1 |
227 |
jeremybenn |
/* AVR-specific support for 32-bit ELF
|
2 |
|
|
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
3 |
|
|
2010 Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Denis Chertykov <denisc@overta.ru>
|
5 |
|
|
|
6 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program; if not, write to the Free Software
|
20 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor,
|
21 |
|
|
Boston, MA 02110-1301, USA. */
|
22 |
|
|
|
23 |
|
|
#include "sysdep.h"
|
24 |
|
|
#include "bfd.h"
|
25 |
|
|
#include "libbfd.h"
|
26 |
|
|
#include "elf-bfd.h"
|
27 |
|
|
#include "elf/avr.h"
|
28 |
|
|
#include "elf32-avr.h"
|
29 |
|
|
|
30 |
|
|
/* Enable debugging printout at stdout with this variable. */
|
31 |
|
|
static bfd_boolean debug_relax = FALSE;
|
32 |
|
|
|
33 |
|
|
/* Enable debugging printout at stdout with this variable. */
|
34 |
|
|
static bfd_boolean debug_stubs = FALSE;
|
35 |
|
|
|
36 |
|
|
/* Hash table initialization and handling. Code is taken from the hppa port
|
37 |
|
|
and adapted to the needs of AVR. */
|
38 |
|
|
|
39 |
|
|
/* We use two hash tables to hold information for linking avr objects.
|
40 |
|
|
|
41 |
|
|
The first is the elf32_avr_link_hash_table which is derived from the
|
42 |
|
|
stanard ELF linker hash table. We use this as a place to attach the other
|
43 |
|
|
hash table and some static information.
|
44 |
|
|
|
45 |
|
|
The second is the stub hash table which is derived from the base BFD
|
46 |
|
|
hash table. The stub hash table holds the information on the linker
|
47 |
|
|
stubs. */
|
48 |
|
|
|
49 |
|
|
struct elf32_avr_stub_hash_entry
|
50 |
|
|
{
|
51 |
|
|
/* Base hash table entry structure. */
|
52 |
|
|
struct bfd_hash_entry bh_root;
|
53 |
|
|
|
54 |
|
|
/* Offset within stub_sec of the beginning of this stub. */
|
55 |
|
|
bfd_vma stub_offset;
|
56 |
|
|
|
57 |
|
|
/* Given the symbol's value and its section we can determine its final
|
58 |
|
|
value when building the stubs (so the stub knows where to jump). */
|
59 |
|
|
bfd_vma target_value;
|
60 |
|
|
|
61 |
|
|
/* This way we could mark stubs to be no longer necessary. */
|
62 |
|
|
bfd_boolean is_actually_needed;
|
63 |
|
|
};
|
64 |
|
|
|
65 |
|
|
struct elf32_avr_link_hash_table
|
66 |
|
|
{
|
67 |
|
|
/* The main hash table. */
|
68 |
|
|
struct elf_link_hash_table etab;
|
69 |
|
|
|
70 |
|
|
/* The stub hash table. */
|
71 |
|
|
struct bfd_hash_table bstab;
|
72 |
|
|
|
73 |
|
|
bfd_boolean no_stubs;
|
74 |
|
|
|
75 |
|
|
/* Linker stub bfd. */
|
76 |
|
|
bfd *stub_bfd;
|
77 |
|
|
|
78 |
|
|
/* The stub section. */
|
79 |
|
|
asection *stub_sec;
|
80 |
|
|
|
81 |
|
|
/* Usually 0, unless we are generating code for a bootloader. Will
|
82 |
|
|
be initialized by elf32_avr_size_stubs to the vma offset of the
|
83 |
|
|
output section associated with the stub section. */
|
84 |
|
|
bfd_vma vector_base;
|
85 |
|
|
|
86 |
|
|
/* Assorted information used by elf32_avr_size_stubs. */
|
87 |
|
|
unsigned int bfd_count;
|
88 |
|
|
int top_index;
|
89 |
|
|
asection ** input_list;
|
90 |
|
|
Elf_Internal_Sym ** all_local_syms;
|
91 |
|
|
|
92 |
|
|
/* Tables for mapping vma beyond the 128k boundary to the address of the
|
93 |
|
|
corresponding stub. (AMT)
|
94 |
|
|
"amt_max_entry_cnt" reflects the number of entries that memory is allocated
|
95 |
|
|
for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
|
96 |
|
|
"amt_entry_cnt" informs how many of these entries actually contain
|
97 |
|
|
useful data. */
|
98 |
|
|
unsigned int amt_entry_cnt;
|
99 |
|
|
unsigned int amt_max_entry_cnt;
|
100 |
|
|
bfd_vma * amt_stub_offsets;
|
101 |
|
|
bfd_vma * amt_destination_addr;
|
102 |
|
|
};
|
103 |
|
|
|
104 |
|
|
/* Various hash macros and functions. */
|
105 |
|
|
#define avr_link_hash_table(p) \
|
106 |
|
|
/* PR 3874: Check that we have an AVR style hash table before using it. */\
|
107 |
|
|
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
|
108 |
|
|
== AVR_ELF_DATA ? ((struct elf32_avr_link_hash_table *) ((p)->hash)) : NULL)
|
109 |
|
|
|
110 |
|
|
#define avr_stub_hash_entry(ent) \
|
111 |
|
|
((struct elf32_avr_stub_hash_entry *)(ent))
|
112 |
|
|
|
113 |
|
|
#define avr_stub_hash_lookup(table, string, create, copy) \
|
114 |
|
|
((struct elf32_avr_stub_hash_entry *) \
|
115 |
|
|
bfd_hash_lookup ((table), (string), (create), (copy)))
|
116 |
|
|
|
117 |
|
|
static reloc_howto_type elf_avr_howto_table[] =
|
118 |
|
|
{
|
119 |
|
|
HOWTO (R_AVR_NONE, /* type */
|
120 |
|
|
0, /* rightshift */
|
121 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
122 |
|
|
32, /* bitsize */
|
123 |
|
|
FALSE, /* pc_relative */
|
124 |
|
|
0, /* bitpos */
|
125 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
126 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
127 |
|
|
"R_AVR_NONE", /* name */
|
128 |
|
|
FALSE, /* partial_inplace */
|
129 |
|
|
0, /* src_mask */
|
130 |
|
|
0, /* dst_mask */
|
131 |
|
|
FALSE), /* pcrel_offset */
|
132 |
|
|
|
133 |
|
|
HOWTO (R_AVR_32, /* type */
|
134 |
|
|
0, /* rightshift */
|
135 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
136 |
|
|
32, /* bitsize */
|
137 |
|
|
FALSE, /* pc_relative */
|
138 |
|
|
0, /* bitpos */
|
139 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
140 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
141 |
|
|
"R_AVR_32", /* name */
|
142 |
|
|
FALSE, /* partial_inplace */
|
143 |
|
|
0xffffffff, /* src_mask */
|
144 |
|
|
0xffffffff, /* dst_mask */
|
145 |
|
|
FALSE), /* pcrel_offset */
|
146 |
|
|
|
147 |
|
|
/* A 7 bit PC relative relocation. */
|
148 |
|
|
HOWTO (R_AVR_7_PCREL, /* type */
|
149 |
|
|
1, /* rightshift */
|
150 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
151 |
|
|
7, /* bitsize */
|
152 |
|
|
TRUE, /* pc_relative */
|
153 |
|
|
3, /* bitpos */
|
154 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
155 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
156 |
|
|
"R_AVR_7_PCREL", /* name */
|
157 |
|
|
FALSE, /* partial_inplace */
|
158 |
|
|
0xffff, /* src_mask */
|
159 |
|
|
0xffff, /* dst_mask */
|
160 |
|
|
TRUE), /* pcrel_offset */
|
161 |
|
|
|
162 |
|
|
/* A 13 bit PC relative relocation. */
|
163 |
|
|
HOWTO (R_AVR_13_PCREL, /* type */
|
164 |
|
|
1, /* rightshift */
|
165 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
166 |
|
|
13, /* bitsize */
|
167 |
|
|
TRUE, /* pc_relative */
|
168 |
|
|
0, /* bitpos */
|
169 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
170 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
171 |
|
|
"R_AVR_13_PCREL", /* name */
|
172 |
|
|
FALSE, /* partial_inplace */
|
173 |
|
|
0xfff, /* src_mask */
|
174 |
|
|
0xfff, /* dst_mask */
|
175 |
|
|
TRUE), /* pcrel_offset */
|
176 |
|
|
|
177 |
|
|
/* A 16 bit absolute relocation. */
|
178 |
|
|
HOWTO (R_AVR_16, /* type */
|
179 |
|
|
0, /* rightshift */
|
180 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
181 |
|
|
16, /* bitsize */
|
182 |
|
|
FALSE, /* pc_relative */
|
183 |
|
|
0, /* bitpos */
|
184 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
185 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
186 |
|
|
"R_AVR_16", /* name */
|
187 |
|
|
FALSE, /* partial_inplace */
|
188 |
|
|
0xffff, /* src_mask */
|
189 |
|
|
0xffff, /* dst_mask */
|
190 |
|
|
FALSE), /* pcrel_offset */
|
191 |
|
|
|
192 |
|
|
/* A 16 bit absolute relocation for command address
|
193 |
|
|
Will be changed when linker stubs are needed. */
|
194 |
|
|
HOWTO (R_AVR_16_PM, /* type */
|
195 |
|
|
1, /* rightshift */
|
196 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
197 |
|
|
16, /* bitsize */
|
198 |
|
|
FALSE, /* pc_relative */
|
199 |
|
|
0, /* bitpos */
|
200 |
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
201 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
202 |
|
|
"R_AVR_16_PM", /* name */
|
203 |
|
|
FALSE, /* partial_inplace */
|
204 |
|
|
0xffff, /* src_mask */
|
205 |
|
|
0xffff, /* dst_mask */
|
206 |
|
|
FALSE), /* pcrel_offset */
|
207 |
|
|
/* A low 8 bit absolute relocation of 16 bit address.
|
208 |
|
|
For LDI command. */
|
209 |
|
|
HOWTO (R_AVR_LO8_LDI, /* type */
|
210 |
|
|
0, /* rightshift */
|
211 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
212 |
|
|
8, /* bitsize */
|
213 |
|
|
FALSE, /* pc_relative */
|
214 |
|
|
0, /* bitpos */
|
215 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
216 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
217 |
|
|
"R_AVR_LO8_LDI", /* name */
|
218 |
|
|
FALSE, /* partial_inplace */
|
219 |
|
|
0xffff, /* src_mask */
|
220 |
|
|
0xffff, /* dst_mask */
|
221 |
|
|
FALSE), /* pcrel_offset */
|
222 |
|
|
/* A high 8 bit absolute relocation of 16 bit address.
|
223 |
|
|
For LDI command. */
|
224 |
|
|
HOWTO (R_AVR_HI8_LDI, /* type */
|
225 |
|
|
8, /* rightshift */
|
226 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
227 |
|
|
8, /* bitsize */
|
228 |
|
|
FALSE, /* pc_relative */
|
229 |
|
|
0, /* bitpos */
|
230 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
231 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
232 |
|
|
"R_AVR_HI8_LDI", /* name */
|
233 |
|
|
FALSE, /* partial_inplace */
|
234 |
|
|
0xffff, /* src_mask */
|
235 |
|
|
0xffff, /* dst_mask */
|
236 |
|
|
FALSE), /* pcrel_offset */
|
237 |
|
|
/* A high 6 bit absolute relocation of 22 bit address.
|
238 |
|
|
For LDI command. As well second most significant 8 bit value of
|
239 |
|
|
a 32 bit link-time constant. */
|
240 |
|
|
HOWTO (R_AVR_HH8_LDI, /* type */
|
241 |
|
|
16, /* rightshift */
|
242 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
243 |
|
|
8, /* bitsize */
|
244 |
|
|
FALSE, /* pc_relative */
|
245 |
|
|
0, /* bitpos */
|
246 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
247 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
248 |
|
|
"R_AVR_HH8_LDI", /* name */
|
249 |
|
|
FALSE, /* partial_inplace */
|
250 |
|
|
0xffff, /* src_mask */
|
251 |
|
|
0xffff, /* dst_mask */
|
252 |
|
|
FALSE), /* pcrel_offset */
|
253 |
|
|
/* A negative low 8 bit absolute relocation of 16 bit address.
|
254 |
|
|
For LDI command. */
|
255 |
|
|
HOWTO (R_AVR_LO8_LDI_NEG, /* type */
|
256 |
|
|
0, /* rightshift */
|
257 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
258 |
|
|
8, /* bitsize */
|
259 |
|
|
FALSE, /* pc_relative */
|
260 |
|
|
0, /* bitpos */
|
261 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
262 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
263 |
|
|
"R_AVR_LO8_LDI_NEG", /* name */
|
264 |
|
|
FALSE, /* partial_inplace */
|
265 |
|
|
0xffff, /* src_mask */
|
266 |
|
|
0xffff, /* dst_mask */
|
267 |
|
|
FALSE), /* pcrel_offset */
|
268 |
|
|
/* A negative high 8 bit absolute relocation of 16 bit address.
|
269 |
|
|
For LDI command. */
|
270 |
|
|
HOWTO (R_AVR_HI8_LDI_NEG, /* type */
|
271 |
|
|
8, /* rightshift */
|
272 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
273 |
|
|
8, /* bitsize */
|
274 |
|
|
FALSE, /* pc_relative */
|
275 |
|
|
0, /* bitpos */
|
276 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
277 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
278 |
|
|
"R_AVR_HI8_LDI_NEG", /* name */
|
279 |
|
|
FALSE, /* partial_inplace */
|
280 |
|
|
0xffff, /* src_mask */
|
281 |
|
|
0xffff, /* dst_mask */
|
282 |
|
|
FALSE), /* pcrel_offset */
|
283 |
|
|
/* A negative high 6 bit absolute relocation of 22 bit address.
|
284 |
|
|
For LDI command. */
|
285 |
|
|
HOWTO (R_AVR_HH8_LDI_NEG, /* type */
|
286 |
|
|
16, /* rightshift */
|
287 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
288 |
|
|
8, /* bitsize */
|
289 |
|
|
FALSE, /* pc_relative */
|
290 |
|
|
0, /* bitpos */
|
291 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
292 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
293 |
|
|
"R_AVR_HH8_LDI_NEG", /* name */
|
294 |
|
|
FALSE, /* partial_inplace */
|
295 |
|
|
0xffff, /* src_mask */
|
296 |
|
|
0xffff, /* dst_mask */
|
297 |
|
|
FALSE), /* pcrel_offset */
|
298 |
|
|
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
299 |
|
|
For LDI command. Will not be changed when linker stubs are needed. */
|
300 |
|
|
HOWTO (R_AVR_LO8_LDI_PM, /* type */
|
301 |
|
|
1, /* rightshift */
|
302 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
303 |
|
|
8, /* bitsize */
|
304 |
|
|
FALSE, /* pc_relative */
|
305 |
|
|
0, /* bitpos */
|
306 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
307 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
308 |
|
|
"R_AVR_LO8_LDI_PM", /* name */
|
309 |
|
|
FALSE, /* partial_inplace */
|
310 |
|
|
0xffff, /* src_mask */
|
311 |
|
|
0xffff, /* dst_mask */
|
312 |
|
|
FALSE), /* pcrel_offset */
|
313 |
|
|
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
314 |
|
|
For LDI command. Will not be changed when linker stubs are needed. */
|
315 |
|
|
HOWTO (R_AVR_HI8_LDI_PM, /* type */
|
316 |
|
|
9, /* rightshift */
|
317 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
318 |
|
|
8, /* bitsize */
|
319 |
|
|
FALSE, /* pc_relative */
|
320 |
|
|
0, /* bitpos */
|
321 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
322 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
323 |
|
|
"R_AVR_HI8_LDI_PM", /* name */
|
324 |
|
|
FALSE, /* partial_inplace */
|
325 |
|
|
0xffff, /* src_mask */
|
326 |
|
|
0xffff, /* dst_mask */
|
327 |
|
|
FALSE), /* pcrel_offset */
|
328 |
|
|
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
329 |
|
|
For LDI command. Will not be changed when linker stubs are needed. */
|
330 |
|
|
HOWTO (R_AVR_HH8_LDI_PM, /* type */
|
331 |
|
|
17, /* rightshift */
|
332 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
333 |
|
|
8, /* bitsize */
|
334 |
|
|
FALSE, /* pc_relative */
|
335 |
|
|
0, /* bitpos */
|
336 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
337 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
338 |
|
|
"R_AVR_HH8_LDI_PM", /* name */
|
339 |
|
|
FALSE, /* partial_inplace */
|
340 |
|
|
0xffff, /* src_mask */
|
341 |
|
|
0xffff, /* dst_mask */
|
342 |
|
|
FALSE), /* pcrel_offset */
|
343 |
|
|
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
344 |
|
|
For LDI command. Will not be changed when linker stubs are needed. */
|
345 |
|
|
HOWTO (R_AVR_LO8_LDI_PM_NEG, /* type */
|
346 |
|
|
1, /* rightshift */
|
347 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
348 |
|
|
8, /* bitsize */
|
349 |
|
|
FALSE, /* pc_relative */
|
350 |
|
|
0, /* bitpos */
|
351 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
352 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
353 |
|
|
"R_AVR_LO8_LDI_PM_NEG", /* name */
|
354 |
|
|
FALSE, /* partial_inplace */
|
355 |
|
|
0xffff, /* src_mask */
|
356 |
|
|
0xffff, /* dst_mask */
|
357 |
|
|
FALSE), /* pcrel_offset */
|
358 |
|
|
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
359 |
|
|
For LDI command. Will not be changed when linker stubs are needed. */
|
360 |
|
|
HOWTO (R_AVR_HI8_LDI_PM_NEG, /* type */
|
361 |
|
|
9, /* rightshift */
|
362 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
363 |
|
|
8, /* bitsize */
|
364 |
|
|
FALSE, /* pc_relative */
|
365 |
|
|
0, /* bitpos */
|
366 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
367 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
368 |
|
|
"R_AVR_HI8_LDI_PM_NEG", /* name */
|
369 |
|
|
FALSE, /* partial_inplace */
|
370 |
|
|
0xffff, /* src_mask */
|
371 |
|
|
0xffff, /* dst_mask */
|
372 |
|
|
FALSE), /* pcrel_offset */
|
373 |
|
|
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
374 |
|
|
For LDI command. Will not be changed when linker stubs are needed. */
|
375 |
|
|
HOWTO (R_AVR_HH8_LDI_PM_NEG, /* type */
|
376 |
|
|
17, /* rightshift */
|
377 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
378 |
|
|
8, /* bitsize */
|
379 |
|
|
FALSE, /* pc_relative */
|
380 |
|
|
0, /* bitpos */
|
381 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
382 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
383 |
|
|
"R_AVR_HH8_LDI_PM_NEG", /* name */
|
384 |
|
|
FALSE, /* partial_inplace */
|
385 |
|
|
0xffff, /* src_mask */
|
386 |
|
|
0xffff, /* dst_mask */
|
387 |
|
|
FALSE), /* pcrel_offset */
|
388 |
|
|
/* Relocation for CALL command in ATmega. */
|
389 |
|
|
HOWTO (R_AVR_CALL, /* type */
|
390 |
|
|
1, /* rightshift */
|
391 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
392 |
|
|
23, /* bitsize */
|
393 |
|
|
FALSE, /* pc_relative */
|
394 |
|
|
0, /* bitpos */
|
395 |
|
|
complain_overflow_dont,/* complain_on_overflow */
|
396 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
397 |
|
|
"R_AVR_CALL", /* name */
|
398 |
|
|
FALSE, /* partial_inplace */
|
399 |
|
|
0xffffffff, /* src_mask */
|
400 |
|
|
0xffffffff, /* dst_mask */
|
401 |
|
|
FALSE), /* pcrel_offset */
|
402 |
|
|
/* A 16 bit absolute relocation of 16 bit address.
