1 |
24 |
jeremybenn |
/* frv simulator fr400 dependent profiling code.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2001, 2007, 2008 Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Red Hat
|
5 |
|
|
|
6 |
|
|
This file is part of the GNU simulators.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
20 |
|
|
|
21 |
|
|
*/
|
22 |
|
|
#define WANT_CPU
|
23 |
|
|
#define WANT_CPU_FRVBF
|
24 |
|
|
|
25 |
|
|
#include "sim-main.h"
|
26 |
|
|
#include "bfd.h"
|
27 |
|
|
|
28 |
|
|
#if WITH_PROFILE_MODEL_P
|
29 |
|
|
|
30 |
|
|
#include "profile.h"
|
31 |
|
|
#include "profile-fr400.h"
|
32 |
|
|
|
33 |
|
|
/* These functions get and set flags representing the use of
|
34 |
|
|
registers/resources. */
|
35 |
|
|
static void set_use_not_fp_load (SIM_CPU *, INT);
|
36 |
|
|
static void set_use_not_media_p4 (SIM_CPU *, INT);
|
37 |
|
|
static void set_use_not_media_p6 (SIM_CPU *, INT);
|
38 |
|
|
|
39 |
|
|
static void set_acc_use_not_media_p2 (SIM_CPU *, INT);
|
40 |
|
|
static void set_acc_use_not_media_p4 (SIM_CPU *, INT);
|
41 |
|
|
|
42 |
|
|
void
|
43 |
|
|
fr400_reset_gr_flags (SIM_CPU *cpu, INT fr)
|
44 |
|
|
{
|
45 |
|
|
set_use_not_gr_complex (cpu, fr);
|
46 |
|
|
}
|
47 |
|
|
|
48 |
|
|
void
|
49 |
|
|
fr400_reset_fr_flags (SIM_CPU *cpu, INT fr)
|
50 |
|
|
{
|
51 |
|
|
set_use_not_fp_load (cpu, fr);
|
52 |
|
|
set_use_not_media_p4 (cpu, fr);
|
53 |
|
|
set_use_not_media_p6 (cpu, fr);
|
54 |
|
|
}
|
55 |
|
|
|
56 |
|
|
void
|
57 |
|
|
fr400_reset_acc_flags (SIM_CPU *cpu, INT acc)
|
58 |
|
|
{
|
59 |
|
|
set_acc_use_not_media_p2 (cpu, acc);
|
60 |
|
|
set_acc_use_not_media_p4 (cpu, acc);
|
61 |
|
|
}
|
62 |
|
|
|
63 |
|
|
static void
|
64 |
|
|
set_use_is_fp_load (SIM_CPU *cpu, INT fr, INT fr_double)
|
65 |
|
|
{
|
66 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
67 |
|
|
if (fr != -1)
|
68 |
|
|
{
|
69 |
|
|
fr400_reset_fr_flags (cpu, fr);
|
70 |
|
|
d->cur_fp_load |= (((DI)1) << fr);
|
71 |
|
|
}
|
72 |
|
|
if (fr_double != -1)
|
73 |
|
|
{
|
74 |
|
|
fr400_reset_fr_flags (cpu, fr_double);
|
75 |
|
|
d->cur_fp_load |= (((DI)1) << fr_double);
|
76 |
|
|
if (fr_double < 63)
|
77 |
|
|
{
|
78 |
|
|
fr400_reset_fr_flags (cpu, fr_double + 1);
|
79 |
|
|
d->cur_fp_load |= (((DI)1) << (fr_double + 1));
|
80 |
|
|
}
|
81 |
|
|
}
|
82 |
|
|
|
83 |
|
|
}
|
84 |
|
|
|
85 |
|
|
static void
|
86 |
|
|
set_use_not_fp_load (SIM_CPU *cpu, INT fr)
|
87 |
|
|
{
|
88 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
89 |
|
|
if (fr != -1)
|
90 |
|
|
d->cur_fp_load &= ~(((DI)1) << fr);
|
91 |
|
|
}
|
92 |
|
|
|
93 |
|
|
static int
|
94 |
|
|
use_is_fp_load (SIM_CPU *cpu, INT fr)
|
95 |
|
|
{
|
96 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
97 |
|
|
if (fr != -1)
|
98 |
|
|
return (d->prev_fp_load >> fr) & 1;
|
99 |
|
|
return 0;
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
static void
|
103 |
|
|
set_acc_use_is_media_p2 (SIM_CPU *cpu, INT acc)
|
104 |
|
|
{
|
105 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
106 |
|
|
if (acc != -1)
|
107 |
|
|
{
|
108 |
|
|
fr400_reset_acc_flags (cpu, acc);
|
109 |
|
|
d->cur_acc_p2 |= (((DI)1) << acc);
|
110 |
|
|
}
|
111 |
|
|
}
|
112 |
|
|
|
113 |
|
|
static void
|
114 |
|
|
set_acc_use_not_media_p2 (SIM_CPU *cpu, INT acc)
|
115 |
|
|
{
|
116 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
117 |
|
|
if (acc != -1)
|
118 |
|
|
d->cur_acc_p2 &= ~(((DI)1) << acc);
|
119 |
|
|
}
|
120 |
|
|
|
121 |
|
|
static int
|
122 |
|
|
acc_use_is_media_p2 (SIM_CPU *cpu, INT acc)
|
123 |
|
|
{
|
124 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
125 |
|
|
if (acc != -1)
|
126 |
|
|
return d->cur_acc_p2 & (((DI)1) << acc);
|
127 |
|
|
return 0;
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
static void
|
131 |
|
|
set_use_is_media_p4 (SIM_CPU *cpu, INT fr)
|
132 |
|
|
{
|
133 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
134 |
|
|
if (fr != -1)
|
135 |
|
|
{
|
136 |
|
|
fr400_reset_fr_flags (cpu, fr);
|
137 |
|
|
d->cur_fr_p4 |= (((DI)1) << fr);
|
138 |
|
|
}
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
static void
|
142 |
|
|
set_use_not_media_p4 (SIM_CPU *cpu, INT fr)
|
143 |
|
|
{
|
144 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
145 |
|
|
if (fr != -1)
|
146 |
|
|
d->cur_fr_p4 &= ~(((DI)1) << fr);
|
147 |
|
|
}
|
148 |
|
|
|
149 |
|
|
static int
|
150 |
|
|
use_is_media_p4 (SIM_CPU *cpu, INT fr)
|
151 |
|
|
{
|
152 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
153 |
|
|
if (fr != -1)
|
154 |
|
|
return d->cur_fr_p4 & (((DI)1) << fr);
|
155 |
|
|
return 0;
|
156 |
|
|
}
|
157 |
|
|
|
158 |
|
|
static void
|
159 |
|
|
set_acc_use_is_media_p4 (SIM_CPU *cpu, INT acc)
|
160 |
|
|
{
|
161 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
162 |
|
|
if (acc != -1)
|
163 |
|
|
{
|
164 |
|
|
fr400_reset_acc_flags (cpu, acc);
|
165 |
|
|
d->cur_acc_p4 |= (((DI)1) << acc);
|
166 |
|
|
}
|
167 |
|
|
}
|
168 |
|
|
|
169 |
|
|
static void
|
170 |
|
|
set_acc_use_not_media_p4 (SIM_CPU *cpu, INT acc)
|
171 |
|
|
{
|
172 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
173 |
|
|
if (acc != -1)
|
174 |
|
|
d->cur_acc_p4 &= ~(((DI)1) << acc);
|
175 |
|
|
}
|
176 |
|
|
|
177 |
|
|
static int
|
178 |
|
|
acc_use_is_media_p4 (SIM_CPU *cpu, INT acc)
|
179 |
|
|
{
|
180 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
181 |
|
|
if (acc != -1)
|
182 |
|
|
return d->cur_acc_p4 & (((DI)1) << acc);
|
183 |
|
|
return 0;
|
184 |
|
|
}
|
185 |
|
|
|
186 |
|
|
static void
|
187 |
|
|
set_use_is_media_p6 (SIM_CPU *cpu, INT fr)
|
188 |
|
|
{
|
189 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
190 |
|
|
if (fr != -1)
|
191 |
|
|
{
|
192 |
|
|
fr400_reset_fr_flags (cpu, fr);
|
193 |
|
|
d->cur_fr_p6 |= (((DI)1) << fr);
|
194 |
|
|
}
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
static void
|
198 |
|
|
set_use_not_media_p6 (SIM_CPU *cpu, INT fr)
|
199 |
|
|
{
|
200 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
201 |
|
|
if (fr != -1)
|
202 |
|
|
d->cur_fr_p6 &= ~(((DI)1) << fr);
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
static int
|
206 |
|
|
use_is_media_p6 (SIM_CPU *cpu, INT fr)
|
207 |
|
|
{
|
208 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
209 |
|
|
if (fr != -1)
|
210 |
|
|
return d->cur_fr_p6 & (((DI)1) << fr);
|
211 |
|
|
return 0;
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
/* Initialize cycle counting for an insn.
|
215 |
|
|
FIRST_P is non-zero if this is the first insn in a set of parallel
|
216 |
|
|
insns. */
|
217 |
|
|
void
|
218 |
|
|
fr400_model_insn_before (SIM_CPU *cpu, int first_p)
|
219 |
|
|
{
|
220 |
|
|
if (first_p)
|
221 |
|
|
{
|
222 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
223 |
|
|
FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
|
224 |
|
|
ps->cur_gr_complex = ps->prev_gr_complex;
|
225 |
|
|
d->cur_fp_load = d->prev_fp_load;
|
226 |
|
|
d->cur_fr_p4 = d->prev_fr_p4;
|
227 |
|
|
d->cur_fr_p6 = d->prev_fr_p6;
|
228 |
|
|
d->cur_acc_p2 = d->prev_acc_p2;
|
229 |
|
|
d->cur_acc_p4 = d->prev_acc_p4;
|
230 |
|
|
}
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
/* Record the cycles computed for an insn.
|
234 |
|
|
LAST_P is non-zero if this is the last insn in a set of parallel insns,
|
235 |
|
|
and we update the total cycle count.
|
236 |
|
|
CYCLES is the cycle count of the insn. */
|
237 |
|
|
void
|
238 |
|
|
fr400_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
|
239 |
|
|
{
|
240 |
|
|
if (last_p)
|
241 |
|
|
{
|
242 |
|
|
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
|
243 |
|
|
FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
|
244 |
|
|
ps->prev_gr_complex = ps->cur_gr_complex;
|
245 |
|
|
d->prev_fp_load = d->cur_fp_load;
|
246 |
|
|
d->prev_fr_p4 = d->cur_fr_p4;
|
247 |
|
|
d->prev_fr_p6 = d->cur_fr_p6;
|
248 |
|
|
d->prev_acc_p2 = d->cur_acc_p2;
|
249 |
|
|
d->prev_acc_p4 = d->cur_acc_p4;
|
250 |
|
|
}
|
251 |
|
|
}
|
252 |
|
|
|
253 |
|
|
int
|
254 |
|
|
frvbf_model_fr400_u_exec (SIM_CPU *cpu, const IDESC *idesc,
|
255 |
|
|
int unit_num, int referenced)
|
256 |
|
|
{
|
257 |
|
|
return idesc->timing->units[unit_num].done;
|
258 |
|
|
}
|
259 |
|
|
|
260 |
|
|
int
|
261 |
|
|
frvbf_model_fr400_u_integer (SIM_CPU *cpu, const IDESC *idesc,
|
262 |
|
|
int unit_num, int referenced,
|
263 |
|
|
INT in_GRi, INT in_GRj, INT out_GRk,
|
264 |
|
|
INT out_ICCi_1)
|
265 |
|
|
{
|
266 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
267 |
|
|
return frvbf_model_fr500_u_integer (cpu, idesc, unit_num, referenced,
|
268 |
|
|
in_GRi, in_GRj, out_GRk, out_ICCi_1);
|
269 |
|
|
}
|
270 |
|
|
|
271 |
|
|
int
|
272 |
|
|
frvbf_model_fr400_u_imul (SIM_CPU *cpu, const IDESC *idesc,
|
273 |
|
|
int unit_num, int referenced,
|
274 |
|
|
INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
|
275 |
|
|
{
|
276 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
277 |
|
|
return frvbf_model_fr500_u_imul (cpu, idesc, unit_num, referenced,
|
278 |
|
|
in_GRi, in_GRj, out_GRk, out_ICCi_1);
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
int
|
282 |
|
|
frvbf_model_fr400_u_idiv (SIM_CPU *cpu, const IDESC *idesc,
|
283 |
|
|
int unit_num, int referenced,
|
284 |
|
|
INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
|
285 |
|
|
{
|
286 |
|
|
int cycles;
|
287 |
|
|
FRV_VLIW *vliw;
|
288 |
|
|
int slot;
|
289 |
|
|
|
290 |
|
|
/* icc0-icc4 are the upper 4 fields of the CCR. */
|
291 |
|
|
if (out_ICCi_1 >= 0)
|
292 |
|
|
out_ICCi_1 += 4;
|
293 |
|
|
|
294 |
|
|
vliw = CPU_VLIW (cpu);
|
295 |
|
|
slot = vliw->next_slot - 1;
|
296 |
|
|
slot = (*vliw->current_vliw)[slot] - UNIT_I0;
|
297 |
|
|
|
298 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
299 |
|
|
{
|
300 |
|
|
/* The entire VLIW insn must wait if there is a dependency on a register
|
301 |
|
|
which is not ready yet.
|
302 |
|
|
The latency of the registers may be less than previously recorded,
|
303 |
|
|
depending on how they were used previously.
