| 1 |
227 |
jeremybenn |
/* GNU/Linux on ARM target support.
|
| 2 |
|
|
|
| 3 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
| 4 |
|
|
2009, 2010 Free Software Foundation, Inc.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GDB.
|
| 7 |
|
|
|
| 8 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 9 |
|
|
it under the terms of the GNU General Public License as published by
|
| 10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
| 11 |
|
|
(at your option) any later version.
|
| 12 |
|
|
|
| 13 |
|
|
This program is distributed in the hope that it will be useful,
|
| 14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
|
|
GNU General Public License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "defs.h"
|
| 22 |
|
|
#include "target.h"
|
| 23 |
|
|
#include "value.h"
|
| 24 |
|
|
#include "gdbtypes.h"
|
| 25 |
|
|
#include "floatformat.h"
|
| 26 |
|
|
#include "gdbcore.h"
|
| 27 |
|
|
#include "frame.h"
|
| 28 |
|
|
#include "regcache.h"
|
| 29 |
|
|
#include "doublest.h"
|
| 30 |
|
|
#include "solib-svr4.h"
|
| 31 |
|
|
#include "osabi.h"
|
| 32 |
|
|
#include "regset.h"
|
| 33 |
|
|
#include "trad-frame.h"
|
| 34 |
|
|
#include "tramp-frame.h"
|
| 35 |
|
|
#include "breakpoint.h"
|
| 36 |
|
|
|
| 37 |
|
|
#include "arm-tdep.h"
|
| 38 |
|
|
#include "arm-linux-tdep.h"
|
| 39 |
|
|
#include "linux-tdep.h"
|
| 40 |
|
|
#include "glibc-tdep.h"
|
| 41 |
|
|
#include "arch-utils.h"
|
| 42 |
|
|
#include "inferior.h"
|
| 43 |
|
|
#include "gdbthread.h"
|
| 44 |
|
|
#include "symfile.h"
|
| 45 |
|
|
|
| 46 |
|
|
#include "gdb_string.h"
|
| 47 |
|
|
|
| 48 |
|
|
extern int arm_apcs_32;
|
| 49 |
|
|
|
| 50 |
|
|
/* Under ARM GNU/Linux the traditional way of performing a breakpoint
|
| 51 |
|
|
is to execute a particular software interrupt, rather than use a
|
| 52 |
|
|
particular undefined instruction to provoke a trap. Upon exection
|
| 53 |
|
|
of the software interrupt the kernel stops the inferior with a
|
| 54 |
|
|
SIGTRAP, and wakes the debugger. */
|
| 55 |
|
|
|
| 56 |
|
|
static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
|
| 57 |
|
|
|
| 58 |
|
|
static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
|
| 59 |
|
|
|
| 60 |
|
|
/* However, the EABI syscall interface (new in Nov. 2005) does not look at
|
| 61 |
|
|
the operand of the swi if old-ABI compatibility is disabled. Therefore,
|
| 62 |
|
|
use an undefined instruction instead. This is supported as of kernel
|
| 63 |
|
|
version 2.5.70 (May 2003), so should be a safe assumption for EABI
|
| 64 |
|
|
binaries. */
|
| 65 |
|
|
|
| 66 |
|
|
static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
|
| 67 |
|
|
|
| 68 |
|
|
static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
|
| 69 |
|
|
|
| 70 |
|
|
/* All the kernels which support Thumb support using a specific undefined
|
| 71 |
|
|
instruction for the Thumb breakpoint. */
|
| 72 |
|
|
|
| 73 |
|
|
static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
|
| 74 |
|
|
|
| 75 |
|
|
static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
|
| 76 |
|
|
|
| 77 |
|
|
/* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
|
| 78 |
|
|
we must use a length-appropriate breakpoint for 32-bit Thumb
|
| 79 |
|
|
instructions. See also thumb_get_next_pc. */
|
| 80 |
|
|
|
| 81 |
|
|
static const char arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
|
| 82 |
|
|
|
| 83 |
|
|
static const char arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
|
| 84 |
|
|
|
| 85 |
|
|
/* Description of the longjmp buffer. */
|
| 86 |
|
|
#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
|
| 87 |
|
|
#define ARM_LINUX_JB_PC 21
|
| 88 |
|
|
|
| 89 |
|
|
/*
|
| 90 |
|
|
Dynamic Linking on ARM GNU/Linux
|
| 91 |
|
|
--------------------------------
|
| 92 |
|
|
|
| 93 |
|
|
Note: PLT = procedure linkage table
|
| 94 |
|
|
GOT = global offset table
|
| 95 |
|
|
|
| 96 |
|
|
As much as possible, ELF dynamic linking defers the resolution of
|
| 97 |
|
|
jump/call addresses until the last minute. The technique used is
|
| 98 |
|
|
inspired by the i386 ELF design, and is based on the following
|
| 99 |
|
|
constraints.
|
| 100 |
|
|
|
| 101 |
|
|
1) The calling technique should not force a change in the assembly
|
| 102 |
|
|
code produced for apps; it MAY cause changes in the way assembly
|
| 103 |
|
|
code is produced for position independent code (i.e. shared
|
| 104 |
|
|
libraries).
|
| 105 |
|
|
|
| 106 |
|
|
2) The technique must be such that all executable areas must not be
|
| 107 |
|
|
modified; and any modified areas must not be executed.
|
| 108 |
|
|
|
| 109 |
|
|
To do this, there are three steps involved in a typical jump:
|
| 110 |
|
|
|
| 111 |
|
|
1) in the code
|
| 112 |
|
|
2) through the PLT
|
| 113 |
|
|
3) using a pointer from the GOT
|
| 114 |
|
|
|
| 115 |
|
|
When the executable or library is first loaded, each GOT entry is
|
| 116 |
|
|
initialized to point to the code which implements dynamic name
|
| 117 |
|
|
resolution and code finding. This is normally a function in the
|
| 118 |
|
|
program interpreter (on ARM GNU/Linux this is usually
|
| 119 |
|
|
ld-linux.so.2, but it does not have to be). On the first
|
| 120 |
|
|
invocation, the function is located and the GOT entry is replaced
|
| 121 |
|
|
with the real function address. Subsequent calls go through steps
|
| 122 |
|
|
1, 2 and 3 and end up calling the real code.
