1 |
227 |
jeremybenn |
/* Target-dependent code for AMD64.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
Contributed by Jiri Smid, SuSE Labs.
|
7 |
|
|
|
8 |
|
|
This file is part of GDB.
|
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify
|
11 |
|
|
it under the terms of the GNU General Public License as published by
|
12 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
13 |
|
|
(at your option) any later version.
|
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful,
|
16 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
18 |
|
|
GNU General Public License for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "defs.h"
|
24 |
|
|
#include "opcode/i386.h"
|
25 |
|
|
#include "dis-asm.h"
|
26 |
|
|
#include "arch-utils.h"
|
27 |
|
|
#include "block.h"
|
28 |
|
|
#include "dummy-frame.h"
|
29 |
|
|
#include "frame.h"
|
30 |
|
|
#include "frame-base.h"
|
31 |
|
|
#include "frame-unwind.h"
|
32 |
|
|
#include "inferior.h"
|
33 |
|
|
#include "gdbcmd.h"
|
34 |
|
|
#include "gdbcore.h"
|
35 |
|
|
#include "objfiles.h"
|
36 |
|
|
#include "regcache.h"
|
37 |
|
|
#include "regset.h"
|
38 |
|
|
#include "symfile.h"
|
39 |
|
|
|
40 |
|
|
#include "gdb_assert.h"
|
41 |
|
|
|
42 |
|
|
#include "amd64-tdep.h"
|
43 |
|
|
#include "i387-tdep.h"
|
44 |
|
|
|
45 |
|
|
/* Note that the AMD64 architecture was previously known as x86-64.
|
46 |
|
|
The latter is (forever) engraved into the canonical system name as
|
47 |
|
|
returned by config.guess, and used as the name for the AMD64 port
|
48 |
|
|
of GNU/Linux. The BSD's have renamed their ports to amd64; they
|
49 |
|
|
don't like to shout. For GDB we prefer the amd64_-prefix over the
|
50 |
|
|
x86_64_-prefix since it's so much easier to type. */
|
51 |
|
|
|
52 |
|
|
/* Register information. */
|
53 |
|
|
|
54 |
|
|
static const char *amd64_register_names[] =
|
55 |
|
|
{
|
56 |
|
|
"rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
|
57 |
|
|
|
58 |
|
|
/* %r8 is indeed register number 8. */
|
59 |
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
60 |
|
|
"rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
|
61 |
|
|
|
62 |
|
|
/* %st0 is register number 24. */
|
63 |
|
|
"st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
|
64 |
|
|
"fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
|
65 |
|
|
|
66 |
|
|
/* %xmm0 is register number 40. */
|
67 |
|
|
"xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
|
68 |
|
|
"xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
|
69 |
|
|
"mxcsr",
|
70 |
|
|
};
|
71 |
|
|
|
72 |
|
|
/* Total number of registers. */
|
73 |
|
|
#define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names)
|
74 |
|
|
|
75 |
|
|
/* The registers used to pass integer arguments during a function call. */
|
76 |
|
|
static int amd64_dummy_call_integer_regs[] =
|
77 |
|
|
{
|
78 |
|
|
AMD64_RDI_REGNUM, /* %rdi */
|
79 |
|
|
AMD64_RSI_REGNUM, /* %rsi */
|
80 |
|
|
AMD64_RDX_REGNUM, /* %rdx */
|
81 |
|
|
AMD64_RCX_REGNUM, /* %rcx */
|
82 |
|
|
8, /* %r8 */
|
83 |
|
|
9 /* %r9 */
|
84 |
|
|
};
|
85 |
|
|
|
86 |
|
|
/* Return the name of register REGNUM. */
|
87 |
|
|
|
88 |
|
|
const char *
|
89 |
|
|
amd64_register_name (struct gdbarch *gdbarch, int regnum)
|
90 |
|
|
{
|
91 |
|
|
if (regnum >= 0 && regnum < AMD64_NUM_REGS)
|
92 |
|
|
return amd64_register_names[regnum];
|
93 |
|
|
|
94 |
|
|
return NULL;
|
95 |
|
|
}
|
96 |
|
|
|
97 |
|
|
/* Return the GDB type object for the "standard" data type of data in
|
98 |
|
|
register REGNUM. */
|
99 |
|
|
|
100 |
|
|
struct type *
|
101 |
|
|
amd64_register_type (struct gdbarch *gdbarch, int regnum)
|
102 |
|
|
{
|
103 |
|
|
if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
|
104 |
|
|
return builtin_type (gdbarch)->builtin_int64;
|
105 |
|
|
if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
|
106 |
|
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
107 |
|
|
if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
|
108 |
|
|
return builtin_type (gdbarch)->builtin_int64;
|
109 |
|
|
if (regnum == AMD64_RIP_REGNUM)
|
110 |
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
111 |
|
|
if (regnum == AMD64_EFLAGS_REGNUM)
|
112 |
|
|
return i386_eflags_type (gdbarch);
|
113 |
|
|
if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
|
114 |
|
|
return builtin_type (gdbarch)->builtin_int32;
|
115 |
|
|
if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
|
116 |
|
|
return i387_ext_type (gdbarch);
|
117 |
|
|
if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
|
118 |
|
|
return builtin_type (gdbarch)->builtin_int32;
|
119 |
|
|
if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
|
120 |
|
|
return i386_sse_type (gdbarch);
|
121 |
|
|
if (regnum == AMD64_MXCSR_REGNUM)
|
122 |
|
|
return i386_mxcsr_type (gdbarch);
|
123 |
|
|
|
124 |
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
125 |
|
|
}
|
126 |
|
|
|
127 |
|
|
/* DWARF Register Number Mapping as defined in the System V psABI,
|
128 |
|
|
section 3.6. */
|
129 |
|
|
|
130 |
|
|
static int amd64_dwarf_regmap[] =
|
131 |
|
|
{
|
132 |
|
|
/* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
|
133 |
|
|
AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
|
134 |
|
|
AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
|
135 |
|
|
AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
|
136 |
|
|
|
137 |
|
|
/* Frame Pointer Register RBP. */
|
138 |
|
|
AMD64_RBP_REGNUM,
|
139 |
|
|
|
140 |
|
|
/* Stack Pointer Register RSP. */
|
141 |
|
|
AMD64_RSP_REGNUM,
|
142 |
|
|
|
143 |
|
|
/* Extended Integer Registers 8 - 15. */
|
144 |
|
|
8, 9, 10, 11, 12, 13, 14, 15,
|
145 |
|
|
|
146 |
|
|
/* Return Address RA. Mapped to RIP. */
|
147 |
|
|
AMD64_RIP_REGNUM,
|
148 |
|
|
|
149 |
|
|
/* SSE Registers 0 - 7. */
|
150 |
|
|
AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
|
151 |
|
|
AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
|
152 |
|
|
AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
|
153 |
|
|
AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
|
154 |
|
|
|
155 |
|
|
/* Extended SSE Registers 8 - 15. */
|
156 |
|
|
AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
|
157 |
|
|
AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
|
158 |
|
|
AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
|
159 |
|
|
AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
|
160 |
|
|
|
161 |
|
|
/* Floating Point Registers 0-7. */
|
162 |
|
|
AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
|
163 |
|
|
AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
|
164 |
|
|
AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
|
165 |
|
|
AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
|
166 |
|
|
|
167 |
|
|
/* Control and Status Flags Register. */
|
168 |
|
|
AMD64_EFLAGS_REGNUM,
|
169 |
|
|
|
170 |
|
|
/* Selector Registers. */
|
171 |
|
|
AMD64_ES_REGNUM,
|
172 |
|
|
AMD64_CS_REGNUM,
|
173 |
|
|
AMD64_SS_REGNUM,
|
174 |
|
|
AMD64_DS_REGNUM,
|
175 |
|
|
AMD64_FS_REGNUM,
|
176 |
|
|
AMD64_GS_REGNUM,
|
177 |
|
|
-1,
|
178 |
|
|
-1,
|
179 |
|
|
|
180 |
|
|
/* Segment Base Address Registers. */
|
181 |
|
|
-1,
|
182 |
|
|
-1,
|
183 |
|
|
-1,
|
184 |
|
|
-1,
|
185 |
|
|
|
186 |
|
|
/* Special Selector Registers. */
|
187 |
|
|
-1,
|
188 |
|
|
-1,
|
189 |
|
|
|
190 |
|
|
/* Floating Point Control Registers. */
|
191 |
|
|
AMD64_MXCSR_REGNUM,
|
192 |
|
|
AMD64_FCTRL_REGNUM,
|
193 |
|
|
AMD64_FSTAT_REGNUM
|
194 |
|
|
};
|
195 |
|
|
|
196 |
|
|
static const int amd64_dwarf_regmap_len =
|
197 |
|
|
(sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
|
198 |
|
|
|
199 |
|
|
/* Convert DWARF register number REG to the appropriate register
|
200 |
|
|
number used by GDB. */
|
201 |
|
|
|
202 |
|
|
static int
|
203 |
|
|
amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
204 |
|
|
{
|
205 |
|
|
int regnum = -1;
|
206 |
|
|
|
207 |
|
|
if (reg >= 0 && reg < amd64_dwarf_regmap_len)
|
208 |
|
|
regnum = amd64_dwarf_regmap[reg];
|
209 |
|
|
|
210 |
|
|
if (regnum == -1)
|
211 |
|
|
warning (_("Unmapped DWARF Register #%d encountered."), reg);
|
212 |
|
|
|
213 |
|
|
return regnum;
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
/* Map architectural register numbers to gdb register numbers. */
|
217 |
|
|
|
218 |
|
|
static const int amd64_arch_regmap[16] =
|
219 |
|
|
{
|
220 |
|
|
AMD64_RAX_REGNUM, /* %rax */
|
221 |
|
|
AMD64_RCX_REGNUM, /* %rcx */
|
222 |
|
|
AMD64_RDX_REGNUM, /* %rdx */
|
223 |
|
|
AMD64_RBX_REGNUM, /* %rbx */
|
224 |
|
|
AMD64_RSP_REGNUM, /* %rsp */
|
225 |
|
|
AMD64_RBP_REGNUM, /* %rbp */
|
226 |
|
|
AMD64_RSI_REGNUM, /* %rsi */
|
227 |
|
|
AMD64_RDI_REGNUM, /* %rdi */
|
228 |
|
|
AMD64_R8_REGNUM, /* %r8 */
|
229 |
|
|
AMD64_R9_REGNUM, /* %r9 */
|
230 |
|
|
AMD64_R10_REGNUM, /* %r10 */
|
231 |
|
|
AMD64_R11_REGNUM, /* %r11 */
|
232 |
|
|
AMD64_R12_REGNUM, /* %r12 */
|
233 |
|
|
AMD64_R13_REGNUM, /* %r13 */
|
234 |
|
|
AMD64_R14_REGNUM, /* %r14 */
|
235 |
|
|
AMD64_R15_REGNUM /* %r15 */
|
236 |
|
|
};
|
237 |
|
|
|
238 |
|
|
static const int amd64_arch_regmap_len =
|
239 |
|
|
(sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
|
240 |
|
|
|
241 |
|
|
/* Convert architectural register number REG to the appropriate register
|
242 |
|
|
number used by GDB. */
|
243 |
|
|
|
244 |
|
|
static int
|
245 |
|
|
amd64_arch_reg_to_regnum (int reg)
|
246 |
|
|
{
|
247 |
|
|
gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
|
248 |
|
|
|
249 |
|
|
return amd64_arch_regmap[reg];
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
|
253 |
|
|
|
254 |
|
|
/* Return the union class of CLASS1 and CLASS2. See the psABI for
|
255 |
|
|
details. */
|
256 |
|
|
|
257 |
|
|
static enum amd64_reg_class
|
258 |
|
|
amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
|
259 |
|
|
{
|
260 |
|
|
/* Rule (a): If both classes are equal, this is the resulting class. */
|
261 |
|
|
if (class1 == class2)
|
262 |
|
|
return class1;
|
263 |
|
|
|
264 |
|
|
/* Rule (b): If one of the classes is NO_CLASS, the resulting class
|
265 |
|
|
is the other class. */
|
266 |
|
|
if (class1 == AMD64_NO_CLASS)
|
267 |
|
|
return class2;
|
268 |
|
|
if (class2 == AMD64_NO_CLASS)
|
269 |
|
|
return class1;
|
270 |
|
|
|
271 |
|
|
/* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
|
272 |
|
|
if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
|
273 |
|
|
return AMD64_MEMORY;
|
274 |
|
|
|
275 |
|
|
/* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
|
276 |
|
|
if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
|
277 |
|
|
return AMD64_INTEGER;
|
278 |
|
|
|
279 |
|
|
/* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
|
280 |
|
|
MEMORY is used as class. */
|
281 |
|
|
if (class1 == AMD64_X87 || class1 == AMD64_X87UP
|
282 |
|
|
|| class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
|
283 |
|
|
|| class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
|
284 |
|
|
return AMD64_MEMORY;
|
285 |
|
|
|
286 |
|
|
/* Rule (f): Otherwise class SSE is used. */
|
287 |
|
|
return AMD64_SSE;
|
288 |
|
|
}
|
289 |
|
|
|
290 |
|
|
/* Return non-zero if TYPE is a non-POD structure or union type. */
|
291 |
|
|
|
292 |
|
|
static int
|
293 |
|
|
amd64_non_pod_p (struct type *type)
|
294 |
|
|
{
|
295 |
|
|
/* ??? A class with a base class certainly isn't POD, but does this
|
296 |
|
|
catch all non-POD structure types? */
|
297 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
|
298 |
|
|
return 1;
|
299 |
|
|
|
300 |
|
|
return 0;
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
/* Classify TYPE according to the rules for aggregate (structures and
|
304 |
|
|
arrays) and union types, and store the result in CLASS. */
|
305 |
|
|
|
306 |
|
|
static void
|
307 |
|
|
amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
|
308 |
|
|
{
|
309 |
|
|
int len = TYPE_LENGTH (type);
|
310 |
|
|
|
311 |
|
|
/* 1. If the size of an object is larger than two eightbytes, or in
|
312 |
|
|
C++, is a non-POD structure or union type, or contains
|
313 |
|
|
unaligned fields, it has class memory. */
|
314 |
|
|
if (len > 16 || amd64_non_pod_p (type))
|
315 |
|
|
{
|
316 |
|
|
class[0] = class[1] = AMD64_MEMORY;
|
317 |
|
|
return;
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
/* 2. Both eightbytes get initialized to class NO_CLASS. */
|
321 |
|
|
class[0] = class[1] = AMD64_NO_CLASS;
|
322 |
|
|
|
323 |
|
|
/* 3. Each field of an object is classified recursively so that
|
324 |
|
|
always two fields are considered. The resulting class is
|
325 |
|
|
calculated according to the classes of the fields in the
|
326 |
|
|
eightbyte: */
|
327 |
|
|
|
328 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
329 |
|
|
{
|
330 |
|
|
struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
|
331 |
|
|
|
332 |
|
|
/* All fields in an array have the same type. */
|
333 |
|
|
amd64_classify (subtype, class);
|
334 |
|
|
if (len > 8 && class[1] == AMD64_NO_CLASS)
|
335 |
|
|
class[1] = class[0];
|
336 |
|
|
}
|
337 |
|
|
else
|
338 |
|
|
{
|
339 |
|
|
int i;
|
340 |
|
|
|
341 |
|
|
/* Structure or union. */
|
342 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
343 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION);
|
344 |
|
|
|
345 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
346 |
|
|
{
|
347 |
|
|
struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
|
348 |
|
|
int pos = TYPE_FIELD_BITPOS (type, i) / 64;
|
349 |
|
|
enum amd64_reg_class subclass[2];
|
350 |
|
|
int bitsize = TYPE_FIELD_BITSIZE (type, i);
|
351 |
|
|
int endpos;
|
352 |
|
|
|
353 |
|
|
if (bitsize == 0)
|
354 |
|
|
bitsize = TYPE_LENGTH (subtype) * 8;
|
355 |
|
|
endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
|
356 |
|
|
|
357 |
|
|
/* Ignore static fields. */
|
358 |
|
|
if (field_is_static (&TYPE_FIELD (type, i)))
|
359 |
|
|
continue;
|
360 |
|
|
|
361 |
|
|
gdb_assert (pos == 0 || pos == 1);
|
362 |
|
|
|
363 |
|
|
amd64_classify (subtype, subclass);
|
364 |
|
|
class[pos] = amd64_merge_classes (class[pos], subclass[0]);
|
365 |
|
|
if (bitsize <= 64 && pos == 0 && endpos == 1)
|
366 |
|
|
/* This is a bit of an odd case: We have a field that would
|
367 |
|
|
normally fit in one of the two eightbytes, except that
|
368 |
|
|
it is placed in a way that this field straddles them.
