OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [sim/] [mips/] [sim-main.h] - Blame information for rev 258

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 24 jeremybenn
/* MIPS Simulator definition.
2
   Copyright (C) 1997, 1998, 2003, 2007, 2008 Free Software Foundation, Inc.
3
   Contributed by Cygnus Support.
4
 
5
This file is part of GDB, the GNU debugger.
6
 
7
This program is free software; you can redistribute it and/or modify
8
it under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 3 of the License, or
10
(at your option) any later version.
11
 
12
This program is distributed in the hope that it will be useful,
13
but WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
GNU General Public License for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
 
20
#ifndef SIM_MAIN_H
21
#define SIM_MAIN_H
22
 
23
/* This simulator doesn't cache the Current Instruction Address */
24
/* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
25
/* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
26
 
27
#define SIM_HAVE_BIENDIAN
28
 
29
 
30
/* hobble some common features for moment */
31
#define WITH_WATCHPOINTS 1
32
#define WITH_MODULO_MEMORY 1
33
 
34
 
35
#define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
36
mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
37
 
38
#include "sim-basics.h"
39
 
40
typedef address_word sim_cia;
41
 
42
#include "sim-base.h"
43
#include "bfd.h"
44
 
45
/* Deprecated macros and types for manipulating 64bit values.  Use
46
   ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
47
 
48
typedef signed64 word64;
49
typedef unsigned64 uword64;
50
 
51
#define WORD64LO(t)     (unsigned int)((t)&0xFFFFFFFF)
52
#define WORD64HI(t)     (unsigned int)(((uword64)(t))>>32)
53
#define SET64LO(t)      (((uword64)(t))&0xFFFFFFFF)
54
#define SET64HI(t)      (((uword64)(t))<<32)
55
#define WORD64(h,l)     ((word64)((SET64HI(h)|SET64LO(l))))
56
#define UWORD64(h,l)     (SET64HI(h)|SET64LO(l))
57
 
58
/* Check if a value will fit within a halfword: */
59
#define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
60
 
61
 
62
 
63
/* Floating-point operations: */
64
 
65
#include "sim-fpu.h"
66
#include "cp1.h"
67
 
68
/* FPU registers must be one of the following types. All other values
69
   are reserved (and undefined). */
70
typedef enum {
71
 fmt_single  = 0,
72
 fmt_double  = 1,
73
 fmt_word    = 4,
74
 fmt_long    = 5,
75
 fmt_ps      = 6,
76
 /* The following are well outside the normal acceptable format
77
    range, and are used in the register status vector. */
78
 fmt_unknown       = 0x10000000,
79
 fmt_uninterpreted = 0x20000000,
80
 fmt_uninterpreted_32 = 0x40000000,
81
 fmt_uninterpreted_64 = 0x80000000U,
82
} FP_formats;
83
 
84
/* For paired word (pw) operations, the opcode representation is fmt_word,
85
   but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long.  */
86
#define fmt_pw fmt_long
87
 
88
/* This should be the COC1 value at the start of the preceding
89
   instruction: */
90
#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
91
 
92
#ifdef TARGET_ENABLE_FR
93
/* FIXME: this should be enabled for all targets, but needs testing first. */
94
#define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
95
   ? ((SR & status_FR) ? 64 : 32) \
96
   : (WITH_TARGET_FLOATING_POINT_BITSIZE))
97
#else
98
#define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
99
#endif
100
 
101
 
102
 
103
 
104
 
105
/* HI/LO register accesses */
106
 
107
/* For some MIPS targets, the HI/LO registers have certain timing
108
   restrictions in that, for instance, a read of a HI register must be
109
   separated by at least three instructions from a preceeding read.
110
 
111
   The struct below is used to record the last access by each of A MT,
112
   MF or other OP instruction to a HI/LO register.  See mips.igen for
113
   more details. */
114
 
115
typedef struct _hilo_access {
116
  signed64 timestamp;
117
  address_word cia;
118
} hilo_access;
119
 
120
typedef struct _hilo_history {
121
  hilo_access mt;
122
  hilo_access mf;
123
  hilo_access op;
124
} hilo_history;
125
 
126
 
127
 
128
 
129
/* Integer ALU operations: */
130
 
131
#include "sim-alu.h"
132
 
133
#define ALU32_END(ANS) \
134
  if (ALU32_HAD_OVERFLOW) \
135
    SignalExceptionIntegerOverflow (); \
136
  (ANS) = (signed32) ALU32_OVERFLOW_RESULT
137
 
138
 
139
#define ALU64_END(ANS) \
140
  if (ALU64_HAD_OVERFLOW) \
141
    SignalExceptionIntegerOverflow (); \
142
  (ANS) = ALU64_OVERFLOW_RESULT;
143
 
144
 
145
 
146
 
147
 
148
/* The following is probably not used for MIPS IV onwards: */
149
/* Slots for delayed register updates. For the moment we just have a
150
   fixed number of slots (rather than a more generic, dynamic
151
   system). This keeps the simulator fast. However, we only allow
152
   for the register update to be delayed for a single instruction
153
   cycle. */
154
#define PSLOTS (8) /* Maximum number of instruction cycles */
155
 