|
403 |
|
|
For LDI command. */
|
404 |
|
|
HOWTO (R_AVR_LDI, /* type */
|
405 |
|
|
0, /* rightshift */
|
406 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
407 |
|
|
16, /* bitsize */
|
408 |
|
|
FALSE, /* pc_relative */
|
409 |
|
|
0, /* bitpos */
|
410 |
|
|
complain_overflow_dont,/* complain_on_overflow */
|
411 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
412 |
|
|
"R_AVR_LDI", /* name */
|
413 |
|
|
FALSE, /* partial_inplace */
|
414 |
|
|
0xffff, /* src_mask */
|
415 |
|
|
0xffff, /* dst_mask */
|
416 |
|
|
FALSE), /* pcrel_offset */
|
417 |
|
|
/* A 6 bit absolute relocation of 6 bit offset.
|
418 |
|
|
For ldd/sdd command. */
|
419 |
|
|
HOWTO (R_AVR_6, /* type */
|
420 |
|
|
0, /* rightshift */
|
421 |
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
422 |
|
|
6, /* bitsize */
|
423 |
|
|
FALSE, /* pc_relative */
|
424 |
|
|
0, /* bitpos */
|
425 |
|
|
complain_overflow_dont,/* complain_on_overflow */
|
426 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
427 |
|
|
"R_AVR_6", /* name */
|
428 |
|
|
FALSE, /* partial_inplace */
|
429 |
|
|
0xffff, /* src_mask */
|
430 |
|
|
0xffff, /* dst_mask */
|
431 |
|
|
FALSE), /* pcrel_offset */
|
432 |
|
|
/* A 6 bit absolute relocation of 6 bit offset.
|
433 |
|
|
For sbiw/adiw command. */
|
434 |
|
|
HOWTO (R_AVR_6_ADIW, /* type */
|
435 |
|
|
0, /* rightshift */
|
436 |
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
437 |
|
|
6, /* bitsize */
|
438 |
|
|
FALSE, /* pc_relative */
|
439 |
|
|
0, /* bitpos */
|
440 |
|
|
complain_overflow_dont,/* complain_on_overflow */
|
441 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
442 |
|
|
"R_AVR_6_ADIW", /* name */
|
443 |
|
|
FALSE, /* partial_inplace */
|
444 |
|
|
0xffff, /* src_mask */
|
445 |
|
|
0xffff, /* dst_mask */
|
446 |
|
|
FALSE), /* pcrel_offset */
|
447 |
|
|
/* Most significant 8 bit value of a 32 bit link-time constant. */
|
448 |
|
|
HOWTO (R_AVR_MS8_LDI, /* type */
|
449 |
|
|
24, /* rightshift */
|
450 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
451 |
|
|
8, /* bitsize */
|
452 |
|
|
FALSE, /* pc_relative */
|
453 |
|
|
0, /* bitpos */
|
454 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
455 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
456 |
|
|
"R_AVR_MS8_LDI", /* name */
|
457 |
|
|
FALSE, /* partial_inplace */
|
458 |
|
|
0xffff, /* src_mask */
|
459 |
|
|
0xffff, /* dst_mask */
|
460 |
|
|
FALSE), /* pcrel_offset */
|
461 |
|
|
/* Negative most significant 8 bit value of a 32 bit link-time constant. */
|
462 |
|
|
HOWTO (R_AVR_MS8_LDI_NEG, /* type */
|
463 |
|
|
24, /* rightshift */
|
464 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
465 |
|
|
8, /* bitsize */
|
466 |
|
|
FALSE, /* pc_relative */
|
467 |
|
|
0, /* bitpos */
|
468 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
469 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
470 |
|
|
"R_AVR_MS8_LDI_NEG", /* name */
|
471 |
|
|
FALSE, /* partial_inplace */
|
472 |
|
|
0xffff, /* src_mask */
|
473 |
|
|
0xffff, /* dst_mask */
|
474 |
|
|
FALSE), /* pcrel_offset */
|
475 |
|
|
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
476 |
|
|
For LDI command. Will be changed when linker stubs are needed. */
|
477 |
|
|
HOWTO (R_AVR_LO8_LDI_GS, /* type */
|
478 |
|
|
1, /* rightshift */
|
479 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
480 |
|
|
8, /* bitsize */
|
481 |
|
|
FALSE, /* pc_relative */
|
482 |
|
|
0, /* bitpos */
|
483 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
484 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
485 |
|
|
"R_AVR_LO8_LDI_GS", /* name */
|
486 |
|
|
FALSE, /* partial_inplace */
|
487 |
|
|
0xffff, /* src_mask */
|
488 |
|
|
0xffff, /* dst_mask */
|
489 |
|
|
FALSE), /* pcrel_offset */
|
490 |
|
|
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
491 |
|
|
For LDI command. Will be changed when linker stubs are needed. */
|
492 |
|
|
HOWTO (R_AVR_HI8_LDI_GS, /* type */
|
493 |
|
|
9, /* rightshift */
|
494 |
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
495 |
|
|
8, /* bitsize */
|
496 |
|
|
FALSE, /* pc_relative */
|
497 |
|
|
0, /* bitpos */
|
498 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
499 |
|
|
bfd_elf_generic_reloc, /* special_function */
|
500 |
|
|
"R_AVR_HI8_LDI_GS", /* name */
|
501 |
|
|
FALSE, /* partial_inplace */
|
502 |
|
|
0xffff, /* src_mask */
|
503 |
|
|
0xffff, /* dst_mask */
|
504 |
|
|
FALSE) /* pcrel_offset */
|
505 |
|
|
};
|
506 |
|
|
|
507 |
|
|
/* Map BFD reloc types to AVR ELF reloc types. */
|
508 |
|
|
|
509 |
|
|
struct avr_reloc_map
|
510 |
|
|
{
|
511 |
|
|
bfd_reloc_code_real_type bfd_reloc_val;
|
512 |
|
|
unsigned int elf_reloc_val;
|
513 |
|
|
};
|
514 |
|
|
|
515 |
|
|
static const struct avr_reloc_map avr_reloc_map[] =
|
516 |
|
|
{
|
517 |
|
|
{ BFD_RELOC_NONE, R_AVR_NONE },
|
518 |
|
|
{ BFD_RELOC_32, R_AVR_32 },
|
519 |
|
|
{ BFD_RELOC_AVR_7_PCREL, R_AVR_7_PCREL },
|
520 |
|
|
{ BFD_RELOC_AVR_13_PCREL, R_AVR_13_PCREL },
|
521 |
|
|
{ BFD_RELOC_16, R_AVR_16 },
|
522 |
|
|
{ BFD_RELOC_AVR_16_PM, R_AVR_16_PM },
|
523 |
|
|
{ BFD_RELOC_AVR_LO8_LDI, R_AVR_LO8_LDI},
|
524 |
|
|
{ BFD_RELOC_AVR_HI8_LDI, R_AVR_HI8_LDI },
|
525 |
|
|
{ BFD_RELOC_AVR_HH8_LDI, R_AVR_HH8_LDI },
|
526 |
|
|
{ BFD_RELOC_AVR_MS8_LDI, R_AVR_MS8_LDI },
|
527 |
|
|
{ BFD_RELOC_AVR_LO8_LDI_NEG, R_AVR_LO8_LDI_NEG },
|
528 |
|
|
{ BFD_RELOC_AVR_HI8_LDI_NEG, R_AVR_HI8_LDI_NEG },
|
529 |
|
|
{ BFD_RELOC_AVR_HH8_LDI_NEG, R_AVR_HH8_LDI_NEG },
|
530 |
|
|
{ BFD_RELOC_AVR_MS8_LDI_NEG, R_AVR_MS8_LDI_NEG },
|
531 |
|
|
{ BFD_RELOC_AVR_LO8_LDI_PM, R_AVR_LO8_LDI_PM },
|
532 |
|
|
{ BFD_RELOC_AVR_LO8_LDI_GS, R_AVR_LO8_LDI_GS },
|
533 |
|
|
{ BFD_RELOC_AVR_HI8_LDI_PM, R_AVR_HI8_LDI_PM },
|
534 |
|
|
{ BFD_RELOC_AVR_HI8_LDI_GS, R_AVR_HI8_LDI_GS },
|
535 |
|
|
{ BFD_RELOC_AVR_HH8_LDI_PM, R_AVR_HH8_LDI_PM },
|
536 |
|
|
{ BFD_RELOC_AVR_LO8_LDI_PM_NEG, R_AVR_LO8_LDI_PM_NEG },
|
537 |
|
|
{ BFD_RELOC_AVR_HI8_LDI_PM_NEG, R_AVR_HI8_LDI_PM_NEG },
|
538 |
|
|
{ BFD_RELOC_AVR_HH8_LDI_PM_NEG, R_AVR_HH8_LDI_PM_NEG },
|
539 |
|
|
{ BFD_RELOC_AVR_CALL, R_AVR_CALL },
|
540 |
|
|
{ BFD_RELOC_AVR_LDI, R_AVR_LDI },
|
541 |
|
|
{ BFD_RELOC_AVR_6, R_AVR_6 },
|
542 |
|
|
{ BFD_RELOC_AVR_6_ADIW, R_AVR_6_ADIW }
|
543 |
|
|
};
|
544 |
|
|
|
545 |
|
|
/* Meant to be filled one day with the wrap around address for the
|
546 |
|
|
specific device. I.e. should get the value 0x4000 for 16k devices,
|
547 |
|
|
0x8000 for 32k devices and so on.
|
548 |
|
|
|
549 |
|
|
We initialize it here with a value of 0x1000000 resulting in
|
550 |
|
|
that we will never suggest a wrap-around jump during relaxation.
|
551 |
|
|
The logic of the source code later on assumes that in
|
552 |
|
|
avr_pc_wrap_around one single bit is set. */
|
553 |
|
|
static bfd_vma avr_pc_wrap_around = 0x10000000;
|
554 |
|
|
|
555 |
|
|
/* If this variable holds a value different from zero, the linker relaxation
|
556 |
|
|
machine will try to optimize call/ret sequences by a single jump
|
557 |
|
|
instruction. This option could be switched off by a linker switch. */
|
558 |
|
|
static int avr_replace_call_ret_sequences = 1;
|
559 |
|
|
|
560 |
|
|
/* Initialize an entry in the stub hash table. */
|
561 |
|
|
|
562 |
|
|
static struct bfd_hash_entry *
|
563 |
|
|
stub_hash_newfunc (struct bfd_hash_entry *entry,
|
564 |
|
|
struct bfd_hash_table *table,
|
565 |
|
|
const char *string)
|
566 |
|
|
{
|
567 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
568 |
|
|
subclass. */
|
569 |
|
|
if (entry == NULL)
|
570 |
|
|
{
|
571 |
|
|
entry = bfd_hash_allocate (table,
|
572 |
|
|
sizeof (struct elf32_avr_stub_hash_entry));
|
573 |
|
|
if (entry == NULL)
|
574 |
|
|
return entry;
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
/* Call the allocation method of the superclass. */
|
578 |
|
|
entry = bfd_hash_newfunc (entry, table, string);
|
579 |
|
|
if (entry != NULL)
|
580 |
|
|
{
|
581 |
|
|
struct elf32_avr_stub_hash_entry *hsh;
|
582 |
|
|
|
583 |
|
|
/* Initialize the local fields. */
|
584 |
|
|
hsh = avr_stub_hash_entry (entry);
|
585 |
|
|
hsh->stub_offset = 0;
|
586 |
|
|
hsh->target_value = 0;
|
587 |
|
|
}
|
588 |
|
|
|
589 |
|
|
return entry;
|
590 |
|
|
}
|
591 |
|
|
|
592 |
|
|
/* This function is just a straight passthrough to the real
|
593 |
|
|
function in linker.c. Its prupose is so that its address
|
594 |
|
|
can be compared inside the avr_link_hash_table macro. */
|
595 |
|
|
|
596 |
|
|
static struct bfd_hash_entry *
|
597 |
|
|
elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
|
598 |
|
|
struct bfd_hash_table * table,
|
599 |
|
|
const char * string)
|
600 |
|
|
{
|
601 |
|
|
return _bfd_elf_link_hash_newfunc (entry, table, string);
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
/* Create the derived linker hash table. The AVR ELF port uses the derived
|
605 |
|
|
hash table to keep information specific to the AVR ELF linker (without
|
606 |
|
|
using static variables). */
|
607 |
|
|
|
608 |
|
|
static struct bfd_link_hash_table *
|
609 |
|
|
elf32_avr_link_hash_table_create (bfd *abfd)
|
610 |
|
|
{
|
611 |
|
|
struct elf32_avr_link_hash_table *htab;
|
612 |
|
|
bfd_size_type amt = sizeof (*htab);
|
613 |
|
|
|
614 |
|
|
htab = bfd_malloc (amt);
|
615 |
|
|
if (htab == NULL)
|
616 |
|
|
return NULL;
|
617 |
|
|
|
618 |
|
|
if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
|
619 |
|
|
elf32_avr_link_hash_newfunc,
|
620 |
|
|
sizeof (struct elf_link_hash_entry),
|
621 |
|
|
AVR_ELF_DATA))
|
622 |
|
|
{
|
623 |
|
|
free (htab);
|
624 |
|
|
return NULL;
|
625 |
|
|
}
|
626 |
|
|
|
627 |
|
|
/* Init the stub hash table too. */
|
628 |
|
|
if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
|
629 |
|
|
sizeof (struct elf32_avr_stub_hash_entry)))
|
630 |
|
|
return NULL;
|
631 |
|
|
|
632 |
|
|
htab->stub_bfd = NULL;
|
633 |
|
|
htab->stub_sec = NULL;
|
634 |
|
|
|
635 |
|
|
/* Initialize the address mapping table. */
|
636 |
|
|
htab->amt_stub_offsets = NULL;
|
637 |
|
|
htab->amt_destination_addr = NULL;
|
638 |
|
|
htab->amt_entry_cnt = 0;
|
639 |
|
|
htab->amt_max_entry_cnt = 0;
|
640 |
|
|
|
641 |
|
|
return &htab->etab.root;
|
642 |
|
|
}
|
643 |
|
|
|
644 |
|
|
/* Free the derived linker hash table. */
|
645 |
|
|
|
646 |
|
|
static void
|
647 |
|
|
elf32_avr_link_hash_table_free (struct bfd_link_hash_table *btab)
|
648 |
|
|
{
|
649 |
|
|
struct elf32_avr_link_hash_table *htab
|
650 |
|
|
= (struct elf32_avr_link_hash_table *) btab;
|
651 |
|
|
|
652 |
|
|
/* Free the address mapping table. */
|
653 |
|
|
if (htab->amt_stub_offsets != NULL)
|
654 |
|
|
free (htab->amt_stub_offsets);
|
655 |
|
|
if (htab->amt_destination_addr != NULL)
|
656 |
|
|
free (htab->amt_destination_addr);
|
657 |
|
|
|
658 |
|
|
bfd_hash_table_free (&htab->bstab);
|
659 |
|
|
_bfd_generic_link_hash_table_free (btab);
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
/* Calculates the effective distance of a pc relative jump/call. */
|
663 |
|
|
|
664 |
|
|
static int
|
665 |
|
|
avr_relative_distance_considering_wrap_around (unsigned int distance)
|
666 |
|
|
{
|
667 |
|
|
unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
|
668 |
|
|
int dist_with_wrap_around = distance & wrap_around_mask;
|
669 |
|
|
|
670 |
|
|
if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
|
671 |
|
|
dist_with_wrap_around -= avr_pc_wrap_around;
|
672 |
|
|
|
673 |
|
|
return dist_with_wrap_around;
|
674 |
|
|
}
|
675 |
|
|
|
676 |
|
|
|
677 |
|
|
static reloc_howto_type *
|
678 |
|
|
bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
679 |
|
|
bfd_reloc_code_real_type code)
|
680 |
|
|
{
|
681 |
|
|
unsigned int i;
|
682 |
|
|
|
683 |
|
|
for (i = 0;
|
684 |
|
|
i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
|
685 |
|
|
i++)
|
686 |
|
|
if (avr_reloc_map[i].bfd_reloc_val == code)
|
687 |
|
|
return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
|
688 |
|
|
|
689 |
|
|
return NULL;
|
690 |
|
|
}
|
691 |
|
|
|
692 |
|
|
static reloc_howto_type *
|
693 |
|
|
bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
694 |
|
|
const char *r_name)
|
695 |
|
|
{
|
696 |
|
|
unsigned int i;
|
697 |
|
|
|
698 |
|
|
for (i = 0;
|
699 |
|
|
i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
|
700 |
|
|
i++)
|
701 |
|
|
if (elf_avr_howto_table[i].name != NULL
|
702 |
|
|
&& strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
|
703 |
|
|
return &elf_avr_howto_table[i];
|
704 |
|
|
|
705 |
|
|
return NULL;
|
706 |
|
|
}
|
707 |
|
|
|
708 |
|
|
/* Set the howto pointer for an AVR ELF reloc. */
|
709 |
|
|
|
710 |
|
|
static void
|
711 |
|
|
avr_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
|
712 |
|
|
arelent *cache_ptr,
|
713 |
|
|
Elf_Internal_Rela *dst)
|
714 |
|
|
{
|
715 |
|
|
unsigned int r_type;
|
716 |
|
|
|
717 |
|
|
r_type = ELF32_R_TYPE (dst->r_info);
|
718 |
|
|
BFD_ASSERT (r_type < (unsigned int) R_AVR_max);
|
719 |
|
|
cache_ptr->howto = &elf_avr_howto_table[r_type];
|
720 |
|
|
}
|
721 |
|
|
|
722 |
|
|
/* Look through the relocs for a section during the first phase.