|
369 |
|
|
This has been seen with a structure containing an array.
|
370 |
|
|
|
371 |
|
|
The ABI is a bit unclear in this case, but we assume that
|
372 |
|
|
this field's class (stored in subclass[0]) must also be merged
|
373 |
|
|
into class[1]. In other words, our field has a piece stored
|
374 |
|
|
in the second eight-byte, and thus its class applies to
|
375 |
|
|
the second eight-byte as well.
|
376 |
|
|
|
377 |
|
|
In the case where the field length exceeds 8 bytes,
|
378 |
|
|
it should not be necessary to merge the field class
|
379 |
|
|
into class[1]. As LEN > 8, subclass[1] is necessarily
|
380 |
|
|
different from AMD64_NO_CLASS. If subclass[1] is equal
|
381 |
|
|
to subclass[0], then the normal class[1]/subclass[1]
|
382 |
|
|
merging will take care of everything. For subclass[1]
|
383 |
|
|
to be different from subclass[0], I can only see the case
|
384 |
|
|
where we have a SSE/SSEUP or X87/X87UP pair, which both
|
385 |
|
|
use up all 16 bytes of the aggregate, and are already
|
386 |
|
|
handled just fine (because each portion sits on its own
|
387 |
|
|
8-byte). */
|
388 |
|
|
class[1] = amd64_merge_classes (class[1], subclass[0]);
|
389 |
|
|
if (pos == 0)
|
390 |
|
|
class[1] = amd64_merge_classes (class[1], subclass[1]);
|
391 |
|
|
}
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
/* 4. Then a post merger cleanup is done: */
|
395 |
|
|
|
396 |
|
|
/* Rule (a): If one of the classes is MEMORY, the whole argument is
|
397 |
|
|
passed in memory. */
|
398 |
|
|
if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
|
399 |
|
|
class[0] = class[1] = AMD64_MEMORY;
|
400 |
|
|
|
401 |
|
|
/* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
|
402 |
|
|
SSE. */
|
403 |
|
|
if (class[0] == AMD64_SSEUP)
|
404 |
|
|
class[0] = AMD64_SSE;
|
405 |
|
|
if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
|
406 |
|
|
class[1] = AMD64_SSE;
|
407 |
|
|
}
|
408 |
|
|
|
409 |
|
|
/* Classify TYPE, and store the result in CLASS. */
|
410 |
|
|
|
411 |
|
|
void
|
412 |
|
|
amd64_classify (struct type *type, enum amd64_reg_class class[2])
|
413 |
|
|
{
|
414 |
|
|
enum type_code code = TYPE_CODE (type);
|
415 |
|
|
int len = TYPE_LENGTH (type);
|
416 |
|
|
|
417 |
|
|
class[0] = class[1] = AMD64_NO_CLASS;
|
418 |
|
|
|
419 |
|
|
/* Arguments of types (signed and unsigned) _Bool, char, short, int,
|
420 |
|
|
long, long long, and pointers are in the INTEGER class. Similarly,
|
421 |
|
|
range types, used by languages such as Ada, are also in the INTEGER
|
422 |
|
|
class. */
|
423 |
|
|
if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
|
424 |
|
|
|| code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
|
425 |
|
|
|| code == TYPE_CODE_CHAR
|
426 |
|
|
|| code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
|
427 |
|
|
&& (len == 1 || len == 2 || len == 4 || len == 8))
|
428 |
|
|
class[0] = AMD64_INTEGER;
|
429 |
|
|
|
430 |
|
|
/* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
|
431 |
|
|
are in class SSE. */
|
432 |
|
|
else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
|
433 |
|
|
&& (len == 4 || len == 8))
|
434 |
|
|
/* FIXME: __m64 . */
|
435 |
|
|
class[0] = AMD64_SSE;
|
436 |
|
|
|
437 |
|
|
/* Arguments of types __float128, _Decimal128 and __m128 are split into
|
438 |
|
|
two halves. The least significant ones belong to class SSE, the most
|
439 |
|
|
significant one to class SSEUP. */
|
440 |
|
|
else if (code == TYPE_CODE_DECFLOAT && len == 16)
|
441 |
|
|
/* FIXME: __float128, __m128. */
|
442 |
|
|
class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
|
443 |
|
|
|
444 |
|
|
/* The 64-bit mantissa of arguments of type long double belongs to
|
445 |
|
|
class X87, the 16-bit exponent plus 6 bytes of padding belongs to
|
446 |
|
|
class X87UP. */
|
447 |
|
|
else if (code == TYPE_CODE_FLT && len == 16)
|
448 |
|
|
/* Class X87 and X87UP. */
|
449 |
|
|
class[0] = AMD64_X87, class[1] = AMD64_X87UP;
|
450 |
|
|
|
451 |
|
|
/* Aggregates. */
|
452 |
|
|
else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
|
453 |
|
|
|| code == TYPE_CODE_UNION)
|
454 |
|
|
amd64_classify_aggregate (type, class);
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
static enum return_value_convention
|
458 |
|
|
amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
459 |
|
|
struct type *type, struct regcache *regcache,
|
460 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
461 |
|
|
{
|
462 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
463 |
|
|
enum amd64_reg_class class[2];
|
464 |
|
|
int len = TYPE_LENGTH (type);
|
465 |
|
|
static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
|
466 |
|
|
static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
|
467 |
|
|
int integer_reg = 0;
|
468 |
|
|
int sse_reg = 0;
|
469 |
|
|
int i;
|
470 |
|
|
|
471 |
|
|
gdb_assert (!(readbuf && writebuf));
|
472 |
|
|
gdb_assert (tdep->classify);
|
473 |
|
|
|
474 |
|
|
/* 1. Classify the return type with the classification algorithm. */
|
475 |
|
|
tdep->classify (type, class);
|
476 |
|
|
|
477 |
|
|
/* 2. If the type has class MEMORY, then the caller provides space
|
478 |
|
|
for the return value and passes the address of this storage in
|
479 |
|
|
%rdi as if it were the first argument to the function. In effect,
|
480 |
|
|
this address becomes a hidden first argument.
|
481 |
|
|
|
482 |
|
|
On return %rax will contain the address that has been passed in
|
483 |
|
|
by the caller in %rdi. */
|
484 |
|
|
if (class[0] == AMD64_MEMORY)
|
485 |
|
|
{
|
486 |
|
|
/* As indicated by the comment above, the ABI guarantees that we
|
487 |
|
|
can always find the return value just after the function has
|
488 |
|
|
returned. */
|
489 |
|
|
|
490 |
|
|
if (readbuf)
|
491 |
|
|
{
|
492 |
|
|
ULONGEST addr;
|
493 |
|
|
|
494 |
|
|
regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
|
495 |
|
|
read_memory (addr, readbuf, TYPE_LENGTH (type));
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
gdb_assert (class[1] != AMD64_MEMORY);
|
502 |
|
|
gdb_assert (len <= 16);
|
503 |
|
|
|
504 |
|
|
for (i = 0; len > 0; i++, len -= 8)
|
505 |
|
|
{
|
506 |
|
|
int regnum = -1;
|
507 |
|
|
int offset = 0;
|
508 |
|
|
|
509 |
|
|
switch (class[i])
|
510 |
|
|
{
|
511 |
|
|
case AMD64_INTEGER:
|
512 |
|
|
/* 3. If the class is INTEGER, the next available register
|
513 |
|
|
of the sequence %rax, %rdx is used. */
|
514 |
|
|
regnum = integer_regnum[integer_reg++];
|
515 |
|
|
break;
|
516 |
|
|
|
517 |
|
|
case AMD64_SSE:
|
518 |
|
|
/* 4. If the class is SSE, the next available SSE register
|
519 |
|
|
of the sequence %xmm0, %xmm1 is used. */
|
520 |
|
|
regnum = sse_regnum[sse_reg++];
|
521 |
|
|
break;
|
522 |
|
|
|
523 |
|
|
case AMD64_SSEUP:
|
524 |
|
|
/* 5. If the class is SSEUP, the eightbyte is passed in the
|
525 |
|
|
upper half of the last used SSE register. */
|
526 |
|
|
gdb_assert (sse_reg > 0);
|
527 |
|
|
regnum = sse_regnum[sse_reg - 1];
|
528 |
|
|
offset = 8;
|
529 |
|
|
break;
|
530 |
|
|
|
531 |
|
|
case AMD64_X87:
|
532 |
|
|
/* 6. If the class is X87, the value is returned on the X87
|
533 |
|
|
stack in %st0 as 80-bit x87 number. */
|
534 |
|
|
regnum = AMD64_ST0_REGNUM;
|
535 |
|
|
if (writebuf)
|
536 |
|
|
i387_return_value (gdbarch, regcache);
|
537 |
|
|
break;
|
538 |
|
|
|
539 |
|
|
case AMD64_X87UP:
|
540 |
|
|
/* 7. If the class is X87UP, the value is returned together
|
541 |
|
|
with the previous X87 value in %st0. */
|
542 |
|
|
gdb_assert (i > 0 && class[0] == AMD64_X87);
|
543 |
|
|
regnum = AMD64_ST0_REGNUM;
|
544 |
|
|
offset = 8;
|
545 |
|
|
len = 2;
|
546 |
|
|
break;
|
547 |
|
|
|
548 |
|
|
case AMD64_NO_CLASS:
|
549 |
|
|
continue;
|
550 |
|
|
|
551 |
|
|
default:
|
552 |
|
|
gdb_assert (!"Unexpected register class.");
|
553 |
|
|
}
|
554 |
|
|
|
555 |
|
|
gdb_assert (regnum != -1);
|
556 |
|
|
|
557 |
|
|
if (readbuf)
|
558 |
|
|
regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
|
559 |
|
|
readbuf + i * 8);
|
560 |
|
|
if (writebuf)
|
561 |
|
|
regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
|
562 |
|
|
writebuf + i * 8);
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
|
569 |
|
|
static CORE_ADDR
|
570 |
|
|
amd64_push_arguments (struct regcache *regcache, int nargs,
|
571 |
|
|
struct value **args, CORE_ADDR sp, int struct_return)
|
572 |
|
|
{
|
573 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
574 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
575 |
|
|
int *integer_regs = tdep->call_dummy_integer_regs;
|
576 |
|
|
int num_integer_regs = tdep->call_dummy_num_integer_regs;
|
577 |
|
|
|
578 |
|
|
static int sse_regnum[] =
|
579 |
|
|
{
|
580 |
|
|
/* %xmm0 ... %xmm7 */
|
581 |
|
|
AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
|
582 |
|
|
AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
|
583 |
|
|
AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
|
584 |
|
|
AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
|
585 |
|
|
};
|
586 |
|
|
struct value **stack_args = alloca (nargs * sizeof (struct value *));
|
587 |
|
|
/* An array that mirrors the stack_args array. For all arguments
|
588 |
|
|
that are passed by MEMORY, if that argument's address also needs
|
589 |
|
|
to be stored in a register, the ARG_ADDR_REGNO array will contain
|
590 |
|
|
that register number (or a negative value otherwise). */
|
591 |
|
|
int *arg_addr_regno = alloca (nargs * sizeof (int));
|
592 |
|
|
int num_stack_args = 0;
|
593 |
|
|
int num_elements = 0;
|
594 |
|
|
int element = 0;
|
595 |
|
|
int integer_reg = 0;
|
596 |
|
|
int sse_reg = 0;
|
597 |
|
|
int i;
|
598 |
|
|
|
599 |
|
|
gdb_assert (tdep->classify);
|
600 |
|
|
|
601 |
|
|
/* Reserve a register for the "hidden" argument. */
|
602 |
|
|
if (struct_return)
|
603 |
|
|
integer_reg++;
|
604 |
|
|
|
605 |
|
|
for (i = 0; i < nargs; i++)
|
606 |
|
|
{
|
607 |
|
|
struct type *type = value_type (args[i]);
|
608 |
|
|
int len = TYPE_LENGTH (type);
|
609 |
|
|
enum amd64_reg_class class[2];
|
610 |
|
|
int needed_integer_regs = 0;
|
611 |
|
|
int needed_sse_regs = 0;
|
612 |
|
|
int j;
|
613 |
|
|
|
614 |
|
|
/* Classify argument. */
|
615 |
|
|
tdep->classify (type, class);
|
616 |
|
|
|
617 |
|
|
/* Calculate the number of integer and SSE registers needed for
|
618 |
|
|
this argument. */
|
619 |
|
|
for (j = 0; j < 2; j++)
|
620 |
|
|
{
|
621 |
|
|
if (class[j] == AMD64_INTEGER)
|
622 |
|
|
needed_integer_regs++;
|
623 |
|
|
else if (class[j] == AMD64_SSE)
|
624 |
|
|
needed_sse_regs++;
|
625 |
|
|
}
|
626 |
|
|
|
627 |
|
|
/* Check whether enough registers are available, and if the
|
628 |
|
|
argument should be passed in registers at all. */
|
629 |
|
|
if (integer_reg + needed_integer_regs > num_integer_regs
|
630 |
|
|
|| sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
|
631 |
|
|
|| (needed_integer_regs == 0 && needed_sse_regs == 0))
|
632 |
|
|
{
|
633 |
|
|
/* The argument will be passed on the stack. */
|
634 |
|
|