156
typedef struct _pending_write_queue {
157
  int in;
158
  int out;
159
  int total;
160
  int slot_delay[PSLOTS];
161
  int slot_size[PSLOTS];
162
  int slot_bit[PSLOTS];
163
  void *slot_dest[PSLOTS];
164
  unsigned64 slot_value[PSLOTS];
165
} pending_write_queue;
166
 
167
#ifndef PENDING_TRACE
168
#define PENDING_TRACE 0
169
#endif
170
#define PENDING_IN ((CPU)->pending.in)
171
#define PENDING_OUT ((CPU)->pending.out)
172
#define PENDING_TOTAL ((CPU)->pending.total)
173
#define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
174
#define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
175
#define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
176
#define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
177
#define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
178
 
179
/* Invalidate the pending write queue, all pending writes are
180
   discarded. */
181
 
182
#define PENDING_INVALIDATE() \
183
memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
184
 
185
/* Schedule a write to DEST for N cycles time.  For 64 bit
186
   destinations, schedule two writes.  For floating point registers,
187
   the caller should schedule a write to both the dest register and
188
   the FPR_STATE register.  When BIT is non-negative, only BIT of DEST
189
   is updated. */
190
 
191
#define PENDING_SCHED(DEST,VAL,DELAY,BIT)                               \
192
  do {                                                                  \
193
    if (PENDING_SLOT_DEST[PENDING_IN] != NULL)                          \
194
      sim_engine_abort (SD, CPU, cia,                                   \
195
                        "PENDING_SCHED - buffer overflow\n");           \
196
    if (PENDING_TRACE)                                                  \
197
      sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n",                  \
198
                      (unsigned long) cia, (unsigned long) &(DEST),     \
199
                      (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
200
                      PENDING_IN, PENDING_OUT, PENDING_TOTAL);          \
201
    PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1;                       \
202
    PENDING_SLOT_DEST[PENDING_IN] = &(DEST);                            \
203
    PENDING_SLOT_VALUE[PENDING_IN] = (VAL);                             \
204
    PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST);                      \
205
    PENDING_SLOT_BIT[PENDING_IN] = (BIT);                               \
206
    PENDING_IN = (PENDING_IN + 1) % PSLOTS;                             \
207
    PENDING_TOTAL += 1;                                                 \
208
  } while (0)
209
 
210
#define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
211
#define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
212
 
213
#define PENDING_TICK() pending_tick (SD, CPU, cia)
214
 
215
#define PENDING_FLUSH() abort () /* think about this one */
216
#define PENDING_FP() abort () /* think about this one */
217
 
218
/* For backward compatibility */
219
#define PENDING_FILL(R,VAL)                                             \
220
do {                                                                    \
221
  if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR)                       \
222
    {                                                                   \
223
      PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1);                   \
224
      PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
225
    }                                                                   \
226
  else                                                                  \
227
    PENDING_SCHED(GPR[(R)], VAL, 1, -1);                                \
228
} while (0)
229
 
230
 
231
enum float_operation
232
  {
233
    FLOP_ADD,    FLOP_SUB,    FLOP_MUL,    FLOP_MADD,
234
    FLOP_MSUB,   FLOP_MAX=10, FLOP_MIN,    FLOP_ABS,
235
    FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
236
  };
237
 
238
 
239
/* The internal representation of an MDMX accumulator.
240
   Note that 24 and 48 bit accumulator elements are represented in
241
   32 or 64 bits.  Since the accumulators are 2's complement with
242
   overflow suppressed, high-order bits can be ignored in most contexts.  */
243
 
244
typedef signed32 signed24;
245
typedef signed64 signed48;
246
 
247
typedef union {
248
  signed24  ob[8];
249
  signed48  qh[4];
250
} MDMX_accumulator;
251
 
252
 
253
/* Conventional system arguments.  */
254
#define SIM_STATE  sim_cpu *cpu, address_word cia
255
#define SIM_ARGS   CPU, cia
256
 
257
struct _sim_cpu {
258
 
259
 
260
  /* The following are internal simulator state variables: */
261
#define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
262
#define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
263
  address_word dspc;  /* delay-slot PC */
264
#define DSPC ((CPU)->dspc)
265
 
266
#define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
267
#define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
268
 
269
 
270
  /* State of the simulator */
271
  unsigned int state;
272
  unsigned int dsstate;
273
#define STATE ((CPU)->state)
274
#define DSSTATE ((CPU)->dsstate)
275
 
276
/* Flags in the "state" variable: */
277
#define simHALTEX       (1 << 2)  /* 0 = run; 1 = halt on exception */
278
#define simHALTIN       (1 << 3)  /* 0 = run; 1 = halt on interrupt */
279
#define simTRACE        (1 << 8)  /* 0 = do nothing; 1 = trace address activity */
280
#define simPCOC0        (1 << 17) /* COC[1] from current */
281
#define simPCOC1        (1 << 18) /* COC[1] from previous */
282
#define simDELAYSLOT    (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
283
#define simSKIPNEXT     (1 << 25) /* 0 = do nothing; 1 = skip instruction */
284
#define simSIGINT       (1 << 28)  /* 0 = do nothing; 1 = SIGINT has occured */
285
#define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
286
 
