096 |
|
|
other_req = cache->pipeline[other_pipe].stages[LAST_STAGE].request;
|
1097 |
|
|
if (other_req != NULL)
|
1098 |
|
|
{
|
1099 |
|
|
other_address = other_req->address & line_mask;
|
1100 |
|
|
if (address == other_address || address == all_address)
|
1101 |
|
|
return 1;
|
1102 |
|
|
}
|
1103 |
|
|
|
1104 |
|
|
/* Check for a collision with load requests waiting in WAR. */
|
1105 |
|
|
for (i = LS; i < FRV_CACHE_PIPELINES; ++i)
|
1106 |
|
|
{
|
1107 |
|
|
for (j = 0; j < NUM_WARS; ++j)
|
1108 |
|
|
{
|
1109 |
|
|
FRV_CACHE_WAR *war = & cache->pipeline[i].WAR[j];
|
1110 |
|
|
if (war->valid
|
1111 |
|
|
&& (address == (war->address & line_mask)
|
1112 |
|
|
|| address == all_address)
|
1113 |
|
|
&& priority > war->priority)
|
1114 |
|
|
return 1;
|
1115 |
|
|
}
|
1116 |
|
|
/* If this is not a WAR request, then yield to any WAR requests in
|
1117 |
|
|
either pipeline or to a higher priority request in the same pipeline.
|
1118 |
|
|
*/
|
1119 |
|
|
if (req->kind != req_WAR)
|
1120 |
|
|
{
|
1121 |
|
|
for (j = FIRST_STAGE; j < FRV_CACHE_STAGES; ++j)
|
1122 |
|
|
{
|
1123 |
|
|
other_req = cache->pipeline[i].stages[j].request;
|
1124 |
|
|
if (other_req != NULL)
|
1125 |
|
|
{
|
1126 |
|
|
if (other_req->kind == req_WAR)
|
1127 |
|
|
return 1;
|
1128 |
|
|
if (i == pipe
|
1129 |
|
|
&& (address == (other_req->address & line_mask)
|
1130 |
|
|
|| address == all_address)
|
1131 |
|
|
&& priority > other_req->priority)
|
1132 |
|
|
return 1;
|
1133 |
|
|
}
|
1134 |
|
|
}
|
1135 |
|
|
}
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
/* Check for a collision with load requests waiting in ARS. */
|
1139 |
|
|
if (cache->BARS.valid
|
1140 |
|
|
&& (address == (cache->BARS.address & line_mask)
|
1141 |
|
|
|| address == all_address)
|
1142 |
|
|
&& priority > cache->BARS.priority)
|
1143 |
|
|
return 1;
|
1144 |
|
|
if (cache->NARS.valid
|
1145 |
|
|
&& (address == (cache->NARS.address & line_mask)
|
1146 |
|
|
|| address == all_address)
|
1147 |
|
|
&& priority > cache->NARS.priority)
|
1148 |
|
|
return 1;
|
1149 |
|
|
|
1150 |
|
|
return 0;
|
1151 |
|
|
}
|
1152 |
|
|
|
1153 |
|
|
/* Wait for a free WAR register in BARS or NARS. */
|
1154 |
|
|
static void
|
1155 |
|
|
wait_for_WAR (FRV_CACHE* cache, int pipe, FRV_CACHE_REQUEST *req)
|
1156 |
|
|
{
|
1157 |
|
|
FRV_CACHE_WAR war;
|
1158 |
|
|
FRV_CACHE_PIPELINE *pipeline = & cache->pipeline[pipe];
|
1159 |
|
|
|
1160 |
|
|
if (! cache->BARS.valid)
|
1161 |
|
|
{
|
1162 |
|
|
cache->BARS.pipe = pipe;
|
1163 |
|
|
cache->BARS.reqno = req->reqno;
|
1164 |
|
|
cache->BARS.address = req->address;
|
1165 |
|
|
cache->BARS.priority = req->priority - 1;
|
1166 |
|
|
switch (req->kind)