num_elements += ((len + 7) / 8);
|
635 |
|
|
stack_args[num_stack_args] = args[i];
|
636 |
|
|
/* If this is an AMD64_MEMORY argument whose address must also
|
637 |
|
|
be passed in one of the integer registers, reserve that
|
638 |
|
|
register and associate this value to that register so that
|
639 |
|
|
we can store the argument address as soon as we know it. */
|
640 |
|
|
if (class[0] == AMD64_MEMORY
|
641 |
|
|
&& tdep->memory_args_by_pointer
|
642 |
|
|
&& integer_reg < tdep->call_dummy_num_integer_regs)
|
643 |
|
|
arg_addr_regno[num_stack_args] =
|
644 |
|
|
tdep->call_dummy_integer_regs[integer_reg++];
|
645 |
|
|
else
|
646 |
|
|
arg_addr_regno[num_stack_args] = -1;
|
647 |
|
|
num_stack_args++;
|
648 |
|
|
}
|
649 |
|
|
else
|
650 |
|
|
{
|
651 |
|
|
/* The argument will be passed in registers. */
|
652 |
|
|
const gdb_byte *valbuf = value_contents (args[i]);
|
653 |
|
|
gdb_byte buf[8];
|
654 |
|
|
|
655 |
|
|
gdb_assert (len <= 16);
|
656 |
|
|
|
657 |
|
|
for (j = 0; len > 0; j++, len -= 8)
|
658 |
|
|
{
|
659 |
|
|
int regnum = -1;
|
660 |
|
|
int offset = 0;
|
661 |
|
|
|
662 |
|
|
switch (class[j])
|
663 |
|
|
{
|
664 |
|
|
case AMD64_INTEGER:
|
665 |
|
|
regnum = integer_regs[integer_reg++];
|
666 |
|
|
break;
|
667 |
|
|
|
668 |
|
|
case AMD64_SSE:
|
669 |
|
|
regnum = sse_regnum[sse_reg++];
|
670 |
|
|
break;
|
671 |
|
|
|
672 |
|
|
case AMD64_SSEUP:
|
673 |
|
|
gdb_assert (sse_reg > 0);
|
674 |
|
|
regnum = sse_regnum[sse_reg - 1];
|
675 |
|
|
offset = 8;
|
676 |
|
|
break;
|
677 |
|
|
|
678 |
|
|
default:
|
679 |
|
|
gdb_assert (!"Unexpected register class.");
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
gdb_assert (regnum != -1);
|
683 |
|
|
memset (buf, 0, sizeof buf);
|
684 |
|
|
memcpy (buf, valbuf + j * 8, min (len, 8));
|
685 |
|
|
regcache_raw_write_part (regcache, regnum, offset, 8, buf);
|
686 |
|
|
}
|
687 |
|
|
}
|
688 |
|
|
}
|
689 |
|
|
|
690 |
|
|
/* Allocate space for the arguments on the stack. */
|
691 |
|
|
sp -= num_elements * 8;
|
692 |
|
|
|
693 |
|
|
/* The psABI says that "The end of the input argument area shall be
|
694 |
|
|
aligned on a 16 byte boundary." */
|
695 |
|
|
sp &= ~0xf;
|
696 |
|
|
|
697 |
|
|
/* Write out the arguments to the stack. */
|
698 |
|
|
for (i = 0; i < num_stack_args; i++)
|
699 |
|
|
{
|
700 |
|
|
struct type *type = value_type (stack_args[i]);
|
701 |
|
|
const gdb_byte *valbuf = value_contents (stack_args[i]);
|
702 |
|
|
int len = TYPE_LENGTH (type);
|
703 |
|
|
CORE_ADDR arg_addr = sp + element * 8;
|
704 |
|
|
|
705 |
|
|
write_memory (arg_addr, valbuf, len);
|
706 |
|
|
if (arg_addr_regno[i] >= 0)
|
707 |
|
|
{
|
708 |
|
|
/* We also need to store the address of that argument in
|
709 |
|
|
the given register. */
|
710 |
|
|
gdb_byte buf[8];
|
711 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
712 |
|
|
|
713 |
|
|
store_unsigned_integer (buf, 8, byte_order, arg_addr);
|
714 |
|
|
regcache_cooked_write (regcache, arg_addr_regno[i], buf);
|
715 |
|
|
}
|
716 |
|
|
element += ((len + 7) / 8);
|
717 |
|
|
}
|
718 |
|
|
|
719 |
|
|
/* The psABI says that "For calls that may call functions that use
|
720 |
|
|
varargs or stdargs (prototype-less calls or calls to functions
|
721 |
|
|
containing ellipsis (...) in the declaration) %al is used as
|
722 |
|
|
hidden argument to specify the number of SSE registers used. */
|
723 |
|
|
regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
|
724 |
|
|
return sp;
|
725 |
|
|
}
|
726 |
|
|
|
727 |
|
|
static CORE_ADDR
|
728 |
|
|
amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
729 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
730 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
731 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
732 |
|
|
{
|
733 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
734 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
735 |
|
|
gdb_byte buf[8];
|
736 |
|
|
|
737 |
|
|
/* Pass arguments. */
|
738 |
|
|
sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
|
739 |
|
|
|
740 |
|
|
/* Pass "hidden" argument". */
|
741 |
|
|
if (struct_return)
|
742 |
|
|
{
|
743 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
744 |
|
|
/* The "hidden" argument is passed throught the first argument
|
745 |
|
|
register. */
|
746 |
|
|
const int arg_regnum = tdep->call_dummy_integer_regs[0];
|
747 |
|
|
|
748 |
|
|
store_unsigned_integer (buf, 8, byte_order, struct_addr);
|
749 |
|
|
regcache_cooked_write (regcache, arg_regnum, buf);
|
750 |
|
|
}
|
751 |
|
|
|
752 |
|
|
/* Reserve some memory on the stack for the integer-parameter registers,
|
753 |
|
|
if required by the ABI. */
|
754 |
|
|
if (tdep->integer_param_regs_saved_in_caller_frame)
|
755 |
|
|
sp -= tdep->call_dummy_num_integer_regs * 8;
|
756 |
|
|
|
757 |
|
|
/* Store return address. */
|
758 |
|
|
sp -= 8;
|
759 |
|
|
store_unsigned_integer (buf, 8, byte_order, bp_addr);
|
760 |
|
|
write_memory (sp, buf, 8);
|
761 |
|
|
|
762 |
|
|
/* Finally, update the stack pointer... */
|
763 |
|
|
store_unsigned_integer (buf, 8, byte_order, sp);
|
764 |
|
|
regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
|
765 |
|
|
|
766 |
|
|
/* ...and fake a frame pointer. */
|
767 |
|
|
regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
|
768 |
|
|
|
769 |
|
|
return sp + 16;
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
/* Displaced instruction handling. */
|
773 |
|
|
|
774 |
|
|
/* A partially decoded instruction.
|
775 |
|
|
This contains enough details for displaced stepping purposes. */
|
776 |
|
|
|
777 |
|
|
struct amd64_insn
|
778 |
|
|
{
|
779 |
|
|
/* The number of opcode bytes. */
|
780 |
|
|
int opcode_len;
|
781 |
|
|
/* The offset of the rex prefix or -1 if not present. */
|
782 |
|
|
int rex_offset;
|
783 |
|
|
/* The offset to the first opcode byte. */
|
784 |
|
|
int opcode_offset;
|
785 |
|
|
/* The offset to the modrm byte or -1 if not present. */
|
786 |
|
|
int modrm_offset;
|
787 |
|
|
|
788 |
|
|
/* The raw instruction. */
|
789 |
|
|
gdb_byte *raw_insn;
|
790 |
|
|
};
|
791 |
|
|
|
792 |
|
|
struct displaced_step_closure
|
793 |
|
|
{
|
794 |
|
|
/* For rip-relative insns, saved copy of the reg we use instead of %rip. */
|
795 |
|
|
int tmp_used;
|
796 |
|
|
int tmp_regno;
|
797 |
|
|
ULONGEST tmp_save;
|
798 |
|
|
|
799 |
|
|
/* Details of the instruction. */
|
800 |
|
|
struct amd64_insn insn_details;
|
801 |
|
|
|
802 |
|
|
/* Amount of space allocated to insn_buf. */
|
803 |
|
|
int max_len;
|
804 |
|
|
|
805 |
|
|
/* The possibly modified insn.
|
806 |
|
|
This is a variable-length field. */
|
807 |
|
|
gdb_byte insn_buf[1];
|
808 |
|
|
};
|
809 |
|
|
|
810 |
|
|
/* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
|
811 |
|
|
../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
|
812 |
|
|
at which point delete these in favor of libopcodes' versions). */
|
813 |
|
|
|
814 |
|
|
static const unsigned char onebyte_has_modrm[256] = {
|
815 |
|
|
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
816 |
|
|
/* ------------------------------- */
|
817 |
|
|
/* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
|
818 |
|
|
/* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
|
819 |
|
|
/* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
|
820 |
|
|
/* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
|
821 |
|
|
/* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
|
822 |
|
|
/* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
|
823 |
|
|
/* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
|
824 |
|
|
/* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
|
825 |
|
|
/* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
|
826 |
|
|
/* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
|
827 |
|
|
/* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
|
828 |
|
|
/* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
|
829 |
|
|
/* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
|
830 |
|
|
/* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
|
831 |
|
|
/* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
|
832 |
|
|
/* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
|
833 |
|
|
/* ------------------------------- */
|
834 |
|
|
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
835 |
|
|
};
|
836 |
|
|
|
837 |
|
|
static const unsigned char twobyte_has_modrm[256] = {
|
838 |
|
|
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
839 |
|
|
/* ------------------------------- */
|
840 |
|
|
/* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
|
841 |
|
|
/* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
|
842 |
|
|
/* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
|
843 |
|
|
/* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
|
844 |
|
|
/* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
|
845 |
|
|
/* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
|
846 |
|
|
/* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
|
847 |
|
|
/* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
|
848 |
|
|
/* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
|
849 |
|
|
/* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
|
850 |
|
|
/* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
|
851 |
|
|
/* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
|
852 |
|
|
/* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
|
853 |
|
|
/* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
|
854 |
|
|
/* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
|
855 |
|
|
/* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
|
856 |
|
|
/* ------------------------------- */
|
857 |
|
|
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
858 |
|
|
};
|
859 |
|
|
|
860 |
|
|
static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
|
861 |
|
|
|
862 |
|
|
static int
|
863 |
|
|
rex_prefix_p (gdb_byte pfx)
|
864 |
|
|
{
|
865 |
|
|
return REX_PREFIX_P (pfx);
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
/* Skip the legacy instruction prefixes in INSN.
|
869 |
|
|
We assume INSN is properly sentineled so we don't have to worry
|
870 |
|
|
about falling off the end of the buffer. */
|
871 |
|
|
|
872 |
|
|
static gdb_byte *
|
873 |
|
|
amd64_skip_prefixes (gdb_byte *insn)
|
874 |
|
|
{
|
875 |
|
|
while (1)
|
876 |
|
|
{
|
877 |
|
|
switch (*insn)
|
878 |
|
|
{
|
879 |
|
|
case DATA_PREFIX_OPCODE:
|
880 |
|
|
case ADDR_PREFIX_OPCODE:
|
881 |
|
|
case CS_PREFIX_OPCODE:
|
882 |
|
|
case DS_PREFIX_OPCODE:
|
883 |
|
|
case ES_PREFIX_OPCODE:
|
884 |
|
|
case FS_PREFIX_OPCODE:
|
885 |
|
|
case GS_PREFIX_OPCODE:
|
886 |
|
|
case SS_PREFIX_OPCODE:
|
887 |
|
|
case LOCK_PREFIX_OPCODE:
|
888 |
|
|
case REPE_PREFIX_OPCODE:
|
889 |
|
|
case REPNE_PREFIX_OPCODE:
|
890 |
|
|
++insn;
|
891 |
|
|
continue;
|
892 |
|
|
default:
|
893 |
|
|
break;
|
894 |
|
|
}
|
895 |
|
|
break;
|
896 |
|
|
}
|
897 |
|
|
|
898 |
|
|
return insn;
|
899 |
|
|
}
|
900 |
|
|
|
901 |
|
|
/* fprintf-function for amd64_insn_length.