287
#ifndef ENGINE_ISSUE_PREFIX_HOOK
288
#define ENGINE_ISSUE_PREFIX_HOOK() \
289
  { \
290
    /* Perform any pending writes */ \
291
    PENDING_TICK(); \
292
    /* Set previous flag, depending on current: */ \
293
    if (STATE & simPCOC0) \
294
     STATE |= simPCOC1; \
295
    else \
296
     STATE &= ~simPCOC1; \
297
    /* and update the current value: */ \
298
    if (GETFCC(0)) \
299
     STATE |= simPCOC0; \
300
    else \
301
     STATE &= ~simPCOC0; \
302
  }
303
#endif /* ENGINE_ISSUE_PREFIX_HOOK */
304
 
305
 
306
/* This is nasty, since we have to rely on matching the register
307
   numbers used by GDB. Unfortunately, depending on the MIPS target
308
   GDB uses different register numbers. We cannot just include the
309
   relevant "gdb/tm.h" link, since GDB may not be configured before
310
   the sim world, and also the GDB header file requires too much other
311
   state. */
312
 
313
#ifndef TM_MIPS_H
314
#define LAST_EMBED_REGNUM (96)
315
#define NUM_REGS (LAST_EMBED_REGNUM + 1)
316
 
317
#define FP0_REGNUM 38           /* Floating point register 0 (single float) */
318
#define FCRCS_REGNUM 70         /* FP control/status */
319
#define FCRIR_REGNUM 71         /* FP implementation/revision */
320
#endif
321
 
322
 
323
/* To keep this default simulator simple, and fast, we use a direct
324
   vector of registers. The internal simulator engine then uses
325
   manifests to access the correct slot. */
326
 
327
  unsigned_word registers[LAST_EMBED_REGNUM + 1];
328
 
329
  int register_widths[NUM_REGS];
330
#define REGISTERS       ((CPU)->registers)
331
 
332
#define GPR     (&REGISTERS[0])
333
#define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
334
 
335
#define LO      (REGISTERS[33])
336
#define HI      (REGISTERS[34])
337
#define PCIDX   37
338
#define PC      (REGISTERS[PCIDX])
339
#define CAUSE   (REGISTERS[36])
340
#define SRIDX   (32)
341
#define SR      (REGISTERS[SRIDX])      /* CPU status register */
342
#define FCR0IDX  (71)
343
#define FCR0    (REGISTERS[FCR0IDX])    /* really a 32bit register */
344
#define FCR31IDX (70)
345
#define FCR31   (REGISTERS[FCR31IDX])   /* really a 32bit register */
346
#define FCSR    (FCR31)
347
#define Debug   (REGISTERS[86])
348
#define DEPC    (REGISTERS[87])
349
#define EPC     (REGISTERS[88])
350
#define ACX     (REGISTERS[89])
351
 
352
#define AC0LOIDX        (33)    /* Must be the same register as LO */
353
#define AC0HIIDX        (34)    /* Must be the same register as HI */
354
#define AC1LOIDX        (90)
355
#define AC1HIIDX        (91)
356
#define AC2LOIDX        (92)
357
#define AC2HIIDX        (93)
358
#define AC3LOIDX        (94)
359
#define AC3HIIDX        (95)
360
 
361
#define DSPLO(N)        (REGISTERS[DSPLO_REGNUM[N]])
362
#define DSPHI(N)        (REGISTERS[DSPHI_REGNUM[N]])
363
 
364
#define DSPCRIDX        (96)    /* DSP control register */
365
#define DSPCR           (REGISTERS[DSPCRIDX])
366
 
367
#define DSPCR_POS_SHIFT         (0)
368
#define DSPCR_POS_MASK          (0x3f)
369
#define DSPCR_POS_SMASK         (DSPCR_POS_MASK << DSPCR_POS_SHIFT)
370
 
371
#define DSPCR_SCOUNT_SHIFT      (7)
372
#define DSPCR_SCOUNT_MASK       (0x3f)
373
#define DSPCR_SCOUNT_SMASK      (DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT)
374
 
375
#define DSPCR_CARRY_SHIFT       (13)
376
#define DSPCR_CARRY_MASK        (1)
377
#define DSPCR_CARRY_SMASK       (DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT)
378
#define DSPCR_CARRY             (1 << DSPCR_CARRY_SHIFT)
379
 
380
#define DSPCR_EFI_SHIFT         (14)
381
#define DSPCR_EFI_MASK          (1)
382
#define DSPCR_EFI_SMASK         (DSPCR_EFI_MASK << DSPCR_EFI_SHIFT)
383
#define DSPCR_EFI               (1 << DSPCR_EFI_MASK)
384
 
385
#define DSPCR_OUFLAG_SHIFT      (16)
386
#define DSPCR_OUFLAG_MASK       (0xff)
387
#define DSPCR_OUFLAG_SMASK      (DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT)
388
#define DSPCR_OUFLAG4           (1 << (DSPCR_OUFLAG_SHIFT + 4))
389
#define DSPCR_OUFLAG5           (1 << (DSPCR_OUFLAG_SHIFT + 5))
390
#define DSPCR_OUFLAG6           (1 << (DSPCR_OUFLAG_SHIFT + 6))
391
#define DSPCR_OUFLAG7           (1 << (DSPCR_OUFLAG_SHIFT + 7))
392
 