|
723 |
|
|
Since we don't do .gots or .plts, we just need to consider the
|
724 |
|
|
virtual table relocs for gc. */
|
725 |
|
|
|
726 |
|
|
static bfd_boolean
|
727 |
|
|
elf32_avr_check_relocs (bfd *abfd,
|
728 |
|
|
struct bfd_link_info *info,
|
729 |
|
|
asection *sec,
|
730 |
|
|
const Elf_Internal_Rela *relocs)
|
731 |
|
|
{
|
732 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
733 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
734 |
|
|
const Elf_Internal_Rela *rel;
|
735 |
|
|
const Elf_Internal_Rela *rel_end;
|
736 |
|
|
|
737 |
|
|
if (info->relocatable)
|
738 |
|
|
return TRUE;
|
739 |
|
|
|
740 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
741 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
742 |
|
|
|
743 |
|
|
rel_end = relocs + sec->reloc_count;
|
744 |
|
|
for (rel = relocs; rel < rel_end; rel++)
|
745 |
|
|
{
|
746 |
|
|
struct elf_link_hash_entry *h;
|
747 |
|
|
unsigned long r_symndx;
|
748 |
|
|
|
749 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
750 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
751 |
|
|
h = NULL;
|
752 |
|
|
else
|
753 |
|
|
{
|
754 |
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
755 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
756 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
757 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
758 |
|
|
}
|
759 |
|
|
}
|
760 |
|
|
|
761 |
|
|
return TRUE;
|
762 |
|
|
}
|
763 |
|
|
|
764 |
|
|
static bfd_boolean
|
765 |
|
|
avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
|
766 |
|
|
{
|
767 |
|
|
return (relocation >= 0x020000);
|
768 |
|
|
}
|
769 |
|
|
|
770 |
|
|
/* Returns the address of the corresponding stub if there is one.
|
771 |
|
|
Returns otherwise an address above 0x020000. This function
|
772 |
|
|
could also be used, if there is no knowledge on the section where
|
773 |
|
|
the destination is found. */
|
774 |
|
|
|
775 |
|
|
static bfd_vma
|
776 |
|
|
avr_get_stub_addr (bfd_vma srel,
|
777 |
|
|
struct elf32_avr_link_hash_table *htab)
|
778 |
|
|
{
|
779 |
|
|
unsigned int sindex;
|
780 |
|
|
bfd_vma stub_sec_addr =
|
781 |
|
|
(htab->stub_sec->output_section->vma +
|
782 |
|
|
htab->stub_sec->output_offset);
|
783 |
|
|
|
784 |
|
|
for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++)
|
785 |
|
|
if (htab->amt_destination_addr[sindex] == srel)
|
786 |
|
|
return htab->amt_stub_offsets[sindex] + stub_sec_addr;
|
787 |
|
|
|
788 |
|
|
/* Return an address that could not be reached by 16 bit relocs. */
|
789 |
|
|
return 0x020000;
|
790 |
|
|
}
|
791 |
|
|
|
792 |
|
|
/* Perform a single relocation. By default we use the standard BFD
|
793 |
|
|
routines, but a few relocs, we have to do them ourselves. */
|
794 |
|
|
|
795 |
|
|
static bfd_reloc_status_type
|
796 |
|
|
avr_final_link_relocate (reloc_howto_type * howto,
|
797 |
|
|
bfd * input_bfd,
|
798 |
|
|
asection * input_section,
|
799 |
|
|
bfd_byte * contents,
|
800 |
|
|
Elf_Internal_Rela * rel,
|
801 |
|
|
bfd_vma relocation,
|
802 |
|
|
struct elf32_avr_link_hash_table * htab)
|
803 |
|
|
{
|
804 |
|
|
bfd_reloc_status_type r = bfd_reloc_ok;
|
805 |
|
|
bfd_vma x;
|
806 |
|
|
bfd_signed_vma srel;
|
807 |
|
|
bfd_signed_vma reloc_addr;
|
808 |
|
|
bfd_boolean use_stubs = FALSE;
|
809 |
|
|
/* Usually is 0, unless we are generating code for a bootloader. */
|
810 |
|
|
bfd_signed_vma base_addr = htab->vector_base;
|
811 |
|
|
|
812 |
|
|
/* Absolute addr of the reloc in the final excecutable. */
|
813 |
|
|
reloc_addr = rel->r_offset + input_section->output_section->vma
|
814 |
|
|
+ input_section->output_offset;
|
815 |
|
|
|
816 |
|
|
switch (howto->type)
|
817 |
|
|
{
|
818 |
|
|
case R_AVR_7_PCREL:
|
819 |
|
|
contents += rel->r_offset;
|
820 |
|
|
srel = (bfd_signed_vma) relocation;
|
821 |
|
|
srel += rel->r_addend;
|
822 |
|
|
srel -= rel->r_offset;
|
823 |
|
|
srel -= 2; /* Branch instructions add 2 to the PC... */
|
824 |
|
|
srel -= (input_section->output_section->vma +
|
825 |
|
|
input_section->output_offset);
|
826 |
|
|
|
827 |
|
|
if (srel & 1)
|
828 |
|
|
return bfd_reloc_outofrange;
|
829 |
|
|
if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
|
830 |
|
|
return bfd_reloc_overflow;
|
831 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
832 |
|
|
x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
|
833 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
834 |
|
|
break;
|
835 |
|
|
|
836 |
|
|
case R_AVR_13_PCREL:
|
837 |
|
|
contents += rel->r_offset;
|
838 |
|
|
srel = (bfd_signed_vma) relocation;
|
839 |
|
|
srel += rel->r_addend;
|
840 |
|
|
srel -= rel->r_offset;
|
841 |
|
|
srel -= 2; /* Branch instructions add 2 to the PC... */
|
842 |
|
|
srel -= (input_section->output_section->vma +
|
843 |
|
|
input_section->output_offset);
|
844 |
|
|
|
845 |
|
|
if (srel & 1)
|
846 |
|
|
return bfd_reloc_outofrange;
|
847 |
|
|
|
848 |
|
|
srel = avr_relative_distance_considering_wrap_around (srel);
|
849 |
|
|
|
850 |
|
|
/* AVR addresses commands as words. */
|
851 |
|
|
srel >>= 1;
|
852 |
|
|
|
853 |
|
|
/* Check for overflow. */
|
854 |
|
|
if (srel < -2048 || srel > 2047)
|
855 |
|
|
{
|
856 |
|
|
/* Relative distance is too large. */
|
857 |
|
|
|
858 |
|
|
/* Always apply WRAPAROUND for avr2, avr25, and avr4. */
|
859 |
|
|
switch (bfd_get_mach (input_bfd))
|
860 |
|
|
{
|
861 |
|
|
case bfd_mach_avr2:
|
862 |
|
|
case bfd_mach_avr25:
|
863 |
|
|
case bfd_mach_avr4:
|
864 |
|
|
break;
|
865 |
|
|
|
866 |
|
|
default:
|
867 |
|
|
return bfd_reloc_overflow;
|
868 |
|
|
}
|
869 |
|
|
}
|
870 |
|
|
|
871 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
872 |
|
|
x = (x & 0xf000) | (srel & 0xfff);
|
873 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
874 |
|
|
break;
|
875 |
|
|
|
876 |
|
|
case R_AVR_LO8_LDI:
|
877 |
|
|
contents += rel->r_offset;
|
878 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
879 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
880 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
881 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
882 |
|
|
break;
|
883 |
|
|
|
884 |
|
|
case R_AVR_LDI:
|
885 |
|
|
contents += rel->r_offset;
|
886 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
887 |
|
|
if (((srel > 0) && (srel & 0xffff) > 255)
|
888 |
|
|
|| ((srel < 0) && ((-srel) & 0xffff) > 128))
|
889 |
|
|
/* Remove offset for data/eeprom section. */
|
890 |
|
|
return bfd_reloc_overflow;
|
891 |
|
|
|
892 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
893 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
894 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
895 |
|
|
break;
|
896 |
|
|
|
897 |
|
|
case R_AVR_6:
|
898 |
|
|
contents += rel->r_offset;
|
899 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
900 |
|
|
if (((srel & 0xffff) > 63) || (srel < 0))
|
901 |
|
|
/* Remove offset for data/eeprom section. */
|
902 |
|
|
return bfd_reloc_overflow;
|
903 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
904 |
|
|
x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
|
905 |
|
|
| ((srel & (1 << 5)) << 8));
|
906 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
907 |
|
|
break;
|
908 |
|
|
|
909 |
|
|
case R_AVR_6_ADIW:
|
910 |
|
|
contents += rel->r_offset;
|
911 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
912 |
|
|
if (((srel & 0xffff) > 63) || (srel < 0))
|
913 |
|
|
/* Remove offset for data/eeprom section. */
|
914 |
|
|
return bfd_reloc_overflow;
|
915 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
916 |
|
|
x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
|
917 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
918 |
|
|
break;
|
919 |
|
|
|
920 |
|
|
case R_AVR_HI8_LDI:
|
921 |
|
|
contents += rel->r_offset;
|
922 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
923 |
|
|
srel = (srel >> 8) & 0xff;
|
924 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
925 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
926 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
927 |
|
|
break;
|
928 |
|
|
|
929 |
|
|
case R_AVR_HH8_LDI:
|
930 |
|
|
contents += rel->r_offset;
|
931 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
932 |
|
|
srel = (srel >> 16) & 0xff;
|
933 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
934 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
935 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
936 |
|
|
break;
|
937 |
|
|
|
938 |
|
|
case R_AVR_MS8_LDI:
|
939 |
|
|
contents += rel->r_offset;
|
940 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
941 |
|
|
srel = (srel >> 24) & 0xff;
|
942 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
943 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
944 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
945 |
|
|
break;
|
946 |
|
|
|
947 |
|
|
case R_AVR_LO8_LDI_NEG:
|
948 |
|
|
contents += rel->r_offset;
|
949 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
950 |
|
|
srel = -srel;
|
951 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
952 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
953 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
954 |
|
|
break;
|
955 |
|
|
|
956 |
|
|
case R_AVR_HI8_LDI_NEG:
|
957 |
|
|
contents += rel->r_offset;
|
958 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
959 |
|
|
srel = -srel;
|
960 |
|
|
srel = (srel >> 8) & 0xff;
|
961 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
962 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
963 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
964 |
|
|
break;
|
965 |
|
|
|
966 |
|
|
case R_AVR_HH8_LDI_NEG:
|
967 |
|
|
contents += rel->r_offset;
|
968 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
969 |
|
|
srel = -srel;
|
970 |
|
|
srel = (srel >> 16) & 0xff;
|
971 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
972 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
973 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
974 |
|
|
break;
|
975 |
|
|
|
976 |
|
|
case R_AVR_MS8_LDI_NEG:
|
977 |
|
|
contents += rel->r_offset;
|
978 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
979 |
|
|
srel = -srel;
|
980 |
|
|
srel = (srel >> 24) & 0xff;
|
981 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
982 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
983 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
984 |
|
|
break;
|
985 |
|
|
|
986 |
|
|
case R_AVR_LO8_LDI_GS:
|
987 |
|
|
use_stubs = (!htab->no_stubs);
|
988 |
|
|
/* Fall through. */
|
989 |
|
|
case R_AVR_LO8_LDI_PM:
|
990 |
|
|
contents += rel->r_offset;
|
991 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
992 |
|
|
|
993 |
|
|
if (use_stubs
|
994 |
|
|
&& avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
|
995 |
|
|
{
|
996 |
|
|
bfd_vma old_srel = srel;
|
997 |
|
|
|
998 |
|
|
/* We need to use the address of the stub instead. */
|
999 |
|
|
srel = avr_get_stub_addr (srel, htab);
|
1000 |
|
|
if (debug_stubs)
|
1001 |
|
|
printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
|
1002 |
|
|
"reloc at address 0x%x.\n",
|
1003 |
|
|
(unsigned int) srel,
|
1004 |
|
|
(unsigned int) old_srel,
|
1005 |
|
|
(unsigned int) reloc_addr);
|
1006 |
|
|
|
1007 |
|
|
if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
|
1008 |
|
|
return bfd_reloc_outofrange;
|
1009 |
|
|
}
|
1010 |
|
|
|
1011 |
|
|
if (srel & 1)
|
1012 |
|
|
return bfd_reloc_outofrange;
|
1013 |
|
|
srel = srel >> 1;
|
1014 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
1015 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
1016 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
1017 |
|
|
break;
|
1018 |
|
|
|
1019 |
|
|
case R_AVR_HI8_LDI_GS:
|
1020 |
|
|
use_stubs = (!htab->no_stubs);
|
1021 |
|
|
/* Fall through. */
|
1022 |
|
|
case R_AVR_HI8_LDI_PM:
|
1023 |
|
|
contents += rel->r_offset;
|
1024 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
1025 |
|
|
|
1026 |
|
|
if (use_stubs
|
1027 |
|
|
&& avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
|
1028 |
|
|
{
|
1029 |
|
|
bfd_vma old_srel = srel;
|
1030 |
|
|
|
1031 |
|
|
/* We need to use the address of the stub instead. */
|
1032 |
|
|
srel = avr_get_stub_addr (srel, htab);
|
1033 |
|
|
if (debug_stubs)
|
1034 |
|
|
printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
|
1035 |
|
|
"reloc at address 0x%x.\n",
|
1036 |
|
|
(unsigned int) srel,
|
1037 |
|
|
(unsigned int) old_srel,
|
1038 |
|
|
(unsigned int) reloc_addr);
|
1039 |
|
|
|
1040 |
|
|
if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
|
1041 |
|
|
return bfd_reloc_outofrange;
|
1042 |
|
|
}
|
1043 |
|
|
|
1044 |
|
|
if (srel & 1)
|
1045 |
|
|
return bfd_reloc_outofrange;
|
1046 |
|
|
srel = srel >> 1;
|
1047 |
|
|
srel = (srel >> 8) & 0xff;
|
1048 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
1049 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
1050 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
1051 |
|
|
break;
|
1052 |
|
|
|
1053 |
|
|
case R_AVR_HH8_LDI_PM:
|
1054 |
|
|
contents += rel->r_offset;
|
1055 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
1056 |
|
|
if (srel & 1)
|
1057 |
|
|
return bfd_reloc_outofrange;
|
1058 |
|
|
srel = srel >> 1;
|
1059 |
|
|
srel = (srel >> 16) & 0xff;
|
1060 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
1061 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
1062 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
1063 |
|
|
break;
|
1064 |
|
|
|
1065 |
|
|
case R_AVR_LO8_LDI_PM_NEG:
|
1066 |
|
|
contents += rel->r_offset;
|
1067 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
1068 |
|
|
srel = -srel;
|
1069 |
|
|
if (srel & 1)
|
1070 |
|
|
return bfd_reloc_outofrange;
|
1071 |
|
|
srel = srel >> 1;
|
1072 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
1073 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
1074 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
1075 |
|
|
break;
|
1076 |
|
|
|
1077 |
|
|
case R_AVR_HI8_LDI_PM_NEG:
|
1078 |
|
|
contents += rel->r_offset;
|
1079 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
1080 |
|
|
srel = -srel;
|
1081 |
|
|
if (srel & 1)
|
1082 |
|
|
return bfd_reloc_outofrange;
|
1083 |
|
|
srel = srel >> 1;
|
1084 |
|
|
srel = (srel >> 8) & 0xff;
|
1085 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
1086 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
1087 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
1088 |
|
|
break;
|
1089 |
|
|
|
1090 |
|
|
case R_AVR_HH8_LDI_PM_NEG:
|
1091 |
|
|
contents += rel->r_offset;
|
1092 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
1093 |
|
|
srel = -srel;
|
1094 |
|
|
if (srel & 1)
|
1095 |
|
|
return bfd_reloc_outofrange;
|
1096 |
|
|
srel = srel >> 1;
|
1097 |
|
|
srel = (srel >> 16) & 0xff;
|
1098 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
1099 |
|
|
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
1100 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
1101 |
|
|
break;
|
1102 |
|
|
|
1103 |
|
|
case R_AVR_CALL:
|
1104 |
|
|
contents += rel->r_offset;
|
1105 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
1106 |
|
|
if (srel & 1)
|
1107 |
|
|
return bfd_reloc_outofrange;
|
1108 |
|
|
srel = srel >> 1;
|
1109 |
|
|
x = bfd_get_16 (input_bfd, contents);
|
1110 |
|
|
x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
|
1111 |
|
|
bfd_put_16 (input_bfd, x, contents);
|
1112 |
|
|
bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
|
1113 |
|
|
break;
|
1114 |
|
|
|
1115 |
|
|
case R_AVR_16_PM:
|
1116 |
|
|
use_stubs = (!htab->no_stubs);
|
1117 |
|
|
contents += rel->r_offset;
|
1118 |
|
|
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
1119 |
|
|
|
1120 |
|
|
if (use_stubs
|
1121 |
|
|
&& avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
|
1122 |
|
|
{
|
1123 |
|
|
bfd_vma old_srel = srel;
|
1124 |
|
|
|
1125 |
|
|
/* We need to use the address of the stub instead. */
|
1126 |
|
|
srel = avr_get_stub_addr (srel,htab);
|
1127 |
|
|
if (debug_stubs)
|
1128 |
|
|
printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
|
1129 |
|
|
"reloc at address 0x%x.\n",
|
1130 |
|
|
(unsigned int) srel,
|
1131 |
|
|
(unsigned int) old_srel,
|
1132 |
|
|
(unsigned int) reloc_addr);
|
1133 |
|
|
|
1134 |
|
|
if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
|
1135 |
|
|
return bfd_reloc_outofrange;