|
| 123 |
|
|
|
| 124 |
|
|
1) In the code:
|
| 125 |
|
|
|
| 126 |
|
|
b function_call
|
| 127 |
|
|
bl function_call
|
| 128 |
|
|
|
| 129 |
|
|
This is typical ARM code using the 26 bit relative branch or branch
|
| 130 |
|
|
and link instructions. The target of the instruction
|
| 131 |
|
|
(function_call is usually the address of the function to be called.
|
| 132 |
|
|
In position independent code, the target of the instruction is
|
| 133 |
|
|
actually an entry in the PLT when calling functions in a shared
|
| 134 |
|
|
library. Note that this call is identical to a normal function
|
| 135 |
|
|
call, only the target differs.
|
| 136 |
|
|
|
| 137 |
|
|
2) In the PLT:
|
| 138 |
|
|
|
| 139 |
|
|
The PLT is a synthetic area, created by the linker. It exists in
|
| 140 |
|
|
both executables and libraries. It is an array of stubs, one per
|
| 141 |
|
|
imported function call. It looks like this:
|
| 142 |
|
|
|
| 143 |
|
|
PLT[0]:
|
| 144 |
|
|
str lr, [sp, #-4]! @push the return address (lr)
|
| 145 |
|
|
ldr lr, [pc, #16] @load from 6 words ahead
|
| 146 |
|
|
add lr, pc, lr @form an address for GOT[0]
|
| 147 |
|
|
ldr pc, [lr, #8]! @jump to the contents of that addr
|
| 148 |
|
|
|
| 149 |
|
|
The return address (lr) is pushed on the stack and used for
|
| 150 |
|
|
calculations. The load on the second line loads the lr with
|
| 151 |
|
|
&GOT[3] - . - 20. The addition on the third leaves:
|
| 152 |
|
|
|
| 153 |
|
|
lr = (&GOT[3] - . - 20) + (. + 8)
|
| 154 |
|
|
lr = (&GOT[3] - 12)
|
| 155 |
|
|
lr = &GOT[0]
|
| 156 |
|
|
|
| 157 |
|
|
On the fourth line, the pc and lr are both updated, so that:
|
| 158 |
|
|
|
| 159 |
|
|
pc = GOT[2]
|
| 160 |
|
|
lr = &GOT[0] + 8
|
| 161 |
|
|
= &GOT[2]
|
| 162 |
|
|
|
| 163 |
|
|
NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
|
| 164 |
|
|
"tight", but allows us to keep all the PLT entries the same size.
|
| 165 |
|
|
|
| 166 |
|
|
PLT[n+1]:
|
| 167 |
|
|
ldr ip, [pc, #4] @load offset from gotoff
|
| 168 |
|
|
add ip, pc, ip @add the offset to the pc
|
| 169 |
|
|
ldr pc, [ip] @jump to that address
|
| 170 |
|
|
gotoff: .word GOT[n+3] - .
|
| 171 |
|
|
|
| 172 |
|
|
The load on the first line, gets an offset from the fourth word of
|
| 173 |
|
|
the PLT entry. The add on the second line makes ip = &GOT[n+3],
|
| 174 |
|
|
which contains either a pointer to PLT[0] (the fixup trampoline) or
|
| 175 |
|
|
a pointer to the actual code.
|
| 176 |
|
|
|
| 177 |
|
|
3) In the GOT:
|
| 178 |
|
|
|
| 179 |
|
|
The GOT contains helper pointers for both code (PLT) fixups and
|
| 180 |
|
|
data fixups. The first 3 entries of the GOT are special. The next
|
| 181 |
|
|
M entries (where M is the number of entries in the PLT) belong to
|
| 182 |
|
|
the PLT fixups. The next D (all remaining) entries belong to
|
| 183 |
|
|
various data fixups. The actual size of the GOT is 3 + M + D.
|
| 184 |
|
|
|
| 185 |
|
|
The GOT is also a synthetic area, created by the linker. It exists
|
| 186 |
|
|
in both executables and libraries. When the GOT is first
|
| 187 |
|
|
initialized , all the GOT entries relating to PLT fixups are
|
| 188 |
|
|
pointing to code back at PLT[0].
|
| 189 |
|
|
|
| 190 |
|
|
The special entries in the GOT are:
|
| 191 |
|
|
|
| 192 |
|
|
GOT[0] = linked list pointer used by the dynamic loader
|
| 193 |
|
|
GOT[1] = pointer to the reloc table for this module
|
| 194 |
|
|
GOT[2] = pointer to the fixup/resolver code
|
| 195 |
|
|
|
| 196 |
|
|
The first invocation of function call comes through and uses the
|
| 197 |
|
|
fixup/resolver code. On the entry to the fixup/resolver code:
|
| 198 |
|
|
|
| 199 |
|
|
ip = &GOT[n+3]
|
| 200 |
|
|
lr = &GOT[2]
|
| 201 |
|
|
stack[0] = return address (lr) of the function call
|
| 202 |
|
|
[r0, r1, r2, r3] are still the arguments to the function call
|
| 203 |
|
|
|
| 204 |
|
|
This is enough information for the fixup/resolver code to work
|
| 205 |
|
|
with. Before the fixup/resolver code returns, it actually calls
|
| 206 |
|
|
the requested function and repairs &GOT[n+3]. */
|
| 207 |
|
|
|
| 208 |
|
|
/* The constants below were determined by examining the following files
|
| 209 |
|
|
in the linux kernel sources:
|
| 210 |
|
|
|
| 211 |
|
|
arch/arm/kernel/signal.c
|
| 212 |
|
|
- see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
|
| 213 |
|
|
include/asm-arm/unistd.h
|
| 214 |
|
|
- see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
|
| 215 |
|
|
|
| 216 |
|
|
#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
|
| 217 |
|
|
#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
|
| 218 |
|
|
|
| 219 |
|
|
/* For ARM EABI, the syscall number is not in the SWI instruction
|
| 220 |
|
|
(instead it is loaded into r7). We recognize the pattern that
|
| 221 |
|
|
glibc uses... alternatively, we could arrange to do this by
|
| 222 |
|
|
function name, but they are not always exported. */
|
| 223 |
|
|
#define ARM_SET_R7_SIGRETURN 0xe3a07077
|
| 224 |
|
|
#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
|
| 225 |
|
|
#define ARM_EABI_SYSCALL 0xef000000
|
| 226 |
|
|
|
| 227 |
|
|
/* OABI syscall restart trampoline, used for EABI executables too
|
| 228 |
|
|
whenever OABI support has been enabled in the kernel. */
|
| 229 |
|
|
#define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
|
| 230 |
|
|
#define ARM_LDR_PC_SP_12 0xe49df00c
|
| 231 |
|
|
|
| 232 |
|
|
static void
|
| 233 |
|
|
arm_linux_sigtramp_cache (struct frame_info *this_frame,
|
| 234 |
|
|
struct trad_frame_cache *this_cache,
|
| 235 |
|
|
CORE_ADDR func, int regs_offset)
|
| 236 |
|
|
{
|
| 237 |
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
| 238 |
|
|
CORE_ADDR base = sp + regs_offset;
|
| 239 |
|
|
int i;
|
| 240 |
|
|
|
| 241 |
|
|
for (i = 0; i < 16; i++)
|
| 242 |
|
|
trad_frame_set_reg_addr (this_cache, i, base + i * 4);
|
| 243 |
|
|
|
| 244 |
|
|
trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
|
| 245 |
|
|
|
| 246 |
|
|
/* The VFP or iWMMXt registers may be saved on the stack, but there's
|
| 247 |
|
|
no reliable way to restore them (yet). */
|
| 248 |
|
|
|
| 249 |
|
|
/* Save a frame ID. */
|
| 250 |
|
|
trad_frame_set_id (this_cache, frame_id_build (sp, func));
|
| 251 |
|
|
}
|
| 252 |
|
|
|
| 253 |
|
|
/* There are a couple of different possible stack layouts that
|
| 254 |
|
|
we need to support.