393
#define DSPCR_CCOND_SHIFT       (24)
394
#define DSPCR_CCOND_MASK        (0xf)
395
#define DSPCR_CCOND_SMASK       (DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT)
396
 
397
  /* All internal state modified by signal_exception() that may need to be
398
     rolled back for passing moment-of-exception image back to gdb. */
399
  unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
400
  unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
401
  int exc_suspended;
402
 
403
#define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
404
#define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
405
#define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
406
 
407
  unsigned_word c0_config_reg;
408
#define C0_CONFIG ((CPU)->c0_config_reg)
409
 
410
/* The following are pseudonyms for standard registers */
411
#define ZERO    (REGISTERS[0])
412
#define V0      (REGISTERS[2])
413
#define A0      (REGISTERS[4])
414
#define A1      (REGISTERS[5])
415
#define A2      (REGISTERS[6])
416
#define A3      (REGISTERS[7])
417
#define T8IDX   24
418
#define T8      (REGISTERS[T8IDX])
419
#define SPIDX   29
420
#define SP      (REGISTERS[SPIDX])
421
#define RAIDX   31
422
#define RA      (REGISTERS[RAIDX])
423
 
424
  /* While space is allocated in the main registers arrray for some of
425
     the COP0 registers, that space isn't sufficient.  Unknown COP0
426
     registers overflow into the array below */
427
 
428
#define NR_COP0_GPR     32
429
  unsigned_word cop0_gpr[NR_COP0_GPR];
430
#define COP0_GPR        ((CPU)->cop0_gpr)
431
#define COP0_BADVADDR   (COP0_GPR[8])
432
 
433
  /* While space is allocated for the floating point registers in the
434
     main registers array, they are stored separatly.  This is because
435
     their size may not necessarily match the size of either the
436
     general-purpose or system specific registers.  */
437
#define NR_FGR    (32)
438
#define FGR_BASE  FP0_REGNUM
439
  fp_word fgr[NR_FGR];
440
#define FGR       ((CPU)->fgr)
441
 
442
  /* Keep the current format state for each register: */
443
  FP_formats fpr_state[32];
444
#define FPR_STATE ((CPU)->fpr_state)
445
 
446
  pending_write_queue pending;
447
 
448
  /* The MDMX accumulator (used only for MDMX ASE).  */
449
  MDMX_accumulator acc;
450
#define ACC             ((CPU)->acc)
451
 
452
  /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
453
     read-write instructions. It is set when a linked load occurs. It
454
     is tested and cleared by the conditional store. It is cleared
455
     (during other CPU operations) when a store to the location would
456
     no longer be atomic. In particular, it is cleared by exception
457
     return instructions. */
458
  int llbit;
459
#define LLBIT ((CPU)->llbit)
460
 
461
 
462
/* The HIHISTORY and LOHISTORY timestamps are used to ensure that
463
   corruptions caused by using the HI or LO register too close to a
464
   following operation is spotted. See mips.igen for more details. */
465
 
466
  hilo_history hi_history;
467
#define HIHISTORY (&(CPU)->hi_history)
468
  hilo_history lo_history;
469
#define LOHISTORY (&(CPU)->lo_history)
470
 
471
 
472
  sim_cpu_base base;
473
};
474
 
475
 
476
/* MIPS specific simulator watch config */
477
 
478
void watch_options_install PARAMS ((SIM_DESC sd));
479
 
480
struct swatch {
481
  sim_event *pc;
482
  sim_event *clock;
483
  sim_event *cycles;
484
};
485
 
486
 
487
/* FIXME: At present much of the simulator is still static */
488
struct sim_state {
489
 
490
  struct swatch watch;
491
 
492
  sim_cpu cpu[MAX_NR_PROCESSORS];
493
#if (WITH_SMP)
494
#define STATE_CPU(sd,n) (&(sd)->cpu[n])
495
#else
496
#define STATE_CPU(sd,n) (&(sd)->cpu[0])
497
#endif
498
 
499
 
500
  sim_state_base base;
501
};
502
 
503
 
504
 
505
/* Status information: */
506
 
507
/* TODO : these should be the bitmasks for these bits within the
508
   status register. At the moment the following are VR4300
509
   bit-positions: */
510
#define status_KSU_mask  (0x18)         /* mask for KSU bits */
511
#define status_KSU_shift (3)            /* shift for field */
512
#define ksu_kernel       (0x0)
513
#define ksu_supervisor   (0x1)
514
#define ksu_user         (0x2)
515
#define ksu_unknown      (0x3)
516
 
517
#define SR_KSU           ((SR & status_KSU_mask) >> status_KSU_shift)
518
 
519
#define status_IE        (1 <<  0)      /* Interrupt enable */
520
#define status_EIE       (1 << 16)      /* Enable Interrupt Enable */
521
#define status_EXL       (1 <<  1)      /* Exception level */
522
#define status_RE        (1 << 25)      /* Reverse Endian in user mode */
523
#define status_FR        (1 << 26)      /* enables MIPS III additional FP registers */
524
#define status_SR        (1 << 20)      /* soft reset or NMI */
525
#define status_BEV       (1 << 22)      /* Location of general exception vectors */
526
#define status_TS        (1 << 21)      /* TLB shutdown has occurred */
527
#define status_ERL       (1 <<  2)      /* Error level */
528
#define status_IM7       (1 << 15)      /* Timer Interrupt Mask */
529
#define status_RP        (1 << 27)      /* Reduced Power mode */
530
 