|
304 |
|
|
See Table 13-8 in the LSI. */
|
305 |
|
|
if (in_GRi != out_GRk && in_GRi >= 0)
|
306 |
|
|
{
|
307 |
|
|
if (use_is_gr_complex (cpu, in_GRi))
|
308 |
|
|
decrease_GR_busy (cpu, in_GRi, 1);
|
309 |
|
|
}
|
310 |
|
|
if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0)
|
311 |
|
|
{
|
312 |
|
|
if (use_is_gr_complex (cpu, in_GRj))
|
313 |
|
|
decrease_GR_busy (cpu, in_GRj, 1);
|
314 |
|
|
}
|
315 |
|
|
vliw_wait_for_GR (cpu, in_GRi);
|
316 |
|
|
vliw_wait_for_GR (cpu, in_GRj);
|
317 |
|
|
vliw_wait_for_GR (cpu, out_GRk);
|
318 |
|
|
vliw_wait_for_CCR (cpu, out_ICCi_1);
|
319 |
|
|
vliw_wait_for_idiv_resource (cpu, slot);
|
320 |
|
|
handle_resource_wait (cpu);
|
321 |
|
|
load_wait_for_GR (cpu, in_GRi);
|
322 |
|
|
load_wait_for_GR (cpu, in_GRj);
|
323 |
|
|
load_wait_for_GR (cpu, out_GRk);
|
324 |
|
|
trace_vliw_wait_cycles (cpu);
|
325 |
|
|
return 0;
|
326 |
|
|
}
|
327 |
|
|
|
328 |
|
|
/* GRk has a latency of 19 cycles! */
|
329 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
330 |
|
|
update_GR_latency (cpu, out_GRk, cycles + 19);
|
331 |
|
|
set_use_is_gr_complex (cpu, out_GRk);
|
332 |
|
|
|
333 |
|
|
/* ICCi_1 has a latency of 18 cycles. */
|
334 |
|
|
update_CCR_latency (cpu, out_ICCi_1, cycles + 18);
|
335 |
|
|
|
336 |
|
|
/* the idiv resource has a latency of 18 cycles! */
|
337 |
|
|
update_idiv_resource_latency (cpu, slot, cycles + 18);
|
338 |
|
|
|
339 |
|
|
return cycles;
|
340 |
|
|
}
|
341 |
|
|
|
342 |
|
|
int
|
343 |
|
|
frvbf_model_fr400_u_branch (SIM_CPU *cpu, const IDESC *idesc,
|
344 |
|
|
int unit_num, int referenced,
|
345 |
|
|
INT in_GRi, INT in_GRj,
|
346 |
|
|
INT in_ICCi_2, INT in_ICCi_3)
|
347 |
|
|
{
|
348 |
|
|
#define BRANCH_PREDICTED(ps) ((ps)->branch_hint & 2)
|
349 |
|
|
FRV_PROFILE_STATE *ps;
|
350 |
|
|
int cycles;
|
351 |
|
|
|
352 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
353 |
|
|
{
|
354 |
|
|
/* Modelling for this unit is the same as for fr500 in pass 1. */
|
355 |
|
|
return frvbf_model_fr500_u_branch (cpu, idesc, unit_num, referenced,
|
356 |
|
|
in_GRi, in_GRj, in_ICCi_2, in_ICCi_3);
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
360 |
|
|
|
361 |
|
|
/* Compute the branch penalty, based on the the prediction and the out
|
362 |
|
|
come. When counting branches taken or not taken, don't consider branches
|
363 |
|
|
after the first taken branch in a vliw insn. */
|
364 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
365 |
|
|
if (! ps->vliw_branch_taken)
|
366 |
|
|
{
|
367 |
|
|
int penalty;
|
368 |
|
|
/* (1 << 4): The pc is the 5th element in inputs, outputs.
|
369 |
|
|
??? can be cleaned up */
|
370 |
|
|
PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
|
371 |
|
|
int taken = (referenced & (1 << 4)) != 0;
|
372 |
|
|
if (taken)
|
373 |
|
|
{
|
374 |
|
|
++PROFILE_MODEL_TAKEN_COUNT (p);
|
375 |
|
|
ps->vliw_branch_taken = 1;
|
376 |
|
|
if (BRANCH_PREDICTED (ps))
|
377 |
|
|
penalty = 1;
|
378 |
|
|
else
|
379 |
|
|
penalty = 3;
|
380 |
|
|
}
|
381 |
|
|
else
|
382 |
|
|
{
|
383 |
|
|
++PROFILE_MODEL_UNTAKEN_COUNT (p);
|
384 |
|
|
if (BRANCH_PREDICTED (ps))
|
385 |
|
|
penalty = 3;
|
386 |
|
|
else
|
387 |
|
|
penalty = 0;
|
388 |
|
|
}
|
389 |
|
|
if (penalty > 0)
|
390 |
|
|
{
|
391 |
|
|
/* Additional 1 cycle penalty if the branch address is not 8 byte
|
392 |
|
|
aligned. */
|
393 |
|
|
if (ps->branch_address & 7)
|
394 |
|
|
++penalty;
|
395 |
|
|
update_branch_penalty (cpu, penalty);
|
396 |
|
|
PROFILE_MODEL_CTI_STALL_CYCLES (p) += penalty;
|
397 |
|
|
}
|
398 |
|
|
}
|
399 |
|
|
|
400 |
|
|
return cycles;
|
401 |
|
|
}
|
402 |
|
|
|
403 |
|
|
int
|
404 |
|
|
frvbf_model_fr400_u_trap (SIM_CPU *cpu, const IDESC *idesc,
|
405 |
|
|
int unit_num, int referenced,
|
406 |
|
|
INT in_GRi, INT in_GRj,
|
407 |
|
|
INT in_ICCi_2, INT in_FCCi_2)
|
408 |
|
|
{
|
409 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
410 |
|
|
return frvbf_model_fr500_u_trap (cpu, idesc, unit_num, referenced,
|
411 |
|
|
in_GRi, in_GRj, in_ICCi_2, in_FCCi_2);
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
int
|
415 |
|
|
frvbf_model_fr400_u_check (SIM_CPU *cpu, const IDESC *idesc,
|
416 |
|
|
int unit_num, int referenced,
|
417 |
|
|
INT in_ICCi_3, INT in_FCCi_3)
|
418 |
|
|
{
|
419 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
420 |
|
|
return frvbf_model_fr500_u_check (cpu, idesc, unit_num, referenced,
|
421 |
|
|
in_ICCi_3, in_FCCi_3);
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
int
|
425 |
|
|
frvbf_model_fr400_u_set_hilo (SIM_CPU *cpu, const IDESC *idesc,
|
426 |
|
|
int unit_num, int referenced,
|
427 |
|
|
INT out_GRkhi, INT out_GRklo)
|
428 |
|
|
{
|
429 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
430 |
|
|
return frvbf_model_fr500_u_set_hilo (cpu, idesc, unit_num, referenced,
|
431 |
|
|
out_GRkhi, out_GRklo);
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
int
|
435 |
|
|
frvbf_model_fr400_u_gr_load (SIM_CPU *cpu, const IDESC *idesc,
|
436 |
|
|
int unit_num, int referenced,
|
437 |
|
|
INT in_GRi, INT in_GRj,
|
438 |
|
|
INT out_GRk, INT out_GRdoublek)
|
439 |
|
|
{
|
440 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
441 |
|
|
return frvbf_model_fr500_u_gr_load (cpu, idesc, unit_num, referenced,
|
442 |
|
|
in_GRi, in_GRj, out_GRk, out_GRdoublek);
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
int
|
446 |
|
|
frvbf_model_fr400_u_gr_store (SIM_CPU *cpu, const IDESC *idesc,
|
447 |
|
|
int unit_num, int referenced,
|
448 |
|
|
INT in_GRi, INT in_GRj,
|
449 |
|
|
INT in_GRk, INT in_GRdoublek)
|
450 |
|
|
{
|
451 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
452 |
|
|
return frvbf_model_fr500_u_gr_store (cpu, idesc, unit_num, referenced,
|
453 |
|
|
in_GRi, in_GRj, in_GRk, in_GRdoublek);
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
int
|
457 |
|
|
frvbf_model_fr400_u_fr_load (SIM_CPU *cpu, const IDESC *idesc,
|
458 |
|
|
int unit_num, int referenced,
|
459 |
|
|
INT in_GRi, INT in_GRj,
|
460 |
|
|
INT out_FRk, INT out_FRdoublek)
|
461 |
|
|
{
|
462 |
|
|
int cycles;
|
463 |
|
|
|
464 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
465 |
|
|
{
|
466 |
|
|
/* Pass 1 is the same as for fr500. */
|
467 |
|
|
return frvbf_model_fr500_u_fr_load (cpu, idesc, unit_num, referenced,
|
468 |
|
|
in_GRi, in_GRj, out_FRk,
|
469 |
|
|
out_FRdoublek);
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
473 |
|
|
|
474 |
|
|
/* The latency of FRk for a load will depend on how long it takes to retrieve
|
475 |
|
|
the the data from the cache or memory. */
|
476 |
|
|
update_FR_latency_for_load (cpu, out_FRk, cycles);
|
477 |
|
|
update_FRdouble_latency_for_load (cpu, out_FRdoublek, cycles);
|
478 |
|
|
|
479 |
|
|
set_use_is_fp_load (cpu, out_FRk, out_FRdoublek);
|
480 |
|
|
|
481 |
|
|
return cycles;
|
482 |
|
|
}
|
483 |
|
|
|
484 |
|
|
int
|
485 |
|
|
frvbf_model_fr400_u_fr_store (SIM_CPU *cpu, const IDESC *idesc,
|
486 |
|
|
int unit_num, int referenced,
|
487 |
|
|
INT in_GRi, INT in_GRj,
|
488 |
|
|
INT in_FRk, INT in_FRdoublek)
|
489 |
|
|
{
|
490 |
|
|
int cycles;
|
491 |
|
|
|
492 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
493 |
|
|
{
|
494 |
|
|
/* The entire VLIW insn must wait if there is a dependency on a register
|
495 |
|
|
which is not ready yet.
|
496 |
|
|
The latency of the registers may be less than previously recorded,
|
497 |
|
|
depending on how they were used previously.
|
498 |
|
|
See Table 13-8 in the LSI. */
|
499 |
|
|
if (in_GRi >= 0)
|
500 |
|
|
{
|
501 |
|
|
if (use_is_gr_complex (cpu, in_GRi))
|
502 |
|
|
decrease_GR_busy (cpu, in_GRi, 1);
|
503 |
|
|
}
|
504 |
|
|
if (in_GRj != in_GRi && in_GRj >= 0)
|
505 |
|
|
{
|
506 |
|
|
if (use_is_gr_complex (cpu, in_GRj))
|
507 |
|
|
decrease_GR_busy (cpu, in_GRj, 1);
|
508 |
|
|
}
|
509 |
|
|
if (in_FRk >= 0)
|
510 |
|
|
{
|
511 |
|
|
if (use_is_media_p4 (cpu, in_FRk) || use_is_media_p6 (cpu, in_FRk))
|
512 |
|
|
decrease_FR_busy (cpu, in_FRk, 1);
|
513 |
|
|
else
|
514 |
|
|
enforce_full_fr_latency (cpu, in_FRk);
|
515 |
|
|
}
|
516 |
|
|
vliw_wait_for_GR (cpu, in_GRi);
|
517 |
|
|
vliw_wait_for_GR (cpu, in_GRj);
|
518 |
|
|
vliw_wait_for_FR (cpu, in_FRk);
|
519 |
|
|
vliw_wait_for_FRdouble (cpu, in_FRdoublek);
|
520 |
|
|
handle_resource_wait (cpu);
|
521 |
|
|
load_wait_for_GR (cpu, in_GRi);
|
522 |
|
|
load_wait_for_GR (cpu, in_GRj);
|
523 |
|
|
load_wait_for_FR (cpu, in_FRk);
|
524 |
|
|
load_wait_for_FRdouble (cpu, in_FRdoublek);
|
525 |
|
|
trace_vliw_wait_cycles (cpu);
|
526 |
|
|
return 0;
|
527 |
|
|
}
|
528 |
|
|
|
529 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
530 |
|
|
|
531 |
|
|
return cycles;
|
532 |
|
|
}
|
533 |
|
|
|
534 |
|
|
int
|
535 |
|
|
frvbf_model_fr400_u_swap (SIM_CPU *cpu, const IDESC *idesc,
|
536 |
|
|
int unit_num, int referenced,
|
537 |
|
|
INT in_GRi, INT in_GRj, INT out_GRk)
|
538 |
|
|
{
|
539 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
540 |
|
|
return frvbf_model_fr500_u_swap (cpu, idesc, unit_num, referenced,
|
541 |
|
|
in_GRi, in_GRj, out_GRk);
|
542 |
|
|
}
|
543 |
|
|
|
544 |
|
|
int
|
545 |
|
|
frvbf_model_fr400_u_fr2gr (SIM_CPU *cpu, const IDESC *idesc,
|
546 |
|
|
int unit_num, int referenced,
|
547 |
|
|
INT in_FRk, INT out_GRj)
|
548 |
|
|
{
|
549 |
|
|
int cycles;
|
550 |
|
|
|
551 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
552 |
|
|
{
|
553 |
|
|
/* The entire VLIW insn must wait if there is a dependency on a register
|
554 |
|
|
which is not ready yet.
|
555 |
|
|
The latency of the registers may be less than previously recorded,
|
556 |
|
|
depending on how they were used previously.