|
1167 |
|
|
{
|
1168 |
|
|
case req_load:
|
1169 |
|
|
cache->BARS.preload = 0;
|
1170 |
|
|
cache->BARS.lock = 0;
|
1171 |
|
|
break;
|
1172 |
|
|
case req_store:
|
1173 |
|
|
cache->BARS.preload = 1;
|
1174 |
|
|
cache->BARS.lock = 0;
|
1175 |
|
|
break;
|
1176 |
|
|
case req_preload:
|
1177 |
|
|
cache->BARS.preload = 1;
|
1178 |
|
|
cache->BARS.lock = req->u.preload.lock;
|
1179 |
|
|
break;
|
1180 |
|
|
}
|
1181 |
|
|
cache->BARS.valid = 1;
|
1182 |
|
|
return;
|
1183 |
|
|
}
|
1184 |
|
|
if (! cache->NARS.valid)
|
1185 |
|
|
{
|
1186 |
|
|
cache->NARS.pipe = pipe;
|
1187 |
|
|
cache->NARS.reqno = req->reqno;
|
1188 |
|
|
cache->NARS.address = req->address;
|
1189 |
|
|
cache->NARS.priority = req->priority - 1;
|
1190 |
|
|
switch (req->kind)
|
1191 |
|
|
{
|
1192 |
|
|
case req_load:
|
1193 |
|
|
cache->NARS.preload = 0;
|
1194 |
|
|
cache->NARS.lock = 0;
|
1195 |
|
|
break;
|
1196 |
|
|
case req_store:
|
1197 |
|
|
cache->NARS.preload = 1;
|
1198 |
|
|
cache->NARS.lock = 0;
|
1199 |
|
|
break;
|
1200 |
|
|
case req_preload:
|
1201 |
|
|
cache->NARS.preload = 1;
|
1202 |
|
|
cache->NARS.lock = req->u.preload.lock;
|
1203 |
|
|
break;
|
1204 |
|
|
}
|
1205 |
|
|
cache->NARS.valid = 1;
|
1206 |
|
|
return;
|
1207 |
|
|
}
|
1208 |
|
|
/* All wait registers are busy, so resubmit this request. */
|
1209 |
|
|
pipeline_requeue_request (pipeline);
|
1210 |
|
|
}
|
1211 |
|
|
|
1212 |
|
|
/* Find a free WAR register and wait for memory to fetch the data. */
|
1213 |
|
|
static void
|
1214 |
|
|
wait_in_WAR (FRV_CACHE* cache, int pipe, FRV_CACHE_REQUEST *req)
|
1215 |
|
|
{
|
1216 |
|
|
int war;
|
1217 |
|
|
FRV_CACHE_PIPELINE *pipeline = & cache->pipeline[pipe];
|
1218 |
|
|
|
1219 |
|
|
/* Find a valid WAR to hold this request. */
|
1220 |
|
|
for (war = 0; war < NUM_WARS; ++war)
|
1221 |
|
|
if (! pipeline->WAR[war].valid)
|
1222 |
|
|
break;
|
1223 |
|
|
if (war >= NUM_WARS)
|
1224 |
|
|
{
|
1225 |
|
|
wait_for_WAR (cache, pipe, req);
|
1226 |
|
|
return;
|
1227 |
|
|
}
|
1228 |
|
|
|
1229 |
|
|
pipeline->WAR[war].address = req->address;
|
1230 |
|
|
pipeline->WAR[war].reqno = req->reqno;
|
1231 |
|
|
pipeline->WAR[war].priority = req->priority - 1;
|
1232 |
|
|
pipeline->WAR[war].latency = cache->memory_latency + 1;
|
1233 |
|
|
switch (req->kind)
|
1234 |
|
|
{
|
1235 |
|
|
case req_load:
|
1236 |
|
|
pipeline->WAR[war].preload = 0;
|
1237 |
|
|
pipeline->WAR[war].lock = 0;
|
1238 |
|
|
break;
|
1239 |
|
|
case req_store:
|
1240 |
|
|
pipeline->WAR[war].preload = 1;
|
1241 |
|
|
pipeline->WAR[war].lock = 0;
|
1242 |
|
|
break;
|
1243 |
|
|
case req_preload:
|
1244 |
|
|
pipeline->WAR[war].preload = 1;
|
1245 |
|
|