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
if (srel & 1)
|
1139 |
|
|
return bfd_reloc_outofrange;
|
1140 |
|
|
srel = srel >> 1;
|
1141 |
|
|
bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
|
1142 |
|
|
break;
|
1143 |
|
|
|
1144 |
|
|
default:
|
1145 |
|
|
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
1146 |
|
|
contents, rel->r_offset,
|
1147 |
|
|
relocation, rel->r_addend);
|
1148 |
|
|
}
|
1149 |
|
|
|
1150 |
|
|
return r;
|
1151 |
|
|
}
|
1152 |
|
|
|
1153 |
|
|
/* Relocate an AVR ELF section. */
|
1154 |
|
|
|
1155 |
|
|
static bfd_boolean
|
1156 |
|
|
elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
|
1157 |
|
|
struct bfd_link_info *info,
|
1158 |
|
|
bfd *input_bfd,
|
1159 |
|
|
asection *input_section,
|
1160 |
|
|
bfd_byte *contents,
|
1161 |
|
|
Elf_Internal_Rela *relocs,
|
1162 |
|
|
Elf_Internal_Sym *local_syms,
|
1163 |
|
|
asection **local_sections)
|
1164 |
|
|
{
|
1165 |
|
|
Elf_Internal_Shdr * symtab_hdr;
|
1166 |
|
|
struct elf_link_hash_entry ** sym_hashes;
|
1167 |
|
|
Elf_Internal_Rela * rel;
|
1168 |
|
|
Elf_Internal_Rela * relend;
|
1169 |
|
|
struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
|
1170 |
|
|
|
1171 |
|
|
if (htab == NULL)
|
1172 |
|
|
return FALSE;
|
1173 |
|
|
|
1174 |
|
|
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
|
1175 |
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
1176 |
|
|
relend = relocs + input_section->reloc_count;
|
1177 |
|
|
|
1178 |
|
|
for (rel = relocs; rel < relend; rel ++)
|
1179 |
|
|
{
|
1180 |
|
|
reloc_howto_type * howto;
|
1181 |
|
|
unsigned long r_symndx;
|
1182 |
|
|
Elf_Internal_Sym * sym;
|
1183 |
|
|
asection * sec;
|
1184 |
|
|
struct elf_link_hash_entry * h;
|
1185 |
|
|
bfd_vma relocation;
|
1186 |
|
|
bfd_reloc_status_type r;
|
1187 |
|
|
const char * name;
|
1188 |
|
|
int r_type;
|
1189 |
|
|
|
1190 |
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
1191 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
1192 |
|
|
howto = elf_avr_howto_table + ELF32_R_TYPE (rel->r_info);
|
1193 |
|
|
h = NULL;
|
1194 |
|
|
sym = NULL;
|
1195 |
|
|
sec = NULL;
|
1196 |
|
|
|
1197 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
1198 |
|
|
{
|
1199 |
|
|
sym = local_syms + r_symndx;
|
1200 |
|
|
sec = local_sections [r_symndx];
|
1201 |
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
1202 |
|
|
|
1203 |
|
|
name = bfd_elf_string_from_elf_section
|
1204 |
|
|
(input_bfd, symtab_hdr->sh_link, sym->st_name);
|
1205 |
|
|
name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
|
1206 |
|
|
}
|
1207 |
|
|
else
|
1208 |
|
|
{
|
1209 |
|
|
bfd_boolean unresolved_reloc, warned;
|
1210 |
|
|
|
1211 |
|
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
1212 |
|
|
r_symndx, symtab_hdr, sym_hashes,
|
1213 |
|
|
h, sec, relocation,
|
1214 |
|
|
unresolved_reloc, warned);
|
1215 |
|
|
|
1216 |
|
|
name = h->root.root.string;
|
1217 |
|
|
}
|
1218 |
|
|
|
1219 |
|
|
if (sec != NULL && elf_discarded_section (sec))
|
1220 |
|
|
{
|
1221 |
|
|
/* For relocs against symbols from removed linkonce sections,
|
1222 |
|
|
or sections discarded by a linker script, we just want the
|
1223 |
|
|
section contents zeroed. Avoid any special processing. */
|
1224 |
|
|
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
|
1225 |
|
|
rel->r_info = 0;
|
1226 |
|
|
rel->r_addend = 0;
|
1227 |
|
|
continue;
|
1228 |
|
|
}
|
1229 |
|
|
|
1230 |
|
|
if (info->relocatable)
|
1231 |
|
|
continue;
|
1232 |
|
|
|
1233 |
|
|
r = avr_final_link_relocate (howto, input_bfd, input_section,
|
1234 |
|
|
contents, rel, relocation, htab);
|
1235 |
|
|
|
1236 |
|
|
if (r != bfd_reloc_ok)
|
1237 |
|
|
{
|
1238 |
|
|
const char * msg = (const char *) NULL;
|
1239 |
|
|
|
1240 |
|
|
switch (r)
|
1241 |
|
|
{
|
1242 |
|
|
case bfd_reloc_overflow:
|
1243 |
|
|
r = info->callbacks->reloc_overflow
|
1244 |
|
|
(info, (h ? &h->root : NULL),
|
1245 |
|
|
name, howto->name, (bfd_vma) 0,
|
1246 |
|
|
input_bfd, input_section, rel->r_offset);
|
1247 |
|
|
break;
|
1248 |
|
|
|
1249 |
|
|
case bfd_reloc_undefined:
|
1250 |
|
|
r = info->callbacks->undefined_symbol
|
1251 |
|
|
(info, name, input_bfd, input_section, rel->r_offset, TRUE);
|
1252 |
|
|
break;
|
1253 |
|
|
|
1254 |
|
|
case bfd_reloc_outofrange:
|
1255 |
|
|
msg = _("internal error: out of range error");
|
1256 |
|
|
break;
|
1257 |
|
|
|
1258 |
|
|
case bfd_reloc_notsupported:
|
1259 |
|
|
msg = _("internal error: unsupported relocation error");
|
1260 |
|
|
break;
|
1261 |
|
|
|
1262 |
|
|
case bfd_reloc_dangerous:
|
1263 |
|
|
msg = _("internal error: dangerous relocation");
|
1264 |
|
|
break;
|
1265 |
|
|
|
1266 |
|
|
default:
|
1267 |
|
|
msg = _("internal error: unknown error");
|
1268 |
|
|
break;
|
1269 |
|
|
}
|
1270 |
|
|
|
1271 |
|
|
if (msg)
|
1272 |
|
|
r = info->callbacks->warning
|
1273 |
|
|
(info, msg, name, input_bfd, input_section, rel->r_offset);
|
1274 |
|
|
|
1275 |
|
|
if (! r)
|
1276 |
|
|
return FALSE;
|
1277 |
|
|
}
|
1278 |
|
|
}
|
1279 |
|
|
|
1280 |
|
|
return TRUE;
|
1281 |
|
|
}
|
1282 |
|
|
|
1283 |
|
|
/* The final processing done just before writing out a AVR ELF object
|
1284 |
|
|
file. This gets the AVR architecture right based on the machine
|
1285 |
|
|
number. */
|
1286 |
|
|
|
1287 |
|
|
static void
|
1288 |
|
|
bfd_elf_avr_final_write_processing (bfd *abfd,
|
1289 |
|
|
bfd_boolean linker ATTRIBUTE_UNUSED)
|
1290 |
|
|
{
|
1291 |
|
|
unsigned long val;
|
1292 |
|
|
|
1293 |
|
|
switch (bfd_get_mach (abfd))
|
1294 |
|
|
{
|
1295 |
|
|
default:
|
1296 |
|
|
case bfd_mach_avr2:
|
1297 |
|
|
val = E_AVR_MACH_AVR2;
|
1298 |
|
|
break;
|
1299 |
|
|
|
1300 |
|
|
case bfd_mach_avr1:
|
1301 |
|
|
val = E_AVR_MACH_AVR1;
|
1302 |
|
|
break;
|
1303 |
|
|
|
1304 |
|
|
case bfd_mach_avr25:
|
1305 |
|
|
val = E_AVR_MACH_AVR25;
|
1306 |
|
|
break;
|
1307 |
|
|
|
1308 |
|
|
case bfd_mach_avr3:
|
1309 |
|
|
val = E_AVR_MACH_AVR3;
|
1310 |
|
|
break;
|
1311 |
|
|
|
1312 |
|
|
case bfd_mach_avr31:
|
1313 |
|
|
val = E_AVR_MACH_AVR31;
|
1314 |
|
|
break;
|
1315 |
|
|
|
1316 |
|
|
case bfd_mach_avr35:
|
1317 |
|
|
val = E_AVR_MACH_AVR35;
|
1318 |
|
|
break;
|
1319 |
|
|
|
1320 |
|
|
case bfd_mach_avr4:
|
1321 |
|
|
val = E_AVR_MACH_AVR4;
|
1322 |
|
|
break;
|
1323 |
|
|
|
1324 |
|
|
case bfd_mach_avr5:
|
1325 |
|
|
val = E_AVR_MACH_AVR5;
|
1326 |
|
|
break;
|
1327 |
|
|
|
1328 |
|
|
case bfd_mach_avr51:
|
1329 |
|
|
val = E_AVR_MACH_AVR51;
|
1330 |
|
|
break;
|
1331 |
|
|
|
1332 |
|
|
case bfd_mach_avr6:
|
1333 |
|
|
val = E_AVR_MACH_AVR6;
|
1334 |
|
|
break;
|
1335 |
|
|
}
|
1336 |
|
|
|
1337 |
|
|
elf_elfheader (abfd)->e_machine = EM_AVR;
|
1338 |
|
|
elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
|
1339 |
|
|
elf_elfheader (abfd)->e_flags |= val;
|
1340 |
|
|
elf_elfheader (abfd)->e_flags |= EF_AVR_LINKRELAX_PREPARED;
|
1341 |
|
|
}
|
1342 |
|
|
|
1343 |
|
|
/* Set the right machine number. */
|
1344 |
|
|
|
1345 |
|
|
static bfd_boolean
|
1346 |
|
|
elf32_avr_object_p (bfd *abfd)
|
1347 |
|
|
{
|
1348 |
|
|
unsigned int e_set = bfd_mach_avr2;
|
1349 |
|
|
|
1350 |
|
|
if (elf_elfheader (abfd)->e_machine == EM_AVR
|
1351 |
|
|
|| elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
|
1352 |
|
|
{
|
1353 |
|
|
int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
|
1354 |
|
|
|
1355 |
|
|
switch (e_mach)
|
1356 |
|
|
{
|
1357 |
|
|
default:
|
1358 |
|
|
case E_AVR_MACH_AVR2:
|
1359 |
|
|
e_set = bfd_mach_avr2;
|
1360 |
|
|
break;
|
1361 |
|
|
|
1362 |
|
|
case E_AVR_MACH_AVR1:
|
1363 |
|
|
e_set = bfd_mach_avr1;
|
1364 |
|
|
break;
|
1365 |
|
|
|
1366 |
|
|
case E_AVR_MACH_AVR25:
|
1367 |
|
|
e_set = bfd_mach_avr25;
|
1368 |
|
|
break;
|
1369 |
|
|
|
1370 |
|
|
case E_AVR_MACH_AVR3:
|
1371 |
|
|
e_set = bfd_mach_avr3;
|
1372 |
|
|
break;
|
1373 |
|
|
|
1374 |
|
|
case E_AVR_MACH_AVR31:
|
1375 |
|
|
e_set = bfd_mach_avr31;
|
1376 |
|
|
break;
|
1377 |
|
|
|
1378 |
|
|
case E_AVR_MACH_AVR35:
|
1379 |
|
|
e_set = bfd_mach_avr35;
|
1380 |
|
|
break;
|
1381 |
|
|
|
1382 |
|
|
case E_AVR_MACH_AVR4:
|
1383 |
|
|
e_set = bfd_mach_avr4;
|
1384 |
|
|
break;
|
1385 |
|
|
|
1386 |
|
|
case E_AVR_MACH_AVR5:
|
1387 |
|
|
e_set = bfd_mach_avr5;
|
1388 |
|
|
break;
|
1389 |
|
|
|
1390 |
|
|
case E_AVR_MACH_AVR51:
|
1391 |
|
|
e_set = bfd_mach_avr51;
|
1392 |
|
|
break;
|
1393 |
|
|
|
1394 |
|
|
case E_AVR_MACH_AVR6:
|
1395 |
|
|
e_set = bfd_mach_avr6;
|
1396 |
|
|
break;
|
1397 |
|
|
}
|
1398 |
|
|
}
|
1399 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
|
1400 |
|
|
e_set);
|
1401 |
|
|
}
|
1402 |
|
|
|
1403 |
|
|
|
1404 |
|
|
/* Delete some bytes from a section while changing the size of an instruction.
|
1405 |
|
|
The parameter "addr" denotes the section-relative offset pointing just
|
1406 |
|
|
behind the shrinked instruction. "addr+count" point at the first
|
1407 |
|
|
byte just behind the original unshrinked instruction. */
|
1408 |
|
|
|
1409 |
|
|
static bfd_boolean
|
1410 |
|
|
elf32_avr_relax_delete_bytes (bfd *abfd,
|
1411 |
|
|
asection *sec,
|
1412 |
|
|
bfd_vma addr,
|
1413 |
|
|
int count)
|
1414 |
|
|
{
|
1415 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
1416 |
|
|
unsigned int sec_shndx;
|
1417 |
|
|
bfd_byte *contents;
|
1418 |
|
|
Elf_Internal_Rela *irel, *irelend;
|
1419 |
|
|
Elf_Internal_Rela *irelalign;
|
1420 |
|
|
Elf_Internal_Sym *isym;
|
1421 |
|
|
Elf_Internal_Sym *isymbuf = NULL;
|
1422 |
|
|
bfd_vma toaddr;
|
1423 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
1424 |
|
|
struct elf_link_hash_entry **end_hashes;
|
1425 |
|
|
unsigned int symcount;
|
1426 |
|
|
|
1427 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
1428 |
|
|
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
1429 |
|
|
contents = elf_section_data (sec)->this_hdr.contents;
|
1430 |
|
|
|
1431 |
|
|
/* The deletion must stop at the next ALIGN reloc for an aligment
|
1432 |
|
|
power larger than the number of bytes we are deleting. */
|
1433 |
|
|
|
1434 |
|
|
irelalign = NULL;
|
1435 |
|
|
toaddr = sec->size;
|
1436 |
|
|
|
1437 |
|
|
irel = elf_section_data (sec)->relocs;
|
1438 |
|
|
irelend = irel + sec->reloc_count;
|
1439 |
|
|
|
1440 |
|
|
/* Actually delete the bytes. */
|
1441 |
|
|
if (toaddr - addr - count > 0)
|
1442 |
|
|
memmove (contents + addr, contents + addr + count,
|
1443 |
|
|
(size_t) (toaddr - addr - count));
|
1444 |
|
|
sec->size -= count;
|
1445 |
|
|
|
1446 |
|
|
/* Adjust all the reloc addresses. */
|
1447 |
|
|
for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
|
1448 |
|
|
{
|
1449 |
|
|
bfd_vma old_reloc_address;
|
1450 |
|
|
bfd_vma shrinked_insn_address;
|
1451 |
|
|
|
1452 |
|
|
old_reloc_address = (sec->output_section->vma
|
1453 |
|
|
+ sec->output_offset + irel->r_offset);
|
1454 |
|
|
shrinked_insn_address = (sec->output_section->vma
|
1455 |
|
|
+ sec->output_offset + addr - count);
|
1456 |
|
|
|
1457 |
|
|
/* Get the new reloc address. */
|
1458 |
|
|
if ((irel->r_offset > addr
|
1459 |
|
|
&& irel->r_offset < toaddr))
|
1460 |
|
|
{
|
1461 |
|
|
if (debug_relax)
|
1462 |
|
|
printf ("Relocation at address 0x%x needs to be moved.\n"
|
1463 |
|
|
"Old section offset: 0x%x, New section offset: 0x%x \n",
|
1464 |
|
|
(unsigned int) old_reloc_address,
|
1465 |
|
|
(unsigned int) irel->r_offset,
|
1466 |
|
|
(unsigned int) ((irel->r_offset) - count));
|
1467 |
|
|
|
1468 |
|
|
irel->r_offset -= count;
|
1469 |
|
|
}
|
1470 |
|
|
|
1471 |
|
|
}
|
1472 |
|
|
|
1473 |
|
|
/* The reloc's own addresses are now ok. However, we need to readjust
|
1474 |
|
|
the reloc's addend, i.e. the reloc's value if two conditions are met:
|
1475 |
|
|
1.) the reloc is relative to a symbol in this section that
|
1476 |
|
|
is located in front of the shrinked instruction
|
1477 |
|
|
2.) symbol plus addend end up behind the shrinked instruction.
|
1478 |
|
|
|
1479 |
|
|
The most common case where this happens are relocs relative to
|
1480 |
|
|
the section-start symbol.
|
1481 |
|
|
|
1482 |
|
|
This step needs to be done for all of the sections of the bfd. */
|
1483 |
|
|
|
1484 |
|
|
{
|
1485 |
|
|
struct bfd_section *isec;
|
1486 |
|
|
|
1487 |
|
|
for (isec = abfd->sections; isec; isec = isec->next)
|
1488 |
|
|
{
|
1489 |
|
|
bfd_vma symval;
|
1490 |
|
|
bfd_vma shrinked_insn_address;
|
1491 |
|
|
|
1492 |
|
|
shrinked_insn_address = (sec->output_section->vma
|
1493 |
|
|
+ sec->output_offset + addr - count);
|
1494 |
|
|
|
1495 |
|
|
irelend = elf_section_data (isec)->relocs + isec->reloc_count;
|
1496 |
|
|
for (irel = elf_section_data (isec)->relocs;
|
1497 |
|
|
irel < irelend;
|
1498 |
|
|
irel++)
|
1499 |
|
|
{
|
1500 |
|
|
/* Read this BFD's local symbols if we haven't done
|
1501 |
|
|
so already. */
|
1502 |
|
|
if (isymbuf == NULL && symtab_hdr->sh_info != 0)
|
1503 |
|
|
{
|
1504 |
|
|
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
1505 |
|
|
if (isymbuf == NULL)
|
1506 |
|
|
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
1507 |
|
|
symtab_hdr->sh_info, 0,
|
1508 |
|
|
NULL, NULL, NULL);
|
1509 |
|
|
if (isymbuf == NULL)
|
1510 |
|
|
return FALSE;
|
1511 |
|
|
}
|
1512 |
|
|
|
1513 |
|
|
/* Get the value of the symbol referred to by the reloc. */
|
1514 |
|
|
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
|
1515 |
|
|
{
|
1516 |
|
|
/* A local symbol. */
|
1517 |
|
|
asection *sym_sec;
|
1518 |
|
|
|
1519 |
|
|
isym = isymbuf + ELF32_R_SYM (irel->r_info);
|
1520 |
|
|
sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
1521 |
|
|
symval = isym->st_value;
|
1522 |
|
|
/* If the reloc is absolute, it will not have
|
1523 |
|
|
a symbol or section associated with it. */
|
1524 |
|
|
if (sym_sec == sec)
|
1525 |
|
|
{
|
1526 |
|
|
symval += sym_sec->output_section->vma
|
1527 |
|
|
+ sym_sec->output_offset;
|
1528 |
|
|
|
1529 |
|
|
if (debug_relax)
|
1530 |
|
|
printf ("Checking if the relocation's "
|
1531 |
|
|
"addend needs corrections.\n"
|
1532 |
|
|
"Address of anchor symbol: 0x%x \n"
|
1533 |
|
|
"Address of relocation target: 0x%x \n"
|
1534 |
|
|
"Address of relaxed insn: 0x%x \n",
|
1535 |
|
|
(unsigned int) symval,
|
1536 |
|
|
(unsigned int) (symval + irel->r_addend),
|
1537 |
|
|
(unsigned int) shrinked_insn_address);
|
1538 |
|
|
|
1539 |
|
|
if (symval <= shrinked_insn_address
|
1540 |
|
|
&& (symval + irel->r_addend) > shrinked_insn_address)
|
1541 |
|
|
{
|
1542 |
|
|
irel->r_addend -= count;
|
1543 |
|
|
|
1544 |
|
|
if (debug_relax)
|
1545 |
|
|
printf ("Relocation's addend needed to be fixed \n");
|
1546 |
|
|
}
|
1547 |
|
|
}
|
1548 |
|
|
/* else...Reference symbol is absolute. No adjustment needed. */
|
1549 |
|
|
}
|
1550 |
|
|
/* else...Reference symbol is extern. No need for adjusting
|
1551 |
|
|
the addend. */
|
1552 |
|
|
}
|
1553 |
|
|
}
|
1554 |
|
|
}
|
1555 |
|
|
|
1556 |
|
|
/* Adjust the local symbols defined in this section. */
|
1557 |
|
|
isym = (Elf_Internal_Sym *) symtab_hdr->contents;
|
1558 |
|
|
/* Fix PR 9841, there may be no local symbols. */
|
1559 |
|
|
if (isym != NULL)
|
1560 |
|
|
{
|
1561 |
|
|
Elf_Internal_Sym *isymend;
|
1562 |
|
|
|
1563 |
|
|
isymend = isym + symtab_hdr->sh_info;
|
1564 |
|
|
for (; isym < isymend; isym++)
|
1565 |
|
|
{
|
1566 |
|
|
if (isym->st_shndx == sec_shndx
|
1567 |
|
|
&& isym->st_value > addr
|
1568 |
|
|
&& isym->st_value < toaddr)
|
1569 |
|
|
isym->st_value -= count;
|
1570 |
|
|
}
|
1571 |
|
|
}
|
1572 |
|
|
|
1573 |
|
|
/* Now adjust the global symbols defined in this section. */
|
1574 |
|
|
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
1575 |
|
|
- symtab_hdr->sh_info);
|
1576 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
1577 |
|
|
end_hashes = sym_hashes + symcount;
|
1578 |
|
|
for (; sym_hashes < end_hashes; sym_hashes++)
|
1579 |
|
|
{
|
1580 |
|
|
struct elf_link_hash_entry *sym_hash = *sym_hashes;
|
1581 |
|
|
if ((sym_hash->root.type == bfd_link_hash_defined
|
1582 |
|
|
|| sym_hash->root.type == bfd_link_hash_defweak)
|
1583 |
|
|
&& sym_hash->root.u.def.section == sec
|
1584 |
|
|
&& sym_hash->root.u.def.value > addr
|
1585 |
|
|
&& sym_hash->root.u.def.value < toaddr)
|
1586 |
|
|
{
|
1587 |
|
|
sym_hash->root.u.def.value -= count;
|
1588 |
|
|
}
|
1589 |
|
|
}
|
1590 |
|
|
|
1591 |
|
|
return TRUE;
|
1592 |
|
|
}
|
1593 |
|
|
|
1594 |
|
|
/* This function handles relaxing for the avr.