|
557 |
|
|
See Table 13-8 in the LSI. */
|
558 |
|
|
if (in_FRk >= 0)
|
559 |
|
|
{
|
560 |
|
|
if (use_is_media_p4 (cpu, in_FRk) || use_is_media_p6 (cpu, in_FRk))
|
561 |
|
|
decrease_FR_busy (cpu, in_FRk, 1);
|
562 |
|
|
else
|
563 |
|
|
enforce_full_fr_latency (cpu, in_FRk);
|
564 |
|
|
}
|
565 |
|
|
vliw_wait_for_FR (cpu, in_FRk);
|
566 |
|
|
vliw_wait_for_GR (cpu, out_GRj);
|
567 |
|
|
handle_resource_wait (cpu);
|
568 |
|
|
load_wait_for_FR (cpu, in_FRk);
|
569 |
|
|
load_wait_for_GR (cpu, out_GRj);
|
570 |
|
|
trace_vliw_wait_cycles (cpu);
|
571 |
|
|
return 0;
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
/* The latency of GRj is 2 cycles. */
|
575 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
576 |
|
|
update_GR_latency (cpu, out_GRj, cycles + 2);
|
577 |
|
|
set_use_is_gr_complex (cpu, out_GRj);
|
578 |
|
|
|
579 |
|
|
return cycles;
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
int
|
583 |
|
|
frvbf_model_fr400_u_spr2gr (SIM_CPU *cpu, const IDESC *idesc,
|
584 |
|
|
int unit_num, int referenced,
|
585 |
|
|
INT in_spr, INT out_GRj)
|
586 |
|
|
{
|
587 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
588 |
|
|
return frvbf_model_fr500_u_spr2gr (cpu, idesc, unit_num, referenced,
|
589 |
|
|
in_spr, out_GRj);
|
590 |
|
|
}
|
591 |
|
|
|
592 |
|
|
int
|
593 |
|
|
frvbf_model_fr400_u_gr2fr (SIM_CPU *cpu, const IDESC *idesc,
|
594 |
|
|
int unit_num, int referenced,
|
595 |
|
|
INT in_GRj, INT out_FRk)
|
596 |
|
|
{
|
597 |
|
|
int cycles;
|
598 |
|
|
|
599 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
600 |
|
|
{
|
601 |
|
|
/* Pass 1 is the same as for fr500. */
|
602 |
|
|
frvbf_model_fr500_u_gr2fr (cpu, idesc, unit_num, referenced,
|
603 |
|
|
in_GRj, out_FRk);
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
/* The latency of FRk is 1 cycles. */
|
607 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
608 |
|
|
update_FR_latency (cpu, out_FRk, cycles + 1);
|
609 |
|
|
|
610 |
|
|
return cycles;
|
611 |
|
|
}
|
612 |
|
|
|
613 |
|
|
int
|
614 |
|
|
frvbf_model_fr400_u_gr2spr (SIM_CPU *cpu, const IDESC *idesc,
|
615 |
|
|
int unit_num, int referenced,
|
616 |
|
|
INT in_GRj, INT out_spr)
|
617 |
|
|
{
|
618 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
619 |
|
|
return frvbf_model_fr500_u_gr2spr (cpu, idesc, unit_num, referenced,
|
620 |
|
|
in_GRj, out_spr);
|
621 |
|
|
}
|
622 |
|
|
|
623 |
|
|
int
|
624 |
|
|
frvbf_model_fr400_u_media_1 (SIM_CPU *cpu, const IDESC *idesc,
|
625 |
|
|
int unit_num, int referenced,
|
626 |
|
|
INT in_FRi, INT in_FRj,
|
627 |
|
|
INT out_FRk)
|
628 |
|
|
{
|
629 |
|
|
int cycles;
|
630 |
|
|
FRV_PROFILE_STATE *ps;
|
631 |
|
|
const CGEN_INSN *insn;
|
632 |
|
|
int busy_adjustment[] = {0, 0};
|
633 |
|
|
int *fr;
|
634 |
|
|
|
635 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
636 |
|
|
return 0;
|
637 |
|
|
|
638 |
|
|
/* The preprocessing can execute right away. */
|
639 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
640 |
|
|
|
641 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
642 |
|
|
insn = idesc->idata;
|
643 |
|
|
|
644 |
|
|
/* The latency of the registers may be less than previously recorded,
|
645 |
|
|
depending on how they were used previously.
|
646 |
|
|
See Table 13-8 in the LSI. */
|
647 |
|
|
if (in_FRi >= 0)
|
648 |
|
|
{
|
649 |
|
|
if (use_is_fp_load (cpu, in_FRi))
|
650 |
|
|
{
|
651 |
|
|
busy_adjustment[0] = 1;
|
652 |
|
|
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
|
653 |
|
|
}
|
654 |
|
|
else
|
655 |
|
|
enforce_full_fr_latency (cpu, in_FRi);
|
656 |
|
|
}
|
657 |
|
|
if (in_FRj >= 0 && in_FRj != in_FRi)
|
658 |
|
|
{
|
659 |
|
|
if (use_is_fp_load (cpu, in_FRj))
|
660 |
|
|
{
|
661 |
|
|
busy_adjustment[1] = 1;
|
662 |
|
|
decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]);
|
663 |
|
|
}
|
664 |
|
|
else
|
665 |
|
|
enforce_full_fr_latency (cpu, in_FRj);
|
666 |
|
|
}
|
667 |
|
|
|
668 |
|
|
/* The post processing must wait if there is a dependency on a FR
|
669 |
|
|
which is not ready yet. */
|
670 |
|
|
ps->post_wait = cycles;
|
671 |
|
|
post_wait_for_FR (cpu, in_FRi);
|
672 |
|
|
post_wait_for_FR (cpu, in_FRj);
|
673 |
|
|
post_wait_for_FR (cpu, out_FRk);
|
674 |
|
|
|
675 |
|
|
/* Restore the busy cycles of the registers we used. */
|
676 |
|
|
fr = ps->fr_busy;
|
677 |
|
|
if (in_FRi >= 0)
|
678 |
|
|
fr[in_FRi] += busy_adjustment[0];
|
679 |
|
|
if (in_FRj >= 0)
|
680 |
|
|
fr[in_FRj] += busy_adjustment[1];
|
681 |
|
|
|
682 |
|
|
/* The latency of the output register will be at least the latency of the
|
683 |
|
|
other inputs. Once initiated, post-processing has no latency. */
|
684 |
|
|
if (out_FRk >= 0)
|
685 |
|
|
{
|
686 |
|
|
update_FR_latency (cpu, out_FRk, ps->post_wait);
|
687 |
|
|
update_FR_ptime (cpu, out_FRk, 0);
|
688 |
|
|
}
|
689 |
|
|
|
690 |
|
|
return cycles;
|
691 |
|
|
}
|
692 |
|
|
|
693 |
|
|
int
|
694 |
|
|
frvbf_model_fr400_u_media_1_quad (SIM_CPU *cpu, const IDESC *idesc,
|
695 |
|
|
int unit_num, int referenced,
|
696 |
|
|
INT in_FRi, INT in_FRj,
|
697 |
|
|
INT out_FRk)
|
698 |
|
|
{
|
699 |
|
|
int cycles;
|
700 |
|
|
INT dual_FRi;
|
701 |
|
|
INT dual_FRj;
|
702 |
|
|
INT dual_FRk;
|
703 |
|
|
FRV_PROFILE_STATE *ps;
|
704 |
|
|
int busy_adjustment[] = {0, 0, 0, 0};
|
705 |
|
|
int *fr;
|
706 |
|
|
|
707 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
708 |
|
|
return 0;
|
709 |
|
|
|
710 |
|
|
/* The preprocessing can execute right away. */
|
711 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
712 |
|
|
|
713 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
714 |
|
|
dual_FRi = DUAL_REG (in_FRi);
|
715 |
|
|
dual_FRj = DUAL_REG (in_FRj);
|
716 |
|
|
dual_FRk = DUAL_REG (out_FRk);
|
717 |
|
|
|
718 |
|
|
/* The latency of the registers may be less than previously recorded,
|
719 |
|
|
depending on how they were used previously.
|
720 |
|
|
See Table 13-8 in the LSI. */
|
721 |
|
|
if (use_is_fp_load (cpu, in_FRi))
|
722 |
|
|
{
|
723 |
|
|
busy_adjustment[0] = 1;
|
724 |
|
|
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
|
725 |
|
|
}
|
726 |
|
|
else
|
727 |
|
|
enforce_full_fr_latency (cpu, in_FRi);
|
728 |
|
|
if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi))
|
729 |
|
|
{
|
730 |
|
|
busy_adjustment[1] = 1;
|
731 |
|
|
decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
|
732 |
|
|
}
|
733 |
|
|
else
|
734 |
|
|
enforce_full_fr_latency (cpu, dual_FRi);
|
735 |
|
|
if (in_FRj != in_FRi)
|
736 |
|
|
{
|
737 |
|
|
if (use_is_fp_load (cpu, in_FRj))
|
738 |
|
|
{
|
739 |
|
|
busy_adjustment[2] = 1;
|
740 |
|
|
decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]);
|
741 |
|
|
}
|
742 |
|
|
else
|
743 |
|
|
enforce_full_fr_latency (cpu, in_FRj);
|
744 |
|
|
if (dual_FRj >= 0 && use_is_fp_load (cpu, dual_FRj))
|
745 |
|
|
{
|
746 |
|
|
busy_adjustment[3] = 1;
|
747 |
|
|
decrease_FR_busy (cpu, dual_FRj, busy_adjustment[3]);
|
748 |
|
|
}
|
749 |
|
|
else
|
750 |
|
|
enforce_full_fr_latency (cpu, dual_FRj);
|
751 |
|
|
}
|
752 |
|
|
|
753 |
|
|
/* The post processing must wait if there is a dependency on a FR
|
754 |
|
|
which is not ready yet. */
|
755 |
|
|
ps->post_wait = cycles;
|
756 |
|
|
post_wait_for_FR (cpu, in_FRi);
|
757 |
|
|
post_wait_for_FR (cpu, dual_FRi);
|
758 |
|
|
post_wait_for_FR (cpu, in_FRj);
|
759 |
|
|
post_wait_for_FR (cpu, dual_FRj);
|
760 |
|
|
post_wait_for_FR (cpu, out_FRk);
|
761 |
|
|
post_wait_for_FR (cpu, dual_FRk);
|
762 |
|
|
|
763 |
|
|
/* Restore the busy cycles of the registers we used. */
|
764 |
|
|
fr = ps->fr_busy;
|
765 |
|
|
fr[in_FRi] += busy_adjustment[0];
|
766 |
|
|
if (dual_FRi >= 0)
|
767 |
|
|
fr[dual_FRi] += busy_adjustment[1];
|
768 |
|
|
fr[in_FRj] += busy_adjustment[2];
|
769 |
|
|
if (dual_FRj >= 0)
|
770 |
|
|
fr[dual_FRj] += busy_adjustment[3];
|
771 |
|
|
|
772 |
|
|
/* The latency of the output register will be at least the latency of the
|
773 |
|
|
other inputs. */
|
774 |
|
|
update_FR_latency (cpu, out_FRk, ps->post_wait);
|
775 |
|
|
|
776 |
|
|
/* Once initiated, post-processing has no latency. */
|
777 |
|
|
update_FR_ptime (cpu, out_FRk, 0);
|
778 |
|
|
|
779 |
|
|
if (dual_FRk >= 0)
|
780 |
|
|
{
|
781 |
|
|
update_FR_latency (cpu, dual_FRk, ps->post_wait);
|
782 |
|
|
update_FR_ptime (cpu, dual_FRk, 0);
|
783 |
|
|
}
|
784 |
|
|
|
785 |
|
|
return cycles;
|
786 |
|
|
}
|
787 |
|
|
|
788 |
|
|
int
|
789 |
|
|
frvbf_model_fr400_u_media_hilo (SIM_CPU *cpu, const IDESC *idesc,
|
790 |
|
|
int unit_num, int referenced,
|
791 |
|
|
INT out_FRkhi, INT out_FRklo)
|
792 |
|
|
{
|
793 |
|
|
int cycles;
|
794 |
|
|
FRV_PROFILE_STATE *ps;
|
795 |
|
|
|
796 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
797 |
|
|
return 0;
|
798 |
|
|
|
799 |
|
|
/* The preprocessing can execute right away. */
|
800 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
801 |
|
|
|
802 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
803 |
|
|
|
804 |
|
|
/* The post processing must wait if there is a dependency on a FR
|
805 |
|
|
which is not ready yet. */
|
806 |
|
|
ps->post_wait = cycles;
|
807 |
|
|
post_wait_for_FR (cpu, out_FRkhi);
|
808 |
|
|
post_wait_for_FR (cpu, out_FRklo);
|
809 |
|
|
|
810 |
|
|
/* The latency of the output register will be at least the latency of the
|
811 |
|
|
other inputs. Once initiated, post-processing has no latency. */
|
812 |
|
|
if (out_FRkhi >= 0)
|
813 |
|
|
{
|
814 |
|
|
update_FR_latency (cpu, out_FRkhi, ps->post_wait);
|
815 |
|
|
update_FR_ptime (cpu, out_FRkhi, 0);
|
816 |
|
|
}
|
817 |
|
|
if (out_FRklo >= 0)
|
818 |
|
|
{
|
819 |
|
|
update_FR_latency (cpu, out_FRklo, ps->post_wait);
|
820 |
|
|
update_FR_ptime (cpu, out_FRklo, 0);
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
return cycles;
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
int
|
827 |
|
|
frvbf_model_fr400_u_media_2 (SIM_CPU *cpu, const IDESC *idesc,
|
828 |
|
|
int unit_num, int referenced,
|
829 |
|
|
INT in_FRi, INT in_FRj,
|
830 |
|
|
INT out_ACC40Sk, INT out_ACC40Uk)
|
831 |
|
|
{
|
832 |
|
|
int cycles;
|
833 |
|
|
INT dual_ACC40Sk;
|
834 |
|
|
INT dual_ACC40Uk;
|
835 |
|
|
FRV_PROFILE_STATE *ps;
|
836 |
|
|
int busy_adjustment[] = {0, 0, 0, 0, 0, 0};
|
837 |
|
|
int *fr;
|
838 |
|
|
int *acc;
|
839 |
|
|
|
840 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
841 |
|
|
return 0;
|
842 |
|
|
|
843 |
|
|
/* The preprocessing can execute right away. */
|
844 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
845 |
|
|
|
846 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
847 |
|
|
dual_ACC40Sk = DUAL_REG (out_ACC40Sk);
|
848 |
|
|
dual_ACC40Uk = DUAL_REG (out_ACC40Uk);
|
849 |
|
|
|
850 |
|
|
/* The latency of the registers may be less than previously recorded,
|
851 |
|
|
depending on how they were used previously.