pipeline->WAR[war].lock = req->u.preload.lock;
|
1246 |
|
|
break;
|
1247 |
|
|
}
|
1248 |
|
|
pipeline->WAR[war].valid = 1;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
static void
|
1252 |
|
|
handle_req_load (FRV_CACHE *cache, int pipe, FRV_CACHE_REQUEST *req)
|
1253 |
|
|
{
|
1254 |
|
|
FRV_CACHE_TAG *tag;
|
1255 |
|
|
SI address = req->address;
|
1256 |
|
|
|
1257 |
|
|
/* If this address interferes with an existing request, then requeue it. */
|
1258 |
|
|
if (address_interference (cache, address, req, pipe))
|
1259 |
|
|
{
|
1260 |
|
|
pipeline_requeue_request (& cache->pipeline[pipe]);
|
1261 |
|
|
return;
|
1262 |
|
|
}
|
1263 |
|
|
|
1264 |
|
|
if (frv_cache_enabled (cache) && ! non_cache_access (cache, address))
|
1265 |
|
|
{
|
1266 |
|
|
int found = get_tag (cache, address, &tag);
|
1267 |
|
|
|
1268 |
|
|
/* If the data was found, return it to the caller. */
|
1269 |
|
|
if (found)
|
1270 |
|
|
{
|
1271 |
|
|
set_most_recently_used (cache, tag);
|
1272 |
|
|
copy_line_to_return_buffer (cache, pipe, tag, address);
|
1273 |
|
|
set_return_buffer_reqno (cache, pipe, req->reqno);
|
1274 |
|
|
return;
|
1275 |
|
|
}
|
1276 |
|
|
}
|
1277 |
|
|
|
1278 |
|
|
/* The data is not in the cache or this is a non-cache access. We need to
|
1279 |
|
|
wait for the memory unit to fetch it. Store this request in the WAR in
|
1280 |
|
|
the meantime. */
|
1281 |
|
|
wait_in_WAR (cache, pipe, req);
|
1282 |
|
|
}
|
1283 |
|
|
|
1284 |
|
|
static void
|
1285 |
|
|
handle_req_preload (FRV_CACHE *cache, int pipe, FRV_CACHE_REQUEST *req)
|
1286 |
|
|
{
|
1287 |
|
|
int found;
|
1288 |
|
|
FRV_CACHE_WAR war;
|
1289 |
|
|
FRV_CACHE_TAG *tag;
|
1290 |
|
|
int length;
|
1291 |
|
|
int lock;
|
1292 |
|
|
int offset;
|
1293 |
|
|
int lines;
|
1294 |
|
|
int line;
|
1295 |
|
|
SI address = req->address;
|
1296 |
|
|
SI cur_address;
|
1297 |
|
|
|
1298 |
|
|
if (! frv_cache_enabled (cache) || non_cache_access (cache, address))
|
1299 |
|
|
return;
|
1300 |
|
|
|
1301 |
|
|
/* preload at least 1 line. */
|
1302 |
|
|
length = req->u.preload.length;
|
1303 |
|
|
if (length == 0)
|
1304 |
|
|
length = 1;
|
1305 |
|
|
|
1306 |
|
|
/* Make sure that this request does not interfere with a pending request. */
|
1307 |
|
|
offset = address & (cache->line_size - 1);
|
1308 |
|
|
lines = 1 + (offset + length - 1) / cache->line_size;
|
1309 |
|
|
cur_address = address & ~(cache->line_size - 1);
|
1310 |
|
|
for (line = 0; line < lines; ++line)
|
1311 |
|
|
{
|
1312 |
|
|
/* If this address interferes with an existing request,
|
1313 |
|
|
then requeue it. */
|
1314 |
|
|
if (address_interference (cache, cur_address, req, pipe))
|
1315 |
|
|
{
|
1316 |
|
|