|
902 |
|
|
This function is a nop, we don't want to print anything, we just want to
|
903 |
|
|
compute the length of the insn. */
|
904 |
|
|
|
905 |
|
|
static int ATTR_FORMAT (printf, 2, 3)
|
906 |
|
|
amd64_insn_length_fprintf (void *stream, const char *format, ...)
|
907 |
|
|
{
|
908 |
|
|
return 0;
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
/* Initialize a struct disassemble_info for amd64_insn_length. */
|
912 |
|
|
|
913 |
|
|
static void
|
914 |
|
|
amd64_insn_length_init_dis (struct gdbarch *gdbarch,
|
915 |
|
|
struct disassemble_info *di,
|
916 |
|
|
const gdb_byte *insn, int max_len,
|
917 |
|
|
CORE_ADDR addr)
|
918 |
|
|
{
|
919 |
|
|
init_disassemble_info (di, NULL, amd64_insn_length_fprintf);
|
920 |
|
|
|
921 |
|
|
/* init_disassemble_info installs buffer_read_memory, etc.
|
922 |
|
|
so we don't need to do that here.
|
923 |
|
|
The cast is necessary until disassemble_info is const-ified. */
|
924 |
|
|
di->buffer = (gdb_byte *) insn;
|
925 |
|
|
di->buffer_length = max_len;
|
926 |
|
|
di->buffer_vma = addr;
|
927 |
|
|
|
928 |
|
|
di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
|
929 |
|
|
di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
|
930 |
|
|
di->endian = gdbarch_byte_order (gdbarch);
|
931 |
|
|
di->endian_code = gdbarch_byte_order_for_code (gdbarch);
|
932 |
|
|
|
933 |
|
|
disassemble_init_for_target (di);
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
/* Return the length in bytes of INSN.
|
937 |
|
|
MAX_LEN is the size of the buffer containing INSN.
|
938 |
|
|
libopcodes currently doesn't export a utility to compute the
|
939 |
|
|
instruction length, so use the disassembler until then. */
|
940 |
|
|
|
941 |
|
|
static int
|
942 |
|
|
amd64_insn_length (struct gdbarch *gdbarch,
|
943 |
|
|
const gdb_byte *insn, int max_len, CORE_ADDR addr)
|
944 |
|
|
{
|
945 |
|
|
struct disassemble_info di;
|
946 |
|
|
|
947 |
|
|
amd64_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
|
948 |
|
|
|
949 |
|
|
return gdbarch_print_insn (gdbarch, addr, &di);
|
950 |
|
|
}
|
951 |
|
|
|
952 |
|
|
/* Return an integer register (other than RSP) that is unused as an input
|
953 |
|
|
operand in INSN.
|
954 |
|
|
In order to not require adding a rex prefix if the insn doesn't already
|
955 |
|
|
have one, the result is restricted to RAX ... RDI, sans RSP.
|
956 |
|
|
The register numbering of the result follows architecture ordering,
|
957 |
|
|
e.g. RDI = 7. */
|
958 |
|
|
|
959 |
|
|
static int
|
960 |
|
|
amd64_get_unused_input_int_reg (const struct amd64_insn *details)
|
961 |
|
|
{
|
962 |
|
|
/* 1 bit for each reg */
|
963 |
|
|
int used_regs_mask = 0;
|
964 |
|
|
|
965 |
|
|
/* There can be at most 3 int regs used as inputs in an insn, and we have
|
966 |
|
|
7 to choose from (RAX ... RDI, sans RSP).
|
967 |
|
|
This allows us to take a conservative approach and keep things simple.
|
968 |
|
|
E.g. By avoiding RAX, we don't have to specifically watch for opcodes
|
969 |
|
|
that implicitly specify RAX. */
|
970 |
|
|
|
971 |
|
|
/* Avoid RAX. */
|
972 |
|
|
used_regs_mask |= 1 << EAX_REG_NUM;
|
973 |
|
|
/* Similarily avoid RDX, implicit operand in divides. */
|
974 |
|
|
used_regs_mask |= 1 << EDX_REG_NUM;
|
975 |
|
|
/* Avoid RSP. */
|
976 |
|
|
used_regs_mask |= 1 << ESP_REG_NUM;
|
977 |
|
|
|
978 |
|
|
/* If the opcode is one byte long and there's no ModRM byte,
|
979 |
|
|
assume the opcode specifies a register. */
|
980 |
|
|
if (details->opcode_len == 1 && details->modrm_offset == -1)
|
981 |
|
|
used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
|
982 |
|
|
|
983 |
|
|
/* Mark used regs in the modrm/sib bytes. */
|
984 |
|
|
if (details->modrm_offset != -1)
|
985 |
|
|
{
|
986 |
|
|
int modrm = details->raw_insn[details->modrm_offset];
|
987 |
|
|
int mod = MODRM_MOD_FIELD (modrm);
|
988 |
|
|
int reg = MODRM_REG_FIELD (modrm);
|
989 |
|
|
int rm = MODRM_RM_FIELD (modrm);
|
990 |
|
|
int have_sib = mod != 3 && rm == 4;
|
991 |
|
|
|
992 |
|
|
/* Assume the reg field of the modrm byte specifies a register. */
|
993 |
|
|
used_regs_mask |= 1 << reg;
|
994 |
|
|
|
995 |
|
|
if (have_sib)
|
996 |
|
|
{
|
997 |
|
|
int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
|
998 |
|
|
int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
|
999 |
|
|
used_regs_mask |= 1 << base;
|
1000 |
|
|
used_regs_mask |= 1 << index;
|
1001 |
|
|
}
|
1002 |
|
|
else
|
1003 |
|
|
{
|
1004 |
|
|
used_regs_mask |= 1 << rm;
|
1005 |
|
|
}
|
1006 |
|
|
}
|
1007 |
|
|
|
1008 |
|
|
gdb_assert (used_regs_mask < 256);
|
1009 |
|
|
gdb_assert (used_regs_mask != 255);
|
1010 |
|
|
|
1011 |
|
|
/* Finally, find a free reg. */
|
1012 |
|
|
{
|
1013 |
|
|
int i;
|
1014 |
|
|
|
1015 |
|
|
for (i = 0; i < 8; ++i)
|
1016 |
|
|
{
|
1017 |
|
|
if (! (used_regs_mask & (1 << i)))
|
1018 |
|
|
return i;
|
1019 |
|
|
}
|
1020 |
|
|
|
1021 |
|
|
/* We shouldn't get here. */
|
1022 |
|
|
internal_error (__FILE__, __LINE__, _("unable to find free reg"));
|
1023 |
|
|
}
|
1024 |
|
|
}
|
1025 |
|
|
|
1026 |
|
|
/* Extract the details of INSN that we need. */
|
1027 |
|
|
|
1028 |
|
|
static void
|
1029 |
|
|
amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
|
1030 |
|
|
{
|
1031 |
|
|
gdb_byte *start = insn;
|
1032 |
|
|
int need_modrm;
|
1033 |
|
|
|
1034 |
|
|
details->raw_insn = insn;
|
1035 |
|
|
|
1036 |
|
|
details->opcode_len = -1;
|
1037 |
|
|
details->rex_offset = -1;
|
1038 |
|
|
details->opcode_offset = -1;
|
1039 |
|
|
details->modrm_offset = -1;
|
1040 |
|
|
|
1041 |
|
|
/* Skip legacy instruction prefixes. */
|
1042 |
|
|
insn = amd64_skip_prefixes (insn);
|
1043 |
|
|
|
1044 |
|
|
/* Skip REX instruction prefix. */
|
1045 |
|
|
if (rex_prefix_p (*insn))
|
1046 |
|
|
{
|
1047 |
|
|
details->rex_offset = insn - start;
|
1048 |
|
|
++insn;
|
1049 |
|
|
}
|
1050 |
|
|
|
1051 |
|
|
details->opcode_offset = insn - start;
|
1052 |
|
|
|
1053 |
|
|
if (*insn == TWO_BYTE_OPCODE_ESCAPE)
|
1054 |
|
|
{
|
1055 |
|
|
/* Two or three-byte opcode. */
|
1056 |
|
|
++insn;
|
1057 |
|
|
need_modrm = twobyte_has_modrm[*insn];
|
1058 |
|
|
|
1059 |
|
|
/* Check for three-byte opcode. */
|
1060 |
|
|
switch (*insn)
|
1061 |
|
|
{
|
1062 |
|
|
case 0x24:
|
1063 |
|
|
case 0x25:
|
1064 |
|
|
case 0x38:
|
1065 |
|
|
case 0x3a:
|
1066 |
|
|
case 0x7a:
|
1067 |
|
|
case 0x7b:
|
1068 |
|
|
++insn;
|
1069 |
|
|
details->opcode_len = 3;
|
1070 |
|
|
break;
|
1071 |
|
|
default:
|
1072 |
|
|
details->opcode_len = 2;
|
1073 |
|
|
break;
|
1074 |
|
|
}
|
1075 |
|
|
}
|
1076 |
|
|
else
|
1077 |
|
|
{
|
1078 |
|
|
/* One-byte opcode. */
|
1079 |
|
|
need_modrm = onebyte_has_modrm[*insn];
|
1080 |
|
|
details->opcode_len = 1;
|
1081 |
|
|
}
|
1082 |
|
|
|
1083 |
|
|
if (need_modrm)
|
1084 |
|
|
{
|
1085 |
|
|
++insn;
|
1086 |
|
|
details->modrm_offset = insn - start;
|
1087 |
|
|
}
|
1088 |
|
|
}
|
1089 |
|
|
|
1090 |
|
|
/* Update %rip-relative addressing in INSN.
|
1091 |
|
|
|
1092 |
|
|
%rip-relative addressing only uses a 32-bit displacement.
|
1093 |
|
|
32 bits is not enough to be guaranteed to cover the distance between where
|
1094 |
|
|
the real instruction is and where its copy is.
|
1095 |
|
|
Convert the insn to use base+disp addressing.
|
1096 |
|
|
We set base = pc + insn_length so we can leave disp unchanged. */
|
1097 |
|
|
|
1098 |
|
|
static void
|
1099 |
|
|
fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
|
1100 |
|
|
CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
|
1101 |
|
|
{
|
1102 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1103 |
|
|
const struct amd64_insn *insn_details = &dsc->insn_details;
|
1104 |
|
|
int modrm_offset = insn_details->modrm_offset;
|
1105 |
|
|
gdb_byte *insn = insn_details->raw_insn + modrm_offset;
|
1106 |
|
|
CORE_ADDR rip_base;
|
1107 |
|
|
int32_t disp;
|
1108 |
|
|
int insn_length;
|
1109 |
|
|
int arch_tmp_regno, tmp_regno;
|
1110 |
|
|
ULONGEST orig_value;
|
1111 |
|
|
|
1112 |
|
|
/* %rip+disp32 addressing mode, displacement follows ModRM byte. */
|
1113 |
|
|
++insn;
|
1114 |
|
|
|
1115 |
|
|
/* Compute the rip-relative address. */
|
1116 |
|
|
disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
|
1117 |
|
|
insn_length = amd64_insn_length (gdbarch, dsc->insn_buf, dsc->max_len, from);
|
1118 |
|
|
rip_base = from + insn_length;
|
1119 |
|
|
|
1120 |
|
|
/* We need a register to hold the address.
|
1121 |
|
|
Pick one not used in the insn.
|
1122 |
|
|
NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
|
1123 |
|
|
arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
|
1124 |
|
|
tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
|
1125 |
|
|
|
1126 |
|
|
/* REX.B should be unset as we were using rip-relative addressing,
|
1127 |
|
|
but ensure it's unset anyway, tmp_regno is not r8-r15. */
|
1128 |
|
|
if (insn_details->rex_offset != -1)
|
1129 |
|
|
dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
|
1130 |
|
|
|
1131 |
|
|
regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
|
1132 |
|
|
dsc->tmp_regno = tmp_regno;
|
1133 |
|
|
dsc->tmp_save = orig_value;
|
1134 |
|
|
dsc->tmp_used = 1;
|
1135 |
|
|
|
1136 |
|
|
/* Convert the ModRM field to be base+disp. */
|
1137 |
|
|
dsc->insn_buf[modrm_offset] &= ~0xc7;
|
1138 |
|
|
dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
|
1139 |
|
|
|
1140 |
|
|
regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
|
1141 |
|
|
|
1142 |
|
|
if (debug_displaced)
|
1143 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
|
1144 |
|
|
"displaced: using temp reg %d, old value %s, new value %s\n",
|
1145 |
|
|
dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
|
1146 |
|
|
paddress (gdbarch, rip_base));
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
static void
|
1150 |
|
|
fixup_displaced_copy (struct gdbarch *gdbarch,
|
1151 |
|
|
struct displaced_step_closure *dsc,
|
1152 |
|
|
CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
|
1153 |
|
|
{
|
1154 |
|
|
const struct amd64_insn *details = &dsc->insn_details;
|
1155 |
|
|
|
1156 |
|
|
if (details->modrm_offset != -1)
|
1157 |
|
|
{
|
1158 |
|
|
gdb_byte modrm = details->raw_insn[details->modrm_offset];
|
1159 |
|
|
|
1160 |
|
|
if ((modrm & 0xc7) == 0x05)
|
1161 |
|
|
{
|
1162 |
|
|
/* The insn uses rip-relative addressing.