531
/* Specializations for TX39 family */
532
#define status_IEc       (1 << 0)       /* Interrupt enable (current) */
533
#define status_KUc       (1 << 1)       /* Kernel/User mode */
534
#define status_IEp       (1 << 2)       /* Interrupt enable (previous) */
535
#define status_KUp       (1 << 3)       /* Kernel/User mode */
536
#define status_IEo       (1 << 4)       /* Interrupt enable (old) */
537
#define status_KUo       (1 << 5)       /* Kernel/User mode */
538
#define status_IM_mask   (0xff)         /* Interrupt mask */
539
#define status_IM_shift  (8)
540
#define status_NMI       (1 << 20)      /* NMI */
541
#define status_NMI       (1 << 20)      /* NMI */
542
 
543
/* Status bits used by MIPS32/MIPS64.  */
544
#define status_UX        (1 <<  5)      /* 64-bit user addrs */
545
#define status_SX        (1 <<  6)      /* 64-bit supervisor addrs */
546
#define status_KX        (1 <<  7)      /* 64-bit kernel addrs */
547
#define status_TS        (1 << 21)      /* TLB shutdown has occurred */
548
#define status_PX        (1 << 23)      /* Enable 64 bit operations */
549
#define status_MX        (1 << 24)      /* Enable MDMX resources */
550
#define status_CU0       (1 << 28)      /* Coprocessor 0 usable */
551
#define status_CU1       (1 << 29)      /* Coprocessor 1 usable */
552
#define status_CU2       (1 << 30)      /* Coprocessor 2 usable */
553
#define status_CU3       (1 << 31)      /* Coprocessor 3 usable */
554
/* Bits reserved for implementations:  */
555
#define status_SBX       (1 << 16)      /* Enable SiByte SB-1 extensions.  */
556
 
557
#define cause_BD ((unsigned)1 << 31)    /* L1 Exception in branch delay slot */
558
#define cause_BD2         (1 << 30)     /* L2 Exception in branch delay slot */
559
#define cause_CE_mask     0x30000000    /* Coprocessor exception */
560
#define cause_CE_shift    28
561
#define cause_EXC2_mask   0x00070000
562
#define cause_EXC2_shift  16
563
#define cause_IP7         (1 << 15)     /* Interrupt pending */
564
#define cause_SIOP        (1 << 12)     /* SIO pending */
565
#define cause_IP3         (1 << 11)     /* Int 0 pending */
566
#define cause_IP2         (1 << 10)     /* Int 1 pending */
567
 
568
#define cause_EXC_mask  (0x1c)          /* Exception code */
569
#define cause_EXC_shift (2)
570
 
571
#define cause_SW0       (1 << 8)        /* Software interrupt 0 */
572
#define cause_SW1       (1 << 9)        /* Software interrupt 1 */
573
#define cause_IP_mask   (0x3f)          /* Interrupt pending field */
574
#define cause_IP_shift  (10)
575
 
576
#define cause_set_EXC(x)  CAUSE = (CAUSE & ~cause_EXC_mask)  | ((x << cause_EXC_shift)  & cause_EXC_mask)
577
#define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
578
 
579
 
580
/* NOTE: We keep the following status flags as bit values (1 for true,
581
 
582
   operations without worrying about what exactly the non-zero true
583
   value is. */
584
 
585
/* UserMode */
586
#ifdef SUBTARGET_R3900
587
#define UserMode        ((SR & status_KUc) ? 1 : 0)
588
#else
589
#define UserMode        ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
590
#endif /* SUBTARGET_R3900 */
591
 
592
/* BigEndianMem */
593
/* Hardware configuration. Affects endianness of LoadMemory and
594
   StoreMemory and the endianness of Kernel and Supervisor mode
595
   execution. The value is 0 for little-endian; 1 for big-endian. */
596
#define BigEndianMem    (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
597
/*(state & simBE) ? 1 : 0)*/
598
 
599
/* ReverseEndian */
600
/* This mode is selected if in User mode with the RE bit being set in
601
   SR (Status Register). It reverses the endianness of load and store
602
   instructions. */
603
#define ReverseEndian   (((SR & status_RE) && UserMode) ? 1 : 0)
604
 
605
/* BigEndianCPU */
606
/* The endianness for load and store instructions (0=little;1=big). In
607
   User mode this endianness may be switched by setting the state_RE
608
   bit in the SR register. Thus, BigEndianCPU may be computed as
609
   (BigEndianMem EOR ReverseEndian). */
610
#define BigEndianCPU    (BigEndianMem ^ ReverseEndian) /* Already bits */
611
 