pipeline_requeue_request (& cache->pipeline[pipe]);
|
1317 |
|
|
return;
|
1318 |
|
|
}
|
1319 |
|
|
cur_address += cache->line_size;
|
1320 |
|
|
}
|
1321 |
|
|
|
1322 |
|
|
/* Now process each cache line. */
|
1323 |
|
|
/* Careful with this loop -- length is unsigned. */
|
1324 |
|
|
lock = req->u.preload.lock;
|
1325 |
|
|
cur_address = address & ~(cache->line_size - 1);
|
1326 |
|
|
for (line = 0; line < lines; ++line)
|
1327 |
|
|
{
|
1328 |
|
|
/* If the data was found, then lock it if requested. */
|
1329 |
|
|
found = get_tag (cache, cur_address, &tag);
|
1330 |
|
|
if (found)
|
1331 |
|
|
{
|
1332 |
|
|
if (lock)
|
1333 |
|
|
tag->locked = 1;
|
1334 |
|
|
}
|
1335 |
|
|
else
|
1336 |
|
|
{
|
1337 |
|
|
/* The data is not in the cache. We need to wait for the memory
|
1338 |
|
|
unit to fetch it. Store this request in the WAR in the meantime.
|
1339 |
|
|
*/
|
1340 |
|
|
wait_in_WAR (cache, pipe, req);
|
1341 |
|
|
}
|
1342 |
|
|
cur_address += cache->line_size;
|
1343 |
|
|
}
|
1344 |
|
|
}
|
1345 |
|
|
|
1346 |
|
|
static void
|
1347 |
|
|
handle_req_store (FRV_CACHE *cache, int pipe, FRV_CACHE_REQUEST *req)
|
1348 |
|
|
{
|
1349 |
|
|
SIM_CPU *current_cpu;
|
1350 |
|
|
FRV_CACHE_TAG *tag;
|
1351 |
|
|
int found;
|
1352 |
|
|
int copy_back;
|
1353 |
|
|
SI address = req->address;
|
1354 |
|
|
char *data = req->u.store.data;
|
1355 |
|
|
int length = req->u.store.length;
|
1356 |
|
|
|
1357 |
|
|
/* If this address interferes with an existing request, then requeue it. */
|
1358 |
|
|
if (address_interference (cache, address, req, pipe))
|
1359 |
|
|
{
|
1360 |
|
|
pipeline_requeue_request (& cache->pipeline[pipe]);
|
1361 |
|
|
return;
|
1362 |
|
|
}
|
1363 |
|
|
|
1364 |
|
|
/* Non-cache access. Write the data directly to memory. */
|
1365 |
|
|
if (! frv_cache_enabled (cache) || non_cache_access (cache, address))
|
1366 |
|
|
{
|
1367 |
|
|
write_data_to_memory (cache, address, data, length);
|
1368 |
|
|
return;
|
1369 |
|
|
}
|
1370 |
|
|
|
1371 |
|
|
/* See if the data is in the cache. */
|
1372 |
|
|
found = get_tag (cache, address, &tag);
|
1373 |
|
|
|
1374 |
|
|
/* Write the data to the cache line if one was available and if it is
|
1375 |
|
|
either a hit or a miss in copy-back mode.
|
1376 |
|
|
The tag may be NULL if all ways were in use and locked on a miss.
|
1377 |
|
|
*/
|
1378 |
|
|
current_cpu = cache->cpu;
|
1379 |
|
|
copy_back = GET_HSR0_CBM (GET_HSR0 ());
|
1380 |
|
|
if (tag != NULL && (found || copy_back))
|
1381 |
|
|
{
|
1382 |
|
|
int line_offset;
|
1383 |
|
|
/* Load the line from memory first, if it was a miss. */
|
1384 |
|
|
if (! found)
|
1385 |
|
|
{
|
1386 |
|
|
/* We need to wait for the memory unit to fetch the data.