|
1163 |
|
|
Deal with it. */
|
1164 |
|
|
fixup_riprel (gdbarch, dsc, from, to, regs);
|
1165 |
|
|
}
|
1166 |
|
|
}
|
1167 |
|
|
}
|
1168 |
|
|
|
1169 |
|
|
struct displaced_step_closure *
|
1170 |
|
|
amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
|
1171 |
|
|
CORE_ADDR from, CORE_ADDR to,
|
1172 |
|
|
struct regcache *regs)
|
1173 |
|
|
{
|
1174 |
|
|
int len = gdbarch_max_insn_length (gdbarch);
|
1175 |
|
|
/* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to
|
1176 |
|
|
continually watch for running off the end of the buffer. */
|
1177 |
|
|
int fixup_sentinel_space = len;
|
1178 |
|
|
struct displaced_step_closure *dsc =
|
1179 |
|
|
xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
|
1180 |
|
|
gdb_byte *buf = &dsc->insn_buf[0];
|
1181 |
|
|
struct amd64_insn *details = &dsc->insn_details;
|
1182 |
|
|
|
1183 |
|
|
dsc->tmp_used = 0;
|
1184 |
|
|
dsc->max_len = len + fixup_sentinel_space;
|
1185 |
|
|
|
1186 |
|
|
read_memory (from, buf, len);
|
1187 |
|
|
|
1188 |
|
|
/* Set up the sentinel space so we don't have to worry about running
|
1189 |
|
|
off the end of the buffer. An excessive number of leading prefixes
|
1190 |
|
|
could otherwise cause this. */
|
1191 |
|
|
memset (buf + len, 0, fixup_sentinel_space);
|
1192 |
|
|
|
1193 |
|
|
amd64_get_insn_details (buf, details);
|
1194 |
|
|
|
1195 |
|
|
/* GDB may get control back after the insn after the syscall.
|
1196 |
|
|
Presumably this is a kernel bug.
|
1197 |
|
|
If this is a syscall, make sure there's a nop afterwards. */
|
1198 |
|
|
{
|
1199 |
|
|
int syscall_length;
|
1200 |
|
|
|
1201 |
|
|
if (amd64_syscall_p (details, &syscall_length))
|
1202 |
|
|
buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
|
1203 |
|
|
}
|
1204 |
|
|
|
1205 |
|
|
/* Modify the insn to cope with the address where it will be executed from.
|
1206 |
|
|
In particular, handle any rip-relative addressing. */
|
1207 |
|
|
fixup_displaced_copy (gdbarch, dsc, from, to, regs);
|
1208 |
|
|
|
1209 |
|
|
write_memory (to, buf, len);
|
1210 |
|
|
|
1211 |
|
|
if (debug_displaced)
|
1212 |
|
|
{
|
1213 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
|
1214 |
|
|
paddress (gdbarch, from), paddress (gdbarch, to));
|
1215 |
|
|
displaced_step_dump_bytes (gdb_stdlog, buf, len);
|
1216 |
|
|
}
|
1217 |
|
|
|
1218 |
|
|
return dsc;
|
1219 |
|
|
}
|
1220 |
|
|
|
1221 |
|
|
static int
|
1222 |
|
|
amd64_absolute_jmp_p (const struct amd64_insn *details)
|
1223 |
|
|
{
|
1224 |
|
|
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
1225 |
|
|
|
1226 |
|
|
if (insn[0] == 0xff)
|
1227 |
|
|
{
|
1228 |
|
|
/* jump near, absolute indirect (/4) */
|
1229 |
|
|
if ((insn[1] & 0x38) == 0x20)
|
1230 |
|
|
return 1;
|
1231 |
|
|
|
1232 |
|
|
/* jump far, absolute indirect (/5) */
|
1233 |
|
|
if ((insn[1] & 0x38) == 0x28)
|
1234 |
|
|
return 1;
|
1235 |
|
|
}
|
1236 |
|
|
|
1237 |
|
|
return 0;
|
1238 |
|
|
}
|
1239 |
|
|
|
1240 |
|
|
static int
|
1241 |
|
|
amd64_absolute_call_p (const struct amd64_insn *details)
|
1242 |
|
|
{
|
1243 |
|
|
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
1244 |
|
|
|
1245 |
|
|
if (insn[0] == 0xff)
|
1246 |
|
|
{
|
1247 |
|
|
/* Call near, absolute indirect (/2) */
|
1248 |
|
|
if ((insn[1] & 0x38) == 0x10)
|
1249 |
|
|
return 1;
|
1250 |
|
|
|
1251 |
|
|
/* Call far, absolute indirect (/3) */
|
1252 |
|
|
if ((insn[1] & 0x38) == 0x18)
|
1253 |
|
|
return 1;
|
1254 |
|
|
}
|
1255 |
|
|
|
1256 |
|
|
return 0;
|
1257 |
|
|
}
|
1258 |
|
|
|
1259 |
|
|
static int
|
1260 |
|
|
amd64_ret_p (const struct amd64_insn *details)
|
1261 |
|
|
{
|
1262 |
|
|
/* NOTE: gcc can emit "repz ; ret". */
|
1263 |
|
|
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
1264 |
|
|
|
1265 |
|
|
switch (insn[0])
|
1266 |
|
|
{
|
1267 |
|
|
case 0xc2: /* ret near, pop N bytes */
|
1268 |
|
|
case 0xc3: /* ret near */
|
1269 |
|
|
case 0xca: /* ret far, pop N bytes */
|
1270 |
|
|
case 0xcb: /* ret far */
|
1271 |
|
|
case 0xcf: /* iret */
|
1272 |
|
|
return 1;
|
1273 |
|
|
|
1274 |
|
|
default:
|
1275 |
|
|
return 0;
|
1276 |
|
|
}
|
1277 |
|
|
}
|
1278 |
|
|
|
1279 |
|
|
static int
|
1280 |
|
|
amd64_call_p (const struct amd64_insn *details)
|
1281 |
|
|
{
|
1282 |
|
|
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
1283 |
|
|
|
1284 |
|
|
if (amd64_absolute_call_p (details))
|
1285 |
|
|
return 1;
|
1286 |
|
|
|
1287 |
|
|
/* call near, relative */
|
1288 |
|
|
if (insn[0] == 0xe8)
|
1289 |
|
|
return 1;
|
1290 |
|
|
|
1291 |
|
|
return 0;
|
1292 |
|
|
}
|
1293 |
|
|
|
1294 |
|
|
/* Return non-zero if INSN is a system call, and set *LENGTHP to its
|
1295 |
|
|
length in bytes. Otherwise, return zero. */
|
1296 |
|
|
|
1297 |
|
|
static int
|
1298 |
|
|
amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
|
1299 |
|
|
{
|
1300 |
|
|
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
1301 |
|
|
|
1302 |
|
|
if (insn[0] == 0x0f && insn[1] == 0x05)
|
1303 |
|
|
{
|
1304 |
|
|
*lengthp = 2;
|
1305 |
|
|
return 1;
|
1306 |
|
|
}
|
1307 |
|
|
|
1308 |
|
|
return 0;
|
1309 |
|
|
}
|
1310 |
|
|
|
1311 |
|
|
/* Fix up the state of registers and memory after having single-stepped
|
1312 |
|
|
a displaced instruction. */
|
1313 |
|
|
|
1314 |
|
|
void
|
1315 |
|
|
amd64_displaced_step_fixup (struct gdbarch *gdbarch,
|
1316 |
|
|
struct displaced_step_closure *dsc,
|
1317 |
|
|
CORE_ADDR from, CORE_ADDR to,
|
1318 |
|
|
struct regcache *regs)
|
1319 |
|
|
{
|
1320 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1321 |
|
|
/* The offset we applied to the instruction's address. */
|
1322 |
|
|
ULONGEST insn_offset = to - from;
|
1323 |
|
|
gdb_byte *insn = dsc->insn_buf;
|
1324 |
|
|
const struct amd64_insn *insn_details = &dsc->insn_details;
|
1325 |
|
|
|
1326 |
|
|
if (debug_displaced)
|
1327 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1328 |
|
|
"displaced: fixup (%s, %s), "
|
1329 |
|
|
"insn = 0x%02x 0x%02x ...\n",
|
1330 |
|
|
paddress (gdbarch, from), paddress (gdbarch, to),
|
1331 |
|
|
insn[0], insn[1]);
|
1332 |
|
|
|
1333 |
|
|
/* If we used a tmp reg, restore it. */
|
1334 |
|
|
|
1335 |
|
|
if (dsc->tmp_used)
|
1336 |
|
|
{
|
1337 |
|
|
if (debug_displaced)
|
1338 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
|
1339 |
|
|
dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
|
1340 |
|
|
regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
|
1341 |
|
|
}
|
1342 |
|
|
|
1343 |
|
|
/* The list of issues to contend with here is taken from
|
1344 |
|
|
resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
|
1345 |
|
|
Yay for Free Software! */
|
1346 |
|
|
|
1347 |
|
|
/* Relocate the %rip back to the program's instruction stream,
|
1348 |
|
|
if necessary. */
|
1349 |
|
|
|
1350 |
|
|
/* Except in the case of absolute or indirect jump or call
|
1351 |
|
|
instructions, or a return instruction, the new rip is relative to
|
1352 |
|
|
the displaced instruction; make it relative to the original insn.
|
1353 |
|
|
Well, signal handler returns don't need relocation either, but we use the
|
1354 |
|
|
value of %rip to recognize those; see below. */
|
1355 |
|
|
if (! amd64_absolute_jmp_p (insn_details)
|
1356 |
|
|
&& ! amd64_absolute_call_p (insn_details)
|
1357 |
|
|
&& ! amd64_ret_p (insn_details))
|
1358 |
|
|
{
|
1359 |
|
|
ULONGEST orig_rip;
|
1360 |
|
|
int insn_len;
|
1361 |
|
|
|
1362 |
|
|
regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
|
1363 |
|
|
|
1364 |
|
|
/* A signal trampoline system call changes the %rip, resuming
|
1365 |
|
|
execution of the main program after the signal handler has
|
1366 |
|
|
returned. That makes them like 'return' instructions; we
|
1367 |
|
|
shouldn't relocate %rip.
|
1368 |
|
|
|
1369 |
|
|
But most system calls don't, and we do need to relocate %rip.
|
1370 |
|
|
|
1371 |
|
|
Our heuristic for distinguishing these cases: if stepping
|
1372 |
|
|
over the system call instruction left control directly after
|
1373 |
|
|
the instruction, the we relocate --- control almost certainly
|
1374 |
|
|
doesn't belong in the displaced copy. Otherwise, we assume
|
1375 |
|
|
the instruction has put control where it belongs, and leave
|
1376 |
|
|
it unrelocated. Goodness help us if there are PC-relative
|
1377 |
|
|
system calls. */
|
1378 |
|
|
if (amd64_syscall_p (insn_details, &insn_len)
|
1379 |
|
|
&& orig_rip != to + insn_len
|
1380 |
|
|
/* GDB can get control back after the insn after the syscall.
|
1381 |
|
|
Presumably this is a kernel bug.
|
1382 |
|
|
Fixup ensures its a nop, we add one to the length for it. */
|
1383 |
|
|
&& orig_rip != to + insn_len + 1)
|
1384 |
|
|
{
|
1385 |
|
|
if (debug_displaced)
|
1386 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1387 |
|
|
"displaced: syscall changed %%rip; "
|
1388 |
|
|
"not relocating\n");
|
1389 |
|
|
}
|
1390 |
|
|
else
|
1391 |
|
|
{
|
1392 |
|
|
ULONGEST rip = orig_rip - insn_offset;
|
1393 |
|
|
|
1394 |
|
|
/* If we just stepped over a breakpoint insn, we don't backup
|
1395 |
|
|
the pc on purpose; this is to match behaviour without
|
1396 |
|
|
stepping. */
|
1397 |
|
|
|
1398 |
|
|
regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
|
1399 |
|
|
|
1400 |
|
|
if (debug_displaced)
|
1401 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1402 |
|
|
"displaced: "
|
1403 |
|
|
"relocated %%rip from %s to %s\n",
|
1404 |
|
|
paddress (gdbarch, orig_rip),
|
1405 |
|
|
paddress (gdbarch, rip));
|
1406 |
|
|
}
|
1407 |
|
|
}
|
1408 |
|
|
|
1409 |
|
|
/* If the instruction was PUSHFL, then the TF bit will be set in the
|
1410 |
|
|
pushed value, and should be cleared. We'll leave this for later,
|
1411 |
|
|
since GDB already messes up the TF flag when stepping over a
|
1412 |
|
|
pushfl. */
|
1413 |
|
|
|
1414 |
|
|
/* If the instruction was a call, the return address now atop the
|
1415 |
|
|
stack is the address following the copied instruction. We need
|
1416 |
|
|
to make it the address following the original instruction. */
|
1417 |
|
|
if (amd64_call_p (insn_details))
|
1418 |
|
|
{
|
1419 |
|
|
ULONGEST rsp;
|
1420 |
|
|
ULONGEST retaddr;
|
1421 |
|
|
const ULONGEST retaddr_len = 8;
|
1422 |
|
|
|
1423 |
|
|
regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
|
1424 |
|
|
retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
|
1425 |
|
|
retaddr = (retaddr - insn_offset) & 0xffffffffUL;
|
1426 |
|
|
write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
|
1427 |
|
|
|
1428 |
|
|
if (debug_displaced)
|
1429 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1430 |
|
|
"displaced: relocated return addr at %s "
|
1431 |
|
|
"to %s\n",
|
1432 |
|
|
paddress (gdbarch, rsp),
|
1433 |
|
|
paddress (gdbarch, retaddr));
|
1434 |
|
|
}
|
1435 |
|
|
}
|
1436 |
|
|
|
1437 |
|
|
/* The maximum number of saved registers. This should include %rip. */
|
1438 |
|
|
#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
|
1439 |
|
|
|
1440 |
|
|
struct amd64_frame_cache
|
1441 |
|
|
{
|
1442 |
|
|
/* Base address. */
|
1443 |
|
|
CORE_ADDR base;
|
1444 |
|
|
CORE_ADDR sp_offset;
|
1445 |
|
|
CORE_ADDR pc;
|
1446 |
|
|
|
1447 |
|
|
/* Saved registers. */
|
1448 |
|
|
CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
|
1449 |
|
|
CORE_ADDR saved_sp;
|
1450 |
|
|
int saved_sp_reg;
|
1451 |
|
|
|
1452 |
|
|
/* Do we have a frame? */
|
1453 |
|
|
int frameless_p;
|
1454 |
|
|
};
|
1455 |
|
|
|
1456 |
|
|
/* Initialize a frame cache. */
|
1457 |
|
|
|
1458 |
|
|
static void
|
1459 |
|
|
amd64_init_frame_cache (struct amd64_frame_cache *cache)
|
1460 |
|
|
{
|
1461 |
|
|
int i;
|
1462 |
|
|
|
1463 |
|
|
/* Base address. */
|
1464 |
|
|
cache->base = 0;
|
1465 |
|
|
cache->sp_offset = -8;
|
1466 |
|
|
cache->pc = 0;
|
1467 |
|
|
|
1468 |
|
|
/* Saved registers. We initialize these to -1 since zero is a valid
|
1469 |
|
|
offset (that's where %rbp is supposed to be stored).
