1 |
227 |
jeremybenn |
/* Common target dependent code for GDB on ARM systems.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
|
4 |
|
|
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include <ctype.h> /* XXX for isupper () */
|
23 |
|
|
|
24 |
|
|
#include "defs.h"
|
25 |
|
|
#include "frame.h"
|
26 |
|
|
#include "inferior.h"
|
27 |
|
|
#include "gdbcmd.h"
|
28 |
|
|
#include "gdbcore.h"
|
29 |
|
|
#include "gdb_string.h"
|
30 |
|
|
#include "dis-asm.h" /* For register styles. */
|
31 |
|
|
#include "regcache.h"
|
32 |
|
|
#include "doublest.h"
|
33 |
|
|
#include "value.h"
|
34 |
|
|
#include "arch-utils.h"
|
35 |
|
|
#include "osabi.h"
|
36 |
|
|
#include "frame-unwind.h"
|
37 |
|
|
#include "frame-base.h"
|
38 |
|
|
#include "trad-frame.h"
|
39 |
|
|
#include "objfiles.h"
|
40 |
|
|
#include "dwarf2-frame.h"
|
41 |
|
|
#include "gdbtypes.h"
|
42 |
|
|
#include "prologue-value.h"
|
43 |
|
|
#include "target-descriptions.h"
|
44 |
|
|
#include "user-regs.h"
|
45 |
|
|
|
46 |
|
|
#include "arm-tdep.h"
|
47 |
|
|
#include "gdb/sim-arm.h"
|
48 |
|
|
|
49 |
|
|
#include "elf-bfd.h"
|
50 |
|
|
#include "coff/internal.h"
|
51 |
|
|
#include "elf/arm.h"
|
52 |
|
|
|
53 |
|
|
#include "gdb_assert.h"
|
54 |
|
|
#include "vec.h"
|
55 |
|
|
|
56 |
|
|
static int arm_debug;
|
57 |
|
|
|
58 |
|
|
/* Macros for setting and testing a bit in a minimal symbol that marks
|
59 |
|
|
it as Thumb function. The MSB of the minimal symbol's "info" field
|
60 |
|
|
is used for this purpose.
|
61 |
|
|
|
62 |
|
|
MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
|
63 |
|
|
MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
|
64 |
|
|
|
65 |
|
|
#define MSYMBOL_SET_SPECIAL(msym) \
|
66 |
|
|
MSYMBOL_TARGET_FLAG_1 (msym) = 1
|
67 |
|
|
|
68 |
|
|
#define MSYMBOL_IS_SPECIAL(msym) \
|
69 |
|
|
MSYMBOL_TARGET_FLAG_1 (msym)
|
70 |
|
|
|
71 |
|
|
/* Per-objfile data used for mapping symbols. */
|
72 |
|
|
static const struct objfile_data *arm_objfile_data_key;
|
73 |
|
|
|
74 |
|
|
struct arm_mapping_symbol
|
75 |
|
|
{
|
76 |
|
|
bfd_vma value;
|
77 |
|
|
char type;
|
78 |
|
|
};
|
79 |
|
|
typedef struct arm_mapping_symbol arm_mapping_symbol_s;
|
80 |
|
|
DEF_VEC_O(arm_mapping_symbol_s);
|
81 |
|
|
|
82 |
|
|
struct arm_per_objfile
|
83 |
|
|
{
|
84 |
|
|
VEC(arm_mapping_symbol_s) **section_maps;
|
85 |
|
|
};
|
86 |
|
|
|
87 |
|
|
/* The list of available "set arm ..." and "show arm ..." commands. */
|
88 |
|
|
static struct cmd_list_element *setarmcmdlist = NULL;
|
89 |
|
|
static struct cmd_list_element *showarmcmdlist = NULL;
|
90 |
|
|
|
91 |
|
|
/* The type of floating-point to use. Keep this in sync with enum
|
92 |
|
|
arm_float_model, and the help string in _initialize_arm_tdep. */
|
93 |
|
|
static const char *fp_model_strings[] =
|
94 |
|
|
{
|
95 |
|
|
"auto",
|
96 |
|
|
"softfpa",
|
97 |
|
|
"fpa",
|
98 |
|
|
"softvfp",
|
99 |
|
|
"vfp",
|
100 |
|
|
NULL
|
101 |
|
|
};
|
102 |
|
|
|
103 |
|
|
/* A variable that can be configured by the user. */
|
104 |
|
|
static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
|
105 |
|
|
static const char *current_fp_model = "auto";
