OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [sim/] [ppc/] [std-config.h] - Blame information for rev 24

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 24 jeremybenn
/*  This file is part of the program psim.
2
 
3
    Copyright 1994, 1995, 2002 Andrew Cagney <cagney@highland.com.au>
4
 
5
    This program is free software; you can redistribute it and/or modify
6
    it under the terms of the GNU General Public License as published by
7
    the Free Software Foundation; either version 2 of the License, or
8
    (at your option) any later version.
9
 
10
    This program is distributed in the hope that it will be useful,
11
    but WITHOUT ANY WARRANTY; without even the implied warranty of
12
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
    GNU General Public License for more details.
14
 
15
    You should have received a copy of the GNU General Public License
16
    along with this program; if not, write to the Free Software
17
    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
 
19
    */
20
 
21
 
22
#ifndef _PSIM_CONFIG_H_
23
#define _PSIM_CONFIG_H_
24
 
25
 
26
/* endianness of the host/target:
27
 
28
   If the build process is aware (at compile time) of the endianness
29
   of the host/target it is able to eliminate slower generic endian
30
   handling code.
31
 
32
   Possible values are 0 (unknown), LITTLE_ENDIAN, BIG_ENDIAN */
33
 
34
#ifndef WITH_HOST_BYTE_ORDER
35
#define WITH_HOST_BYTE_ORDER            0 /*unknown*/
36
#endif
37
 
38
#ifndef WITH_TARGET_BYTE_ORDER
39
#define WITH_TARGET_BYTE_ORDER          0 /*unknown*/
40
#endif
41
 
42
extern int current_host_byte_order;
43
#define CURRENT_HOST_BYTE_ORDER (WITH_HOST_BYTE_ORDER \
44
                                 ? WITH_HOST_BYTE_ORDER \
45
                                 : current_host_byte_order)
46
extern int current_target_byte_order;
47
#define CURRENT_TARGET_BYTE_ORDER (WITH_TARGET_BYTE_ORDER \
48
                                   ? WITH_TARGET_BYTE_ORDER \
49
                                   : current_target_byte_order)
50
 
51
 
52
/* PowerPC XOR endian.
53
 
54
   In addition to the above, the simulator can support the PowerPC's
55
   horrible XOR endian mode.  This feature makes it possible to
56
   control the endian mode of a processor using the MSR. */
57
 
58
#ifndef WITH_XOR_ENDIAN
59
#define WITH_XOR_ENDIAN         8
60
#endif
61
 
62
 
63
/* Intel host BSWAP support:
64
 
65
   Whether to use bswap on the 486 and pentiums rather than the 386
66
   sequence that uses xchgb/rorl/xchgb */
67
#ifndef WITH_BSWAP
68
#define WITH_BSWAP 0
69
#endif
70
 
71
 
72
/* SMP support:
73
 
74
   Sets a limit on the number of processors that can be simulated.  If
75
   WITH_SMP is set to zero (0), the simulator is restricted to
76
   suporting only on processor (and as a consequence leaves the SMP
77
   code out of the build process).
78
 
79
   The actual number of processors is taken from the device
80
   /options/smp@<nr-cpu> */
81
 
82
#ifndef WITH_SMP
83
#define WITH_SMP                        5
84
#endif
85
#if WITH_SMP
86
#define MAX_NR_PROCESSORS               WITH_SMP
87
#else
88
#define MAX_NR_PROCESSORS               1
89
#endif
90
 
91
 
92
/* Word size of host/target:
93
 
94
   Set these according to your host and target requirements.  At this
95
   point in time, I've only compiled (not run) for a 64bit and never
96
   built for a 64bit host.  This will always remain a compile time
97
   option */
98
 
99
#ifndef WITH_TARGET_WORD_BITSIZE
100
#define WITH_TARGET_WORD_BITSIZE        32 /* compiled only */
101
#endif
102
 
103
#ifndef WITH_HOST_WORD_BITSIZE
104
#define WITH_HOST_WORD_BITSIZE          32 /* 64bit ready? */
105
#endif
106
 