|
| 255 |
|
|
|
| 256 |
|
|
Before version 2.6.18, the kernel used completely independent
|
| 257 |
|
|
layouts for non-RT and RT signals. For non-RT signals the stack
|
| 258 |
|
|
began directly with a struct sigcontext. For RT signals the stack
|
| 259 |
|
|
began with two redundant pointers (to the siginfo and ucontext),
|
| 260 |
|
|
and then the siginfo and ucontext.
|
| 261 |
|
|
|
| 262 |
|
|
As of version 2.6.18, the non-RT signal frame layout starts with
|
| 263 |
|
|
a ucontext and the RT signal frame starts with a siginfo and then
|
| 264 |
|
|
a ucontext. Also, the ucontext now has a designated save area
|
| 265 |
|
|
for coprocessor registers.
|
| 266 |
|
|
|
| 267 |
|
|
For RT signals, it's easy to tell the difference: we look for
|
| 268 |
|
|
pinfo, the pointer to the siginfo. If it has the expected
|
| 269 |
|
|
value, we have an old layout. If it doesn't, we have the new
|
| 270 |
|
|
layout.
|
| 271 |
|
|
|
| 272 |
|
|
For non-RT signals, it's a bit harder. We need something in one
|
| 273 |
|
|
layout or the other with a recognizable offset and value. We can't
|
| 274 |
|
|
use the return trampoline, because ARM usually uses SA_RESTORER,
|
| 275 |
|
|
in which case the stack return trampoline is not filled in.
|
| 276 |
|
|
We can't use the saved stack pointer, because sigaltstack might
|
| 277 |
|
|
be in use. So for now we guess the new layout... */
|
| 278 |
|
|
|
| 279 |
|
|
/* There are three words (trap_no, error_code, oldmask) in
|
| 280 |
|
|
struct sigcontext before r0. */
|
| 281 |
|
|
#define ARM_SIGCONTEXT_R0 0xc
|
| 282 |
|
|
|
| 283 |
|
|
/* There are five words (uc_flags, uc_link, and three for uc_stack)
|
| 284 |
|
|
in the ucontext_t before the sigcontext. */
|
| 285 |
|
|
#define ARM_UCONTEXT_SIGCONTEXT 0x14
|
| 286 |
|
|
|
| 287 |
|
|
/* There are three elements in an rt_sigframe before the ucontext:
|
| 288 |
|
|
pinfo, puc, and info. The first two are pointers and the third
|
| 289 |
|
|
is a struct siginfo, with size 128 bytes. We could follow puc
|
| 290 |
|
|
to the ucontext, but it's simpler to skip the whole thing. */
|
| 291 |
|
|
#define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
|
| 292 |
|
|
#define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
|
| 293 |
|
|
|
| 294 |
|
|
#define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
|
| 295 |
|
|
|
| 296 |
|
|
#define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
|
| 297 |
|
|
|
| 298 |
|
|
static void
|
| 299 |
|
|
arm_linux_sigreturn_init (const struct tramp_frame *self,
|
| 300 |
|
|
struct frame_info *this_frame,
|
| 301 |
|
|
struct trad_frame_cache *this_cache,
|
| 302 |
|
|
CORE_ADDR func)
|
| 303 |
|
|
{
|
| 304 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
| 305 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 306 |
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
| 307 |
|
|
ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
|
| 308 |
|
|
|
| 309 |
|
|
if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
|
| 310 |
|
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
| 311 |
|
|
ARM_UCONTEXT_SIGCONTEXT
|
| 312 |
|
|
+ ARM_SIGCONTEXT_R0);
|
| 313 |
|
|
else
|
| 314 |
|
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
| 315 |
|
|
ARM_SIGCONTEXT_R0);
|
| 316 |
|
|
}
|
| 317 |
|
|
|
| 318 |
|
|
static void
|
| 319 |
|
|
arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
|
| 320 |
|
|
struct frame_info *this_frame,
|
| 321 |
|
|
struct trad_frame_cache *this_cache,
|
| 322 |
|
|
CORE_ADDR func)
|
| 323 |
|
|
{
|
| 324 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
| 325 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 326 |
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
| 327 |
|
|
ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
|
| 328 |
|
|
|
| 329 |
|
|
if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
|
| 330 |
|
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
| 331 |
|
|
ARM_OLD_RT_SIGFRAME_UCONTEXT
|
| 332 |
|
|
+ ARM_UCONTEXT_SIGCONTEXT
|
| 333 |
|
|
+ ARM_SIGCONTEXT_R0);
|
| 334 |
|
|
else
|
| 335 |
|
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
| 336 |
|
|
ARM_NEW_RT_SIGFRAME_UCONTEXT
|
| 337 |
|
|
+ ARM_UCONTEXT_SIGCONTEXT
|
| 338 |
|
|
+ ARM_SIGCONTEXT_R0);
|
| 339 |
|
|
}
|
| 340 |
|
|
|
| 341 |
|
|
static void
|
| 342 |
|
|
arm_linux_restart_syscall_init (const struct tramp_frame *self,
|
| 343 |
|
|
struct frame_info *this_frame,
|
| 344 |
|
|
struct trad_frame_cache *this_cache,
|
| 345 |
|
|
CORE_ADDR func)
|
| 346 |
|
|
{
|
| 347 |
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
| 348 |
|
|
|
| 349 |
|
|
trad_frame_set_reg_addr (this_cache, ARM_PC_REGNUM, sp);
|
| 350 |
|
|
trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + 12);
|
| 351 |
|
|
|
| 352 |
|
|