|
1595 |
|
|
Many important relaxing opportunities within functions are already
|
1596 |
|
|
realized by the compiler itself.
|
1597 |
|
|
Here we try to replace call (4 bytes) -> rcall (2 bytes)
|
1598 |
|
|
and jump -> rjmp (safes also 2 bytes).
|
1599 |
|
|
As well we now optimize seqences of
|
1600 |
|
|
- call/rcall function
|
1601 |
|
|
- ret
|
1602 |
|
|
to yield
|
1603 |
|
|
- jmp/rjmp function
|
1604 |
|
|
- ret
|
1605 |
|
|
. In case that within a sequence
|
1606 |
|
|
- jmp/rjmp label
|
1607 |
|
|
- ret
|
1608 |
|
|
the ret could no longer be reached it is optimized away. In order
|
1609 |
|
|
to check if the ret is no longer needed, it is checked that the ret's address
|
1610 |
|
|
is not the target of a branch or jump within the same section, it is checked
|
1611 |
|
|
that there is no skip instruction before the jmp/rjmp and that there
|
1612 |
|
|
is no local or global label place at the address of the ret.
|
1613 |
|
|
|
1614 |
|
|
We refrain from relaxing within sections ".vectors" and
|
1615 |
|
|
".jumptables" in order to maintain the position of the instructions.
|
1616 |
|
|
There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
|
1617 |
|
|
if possible. (In future one could possibly use the space of the nop
|
1618 |
|
|
for the first instruction of the irq service function.
|
1619 |
|
|
|
1620 |
|
|
The .jumptables sections is meant to be used for a future tablejump variant
|
1621 |
|
|
for the devices with 3-byte program counter where the table itself
|
1622 |
|
|
contains 4-byte jump instructions whose relative offset must not
|
1623 |
|
|
be changed. */
|
1624 |
|
|
|
1625 |
|
|
static bfd_boolean
|
1626 |
|
|
elf32_avr_relax_section (bfd *abfd,
|
1627 |
|
|
asection *sec,
|
1628 |
|
|
struct bfd_link_info *link_info,
|
1629 |
|
|
bfd_boolean *again)
|
1630 |
|
|
{
|
1631 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
1632 |
|
|
Elf_Internal_Rela *internal_relocs;
|
1633 |
|
|
Elf_Internal_Rela *irel, *irelend;
|
1634 |
|
|
bfd_byte *contents = NULL;
|
1635 |
|
|
Elf_Internal_Sym *isymbuf = NULL;
|
1636 |
|
|
static asection *last_input_section = NULL;
|
1637 |
|
|
static Elf_Internal_Rela *last_reloc = NULL;
|
1638 |
|
|
struct elf32_avr_link_hash_table *htab;
|
1639 |
|
|
|
1640 |
|
|
if (link_info->relocatable)
|
1641 |
|
|
(*link_info->callbacks->einfo)
|
1642 |
|
|
(_("%P%F: --relax and -r may not be used together\n"));
|
1643 |
|
|
|
1644 |
|
|
htab = avr_link_hash_table (link_info);
|
1645 |
|
|
if (htab == NULL)
|
1646 |
|
|
return FALSE;
|
1647 |
|
|
|
1648 |
|
|
/* Assume nothing changes. */
|
1649 |
|
|
*again = FALSE;
|
1650 |
|
|
|
1651 |
|
|
if ((!htab->no_stubs) && (sec == htab->stub_sec))
|
1652 |
|
|
{
|
1653 |
|
|
/* We are just relaxing the stub section.
|
1654 |
|
|
Let's calculate the size needed again. */
|
1655 |
|
|
bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
|
1656 |
|
|
|
1657 |
|
|
if (debug_relax)
|
1658 |
|
|
printf ("Relaxing the stub section. Size prior to this pass: %i\n",
|
1659 |
|
|
(int) last_estimated_stub_section_size);
|
1660 |
|
|
|
1661 |
|
|
elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
|
1662 |
|
|
link_info, FALSE);
|
1663 |
|
|
|
1664 |
|
|
/* Check if the number of trampolines changed. */
|
1665 |
|
|
if (last_estimated_stub_section_size != htab->stub_sec->size)
|
1666 |
|
|
*again = TRUE;
|
1667 |
|
|
|
1668 |
|
|
if (debug_relax)
|
1669 |
|
|
printf ("Size of stub section after this pass: %i\n",
|
1670 |
|
|
(int) htab->stub_sec->size);
|
1671 |
|
|
|
1672 |
|
|
return TRUE;
|
1673 |
|
|
}
|
1674 |
|
|
|
1675 |
|
|
/* We don't have to do anything for a relocatable link, if
|
1676 |
|
|
this section does not have relocs, or if this is not a
|
1677 |
|
|
code section. */
|
1678 |
|
|
if (link_info->relocatable
|
1679 |
|
|
|| (sec->flags & SEC_RELOC) == 0
|
1680 |
|
|
|| sec->reloc_count == 0
|
1681 |
|
|
|| (sec->flags & SEC_CODE) == 0)
|
1682 |
|
|
return TRUE;
|
1683 |
|
|
|
1684 |
|
|
/* Check if the object file to relax uses internal symbols so that we
|
1685 |
|
|
could fix up the relocations. */
|
1686 |
|
|
if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
|
1687 |
|
|
return TRUE;
|
1688 |
|
|
|
1689 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
1690 |
|
|
|
1691 |
|
|
/* Get a copy of the native relocations. */
|
1692 |
|
|
internal_relocs = (_bfd_elf_link_read_relocs
|
1693 |
|
|
(abfd, sec, NULL, NULL, link_info->keep_memory));
|
1694 |
|
|
if (internal_relocs == NULL)
|
1695 |
|
|
goto error_return;
|
1696 |
|
|
|
1697 |
|
|
if (sec != last_input_section)
|
1698 |
|
|
last_reloc = NULL;
|
1699 |
|
|
|
1700 |
|
|
last_input_section = sec;
|
1701 |
|
|
|
1702 |
|
|
/* Walk through the relocs looking for relaxing opportunities. */
|
1703 |
|
|
irelend = internal_relocs + sec->reloc_count;
|
1704 |
|
|
for (irel = internal_relocs; irel < irelend; irel++)
|
1705 |
|
|
{
|
1706 |
|
|
bfd_vma symval;
|
1707 |
|
|
|
1708 |
|
|
if ( ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
|
1709 |
|
|
&& ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
|
1710 |
|
|
&& ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
|
1711 |
|
|
continue;
|
1712 |
|
|
|
1713 |
|
|
/* Get the section contents if we haven't done so already. */
|
1714 |
|
|
if (contents == NULL)
|
1715 |
|
|
{
|
1716 |
|
|
/* Get cached copy if it exists. */
|
1717 |
|
|
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
1718 |
|
|
contents = elf_section_data (sec)->this_hdr.contents;
|
1719 |
|
|
else
|
1720 |
|
|
{
|
1721 |
|
|
/* Go get them off disk. */
|
1722 |
|
|
if (! bfd_malloc_and_get_section (abfd, sec, &contents))
|
1723 |
|
|
goto error_return;
|
1724 |
|
|
}
|
1725 |
|
|
}
|
1726 |
|
|
|
1727 |
|
|
/* Read this BFD's local symbols if we haven't done so already. */
|
1728 |
|
|
if (isymbuf == NULL && symtab_hdr->sh_info != 0)
|
1729 |
|
|
{
|
1730 |
|
|
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
1731 |
|
|
if (isymbuf == NULL)
|
1732 |
|
|
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
1733 |
|
|
symtab_hdr->sh_info, 0,
|
1734 |
|
|
NULL, NULL, NULL);
|
1735 |
|
|
if (isymbuf == NULL)
|
1736 |
|
|
goto error_return;
|
1737 |
|
|
}
|
1738 |
|
|
|
1739 |
|
|
|
1740 |
|
|
/* Get the value of the symbol referred to by the reloc. */
|
1741 |
|
|
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
|
1742 |
|
|
{
|
1743 |
|
|
/* A local symbol. */
|
1744 |
|
|
Elf_Internal_Sym *isym;
|
1745 |
|
|
asection *sym_sec;
|
1746 |
|
|
|
1747 |
|
|
isym = isymbuf + ELF32_R_SYM (irel->r_info);
|
1748 |
|
|
sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
1749 |
|
|
symval = isym->st_value;
|
1750 |
|
|
/* If the reloc is absolute, it will not have
|
1751 |
|
|
a symbol or section associated with it. */
|
1752 |
|
|
if (sym_sec)
|
1753 |
|
|
symval += sym_sec->output_section->vma
|
1754 |
|
|
+ sym_sec->output_offset;
|
1755 |
|
|
}
|
1756 |
|
|
else
|
1757 |
|
|
{
|
1758 |
|
|
unsigned long indx;
|
1759 |
|
|
struct elf_link_hash_entry *h;
|
1760 |
|
|
|
1761 |
|
|
/* An external symbol. */
|
1762 |
|
|
indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
|
1763 |
|
|
h = elf_sym_hashes (abfd)[indx];
|
1764 |
|
|
BFD_ASSERT (h != NULL);
|
1765 |
|
|
if (h->root.type != bfd_link_hash_defined
|
1766 |
|
|
&& h->root.type != bfd_link_hash_defweak)
|
1767 |
|
|
/* This appears to be a reference to an undefined
|
1768 |
|
|
symbol. Just ignore it--it will be caught by the
|
1769 |
|
|
regular reloc processing. */
|
1770 |
|
|
continue;
|
1771 |
|
|
|
1772 |
|
|
symval = (h->root.u.def.value
|
1773 |
|
|
+ h->root.u.def.section->output_section->vma
|
1774 |
|
|
+ h->root.u.def.section->output_offset);
|
1775 |
|
|
}
|
1776 |
|
|
|
1777 |
|
|
/* For simplicity of coding, we are going to modify the section
|
1778 |
|
|
contents, the section relocs, and the BFD symbol table. We
|
1779 |
|
|
must tell the rest of the code not to free up this
|
1780 |
|
|
information. It would be possible to instead create a table
|
1781 |
|
|
of changes which have to be made, as is done in coff-mips.c;
|
1782 |
|
|
that would be more work, but would require less memory when
|
1783 |
|
|
the linker is run. */
|
1784 |
|
|
switch (ELF32_R_TYPE (irel->r_info))
|
1785 |
|
|
{
|
1786 |
|
|
/* Try to turn a 22-bit absolute call/jump into an 13-bit
|
1787 |
|
|
pc-relative rcall/rjmp. */
|
1788 |
|
|
case R_AVR_CALL:
|
1789 |
|
|
{
|
1790 |
|
|
bfd_vma value = symval + irel->r_addend;
|
1791 |
|
|
bfd_vma dot, gap;
|
1792 |
|
|
int distance_short_enough = 0;
|
1793 |
|
|
|
1794 |
|
|
/* Get the address of this instruction. */
|
1795 |
|
|
dot = (sec->output_section->vma
|
1796 |
|
|
+ sec->output_offset + irel->r_offset);
|
1797 |
|
|
|
1798 |
|
|
/* Compute the distance from this insn to the branch target. */
|
1799 |
|
|
gap = value - dot;
|
1800 |
|
|
|
1801 |
|
|
/* If the distance is within -4094..+4098 inclusive, then we can
|
1802 |
|
|
relax this jump/call. +4098 because the call/jump target
|
1803 |
|
|
will be closer after the relaxation. */
|
1804 |
|
|
if ((int) gap >= -4094 && (int) gap <= 4098)
|
1805 |
|
|
distance_short_enough = 1;
|
1806 |
|
|
|
1807 |
|
|
/* Here we handle the wrap-around case. E.g. for a 16k device
|
1808 |
|
|
we could use a rjmp to jump from address 0x100 to 0x3d00!
|
1809 |
|
|
In order to make this work properly, we need to fill the
|
1810 |
|
|
vaiable avr_pc_wrap_around with the appropriate value.
|
1811 |
|
|
I.e. 0x4000 for a 16k device. */
|
1812 |
|
|
{
|
1813 |
|
|
/* Shrinking the code size makes the gaps larger in the
|
1814 |
|
|
case of wrap-arounds. So we use a heuristical safety
|
1815 |
|
|
margin to avoid that during relax the distance gets
|
1816 |
|
|
again too large for the short jumps. Let's assume
|
1817 |
|
|
a typical code-size reduction due to relax for a
|
1818 |
|
|
16k device of 600 bytes. So let's use twice the
|
1819 |
|
|
typical value as safety margin. */
|
1820 |
|
|
int rgap;
|
1821 |
|
|
int safety_margin;
|
1822 |
|
|
|
1823 |
|
|
int assumed_shrink = 600;
|
1824 |
|
|
if (avr_pc_wrap_around > 0x4000)
|
1825 |
|
|
assumed_shrink = 900;
|
1826 |
|
|
|
1827 |
|
|
safety_margin = 2 * assumed_shrink;
|
1828 |
|
|
|
1829 |
|
|
rgap = avr_relative_distance_considering_wrap_around (gap);
|
1830 |
|
|
|
1831 |
|
|
if (rgap >= (-4092 + safety_margin)
|
1832 |
|
|
&& rgap <= (4094 - safety_margin))
|
1833 |
|
|
distance_short_enough = 1;
|
1834 |
|
|
}
|
1835 |
|
|
|
1836 |
|
|
if (distance_short_enough)
|
1837 |
|
|
{
|
1838 |
|
|
unsigned char code_msb;
|
1839 |
|
|
unsigned char code_lsb;
|
1840 |
|
|
|
1841 |
|
|
if (debug_relax)
|
1842 |
|
|
printf ("shrinking jump/call instruction at address 0x%x"
|
1843 |
|
|
" in section %s\n\n",
|
1844 |
|
|
(int) dot, sec->name);
|
1845 |
|
|
|
1846 |
|
|
/* Note that we've changed the relocs, section contents,
|
1847 |
|
|
etc. */
|
1848 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
1849 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
1850 |
|
|
symtab_hdr->contents = (unsigned char *) isymbuf;
|
1851 |
|
|
|
1852 |
|
|
/* Get the instruction code for relaxing. */
|
1853 |
|
|
code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
|
1854 |
|
|
code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
|
1855 |
|
|
|
1856 |
|
|
/* Mask out the relocation bits. */
|
1857 |
|
|
code_msb &= 0x94;
|
1858 |
|
|
code_lsb &= 0x0E;
|
1859 |
|
|
if (code_msb == 0x94 && code_lsb == 0x0E)
|
1860 |
|
|
{
|
1861 |
|
|
/* we are changing call -> rcall . */
|
1862 |
|
|
bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
|
1863 |
|
|
bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
|
1864 |
|
|
}
|
1865 |
|
|
else if (code_msb == 0x94 && code_lsb == 0x0C)
|
1866 |
|
|
{
|
1867 |
|
|
/* we are changeing jump -> rjmp. */
|
1868 |
|
|
bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
|
1869 |
|
|
bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
|
1870 |
|
|
}
|
1871 |
|
|
else
|
1872 |
|
|
abort ();
|
1873 |
|
|
|
1874 |
|
|
/* Fix the relocation's type. */
|
1875 |
|
|
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
1876 |
|
|
R_AVR_13_PCREL);
|
1877 |
|
|
|
1878 |
|
|
/* Check for the vector section. There we don't want to
|
1879 |
|
|
modify the ordering! */
|
1880 |
|
|
|
1881 |
|
|
if (!strcmp (sec->name,".vectors")
|
1882 |
|
|
|| !strcmp (sec->name,".jumptables"))
|
1883 |
|
|
{
|
1884 |
|
|
/* Let's insert a nop. */
|
1885 |
|
|
bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
|
1886 |
|
|
bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
|
1887 |
|
|
}
|
1888 |
|
|
else
|
1889 |
|
|
{
|
1890 |
|
|
/* Delete two bytes of data. */
|
1891 |
|
|
if (!elf32_avr_relax_delete_bytes (abfd, sec,
|
1892 |
|
|
irel->r_offset + 2, 2))
|
1893 |
|
|
goto error_return;
|
1894 |
|
|
|
1895 |
|
|
/* That will change things, so, we should relax again.