107
 
108
/* Program environment:
109
 
110
   Three environments are available - UEA (user), VEA (virtual) and
111
   OEA (perating).  The former two are environment that users would
112
   expect to see (VEA includes things like coherency and the time
113
   base) while OEA is what an operating system expects to see.  By
114
   setting these to specific values, the build process is able to
115
   eliminate non relevent environment code
116
 
117
   CURRENT_ENVIRONMENT specifies which of vea or oea is required for
118
   the current runtime. */
119
 
120
#define USER_ENVIRONMENT                1
121
#define VIRTUAL_ENVIRONMENT             2
122
#define OPERATING_ENVIRONMENT           3
123
 
124
#ifndef WITH_ENVIRONMENT
125
#define WITH_ENVIRONMENT                0
126
#endif
127
 
128
extern int current_environment;
129
#define CURRENT_ENVIRONMENT (WITH_ENVIRONMENT \
130
                             ? WITH_ENVIRONMENT \
131
                             : current_environment)
132
 
133
 
134
/* Optional VEA/OEA code:
135
 
136
   The below, required for the OEA model may also be included in the
137
   VEA model however, as far as I can tell only make things
138
   slower... */
139
 
140
 
141
/* Events.  Devices modeling real H/W need to be able to efficiently
142
   schedule things to do at known times in the future.  The event
143
   queue implements this.  Unfortunatly this adds the need to check
144
   for any events once each full instruction cycle. */
145
 
146
#define WITH_EVENTS                     (WITH_ENVIRONMENT != USER_ENVIRONMENT)
147
 
148
 
149
/* Time base:
150
 
151
   The PowerPC architecture includes the addition of both a time base
152
   register and a decrement timer.  Like events adds to the overhead
153
   of of some instruction cycles. */
154
 
155
#ifndef WITH_TIME_BASE
156
#define WITH_TIME_BASE                  (WITH_ENVIRONMENT != USER_ENVIRONMENT)
157
#endif
158
 
159
 
160
/* Callback/Default Memory.
161
 
162
   Core includes a builtin memory type (raw_memory) that is
163
   implemented using an array.  raw_memory does not require any
164
   additional functions etc.
165
 
166
   Callback memory is where the core calls a core device for the data
167
   it requires.
168
 
169
   Default memory is an extenstion of this where for addresses that do
170
   not map into either a callback or core memory range a default map
171
   can be used.
172
 
173
   The OEA model uses callback memory for devices and default memory
174
   for buses.
175
 
176
   The VEA model uses callback memory to capture `page faults'.
177
 
178
   While it may be possible to eliminate callback/default memory (and
179
   hence also eliminate an additional test per memory fetch) it
180
   probably is not worth the effort.
181
 
182
   BTW, while raw_memory could have been implemented as a callback,
183
   profiling has shown that there is a biger win (at least for the
184
   x86) in eliminating a function call for the most common
185
   (raw_memory) case. */
186
 
187
#define WITH_CALLBACK_MEMORY            1
188
 
189
 
190
/* Alignment:
191
 
192
   The PowerPC may or may not handle miss aligned transfers.  An
193
   implementation normally handles miss aligned transfers in big
194
   endian mode but generates an exception in little endian mode.
195
 
196
   This model.  Instead allows both little and big endian modes to
197
   either take exceptions or handle miss aligned transfers.
198
 
199
   If 0 is specified then for big-endian mode miss alligned accesses
200
   are permitted (NONSTRICT_ALIGNMENT) while in little-endian mode the
201
   processor will fault on them (STRICT_ALIGNMENT). */
202
 
203
#define NONSTRICT_ALIGNMENT             1
204
#define STRICT_ALIGNMENT                2
205
 
206
#ifndef WITH_ALIGNMENT
207
#define WITH_ALIGNMENT                  0
208
#endif
209
 
210
extern int current_alignment;
211
#define CURRENT_ALIGNMENT (WITH_ALIGNMENT \
212
                           ? WITH_ALIGNMENT \
213
                           : current_alignment)
214
 