|
852 |
|
|
See Table 13-8 in the LSI. */
|
853 |
|
|
if (in_FRi >= 0)
|
854 |
|
|
{
|
855 |
|
|
if (use_is_fp_load (cpu, in_FRi))
|
856 |
|
|
{
|
857 |
|
|
busy_adjustment[0] = 1;
|
858 |
|
|
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
|
859 |
|
|
}
|
860 |
|
|
else
|
861 |
|
|
enforce_full_fr_latency (cpu, in_FRi);
|
862 |
|
|
}
|
863 |
|
|
if (in_FRj >= 0 && in_FRj != in_FRi)
|
864 |
|
|
{
|
865 |
|
|
if (use_is_fp_load (cpu, in_FRj))
|
866 |
|
|
{
|
867 |
|
|
busy_adjustment[1] = 1;
|
868 |
|
|
decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]);
|
869 |
|
|
}
|
870 |
|
|
else
|
871 |
|
|
enforce_full_fr_latency (cpu, in_FRj);
|
872 |
|
|
}
|
873 |
|
|
if (out_ACC40Sk >= 0)
|
874 |
|
|
{
|
875 |
|
|
if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
|
876 |
|
|
{
|
877 |
|
|
busy_adjustment[2] = 1;
|
878 |
|
|
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
|
879 |
|
|
}
|
880 |
|
|
}
|
881 |
|
|
if (dual_ACC40Sk >= 0)
|
882 |
|
|
{
|
883 |
|
|
if (acc_use_is_media_p2 (cpu, dual_ACC40Sk))
|
884 |
|
|
{
|
885 |
|
|
busy_adjustment[3] = 1;
|
886 |
|
|
decrease_ACC_busy (cpu, dual_ACC40Sk, busy_adjustment[3]);
|
887 |
|
|
}
|
888 |
|
|
}
|
889 |
|
|
if (out_ACC40Uk >= 0)
|
890 |
|
|
{
|
891 |
|
|
if (acc_use_is_media_p2 (cpu, out_ACC40Uk))
|
892 |
|
|
{
|
893 |
|
|
busy_adjustment[4] = 1;
|
894 |
|
|
decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]);
|
895 |
|
|
}
|
896 |
|
|
}
|
897 |
|
|
if (dual_ACC40Uk >= 0)
|
898 |
|
|
{
|
899 |
|
|
if (acc_use_is_media_p2 (cpu, dual_ACC40Uk))
|
900 |
|
|
{
|
901 |
|
|
busy_adjustment[5] = 1;
|
902 |
|
|
decrease_ACC_busy (cpu, dual_ACC40Uk, busy_adjustment[5]);
|
903 |
|
|
}
|
904 |
|
|
}
|
905 |
|
|
|
906 |
|
|
/* The post processing must wait if there is a dependency on a FR
|
907 |
|
|
which is not ready yet. */
|
908 |
|
|
ps->post_wait = cycles;
|
909 |
|
|
post_wait_for_FR (cpu, in_FRi);
|
910 |
|
|
post_wait_for_FR (cpu, in_FRj);
|
911 |
|
|
post_wait_for_ACC (cpu, out_ACC40Sk);
|
912 |
|
|
post_wait_for_ACC (cpu, dual_ACC40Sk);
|
913 |
|
|
post_wait_for_ACC (cpu, out_ACC40Uk);
|
914 |
|
|
post_wait_for_ACC (cpu, dual_ACC40Uk);
|
915 |
|
|
|
916 |
|
|
/* Restore the busy cycles of the registers we used. */
|
917 |
|
|
fr = ps->fr_busy;
|
918 |
|
|
acc = ps->acc_busy;
|
919 |
|
|
fr[in_FRi] += busy_adjustment[0];
|
920 |
|
|
fr[in_FRj] += busy_adjustment[1];
|
921 |
|
|
if (out_ACC40Sk >= 0)
|
922 |
|
|
acc[out_ACC40Sk] += busy_adjustment[2];
|
923 |
|
|
if (dual_ACC40Sk >= 0)
|
924 |
|
|
acc[dual_ACC40Sk] += busy_adjustment[3];
|
925 |
|
|
if (out_ACC40Uk >= 0)
|
926 |
|
|
acc[out_ACC40Uk] += busy_adjustment[4];
|
927 |
|
|
if (dual_ACC40Uk >= 0)
|
928 |
|
|
acc[dual_ACC40Uk] += busy_adjustment[5];
|
929 |
|
|
|
930 |
|
|
/* The latency of the output register will be at least the latency of the
|
931 |
|
|
other inputs. Once initiated, post-processing will take 1 cycles. */
|
932 |
|
|
if (out_ACC40Sk >= 0)
|
933 |
|
|
{
|
934 |
|
|
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
|
935 |
|
|
set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
|
936 |
|
|
}
|
937 |
|
|
if (dual_ACC40Sk >= 0)
|
938 |
|
|
{
|
939 |
|
|
update_ACC_latency (cpu, dual_ACC40Sk, ps->post_wait + 1);
|
940 |
|
|
set_acc_use_is_media_p2 (cpu, dual_ACC40Sk);
|
941 |
|
|
}
|
942 |
|
|
if (out_ACC40Uk >= 0)
|
943 |
|
|
{
|
944 |
|
|
update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
|
945 |
|
|
set_acc_use_is_media_p2 (cpu, out_ACC40Uk);
|
946 |
|
|
}
|
947 |
|
|
if (dual_ACC40Uk >= 0)
|
948 |
|
|
{
|
949 |
|
|
update_ACC_latency (cpu, dual_ACC40Uk, ps->post_wait + 1);
|
950 |
|
|
set_acc_use_is_media_p2 (cpu, dual_ACC40Uk);
|
951 |
|
|
}
|
952 |
|
|
|
953 |
|
|
return cycles;
|
954 |
|
|
}
|
955 |
|
|
|
956 |
|
|
int
|
957 |
|
|
frvbf_model_fr400_u_media_2_quad (SIM_CPU *cpu, const IDESC *idesc,
|
958 |
|
|
int unit_num, int referenced,
|
959 |
|
|
INT in_FRi, INT in_FRj,
|
960 |
|
|
INT out_ACC40Sk, INT out_ACC40Uk)
|
961 |
|
|
{
|
962 |
|
|
int cycles;
|
963 |
|
|
INT dual_FRi;
|
964 |
|
|
INT dual_FRj;
|
965 |
|
|
INT ACC40Sk_1;
|
966 |
|
|
INT ACC40Sk_2;
|
967 |
|
|
INT ACC40Sk_3;
|
968 |
|
|
INT ACC40Uk_1;
|
969 |
|
|
INT ACC40Uk_2;
|
970 |
|
|
INT ACC40Uk_3;
|
971 |
|
|
FRV_PROFILE_STATE *ps;
|
972 |
|
|
int busy_adjustment[] = {0, 0, 0, 0, 0, 0, 0 ,0};
|
973 |
|
|
int *fr;
|
974 |
|
|
int *acc;
|
975 |
|
|
|
976 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
977 |
|
|
return 0;
|
978 |
|
|
|
979 |
|
|
/* The preprocessing can execute right away. */
|
980 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
981 |
|
|
|
982 |
|
|
dual_FRi = DUAL_REG (in_FRi);
|
983 |
|
|
dual_FRj = DUAL_REG (in_FRj);
|
984 |
|
|
ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
|
985 |
|
|
ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
|
986 |
|
|
ACC40Sk_3 = DUAL_REG (ACC40Sk_2);
|
987 |
|
|
ACC40Uk_1 = DUAL_REG (out_ACC40Uk);
|
988 |
|
|
ACC40Uk_2 = DUAL_REG (ACC40Uk_1);
|
989 |
|
|
ACC40Uk_3 = DUAL_REG (ACC40Uk_2);
|
990 |
|
|
|
991 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
992 |
|
|
/* The latency of the registers may be less than previously recorded,
|
993 |
|
|
depending on how they were used previously.
|
994 |
|
|
See Table 13-8 in the LSI. */
|
995 |
|
|
if (use_is_fp_load (cpu, in_FRi))
|
996 |
|
|
{
|
997 |
|
|
busy_adjustment[0] = 1;
|
998 |
|
|
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
|
999 |
|
|
}
|
1000 |
|
|
else
|
1001 |
|
|
enforce_full_fr_latency (cpu, in_FRi);
|
1002 |
|
|
if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi))
|
1003 |
|
|
{
|
1004 |
|
|
busy_adjustment[1] = 1;
|
1005 |
|
|
decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
|
1006 |
|
|
}
|
1007 |
|
|
else
|
1008 |
|
|
enforce_full_fr_latency (cpu, dual_FRi);
|
1009 |
|
|
if (in_FRj != in_FRi)
|
1010 |
|
|
{
|
1011 |
|
|
if (use_is_fp_load (cpu, in_FRj))
|
1012 |
|
|
{
|
1013 |
|
|
busy_adjustment[2] = 1;
|
1014 |
|
|
decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]);
|
1015 |
|
|
}
|
1016 |
|
|
else
|
1017 |
|
|
enforce_full_fr_latency (cpu, in_FRj);
|
1018 |
|
|
if (dual_FRj >= 0 && use_is_fp_load (cpu, dual_FRj))
|
1019 |
|
|
{
|
1020 |
|
|
busy_adjustment[3] = 1;
|
1021 |
|
|
decrease_FR_busy (cpu, dual_FRj, busy_adjustment[3]);
|
1022 |
|
|
}
|
1023 |
|
|
else
|
1024 |
|
|
enforce_full_fr_latency (cpu, dual_FRj);
|
1025 |
|
|
}
|
1026 |
|
|
if (out_ACC40Sk >= 0)
|
1027 |
|
|
{
|
1028 |
|
|
if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
|
1029 |
|
|
{
|
1030 |
|
|
busy_adjustment[4] = 1;
|
1031 |
|
|
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
|
1032 |
|
|
}
|
1033 |
|
|
if (ACC40Sk_1 >= 0)
|
1034 |
|
|
{
|
1035 |
|
|
if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
|
1036 |
|
|
{
|
1037 |
|
|
busy_adjustment[5] = 1;
|
1038 |
|
|
decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
|
1039 |
|
|
}
|
1040 |
|
|
}
|
1041 |
|
|
if (ACC40Sk_2 >= 0)
|
1042 |
|
|
{
|
1043 |
|
|
if (acc_use_is_media_p2 (cpu, ACC40Sk_2))
|
1044 |
|
|
{
|
1045 |
|
|
busy_adjustment[6] = 1;
|
1046 |
|
|
decrease_ACC_busy (cpu, ACC40Sk_2, busy_adjustment[6]);
|
1047 |
|
|
}
|
1048 |
|
|
}
|
1049 |
|
|
if (ACC40Sk_3 >= 0)
|
1050 |
|
|
{
|
1051 |
|
|
if (acc_use_is_media_p2 (cpu, ACC40Sk_3))
|
1052 |
|
|
{
|
1053 |
|
|
busy_adjustment[7] = 1;
|
1054 |
|
|
decrease_ACC_busy (cpu, ACC40Sk_3, busy_adjustment[7]);
|
1055 |
|
|
}
|
1056 |
|
|
}
|
1057 |
|
|
}
|
1058 |
|
|
else if (out_ACC40Uk >= 0)
|
1059 |
|
|
{
|
1060 |
|
|
if (acc_use_is_media_p2 (cpu, out_ACC40Uk))
|
1061 |
|
|
{
|
1062 |
|
|
busy_adjustment[4] = 1;
|
1063 |
|
|
decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]);
|
1064 |
|
|
}
|
1065 |
|
|
if (ACC40Uk_1 >= 0)
|
1066 |
|
|
{
|
1067 |
|
|
if (acc_use_is_media_p2 (cpu, ACC40Uk_1))
|
1068 |
|
|
{
|
1069 |
|
|
busy_adjustment[5] = 1;
|
1070 |
|
|
decrease_ACC_busy (cpu, ACC40Uk_1, busy_adjustment[5]);
|
1071 |
|
|
}
|
1072 |
|
|
}
|
1073 |
|
|
if (ACC40Uk_2 >= 0)
|
1074 |
|
|
{
|
1075 |
|
|
if (acc_use_is_media_p2 (cpu, ACC40Uk_2))
|
1076 |
|
|
{
|
1077 |
|
|
busy_adjustment[6] = 1;
|
1078 |
|
|
decrease_ACC_busy (cpu, ACC40Uk_2, busy_adjustment[6]);
|
1079 |
|
|
}
|
1080 |
|
|
}
|
1081 |
|
|
if (ACC40Uk_3 >= 0)
|
1082 |
|
|
{
|
1083 |
|
|
if (acc_use_is_media_p2 (cpu, ACC40Uk_3))
|
1084 |
|
|
{
|
1085 |
|
|
busy_adjustment[7] = 1;
|
1086 |
|
|
decrease_ACC_busy (cpu, ACC40Uk_3, busy_adjustment[7]);
|
1087 |
|
|
}
|
1088 |
|
|
}
|
1089 |
|
|
}
|
1090 |
|
|
|
1091 |
|
|
/* The post processing must wait if there is a dependency on a FR
|
1092 |
|
|
which is not ready yet. */
|
1093 |
|
|
ps->post_wait = cycles;
|
1094 |
|
|
post_wait_for_FR (cpu, in_FRi);
|
1095 |
|
|
post_wait_for_FR (cpu, dual_FRi);
|
1096 |
|
|
post_wait_for_FR (cpu, in_FRj);
|
1097 |
|
|
post_wait_for_FR (cpu, dual_FRj);
|
1098 |
|
|
post_wait_for_ACC (cpu, out_ACC40Sk);
|
1099 |
|
|
post_wait_for_ACC (cpu, ACC40Sk_1);
|
1100 |
|
|
post_wait_for_ACC (cpu, ACC40Sk_2);
|
1101 |
|
|
post_wait_for_ACC (cpu, ACC40Sk_3);
|
1102 |
|
|
post_wait_for_ACC (cpu, out_ACC40Uk);
|
1103 |
|
|
post_wait_for_ACC (cpu, ACC40Uk_1);
|
1104 |
|
|
post_wait_for_ACC (cpu, ACC40Uk_2);
|
1105 |
|
|
post_wait_for_ACC (cpu, ACC40Uk_3);
|
1106 |
|
|
|
1107 |
|
|
/* Restore the busy cycles of the registers we used. */
|
1108 |
|
|
fr = ps->fr_busy;
|
1109 |
|
|
acc = ps->acc_busy;
|
1110 |
|
|
fr[in_FRi] += busy_adjustment[0];
|
1111 |
|
|
if (dual_FRi >= 0)
|
1112 |
|
|
fr[dual_FRi] += busy_adjustment[1];
|
1113 |
|
|
fr[in_FRj] += busy_adjustment[2];
|
1114 |
|
|
if (dual_FRj > 0)
|
1115 |
|
|
fr[dual_FRj] += busy_adjustment[3];
|
1116 |
|
|
if (out_ACC40Sk >= 0)
|
1117 |
|
|
{
|
1118 |
|
|
acc[out_ACC40Sk] += busy_adjustment[4];
|
1119 |
|
|
if (ACC40Sk_1 >= 0)
|
1120 |
|
|
acc[ACC40Sk_1] += busy_adjustment[5];
|
1121 |
|
|
if (ACC40Sk_2 >= 0)
|
1122 |
|
|
acc[ACC40Sk_2] += busy_adjustment[6];
|
1123 |
|
|
if (ACC40Sk_3 >= 0)
|
1124 |
|
|
acc[ACC40Sk_3] += busy_adjustment[7];
|
1125 |
|
|
}
|
1126 |
|
|
else if (out_ACC40Uk >= 0)
|
1127 |
|
|
{
|
1128 |
|
|
acc[out_ACC40Uk] += busy_adjustment[4];
|
1129 |
|
|