|
1896 |
|
|
Note that this is not required, and it may be slow. */
|
1897 |
|
|
*again = TRUE;
|
1898 |
|
|
}
|
1899 |
|
|
}
|
1900 |
|
|
}
|
1901 |
|
|
|
1902 |
|
|
default:
|
1903 |
|
|
{
|
1904 |
|
|
unsigned char code_msb;
|
1905 |
|
|
unsigned char code_lsb;
|
1906 |
|
|
bfd_vma dot;
|
1907 |
|
|
|
1908 |
|
|
code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
|
1909 |
|
|
code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
|
1910 |
|
|
|
1911 |
|
|
/* Get the address of this instruction. */
|
1912 |
|
|
dot = (sec->output_section->vma
|
1913 |
|
|
+ sec->output_offset + irel->r_offset);
|
1914 |
|
|
|
1915 |
|
|
/* Here we look for rcall/ret or call/ret sequences that could be
|
1916 |
|
|
safely replaced by rjmp/ret or jmp/ret. */
|
1917 |
|
|
if (((code_msb & 0xf0) == 0xd0)
|
1918 |
|
|
&& avr_replace_call_ret_sequences)
|
1919 |
|
|
{
|
1920 |
|
|
/* This insn is a rcall. */
|
1921 |
|
|
unsigned char next_insn_msb = 0;
|
1922 |
|
|
unsigned char next_insn_lsb = 0;
|
1923 |
|
|
|
1924 |
|
|
if (irel->r_offset + 3 < sec->size)
|
1925 |
|
|
{
|
1926 |
|
|
next_insn_msb =
|
1927 |
|
|
bfd_get_8 (abfd, contents + irel->r_offset + 3);
|
1928 |
|
|
next_insn_lsb =
|
1929 |
|
|
bfd_get_8 (abfd, contents + irel->r_offset + 2);
|
1930 |
|
|
}
|
1931 |
|
|
|
1932 |
|
|
if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
|
1933 |
|
|
{
|
1934 |
|
|
/* The next insn is a ret. We now convert the rcall insn
|
1935 |
|
|
into a rjmp instruction. */
|
1936 |
|
|
code_msb &= 0xef;
|
1937 |
|
|
bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
|
1938 |
|
|
if (debug_relax)
|
1939 |
|
|
printf ("converted rcall/ret sequence at address 0x%x"
|
1940 |
|
|
" into rjmp/ret sequence. Section is %s\n\n",
|
1941 |
|
|
(int) dot, sec->name);
|
1942 |
|
|
*again = TRUE;
|
1943 |
|
|
break;
|
1944 |
|
|
}
|
1945 |
|
|
}
|
1946 |
|
|
else if ((0x94 == (code_msb & 0xfe))
|
1947 |
|
|
&& (0x0e == (code_lsb & 0x0e))
|
1948 |
|
|
&& avr_replace_call_ret_sequences)
|
1949 |
|
|
{
|
1950 |
|
|
/* This insn is a call. */
|
1951 |
|
|
unsigned char next_insn_msb = 0;
|
1952 |
|
|
unsigned char next_insn_lsb = 0;
|
1953 |
|
|
|
1954 |
|
|
if (irel->r_offset + 5 < sec->size)
|
1955 |
|
|
{
|
1956 |
|
|
next_insn_msb =
|
1957 |
|
|
bfd_get_8 (abfd, contents + irel->r_offset + 5);
|
1958 |
|
|
next_insn_lsb =
|
1959 |
|
|
bfd_get_8 (abfd, contents + irel->r_offset + 4);
|
1960 |
|
|
}
|
1961 |
|
|
|
1962 |
|
|
if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
|
1963 |
|
|
{
|
1964 |
|
|
/* The next insn is a ret. We now convert the call insn
|
1965 |
|
|
into a jmp instruction. */
|
1966 |
|
|
|
1967 |
|
|
code_lsb &= 0xfd;
|
1968 |
|
|
bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
|
1969 |
|
|
if (debug_relax)
|
1970 |
|
|
printf ("converted call/ret sequence at address 0x%x"
|
1971 |
|
|
" into jmp/ret sequence. Section is %s\n\n",
|
1972 |
|
|
(int) dot, sec->name);
|
1973 |
|
|
*again = TRUE;
|
1974 |
|
|
break;
|
1975 |
|
|
}
|
1976 |
|
|
}
|
1977 |
|
|
else if ((0xc0 == (code_msb & 0xf0))
|
1978 |
|
|
|| ((0x94 == (code_msb & 0xfe))
|
1979 |
|
|
&& (0x0c == (code_lsb & 0x0e))))
|
1980 |
|
|
{
|
1981 |
|
|
/* This insn is a rjmp or a jmp. */
|
1982 |
|
|
unsigned char next_insn_msb = 0;
|
1983 |
|
|
unsigned char next_insn_lsb = 0;
|
1984 |
|
|
int insn_size;
|
1985 |
|
|
|
1986 |
|
|
if (0xc0 == (code_msb & 0xf0))
|
1987 |
|
|
insn_size = 2; /* rjmp insn */
|
1988 |
|
|
else
|
1989 |
|
|
insn_size = 4; /* jmp insn */
|
1990 |
|
|
|
1991 |
|
|
if (irel->r_offset + insn_size + 1 < sec->size)
|
1992 |
|
|
{
|
1993 |
|
|
next_insn_msb =
|
1994 |
|
|
bfd_get_8 (abfd, contents + irel->r_offset
|
1995 |
|
|
+ insn_size + 1);
|
1996 |
|
|
next_insn_lsb =
|
1997 |
|
|
bfd_get_8 (abfd, contents + irel->r_offset
|
1998 |
|
|
+ insn_size);
|
1999 |
|
|
}
|
2000 |
|
|
|
2001 |
|
|
if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
|
2002 |
|
|
{
|
2003 |
|
|
/* The next insn is a ret. We possibly could delete
|
2004 |
|
|
this ret. First we need to check for preceeding
|
2005 |
|
|
sbis/sbic/sbrs or cpse "skip" instructions. */
|
2006 |
|
|
|
2007 |
|
|
int there_is_preceeding_non_skip_insn = 1;
|
2008 |
|
|
bfd_vma address_of_ret;
|
2009 |
|
|
|
2010 |
|
|
address_of_ret = dot + insn_size;
|
2011 |
|
|
|
2012 |
|
|
if (debug_relax && (insn_size == 2))
|
2013 |
|
|
printf ("found rjmp / ret sequence at address 0x%x\n",
|
2014 |
|
|
(int) dot);
|
2015 |
|
|
if (debug_relax && (insn_size == 4))
|
2016 |
|
|
printf ("found jmp / ret sequence at address 0x%x\n",
|
2017 |
|
|
(int) dot);
|
2018 |
|
|
|
2019 |
|
|
/* We have to make sure that there is a preceeding insn. */
|
2020 |
|
|
if (irel->r_offset >= 2)
|
2021 |
|
|
{
|
2022 |
|
|
unsigned char preceeding_msb;
|
2023 |
|
|
unsigned char preceeding_lsb;
|
2024 |
|
|
preceeding_msb =
|
2025 |
|
|
bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
2026 |
|
|
preceeding_lsb =
|
2027 |
|
|
bfd_get_8 (abfd, contents + irel->r_offset - 2);
|
2028 |
|
|
|
2029 |
|
|
/* sbic. */
|
2030 |
|
|
if (0x99 == preceeding_msb)
|
2031 |
|
|
there_is_preceeding_non_skip_insn = 0;
|
2032 |
|
|
|
2033 |
|
|
/* sbis. */
|
2034 |
|
|
if (0x9b == preceeding_msb)
|
2035 |
|
|
there_is_preceeding_non_skip_insn = 0;
|
2036 |
|
|
|
2037 |
|
|
/* sbrc */
|
2038 |
|
|
if ((0xfc == (preceeding_msb & 0xfe)
|
2039 |
|
|
&& (0x00 == (preceeding_lsb & 0x08))))
|
2040 |
|
|
there_is_preceeding_non_skip_insn = 0;
|
2041 |
|
|
|
2042 |
|
|
/* sbrs */
|
2043 |
|
|
if ((0xfe == (preceeding_msb & 0xfe)
|
2044 |
|
|
&& (0x00 == (preceeding_lsb & 0x08))))
|
2045 |
|
|
there_is_preceeding_non_skip_insn = 0;
|
2046 |
|
|
|
2047 |
|
|
/* cpse */
|
2048 |
|
|
if (0x10 == (preceeding_msb & 0xfc))
|
2049 |
|
|
there_is_preceeding_non_skip_insn = 0;
|
2050 |
|
|
|
2051 |
|
|
if (there_is_preceeding_non_skip_insn == 0)
|
2052 |
|
|
if (debug_relax)
|
2053 |
|
|
printf ("preceeding skip insn prevents deletion of"
|
2054 |
|
|
" ret insn at addr 0x%x in section %s\n",
|
2055 |
|
|
(int) dot + 2, sec->name);
|
2056 |
|
|
}
|
2057 |
|
|
else
|
2058 |
|
|
{
|
2059 |
|
|
/* There is no previous instruction. */
|
2060 |
|
|
there_is_preceeding_non_skip_insn = 0;
|
2061 |
|
|
}
|
2062 |
|
|
|
2063 |
|
|
if (there_is_preceeding_non_skip_insn)
|
2064 |
|
|
{
|
2065 |
|
|
/* We now only have to make sure that there is no
|
2066 |
|
|
local label defined at the address of the ret
|
2067 |
|
|
instruction and that there is no local relocation
|
2068 |
|
|
in this section pointing to the ret. */
|
2069 |
|
|
|
2070 |
|
|
int deleting_ret_is_safe = 1;
|
2071 |
|
|
unsigned int section_offset_of_ret_insn =
|
2072 |
|
|
irel->r_offset + insn_size;
|
2073 |
|
|
Elf_Internal_Sym *isym, *isymend;
|
2074 |
|
|
unsigned int sec_shndx;
|
2075 |
|
|
|
2076 |
|
|
sec_shndx =
|
2077 |
|
|
_bfd_elf_section_from_bfd_section (abfd, sec);
|
2078 |
|
|
|
2079 |
|
|
/* Check for local symbols. */
|
2080 |
|
|
isym = (Elf_Internal_Sym *) symtab_hdr->contents;
|
2081 |
|
|
isymend = isym + symtab_hdr->sh_info;
|
2082 |
|
|
/* PR 6019: There may not be any local symbols. */
|
2083 |
|
|
for (; isym != NULL && isym < isymend; isym++)
|
2084 |
|
|
{
|
2085 |
|
|
if (isym->st_value == section_offset_of_ret_insn
|
2086 |
|
|
&& isym->st_shndx == sec_shndx)
|
2087 |
|
|
{
|
2088 |
|
|
deleting_ret_is_safe = 0;
|
2089 |
|
|
if (debug_relax)
|
2090 |
|
|
printf ("local label prevents deletion of ret "
|
2091 |
|
|
"insn at address 0x%x\n",
|
2092 |
|
|
(int) dot + insn_size);
|
2093 |
|
|
}
|
2094 |
|
|
}
|
2095 |
|
|
|
2096 |
|
|
/* Now check for global symbols. */
|
2097 |
|
|
{
|
2098 |
|
|
int symcount;
|
2099 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
2100 |
|
|
struct elf_link_hash_entry **end_hashes;
|
2101 |
|
|
|
2102 |
|
|
symcount = (symtab_hdr->sh_size
|
2103 |
|
|
/ sizeof (Elf32_External_Sym)
|
2104 |
|
|
- symtab_hdr->sh_info);
|
2105 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
2106 |
|
|
end_hashes = sym_hashes + symcount;
|
2107 |
|
|
for (; sym_hashes < end_hashes; sym_hashes++)
|
2108 |
|
|
{
|
2109 |
|
|
struct elf_link_hash_entry *sym_hash =
|
2110 |
|
|
*sym_hashes;
|
2111 |
|
|
if ((sym_hash->root.type == bfd_link_hash_defined
|
2112 |
|
|
|| sym_hash->root.type ==
|
2113 |
|
|
bfd_link_hash_defweak)
|
2114 |
|
|
&& sym_hash->root.u.def.section == sec
|
2115 |
|
|
&& sym_hash->root.u.def.value == section_offset_of_ret_insn)
|
2116 |
|
|
{
|
2117 |
|
|
deleting_ret_is_safe = 0;
|
2118 |
|
|
if (debug_relax)
|
2119 |
|
|
printf ("global label prevents deletion of "
|
2120 |
|
|
"ret insn at address 0x%x\n",
|
2121 |
|
|
(int) dot + insn_size);
|
2122 |
|
|
}
|
2123 |
|
|
}
|
2124 |
|
|
}
|
2125 |
|
|
/* Now we check for relocations pointing to ret. */
|
2126 |
|
|
{
|
2127 |
|
|
Elf_Internal_Rela *rel;
|
2128 |
|
|
Elf_Internal_Rela *relend;
|
2129 |
|
|
|
2130 |
|
|
relend = elf_section_data (sec)->relocs
|
2131 |
|
|
+ sec->reloc_count;
|
2132 |
|
|
|
2133 |
|
|
for (rel = elf_section_data (sec)->relocs;
|
2134 |
|
|
rel < relend; rel++)
|
2135 |
|
|
{
|
2136 |
|
|
bfd_vma reloc_target = 0;
|
2137 |
|
|
|
2138 |
|
|
/* Read this BFD's local symbols if we haven't
|
2139 |
|
|
done so already. */
|
2140 |
|
|
if (isymbuf == NULL && symtab_hdr->sh_info != 0)
|
2141 |
|
|
{
|
2142 |
|
|
isymbuf = (Elf_Internal_Sym *)
|
2143 |
|
|
symtab_hdr->contents;
|
2144 |
|
|
if (isymbuf == NULL)
|
2145 |
|
|
isymbuf = bfd_elf_get_elf_syms
|
2146 |
|
|
(abfd,
|
2147 |
|
|
symtab_hdr,
|
2148 |
|
|
symtab_hdr->sh_info, 0,
|
2149 |
|
|
NULL, NULL, NULL);
|
2150 |
|
|
if (isymbuf == NULL)
|
2151 |
|
|
break;
|
2152 |
|
|
}
|
2153 |
|
|
|
2154 |
|
|
/* Get the value of the symbol referred to
|
2155 |
|
|
by the reloc. */
|
2156 |
|
|
if (ELF32_R_SYM (rel->r_info)
|
2157 |
|
|
< symtab_hdr->sh_info)
|
2158 |
|
|
{
|
2159 |
|
|
/* A local symbol. */
|
2160 |
|
|
asection *sym_sec;
|
2161 |
|
|
|
2162 |
|
|
isym = isymbuf
|
2163 |
|
|
+ ELF32_R_SYM (rel->r_info);
|
2164 |
|
|
sym_sec = bfd_section_from_elf_index
|
2165 |
|
|
(abfd, isym->st_shndx);
|
2166 |
|
|
symval = isym->st_value;
|
2167 |
|
|
|
2168 |
|
|
/* If the reloc is absolute, it will not
|
2169 |
|
|
have a symbol or section associated
|
2170 |
|
|
with it. */
|
2171 |
|
|
|
2172 |
|
|
if (sym_sec)
|
2173 |
|
|
{
|
2174 |
|
|
symval +=
|
2175 |
|
|
sym_sec->output_section->vma
|
2176 |
|
|
+ sym_sec->output_offset;
|
2177 |
|
|
reloc_target = symval + rel->r_addend;
|
2178 |
|
|
}
|
2179 |
|
|
else
|
2180 |
|
|
{
|
2181 |
|
|
reloc_target = symval + rel->r_addend;
|
2182 |
|
|
/* Reference symbol is absolute. */
|
2183 |
|
|
}
|
2184 |
|
|
}
|
2185 |
|
|
/* else ... reference symbol is extern. */
|
2186 |
|
|
|
2187 |
|
|
if (address_of_ret == reloc_target)
|
2188 |
|
|
{
|
2189 |
|
|
deleting_ret_is_safe = 0;
|
2190 |
|
|
if (debug_relax)
|
2191 |
|
|
printf ("ret from "
|
2192 |
|
|
"rjmp/jmp ret sequence at address"
|
2193 |
|
|
" 0x%x could not be deleted. ret"
|
2194 |
|
|
" is target of a relocation.\n",
|
2195 |
|
|
(int) address_of_ret);
|
2196 |
|
|
}
|
2197 |
|
|
}
|
2198 |
|
|
}
|
2199 |
|
|
|
2200 |
|
|
if (deleting_ret_is_safe)
|
2201 |
|
|
{
|
2202 |
|
|
if (debug_relax)
|
2203 |
|
|
printf ("unreachable ret instruction "
|
2204 |
|
|
"at address 0x%x deleted.\n",
|
2205 |
|
|
(int) dot + insn_size);
|
2206 |
|
|
|
2207 |
|
|
/* Delete two bytes of data. */
|
2208 |
|
|
if (!elf32_avr_relax_delete_bytes (abfd, sec,
|
2209 |
|
|
irel->r_offset + insn_size, 2))
|
2210 |
|
|
goto error_return;
|
2211 |
|
|
|
2212 |
|
|
/* That will change things, so, we should relax
|
2213 |
|
|
again. Note that this is not required, and it
|
2214 |
|
|
may be slow. */
|
2215 |
|
|
*again = TRUE;
|
2216 |
|
|
break;
|
2217 |
|
|
}
|
2218 |
|
|
}
|
2219 |
|
|
|
2220 |
|
|
}
|
2221 |
|
|
}
|
2222 |
|
|
break;
|
2223 |
|
|
}
|
2224 |
|
|
}
|
2225 |
|
|
}
|
2226 |
|
|
|
2227 |
|
|
if (contents != NULL
|
2228 |
|
|
&& elf_section_data (sec)->this_hdr.contents != contents)
|
2229 |
|
|
{
|
2230 |
|
|
if (! link_info->keep_memory)
|
2231 |
|
|
free (contents);
|
2232 |
|
|
else
|
2233 |
|
|
{
|
2234 |
|
|
/* Cache the section contents for elf_link_input_bfd. */
|
2235 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
2236 |
|
|
}
|
2237 |
|
|
}
|
2238 |
|
|
|
2239 |
|
|
if (internal_relocs != NULL
|
2240 |
|
|
&& elf_section_data (sec)->relocs != internal_relocs)
|
2241 |
|
|
free (internal_relocs);
|
2242 |
|
|
|
2243 |
|
|
return TRUE;
|
2244 |
|
|
|
2245 |
|
|
error_return:
|
2246 |
|
|
if (isymbuf != NULL
|
2247 |
|
|
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
2248 |
|
|
free (isymbuf);
|
2249 |
|
|
if (contents != NULL
|
2250 |
|
|
&& elf_section_data (sec)->this_hdr.contents != contents)
|
2251 |
|
|
free (contents);
|
2252 |
|
|
if (internal_relocs != NULL
|
2253 |
|
|
&& elf_section_data (sec)->relocs != internal_relocs)
|
2254 |
|
|
free (internal_relocs);
|
2255 |
|
|
|
2256 |
|
|
return FALSE;
|
2257 |
|
|
}
|
2258 |
|
|
|
2259 |
|
|
/* This is a version of bfd_generic_get_relocated_section_contents
|
2260 |
|
|
which uses elf32_avr_relocate_section.
|
2261 |
|
|
|
2262 |
|
|
For avr it's essentially a cut and paste taken from the H8300 port.