215
 
216
/* Floating point suport:
217
 
218
   Still under development. */
219
 
220
#define SOFT_FLOATING_POINT             1
221
#define HARD_FLOATING_POINT             2
222
 
223
#ifndef WITH_FLOATING_POINT
224
#define WITH_FLOATING_POINT             HARD_FLOATING_POINT
225
#endif
226
extern int current_floating_point;
227
#define CURRENT_FLOATING_POINT (WITH_FLOATING_POINT \
228
                                ? WITH_FLOATING_POINT \
229
                                : current_floating_point)
230
 
231
 
232
/* Debugging:
233
 
234
   Control the inclusion of debugging code. */
235
 
236
/* Include the tracing code.  Disabling this eliminates all tracing
237
   code */
238
 
239
#ifndef WITH_TRACE
240
#define WITH_TRACE                      1
241
#endif
242
 
243
/* include code that checks assertions scattered through out the
244
   program */
245
 
246
#ifndef WITH_ASSERT
247
#define WITH_ASSERT                     1
248
#endif
249
 
250
/* Whether to check instructions for reserved bits being set */
251
 
252
#ifndef WITH_RESERVED_BITS
253
#define WITH_RESERVED_BITS              1
254
#endif
255
 
256
/* include monitoring code */
257
 
258
#define MONITOR_INSTRUCTION_ISSUE       1
259
#define MONITOR_LOAD_STORE_UNIT         2
260
#ifndef WITH_MON
261
#define WITH_MON                        (MONITOR_LOAD_STORE_UNIT \
262
                                         | MONITOR_INSTRUCTION_ISSUE)
263
#endif
264
 
265
/* Current CPU model (models are in the generated models.h include file)  */
266
#ifndef WITH_MODEL
267
#define WITH_MODEL                      0
268
#endif
269
 
270
#define CURRENT_MODEL (WITH_MODEL       \
271
                       ? WITH_MODEL     \
272
                       : current_model)
273
 
274
#ifndef WITH_DEFAULT_MODEL
275
#define WITH_DEFAULT_MODEL              DEFAULT_MODEL
276
#endif
277
 
278
#define MODEL_ISSUE_IGNORE              (-1)
279
#define MODEL_ISSUE_PROCESS             1
280
 
281
#ifndef WITH_MODEL_ISSUE
282
#define WITH_MODEL_ISSUE                0
283
#endif
284
 
285
extern int current_model_issue;
286
#define CURRENT_MODEL_ISSUE (WITH_MODEL_ISSUE   \
287
                             ? WITH_MODEL_ISSUE \
288
                             : current_model_issue)
289
 
290
/* Whether or not input/output just uses stdio, or uses printf_filtered for
291
   output, and polling input for input.  */
292
 
293
#define DONT_USE_STDIO                  2
294
#define DO_USE_STDIO                    1
295
 
296
#ifndef WITH_STDIO
297
#define WITH_STDIO                      0
298
#endif
299
 
300
extern int current_stdio;
301
#define CURRENT_STDIO (WITH_STDIO       \
302
                       ? WITH_STDIO     \
303
                       : current_stdio)
304
 
305
 
306
 
307
/* INLINE CODE SELECTION:
308
 
309
   GCC -O3 attempts to inline any function or procedure in scope.  The
310
   options below facilitate fine grained control over what is and what
311
   isn't made inline.  For instance it can control things down to a
312
   specific modules static routines.  Doing this allows the compiler
313
   to both eliminate the overhead of function calls and (as a
314
   consequence) also eliminate further dead code.
315
 
316
   On a CISC (x86) I've found that I can achieve an order of magintude
317
   speed improvement (x3-x5).  In the case of RISC (sparc) while the
318
   performance gain isn't as great it is still significant.
319
 
320
   Each module is controled by the macro <module>_INLINE which can
321
   have the values described below
322
 
323
 
324
 
325
   The following additional values are `bit fields' and can be
326
   combined.
327
 
328
      REVEAL_MODULE:
329
 
330
         Include the C file for the module into the file being compiled
331
         but do not make the functions within the module inline.
332
 