/* Save a frame ID. */
|
| 353 |
|
|
trad_frame_set_id (this_cache, frame_id_build (sp, func));
|
| 354 |
|
|
}
|
| 355 |
|
|
|
| 356 |
|
|
static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
|
| 357 |
|
|
SIGTRAMP_FRAME,
|
| 358 |
|
|
4,
|
| 359 |
|
|
{
|
| 360 |
|
|
{ ARM_LINUX_SIGRETURN_INSTR, -1 },
|
| 361 |
|
|
{ TRAMP_SENTINEL_INSN }
|
| 362 |
|
|
},
|
| 363 |
|
|
arm_linux_sigreturn_init
|
| 364 |
|
|
};
|
| 365 |
|
|
|
| 366 |
|
|
static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
|
| 367 |
|
|
SIGTRAMP_FRAME,
|
| 368 |
|
|
4,
|
| 369 |
|
|
{
|
| 370 |
|
|
{ ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
|
| 371 |
|
|
{ TRAMP_SENTINEL_INSN }
|
| 372 |
|
|
},
|
| 373 |
|
|
arm_linux_rt_sigreturn_init
|
| 374 |
|
|
};
|
| 375 |
|
|
|
| 376 |
|
|
static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
|
| 377 |
|
|
SIGTRAMP_FRAME,
|
| 378 |
|
|
4,
|
| 379 |
|
|
{
|
| 380 |
|
|
{ ARM_SET_R7_SIGRETURN, -1 },
|
| 381 |
|
|
{ ARM_EABI_SYSCALL, -1 },
|
| 382 |
|
|
{ TRAMP_SENTINEL_INSN }
|
| 383 |
|
|
},
|
| 384 |
|
|
arm_linux_sigreturn_init
|
| 385 |
|
|
};
|
| 386 |
|
|
|
| 387 |
|
|
static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
|
| 388 |
|
|
SIGTRAMP_FRAME,
|
| 389 |
|
|
4,
|
| 390 |
|
|
{
|
| 391 |
|
|
{ ARM_SET_R7_RT_SIGRETURN, -1 },
|
| 392 |
|
|
{ ARM_EABI_SYSCALL, -1 },
|
| 393 |
|
|
{ TRAMP_SENTINEL_INSN }
|
| 394 |
|
|
},
|
| 395 |
|
|
arm_linux_rt_sigreturn_init
|
| 396 |
|
|
};
|
| 397 |
|
|
|
| 398 |
|
|
static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
|
| 399 |
|
|
NORMAL_FRAME,
|
| 400 |
|
|
4,
|
| 401 |
|
|
{
|
| 402 |
|
|
{ ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
|
| 403 |
|
|
{ ARM_LDR_PC_SP_12, -1 },
|
| 404 |
|
|
{ TRAMP_SENTINEL_INSN }
|
| 405 |
|
|
},
|
| 406 |
|
|
arm_linux_restart_syscall_init
|
| 407 |
|
|
};
|
| 408 |
|
|
|
| 409 |
|
|
/* Core file and register set support. */
|
| 410 |
|
|
|
| 411 |
|
|
#define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
|
| 412 |
|
|
|
| 413 |
|
|
void
|
| 414 |
|
|
arm_linux_supply_gregset (const struct regset *regset,
|
| 415 |
|
|
struct regcache *regcache,
|
| 416 |
|
|
int regnum, const void *gregs_buf, size_t len)
|
| 417 |
|
|
{
|
| 418 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
| 419 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 420 |
|
|
const gdb_byte *gregs = gregs_buf;
|
| 421 |
|
|
int regno;
|
| 422 |
|
|
CORE_ADDR reg_pc;
|
| 423 |
|
|
gdb_byte pc_buf[INT_REGISTER_SIZE];
|
| 424 |
|
|
|
| 425 |
|
|
for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
|
| 426 |
|
|
if (regnum == -1 || regnum == regno)
|
| 427 |
|
|
regcache_raw_supply (regcache, regno,
|
| 428 |
|
|
gregs + INT_REGISTER_SIZE * regno);
|
| 429 |
|
|
|
| 430 |
|
|
if (regnum == ARM_PS_REGNUM || regnum == -1)
|
| 431 |
|
|
{
|
| 432 |
|
|
if (arm_apcs_32)
|
| 433 |
|
|
regcache_raw_supply (regcache, ARM_PS_REGNUM,
|
| 434 |
|
|
gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
|
| 435 |
|
|
else
|
| 436 |
|
|
regcache_raw_supply (regcache, ARM_PS_REGNUM,
|
| 437 |
|
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
| 438 |
|
|
}
|
| 439 |
|
|
|
| 440 |
|
|
if (regnum == ARM_PC_REGNUM || regnum == -1)
|
| 441 |
|
|
{
|
| 442 |
|
|
reg_pc = extract_unsigned_integer (gregs
|
| 443 |
|
|
+ INT_REGISTER_SIZE * ARM_PC_REGNUM,
|
| 444 |
|
|
INT_REGISTER_SIZE, byte_order);
|
| 445 |
|
|
reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
|
| 446 |
|
|
store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
|
| 447 |
|
|
regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
|
| 448 |
|
|
}
|
| 449 |
|
|
}
|
| 450 |
|
|
|
| 451 |
|
|
void
|
| 452 |
|
|
arm_linux_collect_gregset (const struct regset *regset,
|
| 453 |
|
|
const struct regcache *regcache,
|
| 454 |
|
|
int regnum, void *gregs_buf, size_t len)
|
| 455 |
|
|
{
|
| 456 |
|
|
gdb_byte *gregs = gregs_buf;
|
| 457 |
|
|
int regno;
|
| 458 |
|
|
|
| 459 |
|
|
for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
|
| 460 |
|
|
if (regnum == -1 || regnum == regno)
|
| 461 |
|
|
regcache_raw_collect (regcache, regno,
|
| 462 |
|
|
gregs + INT_REGISTER_SIZE * regno);
|
| 463 |
|
|
|
| 464 |
|
|
if (regnum == ARM_PS_REGNUM || regnum == -1)
|
| 465 |
|
|
{
|
| 466 |
|
|
if (arm_apcs_32)
|
| 467 |
|
|
regcache_raw_collect (regcache, ARM_PS_REGNUM,
|
| 468 |
|
|
gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
|
| 469 |
|
|
else
|
| 470 |
|
|
regcache_raw_collect (regcache, ARM_PS_REGNUM,
|
| 471 |
|
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
| 472 |
|
|
}
|
| 473 |
|
|
|
| 474 |
|
|
if (regnum == ARM_PC_REGNUM || regnum == -1)
|
| 475 |
|
|
regcache_raw_collect (regcache, ARM_PC_REGNUM,
|
| 476 |
|
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
| 477 |
|
|
}
|
| 478 |
|
|