|
1387 |
|
|
Store this request in the WAR and requeue the store request. */
|
1388 |
|
|
wait_in_WAR (cache, pipe, req);
|
1389 |
|
|
pipeline_requeue_request (& cache->pipeline[pipe]);
|
1390 |
|
|
/* Decrement the counts of accesses and hits because when the requeued
|
1391 |
|
|
request is processed again, it will appear to be a new access and
|
1392 |
|
|
a hit. */
|
1393 |
|
|
--cache->statistics.accesses;
|
1394 |
|
|
--cache->statistics.hits;
|
1395 |
|
|
return;
|
1396 |
|
|
}
|
1397 |
|
|
line_offset = address & (cache->line_size - 1);
|
1398 |
|
|
memcpy (tag->line + line_offset, data, length);
|
1399 |
|
|
invalidate_return_buffer (cache, address);
|
1400 |
|
|
tag->dirty = 1;
|
1401 |
|
|
|
1402 |
|
|
/* Update the LRU information for the tags in this set. */
|
1403 |
|
|
set_most_recently_used (cache, tag);
|
1404 |
|
|
}
|
1405 |
|
|
|
1406 |
|
|
/* Write the data to memory if there was no line available or we are in
|
1407 |
|
|
write-through (not copy-back mode). */
|
1408 |
|
|
if (tag == NULL || ! copy_back)
|
1409 |
|
|
{
|
1410 |
|
|
write_data_to_memory (cache, address, data, length);
|
1411 |
|
|
if (tag != NULL)
|
1412 |
|
|
tag->dirty = 0;
|
1413 |
|
|
}
|
1414 |
|
|
}
|
1415 |
|
|
|
1416 |
|
|
static void
|
1417 |
|
|
handle_req_invalidate (FRV_CACHE *cache, int pipe, FRV_CACHE_REQUEST *req)
|
1418 |
|
|
{
|
1419 |
|
|
FRV_CACHE_PIPELINE *pipeline = & cache->pipeline[pipe];
|
1420 |
|
|
SI address = req->address;
|
1421 |
|
|
SI interfere_address = req->u.invalidate.all ? -1 : address;
|
1422 |
|
|
|
1423 |
|
|
/* If this address interferes with an existing request, then requeue it. */
|
1424 |
|
|
if (address_interference (cache, interfere_address, req, pipe))
|
1425 |
|
|
{
|
1426 |
|
|
pipeline_requeue_request (pipeline);
|
1427 |
|
|
return;
|
1428 |
|
|
}
|
1429 |
|
|
|
1430 |
|
|
/* Invalidate the cache line now. This function already checks for
|
1431 |
|
|
non-cache access. */
|
1432 |
|
|
if (req->u.invalidate.all)
|
1433 |
|
|
frv_cache_invalidate_all (cache, req->u.invalidate.flush);
|
1434 |
|
|
else
|
1435 |
|
|
frv_cache_invalidate (cache, address, req->u.invalidate.flush);
|
1436 |
|
|
if (req->u.invalidate.flush)
|
1437 |
|
|
{
|
1438 |
|
|
pipeline->status.flush.reqno = req->reqno;
|
1439 |
|
|
pipeline->status.flush.address = address;
|
1440 |
|
|
pipeline->status.flush.valid = 1;
|
1441 |
|
|
}
|
1442 |
|
|
}
|
1443 |
|
|
|
1444 |
|
|
static void
|
1445 |
|
|
handle_req_unlock (FRV_CACHE *cache, int pipe, FRV_CACHE_REQUEST *req)
|
1446 |
|
|
{
|
1447 |
|
|
FRV_CACHE_PIPELINE *pipeline = & cache->pipeline[pipe];
|
1448 |
|
|
SI address = req->address;
|
1449 |
|
|
|
1450 |
|
|
/* If this address interferes with an existing request, then requeue it. */