612
 
613
 
614
/* Exceptions: */
615
 
616
/* NOTE: These numbers depend on the processor architecture being
617
   simulated: */
618
enum ExceptionCause {
619
  Interrupt               = 0,
620
  TLBModification         = 1,
621
  TLBLoad                 = 2,
622
  TLBStore                = 3,
623
  AddressLoad             = 4,
624
  AddressStore            = 5,
625
  InstructionFetch        = 6,
626
  DataReference           = 7,
627
  SystemCall              = 8,
628
  BreakPoint              = 9,
629
  ReservedInstruction     = 10,
630
  CoProcessorUnusable     = 11,
631
  IntegerOverflow         = 12,    /* Arithmetic overflow (IDT monitor raises SIGFPE) */
632
  Trap                    = 13,
633
  FPE                     = 15,
634
  DebugBreakPoint         = 16,    /* Impl. dep. in MIPS32/MIPS64.  */
635
  MDMX                    = 22,
636
  Watch                   = 23,
637
  MCheck                  = 24,
638
  CacheErr                = 30,
639
  NMIReset                = 31,    /* Reserved in MIPS32/MIPS64.  */
640
 
641
 
642
/* The following exception code is actually private to the simulator
643
   world. It is *NOT* a processor feature, and is used to signal
644
   run-time errors in the simulator. */
645
  SimulatorFault          = 0xFFFFFFFF
646
};
647
 
648
#define TLB_REFILL  (0)
649
#define TLB_INVALID (1)
650
 
651
 
652
/* The following break instructions are reserved for use by the
653
   simulator.  The first is used to halt the simulation.  The second
654
   is used by gdb for break-points.  NOTE: Care must be taken, since
655
   this value may be used in later revisions of the MIPS ISA. */
656
#define HALT_INSTRUCTION_MASK   (0x03FFFFC0)
657
 
658
#define HALT_INSTRUCTION        (0x03ff000d)
659
#define HALT_INSTRUCTION2       (0x0000ffcd)
660
 
661
 
662
#define BREAKPOINT_INSTRUCTION  (0x0005000d)
663
#define BREAKPOINT_INSTRUCTION2 (0x0000014d)
664
 
665
 
666
 
667
void interrupt_event (SIM_DESC sd, void *data);
668
 
669
void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
670
#define SignalException(exc,instruction)     signal_exception (SD, CPU, cia, (exc), (instruction))
671
#define SignalExceptionInterrupt(level)      signal_exception (SD, CPU, cia, Interrupt, level)
672
#define SignalExceptionInstructionFetch()    signal_exception (SD, CPU, cia, InstructionFetch)
673
#define SignalExceptionAddressStore()        signal_exception (SD, CPU, cia, AddressStore)
674
#define SignalExceptionAddressLoad()         signal_exception (SD, CPU, cia, AddressLoad)
675
#define SignalExceptionDataReference()       signal_exception (SD, CPU, cia, DataReference)
676
#define SignalExceptionSimulatorFault(buf)   signal_exception (SD, CPU, cia, SimulatorFault, buf)
677
#define SignalExceptionFPE()                 signal_exception (SD, CPU, cia, FPE)
678
#define SignalExceptionIntegerOverflow()     signal_exception (SD, CPU, cia, IntegerOverflow)
679
#define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
680
#define SignalExceptionNMIReset()            signal_exception (SD, CPU, cia, NMIReset)
681
#define SignalExceptionTLBRefillStore()      signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
682
#define SignalExceptionTLBRefillLoad()       signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
683
#define SignalExceptionTLBInvalidStore()     signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
684
#define SignalExceptionTLBInvalidLoad()      signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
685
#define SignalExceptionTLBModification()     signal_exception (SD, CPU, cia, TLBModification)
686
#define SignalExceptionMDMX()                signal_exception (SD, CPU, cia, MDMX)
687
#define SignalExceptionWatch()               signal_exception (SD, CPU, cia, Watch)
688
#define SignalExceptionMCheck()              signal_exception (SD, CPU, cia, MCheck)
689
#define SignalExceptionCacheErr()            signal_exception (SD, CPU, cia, CacheErr)
690
 
691
/* Co-processor accesses */
692
 
693
/* XXX FIXME: For now, assume that FPU (cp1) is always usable.  */
694
#define COP_Usable(coproc_num)          (coproc_num == 1)
695
 
696
void cop_lw  PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
697
void cop_ld  PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
698
unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
699
uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
700
 
701
#define COP_LW(coproc_num,coproc_reg,memword) \
702
cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
703
#define COP_LD(coproc_num,coproc_reg,memword) \
704
cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
705
#define COP_SW(coproc_num,coproc_reg) \
706
cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
707
#define COP_SD(coproc_num,coproc_reg) \
708
cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
709
 
710
 
711
void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
712
#define DecodeCoproc(instruction) \
713
decode_coproc (SD, CPU, cia, (instruction))
714
 
715
int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
716
 
717
 
718
/* FPR access.  */
719
unsigned64 value_fpr (SIM_STATE, int fpr, FP_formats);
720
#define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
721
void store_fpr (SIM_STATE, int fpr, FP_formats fmt, unsigned64 value);
722
#define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
723
unsigned64 ps_lower (SIM_STATE, unsigned64 op);
724
#define PSLower(op) ps_lower (SIM_ARGS, op)
725
unsigned64 ps_upper (SIM_STATE, unsigned64 op);
726
#define PSUpper(op) ps_upper (SIM_ARGS, op)
727
unsigned64 pack_ps (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats from);
728
#define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single)
729
 