|
| 479 |
|
|
/* Support for register format used by the NWFPE FPA emulator. */
|
| 480 |
|
|
|
| 481 |
|
|
#define typeNone 0x00
|
| 482 |
|
|
#define typeSingle 0x01
|
| 483 |
|
|
#define typeDouble 0x02
|
| 484 |
|
|
#define typeExtended 0x03
|
| 485 |
|
|
|
| 486 |
|
|
void
|
| 487 |
|
|
supply_nwfpe_register (struct regcache *regcache, int regno,
|
| 488 |
|
|
const gdb_byte *regs)
|
| 489 |
|
|
{
|
| 490 |
|
|
const gdb_byte *reg_data;
|
| 491 |
|
|
gdb_byte reg_tag;
|
| 492 |
|
|
gdb_byte buf[FP_REGISTER_SIZE];
|
| 493 |
|
|
|
| 494 |
|
|
reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
|
| 495 |
|
|
reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
|
| 496 |
|
|
memset (buf, 0, FP_REGISTER_SIZE);
|
| 497 |
|
|
|
| 498 |
|
|
switch (reg_tag)
|
| 499 |
|
|
{
|
| 500 |
|
|
case typeSingle:
|
| 501 |
|
|
memcpy (buf, reg_data, 4);
|
| 502 |
|
|
break;
|
| 503 |
|
|
case typeDouble:
|
| 504 |
|
|
memcpy (buf, reg_data + 4, 4);
|
| 505 |
|
|
memcpy (buf + 4, reg_data, 4);
|
| 506 |
|
|
break;
|
| 507 |
|
|
case typeExtended:
|
| 508 |
|
|
/* We want sign and exponent, then least significant bits,
|
| 509 |
|
|
then most significant. NWFPE does sign, most, least. */
|
| 510 |
|
|
memcpy (buf, reg_data, 4);
|
| 511 |
|
|
memcpy (buf + 4, reg_data + 8, 4);
|
| 512 |
|
|
memcpy (buf + 8, reg_data + 4, 4);
|
| 513 |
|
|
break;
|
| 514 |
|
|
default:
|
| 515 |
|
|
break;
|
| 516 |
|
|
}
|
| 517 |
|
|
|
| 518 |
|
|
regcache_raw_supply (regcache, regno, buf);
|
| 519 |
|
|
}
|
| 520 |
|
|
|
| 521 |
|
|
void
|
| 522 |
|
|
collect_nwfpe_register (const struct regcache *regcache, int regno,
|
| 523 |
|
|
gdb_byte *regs)
|
| 524 |
|
|
{
|
| 525 |
|
|
gdb_byte *reg_data;
|
| 526 |
|
|
gdb_byte reg_tag;
|
| 527 |
|
|
gdb_byte buf[FP_REGISTER_SIZE];
|
| 528 |
|
|
|
| 529 |
|
|
regcache_raw_collect (regcache, regno, buf);
|
| 530 |
|
|
|
| 531 |
|
|
/* NOTE drow/2006-06-07: This code uses the tag already in the
|
| 532 |
|
|
register buffer. I've preserved that when moving the code
|
| 533 |
|
|
from the native file to the target file. But this doesn't
|
| 534 |
|
|
always make sense. */
|
| 535 |
|
|
|
| 536 |
|
|
reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
|
| 537 |
|
|
reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
|
| 538 |
|
|
|
| 539 |
|
|
switch (reg_tag)
|
| 540 |
|
|
{
|
| 541 |
|
|
case typeSingle:
|
| 542 |
|
|
memcpy (reg_data, buf, 4);
|
| 543 |
|
|
break;
|
| 544 |
|
|
case typeDouble:
|
| 545 |
|
|
memcpy (reg_data, buf + 4, 4);
|
| 546 |
|
|
memcpy (reg_data + 4, buf, 4);
|
| 547 |
|
|
break;
|
| 548 |
|
|
case typeExtended:
|
| 549 |
|
|
memcpy (reg_data, buf, 4);
|
| 550 |
|
|
memcpy (reg_data + 4, buf + 8, 4);
|
| 551 |
|
|
memcpy (reg_data + 8, buf + 4, 4);
|
| 552 |
|
|
break;
|
| 553 |
|
|
default:
|
| 554 |
|
|
break;
|
| 555 |
|
|
}
|
| 556 |
|
|
}
|
| 557 |
|
|
|
| 558 |
|
|
void
|
| 559 |
|
|
arm_linux_supply_nwfpe (const struct regset *regset,
|
| 560 |
|
|
struct regcache *regcache,
|
| 561 |
|
|
int regnum, const void *regs_buf, size_t len)
|
| 562 |
|
|
{
|
| 563 |
|
|
const gdb_byte *regs = regs_buf;
|
| 564 |
|
|
int regno;
|
| 565 |
|
|
|
| 566 |
|
|
if (regnum == ARM_FPS_REGNUM || regnum == -1)
|
| 567 |
|
|
regcache_raw_supply (regcache, ARM_FPS_REGNUM,
|
| 568 |
|
|
regs + NWFPE_FPSR_OFFSET);
|
| 569 |
|
|
|
| 570 |
|
|
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
|
| 571 |
|
|
if (regnum == -1 || regnum == regno)
|
| 572 |
|
|
supply_nwfpe_register (regcache, regno, regs);
|
| 573 |
|
|
}
|
| 574 |
|
|
|
| 575 |
|
|
void
|
| 576 |
|
|
arm_linux_collect_nwfpe (const struct regset *regset,
|
| 577 |
|
|
const struct regcache *regcache,
|
| 578 |
|
|
int regnum, void *regs_buf, size_t len)
|
| 579 |
|
|
{
|
| 580 |
|
|
gdb_byte *regs = regs_buf;
|
| 581 |
|
|
int regno;
|
| 582 |
|
|
|
| 583 |
|
|
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
|
| 584 |
|
|
if (regnum == -1 || regnum == regno)
|
| 585 |
|
|
collect_nwfpe_register (regcache, regno, regs);
|
| 586 |
|
|
|
| 587 |
|
|
if (regnum == ARM_FPS_REGNUM || regnum == -1)
|
| 588 |
|
|
regcache_raw_collect (regcache, ARM_FPS_REGNUM,
|
| 589 |
|
|
regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
|
| 590 |
|
|
}
|
| 591 |
|
|
|
| 592 |
|
|
/* Return the appropriate register set for the core section identified
|
| 593 |
|
|
by SECT_NAME and SECT_SIZE. */
|
| 594 |
|
|
|
| 595 |
|
|
static const struct regset *
|
| 596 |
|
|
arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
|
| 597 |
|
|
const char *sect_name, size_t sect_size)
|
| 598 |
|
|
{
|
| 599 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| 600 |
|
|
|
| 601 |
|
|
if (strcmp (sect_name, ".reg") == 0
|
| 602 |
|
|
&& sect_size == ARM_LINUX_SIZEOF_GREGSET)
|
| 603 |
|
|
{
|
| 604 |
|
|