333
         While of no apparent benefit, this makes it possible for the
334
         included module, when compiled to inline its calls to what
335
         would otherwize be external functions.
336
 
337
      INLINE_MODULE:
338
 
339
         Make external functions within the module `inline'.  Thus if
340
         the module is included into a file being compiled, calls to
341
         its funtions can be eliminated. 2 implies 1.
342
 
343
      PSIM_INLINE_LOCALS:
344
 
345
         Make internal (static) functions within the module `inline'.
346
 
347
   The following abreviations are available:
348
 
349
      INCLUDE_MODULE == (REVEAL_MODULE | INLINE_MODULE)
350
 
351
      ALL_INLINE == (REVEAL_MODULE | INLINE_MODULE | PSIM_INLINE_LOCALS)
352
 
353
   In addition to this, modules have been put into two categories.
354
 
355
         Simple modules - eg sim-endian.h bits.h
356
 
357
         Because these modules are small and simple and do not have
358
         any complex interpendencies they are configured, if
359
         <module>_INLINE is so enabled, to inline themselves in all
360
         modules that include those files.
361
 
362
         For the default build, this is a real win as all byte
363
         conversion and bit manipulation functions are inlined.
364
 
365
         Complex modules - the rest
366
 
367
         These are all handled using the files inline.h and inline.c.
368
         psim.c includes the above which in turn include any remaining
369
         code.
370
 
371
   IMPLEMENTATION:
372
 
373
   The inline ability is enabled by prefixing every data / function
374
   declaration and definition with one of the following:
375
 
376
 
377
       INLINE_<module>
378
 
379
       Prefix to any global function that is a candidate for being
380
       inline.
381
 
382
       values - `', `static', `static INLINE'
383
 
384
 
385
       EXTERN_<module>
386
 
387
       Prefix to any global data structures for the module.  Global
388
       functions that are not to be inlined shall also be prefixed
389
       with this.
390
 
391
       values - `', `static', `static'
392
 
393
 
394
       STATIC_INLINE_<module>
395
 
396
       Prefix to any local (static) function that is a candidate for
397
       being made inline.
398
 
399
       values - `static', `static INLINE'
400
 
401
 
402
       static
403
 
404
       Prefix all local data structures.  Local functions that are not
405
       to be inlined shall also be prefixed with this.
406
 
407
       values - `static', `static'
408
 
409
       nb: will not work for modules that are being inlined for every
410
       use (white lie).
411
 
412
 
413
       extern
414
       #ifndef _INLINE_C_
415
       #endif
416
 
417
       Prefix to any declaration of a global object (function or
418
       variable) that should not be inlined and should have only one
419
       definition.  The #ifndef wrapper goes around the definition
420
       propper to ensure that only one copy is generated.
421
 
422
       nb: this will not work when a module is being inlined for every
423
       use.
424
 
425
 
426
       STATIC_<module>
427
 
428
       Replaced by either `static' or `EXTERN_MODULE'.
429
 
430
 
431
   REALITY CHECK:
432
 
433
   This is not for the faint hearted.  I've seen GCC get up to 500mb
434
   trying to compile what this can create.
435
 
436
   Some of the modules do not yet implement the WITH_INLINE_STATIC
437
   option.  Instead they use the macro STATIC_INLINE to control their
438
   local function.
439
 
440
   Because of the way that GCC parses __attribute__(), the macro's
441
   need to be adjacent to the function name rather than at the start
442
   of the line vis:
443
 
444
        int STATIC_INLINE_MODULE f(void);
445
        void INLINE_MODULE *g(void);
446
 
447
   */
448
 
449
#define REVEAL_MODULE                   1
450
#define INLINE_MODULE                   2
451
#define INCLUDE_MODULE                  (INLINE_MODULE | REVEAL_MODULE)
452
#define PSIM_INLINE_LOCALS                      4
453
#define ALL_INLINE                      7
454
 