730
 
731
/* FCR access.  */
732
unsigned_word value_fcr (SIM_STATE, int fcr);
733
#define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR))
734
void store_fcr (SIM_STATE, int fcr, unsigned_word value);
735
#define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE))
736
void test_fcsr (SIM_STATE);
737
#define TestFCSR() test_fcsr (SIM_ARGS)
738
 
739
 
740
/* FPU operations.  */
741
void fp_cmp (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt, int abs, int cond, int cc);
742
#define Compare(op1,op2,fmt,cond,cc) fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc)
743
unsigned64 fp_abs (SIM_STATE, unsigned64 op, FP_formats fmt);
744
#define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
745
unsigned64 fp_neg (SIM_STATE, unsigned64 op, FP_formats fmt);
746
#define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
747
unsigned64 fp_add (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
748
#define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
749
unsigned64 fp_sub (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
750
#define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
751
unsigned64 fp_mul (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
752
#define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
753
unsigned64 fp_div (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
754
#define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
755
unsigned64 fp_recip (SIM_STATE, unsigned64 op, FP_formats fmt);
756
#define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
757
unsigned64 fp_sqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
758
#define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
759
unsigned64 fp_rsqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
760
#define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt)
761
unsigned64 fp_madd (SIM_STATE, unsigned64 op1, unsigned64 op2,
762
                    unsigned64 op3, FP_formats fmt);
763
#define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt)
764
unsigned64 fp_msub (SIM_STATE, unsigned64 op1, unsigned64 op2,
765
                    unsigned64 op3, FP_formats fmt);
766
#define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt)
767
unsigned64 fp_nmadd (SIM_STATE, unsigned64 op1, unsigned64 op2,
768
                     unsigned64 op3, FP_formats fmt);
769
#define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt)
770
unsigned64 fp_nmsub (SIM_STATE, unsigned64 op1, unsigned64 op2,
771
                     unsigned64 op3, FP_formats fmt);
772
#define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt)
773
unsigned64 convert (SIM_STATE, int rm, unsigned64 op, FP_formats from, FP_formats to);
774
#define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
775
unsigned64 convert_ps (SIM_STATE, int rm, unsigned64 op, FP_formats from,
776
                       FP_formats to);
777
#define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to)
778
 
779
 
780
/* MIPS-3D ASE operations.  */
781
#define CompareAbs(op1,op2,fmt,cond,cc) \
782
fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc)
783
unsigned64 fp_add_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
784
#define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt)
785
unsigned64 fp_mul_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
786
#define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt)
787
unsigned64 fp_recip1 (SIM_STATE, unsigned64 op, FP_formats fmt);
788
#define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt)
789
unsigned64 fp_recip2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
790
#define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt)
791
unsigned64 fp_rsqrt1 (SIM_STATE, unsigned64 op, FP_formats fmt);
792
#define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt)
793
unsigned64 fp_rsqrt2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
794
#define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt)
795
 
796
 
797
/* MDMX access.  */
798
 
799
typedef unsigned int MX_fmtsel;   /* MDMX format select field (5 bits).  */
800
#define ob_fmtsel(sel) (((sel)<<1)|0x0)
801
#define qh_fmtsel(sel) (((sel)<<2)|0x1)
802
 
803
#define fmt_mdmx fmt_uninterpreted
804
 
805
#define MX_VECT_AND  (0)
806
#define MX_VECT_NOR  (1)
807
#define MX_VECT_OR   (2)
808
#define MX_VECT_XOR  (3)
809
#define MX_VECT_SLL  (4)
810
#define MX_VECT_SRL  (5)
811
#define MX_VECT_ADD  (6)
812
#define MX_VECT_SUB  (7)
813
#define MX_VECT_MIN  (8)
814
#define MX_VECT_MAX  (9)
815
#define MX_VECT_MUL  (10)
816
#define MX_VECT_MSGN (11)
817
#define MX_VECT_SRA  (12)
818
#define MX_VECT_ABSD (13)               /* SB-1 only.  */
819
#define MX_VECT_AVG  (14)               /* SB-1 only.  */
820
 
821
unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
822
#define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
823
#define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
824
#define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
825
#define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
826
#define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
827
#define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
828
#define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
829
#define MX_Or(op1,vt,fmtsel)  mdmx_cpr_op(SIM_ARGS, MX_VECT_OR,  op1, vt, fmtsel)
830
#define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
831
#define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
832
#define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
833
#define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
834
#define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
835
#define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
836
#define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
837
 
838
#define MX_C_EQ  0x1
839
#define MX_C_LT  0x4
840
 
841
void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel);
842
#define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
843
 
844
unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel);
845
#define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
846
 
847
#define MX_VECT_ADDA  (0)
848
#define MX_VECT_ADDL  (1)
849
#define MX_VECT_MULA  (2)
850
#define MX_VECT_MULL  (3)
851
#define MX_VECT_MULS  (4)
852
#define MX_VECT_MULSL (5)
853
#define MX_VECT_SUBA  (6)
854
#define MX_VECT_SUBL  (7)
855
#define MX_VECT_ABSDA (8)               /* SB-1 only.  */
856
 