if (tdep->gregset == NULL)
|
| 605 |
|
|
tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
|
| 606 |
|
|
arm_linux_collect_gregset);
|
| 607 |
|
|
return tdep->gregset;
|
| 608 |
|
|
}
|
| 609 |
|
|
|
| 610 |
|
|
if (strcmp (sect_name, ".reg2") == 0
|
| 611 |
|
|
&& sect_size == ARM_LINUX_SIZEOF_NWFPE)
|
| 612 |
|
|
{
|
| 613 |
|
|
if (tdep->fpregset == NULL)
|
| 614 |
|
|
tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
|
| 615 |
|
|
arm_linux_collect_nwfpe);
|
| 616 |
|
|
return tdep->fpregset;
|
| 617 |
|
|
}
|
| 618 |
|
|
|
| 619 |
|
|
return NULL;
|
| 620 |
|
|
}
|
| 621 |
|
|
|
| 622 |
|
|
/* Insert a single step breakpoint at the next executed instruction. */
|
| 623 |
|
|
|
| 624 |
|
|
static int
|
| 625 |
|
|
arm_linux_software_single_step (struct frame_info *frame)
|
| 626 |
|
|
{
|
| 627 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
| 628 |
|
|
struct address_space *aspace = get_frame_address_space (frame);
|
| 629 |
|
|
CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
|
| 630 |
|
|
|
| 631 |
|
|
/* The Linux kernel offers some user-mode helpers in a high page. We can
|
| 632 |
|
|
not read this page (as of 2.6.23), and even if we could then we couldn't
|
| 633 |
|
|
set breakpoints in it, and even if we could then the atomic operations
|
| 634 |
|
|
would fail when interrupted. They are all called as functions and return
|
| 635 |
|
|
to the address in LR, so step to there instead. */
|
| 636 |
|
|
if (next_pc > 0xffff0000)
|
| 637 |
|
|
next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
|
| 638 |
|
|
|
| 639 |
|
|
insert_single_step_breakpoint (gdbarch, aspace, next_pc);
|
| 640 |
|
|
|
| 641 |
|
|
return 1;
|
| 642 |
|
|
}
|
| 643 |
|
|
|
| 644 |
|
|
/* Support for displaced stepping of Linux SVC instructions. */
|
| 645 |
|
|
|
| 646 |
|
|
static void
|
| 647 |
|
|
arm_linux_cleanup_svc (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
|
| 648 |
|
|
struct regcache *regs,
|
| 649 |
|
|
struct displaced_step_closure *dsc)
|
| 650 |
|
|
{
|
| 651 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
| 652 |
|
|
ULONGEST apparent_pc;
|
| 653 |
|
|
int within_scratch;
|
| 654 |
|
|
|
| 655 |
|
|
regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
|
| 656 |
|
|
|
| 657 |
|
|
within_scratch = (apparent_pc >= dsc->scratch_base
|
| 658 |
|
|
&& apparent_pc < (dsc->scratch_base
|
| 659 |
|
|
+ DISPLACED_MODIFIED_INSNS * 4 + 4));
|
| 660 |
|
|
|
| 661 |
|
|
if (debug_displaced)
|
| 662 |
|
|
{
|
| 663 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
|
| 664 |
|
|
"SVC step ", (unsigned long) apparent_pc);
|
| 665 |
|
|
if (within_scratch)
|
| 666 |
|
|
fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
|
| 667 |
|
|
else
|
| 668 |
|
|
fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
|
| 669 |
|
|
}
|
| 670 |
|
|
|
| 671 |
|
|
if (within_scratch)
|
| 672 |
|
|
displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
|
| 673 |
|
|
}
|
| 674 |
|
|
|
| 675 |
|
|
static int
|
| 676 |
|
|
arm_linux_copy_svc (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
|
| 677 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
| 678 |
|
|
{
|
| 679 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
| 680 |
|
|
struct frame_info *frame;
|
| 681 |
|
|
unsigned int svc_number = displaced_read_reg (regs, from, 7);
|
| 682 |
|
|
|
| 683 |
|
|
if (debug_displaced)
|
| 684 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying Linux svc insn %.8lx\n",
|
| 685 |
|
|
(unsigned long) insn);
|
| 686 |
|
|
|
| 687 |
|
|
frame = get_current_frame ();
|
| 688 |
|
|
|
| 689 |
|
|
/* Is this a sigreturn or rt_sigreturn syscall? Note: these are only useful
|
| 690 |
|
|
for EABI. */
|
| 691 |
|
|
if (svc_number == 119 || svc_number == 173)
|
| 692 |
|
|
{
|
| 693 |
|
|
if (get_frame_type (frame) == SIGTRAMP_FRAME)
|
| 694 |
|
|
{
|
| 695 |
|
|
CORE_ADDR return_to;
|
| 696 |
|
|
struct symtab_and_line sal;
|
| 697 |
|
|
|
| 698 |
|
|
if (debug_displaced)
|
| 699 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: found "
|
| 700 |
|
|
"sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
|
| 701 |
|
|
(unsigned long) get_frame_pc (frame));
|
| 702 |
|
|
|
| 703 |
|
|
return_to = frame_unwind_caller_pc (frame);
|
| 704 |
|
|
if (debug_displaced)
|
| 705 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
|
| 706 |
|
|
"Setting momentary breakpoint.\n", (unsigned long) return_to);
|
| 707 |
|
|
|
| 708 |
|
|
gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
|
| 709 |
|
|
|
| 710 |
|
|
sal = find_pc_line (return_to, 0);
|
| 711 |
|
|
sal.pc = return_to;
|
| 712 |
|
|
sal.section = find_pc_overlay (return_to);
|
| 713 |
|
|
sal.explicit_pc = 1;
|
| 714 |
|
|
|
| 715 |
|
|
frame = get_prev_frame (frame);
|
| 716 |
|
|
|
| 717 |
|
|
if (frame)
|
| 718 |
|
|
{
|