|
2263 |
|
|
The author of the relaxation support patch for avr had absolutely no
|
2264 |
|
|
clue what is happening here but found out that this part of the code
|
2265 |
|
|
seems to be important. */
|
2266 |
|
|
|
2267 |
|
|
static bfd_byte *
|
2268 |
|
|
elf32_avr_get_relocated_section_contents (bfd *output_bfd,
|
2269 |
|
|
struct bfd_link_info *link_info,
|
2270 |
|
|
struct bfd_link_order *link_order,
|
2271 |
|
|
bfd_byte *data,
|
2272 |
|
|
bfd_boolean relocatable,
|
2273 |
|
|
asymbol **symbols)
|
2274 |
|
|
{
|
2275 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
2276 |
|
|
asection *input_section = link_order->u.indirect.section;
|
2277 |
|
|
bfd *input_bfd = input_section->owner;
|
2278 |
|
|
asection **sections = NULL;
|
2279 |
|
|
Elf_Internal_Rela *internal_relocs = NULL;
|
2280 |
|
|
Elf_Internal_Sym *isymbuf = NULL;
|
2281 |
|
|
|
2282 |
|
|
/* We only need to handle the case of relaxing, or of having a
|
2283 |
|
|
particular set of section contents, specially. */
|
2284 |
|
|
if (relocatable
|
2285 |
|
|
|| elf_section_data (input_section)->this_hdr.contents == NULL)
|
2286 |
|
|
return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
|
2287 |
|
|
link_order, data,
|
2288 |
|
|
relocatable,
|
2289 |
|
|
symbols);
|
2290 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
2291 |
|
|
|
2292 |
|
|
memcpy (data, elf_section_data (input_section)->this_hdr.contents,
|
2293 |
|
|
(size_t) input_section->size);
|
2294 |
|
|
|
2295 |
|
|
if ((input_section->flags & SEC_RELOC) != 0
|
2296 |
|
|
&& input_section->reloc_count > 0)
|
2297 |
|
|
{
|
2298 |
|
|
asection **secpp;
|
2299 |
|
|
Elf_Internal_Sym *isym, *isymend;
|
2300 |
|
|
bfd_size_type amt;
|
2301 |
|
|
|
2302 |
|
|
internal_relocs = (_bfd_elf_link_read_relocs
|
2303 |
|
|
(input_bfd, input_section, NULL, NULL, FALSE));
|
2304 |
|
|
if (internal_relocs == NULL)
|
2305 |
|
|
goto error_return;
|
2306 |
|
|
|
2307 |
|
|
if (symtab_hdr->sh_info != 0)
|
2308 |
|
|
{
|
2309 |
|
|
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
2310 |
|
|
if (isymbuf == NULL)
|
2311 |
|
|
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
2312 |
|
|
symtab_hdr->sh_info, 0,
|
2313 |
|
|
NULL, NULL, NULL);
|
2314 |
|
|
if (isymbuf == NULL)
|
2315 |
|
|
goto error_return;
|
2316 |
|
|
}
|
2317 |
|
|
|
2318 |
|
|
amt = symtab_hdr->sh_info;
|
2319 |
|
|
amt *= sizeof (asection *);
|
2320 |
|
|
sections = bfd_malloc (amt);
|
2321 |
|
|
if (sections == NULL && amt != 0)
|
2322 |
|
|
goto error_return;
|
2323 |
|
|
|
2324 |
|
|
isymend = isymbuf + symtab_hdr->sh_info;
|
2325 |
|
|
for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
|
2326 |
|
|
{
|
2327 |
|
|
asection *isec;
|
2328 |
|
|
|
2329 |
|
|
if (isym->st_shndx == SHN_UNDEF)
|
2330 |
|
|
isec = bfd_und_section_ptr;
|
2331 |
|
|
else if (isym->st_shndx == SHN_ABS)
|
2332 |
|
|
isec = bfd_abs_section_ptr;
|
2333 |
|
|
else if (isym->st_shndx == SHN_COMMON)
|
2334 |
|
|
isec = bfd_com_section_ptr;
|
2335 |
|
|
else
|
2336 |
|
|
isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
|
2337 |
|
|
|
2338 |
|
|
*secpp = isec;
|
2339 |
|
|
}
|
2340 |
|
|
|
2341 |
|
|
if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
|
2342 |
|
|
input_section, data, internal_relocs,
|
2343 |
|
|
isymbuf, sections))
|
2344 |
|
|
goto error_return;
|
2345 |
|
|
|
2346 |
|
|
if (sections != NULL)
|
2347 |
|
|
free (sections);
|
2348 |
|
|
if (isymbuf != NULL
|
2349 |
|
|
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
2350 |
|
|
free (isymbuf);
|
2351 |
|
|
if (elf_section_data (input_section)->relocs != internal_relocs)
|
2352 |
|
|
free (internal_relocs);
|
2353 |
|
|
}
|
2354 |
|
|
|
2355 |
|
|
return data;
|
2356 |
|
|
|
2357 |
|
|
error_return:
|
2358 |
|
|
if (sections != NULL)
|
2359 |
|
|
free (sections);
|
2360 |
|
|
if (isymbuf != NULL
|
2361 |
|
|
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
2362 |
|
|
free (isymbuf);
|
2363 |
|
|
if (internal_relocs != NULL
|
2364 |
|
|
&& elf_section_data (input_section)->relocs != internal_relocs)
|
2365 |
|
|
free (internal_relocs);
|
2366 |
|
|
return NULL;
|
2367 |
|
|
}
|
2368 |
|
|
|
2369 |
|
|
|
2370 |
|
|
/* Determines the hash entry name for a particular reloc. It consists of
|
2371 |
|
|
the identifier of the symbol section and the added reloc addend and
|
2372 |
|
|
symbol offset relative to the section the symbol is attached to. */
|
2373 |
|
|
|
2374 |
|
|
static char *
|
2375 |
|
|
avr_stub_name (const asection *symbol_section,
|
2376 |
|
|
const bfd_vma symbol_offset,
|
2377 |
|
|
const Elf_Internal_Rela *rela)
|
2378 |
|
|
{
|
2379 |
|
|
char *stub_name;
|
2380 |
|
|
bfd_size_type len;
|
2381 |
|
|
|
2382 |
|
|
len = 8 + 1 + 8 + 1 + 1;
|
2383 |
|
|
stub_name = bfd_malloc (len);
|
2384 |
|
|
|
2385 |
|
|
sprintf (stub_name, "%08x+%08x",
|
2386 |
|
|
symbol_section->id & 0xffffffff,
|
2387 |
|
|
(unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
|
2388 |
|
|
|
2389 |
|
|
return stub_name;
|
2390 |
|
|
}
|
2391 |
|
|
|
2392 |
|
|
|
2393 |
|
|
/* Add a new stub entry to the stub hash. Not all fields of the new
|
2394 |
|
|
stub entry are initialised. */
|
2395 |
|
|
|
2396 |
|
|
static struct elf32_avr_stub_hash_entry *
|
2397 |
|
|
avr_add_stub (const char *stub_name,
|
2398 |
|
|
struct elf32_avr_link_hash_table *htab)
|
2399 |
|
|
{
|
2400 |
|
|
struct elf32_avr_stub_hash_entry *hsh;
|
2401 |
|
|
|
2402 |
|
|
/* Enter this entry into the linker stub hash table. */
|
2403 |
|
|
hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
|
2404 |
|
|
|
2405 |
|
|
if (hsh == NULL)
|
2406 |
|
|
{
|
2407 |
|
|
(*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
|
2408 |
|
|
NULL, stub_name);
|
2409 |
|
|
return NULL;
|
2410 |
|
|
}
|
2411 |
|
|
|
2412 |
|
|
hsh->stub_offset = 0;
|
2413 |
|
|
return hsh;
|
2414 |
|
|
}
|
2415 |
|
|
|
2416 |
|
|
/* We assume that there is already space allocated for the stub section
|
2417 |
|
|
contents and that before building the stubs the section size is
|
2418 |
|
|
initialized to 0. We assume that within the stub hash table entry,
|
2419 |
|
|
the absolute position of the jmp target has been written in the
|
2420 |
|
|
target_value field. We write here the offset of the generated jmp insn
|
2421 |
|
|
relative to the trampoline section start to the stub_offset entry in
|
2422 |
|
|
the stub hash table entry. */
|
2423 |
|
|
|
2424 |
|
|
static bfd_boolean
|
2425 |
|
|
avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
|
2426 |
|
|
{
|
2427 |
|
|
struct elf32_avr_stub_hash_entry *hsh;
|
2428 |
|
|
struct bfd_link_info *info;
|
2429 |
|
|
struct elf32_avr_link_hash_table *htab;
|
2430 |
|
|
bfd *stub_bfd;
|
2431 |
|
|
bfd_byte *loc;
|
2432 |
|
|
bfd_vma target;
|
2433 |
|
|
bfd_vma starget;
|
2434 |
|
|
|
2435 |
|
|
/* Basic opcode */
|
2436 |
|
|
bfd_vma jmp_insn = 0x0000940c;
|
2437 |
|
|
|
2438 |
|
|
/* Massage our args to the form they really have. */
|
2439 |
|
|
hsh = avr_stub_hash_entry (bh);
|
2440 |
|
|
|
2441 |
|
|
if (!hsh->is_actually_needed)
|
2442 |
|
|
return TRUE;
|
2443 |
|
|
|
2444 |
|
|
info = (struct bfd_link_info *) in_arg;
|
2445 |
|
|
|
2446 |
|
|
htab = avr_link_hash_table (info);
|
2447 |
|
|
if (htab == NULL)
|
2448 |
|
|
return FALSE;
|
2449 |
|
|
|
2450 |
|
|
target = hsh->target_value;
|
2451 |
|
|
|
2452 |
|
|
/* Make a note of the offset within the stubs for this entry. */
|
2453 |
|
|
hsh->stub_offset = htab->stub_sec->size;
|
2454 |
|
|
loc = htab->stub_sec->contents + hsh->stub_offset;
|
2455 |
|
|
|
2456 |
|
|
stub_bfd = htab->stub_sec->owner;
|
2457 |
|
|
|
2458 |
|
|
if (debug_stubs)
|
2459 |
|
|
printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
|
2460 |
|
|
(unsigned int) target,
|
2461 |
|
|
(unsigned int) hsh->stub_offset);
|
2462 |
|
|
|
2463 |
|
|
/* We now have to add the information on the jump target to the bare
|
2464 |
|
|
opcode bits already set in jmp_insn. */
|
2465 |
|
|
|
2466 |
|
|
/* Check for the alignment of the address. */
|
2467 |
|
|
if (target & 1)
|
2468 |
|
|
return FALSE;
|
2469 |
|
|
|
2470 |
|
|
starget = target >> 1;
|
2471 |
|
|
jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
|
2472 |
|
|
bfd_put_16 (stub_bfd, jmp_insn, loc);
|
2473 |
|
|
bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
|
2474 |
|
|
|
2475 |
|
|
htab->stub_sec->size += 4;
|
2476 |
|
|
|
2477 |
|
|
/* Now add the entries in the address mapping table if there is still
|
2478 |
|
|
space left. */
|
2479 |
|
|
{
|
2480 |
|
|
unsigned int nr;
|
2481 |
|
|
|
2482 |
|
|
nr = htab->amt_entry_cnt + 1;
|
2483 |
|
|
if (nr <= htab->amt_max_entry_cnt)
|
2484 |
|
|
{
|
2485 |
|
|
htab->amt_entry_cnt = nr;
|
2486 |
|
|
|
2487 |
|
|
htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
|
2488 |
|
|
htab->amt_destination_addr[nr - 1] = target;
|
2489 |
|
|
}
|
2490 |
|
|
}
|
2491 |
|
|
|
2492 |
|
|
return TRUE;
|
2493 |
|
|
}
|
2494 |
|
|
|
2495 |
|
|
static bfd_boolean
|
2496 |
|
|
avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
|
2497 |
|
|
void *in_arg)
|
2498 |
|
|
{
|
2499 |
|
|
struct elf32_avr_stub_hash_entry *hsh;
|
2500 |
|
|
struct elf32_avr_link_hash_table *htab;
|
2501 |
|
|
|
2502 |
|
|
htab = in_arg;
|
2503 |
|
|
hsh = avr_stub_hash_entry (bh);
|
2504 |
|
|
hsh->is_actually_needed = FALSE;
|
2505 |
|
|
|
2506 |
|
|
return TRUE;
|
2507 |
|
|
}
|
2508 |
|
|
|
2509 |
|
|
static bfd_boolean
|
2510 |
|
|
avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
|
2511 |
|
|
{
|
2512 |
|
|
struct elf32_avr_stub_hash_entry *hsh;
|
2513 |
|
|
struct elf32_avr_link_hash_table *htab;
|
2514 |
|
|
int size;
|
2515 |
|
|
|
2516 |
|
|
/* Massage our args to the form they really have. */
|
2517 |
|
|
hsh = avr_stub_hash_entry (bh);
|
2518 |
|
|
htab = in_arg;
|
2519 |
|
|
|
2520 |
|
|
if (hsh->is_actually_needed)
|
2521 |
|
|
size = 4;
|
2522 |
|
|
else
|
2523 |
|
|
size = 0;
|
2524 |
|
|
|
2525 |
|
|
htab->stub_sec->size += size;
|
2526 |
|
|
return TRUE;
|
2527 |
|
|
}
|
2528 |
|
|
|
2529 |
|
|
void
|
2530 |
|
|
elf32_avr_setup_params (struct bfd_link_info *info,
|
2531 |
|
|
bfd *avr_stub_bfd,
|
2532 |
|
|
asection *avr_stub_section,
|
2533 |
|
|
bfd_boolean no_stubs,
|
2534 |
|
|
bfd_boolean deb_stubs,
|
2535 |
|
|
bfd_boolean deb_relax,
|
2536 |
|
|
bfd_vma pc_wrap_around,
|
2537 |
|
|
bfd_boolean call_ret_replacement)
|
2538 |
|
|
{
|
2539 |
|
|
struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
|
2540 |
|
|
|
2541 |
|
|
if (htab == NULL)
|
2542 |
|
|
return;
|
2543 |
|
|
htab->stub_sec = avr_stub_section;
|
2544 |
|
|
htab->stub_bfd = avr_stub_bfd;
|
2545 |
|
|
htab->no_stubs = no_stubs;
|
2546 |
|
|
|
2547 |
|
|
debug_relax = deb_relax;
|
2548 |
|
|
debug_stubs = deb_stubs;
|
2549 |
|
|
avr_pc_wrap_around = pc_wrap_around;
|
2550 |
|
|
avr_replace_call_ret_sequences = call_ret_replacement;
|
2551 |
|
|
}
|
2552 |
|
|
|
2553 |
|
|
|
2554 |
|
|
/* Set up various things so that we can make a list of input sections
|
2555 |
|
|
for each output section included in the link. Returns -1 on error,
|
2556 |
|
|
|
2557 |
|
|
information on the stubs bfd and the stub section in the info
|
2558 |
|
|
struct. */
|
2559 |
|
|
|
2560 |
|
|
int
|
2561 |
|
|
elf32_avr_setup_section_lists (bfd *output_bfd,
|
2562 |
|
|
struct bfd_link_info *info)
|
2563 |
|
|
{
|
2564 |
|
|
bfd *input_bfd;
|
2565 |
|
|
unsigned int bfd_count;
|
2566 |
|
|
int top_id, top_index;
|
2567 |
|
|
asection *section;
|
2568 |
|
|
asection **input_list, **list;
|
2569 |
|
|
bfd_size_type amt;
|
2570 |
|
|
struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
|
2571 |
|
|
|
2572 |
|
|
if (htab == NULL || htab->no_stubs)
|
2573 |
|
|
return 0;
|
2574 |
|
|
|
2575 |
|
|
/* Count the number of input BFDs and find the top input section id. */
|
2576 |
|
|
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
2577 |
|
|
input_bfd != NULL;
|
2578 |
|
|
input_bfd = input_bfd->link_next)
|
2579 |
|
|
{
|
2580 |
|
|
bfd_count += 1;
|
2581 |
|
|
for (section = input_bfd->sections;
|
2582 |
|
|
section != NULL;
|
2583 |
|
|
section = section->next)
|
2584 |
|
|
if (top_id < section->id)
|
2585 |
|
|
top_id = section->id;
|
2586 |
|
|
}
|
2587 |
|
|
|
2588 |
|
|
htab->bfd_count = bfd_count;
|
2589 |
|
|
|
2590 |
|
|
/* We can't use output_bfd->section_count here to find the top output
|
2591 |
|
|
section index as some sections may have been removed, and
|
2592 |
|
|
strip_excluded_output_sections doesn't renumber the indices. */
|
2593 |
|
|
for (section = output_bfd->sections, top_index = 0;
|
2594 |
|
|
section != NULL;
|
2595 |
|
|
section = section->next)
|
2596 |
|
|
if (top_index < section->index)
|
2597 |
|
|
top_index = section->index;
|
2598 |
|
|
|
2599 |
|
|
htab->top_index = top_index;
|
2600 |
|
|
amt = sizeof (asection *) * (top_index + 1);
|
2601 |
|
|
input_list = bfd_malloc (amt);
|
2602 |
|
|
htab->input_list = input_list;
|
2603 |
|
|
if (input_list == NULL)
|
2604 |
|
|
return -1;
|
2605 |
|
|
|
2606 |
|
|
/* For sections we aren't interested in, mark their entries with a
|
2607 |
|
|
value we can check later. */
|
2608 |
|
|
list = input_list + top_index;
|
2609 |
|
|
do
|
2610 |
|
|
*list = bfd_abs_section_ptr;
|
2611 |
|
|
while (list-- != input_list);
|
2612 |
|
|
|
2613 |
|
|
for (section = output_bfd->sections;
|
2614 |
|
|
section != NULL;
|
2615 |
|
|
section = section->next)
|
2616 |
|
|
if ((section->flags & SEC_CODE) != 0)
|
2617 |
|
|
input_list[section->index] = NULL;
|
2618 |
|
|
|
2619 |
|
|
return 1;
|
2620 |
|
|
}
|
2621 |
|
|
|
2622 |
|
|
|
2623 |
|
|
/* Read in all local syms for all input bfds, and create hash entries
|
2624 |
|
|
for export stubs if we are building a multi-subspace shared lib.
|
2625 |
|
|
Returns -1 on error, 0 otherwise. */
|
2626 |
|
|
|
2627 |
|
|
static int
|
2628 |
|
|
get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
|
2629 |
|
|
{
|
2630 |
|
|
unsigned int bfd_indx;
|
2631 |
|
|
Elf_Internal_Sym *local_syms, **all_local_syms;
|
2632 |
|
|
struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
|
2633 |
|
|
bfd_size_type amt;
|
2634 |
|
|
|
2635 |
|
|
if (htab == NULL)
|
2636 |
|
|
return -1;
|
2637 |
|
|
|
2638 |
|
|
/* We want to read in symbol extension records only once. To do this
|
2639 |
|
|
we need to read in the local symbols in parallel and save them for
|
2640 |
|
|
later use; so hold pointers to the local symbols in an array. */
|
2641 |
|
|
amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
|
2642 |
|
|
all_local_syms = bfd_zmalloc (amt);
|
2643 |
|
|
htab->all_local_syms = all_local_syms;
|
2644 |
|
|
if (all_local_syms == NULL)
|
2645 |
|
|
return -1;
|
2646 |
|
|
|
2647 |
|
|
/* Walk over all the input BFDs, swapping in local symbols.