|
1470 |
|
|
The values start out as being offsets, and are later converted to
|
1471 |
|
|
addresses (at which point -1 is interpreted as an address, still meaning
|
1472 |
|
|
"invalid"). */
|
1473 |
|
|
for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
|
1474 |
|
|
cache->saved_regs[i] = -1;
|
1475 |
|
|
cache->saved_sp = 0;
|
1476 |
|
|
cache->saved_sp_reg = -1;
|
1477 |
|
|
|
1478 |
|
|
/* Frameless until proven otherwise. */
|
1479 |
|
|
cache->frameless_p = 1;
|
1480 |
|
|
}
|
1481 |
|
|
|
1482 |
|
|
/* Allocate and initialize a frame cache. */
|
1483 |
|
|
|
1484 |
|
|
static struct amd64_frame_cache *
|
1485 |
|
|
amd64_alloc_frame_cache (void)
|
1486 |
|
|
{
|
1487 |
|
|
struct amd64_frame_cache *cache;
|
1488 |
|
|
|
1489 |
|
|
cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
|
1490 |
|
|
amd64_init_frame_cache (cache);
|
1491 |
|
|
return cache;
|
1492 |
|
|
}
|
1493 |
|
|
|
1494 |
|
|
/* GCC 4.4 and later, can put code in the prologue to realign the
|
1495 |
|
|
stack pointer. Check whether PC points to such code, and update
|
1496 |
|
|
CACHE accordingly. Return the first instruction after the code
|
1497 |
|
|
sequence or CURRENT_PC, whichever is smaller. If we don't
|
1498 |
|
|
recognize the code, return PC. */
|
1499 |
|
|
|
1500 |
|
|
static CORE_ADDR
|
1501 |
|
|
amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
|
1502 |
|
|
struct amd64_frame_cache *cache)
|
1503 |
|
|
{
|
1504 |
|
|
/* There are 2 code sequences to re-align stack before the frame
|
1505 |
|
|
gets set up:
|
1506 |
|
|
|
1507 |
|
|
1. Use a caller-saved saved register:
|
1508 |
|
|
|
1509 |
|
|
leaq 8(%rsp), %reg
|
1510 |
|
|
andq $-XXX, %rsp
|
1511 |
|
|
pushq -8(%reg)
|
1512 |
|
|
|
1513 |
|
|
2. Use a callee-saved saved register:
|
1514 |
|
|
|
1515 |
|
|
pushq %reg
|
1516 |
|
|
leaq 16(%rsp), %reg
|
1517 |
|
|
andq $-XXX, %rsp
|
1518 |
|
|
pushq -8(%reg)
|
1519 |
|
|
|
1520 |
|
|
"andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
|
1521 |
|
|
|
1522 |
|
|
0x48 0x83 0xe4 0xf0 andq $-16, %rsp
|
1523 |
|
|
0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
|
1524 |
|
|
*/
|
1525 |
|
|
|
1526 |
|
|
gdb_byte buf[18];
|
1527 |
|
|
int reg, r;
|
1528 |
|
|
int offset, offset_and;
|
1529 |
|
|
|
1530 |
|
|
if (target_read_memory (pc, buf, sizeof buf))
|
1531 |
|
|
return pc;
|
1532 |
|
|
|
1533 |
|
|
/* Check caller-saved saved register. The first instruction has
|
1534 |
|
|
to be "leaq 8(%rsp), %reg". */
|
1535 |
|
|
if ((buf[0] & 0xfb) == 0x48
|
1536 |
|
|
&& buf[1] == 0x8d
|
1537 |
|
|
&& buf[3] == 0x24
|
1538 |
|
|
&& buf[4] == 0x8)
|
1539 |
|
|
{
|
1540 |
|
|
/* MOD must be binary 10 and R/M must be binary 100. */
|
1541 |
|
|
if ((buf[2] & 0xc7) != 0x44)
|
1542 |
|
|
return pc;
|
1543 |
|
|
|
1544 |
|
|
/* REG has register number. */
|
1545 |
|
|
reg = (buf[2] >> 3) & 7;
|
1546 |
|
|
|
1547 |
|
|
/* Check the REX.R bit. */
|
1548 |
|
|
if (buf[0] == 0x4c)
|
1549 |
|
|
reg += 8;
|
1550 |
|
|
|
1551 |
|
|
offset = 5;
|
1552 |
|
|
}
|
1553 |
|
|
else
|
1554 |
|
|
{
|
1555 |
|
|
/* Check callee-saved saved register. The first instruction
|
1556 |
|
|
has to be "pushq %reg". */
|
1557 |
|
|
reg = 0;
|
1558 |
|
|
if ((buf[0] & 0xf8) == 0x50)
|
1559 |
|
|
offset = 0;
|
1560 |
|
|
else if ((buf[0] & 0xf6) == 0x40
|
1561 |
|
|
&& (buf[1] & 0xf8) == 0x50)
|
1562 |
|
|
{
|
1563 |
|
|
/* Check the REX.B bit. */
|
1564 |
|
|
if ((buf[0] & 1) != 0)
|
1565 |
|
|
reg = 8;
|
1566 |
|
|
|
1567 |
|
|
offset = 1;
|
1568 |
|
|
}
|
1569 |
|
|
else
|
1570 |
|
|
return pc;
|
1571 |
|
|
|
1572 |
|
|
/* Get register. */
|
1573 |
|
|
reg += buf[offset] & 0x7;
|
1574 |
|
|
|
1575 |
|
|
offset++;
|
1576 |
|
|
|
1577 |
|
|
/* The next instruction has to be "leaq 16(%rsp), %reg". */
|
1578 |
|
|
if ((buf[offset] & 0xfb) != 0x48
|
1579 |
|
|
|| buf[offset + 1] != 0x8d
|
1580 |
|
|
|| buf[offset + 3] != 0x24
|
1581 |
|
|
|| buf[offset + 4] != 0x10)
|
1582 |
|
|
return pc;
|
1583 |
|
|
|
1584 |
|
|
/* MOD must be binary 10 and R/M must be binary 100. */
|
1585 |
|
|
if ((buf[offset + 2] & 0xc7) != 0x44)
|
1586 |
|
|
return pc;
|
1587 |
|
|
|
1588 |
|
|
/* REG has register number. */
|
1589 |
|
|
r = (buf[offset + 2] >> 3) & 7;
|
1590 |
|
|
|
1591 |
|
|
/* Check the REX.R bit. */
|
1592 |
|
|
if (buf[offset] == 0x4c)
|
1593 |
|
|
r += 8;
|
1594 |
|
|
|
1595 |
|
|
/* Registers in pushq and leaq have to be the same. */
|
1596 |
|
|
if (reg != r)
|
1597 |
|
|
return pc;
|
1598 |
|
|
|
1599 |
|
|
offset += 5;
|
1600 |
|
|
}
|
1601 |
|
|
|
1602 |
|
|
/* Rigister can't be %rsp nor %rbp. */
|
1603 |
|
|
if (reg == 4 || reg == 5)
|
1604 |
|
|
return pc;
|
1605 |
|
|
|
1606 |
|
|
/* The next instruction has to be "andq $-XXX, %rsp". */
|
1607 |
|
|
if (buf[offset] != 0x48
|
1608 |
|
|
|| buf[offset + 2] != 0xe4
|
1609 |
|
|
|| (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
|
1610 |
|
|
return pc;
|
1611 |
|
|
|
1612 |
|
|
offset_and = offset;
|
1613 |
|
|
offset += buf[offset + 1] == 0x81 ? 7 : 4;
|
1614 |
|
|
|
1615 |
|
|
/* The next instruction has to be "pushq -8(%reg)". */
|
1616 |
|
|
r = 0;
|
1617 |
|
|
if (buf[offset] == 0xff)
|
1618 |
|
|
offset++;
|
1619 |
|
|
else if ((buf[offset] & 0xf6) == 0x40
|
1620 |
|
|
&& buf[offset + 1] == 0xff)
|
1621 |
|
|
{
|
1622 |
|
|
/* Check the REX.B bit. */
|
1623 |
|
|
if ((buf[offset] & 0x1) != 0)
|
1624 |
|
|
r = 8;
|
1625 |
|
|
offset += 2;
|
1626 |
|
|
}
|
1627 |
|
|
else
|
1628 |
|
|
return pc;
|
1629 |
|
|
|
1630 |
|
|
/* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
|
1631 |
|
|
01. */
|
1632 |
|
|
if (buf[offset + 1] != 0xf8
|
1633 |
|
|
|| (buf[offset] & 0xf8) != 0x70)
|
1634 |
|
|
return pc;
|
1635 |
|
|
|
1636 |
|
|
/* R/M has register. */
|
1637 |
|
|
r += buf[offset] & 7;
|
1638 |
|
|
|
1639 |
|
|
/* Registers in leaq and pushq have to be the same. */
|
1640 |
|
|
if (reg != r)
|
1641 |
|
|
return pc;
|
1642 |
|
|
|
1643 |
|
|
if (current_pc > pc + offset_and)
|
1644 |
|
|
cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
|
1645 |
|
|
|
1646 |
|
|
return min (pc + offset + 2, current_pc);
|
1647 |
|
|
}
|
1648 |
|
|
|
1649 |
|
|
/* Do a limited analysis of the prologue at PC and update CACHE
|
1650 |
|
|
accordingly. Bail out early if CURRENT_PC is reached. Return the
|
1651 |
|
|
address where the analysis stopped.