455
/* Your compilers inline reserved word */
456
 
457
#ifndef INLINE
458
#if defined(__GNUC__) && defined(__OPTIMIZE__)
459
#define INLINE __inline__
460
#else
461
#define INLINE /*inline*/
462
#endif
463
#endif
464
 
465
 
466
/* Your compilers pass parameters in registers reserved word */
467
 
468
#ifndef WITH_REGPARM
469
#define WITH_REGPARM                   0
470
#endif
471
 
472
/* Your compilers use an alternative calling sequence reserved word */
473
 
474
#ifndef WITH_STDCALL
475
#define WITH_STDCALL                   0
476
#endif
477
 
478
#if !defined REGPARM
479
#if defined(__GNUC__) && (defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__))
480
#if (WITH_REGPARM && WITH_STDCALL)
481
#define REGPARM __attribute__((__regparm__(WITH_REGPARM),__stdcall__))
482
#else
483
#if (WITH_REGPARM && !WITH_STDCALL)
484
#define REGPARM __attribute__((__regparm__(WITH_REGPARM)))
485
#else
486
#if (!WITH_REGPARM && WITH_STDCALL)
487
#define REGPARM __attribute__((__stdcall__))
488
#endif
489
#endif
490
#endif
491
#endif
492
#endif
493
 
494
#if !defined REGPARM
495
#define REGPARM
496
#endif
497
 
498
 
499
 
500
/* Default prefix for static functions */
501
 
502
#ifndef STATIC_INLINE
503
#define STATIC_INLINE static INLINE
504
#endif
505
 
506
/* Default macro to simplify control several of key the inlines */
507
 
508
#ifndef DEFAULT_INLINE
509
#define DEFAULT_INLINE                  PSIM_INLINE_LOCALS
510
#endif
511
 
512
/* Code that converts between hosts and target byte order.  Used on
513
   every memory access (instruction and data).  See sim-endian.h for
514
   additional byte swapping configuration information.  This module
515
   can inline for all callers */
516
 
517
#ifndef SIM_ENDIAN_INLINE
518
#define SIM_ENDIAN_INLINE               (DEFAULT_INLINE ? ALL_INLINE : 0)
519
#endif
520
 
521
/* Low level bit manipulation routines. This module can inline for all
522
   callers */
523
 
524
#ifndef BITS_INLINE
525
#define BITS_INLINE                     (DEFAULT_INLINE ? ALL_INLINE : 0)
526
#endif
527
 
528
/* Code that gives access to various CPU internals such as registers.
529
   Used every time an instruction is executed */
530
 
531
#ifndef CPU_INLINE
532
#define CPU_INLINE                      (DEFAULT_INLINE ? ALL_INLINE : 0)
533
#endif
534
 
535
/* Code that translates between an effective and real address.  Used
536
   by every load or store. */
537
 
538
#ifndef VM_INLINE
539
#define VM_INLINE                       DEFAULT_INLINE
540
#endif
541
 
542
/* Code that loads/stores data to/from the memory data structure.
543
   Used by every load or store */
544
 
545
#ifndef CORE_INLINE
546
#define CORE_INLINE                     DEFAULT_INLINE
547
#endif
548
 
549
/* Code to check for and process any events scheduled in the future.
550
   Called once per instruction cycle */
551
 
552
#ifndef EVENTS_INLINE
553
#define EVENTS_INLINE                   (DEFAULT_INLINE ? ALL_INLINE : 0)
554
#endif
555
 
556
/* Code monotoring the processors performance.  It counts events on
557
   every instruction cycle */
558
 
559
#ifndef MON_INLINE
560
#define MON_INLINE                      (DEFAULT_INLINE ? ALL_INLINE : 0)
561
#endif
562
 
563
/* Code called on the rare occasions that an interrupt occures. */
564
 
565
#ifndef INTERRUPTS_INLINE
566
#define INTERRUPTS_INLINE               DEFAULT_INLINE
567
#endif
568
 
569
/* Code called on the rare occasion that either gdb or the device tree
570
   need to manipulate a register within a processor */
571
 
572
#ifndef REGISTERS_INLINE
573
#define REGISTERS_INLINE                DEFAULT_INLINE
574
#endif
575
 