| 719 |
|
|
inferior_thread ()->step_resume_breakpoint
|
| 720 |
|
|
= set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
|
| 721 |
|
|
bp_step_resume);
|
| 722 |
|
|
|
| 723 |
|
|
/* We need to make sure we actually insert the momentary
|
| 724 |
|
|
breakpoint set above. */
|
| 725 |
|
|
insert_breakpoints ();
|
| 726 |
|
|
}
|
| 727 |
|
|
else if (debug_displaced)
|
| 728 |
|
|
fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
|
| 729 |
|
|
"frame to set momentary breakpoint for "
|
| 730 |
|
|
"sigreturn/rt_sigreturn\n");
|
| 731 |
|
|
}
|
| 732 |
|
|
else if (debug_displaced)
|
| 733 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
|
| 734 |
|
|
"SVC call not in signal trampoline frame\n");
|
| 735 |
|
|
}
|
| 736 |
|
|
|
| 737 |
|
|
/* Preparation: If we detect sigreturn, set momentary breakpoint at resume
|
| 738 |
|
|
location, else nothing.
|
| 739 |
|
|
Insn: unmodified svc.
|
| 740 |
|
|
Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
|
| 741 |
|
|
else leave pc alone. */
|
| 742 |
|
|
|
| 743 |
|
|
dsc->modinsn[0] = insn;
|
| 744 |
|
|
|
| 745 |
|
|
dsc->cleanup = &arm_linux_cleanup_svc;
|
| 746 |
|
|
/* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
|
| 747 |
|
|
instruction. */
|
| 748 |
|
|
dsc->wrote_to_pc = 1;
|
| 749 |
|
|
|
| 750 |
|
|
return 0;
|
| 751 |
|
|
}
|
| 752 |
|
|
|
| 753 |
|
|
|
| 754 |
|
|
/* The following two functions implement single-stepping over calls to Linux
|
| 755 |
|
|
kernel helper routines, which perform e.g. atomic operations on architecture
|
| 756 |
|
|
variants which don't support them natively.
|
| 757 |
|
|
|
| 758 |
|
|
When this function is called, the PC will be pointing at the kernel helper
|
| 759 |
|
|
(at an address inaccessible to GDB), and r14 will point to the return
|
| 760 |
|
|
address. Displaced stepping always executes code in the copy area:
|
| 761 |
|
|
so, make the copy-area instruction branch back to the kernel helper (the
|
| 762 |
|
|
"from" address), and make r14 point to the breakpoint in the copy area. In
|
| 763 |
|
|
that way, we regain control once the kernel helper returns, and can clean
|
| 764 |
|
|
up appropriately (as if we had just returned from the kernel helper as it
|
| 765 |
|
|
would have been called from the non-displaced location). */
|
| 766 |
|
|
|
| 767 |
|
|
static void
|
| 768 |
|
|
cleanup_kernel_helper_return (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
|
| 769 |
|
|
struct regcache *regs,
|
| 770 |
|
|
struct displaced_step_closure *dsc)
|
| 771 |
|
|
{
|
| 772 |
|
|
displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
|
| 773 |
|
|
displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
|
| 774 |
|
|
}
|
| 775 |
|
|
|
| 776 |
|
|
static void
|
| 777 |
|
|
arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
|
| 778 |
|
|
CORE_ADDR to, struct regcache *regs,
|
| 779 |
|
|
struct displaced_step_closure *dsc)
|
| 780 |
|
|
{
|
| 781 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 782 |
|
|
|
| 783 |
|
|
dsc->numinsns = 1;
|
| 784 |
|
|
dsc->insn_addr = from;
|
| 785 |
|
|
dsc->cleanup = &cleanup_kernel_helper_return;
|
| 786 |
|
|
/* Say we wrote to the PC, else cleanup will set PC to the next
|
| 787 |
|
|
instruction in the helper, which isn't helpful. */
|
| 788 |
|
|
dsc->wrote_to_pc = 1;
|
| 789 |
|
|
|
| 790 |
|
|
/* Preparation: tmp[0] <- r14
|
| 791 |
|
|
r14 <- <scratch space>+4
|
| 792 |
|
|
*(<scratch space>+8) <- from
|
| 793 |
|
|
Insn: ldr pc, [r14, #4]
|
| 794 |
|
|
Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
|
| 795 |
|
|
|
| 796 |
|
|
dsc->tmp[0] = displaced_read_reg (regs, from, ARM_LR_REGNUM);
|
| 797 |
|
|
displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
|
| 798 |
|
|
CANNOT_WRITE_PC);
|
| 799 |
|
|
write_memory_unsigned_integer (to + 8, 4, byte_order, from);
|
| 800 |
|
|
|
| 801 |
|
|
dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
|
| 802 |
|
|
}
|
| 803 |
|
|
|
| 804 |
|
|
/* Linux-specific displaced step instruction copying function. Detects when
|
| 805 |
|
|
the program has stepped into a Linux kernel helper routine (which must be
|
| 806 |
|
|
handled as a special case), falling back to arm_displaced_step_copy_insn()
|
| 807 |
|
|
if it hasn't. */
|
| 808 |
|
|
|
| 809 |
|
|
static struct displaced_step_closure *
|
| 810 |
|
|
arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
|
| 811 |
|
|
CORE_ADDR from, CORE_ADDR to,
|
| 812 |
|
|
struct regcache *regs)
|
| 813 |
|
|
{
|
| 814 |
|
|
struct displaced_step_closure *dsc
|
| 815 |
|
|
= xmalloc (sizeof (struct displaced_step_closure));
|
| 816 |
|
|
|
| 817 |
|
|
/* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
|
| 818 |
|
|
stop at the return location. */
|
| 819 |
|
|
if (from > 0xffff0000)
|
| 820 |
|
|
{
|
| 821 |
|
|