|
1652 |
|
|
|
1653 |
|
|
We will handle only functions beginning with:
|
1654 |
|
|
|
1655 |
|
|
pushq %rbp 0x55
|
1656 |
|
|
movq %rsp, %rbp 0x48 0x89 0xe5
|
1657 |
|
|
|
1658 |
|
|
Any function that doesn't start with this sequence will be assumed
|
1659 |
|
|
to have no prologue and thus no valid frame pointer in %rbp. */
|
1660 |
|
|
|
1661 |
|
|
static CORE_ADDR
|
1662 |
|
|
amd64_analyze_prologue (struct gdbarch *gdbarch,
|
1663 |
|
|
CORE_ADDR pc, CORE_ADDR current_pc,
|
1664 |
|
|
struct amd64_frame_cache *cache)
|
1665 |
|
|
{
|
1666 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1667 |
|
|
static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
|
1668 |
|
|
gdb_byte buf[3];
|
1669 |
|
|
gdb_byte op;
|
1670 |
|
|
|
1671 |
|
|
if (current_pc <= pc)
|
1672 |
|
|
return current_pc;
|
1673 |
|
|
|
1674 |
|
|
pc = amd64_analyze_stack_align (pc, current_pc, cache);
|
1675 |
|
|
|
1676 |
|
|
op = read_memory_unsigned_integer (pc, 1, byte_order);
|
1677 |
|
|
|
1678 |
|
|
if (op == 0x55) /* pushq %rbp */
|
1679 |
|
|
{
|
1680 |
|
|
/* Take into account that we've executed the `pushq %rbp' that
|
1681 |
|
|
starts this instruction sequence. */
|
1682 |
|
|
cache->saved_regs[AMD64_RBP_REGNUM] = 0;
|
1683 |
|
|
cache->sp_offset += 8;
|
1684 |
|
|
|
1685 |
|
|
/* If that's all, return now. */
|
1686 |
|
|
if (current_pc <= pc + 1)
|
1687 |
|
|
return current_pc;
|
1688 |
|
|
|
1689 |
|
|
/* Check for `movq %rsp, %rbp'. */
|
1690 |
|
|
read_memory (pc + 1, buf, 3);
|
1691 |
|
|
if (memcmp (buf, proto, 3) != 0)
|
1692 |
|
|
return pc + 1;
|
1693 |
|
|
|
1694 |
|
|
/* OK, we actually have a frame. */
|
1695 |
|
|
cache->frameless_p = 0;
|
1696 |
|
|
return pc + 4;
|
1697 |
|
|
}
|
1698 |
|
|
|
1699 |
|
|
return pc;
|
1700 |
|
|
}
|
1701 |
|
|
|
1702 |
|
|
/* Return PC of first real instruction. */
|
1703 |
|
|
|
1704 |
|
|
static CORE_ADDR
|
1705 |
|
|
amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
|
1706 |
|
|
{
|
1707 |
|
|
struct amd64_frame_cache cache;
|
1708 |
|
|
CORE_ADDR pc;
|
1709 |
|
|
|
1710 |
|
|
amd64_init_frame_cache (&cache);
|
1711 |
|
|
pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
|
1712 |
|
|
&cache);
|
1713 |
|
|
if (cache.frameless_p)
|
1714 |
|
|
return start_pc;
|
1715 |
|
|
|
1716 |
|
|
return pc;
|
1717 |
|
|
}
|
1718 |
|
|
|
1719 |
|
|
|
1720 |
|
|
/* Normal frames. */
|
1721 |
|
|
|
1722 |
|
|
static struct amd64_frame_cache *
|
1723 |
|
|
amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
|
1724 |
|
|
{
|
1725 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1726 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1727 |
|
|
struct amd64_frame_cache *cache;
|
1728 |
|
|
gdb_byte buf[8];
|
1729 |
|
|
int i;
|
1730 |
|
|
|
1731 |
|
|
if (*this_cache)
|
1732 |
|
|
return *this_cache;
|
1733 |
|
|
|
1734 |
|
|
cache = amd64_alloc_frame_cache ();
|
1735 |
|
|
*this_cache = cache;
|
1736 |
|
|
|
1737 |
|
|
cache->pc = get_frame_func (this_frame);
|
1738 |
|
|
if (cache->pc != 0)
|
1739 |
|
|
amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
|
1740 |
|
|
cache);
|
1741 |
|
|
|
1742 |
|
|
if (cache->saved_sp_reg != -1)
|
1743 |
|
|
{
|
1744 |
|
|
/* Stack pointer has been saved. */
|
1745 |
|
|
get_frame_register (this_frame, cache->saved_sp_reg, buf);
|
1746 |
|
|
cache->saved_sp = extract_unsigned_integer(buf, 8, byte_order);
|
1747 |
|
|
}
|
1748 |
|
|
|
1749 |
|
|
if (cache->frameless_p)
|
1750 |
|
|
{
|
1751 |
|
|
/* We didn't find a valid frame. If we're at the start of a
|
1752 |
|
|
function, or somewhere half-way its prologue, the function's
|
1753 |
|
|
frame probably hasn't been fully setup yet. Try to
|
1754 |
|
|
reconstruct the base address for the stack frame by looking
|
1755 |
|
|
at the stack pointer. For truly "frameless" functions this
|
1756 |
|
|
might work too. */
|
1757 |
|
|
|
1758 |
|
|
if (cache->saved_sp_reg != -1)
|
1759 |
|
|
{
|
1760 |
|
|
/* We're halfway aligning the stack. */
|
1761 |
|
|
cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
|
1762 |
|
|
cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
|
1763 |
|
|
|
1764 |
|
|
/* This will be added back below. */
|
1765 |
|
|
cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
|
1766 |
|
|
}
|
1767 |
|
|
else
|
1768 |
|
|
{
|
1769 |
|
|
get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
|
1770 |
|
|
cache->base = extract_unsigned_integer (buf, 8, byte_order)
|
1771 |
|
|
+ cache->sp_offset;
|
1772 |
|
|
}
|
1773 |
|
|
}
|
1774 |
|
|
else
|
1775 |
|
|
{
|
1776 |
|
|
get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
|
1777 |
|
|
cache->base = extract_unsigned_integer (buf, 8, byte_order);
|
1778 |
|
|
}
|
1779 |
|
|
|
1780 |
|
|
/* Now that we have the base address for the stack frame we can
|
1781 |
|
|
calculate the value of %rsp in the calling frame. */
|
1782 |
|
|
cache->saved_sp = cache->base + 16;
|
1783 |
|
|
|
1784 |
|
|
/* For normal frames, %rip is stored at 8(%rbp). If we don't have a
|
1785 |
|
|
frame we find it at the same offset from the reconstructed base
|
1786 |
|
|
address. If we're halfway aligning the stack, %rip is handled
|
1787 |
|
|
differently (see above). */
|
1788 |
|
|
if (!cache->frameless_p || cache->saved_sp_reg == -1)
|
1789 |
|
|
cache->saved_regs[AMD64_RIP_REGNUM] = 8;
|
1790 |
|
|
|
1791 |
|
|
/* Adjust all the saved registers such that they contain addresses
|
1792 |
|
|
instead of offsets. */
|
1793 |
|
|
for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
|
1794 |
|
|
if (cache->saved_regs[i] != -1)
|
1795 |
|
|
cache->saved_regs[i] += cache->base;
|
1796 |
|
|
|
1797 |
|
|
return cache;
|
1798 |
|
|
}
|
1799 |
|
|
|
1800 |
|
|
static void
|
1801 |
|
|
amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
1802 |
|
|
struct frame_id *this_id)
|
1803 |
|
|
{
|
1804 |
|
|
struct amd64_frame_cache *cache =
|
1805 |
|
|
amd64_frame_cache (this_frame, this_cache);
|
1806 |
|
|
|
1807 |
|
|
/* This marks the outermost frame. */
|
1808 |
|
|
if (cache->base == 0)
|
1809 |
|
|
return;
|
1810 |
|
|
|
1811 |
|
|
(*this_id) = frame_id_build (cache->base + 16, cache->pc);
|
1812 |
|
|
}
|
1813 |
|
|
|
1814 |
|
|
static struct value *
|
1815 |
|
|
amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
|
1816 |
|
|
int regnum)
|
1817 |
|
|
{
|
1818 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1819 |
|
|
struct amd64_frame_cache *cache =
|
1820 |
|
|
amd64_frame_cache (this_frame, this_cache);
|
1821 |
|
|
|
1822 |
|
|
gdb_assert (regnum >= 0);
|
1823 |
|
|
|
1824 |
|
|
if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
|
1825 |
|
|
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
|
1826 |
|
|
|
1827 |
|
|
if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
|
1828 |
|
|
return frame_unwind_got_memory (this_frame, regnum,
|
1829 |
|
|
cache->saved_regs[regnum]);
|
1830 |
|
|
|
1831 |
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
1832 |
|
|
}
|
1833 |
|
|
|
1834 |
|
|
static const struct frame_unwind amd64_frame_unwind =
|
1835 |
|
|
{
|
1836 |
|
|
NORMAL_FRAME,
|
1837 |
|
|
amd64_frame_this_id,
|
1838 |
|
|
amd64_frame_prev_register,
|
1839 |
|
|
NULL,
|
1840 |
|
|
default_frame_sniffer
|
1841 |
|
|
};
|
1842 |
|
|
|
1843 |
|
|
|
1844 |
|
|
/* Signal trampolines. */
|
1845 |
|
|
|
1846 |
|
|
/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
|
1847 |
|
|
64-bit variants. This would require using identical frame caches
|
1848 |
|
|
on both platforms. */
|
1849 |
|
|
|
1850 |
|
|
static struct amd64_frame_cache *
|
1851 |
|
|
amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
|
1852 |
|
|
{
|
1853 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1854 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1855 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1856 |
|
|
struct amd64_frame_cache *cache;
|
1857 |
|
|
CORE_ADDR addr;
|
1858 |
|
|
gdb_byte buf[8];
|
1859 |
|
|
int i;
|
1860 |
|
|
|
1861 |
|
|
if (*this_cache)
|
1862 |
|
|
return *this_cache;
|
1863 |
|
|
|
1864 |
|
|
cache = amd64_alloc_frame_cache ();
|
1865 |
|
|
|
1866 |
|
|
get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
|
1867 |
|
|
cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
|
1868 |
|
|
|
1869 |
|
|
addr = tdep->sigcontext_addr (this_frame);
|
1870 |
|
|
gdb_assert (tdep->sc_reg_offset);
|
1871 |
|
|
gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
|
1872 |
|
|
for (i = 0; i < tdep->sc_num_regs; i++)
|
1873 |
|
|
if (tdep->sc_reg_offset[i] != -1)
|
1874 |
|
|
cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
|
1875 |
|
|
|
1876 |
|
|
*this_cache = cache;
|
1877 |
|
|
return cache;
|
1878 |
|
|
}
|
1879 |
|
|
|
1880 |
|
|
static void
|
1881 |
|
|
amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
|
1882 |
|
|
void **this_cache, struct frame_id *this_id)
|
1883 |
|
|
{
|
1884 |
|
|
struct amd64_frame_cache *cache =
|
1885 |
|
|
amd64_sigtramp_frame_cache (this_frame, this_cache);
|
1886 |
|
|
|
1887 |
|
|
(*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
|
1888 |
|
|
}
|
1889 |
|
|
|
1890 |
|
|
static struct value *
|
1891 |
|
|
amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
|
1892 |
|
|
void **this_cache, int regnum)
|
1893 |
|
|
{
|
1894 |
|
|
/* Make sure we've initialized the cache. */
|
1895 |
|
|
amd64_sigtramp_frame_cache (this_frame, this_cache);
|
1896 |
|
|
|
1897 |
|
|
return amd64_frame_prev_register (this_frame, this_cache, regnum);
|
1898 |
|
|
}
|
1899 |
|
|
|
1900 |
|
|
static int
|
1901 |
|
|
amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
|
1902 |
|
|
struct frame_info *this_frame,
|
1903 |
|
|
void **this_cache)
|
1904 |
|
|
{
|
1905 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
|
1906 |
|
|
|
1907 |
|
|
/* We shouldn't even bother if we don't have a sigcontext_addr
|
1908 |
|
|
handler. */
|
1909 |
|
|
if (tdep->sigcontext_addr == NULL)
|
1910 |
|
|
return 0;
|
1911 |
|
|
|
1912 |
|
|
if (tdep->sigtramp_p != NULL)
|
1913 |
|
|
{
|
1914 |
|
|
if (tdep->sigtramp_p (this_frame))
|
1915 |
|
|
return 1;
|
1916 |
|
|
}
|
1917 |
|
|
|
1918 |
|
|
if (tdep->sigtramp_start != 0)
|
1919 |
|
|
{
|
1920 |
|
|
CORE_ADDR pc = get_frame_pc (this_frame);
|
1921 |
|
|
|
1922 |
|
|
gdb_assert (tdep->sigtramp_end != 0);
|
1923 |
|
|
if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
|
1924 |
|
|
return 1;
|
1925 |
|
|
}
|
1926 |
|
|
|
1927 |
|
|
return 0;
|
1928 |
|
|
}
|
1929 |
|
|
|
1930 |
|
|
static const struct frame_unwind amd64_sigtramp_frame_unwind =
|
1931 |
|
|
{
|
1932 |
|
|
SIGTRAMP_FRAME,
|
1933 |
|
|
amd64_sigtramp_frame_this_id,
|
1934 |
|
|
amd64_sigtramp_frame_prev_register,
|
1935 |
|
|
NULL,
|
1936 |
|
|
amd64_sigtramp_frame_sniffer
|
1937 |
|
|
};
|
1938 |
|
|
|
1939 |
|
|
|
1940 |
|
|
static CORE_ADDR
|
1941 |
|
|
amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
1942 |
|
|
{
|
1943 |
|
|
struct amd64_frame_cache *cache =
|
1944 |
|
|
amd64_frame_cache (this_frame, this_cache);
|
1945 |
|
|
|
1946 |
|
|
return cache->base;
|
1947 |
|
|
}
|
1948 |
|
|
|
1949 |
|
|
static const struct frame_base amd64_frame_base =
|
1950 |
|
|
{
|
1951 |
|
|
&amd64_frame_unwind,
|
1952 |
|
|
amd64_frame_base_address,
|
1953 |
|
|
amd64_frame_base_address,
|
1954 |
|
|
amd64_frame_base_address
|
1955 |
|
|
};
|
1956 |
|
|
|
1957 |
|
|
/* Normal frames, but in a function epilogue. */
|
1958 |
|
|
|
1959 |
|
|
/* The epilogue is defined here as the 'ret' instruction, which will
|
1960 |
|
|
follow any instruction such as 'leave' or 'pop %ebp' that destroys
|
1961 |
|
|
the function's stack frame. */
|
1962 |
|
|
|
1963 |
|
|
static int
|
1964 |
|
|
amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
1965 |
|
|
{
|
1966 |
|
|
gdb_byte insn;
|
1967 |
|
|
|
1968 |
|
|
if (target_read_memory (pc, &insn, 1))
|
1969 |
|
|
return 0; /* Can't read memory at pc. */
|
1970 |
|
|
|
1971 |
|
|
if (insn != 0xc3) /* 'ret' instruction. */
|
1972 |
|
|
return 0;
|
1973 |
|
|
|
1974 |
|
|
return 1;
|
1975 |
|
|
}
|
1976 |
|
|
|
1977 |
|
|
static int
|
1978 |
|
|
amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
|
1979 |
|
|
struct frame_info *this_frame,
|
1980 |
|
|
void **this_prologue_cache)
|
1981 |
|
|
{
|
1982 |
|
|
if (frame_relative_level (this_frame) == 0)
|
1983 |
|
|
return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
|
1984 |
|
|
get_frame_pc (this_frame));
|
1985 |
|
|
else
|
1986 |
|
|
return 0;
|
1987 |
|
|
}
|
1988 |
|
|
|
1989 |
|
|
static struct amd64_frame_cache *
|
1990 |
|
|
amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
|
1991 |
|
|
{
|
1992 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1993 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1994 |
|
|
struct amd64_frame_cache *cache;
|
1995 |
|
|
gdb_byte buf[8];
|
1996 |
|
|
|
1997 |
|
|
if (*this_cache)
|
1998 |
|
|
return *this_cache;
|
1999 |
|
|
|
2000 |
|
|
cache = amd64_alloc_frame_cache ();
|
2001 |
|
|
*this_cache = cache;
|
2002 |
|
|
|
2003 |
|
|
/* Cache base will be %esp plus cache->sp_offset (-8). */
|
2004 |
|
|