|
1451 |
|
|
if (address_interference (cache, address, req, pipe))
|
1452 |
|
|
{
|
1453 |
|
|
pipeline_requeue_request (pipeline);
|
1454 |
|
|
return;
|
1455 |
|
|
}
|
1456 |
|
|
|
1457 |
|
|
/* Unlock the cache line. This function checks for non-cache access. */
|
1458 |
|
|
frv_cache_unlock (cache, address);
|
1459 |
|
|
}
|
1460 |
|
|
|
1461 |
|
|
static void
|
1462 |
|
|
handle_req_WAR (FRV_CACHE *cache, int pipe, FRV_CACHE_REQUEST *req)
|
1463 |
|
|
{
|
1464 |
|
|
char *buffer;
|
1465 |
|
|
FRV_CACHE_TAG *tag;
|
1466 |
|
|
SI address = req->address;
|
1467 |
|
|
|
1468 |
|
|
if (frv_cache_enabled (cache) && ! non_cache_access (cache, address))
|
1469 |
|
|
{
|
1470 |
|
|
/* Look for the data in the cache. The statistics of cache hit or
|
1471 |
|
|
miss have already been recorded, so save and restore the stats before
|
1472 |
|
|
and after obtaining the cache line. */
|
1473 |
|
|
FRV_CACHE_STATISTICS save_stats = cache->statistics;
|
1474 |
|
|
tag = find_or_retrieve_cache_line (cache, address);
|
1475 |
|
|
cache->statistics = save_stats;
|
1476 |
|
|
if (tag != NULL)
|
1477 |
|
|
{
|
1478 |
|
|
if (! req->u.WAR.preload)
|
1479 |
|
|
{
|
1480 |
|
|
copy_line_to_return_buffer (cache, pipe, tag, address);
|
1481 |
|
|
set_return_buffer_reqno (cache, pipe, req->reqno);
|
1482 |
|
|
}
|
1483 |
|
|
else
|
1484 |
|
|
{
|
1485 |
|
|
invalidate_return_buffer (cache, address);
|
1486 |
|
|
if (req->u.WAR.lock)
|
1487 |
|
|
tag->locked = 1;
|
1488 |
|
|
}
|
1489 |
|
|
return;
|
1490 |
|
|
}
|
1491 |
|
|
}
|
1492 |
|
|
|
1493 |
|
|
/* All cache lines in the set were locked, so just copy the data to the
|
1494 |
|
|
return buffer directly. */
|
1495 |
|
|
if (! req->u.WAR.preload)
|
1496 |
|
|
{
|
1497 |
|
|
copy_memory_to_return_buffer (cache, pipe, address);
|
1498 |
|
|
set_return_buffer_reqno (cache, pipe, req->reqno);
|
1499 |
|
|
}
|
1500 |
|
|
}
|
1501 |
|
|
|
1502 |
|
|
/* Resolve any conflicts and/or execute the given requests. */
|
1503 |
|
|
static void
|
1504 |
|
|
arbitrate_requests (FRV_CACHE *cache)
|
1505 |
|
|
{
|
1506 |
|
|
int pipe;
|
1507 |
|
|
/* Simply execute the requests in the final pipeline stages. */
|
1508 |
|
|
for (pipe = LS; pipe < FRV_CACHE_PIPELINES; ++pipe)
|
1509 |
|
|
{
|
1510 |
|
|
FRV_CACHE_REQUEST *req
|
1511 |
|
|
= pipeline_stage_request (& cache->pipeline[pipe], LAST_STAGE);
|
1512 |
|
|
/* Make sure that there is a request to handle. */
|
1513 |
|
|
if (req == NULL)
|
1514 |
|
|
continue;
|
1515 |
|
|
|
1516 |
|
|
/* Handle the request. */
|
1517 |
|
|
switch (req->kind)
|
1518 |
|
|
{
|
1519 |
|
|
case req_load:
|
1520 |
|
|
handle_req_load (cache, pipe, req);
|
1521 |
|
|
break;
|
1522 |
|
|