if (ACC40Uk_1 >= 0)
|
1130 |
|
|
acc[ACC40Uk_1] += busy_adjustment[5];
|
1131 |
|
|
if (ACC40Uk_2 >= 0)
|
1132 |
|
|
acc[ACC40Uk_2] += busy_adjustment[6];
|
1133 |
|
|
if (ACC40Uk_3 >= 0)
|
1134 |
|
|
acc[ACC40Uk_3] += busy_adjustment[7];
|
1135 |
|
|
}
|
1136 |
|
|
|
1137 |
|
|
/* The latency of the output register will be at least the latency of the
|
1138 |
|
|
other inputs. Once initiated, post-processing will take 1 cycle. */
|
1139 |
|
|
if (out_ACC40Sk >= 0)
|
1140 |
|
|
{
|
1141 |
|
|
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
|
1142 |
|
|
|
1143 |
|
|
set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
|
1144 |
|
|
if (ACC40Sk_1 >= 0)
|
1145 |
|
|
{
|
1146 |
|
|
update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
|
1147 |
|
|
|
1148 |
|
|
set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
|
1149 |
|
|
}
|
1150 |
|
|
if (ACC40Sk_2 >= 0)
|
1151 |
|
|
{
|
1152 |
|
|
update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);
|
1153 |
|
|
|
1154 |
|
|
set_acc_use_is_media_p2 (cpu, ACC40Sk_2);
|
1155 |
|
|
}
|
1156 |
|
|
if (ACC40Sk_3 >= 0)
|
1157 |
|
|
{
|
1158 |
|
|
update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);
|
1159 |
|
|
|
1160 |
|
|
set_acc_use_is_media_p2 (cpu, ACC40Sk_3);
|
1161 |
|
|
}
|
1162 |
|
|
}
|
1163 |
|
|
else if (out_ACC40Uk >= 0)
|
1164 |
|
|
{
|
1165 |
|
|
update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
|
1166 |
|
|
|
1167 |
|
|
set_acc_use_is_media_p2 (cpu, out_ACC40Uk);
|
1168 |
|
|
if (ACC40Uk_1 >= 0)
|
1169 |
|
|
{
|
1170 |
|
|
update_ACC_latency (cpu, ACC40Uk_1, ps->post_wait + 1);
|
1171 |
|
|
|
1172 |
|
|
set_acc_use_is_media_p2 (cpu, ACC40Uk_1);
|
1173 |
|
|
}
|
1174 |
|
|
if (ACC40Uk_2 >= 0)
|
1175 |
|
|
{
|
1176 |
|
|
update_ACC_latency (cpu, ACC40Uk_2, ps->post_wait + 1);
|
1177 |
|
|
|
1178 |
|
|
set_acc_use_is_media_p2 (cpu, ACC40Uk_2);
|
1179 |
|
|
}
|
1180 |
|
|
if (ACC40Uk_3 >= 0)
|
1181 |
|
|
{
|
1182 |
|
|
update_ACC_latency (cpu, ACC40Uk_3, ps->post_wait + 1);
|
1183 |
|
|
|
1184 |
|
|
set_acc_use_is_media_p2 (cpu, ACC40Uk_3);
|
1185 |
|
|
}
|
1186 |
|
|
}
|
1187 |
|
|
|
1188 |
|
|
return cycles;
|
1189 |
|
|
}
|
1190 |
|
|
|
1191 |
|
|
int
|
1192 |
|
|
frvbf_model_fr400_u_media_2_acc (SIM_CPU *cpu, const IDESC *idesc,
|
1193 |
|
|
int unit_num, int referenced,
|
1194 |
|
|
INT in_ACC40Si, INT out_ACC40Sk)
|
1195 |
|
|
{
|
1196 |
|
|
int cycles;
|
1197 |
|
|
INT ACC40Si_1;
|
1198 |
|
|
FRV_PROFILE_STATE *ps;
|
1199 |
|
|
int busy_adjustment[] = {0, 0, 0};
|
1200 |
|
|
int *acc;
|
1201 |
|
|
|
1202 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
1203 |
|
|
return 0;
|
1204 |
|
|
|
1205 |
|
|
/* The preprocessing can execute right away. */
|
1206 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
1207 |
|
|
|
1208 |
|
|
ACC40Si_1 = DUAL_REG (in_ACC40Si);
|
1209 |
|
|
|
1210 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
1211 |
|
|
/* The latency of the registers may be less than previously recorded,
|
1212 |
|
|
depending on how they were used previously.
|
1213 |
|
|
See Table 13-8 in the LSI. */
|
1214 |
|
|
if (acc_use_is_media_p2 (cpu, in_ACC40Si))
|
1215 |
|
|
{
|
1216 |
|
|
busy_adjustment[0] = 1;
|
1217 |
|
|
decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
|
1218 |
|
|
}
|
1219 |
|
|
if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
|
1220 |
|
|
{
|
1221 |
|
|
busy_adjustment[1] = 1;
|
1222 |
|
|
decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
|
1223 |
|
|
}
|
1224 |
|
|
if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1
|
1225 |
|
|
&& acc_use_is_media_p2 (cpu, out_ACC40Sk))
|
1226 |
|
|
{
|
1227 |
|
|
busy_adjustment[2] = 1;
|
1228 |
|
|
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
|
1229 |
|
|
}
|
1230 |
|
|
|
1231 |
|
|
/* The post processing must wait if there is a dependency on a register
|
1232 |
|
|
which is not ready yet. */
|
1233 |
|
|
ps->post_wait = cycles;
|
1234 |
|
|
post_wait_for_ACC (cpu, in_ACC40Si);
|
1235 |
|
|
post_wait_for_ACC (cpu, ACC40Si_1);
|
1236 |
|
|
post_wait_for_ACC (cpu, out_ACC40Sk);
|
1237 |
|
|
|
1238 |
|
|
/* Restore the busy cycles of the registers we used. */
|
1239 |
|
|
acc = ps->acc_busy;
|
1240 |
|
|
acc[in_ACC40Si] += busy_adjustment[0];
|
1241 |
|
|
if (ACC40Si_1 >= 0)
|
1242 |
|
|
acc[ACC40Si_1] += busy_adjustment[1];
|
1243 |
|
|
acc[out_ACC40Sk] += busy_adjustment[2];
|
1244 |
|
|
|
1245 |
|
|
/* The latency of the output register will be at least the latency of the
|
1246 |
|
|
other inputs. Once initiated, post-processing will take 1 cycle. */
|
1247 |
|
|
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
|
1248 |
|
|
set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
|
1249 |
|
|
|
1250 |
|
|
return cycles;
|
1251 |
|
|
}
|
1252 |
|
|
|
1253 |
|
|
int
|
1254 |
|
|
frvbf_model_fr400_u_media_2_acc_dual (SIM_CPU *cpu, const IDESC *idesc,
|
1255 |
|
|
int unit_num, int referenced,
|
1256 |
|
|
INT in_ACC40Si, INT out_ACC40Sk)
|
1257 |
|
|
{
|
1258 |
|
|
int cycles;
|
1259 |
|
|
INT ACC40Si_1;
|
1260 |
|
|
INT ACC40Si_2;
|
1261 |
|
|
INT ACC40Si_3;
|
1262 |
|
|
INT ACC40Sk_1;
|
1263 |
|
|
FRV_PROFILE_STATE *ps;
|
1264 |
|
|
int busy_adjustment[] = {0, 0, 0, 0, 0, 0};
|
1265 |
|
|
int *acc;
|
1266 |
|
|
|
1267 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
1268 |
|
|
return 0;
|
1269 |
|
|
|
1270 |
|
|
/* The preprocessing can execute right away. */
|
1271 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
1272 |
|
|
|
1273 |
|
|
ACC40Si_1 = DUAL_REG (in_ACC40Si);
|
1274 |
|
|
ACC40Si_2 = DUAL_REG (ACC40Si_1);
|
1275 |
|
|
ACC40Si_3 = DUAL_REG (ACC40Si_2);
|
1276 |
|
|
ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
|
1277 |
|
|
|
1278 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
1279 |
|
|
/* The latency of the registers may be less than previously recorded,
|
1280 |
|
|
depending on how they were used previously.
|
1281 |
|
|
See Table 13-8 in the LSI. */
|
1282 |
|
|
if (acc_use_is_media_p2 (cpu, in_ACC40Si))
|
1283 |
|
|
{
|
1284 |
|
|
busy_adjustment[0] = 1;
|
1285 |
|
|
decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
|
1286 |
|
|
}
|
1287 |
|
|
if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
|
1288 |
|
|
{
|
1289 |
|
|
busy_adjustment[1] = 1;
|
1290 |
|
|
decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
|
1291 |
|
|
}
|
1292 |
|
|
if (ACC40Si_2 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_2))
|
1293 |
|
|
{
|
1294 |
|
|
busy_adjustment[2] = 1;
|
1295 |
|
|
decrease_ACC_busy (cpu, ACC40Si_2, busy_adjustment[2]);
|
1296 |
|
|
}
|
1297 |
|
|
if (ACC40Si_3 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_3))
|
1298 |
|
|
{
|
1299 |
|
|
busy_adjustment[3] = 1;
|
1300 |
|
|
decrease_ACC_busy (cpu, ACC40Si_3, busy_adjustment[3]);
|
1301 |
|
|
}
|
1302 |
|
|
if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1
|
1303 |
|
|
&& out_ACC40Sk != ACC40Si_2 && out_ACC40Sk != ACC40Si_3)
|
1304 |
|
|
{
|
1305 |
|
|
if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
|
1306 |
|
|
{
|
1307 |
|
|
busy_adjustment[4] = 1;
|
1308 |
|
|
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
|
1309 |
|
|
}
|
1310 |
|
|
}
|
1311 |
|
|
if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1
|
1312 |
|
|
&& ACC40Sk_1 != ACC40Si_2 && ACC40Sk_1 != ACC40Si_3)
|
1313 |
|
|
{
|
1314 |
|
|
if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
|
1315 |
|
|
{
|
1316 |
|
|
busy_adjustment[5] = 1;
|
1317 |
|
|
decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
|
1318 |
|
|
}
|
1319 |
|
|
}
|
1320 |
|
|
|
1321 |
|
|
/* The post processing must wait if there is a dependency on a register
|
1322 |
|
|
which is not ready yet. */
|
1323 |
|
|
ps->post_wait = cycles;
|
1324 |
|
|
post_wait_for_ACC (cpu, in_ACC40Si);
|
1325 |
|
|
post_wait_for_ACC (cpu, ACC40Si_1);
|
1326 |
|
|
post_wait_for_ACC (cpu, ACC40Si_2);
|
1327 |
|
|
post_wait_for_ACC (cpu, ACC40Si_3);
|
1328 |
|
|
post_wait_for_ACC (cpu, out_ACC40Sk);
|
1329 |
|
|
post_wait_for_ACC (cpu, ACC40Sk_1);
|
1330 |
|
|
|
1331 |
|
|
/* Restore the busy cycles of the registers we used. */
|
1332 |
|
|
acc = ps->acc_busy;
|
1333 |
|
|
acc[in_ACC40Si] += busy_adjustment[0];
|
1334 |
|
|
if (ACC40Si_1 >= 0)
|
1335 |
|
|
acc[ACC40Si_1] += busy_adjustment[1];
|
1336 |
|
|
if (ACC40Si_2 >= 0)
|
1337 |
|
|
acc[ACC40Si_2] += busy_adjustment[2];
|
1338 |
|
|
if (ACC40Si_3 >= 0)
|
1339 |
|
|
acc[ACC40Si_3] += busy_adjustment[3];
|
1340 |
|
|
acc[out_ACC40Sk] += busy_adjustment[4];
|
1341 |
|
|
if (ACC40Sk_1 >= 0)
|
1342 |
|
|
acc[ACC40Sk_1] += busy_adjustment[5];
|
1343 |
|
|
|
1344 |
|
|
/* The latency of the output register will be at least the latency of the
|
1345 |
|
|
other inputs. Once initiated, post-processing will take 1 cycle. */
|
1346 |
|
|
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
|
1347 |
|
|
set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
|
1348 |
|
|
if (ACC40Sk_1 >= 0)
|
1349 |
|
|
{
|
1350 |
|
|
update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
|
1351 |
|
|
set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
|
1352 |
|
|
}
|
1353 |
|
|
|
1354 |
|
|
return cycles;
|
1355 |
|
|
}
|
1356 |
|
|
|
1357 |
|
|
int
|
1358 |
|
|
frvbf_model_fr400_u_media_2_add_sub (SIM_CPU *cpu, const IDESC *idesc,
|
1359 |
|
|
int unit_num, int referenced,
|
1360 |
|
|
INT in_ACC40Si, INT out_ACC40Sk)
|
1361 |
|
|
{
|
1362 |
|
|
int cycles;
|
1363 |
|
|
INT ACC40Si_1;
|
1364 |
|
|
INT ACC40Sk_1;
|
1365 |
|
|
FRV_PROFILE_STATE *ps;
|
1366 |
|
|
int busy_adjustment[] = {0, 0, 0, 0};
|
1367 |
|
|
int *acc;
|
1368 |
|
|
|
1369 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
1370 |
|
|
return 0;
|
1371 |
|
|
|
1372 |
|
|
/* The preprocessing can execute right away. */
|
1373 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
1374 |
|
|
|
1375 |
|
|
ACC40Si_1 = DUAL_REG (in_ACC40Si);
|
1376 |
|
|
ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
|
1377 |
|
|
|
1378 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
1379 |
|
|
/* The latency of the registers may be less than previously recorded,
|
1380 |
|
|
depending on how they were used previously.