get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
|
2005 |
|
|
cache->base = extract_unsigned_integer (buf, 8,
|
2006 |
|
|
byte_order) + cache->sp_offset;
|
2007 |
|
|
|
2008 |
|
|
/* Cache pc will be the frame func. */
|
2009 |
|
|
cache->pc = get_frame_pc (this_frame);
|
2010 |
|
|
|
2011 |
|
|
/* The saved %esp will be at cache->base plus 16. */
|
2012 |
|
|
cache->saved_sp = cache->base + 16;
|
2013 |
|
|
|
2014 |
|
|
/* The saved %eip will be at cache->base plus 8. */
|
2015 |
|
|
cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
|
2016 |
|
|
|
2017 |
|
|
return cache;
|
2018 |
|
|
}
|
2019 |
|
|
|
2020 |
|
|
static void
|
2021 |
|
|
amd64_epilogue_frame_this_id (struct frame_info *this_frame,
|
2022 |
|
|
void **this_cache,
|
2023 |
|
|
struct frame_id *this_id)
|
2024 |
|
|
{
|
2025 |
|
|
struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
|
2026 |
|
|
this_cache);
|
2027 |
|
|
|
2028 |
|
|
(*this_id) = frame_id_build (cache->base + 8, cache->pc);
|
2029 |
|
|
}
|
2030 |
|
|
|
2031 |
|
|
static const struct frame_unwind amd64_epilogue_frame_unwind =
|
2032 |
|
|
{
|
2033 |
|
|
NORMAL_FRAME,
|
2034 |
|
|
amd64_epilogue_frame_this_id,
|
2035 |
|
|
amd64_frame_prev_register,
|
2036 |
|
|
NULL,
|
2037 |
|
|
amd64_epilogue_frame_sniffer
|
2038 |
|
|
};
|
2039 |
|
|
|
2040 |
|
|
static struct frame_id
|
2041 |
|
|
amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
2042 |
|
|
{
|
2043 |
|
|
CORE_ADDR fp;
|
2044 |
|
|
|
2045 |
|
|
fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
|
2046 |
|
|
|
2047 |
|
|
return frame_id_build (fp + 16, get_frame_pc (this_frame));
|
2048 |
|
|
}
|
2049 |
|
|
|
2050 |
|
|
/* 16 byte align the SP per frame requirements. */
|
2051 |
|
|
|
2052 |
|
|
static CORE_ADDR
|
2053 |
|
|
amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
2054 |
|
|
{
|
2055 |
|
|
return sp & -(CORE_ADDR)16;
|
2056 |
|
|
}
|
2057 |
|
|
|
2058 |
|
|
|
2059 |
|
|
/* Supply register REGNUM from the buffer specified by FPREGS and LEN
|
2060 |
|
|
in the floating-point register set REGSET to register cache
|
2061 |
|
|
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
2062 |
|
|
|
2063 |
|
|
static void
|
2064 |
|
|
amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
|
2065 |
|
|
int regnum, const void *fpregs, size_t len)
|
2066 |
|
|
{
|
2067 |
|
|
const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
|
2068 |
|
|
|
2069 |
|
|
gdb_assert (len == tdep->sizeof_fpregset);
|
2070 |
|
|
amd64_supply_fxsave (regcache, regnum, fpregs);
|
2071 |
|
|
}
|
2072 |
|
|
|
2073 |
|
|
/* Collect register REGNUM from the register cache REGCACHE and store
|
2074 |
|
|
it in the buffer specified by FPREGS and LEN as described by the
|
2075 |
|
|
floating-point register set REGSET. If REGNUM is -1, do this for
|
2076 |
|
|
all registers in REGSET. */
|
2077 |
|
|
|
2078 |
|
|
static void
|
2079 |
|
|
amd64_collect_fpregset (const struct regset *regset,
|
2080 |
|
|
const struct regcache *regcache,
|
2081 |
|
|
int regnum, void *fpregs, size_t len)
|
2082 |
|
|
{
|
2083 |
|
|
const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
|
2084 |
|
|
|
2085 |
|
|
gdb_assert (len == tdep->sizeof_fpregset);
|
2086 |
|
|
amd64_collect_fxsave (regcache, regnum, fpregs);
|
2087 |
|
|
}
|
2088 |
|
|
|
2089 |
|
|
/* Return the appropriate register set for the core section identified
|
2090 |
|
|
by SECT_NAME and SECT_SIZE. */
|
2091 |
|
|
|
2092 |
|
|
static const struct regset *
|
2093 |
|
|
amd64_regset_from_core_section (struct gdbarch *gdbarch,
|
2094 |
|
|
const char *sect_name, size_t sect_size)
|
2095 |
|
|
{
|
2096 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2097 |
|
|
|
2098 |
|
|
if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
|
2099 |
|
|
{
|
2100 |
|
|
if (tdep->fpregset == NULL)
|
2101 |
|
|
tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
|
2102 |
|
|
amd64_collect_fpregset);
|
2103 |
|
|
|
2104 |
|
|
return tdep->fpregset;
|
2105 |
|
|
}
|
2106 |
|
|
|
2107 |
|
|
return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
|
2108 |
|
|
}
|
2109 |
|
|
|
2110 |
|
|
|
2111 |
|
|
/* Figure out where the longjmp will land. Slurp the jmp_buf out of
|
2112 |
|
|
%rdi. We expect its value to be a pointer to the jmp_buf structure
|
2113 |
|
|
from which we extract the address that we will land at. This
|
2114 |
|
|
address is copied into PC. This routine returns non-zero on
|
2115 |
|
|
success. */
|
2116 |
|
|
|
2117 |
|
|
static int
|
2118 |
|
|
amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
2119 |
|
|
{
|
2120 |
|
|
gdb_byte buf[8];
|
2121 |
|
|
CORE_ADDR jb_addr;
|
2122 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
2123 |
|
|
int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
|
2124 |
|
|
int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
|
2125 |
|
|
|
2126 |
|
|
/* If JB_PC_OFFSET is -1, we have no way to find out where the
|
2127 |
|
|
longjmp will land. */
|
2128 |
|
|
if (jb_pc_offset == -1)
|
2129 |
|
|
return 0;
|
2130 |
|
|
|
2131 |
|
|
get_frame_register (frame, AMD64_RDI_REGNUM, buf);
|
2132 |
|
|
jb_addr= extract_typed_address
|
2133 |
|
|
(buf, builtin_type (gdbarch)->builtin_data_ptr);
|
2134 |
|
|
if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
|
2135 |
|
|
return 0;
|
2136 |
|
|
|
2137 |
|
|
*pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
|
2138 |
|
|
|
2139 |
|
|
return 1;
|
2140 |
|
|
}
|
2141 |
|
|
|
2142 |
|
|
static const int amd64_record_regmap[] =
|
2143 |
|
|
{
|
2144 |
|
|
AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
|
2145 |
|
|
AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
|
2146 |
|
|
AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
|
2147 |
|
|
AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
|
2148 |
|
|
AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
|
2149 |
|
|
AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
|
2150 |
|
|
};
|
2151 |
|
|
|
2152 |
|
|
void
|
2153 |
|
|
amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
2154 |
|
|
{
|
2155 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2156 |
|
|
|
2157 |
|
|
/* AMD64 generally uses `fxsave' instead of `fsave' for saving its
|
2158 |
|
|
floating-point registers. */
|
2159 |
|
|
tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
|
2160 |
|
|
|
2161 |
|
|
/* AMD64 has an FPU and 16 SSE registers. */
|
2162 |
|
|
tdep->st0_regnum = AMD64_ST0_REGNUM;
|
2163 |
|
|
tdep->num_xmm_regs = 16;
|
2164 |
|
|
|
2165 |
|
|
/* This is what all the fuss is about. */
|
2166 |
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
2167 |
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
2168 |
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
2169 |
|
|
|
2170 |
|
|
/* In contrast to the i386, on AMD64 a `long double' actually takes
|
2171 |
|
|
up 128 bits, even though it's still based on the i387 extended
|
2172 |
|
|
floating-point format which has only 80 significant bits. */
|
2173 |
|
|
set_gdbarch_long_double_bit (gdbarch, 128);
|
2174 |
|
|
|
2175 |
|
|
set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
|
2176 |
|
|
set_gdbarch_register_name (gdbarch, amd64_register_name);
|
2177 |
|
|
set_gdbarch_register_type (gdbarch, amd64_register_type);
|
2178 |
|
|
|
2179 |
|
|
/* Register numbers of various important registers. */
|
2180 |
|
|
set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
|
2181 |
|
|
set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
|
2182 |
|
|
set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
|
2183 |
|
|
set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
|
2184 |
|
|
|
2185 |
|
|
/* The "default" register numbering scheme for AMD64 is referred to
|
2186 |
|
|
as the "DWARF Register Number Mapping" in the System V psABI.
|
2187 |
|
|
The preferred debugging format for all known AMD64 targets is
|
2188 |
|
|
actually DWARF2, and GCC doesn't seem to support DWARF (that is
|
2189 |
|
|
DWARF-1), but we provide the same mapping just in case. This
|
2190 |
|
|
mapping is also used for stabs, which GCC does support. */
|
2191 |
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
|
2192 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
|
2193 |
|
|
|
2194 |
|
|
/* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
|
2195 |
|
|
be in use on any of the supported AMD64 targets. */
|
2196 |
|
|
|
2197 |
|
|
/* Call dummy code. */
|
2198 |
|
|
set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
|
2199 |
|
|
set_gdbarch_frame_align (gdbarch, amd64_frame_align);
|
2200 |
|
|
set_gdbarch_frame_red_zone_size (gdbarch, 128);
|
2201 |
|
|
tdep->call_dummy_num_integer_regs =
|
2202 |
|
|
ARRAY_SIZE (amd64_dummy_call_integer_regs);
|
2203 |
|
|
tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
|
2204 |
|
|
tdep->classify = amd64_classify;
|
2205 |
|
|
|
2206 |
|
|
set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
|
2207 |
|
|
set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
|
2208 |
|
|
set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
|
2209 |
|
|
|
2210 |
|
|
set_gdbarch_return_value (gdbarch, amd64_return_value);
|
2211 |
|
|
|
2212 |
|
|
set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
|
2213 |
|
|
|
2214 |
|
|
/* Avoid wiring in the MMX registers for now. */
|
2215 |
|
|
set_gdbarch_num_pseudo_regs (gdbarch, 0);
|
2216 |
|
|
tdep->mm0_regnum = -1;
|
2217 |
|
|
|
2218 |
|
|
tdep->record_regmap = amd64_record_regmap;
|
2219 |
|
|
|
2220 |
|
|
set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
|
2221 |
|
|
|
2222 |
|
|
/* Hook the function epilogue frame unwinder. This unwinder is
|
2223 |
|
|
appended to the list first, so that it supercedes the other
|
2224 |
|
|
unwinders in function epilogues. */
|
2225 |
|
|
frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
|
2226 |
|
|
|
2227 |
|
|
/* Hook the prologue-based frame unwinders. */
|
2228 |
|
|
frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
|
2229 |
|
|
frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
|
2230 |
|
|
frame_base_set_default (gdbarch, &amd64_frame_base);
|
2231 |
|
|
|
2232 |
|
|
/* If we have a register mapping, enable the generic core file support. */
|
2233 |
|
|
if (tdep->gregset_reg_offset)
|
2234 |
|
|
set_gdbarch_regset_from_core_section (gdbarch,
|
2235 |
|
|
amd64_regset_from_core_section);
|
2236 |
|
|
|
2237 |
|
|
set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
|
2238 |
|
|
}
|
2239 |
|
|
|
2240 |
|
|
|
2241 |
|
|
/* The 64-bit FXSAVE format differs from the 32-bit format in the
|
2242 |
|
|
sense that the instruction pointer and data pointer are simply
|
2243 |
|
|
64-bit offsets into the code segment and the data segment instead
|
2244 |
|
|
of a selector offset pair. The functions below store the upper 32
|
2245 |
|
|
bits of these pointers (instead of just the 16-bits of the segment
|
2246 |
|
|
selector). */
|
2247 |
|
|
|
2248 |
|
|
/* Fill register REGNUM in REGCACHE with the appropriate
|
2249 |
|
|
floating-point or SSE register value from *FXSAVE. If REGNUM is
|
2250 |
|
|
-1, do this for all registers. This function masks off any of the
|
2251 |
|
|
reserved bits in *FXSAVE. */
|
2252 |
|
|
|
2253 |
|
|
void
|
2254 |
|
|
amd64_supply_fxsave (struct regcache *regcache, int regnum,
|
2255 |
|
|
const void *fxsave)
|
2256 |
|
|
{
|
2257 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
2258 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2259 |
|
|
|
2260 |
|
|
i387_supply_fxsave (regcache, regnum, fxsave);
|
2261 |
|
|
|
2262 |
|
|
if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
|
2263 |
|
|
{
|
2264 |
|
|
const gdb_byte *regs = fxsave;
|
2265 |
|
|
|
2266 |
|
|
if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
|
2267 |
|
|
regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
|
2268 |
|
|
if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
|
2269 |
|
|
regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
|
2270 |
|
|
}
|
2271 |
|
|
}
|
2272 |
|
|
|
2273 |
|
|
/* Fill register REGNUM (if it is a floating-point or SSE register) in
|
2274 |
|
|
*FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
|
2275 |
|
|
all registers. This function doesn't touch any of the reserved
|
2276 |
|
|
bits in *FXSAVE. */
|
2277 |
|
|
|
2278 |
|
|
void
|
2279 |
|
|
amd64_collect_fxsave (const struct regcache *regcache, int regnum,
|
2280 |
|
|
void *fxsave)
|
2281 |
|
|
{
|
2282 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
2283 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2284 |
|
|
gdb_byte *regs = fxsave;
|
2285 |
|
|
|
2286 |
|
|
i387_collect_fxsave (regcache, regnum, fxsave);
|
2287 |
|
|
|
2288 |
|
|
if (gdbarch_ptr_bit (gdbarch) == 64)
|
2289 |
|
|
{
|
2290 |
|
|
if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
|
2291 |
|
|
regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
|
2292 |
|
|
if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
|
2293 |
|
|
regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
|
2294 |
|
|
}
|
2295 |
|
|
}
|