if (debug_displaced)
|
| 822 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
|
| 823 |
|
|
"at %.8lx\n", (unsigned long) from);
|
| 824 |
|
|
|
| 825 |
|
|
arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
|
| 826 |
|
|
}
|
| 827 |
|
|
else
|
| 828 |
|
|
{
|
| 829 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 830 |
|
|
uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order);
|
| 831 |
|
|
|
| 832 |
|
|
if (debug_displaced)
|
| 833 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
|
| 834 |
|
|
"at %.8lx\n", (unsigned long) insn,
|
| 835 |
|
|
(unsigned long) from);
|
| 836 |
|
|
|
| 837 |
|
|
/* Override the default handling of SVC instructions. */
|
| 838 |
|
|
dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
|
| 839 |
|
|
|
| 840 |
|
|
arm_process_displaced_insn (gdbarch, insn, from, to, regs, dsc);
|
| 841 |
|
|
}
|
| 842 |
|
|
|
| 843 |
|
|
arm_displaced_init_closure (gdbarch, from, to, dsc);
|
| 844 |
|
|
|
| 845 |
|
|
return dsc;
|
| 846 |
|
|
}
|
| 847 |
|
|
|
| 848 |
|
|
static void
|
| 849 |
|
|
arm_linux_init_abi (struct gdbarch_info info,
|
| 850 |
|
|
struct gdbarch *gdbarch)
|
| 851 |
|
|
{
|
| 852 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| 853 |
|
|
|
| 854 |
|
|
tdep->lowest_pc = 0x8000;
|
| 855 |
|
|
if (info.byte_order == BFD_ENDIAN_BIG)
|
| 856 |
|
|
{
|
| 857 |
|
|
if (tdep->arm_abi == ARM_ABI_AAPCS)
|
| 858 |
|
|
tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
|
| 859 |
|
|
else
|
| 860 |
|
|
tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
|
| 861 |
|
|
tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
|
| 862 |
|
|
tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
|
| 863 |
|
|
}
|
| 864 |
|
|
else
|
| 865 |
|
|
{
|
| 866 |
|
|
if (tdep->arm_abi == ARM_ABI_AAPCS)
|
| 867 |
|
|
tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
|
| 868 |
|
|
else
|
| 869 |
|
|
tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
|
| 870 |
|
|
tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
|
| 871 |
|
|
tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
|
| 872 |
|
|
}
|
| 873 |
|
|
tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
|
| 874 |
|
|
tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
|
| 875 |
|
|
tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
|
| 876 |
|
|
|
| 877 |
|
|
if (tdep->fp_model == ARM_FLOAT_AUTO)
|
| 878 |
|
|
tdep->fp_model = ARM_FLOAT_FPA;
|
| 879 |
|
|
|
| 880 |
|
|
tdep->jb_pc = ARM_LINUX_JB_PC;
|
| 881 |
|
|
tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
|
| 882 |
|
|
|
| 883 |
|
|
set_solib_svr4_fetch_link_map_offsets
|
| 884 |
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
| 885 |
|
|
|
| 886 |
|
|
/* Single stepping. */
|
| 887 |
|
|
set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
|
| 888 |
|
|
|
| 889 |
|
|
/* Shared library handling. */
|
| 890 |
|
|
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
| 891 |
|
|
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
|
| 892 |
|
|
|
| 893 |
|
|
/* Enable TLS support. */
|
| 894 |
|
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
| 895 |
|
|
svr4_fetch_objfile_link_map);
|
| 896 |
|
|
|
| 897 |
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
| 898 |
|
|
&arm_linux_sigreturn_tramp_frame);
|
| 899 |
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
| 900 |
|
|
&arm_linux_rt_sigreturn_tramp_frame);
|
| 901 |
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
| 902 |
|
|
&arm_eabi_linux_sigreturn_tramp_frame);
|
| 903 |
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
| 904 |
|
|
&arm_eabi_linux_rt_sigreturn_tramp_frame);
|
| 905 |
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
| 906 |
|
|
&arm_linux_restart_syscall_tramp_frame);
|
| 907 |
|
|
|
| 908 |
|
|
/* Core file support. */
|
| 909 |
|
|
set_gdbarch_regset_from_core_section (gdbarch,
|
| 910 |
|
|
arm_linux_regset_from_core_section);
|
| 911 |
|
|
|
| 912 |
|
|
set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
|
| 913 |
|
|
|
| 914 |
|
|
/* Displaced stepping. */
|
| 915 |
|
|
set_gdbarch_displaced_step_copy_insn (gdbarch,
|
| 916 |
|
|
arm_linux_displaced_step_copy_insn);
|
| 917 |
|
|
set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
|
| 918 |
|
|
set_gdbarch_displaced_step_free_closure (gdbarch,
|
| 919 |
|
|
simple_displaced_step_free_closure);
|
| 920 |
|
|
set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
|
| 921 |
|
|
}
|
| 922 |
|
|
|
| 923 |
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
| 924 |
|
|
extern initialize_file_ftype _initialize_arm_linux_tdep;
|
| 925 |
|
|
|
| 926 |
|
|
void
|
| 927 |
|
|
_initialize_arm_linux_tdep (void)
|
| 928 |
|
|
{
|
| 929 |
|
|
gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
|
| 930 |
|
|
arm_linux_init_abi);
|
| 931 |
|
|
}
|