|
1381 |
|
|
See Table 13-8 in the LSI. */
|
1382 |
|
|
if (acc_use_is_media_p2 (cpu, in_ACC40Si))
|
1383 |
|
|
{
|
1384 |
|
|
busy_adjustment[0] = 1;
|
1385 |
|
|
decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
|
1386 |
|
|
}
|
1387 |
|
|
if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
|
1388 |
|
|
{
|
1389 |
|
|
busy_adjustment[1] = 1;
|
1390 |
|
|
decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
|
1391 |
|
|
}
|
1392 |
|
|
if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1)
|
1393 |
|
|
{
|
1394 |
|
|
if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
|
1395 |
|
|
{
|
1396 |
|
|
busy_adjustment[2] = 1;
|
1397 |
|
|
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
|
1398 |
|
|
}
|
1399 |
|
|
}
|
1400 |
|
|
if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1)
|
1401 |
|
|
{
|
1402 |
|
|
if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
|
1403 |
|
|
{
|
1404 |
|
|
busy_adjustment[3] = 1;
|
1405 |
|
|
decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[3]);
|
1406 |
|
|
}
|
1407 |
|
|
}
|
1408 |
|
|
|
1409 |
|
|
/* The post processing must wait if there is a dependency on a register
|
1410 |
|
|
which is not ready yet. */
|
1411 |
|
|
ps->post_wait = cycles;
|
1412 |
|
|
post_wait_for_ACC (cpu, in_ACC40Si);
|
1413 |
|
|
post_wait_for_ACC (cpu, ACC40Si_1);
|
1414 |
|
|
post_wait_for_ACC (cpu, out_ACC40Sk);
|
1415 |
|
|
post_wait_for_ACC (cpu, ACC40Sk_1);
|
1416 |
|
|
|
1417 |
|
|
/* Restore the busy cycles of the registers we used. */
|
1418 |
|
|
acc = ps->acc_busy;
|
1419 |
|
|
acc[in_ACC40Si] += busy_adjustment[0];
|
1420 |
|
|
if (ACC40Si_1 >= 0)
|
1421 |
|
|
acc[ACC40Si_1] += busy_adjustment[1];
|
1422 |
|
|
acc[out_ACC40Sk] += busy_adjustment[2];
|
1423 |
|
|
if (ACC40Sk_1 >= 0)
|
1424 |
|
|
acc[ACC40Sk_1] += busy_adjustment[3];
|
1425 |
|
|
|
1426 |
|
|
/* The latency of the output register will be at least the latency of the
|
1427 |
|
|
other inputs. Once initiated, post-processing will take 1 cycle. */
|
1428 |
|
|
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
|
1429 |
|
|
set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
|
1430 |
|
|
if (ACC40Sk_1 >= 0)
|
1431 |
|
|
{
|
1432 |
|
|
update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
|
1433 |
|
|
set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
|
1434 |
|
|
}
|
1435 |
|
|
|
1436 |
|
|
return cycles;
|
1437 |
|
|
}
|
1438 |
|
|
|
1439 |
|
|
int
|
1440 |
|
|
frvbf_model_fr400_u_media_2_add_sub_dual (SIM_CPU *cpu, const IDESC *idesc,
|
1441 |
|
|
int unit_num, int referenced,
|
1442 |
|
|
INT in_ACC40Si, INT out_ACC40Sk)
|
1443 |
|
|
{
|
1444 |
|
|
int cycles;
|
1445 |
|
|
INT ACC40Si_1;
|
1446 |
|
|
INT ACC40Si_2;
|
1447 |
|
|
INT ACC40Si_3;
|
1448 |
|
|
INT ACC40Sk_1;
|
1449 |
|
|
INT ACC40Sk_2;
|
1450 |
|
|
INT ACC40Sk_3;
|
1451 |
|
|
FRV_PROFILE_STATE *ps;
|
1452 |
|
|
int busy_adjustment[] = {0, 0, 0, 0, 0, 0, 0, 0};
|
1453 |
|
|
int *acc;
|
1454 |
|
|
|
1455 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
1456 |
|
|
return 0;
|
1457 |
|
|
|
1458 |
|
|
/* The preprocessing can execute right away. */
|
1459 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
1460 |
|
|
|
1461 |
|
|
ACC40Si_1 = DUAL_REG (in_ACC40Si);
|
1462 |
|
|
ACC40Si_2 = DUAL_REG (ACC40Si_1);
|
1463 |
|
|
ACC40Si_3 = DUAL_REG (ACC40Si_2);
|
1464 |
|
|
ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
|
1465 |
|
|
ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
|
1466 |
|
|
ACC40Sk_3 = DUAL_REG (ACC40Sk_2);
|
1467 |
|
|
|
1468 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
1469 |
|
|
/* The latency of the registers may be less than previously recorded,
|
1470 |
|
|
depending on how they were used previously.
|
1471 |
|
|
See Table 13-8 in the LSI. */
|
1472 |
|
|
if (acc_use_is_media_p2 (cpu, in_ACC40Si))
|
1473 |
|
|
{
|
1474 |
|
|
busy_adjustment[0] = 1;
|
1475 |
|
|
decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
|
1476 |
|
|
}
|
1477 |
|
|
if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
|
1478 |
|
|
{
|
1479 |
|
|
busy_adjustment[1] = 1;
|
1480 |
|
|
decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
|
1481 |
|
|
}
|
1482 |
|
|
if (ACC40Si_2 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_2))
|
1483 |
|
|
{
|
1484 |
|
|
busy_adjustment[2] = 1;
|
1485 |
|
|
decrease_ACC_busy (cpu, ACC40Si_2, busy_adjustment[2]);
|
1486 |
|
|
}
|
1487 |
|
|
if (ACC40Si_3 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_3))
|
1488 |
|
|
{
|
1489 |
|
|
busy_adjustment[3] = 1;
|
1490 |
|
|
decrease_ACC_busy (cpu, ACC40Si_3, busy_adjustment[3]);
|
1491 |
|
|
}
|
1492 |
|
|
if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1
|
1493 |
|
|
&& out_ACC40Sk != ACC40Si_2 && out_ACC40Sk != ACC40Si_3)
|
1494 |
|
|
{
|
1495 |
|
|
if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
|
1496 |
|
|
{
|
1497 |
|
|
busy_adjustment[4] = 1;
|
1498 |
|
|
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
|
1499 |
|
|
}
|
1500 |
|
|
}
|
1501 |
|
|
if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1
|
1502 |
|
|
&& ACC40Sk_1 != ACC40Si_2 && ACC40Sk_1 != ACC40Si_3)
|
1503 |
|
|
{
|
1504 |
|
|
if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
|
1505 |
|
|
{
|
1506 |
|
|
busy_adjustment[5] = 1;
|
1507 |
|
|
decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
|
1508 |
|
|
}
|
1509 |
|
|
}
|
1510 |
|
|
if (ACC40Sk_2 != in_ACC40Si && ACC40Sk_2 != ACC40Si_1
|
1511 |
|
|
&& ACC40Sk_2 != ACC40Si_2 && ACC40Sk_2 != ACC40Si_3)
|
1512 |
|
|
{
|
1513 |
|
|
if (acc_use_is_media_p2 (cpu, ACC40Sk_2))
|
1514 |
|
|
{
|
1515 |
|
|
busy_adjustment[6] = 1;
|
1516 |
|
|
decrease_ACC_busy (cpu, ACC40Sk_2, busy_adjustment[6]);
|
1517 |
|
|
}
|
1518 |
|
|
}
|
1519 |
|
|
if (ACC40Sk_3 != in_ACC40Si && ACC40Sk_3 != ACC40Si_1
|
1520 |
|
|
&& ACC40Sk_3 != ACC40Si_2 && ACC40Sk_3 != ACC40Si_3)
|
1521 |
|
|
{
|
1522 |
|
|
if (acc_use_is_media_p2 (cpu, ACC40Sk_3))
|
1523 |
|
|
{
|
1524 |
|
|
busy_adjustment[7] = 1;
|
1525 |
|
|
decrease_ACC_busy (cpu, ACC40Sk_3, busy_adjustment[7]);
|
1526 |
|
|
}
|
1527 |
|
|
}
|
1528 |
|
|
|
1529 |
|
|
/* The post processing must wait if there is a dependency on a register
|
1530 |
|
|
which is not ready yet. */
|
1531 |
|
|
ps->post_wait = cycles;
|
1532 |
|
|
post_wait_for_ACC (cpu, in_ACC40Si);
|
1533 |
|
|
post_wait_for_ACC (cpu, ACC40Si_1);
|
1534 |
|
|
post_wait_for_ACC (cpu, ACC40Si_2);
|
1535 |
|
|
post_wait_for_ACC (cpu, ACC40Si_3);
|
1536 |
|
|
post_wait_for_ACC (cpu, out_ACC40Sk);
|
1537 |
|
|
post_wait_for_ACC (cpu, ACC40Sk_1);
|
1538 |
|
|
post_wait_for_ACC (cpu, ACC40Sk_2);
|
1539 |
|
|
post_wait_for_ACC (cpu, ACC40Sk_3);
|
1540 |
|
|
|
1541 |
|
|
/* Restore the busy cycles of the registers we used. */
|
1542 |
|
|
acc = ps->acc_busy;
|
1543 |
|
|
acc[in_ACC40Si] += busy_adjustment[0];
|
1544 |
|
|
if (ACC40Si_1 >= 0)
|
1545 |
|
|
acc[ACC40Si_1] += busy_adjustment[1];
|
1546 |
|
|
if (ACC40Si_2 >= 0)
|
1547 |
|
|
acc[ACC40Si_2] += busy_adjustment[2];
|
1548 |
|
|
if (ACC40Si_3 >= 0)
|
1549 |
|
|
acc[ACC40Si_3] += busy_adjustment[3];
|
1550 |
|
|
acc[out_ACC40Sk] += busy_adjustment[4];
|
1551 |
|
|
if (ACC40Sk_1 >= 0)
|
1552 |
|
|
acc[ACC40Sk_1] += busy_adjustment[5];
|
1553 |
|
|
if (ACC40Sk_2 >= 0)
|
1554 |
|
|
acc[ACC40Sk_2] += busy_adjustment[6];
|
1555 |
|
|
if (ACC40Sk_3 >= 0)
|
1556 |
|
|
acc[ACC40Sk_3] += busy_adjustment[7];
|
1557 |
|
|
|
1558 |
|
|
/* The latency of the output register will be at least the latency of the
|
1559 |
|
|
other inputs. Once initiated, post-processing will take 1 cycle. */
|
1560 |
|
|
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
|
1561 |
|
|
set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
|
1562 |
|
|
if (ACC40Sk_1 >= 0)
|
1563 |
|
|
{
|
1564 |
|
|
update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
|
1565 |
|
|
set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
|
1566 |
|
|
}
|
1567 |
|
|
if (ACC40Sk_2 >= 0)
|
1568 |
|
|
{
|
1569 |
|
|
update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);
|
1570 |
|
|
set_acc_use_is_media_p2 (cpu, ACC40Sk_2);
|
1571 |
|
|
}
|
1572 |
|
|
if (ACC40Sk_3 >= 0)
|
1573 |
|
|
{
|
1574 |
|
|
update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);
|
1575 |
|
|
set_acc_use_is_media_p2 (cpu, ACC40Sk_3);
|
1576 |
|
|
}
|
1577 |
|
|
|
1578 |
|
|
return cycles;
|
1579 |
|
|
}
|
1580 |
|
|
|
1581 |
|
|
int
|
1582 |
|
|
frvbf_model_fr400_u_media_3 (SIM_CPU *cpu, const IDESC *idesc,
|
1583 |
|
|
int unit_num, int referenced,
|
1584 |
|
|
INT in_FRi, INT in_FRj,
|
1585 |
|
|
INT out_FRk)
|
1586 |
|
|
{
|
1587 |
|
|
/* Modelling is the same as media unit 1. */
|
1588 |
|
|
return frvbf_model_fr400_u_media_1 (cpu, idesc, unit_num, referenced,
|
1589 |
|
|
in_FRi, in_FRj, out_FRk);
|
1590 |
|
|
}
|
1591 |
|
|
|
1592 |
|
|
int
|
1593 |
|
|
frvbf_model_fr400_u_media_3_dual (SIM_CPU *cpu, const IDESC *idesc,
|
1594 |
|
|
int unit_num, int referenced,
|
1595 |
|
|
INT in_FRi, INT out_FRk)
|
1596 |
|
|
{
|
1597 |
|
|
int cycles;
|
1598 |
|
|
INT dual_FRi;
|
1599 |
|
|
FRV_PROFILE_STATE *ps;
|
1600 |
|
|
int busy_adjustment[] = {0, 0};
|
1601 |
|
|
int *fr;
|
1602 |
|
|
|
1603 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
1604 |
|
|
return 0;
|
1605 |
|
|
|
1606 |
|
|
/* The preprocessing can execute right away. */
|
1607 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
1608 |
|
|
|
1609 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
1610 |
|
|
dual_FRi = DUAL_REG (in_FRi);
|
1611 |
|
|
|
1612 |
|
|
/* The latency of the registers may be less than previously recorded,
|
1613 |
|
|
depending on how they were used previously.