857
void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
858
#define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
859
#define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
860
#define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
861
#define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
862
#define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
863
#define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
864
#define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
865
#define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
866
#define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
867
 
868
#define MX_FMT_OB   (0)
869
#define MX_FMT_QH   (1)
870
 
871
/* The following codes chosen to indicate the units of shift.  */
872
#define MX_RAC_L    (0)
873
#define MX_RAC_M    (1)
874
#define MX_RAC_H    (2)
875
 
876
unsigned64 mdmx_rac_op (SIM_STATE, int, int);
877
#define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
878
 
879
void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64);
880
#define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
881
void mdmx_wach (SIM_STATE, int, unsigned64);
882
#define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
883
 
884
#define MX_RND_AS   (0)
885
#define MX_RND_AU   (1)
886
#define MX_RND_ES   (2)
887
#define MX_RND_EU   (3)
888
#define MX_RND_ZS   (4)
889
#define MX_RND_ZU   (5)
890
 
891
unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
892
#define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
893
#define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
894
#define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
895
#define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
896
#define MX_RZS(vt,fmt)  mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
897
#define MX_RZU(vt,fmt)  mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
898
 
899
unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64);
900
#define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
901
 
902
 
903
 
904
/* Memory accesses */
905
 
906
/* The following are generic to all versions of the MIPS architecture
907
   to date: */
908
 
909
/* Memory Access Types (for CCA): */
910
#define Uncached                (0)
911
#define CachedNoncoherent       (1)
912
#define CachedCoherent          (2)
913
#define Cached                  (3)
914
 
915
#define isINSTRUCTION   (1 == 0) /* FALSE */
916
#define isDATA          (1 == 1) /* TRUE */
917
#define isLOAD          (1 == 0) /* FALSE */
918
#define isSTORE         (1 == 1) /* TRUE */
919
#define isREAL          (1 == 0) /* FALSE */
920
#define isRAW           (1 == 1) /* TRUE */
921
/* The parameter HOST (isTARGET / isHOST) is ignored */
922
#define isTARGET        (1 == 0) /* FALSE */
923
/* #define isHOST          (1 == 1) TRUE */
924
 
925
/* The "AccessLength" specifications for Loads and Stores. NOTE: This
926
   is the number of bytes minus 1. */
927
#define AccessLength_BYTE       (0)
928
#define AccessLength_HALFWORD   (1)
929
#define AccessLength_TRIPLEBYTE (2)
930
#define AccessLength_WORD       (3)
931
#define AccessLength_QUINTIBYTE (4)
932
#define AccessLength_SEXTIBYTE  (5)
933
#define AccessLength_SEPTIBYTE  (6)
934
#define AccessLength_DOUBLEWORD (7)
935
#define AccessLength_QUADWORD   (15)
936
 
937
#define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
938
                    ? AccessLength_DOUBLEWORD /*7*/ \
939
                    : AccessLength_WORD /*3*/)
940
#define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
941
 
942
 
943
INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
944
#define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
945
address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
946
 
947
INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
948
#define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
949
load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
950
 
951
INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
952
#define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
953
store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
954
 
955
INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
956
#define CacheOp(op,pAddr,vAddr,instruction) \
957
cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
958
 
959
INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
960
#define SyncOperation(stype) \
961
sync_operation (SD, CPU, cia, (stype))
962
 
963
INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
964
#define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
965
prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
966
 
967
void unpredictable_action (sim_cpu *cpu, address_word cia);
968
#define NotWordValue(val)       not_word_value (SD_, (val))
969
#define Unpredictable()         unpredictable (SD_)
970
#define UnpredictableResult()   /* For now, do nothing.  */
971
 
972
INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
973
#define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
974
INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
975
#define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
976
#define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
977
 
978
void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
979
extern FILE *tracefh;
980
 
981
extern int DSPLO_REGNUM[4];
982
extern int DSPHI_REGNUM[4];
983
 
984
INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
985
extern SIM_CORE_SIGNAL_FN mips_core_signal;
986
 
987
char* pr_addr PARAMS ((SIM_ADDR addr));
988
char* pr_uword64 PARAMS ((uword64 addr));
989
 
990
 
991
#define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
992
 
993
void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
994
void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
995
void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
996
 
997
#ifdef MIPS_MACH_MULTI
998
extern int mips_mach_multi(SIM_DESC sd);
999
#define MIPS_MACH(SD)   mips_mach_multi(SD)
1000
#else
1001
#define MIPS_MACH(SD)   MIPS_MACH_DEFAULT
1002
#endif
1003
 
1004
/* Macros for determining whether a MIPS IV or MIPS V part is subject
1005
   to the hi/lo restrictions described in mips.igen.  */
1006
 
1007
#define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \
1008
  (MIPS_MACH (SD) != bfd_mach_mips5500)
1009
 
1010
#define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \
1011
  (MIPS_MACH (SD) != bfd_mach_mips5500)
1012
 
1013
#define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \
1014
  (MIPS_MACH (SD) != bfd_mach_mips5500)
1015
 
1016
#if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
1017
#include "sim-main.c"
1018
#endif
1019
 
1020
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.