576
/* Code called on the rare occasion that a processor is manipulating
577
   real hardware instead of RAM.
578
 
579
   Also, most of the functions in devices.c are always called through
580
   a jump table. */
581
 
582
#ifndef DEVICE_INLINE
583
#define DEVICE_INLINE                   (DEFAULT_INLINE ? PSIM_INLINE_LOCALS : 0)
584
#endif
585
 
586
/* Code called used while the device tree is being built.
587
 
588
   Inlining this is of no benefit */
589
 
590
#ifndef TREE_INLINE
591
#define TREE_INLINE                     (DEFAULT_INLINE ? PSIM_INLINE_LOCALS : 0)
592
#endif
593
 
594
/* Code called whenever information on a Special Purpose Register is
595
   required.  Called by the mflr/mtlr pseudo instructions */
596
 
597
#ifndef SPREG_INLINE
598
#define SPREG_INLINE                    DEFAULT_INLINE
599
#endif
600
 
601
/* Functions modeling the semantics of each instruction.  Two cases to
602
   consider, firstly of idecode is implemented with a switch then this
603
   allows the idecode function to inline each semantic function
604
   (avoiding a call).  The second case is when idecode is using a
605
   table, even then while the semantic functions can't be inlined,
606
   setting it to one still enables each semantic function to inline
607
   anything they call (if that code is marked for being inlined).
608
 
609
   WARNING: you need lots (like 200mb of swap) of swap.  Setting this
610
   to 1 is useful when using a table as it enables the sematic code to
611
   inline all of their called functions */
612
 
613
#ifndef SEMANTICS_INLINE
614
#define SEMANTICS_INLINE                (DEFAULT_INLINE & ~INLINE_MODULE)
615
#endif
616
 
617
/* When using the instruction cache, code to decode an instruction and
618
   install it into the cache.  Normally called when ever there is a
619
   miss in the instruction cache. */
620
 
621
#ifndef ICACHE_INLINE
622
#define ICACHE_INLINE                   (DEFAULT_INLINE & ~INLINE_MODULE)
623
#endif
624
 
625
/* General functions called by semantics functions but part of the
626
   instruction table.  Although called by the semantic functions the
627
   frequency of calls is low.  Consequently the need to inline this
628
   code is reduced. */
629
 
630
#ifndef SUPPORT_INLINE
631
#define SUPPORT_INLINE                  PSIM_INLINE_LOCALS
632
#endif
633
 
634
/* Model specific code used in simulating functional units.  Note, it actaully
635
   pays NOT to inline the PowerPC model functions (at least on the x86).  This
636
   is because if it is inlined, each PowerPC instruction gets a separate copy
637
   of the code, which is not friendly to the cache.  */
638
 
639
#ifndef MODEL_INLINE
640
#define MODEL_INLINE                    (DEFAULT_INLINE & ~INLINE_MODULE)
641
#endif
642
 
643
/* Code to print out what options we were compiled with.  Because this
644
   is called at process startup, it doesn't have to be inlined, but
645
   if it isn't brought in and the model routines are inline, the model
646
   routines will be pulled in twice.  */
647
 
648
#ifndef OPTIONS_INLINE
649
#define OPTIONS_INLINE                  MODEL_INLINE
650
#endif
651
 
652
/* idecode acts as the hub of the system, everything else is imported
653
   into this file */
654
 
655
#ifndef IDECOCE_INLINE
656
#define IDECODE_INLINE                  PSIM_INLINE_LOCALS
657
#endif
658
 
659
/* psim, isn't actually inlined */
660
 
661
#ifndef PSIM_INLINE
662
#define PSIM_INLINE                     PSIM_INLINE_LOCALS
663
#endif
664
 
665
/* Code to emulate os or rom compatibility.  This code is called via a
666
   table and hence there is little benefit in making it inline */
667
 
668
#ifndef OS_EMUL_INLINE
669
#define OS_EMUL_INLINE                  0
670
#endif
671
 
672
#endif /* _PSIM_CONFIG_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.