|
1614 |
|
|
See Table 13-8 in the LSI. */
|
1615 |
|
|
if (use_is_fp_load (cpu, in_FRi))
|
1616 |
|
|
{
|
1617 |
|
|
busy_adjustment[0] = 1;
|
1618 |
|
|
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
|
1619 |
|
|
}
|
1620 |
|
|
else
|
1621 |
|
|
enforce_full_fr_latency (cpu, in_FRi);
|
1622 |
|
|
if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi))
|
1623 |
|
|
{
|
1624 |
|
|
busy_adjustment[1] = 1;
|
1625 |
|
|
decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
|
1626 |
|
|
}
|
1627 |
|
|
else
|
1628 |
|
|
enforce_full_fr_latency (cpu, dual_FRi);
|
1629 |
|
|
|
1630 |
|
|
/* The post processing must wait if there is a dependency on a FR
|
1631 |
|
|
which is not ready yet. */
|
1632 |
|
|
ps->post_wait = cycles;
|
1633 |
|
|
post_wait_for_FR (cpu, in_FRi);
|
1634 |
|
|
post_wait_for_FR (cpu, dual_FRi);
|
1635 |
|
|
post_wait_for_FR (cpu, out_FRk);
|
1636 |
|
|
|
1637 |
|
|
/* Restore the busy cycles of the registers we used. */
|
1638 |
|
|
fr = ps->fr_busy;
|
1639 |
|
|
fr[in_FRi] += busy_adjustment[0];
|
1640 |
|
|
if (dual_FRi >= 0)
|
1641 |
|
|
fr[dual_FRi] += busy_adjustment[1];
|
1642 |
|
|
|
1643 |
|
|
/* The latency of the output register will be at least the latency of the
|
1644 |
|
|
other inputs. */
|
1645 |
|
|
update_FR_latency (cpu, out_FRk, ps->post_wait);
|
1646 |
|
|
|
1647 |
|
|
/* Once initiated, post-processing has no latency. */
|
1648 |
|
|
update_FR_ptime (cpu, out_FRk, 0);
|
1649 |
|
|
|
1650 |
|
|
return cycles;
|
1651 |
|
|
}
|
1652 |
|
|
|
1653 |
|
|
int
|
1654 |
|
|
frvbf_model_fr400_u_media_3_quad (SIM_CPU *cpu, const IDESC *idesc,
|
1655 |
|
|
int unit_num, int referenced,
|
1656 |
|
|
INT in_FRi, INT in_FRj,
|
1657 |
|
|
INT out_FRk)
|
1658 |
|
|
{
|
1659 |
|
|
/* Modelling is the same as media unit 1. */
|
1660 |
|
|
return frvbf_model_fr400_u_media_1_quad (cpu, idesc, unit_num, referenced,
|
1661 |
|
|
in_FRi, in_FRj, out_FRk);
|
1662 |
|
|
}
|
1663 |
|
|
|
1664 |
|
|
int
|
1665 |
|
|
frvbf_model_fr400_u_media_4 (SIM_CPU *cpu, const IDESC *idesc,
|
1666 |
|
|
int unit_num, int referenced,
|
1667 |
|
|
INT in_ACC40Si, INT in_FRj,
|
1668 |
|
|
INT out_ACC40Sk, INT out_FRk)
|
1669 |
|
|
{
|
1670 |
|
|
int cycles;
|
1671 |
|
|
FRV_PROFILE_STATE *ps;
|
1672 |
|
|
const CGEN_INSN *insn;
|
1673 |
|
|
int busy_adjustment[] = {0};
|
1674 |
|
|
int *fr;
|
1675 |
|
|
|
1676 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
1677 |
|
|
return 0;
|
1678 |
|
|
|
1679 |
|
|
/* The preprocessing can execute right away. */
|
1680 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
1681 |
|
|
|
1682 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
1683 |
|
|
insn = idesc->idata;
|
1684 |
|
|
|
1685 |
|
|
/* The latency of the registers may be less than previously recorded,
|
1686 |
|
|
depending on how they were used previously.
|
1687 |
|
|
See Table 13-8 in the LSI. */
|
1688 |
|
|
if (in_FRj >= 0)
|
1689 |
|
|
{
|
1690 |
|
|
if (use_is_fp_load (cpu, in_FRj))
|
1691 |
|
|
{
|
1692 |
|
|
busy_adjustment[0] = 1;
|
1693 |
|
|
decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]);
|
1694 |
|
|
}
|
1695 |
|
|
else
|
1696 |
|
|
enforce_full_fr_latency (cpu, in_FRj);
|
1697 |
|
|
}
|
1698 |
|
|
|
1699 |
|
|
/* The post processing must wait if there is a dependency on a FR
|
1700 |
|
|
which is not ready yet. */
|
1701 |
|
|
ps->post_wait = cycles;
|
1702 |
|
|
post_wait_for_ACC (cpu, in_ACC40Si);
|
1703 |
|
|
post_wait_for_ACC (cpu, out_ACC40Sk);
|
1704 |
|
|
post_wait_for_FR (cpu, in_FRj);
|
1705 |
|
|
post_wait_for_FR (cpu, out_FRk);
|
1706 |
|
|
|
1707 |
|
|
/* Restore the busy cycles of the registers we used. */
|
1708 |
|
|
fr = ps->fr_busy;
|
1709 |
|
|
|
1710 |
|
|
/* The latency of the output register will be at least the latency of the
|
1711 |
|
|
other inputs. Once initiated, post-processing will take 1 cycle. */
|
1712 |
|
|
if (out_FRk >= 0)
|
1713 |
|
|
{
|
1714 |
|
|
update_FR_latency (cpu, out_FRk, ps->post_wait);
|
1715 |
|
|
update_FR_ptime (cpu, out_FRk, 1);
|
1716 |
|
|
/* Mark this use of the register as media unit 4. */
|
1717 |
|
|
set_use_is_media_p4 (cpu, out_FRk);
|
1718 |
|
|
}
|
1719 |
|
|
else if (out_ACC40Sk >= 0)
|
1720 |
|
|
{
|
1721 |
|
|
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait);
|
1722 |
|
|
update_ACC_ptime (cpu, out_ACC40Sk, 1);
|
1723 |
|
|
/* Mark this use of the register as media unit 4. */
|
1724 |
|
|
set_acc_use_is_media_p4 (cpu, out_ACC40Sk);
|
1725 |
|
|
}
|
1726 |
|
|
|
1727 |
|
|
return cycles;
|
1728 |
|
|
}
|
1729 |
|
|
|
1730 |
|
|
int
|
1731 |
|
|
frvbf_model_fr400_u_media_4_accg (SIM_CPU *cpu, const IDESC *idesc,
|
1732 |
|
|
int unit_num, int referenced,
|
1733 |
|
|
INT in_ACCGi, INT in_FRinti,
|
1734 |
|
|
INT out_ACCGk, INT out_FRintk)
|
1735 |
|
|
{
|
1736 |
|
|
/* Modelling is the same as media-4 unit except use accumulator guards
|
1737 |
|
|
as input instead of accumulators. */
|
1738 |
|
|
return frvbf_model_fr400_u_media_4 (cpu, idesc, unit_num, referenced,
|
1739 |
|
|
in_ACCGi, in_FRinti,
|
1740 |
|
|
out_ACCGk, out_FRintk);
|
1741 |
|
|
}
|
1742 |
|
|
|
1743 |
|
|
int
|
1744 |
|
|
frvbf_model_fr400_u_media_4_acc_dual (SIM_CPU *cpu, const IDESC *idesc,
|
1745 |
|
|
int unit_num, int referenced,
|
1746 |
|
|
INT in_ACC40Si, INT out_FRk)
|
1747 |
|
|
{
|
1748 |
|
|
int cycles;
|
1749 |
|
|
FRV_PROFILE_STATE *ps;
|
1750 |
|
|
const CGEN_INSN *insn;
|
1751 |
|
|
INT ACC40Si_1;
|
1752 |
|
|
INT FRk_1;
|
1753 |
|
|
|
1754 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
1755 |
|
|
return 0;
|
1756 |
|
|
|
1757 |
|
|
/* The preprocessing can execute right away. */
|
1758 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
1759 |
|
|
|
1760 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
1761 |
|
|
ACC40Si_1 = DUAL_REG (in_ACC40Si);
|
1762 |
|
|
FRk_1 = DUAL_REG (out_FRk);
|
1763 |
|
|
|
1764 |
|
|
insn = idesc->idata;
|
1765 |
|
|
|
1766 |
|
|
/* The post processing must wait if there is a dependency on a FR
|
1767 |
|
|
which is not ready yet. */
|
1768 |
|
|
ps->post_wait = cycles;
|
1769 |
|
|
post_wait_for_ACC (cpu, in_ACC40Si);
|
1770 |
|
|
post_wait_for_ACC (cpu, ACC40Si_1);
|
1771 |
|
|
post_wait_for_FR (cpu, out_FRk);
|
1772 |
|
|
post_wait_for_FR (cpu, FRk_1);
|
1773 |
|
|
|
1774 |
|
|
/* The latency of the output register will be at least the latency of the
|
1775 |
|
|
other inputs. Once initiated, post-processing will take 1 cycle. */
|
1776 |
|
|
if (out_FRk >= 0)
|
1777 |
|
|
{
|
1778 |
|
|
update_FR_latency (cpu, out_FRk, ps->post_wait);
|
1779 |
|
|
update_FR_ptime (cpu, out_FRk, 1);
|
1780 |
|
|
/* Mark this use of the register as media unit 4. */
|
1781 |
|
|
set_use_is_media_p4 (cpu, out_FRk);
|
1782 |
|
|
}
|
1783 |
|
|
if (FRk_1 >= 0)
|
1784 |
|
|
{
|
1785 |
|
|
update_FR_latency (cpu, FRk_1, ps->post_wait);
|
1786 |
|
|
update_FR_ptime (cpu, FRk_1, 1);
|
1787 |
|
|
/* Mark this use of the register as media unit 4. */
|
1788 |
|
|
set_use_is_media_p4 (cpu, FRk_1);
|
1789 |
|
|
}
|
1790 |
|
|
|
1791 |
|
|
return cycles;
|
1792 |
|
|
}
|
1793 |
|
|
|
1794 |
|
|
int
|
1795 |
|
|
frvbf_model_fr400_u_media_6 (SIM_CPU *cpu, const IDESC *idesc,
|
1796 |
|
|
int unit_num, int referenced,
|
1797 |
|
|
INT in_FRi, INT out_FRk)
|
1798 |
|
|
{
|
1799 |
|
|
int cycles;
|
1800 |
|
|
FRV_PROFILE_STATE *ps;
|
1801 |
|
|
const CGEN_INSN *insn;
|
1802 |
|
|
int busy_adjustment[] = {0};
|
1803 |
|
|
int *fr;
|
1804 |
|
|
|
1805 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
1806 |
|
|
return 0;
|
1807 |
|
|
|
1808 |
|
|
/* The preprocessing can execute right away. */
|
1809 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
1810 |
|
|
|
1811 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
1812 |
|
|
insn = idesc->idata;
|
1813 |
|
|
|
1814 |
|
|
/* The latency of the registers may be less than previously recorded,
|
1815 |
|
|
depending on how they were used previously.
|
1816 |
|
|
See Table 13-8 in the LSI. */
|
1817 |
|
|
if (in_FRi >= 0)
|
1818 |
|
|
{
|
1819 |
|
|
if (use_is_fp_load (cpu, in_FRi))
|
1820 |
|
|
{
|
1821 |
|
|
busy_adjustment[0] = 1;
|
1822 |
|
|
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
|
1823 |
|
|
}
|
1824 |
|
|
else
|
1825 |
|
|
enforce_full_fr_latency (cpu, in_FRi);
|
1826 |
|
|
}
|
1827 |
|
|
|
1828 |
|
|
/* The post processing must wait if there is a dependency on a FR
|
1829 |
|
|
which is not ready yet. */
|
1830 |
|
|
ps->post_wait = cycles;
|
1831 |
|
|
post_wait_for_FR (cpu, in_FRi);
|
1832 |
|
|
post_wait_for_FR (cpu, out_FRk);
|
1833 |
|
|
|
1834 |
|
|
/* Restore the busy cycles of the registers we used. */
|
1835 |
|
|
fr = ps->fr_busy;
|
1836 |
|
|
if (in_FRi >= 0)
|
1837 |
|
|
fr[in_FRi] += busy_adjustment[0];
|
1838 |
|
|
|
1839 |
|
|
/* The latency of the output register will be at least the latency of the
|
1840 |
|
|
other inputs. Once initiated, post-processing will take 1 cycle. */
|
1841 |
|
|
if (out_FRk >= 0)
|
1842 |
|
|
{
|
1843 |
|
|
update_FR_latency (cpu, out_FRk, ps->post_wait);
|
1844 |
|
|
update_FR_ptime (cpu, out_FRk, 1);
|
1845 |
|
|
|
1846 |
|
|
/* Mark this use of the register as media unit 1. */
|
1847 |
|
|
set_use_is_media_p6 (cpu, out_FRk);
|
1848 |
|
|
}
|
1849 |
|
|
|
1850 |
|
|
return cycles;
|
1851 |
|
|
}
|
1852 |
|
|
|
1853 |
|
|
int
|
1854 |
|
|
frvbf_model_fr400_u_media_7 (SIM_CPU *cpu, const IDESC *idesc,
|
1855 |
|
|
int unit_num, int referenced,
|
1856 |
|
|
INT in_FRinti, INT in_FRintj,
|
1857 |
|
|
INT out_FCCk)
|
1858 |
|
|
{
|
1859 |
|
|
int cycles;
|
1860 |
|
|
FRV_PROFILE_STATE *ps;
|
1861 |
|
|
int busy_adjustment[] = {0, 0};
|
1862 |
|
|
int *fr;
|
1863 |
|
|
|
1864 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
1865 |
|
|
return 0;
|
1866 |
|
|
|
1867 |
|
|
/* The preprocessing can execute right away. */
|
1868 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
1869 |
|
|
|
1870 |
|
|
/* The post processing must wait if there is a dependency on a FR
|
1871 |
|
|
which is not ready yet. */
|
1872 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
1873 |
|
|
|
1874 |
|
|
/* The latency of the registers may be less than previously recorded,
|
1875 |
|
|
depending on how they were used previously.