case req_store:
|
1523 |
|
|
handle_req_store (cache, pipe, req);
|
1524 |
|
|
break;
|
1525 |
|
|
case req_invalidate:
|
1526 |
|
|
handle_req_invalidate (cache, pipe, req);
|
1527 |
|
|
break;
|
1528 |
|
|
case req_preload:
|
1529 |
|
|
handle_req_preload (cache, pipe, req);
|
1530 |
|
|
break;
|
1531 |
|
|
case req_unlock:
|
1532 |
|
|
handle_req_unlock (cache, pipe, req);
|
1533 |
|
|
break;
|
1534 |
|
|
case req_WAR:
|
1535 |
|
|
handle_req_WAR (cache, pipe, req);
|
1536 |
|
|
break;
|
1537 |
|
|
default:
|
1538 |
|
|
abort ();
|
1539 |
|
|
}
|
1540 |
|
|
}
|
1541 |
|
|
}
|
1542 |
|
|
|
1543 |
|
|
/* Move a waiting ARS register to a free WAR register. */
|
1544 |
|
|
static void
|
1545 |
|
|
move_ARS_to_WAR (FRV_CACHE *cache, int pipe, FRV_CACHE_WAR *war)
|
1546 |
|
|
{
|
1547 |
|
|
/* If BARS is valid for this pipe, then move it to the given WAR. Move
|
1548 |
|
|
NARS to BARS if it is valid. */
|
1549 |
|
|
if (cache->BARS.valid && cache->BARS.pipe == pipe)
|
1550 |
|
|
{
|
1551 |
|
|
war->address = cache->BARS.address;
|
1552 |
|
|
war->reqno = cache->BARS.reqno;
|
1553 |
|
|
war->priority = cache->BARS.priority;
|
1554 |
|
|
war->preload = cache->BARS.preload;
|
1555 |
|
|
war->lock = cache->BARS.lock;
|
1556 |
|
|
war->latency = cache->memory_latency + 1;
|
1557 |
|
|
war->valid = 1;
|
1558 |
|
|
if (cache->NARS.valid)
|
1559 |
|
|
{
|
1560 |
|
|
cache->BARS = cache->NARS;
|
1561 |
|
|
cache->NARS.valid = 0;
|
1562 |
|
|
}
|
1563 |
|
|
else
|
1564 |
|
|
cache->BARS.valid = 0;
|
1565 |
|
|
return;
|
1566 |
|
|
}
|
1567 |
|
|
/* If NARS is valid for this pipe, then move it to the given WAR. */
|
1568 |
|
|
if (cache->NARS.valid && cache->NARS.pipe == pipe)
|
1569 |
|
|
{
|
1570 |
|
|
war->address = cache->NARS.address;
|
1571 |
|
|
war->reqno = cache->NARS.reqno;
|
1572 |
|
|
war->priority = cache->NARS.priority;
|
1573 |
|
|
war->preload = cache->NARS.preload;
|
1574 |
|
|
war->lock = cache->NARS.lock;
|
1575 |
|
|
war->latency = cache->memory_latency + 1;
|
1576 |
|
|
war->valid = 1;
|
1577 |
|
|
cache->NARS.valid = 0;
|
1578 |
|
|
}
|
1579 |
|
|
}
|
1580 |
|
|
|
1581 |
|
|
/* Decrease the latencies of the various states in the cache. */
|
1582 |
|
|
static void
|
1583 |
|
|
decrease_latencies (FRV_CACHE *cache)
|
1584 |
|
|
{
|
1585 |
|
|
int pipe, j;
|
1586 |
|
|
/* Check the WAR registers. */
|
1587 |
|
|
for (pipe = LS; pipe < FRV_CACHE_PIPELINES; ++pipe)
|
1588 |
|
|
{
|
1589 |
|
|
FRV_CACHE_PIPELINE *pipeline = & cache->pipeline[pipe];
|
1590 |
|
|
for (j = 0; j < NUM_WARS; ++j)
|
1591 |
|
|
{
|
1592 |
|
|
FRV_CACHE_WAR *war = & pipeline->WAR[j];
|
1593 |
|
|
if (war->valid)
|
1594 |
|
|
{
|
1595 |
|
|
--war->latency;
|
1596 |
|
|