|
2648 |
|
|
If we are creating a shared library, create hash entries for the
|
2649 |
|
|
export stubs. */
|
2650 |
|
|
for (bfd_indx = 0;
|
2651 |
|
|
input_bfd != NULL;
|
2652 |
|
|
input_bfd = input_bfd->link_next, bfd_indx++)
|
2653 |
|
|
{
|
2654 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
2655 |
|
|
|
2656 |
|
|
/* We'll need the symbol table in a second. */
|
2657 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
2658 |
|
|
if (symtab_hdr->sh_info == 0)
|
2659 |
|
|
continue;
|
2660 |
|
|
|
2661 |
|
|
/* We need an array of the local symbols attached to the input bfd. */
|
2662 |
|
|
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
2663 |
|
|
if (local_syms == NULL)
|
2664 |
|
|
{
|
2665 |
|
|
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
2666 |
|
|
symtab_hdr->sh_info, 0,
|
2667 |
|
|
NULL, NULL, NULL);
|
2668 |
|
|
/* Cache them for elf_link_input_bfd. */
|
2669 |
|
|
symtab_hdr->contents = (unsigned char *) local_syms;
|
2670 |
|
|
}
|
2671 |
|
|
if (local_syms == NULL)
|
2672 |
|
|
return -1;
|
2673 |
|
|
|
2674 |
|
|
all_local_syms[bfd_indx] = local_syms;
|
2675 |
|
|
}
|
2676 |
|
|
|
2677 |
|
|
return 0;
|
2678 |
|
|
}
|
2679 |
|
|
|
2680 |
|
|
#define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
|
2681 |
|
|
|
2682 |
|
|
bfd_boolean
|
2683 |
|
|
elf32_avr_size_stubs (bfd *output_bfd,
|
2684 |
|
|
struct bfd_link_info *info,
|
2685 |
|
|
bfd_boolean is_prealloc_run)
|
2686 |
|
|
{
|
2687 |
|
|
struct elf32_avr_link_hash_table *htab;
|
2688 |
|
|
int stub_changed = 0;
|
2689 |
|
|
|
2690 |
|
|
htab = avr_link_hash_table (info);
|
2691 |
|
|
if (htab == NULL)
|
2692 |
|
|
return FALSE;
|
2693 |
|
|
|
2694 |
|
|
/* At this point we initialize htab->vector_base
|
2695 |
|
|
To the start of the text output section. */
|
2696 |
|
|
htab->vector_base = htab->stub_sec->output_section->vma;
|
2697 |
|
|
|
2698 |
|
|
if (get_local_syms (info->input_bfds, info))
|
2699 |
|
|
{
|
2700 |
|
|
if (htab->all_local_syms)
|
2701 |
|
|
goto error_ret_free_local;
|
2702 |
|
|
return FALSE;
|
2703 |
|
|
}
|
2704 |
|
|
|
2705 |
|
|
if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
|
2706 |
|
|
{
|
2707 |
|
|
struct elf32_avr_stub_hash_entry *test;
|
2708 |
|
|
|
2709 |
|
|
test = avr_add_stub ("Hugo",htab);
|
2710 |
|
|
test->target_value = 0x123456;
|
2711 |
|
|
test->stub_offset = 13;
|
2712 |
|
|
|
2713 |
|
|
test = avr_add_stub ("Hugo2",htab);
|
2714 |
|
|
test->target_value = 0x84210;
|
2715 |
|
|
test->stub_offset = 14;
|
2716 |
|
|
}
|
2717 |
|
|
|
2718 |
|
|
while (1)
|
2719 |
|
|
{
|
2720 |
|
|
bfd *input_bfd;
|
2721 |
|
|
unsigned int bfd_indx;
|
2722 |
|
|
|
2723 |
|
|
/* We will have to re-generate the stub hash table each time anything
|
2724 |
|
|
in memory has changed. */
|
2725 |
|
|
|
2726 |
|
|
bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
|
2727 |
|
|
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
2728 |
|
|
input_bfd != NULL;
|
2729 |
|
|
input_bfd = input_bfd->link_next, bfd_indx++)
|
2730 |
|
|
{
|
2731 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
2732 |
|
|
asection *section;
|
2733 |
|
|
Elf_Internal_Sym *local_syms;
|
2734 |
|
|
|
2735 |
|
|
/* We'll need the symbol table in a second. */
|
2736 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
2737 |
|
|
if (symtab_hdr->sh_info == 0)
|
2738 |
|
|
continue;
|
2739 |
|
|
|
2740 |
|
|
local_syms = htab->all_local_syms[bfd_indx];
|
2741 |
|
|
|
2742 |
|
|
/* Walk over each section attached to the input bfd. */
|
2743 |
|
|
for (section = input_bfd->sections;
|
2744 |
|
|
section != NULL;
|
2745 |
|
|
section = section->next)
|
2746 |
|
|
{
|
2747 |
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
2748 |
|
|
|
2749 |
|
|
/* If there aren't any relocs, then there's nothing more
|
2750 |
|
|
to do. */
|
2751 |
|
|
if ((section->flags & SEC_RELOC) == 0
|
2752 |
|
|
|| section->reloc_count == 0)
|
2753 |
|
|
continue;
|
2754 |
|
|
|
2755 |
|
|
/* If this section is a link-once section that will be
|
2756 |
|
|
discarded, then don't create any stubs. */
|
2757 |
|
|
if (section->output_section == NULL
|
2758 |
|
|
|| section->output_section->owner != output_bfd)
|
2759 |
|
|
continue;
|
2760 |
|
|
|
2761 |
|
|
/* Get the relocs. */
|
2762 |
|
|
internal_relocs
|
2763 |
|
|
= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
|
2764 |
|
|
info->keep_memory);
|
2765 |
|
|
if (internal_relocs == NULL)
|
2766 |
|
|
goto error_ret_free_local;
|
2767 |
|
|
|
2768 |
|
|
/* Now examine each relocation. */
|
2769 |
|
|
irela = internal_relocs;
|
2770 |
|
|
irelaend = irela + section->reloc_count;
|
2771 |
|
|
for (; irela < irelaend; irela++)
|
2772 |
|
|
{
|
2773 |
|
|
unsigned int r_type, r_indx;
|
2774 |
|
|
struct elf32_avr_stub_hash_entry *hsh;
|
2775 |
|
|
asection *sym_sec;
|
2776 |
|
|
bfd_vma sym_value;
|
2777 |
|
|
bfd_vma destination;
|
2778 |
|
|
struct elf_link_hash_entry *hh;
|
2779 |
|
|
char *stub_name;
|
2780 |
|
|
|
2781 |
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
2782 |
|
|
r_indx = ELF32_R_SYM (irela->r_info);
|
2783 |
|
|
|
2784 |
|
|
/* Only look for 16 bit GS relocs. No other reloc will need a
|
2785 |
|
|
stub. */
|
2786 |
|
|
if (!((r_type == R_AVR_16_PM)
|
2787 |
|
|
|| (r_type == R_AVR_LO8_LDI_GS)
|
2788 |
|
|
|| (r_type == R_AVR_HI8_LDI_GS)))
|
2789 |
|
|
continue;
|
2790 |
|
|
|
2791 |
|
|
/* Now determine the call target, its name, value,
|
2792 |
|
|
section. */
|
2793 |
|
|
sym_sec = NULL;
|
2794 |
|
|
sym_value = 0;
|
2795 |
|
|
destination = 0;
|
2796 |
|
|
hh = NULL;
|
2797 |
|
|
if (r_indx < symtab_hdr->sh_info)
|
2798 |
|
|
{
|
2799 |
|
|
/* It's a local symbol. */
|
2800 |
|
|
Elf_Internal_Sym *sym;
|
2801 |
|
|
Elf_Internal_Shdr *hdr;
|
2802 |
|
|
unsigned int shndx;
|
2803 |
|
|
|
2804 |
|
|
sym = local_syms + r_indx;
|
2805 |
|
|
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
|
2806 |
|
|
sym_value = sym->st_value;
|
2807 |
|
|
shndx = sym->st_shndx;
|
2808 |
|
|
if (shndx < elf_numsections (input_bfd))
|
2809 |
|
|
{
|
2810 |
|
|
hdr = elf_elfsections (input_bfd)[shndx];
|
2811 |
|
|
sym_sec = hdr->bfd_section;
|
2812 |
|
|
destination = (sym_value + irela->r_addend
|
2813 |
|
|
+ sym_sec->output_offset
|
2814 |
|
|
+ sym_sec->output_section->vma);
|
2815 |
|
|
}
|
2816 |
|
|
}
|
2817 |
|
|
else
|
2818 |
|
|
{
|
2819 |
|
|
/* It's an external symbol. */
|
2820 |
|
|
int e_indx;
|
2821 |
|
|
|
2822 |
|
|
e_indx = r_indx - symtab_hdr->sh_info;
|
2823 |
|
|
hh = elf_sym_hashes (input_bfd)[e_indx];
|
2824 |
|
|
|
2825 |
|
|
while (hh->root.type == bfd_link_hash_indirect
|
2826 |
|
|
|| hh->root.type == bfd_link_hash_warning)
|
2827 |
|
|
hh = (struct elf_link_hash_entry *)
|
2828 |
|
|
(hh->root.u.i.link);
|
2829 |
|
|
|
2830 |
|
|
if (hh->root.type == bfd_link_hash_defined
|
2831 |
|
|
|| hh->root.type == bfd_link_hash_defweak)
|
2832 |
|
|
{
|
2833 |
|
|
sym_sec = hh->root.u.def.section;
|
2834 |
|
|
sym_value = hh->root.u.def.value;
|
2835 |
|
|
if (sym_sec->output_section != NULL)
|
2836 |
|
|
destination = (sym_value + irela->r_addend
|
2837 |
|
|
+ sym_sec->output_offset
|
2838 |
|
|
+ sym_sec->output_section->vma);
|
2839 |
|
|
}
|
2840 |
|
|
else if (hh->root.type == bfd_link_hash_undefweak)
|
2841 |
|
|
{
|
2842 |
|
|
if (! info->shared)
|
2843 |
|
|
continue;
|
2844 |
|
|
}
|
2845 |
|
|
else if (hh->root.type == bfd_link_hash_undefined)
|
2846 |
|
|
{
|
2847 |
|
|
if (! (info->unresolved_syms_in_objects == RM_IGNORE
|
2848 |
|
|
&& (ELF_ST_VISIBILITY (hh->other)
|
2849 |
|
|
== STV_DEFAULT)))
|
2850 |
|
|
continue;
|
2851 |
|
|
}
|
2852 |
|
|
else
|
2853 |
|
|
{
|
2854 |
|
|
bfd_set_error (bfd_error_bad_value);
|
2855 |
|
|
|
2856 |
|
|
error_ret_free_internal:
|
2857 |
|
|
if (elf_section_data (section)->relocs == NULL)
|
2858 |
|
|
free (internal_relocs);
|
2859 |
|
|
goto error_ret_free_local;
|
2860 |
|
|
}
|
2861 |
|
|
}
|
2862 |
|
|
|
2863 |
|
|
if (! avr_stub_is_required_for_16_bit_reloc
|
2864 |
|
|
(destination - htab->vector_base))
|
2865 |
|
|
{
|
2866 |
|
|
if (!is_prealloc_run)
|
2867 |
|
|
/* We are having a reloc that does't need a stub. */
|
2868 |
|
|
continue;
|
2869 |
|
|
|
2870 |
|
|
/* We don't right now know if a stub will be needed.
|
2871 |
|
|
Let's rather be on the safe side. */
|
2872 |
|
|
}
|
2873 |
|
|
|
2874 |
|
|
/* Get the name of this stub. */
|
2875 |
|
|
stub_name = avr_stub_name (sym_sec, sym_value, irela);
|
2876 |
|
|
|
2877 |
|
|
if (!stub_name)
|
2878 |
|
|
goto error_ret_free_internal;
|
2879 |
|
|
|
2880 |
|
|
|
2881 |
|
|
hsh = avr_stub_hash_lookup (&htab->bstab,
|
2882 |
|
|
stub_name,
|
2883 |
|
|
FALSE, FALSE);
|
2884 |
|
|
if (hsh != NULL)
|
2885 |
|
|
{
|
2886 |
|
|
/* The proper stub has already been created. Mark it
|
2887 |
|
|
to be used and write the possibly changed destination
|
2888 |
|
|
value. */
|
2889 |
|
|
hsh->is_actually_needed = TRUE;
|
2890 |
|
|
hsh->target_value = destination;
|
2891 |
|
|
free (stub_name);
|
2892 |
|
|
continue;
|
2893 |
|
|
}
|
2894 |
|
|
|
2895 |
|
|
hsh = avr_add_stub (stub_name, htab);
|
2896 |
|
|
if (hsh == NULL)
|
2897 |
|
|
{
|
2898 |
|
|
free (stub_name);
|
2899 |
|
|
goto error_ret_free_internal;
|
2900 |
|
|
}
|
2901 |
|
|
|
2902 |
|
|
hsh->is_actually_needed = TRUE;
|
2903 |
|
|
hsh->target_value = destination;
|
2904 |
|
|
|
2905 |
|
|
if (debug_stubs)
|
2906 |
|
|
printf ("Adding stub with destination 0x%x to the"
|
2907 |
|
|
" hash table.\n", (unsigned int) destination);
|
2908 |
|
|
if (debug_stubs)
|
2909 |
|
|
printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
|
2910 |
|
|
|
2911 |
|
|
stub_changed = TRUE;
|
2912 |
|
|
}
|
2913 |
|
|
|
2914 |
|
|
/* We're done with the internal relocs, free them. */
|
2915 |
|
|
if (elf_section_data (section)->relocs == NULL)
|
2916 |
|
|
free (internal_relocs);
|
2917 |
|
|
}
|
2918 |
|
|
}
|
2919 |
|
|
|
2920 |
|
|
/* Re-Calculate the number of needed stubs. */
|
2921 |
|
|
htab->stub_sec->size = 0;
|
2922 |
|
|
bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
|
2923 |
|
|
|
2924 |
|
|
if (!stub_changed)
|
2925 |
|
|
break;
|
2926 |
|
|
|
2927 |
|
|
stub_changed = FALSE;
|
2928 |
|
|
}
|
2929 |
|
|
|
2930 |
|
|
free (htab->all_local_syms);
|
2931 |
|
|
return TRUE;
|
2932 |
|
|
|
2933 |
|
|
error_ret_free_local:
|
2934 |
|
|
free (htab->all_local_syms);
|
2935 |
|
|
return FALSE;
|
2936 |
|
|
}
|
2937 |
|
|
|
2938 |
|
|
|
2939 |
|
|
/* Build all the stubs associated with the current output file. The
|
2940 |
|
|
stubs are kept in a hash table attached to the main linker hash
|
2941 |
|
|
table. We also set up the .plt entries for statically linked PIC
|
2942 |
|
|
functions here. This function is called via hppaelf_finish in the
|
2943 |
|
|
linker. */
|
2944 |
|
|
|
2945 |
|
|
bfd_boolean
|
2946 |
|
|
elf32_avr_build_stubs (struct bfd_link_info *info)
|
2947 |
|
|
{
|
2948 |
|
|
asection *stub_sec;
|
2949 |
|
|
struct bfd_hash_table *table;
|
2950 |
|
|
struct elf32_avr_link_hash_table *htab;
|
2951 |
|
|
bfd_size_type total_size = 0;
|
2952 |
|
|
|
2953 |
|
|
htab = avr_link_hash_table (info);
|
2954 |
|
|
if (htab == NULL)
|
2955 |
|
|
return FALSE;
|
2956 |
|
|
|
2957 |
|
|
/* In case that there were several stub sections: */
|
2958 |
|
|
for (stub_sec = htab->stub_bfd->sections;
|
2959 |
|
|
stub_sec != NULL;
|
2960 |
|
|
stub_sec = stub_sec->next)
|
2961 |
|
|
{
|
2962 |
|
|
bfd_size_type size;
|
2963 |
|
|
|
2964 |
|
|
/* Allocate memory to hold the linker stubs. */
|
2965 |
|
|
size = stub_sec->size;
|
2966 |
|
|
total_size += size;
|
2967 |
|
|
|
2968 |
|
|
stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
|
2969 |
|
|
if (stub_sec->contents == NULL && size != 0)
|
2970 |
|
|
return FALSE;
|
2971 |
|
|
stub_sec->size = 0;
|
2972 |
|
|
}
|
2973 |
|
|
|
2974 |
|
|
/* Allocate memory for the adress mapping table. */
|
2975 |
|
|
htab->amt_entry_cnt = 0;
|
2976 |
|
|
htab->amt_max_entry_cnt = total_size / 4;
|
2977 |
|
|
htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
|
2978 |
|
|
* htab->amt_max_entry_cnt);
|
2979 |
|
|
htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
|
2980 |
|
|
* htab->amt_max_entry_cnt );
|
2981 |
|
|
|
2982 |
|
|
if (debug_stubs)
|
2983 |
|
|
printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
|
2984 |
|
|
|
2985 |
|
|
/* Build the stubs as directed by the stub hash table. */
|
2986 |
|
|
table = &htab->bstab;
|
2987 |
|
|
bfd_hash_traverse (table, avr_build_one_stub, info);
|
2988 |
|
|
|
2989 |
|
|
if (debug_stubs)
|
2990 |
|
|
printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
|
2991 |
|
|
|
2992 |
|
|
return TRUE;
|
2993 |
|
|
}
|
2994 |
|
|
|
2995 |
|
|
#define ELF_ARCH bfd_arch_avr
|
2996 |
|
|
#define ELF_MACHINE_CODE EM_AVR
|
2997 |
|
|
#define ELF_MACHINE_ALT1 EM_AVR_OLD
|
2998 |
|
|
#define ELF_MAXPAGESIZE 1
|
2999 |
|
|
|
3000 |
|
|
#define TARGET_LITTLE_SYM bfd_elf32_avr_vec
|
3001 |
|
|
#define TARGET_LITTLE_NAME "elf32-avr"
|
3002 |
|
|
|
3003 |
|
|
#define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
|
3004 |
|
|
#define bfd_elf32_bfd_link_hash_table_free elf32_avr_link_hash_table_free
|
3005 |
|
|
|
3006 |
|
|
#define elf_info_to_howto avr_info_to_howto_rela
|
3007 |
|
|
#define elf_info_to_howto_rel NULL
|
3008 |
|
|
#define elf_backend_relocate_section elf32_avr_relocate_section
|
3009 |
|
|
#define elf_backend_check_relocs elf32_avr_check_relocs
|
3010 |
|
|
#define elf_backend_can_gc_sections 1
|
3011 |
|
|
#define elf_backend_rela_normal 1
|
3012 |
|
|
#define elf_backend_final_write_processing \
|
3013 |
|
|
bfd_elf_avr_final_write_processing
|
3014 |
|
|
#define elf_backend_object_p elf32_avr_object_p
|
3015 |
|
|
|
3016 |
|
|
#define bfd_elf32_bfd_relax_section elf32_avr_relax_section
|
3017 |
|
|
#define bfd_elf32_bfd_get_relocated_section_contents \
|
3018 |
|
|
elf32_avr_get_relocated_section_contents
|
3019 |
|
|
|
3020 |
|
|
#include "elf32-target.h"
|