|
1876 |
|
|
See Table 13-8 in the LSI. */
|
1877 |
|
|
if (in_FRinti >= 0)
|
1878 |
|
|
{
|
1879 |
|
|
if (use_is_fp_load (cpu, in_FRinti))
|
1880 |
|
|
{
|
1881 |
|
|
busy_adjustment[0] = 1;
|
1882 |
|
|
decrease_FR_busy (cpu, in_FRinti, busy_adjustment[0]);
|
1883 |
|
|
}
|
1884 |
|
|
else
|
1885 |
|
|
enforce_full_fr_latency (cpu, in_FRinti);
|
1886 |
|
|
}
|
1887 |
|
|
if (in_FRintj >= 0 && in_FRintj != in_FRinti)
|
1888 |
|
|
{
|
1889 |
|
|
if (use_is_fp_load (cpu, in_FRintj))
|
1890 |
|
|
{
|
1891 |
|
|
busy_adjustment[1] = 1;
|
1892 |
|
|
decrease_FR_busy (cpu, in_FRintj, busy_adjustment[1]);
|
1893 |
|
|
}
|
1894 |
|
|
else
|
1895 |
|
|
enforce_full_fr_latency (cpu, in_FRintj);
|
1896 |
|
|
}
|
1897 |
|
|
|
1898 |
|
|
ps->post_wait = cycles;
|
1899 |
|
|
post_wait_for_FR (cpu, in_FRinti);
|
1900 |
|
|
post_wait_for_FR (cpu, in_FRintj);
|
1901 |
|
|
post_wait_for_CCR (cpu, out_FCCk);
|
1902 |
|
|
|
1903 |
|
|
/* Restore the busy cycles of the registers we used. */
|
1904 |
|
|
fr = ps->fr_busy;
|
1905 |
|
|
if (in_FRinti >= 0)
|
1906 |
|
|
fr[in_FRinti] += busy_adjustment[0];
|
1907 |
|
|
if (in_FRintj >= 0)
|
1908 |
|
|
fr[in_FRintj] += busy_adjustment[1];
|
1909 |
|
|
|
1910 |
|
|
/* The latency of FCCi_2 will be the latency of the other inputs plus 1
|
1911 |
|
|
cycle. */
|
1912 |
|
|
update_CCR_latency (cpu, out_FCCk, ps->post_wait + 1);
|
1913 |
|
|
|
1914 |
|
|
return cycles;
|
1915 |
|
|
}
|
1916 |
|
|
|
1917 |
|
|
int
|
1918 |
|
|
frvbf_model_fr400_u_media_dual_expand (SIM_CPU *cpu, const IDESC *idesc,
|
1919 |
|
|
int unit_num, int referenced,
|
1920 |
|
|
INT in_FRi,
|
1921 |
|
|
INT out_FRk)
|
1922 |
|
|
{
|
1923 |
|
|
/* Insns using this unit are media-3 class insns, with a dual FRk output. */
|
1924 |
|
|
int cycles;
|
1925 |
|
|
INT dual_FRk;
|
1926 |
|
|
FRV_PROFILE_STATE *ps;
|
1927 |
|
|
int busy_adjustment[] = {0};
|
1928 |
|
|
int *fr;
|
1929 |
|
|
|
1930 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
1931 |
|
|
return 0;
|
1932 |
|
|
|
1933 |
|
|
/* The preprocessing can execute right away. */
|
1934 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
1935 |
|
|
|
1936 |
|
|
/* If the previous use of the registers was a media op,
|
1937 |
|
|
then their latency will be less than previously recorded.
|
1938 |
|
|
See Table 13-13 in the LSI. */
|
1939 |
|
|
dual_FRk = DUAL_REG (out_FRk);
|
1940 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
1941 |
|
|
if (use_is_fp_load (cpu, in_FRi))
|
1942 |
|
|
{
|
1943 |
|
|
busy_adjustment[0] = 1;
|
1944 |
|
|
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
|
1945 |
|
|
}
|
1946 |
|
|
else
|
1947 |
|
|
enforce_full_fr_latency (cpu, in_FRi);
|
1948 |
|
|
|
1949 |
|
|
/* The post processing must wait if there is a dependency on a FR
|
1950 |
|
|
which is not ready yet. */
|
1951 |
|
|
ps->post_wait = cycles;
|
1952 |
|
|
post_wait_for_FR (cpu, in_FRi);
|
1953 |
|
|
post_wait_for_FR (cpu, out_FRk);
|
1954 |
|
|
post_wait_for_FR (cpu, dual_FRk);
|
1955 |
|
|
|
1956 |
|
|
/* Restore the busy cycles of the registers we used. */
|
1957 |
|
|
fr = ps->fr_busy;
|
1958 |
|
|
fr[in_FRi] += busy_adjustment[0];
|
1959 |
|
|
|
1960 |
|
|
/* The latency of the output register will be at least the latency of the
|
1961 |
|
|
other inputs. Once initiated, post-processing has no latency. */
|
1962 |
|
|
update_FR_latency (cpu, out_FRk, ps->post_wait);
|
1963 |
|
|
update_FR_ptime (cpu, out_FRk, 0);
|
1964 |
|
|
|
1965 |
|
|
if (dual_FRk >= 0)
|
1966 |
|
|
{
|
1967 |
|
|
update_FR_latency (cpu, dual_FRk, ps->post_wait);
|
1968 |
|
|
update_FR_ptime (cpu, dual_FRk, 0);
|
1969 |
|
|
}
|
1970 |
|
|
|
1971 |
|
|
return cycles;
|
1972 |
|
|
}
|
1973 |
|
|
|
1974 |
|
|
int
|
1975 |
|
|
frvbf_model_fr400_u_media_dual_htob (SIM_CPU *cpu, const IDESC *idesc,
|
1976 |
|
|
int unit_num, int referenced,
|
1977 |
|
|
INT in_FRj,
|
1978 |
|
|
INT out_FRk)
|
1979 |
|
|
{
|
1980 |
|
|
/* Insns using this unit are media-3 class insns, with a dual FRj input. */
|
1981 |
|
|
int cycles;
|
1982 |
|
|
INT dual_FRj;
|
1983 |
|
|
FRV_PROFILE_STATE *ps;
|
1984 |
|
|
int busy_adjustment[] = {0, 0};
|
1985 |
|
|
int *fr;
|
1986 |
|
|
|
1987 |
|
|
if (model_insn == FRV_INSN_MODEL_PASS_1)
|
1988 |
|
|
return 0;
|
1989 |
|
|
|
1990 |
|
|
/* The preprocessing can execute right away. */
|
1991 |
|
|
cycles = idesc->timing->units[unit_num].done;
|
1992 |
|
|
|
1993 |
|
|
/* If the previous use of the registers was a media op,
|
1994 |
|
|
then their latency will be less than previously recorded.
|
1995 |
|
|
See Table 13-13 in the LSI. */
|
1996 |
|
|
dual_FRj = DUAL_REG (in_FRj);
|
1997 |
|
|
ps = CPU_PROFILE_STATE (cpu);
|
1998 |
|
|
if (use_is_fp_load (cpu, in_FRj))
|
1999 |
|
|
{
|
2000 |
|
|
busy_adjustment[0] = 1;
|
2001 |
|
|
decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]);
|
2002 |
|
|
}
|
2003 |
|
|
else
|
2004 |
|
|
enforce_full_fr_latency (cpu, in_FRj);
|
2005 |
|
|
if (dual_FRj >= 0)
|
2006 |
|
|
{
|
2007 |
|
|
if (use_is_fp_load (cpu, dual_FRj))
|
2008 |
|
|
{
|
2009 |
|
|
busy_adjustment[1] = 1;
|
2010 |
|
|
decrease_FR_busy (cpu, dual_FRj, busy_adjustment[1]);
|
2011 |
|
|
}
|
2012 |
|
|
else
|
2013 |
|
|
enforce_full_fr_latency (cpu, dual_FRj);
|
2014 |
|
|
}
|
2015 |
|
|
|
2016 |
|
|
/* The post processing must wait if there is a dependency on a FR
|
2017 |
|
|
which is not ready yet. */
|
2018 |
|
|
ps->post_wait = cycles;
|
2019 |
|
|
post_wait_for_FR (cpu, in_FRj);
|
2020 |
|
|
post_wait_for_FR (cpu, dual_FRj);
|
2021 |
|
|
post_wait_for_FR (cpu, out_FRk);
|
2022 |
|
|
|
2023 |
|
|
/* Restore the busy cycles of the registers we used. */
|
2024 |
|
|
fr = ps->fr_busy;
|
2025 |
|
|
fr[in_FRj] += busy_adjustment[0];
|
2026 |
|
|
if (dual_FRj >= 0)
|
2027 |
|
|
fr[dual_FRj] += busy_adjustment[1];
|
2028 |
|
|
|
2029 |
|
|
/* The latency of the output register will be at least the latency of the
|
2030 |
|
|
other inputs. */
|
2031 |
|
|
update_FR_latency (cpu, out_FRk, ps->post_wait);
|
2032 |
|
|
|
2033 |
|
|
/* Once initiated, post-processing has no latency. */
|
2034 |
|
|
update_FR_ptime (cpu, out_FRk, 0);
|
2035 |
|
|
|
2036 |
|
|
return cycles;
|
2037 |
|
|
}
|
2038 |
|
|
|
2039 |
|
|
int
|
2040 |
|
|
frvbf_model_fr400_u_ici (SIM_CPU *cpu, const IDESC *idesc,
|
2041 |
|
|
int unit_num, int referenced,
|
2042 |
|
|
INT in_GRi, INT in_GRj)
|
2043 |
|
|
{
|
2044 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
2045 |
|
|
return frvbf_model_fr500_u_ici (cpu, idesc, unit_num, referenced,
|
2046 |
|
|
in_GRi, in_GRj);
|
2047 |
|
|
}
|
2048 |
|
|
|
2049 |
|
|
int
|
2050 |
|
|
frvbf_model_fr400_u_dci (SIM_CPU *cpu, const IDESC *idesc,
|
2051 |
|
|
int unit_num, int referenced,
|
2052 |
|
|
INT in_GRi, INT in_GRj)
|
2053 |
|
|
{
|
2054 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
2055 |
|
|
return frvbf_model_fr500_u_dci (cpu, idesc, unit_num, referenced,
|
2056 |
|
|
in_GRi, in_GRj);
|
2057 |
|
|
}
|
2058 |
|
|
|
2059 |
|
|
int
|
2060 |
|
|
frvbf_model_fr400_u_dcf (SIM_CPU *cpu, const IDESC *idesc,
|
2061 |
|
|
int unit_num, int referenced,
|
2062 |
|
|
INT in_GRi, INT in_GRj)
|
2063 |
|
|
{
|
2064 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
2065 |
|
|
return frvbf_model_fr500_u_dcf (cpu, idesc, unit_num, referenced,
|
2066 |
|
|
in_GRi, in_GRj);
|
2067 |
|
|
}
|
2068 |
|
|
|
2069 |
|
|
int
|
2070 |
|
|
frvbf_model_fr400_u_icpl (SIM_CPU *cpu, const IDESC *idesc,
|
2071 |
|
|
int unit_num, int referenced,
|
2072 |
|
|
INT in_GRi, INT in_GRj)
|
2073 |
|
|
{
|
2074 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
2075 |
|
|
return frvbf_model_fr500_u_icpl (cpu, idesc, unit_num, referenced,
|
2076 |
|
|
in_GRi, in_GRj);
|
2077 |
|
|
}
|
2078 |
|
|
|
2079 |
|
|
int
|
2080 |
|
|
frvbf_model_fr400_u_dcpl (SIM_CPU *cpu, const IDESC *idesc,
|
2081 |
|
|
int unit_num, int referenced,
|
2082 |
|
|
INT in_GRi, INT in_GRj)
|
2083 |
|
|
{
|
2084 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
2085 |
|
|
return frvbf_model_fr500_u_dcpl (cpu, idesc, unit_num, referenced,
|
2086 |
|
|
in_GRi, in_GRj);
|
2087 |
|
|
}
|
2088 |
|
|
|
2089 |
|
|
int
|
2090 |
|
|
frvbf_model_fr400_u_icul (SIM_CPU *cpu, const IDESC *idesc,
|
2091 |
|
|
int unit_num, int referenced,
|
2092 |
|
|
INT in_GRi, INT in_GRj)
|
2093 |
|
|
{
|
2094 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
2095 |
|
|
return frvbf_model_fr500_u_icul (cpu, idesc, unit_num, referenced,
|
2096 |
|
|
in_GRi, in_GRj);
|
2097 |
|
|
}
|
2098 |
|
|
|
2099 |
|
|
int
|
2100 |
|
|
frvbf_model_fr400_u_dcul (SIM_CPU *cpu, const IDESC *idesc,
|
2101 |
|
|
int unit_num, int referenced,
|
2102 |
|
|
INT in_GRi, INT in_GRj)
|
2103 |
|
|
{
|
2104 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
2105 |
|
|
return frvbf_model_fr500_u_dcul (cpu, idesc, unit_num, referenced,
|
2106 |
|
|
in_GRi, in_GRj);
|
2107 |
|
|
}
|
2108 |
|
|
|
2109 |
|
|
int
|
2110 |
|
|
frvbf_model_fr400_u_barrier (SIM_CPU *cpu, const IDESC *idesc,
|
2111 |
|
|
int unit_num, int referenced)
|
2112 |
|
|
{
|
2113 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
2114 |
|
|
return frvbf_model_fr500_u_barrier (cpu, idesc, unit_num, referenced);
|
2115 |
|
|
}
|
2116 |
|
|
|
2117 |
|
|
int
|
2118 |
|
|
frvbf_model_fr400_u_membar (SIM_CPU *cpu, const IDESC *idesc,
|
2119 |
|
|
int unit_num, int referenced)
|
2120 |
|
|
{
|
2121 |
|
|
/* Modelling for this unit is the same as for fr500. */
|
2122 |
|
|
return frvbf_model_fr500_u_membar (cpu, idesc, unit_num, referenced);
|
2123 |
|
|
}
|
2124 |
|
|
|
2125 |
|
|
#endif /* WITH_PROFILE_MODEL_P */
|