/* If the latency has expired, then submit a WAR request to the
|
1597 |
|
|
pipeline. */
|
1598 |
|
|
if (war->latency <= 0)
|
1599 |
|
|
{
|
1600 |
|
|
add_WAR_request (pipeline, war);
|
1601 |
|
|
war->valid = 0;
|
1602 |
|
|
move_ARS_to_WAR (cache, pipe, war);
|
1603 |
|
|
}
|
1604 |
|
|
}
|
1605 |
|
|
}
|
1606 |
|
|
}
|
1607 |
|
|
}
|
1608 |
|
|
|
1609 |
|
|
/* Run the cache for the given number of cycles. */
|
1610 |
|
|
void
|
1611 |
|
|
frv_cache_run (FRV_CACHE *cache, int cycles)
|
1612 |
|
|
{
|
1613 |
|
|
int i;
|
1614 |
|
|
for (i = 0; i < cycles; ++i)
|
1615 |
|
|
{
|
1616 |
|
|
advance_pipelines (cache);
|
1617 |
|
|
arbitrate_requests (cache);
|
1618 |
|
|
decrease_latencies (cache);
|
1619 |
|
|
}
|
1620 |
|
|
}
|
1621 |
|
|
|
1622 |
|
|
int
|
1623 |
|
|
frv_cache_read_passive_SI (FRV_CACHE *cache, SI address, SI *value)
|
1624 |
|
|
{
|
1625 |
|
|
SI offset;
|
1626 |
|
|
FRV_CACHE_TAG *tag;
|
1627 |
|
|
|
1628 |
|
|
if (non_cache_access (cache, address))
|
1629 |
|
|
return 0;
|
1630 |
|
|
|
1631 |
|
|
{
|
1632 |
|
|
FRV_CACHE_STATISTICS save_stats = cache->statistics;
|
1633 |
|
|
int found = get_tag (cache, address, &tag);
|
1634 |
|
|
cache->statistics = save_stats;
|
1635 |
|
|
|
1636 |
|
|
if (! found)
|
1637 |
|
|
return 0; /* Indicate non-cache-access. */
|
1638 |
|
|
}
|
1639 |
|
|
|
1640 |
|
|
/* A cache line was available for the data.
|
1641 |
|
|
Extract the target data from the line. */
|
1642 |
|
|
offset = address & (cache->line_size - 1);
|
1643 |
|
|
*value = T2H_4 (*(SI *)(tag->line + offset));
|
1644 |
|
|
return 1;
|
1645 |
|
|
}
|
1646 |
|
|
|
1647 |
|
|
/* Check the return buffers of the data cache to see if the requested data is
|
1648 |
|
|
available. */
|
1649 |
|
|
int
|
1650 |
|
|
frv_cache_data_in_buffer (FRV_CACHE* cache, int pipe, SI address,
|
1651 |
|
|
unsigned reqno)
|
1652 |
|
|
{
|
1653 |
|
|
return cache->pipeline[pipe].status.return_buffer.valid
|
1654 |
|
|
&& cache->pipeline[pipe].status.return_buffer.reqno == reqno
|
1655 |
|
|
&& cache->pipeline[pipe].status.return_buffer.address <= address
|
1656 |
|
|
&& cache->pipeline[pipe].status.return_buffer.address + cache->line_size
|
1657 |
|
|
> address;
|
1658 |
|
|
}
|
1659 |
|
|
|
1660 |
|
|
/* Check to see if the requested data has been flushed. */
|
1661 |
|
|
int
|
1662 |
|
|
frv_cache_data_flushed (FRV_CACHE* cache, int pipe, SI address, unsigned reqno)
|
1663 |
|
|
{
|
1664 |
|
|
return cache->pipeline[pipe].status.flush.valid
|
1665 |
|
|
&& cache->pipeline[pipe].status.flush.reqno == reqno
|
1666 |
|
|
&& cache->pipeline[pipe].status.flush.address <= address
|
1667 |
|
|
&& cache->pipeline[pipe].status.flush.address + cache->line_size
|
1668 |
|
|
> address;
|
1669 |
|
|
}
|