|
106 |
|
|
|
107 |
|
|
/* The ABI to use. Keep this in sync with arm_abi_kind. */
|
108 |
|
|
static const char *arm_abi_strings[] =
|
109 |
|
|
{
|
110 |
|
|
"auto",
|
111 |
|
|
"APCS",
|
112 |
|
|
"AAPCS",
|
113 |
|
|
NULL
|
114 |
|
|
};
|
115 |
|
|
|
116 |
|
|
/* A variable that can be configured by the user. */
|
117 |
|
|
static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
|
118 |
|
|
static const char *arm_abi_string = "auto";
|
119 |
|
|
|
120 |
|
|
/* The execution mode to assume. */
|
121 |
|
|
static const char *arm_mode_strings[] =
|
122 |
|
|
{
|
123 |
|
|
"auto",
|
124 |
|
|
"arm",
|
125 |
|
|
"thumb"
|
126 |
|
|
};
|
127 |
|
|
|
128 |
|
|
static const char *arm_fallback_mode_string = "auto";
|
129 |
|
|
static const char *arm_force_mode_string = "auto";
|
130 |
|
|
|
131 |
|
|
/* Number of different reg name sets (options). */
|
132 |
|
|
static int num_disassembly_options;
|
133 |
|
|
|
134 |
|
|
/* The standard register names, and all the valid aliases for them. */
|
135 |
|
|
static const struct
|
136 |
|
|
{
|
137 |
|
|
const char *name;
|
138 |
|
|
int regnum;
|
139 |
|
|
} arm_register_aliases[] = {
|
140 |
|
|
/* Basic register numbers. */
|
141 |
|
|
{ "r0", 0 },
|
142 |
|
|
{ "r1", 1 },
|
143 |
|
|
{ "r2", 2 },
|
144 |
|
|
{ "r3", 3 },
|
145 |
|
|
{ "r4", 4 },
|
146 |
|
|
{ "r5", 5 },
|
147 |
|
|
{ "r6", 6 },
|
148 |
|
|
{ "r7", 7 },
|
149 |
|
|
{ "r8", 8 },
|
150 |
|
|
{ "r9", 9 },
|
151 |
|
|
{ "r10", 10 },
|
152 |
|
|
{ "r11", 11 },
|
153 |
|
|
{ "r12", 12 },
|
154 |
|
|
{ "r13", 13 },
|
155 |
|
|
{ "r14", 14 },
|
156 |
|
|
{ "r15", 15 },
|
157 |
|
|
/* Synonyms (argument and variable registers). */
|
158 |
|
|
{ "a1", 0 },
|
159 |
|
|
{ "a2", 1 },
|
160 |
|
|
{ "a3", 2 },
|
161 |
|
|
{ "a4", 3 },
|
162 |
|
|
{ "v1", 4 },
|
163 |
|
|
{ "v2", 5 },
|
164 |
|
|
{ "v3", 6 },
|
165 |
|
|
{ "v4", 7 },
|
166 |
|
|
{ "v5", 8 },
|
167 |
|
|
{ "v6", 9 },
|
168 |
|
|
{ "v7", 10 },
|
169 |
|
|
{ "v8", 11 },
|
170 |
|
|
/* Other platform-specific names for r9. */
|
171 |
|
|
{ "sb", 9 },
|
172 |
|
|
{ "tr", 9 },
|
173 |
|
|
/* Special names. */
|
174 |
|
|
{ "ip", 12 },
|
175 |
|
|
{ "sp", 13 },
|
176 |
|
|
{ "lr", 14 },
|
177 |
|
|
{ "pc", 15 },
|
178 |
|
|
/* Names used by GCC (not listed in the ARM EABI). */
|
179 |
|
|
{ "sl", 10 },
|
180 |
|
|
{ "fp", 11 },
|
181 |
|
|
/* A special name from the older ATPCS. */
|
182 |
|
|
{ "wr", 7 },
|
183 |
|
|
};
|
184 |
|
|
|
185 |
|
|
static const char *const arm_register_names[] =
|
186 |
|
|
{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
|
187 |
|
|
"r4", "r5", "r6", "r7", /* 4 5 6 7 */
|
188 |
|
|
"r8", "r9", "r10", "r11", /* 8 9 10 11 */
|
189 |
|
|
"r12", "sp", "lr", "pc", /* 12 13 14 15 */
|
190 |
|
|
"f0", "f1", "f2", "f3", /* 16 17 18 19 */
|
191 |
|
|
"f4", "f5", "f6", "f7", /* 20 21 22 23 */
|
192 |
|
|
"fps", "cpsr" }; /* 24 25 */
|
193 |
|
|
|
194 |
|
|
/* Valid register name styles. */
|
195 |
|
|
static const char **valid_disassembly_styles;
|
196 |
|
|
|
197 |
|
|
/* Disassembly style to use. Default to "std" register names. */
|
198 |
|
|
static const char *disassembly_style;
|
199 |
|
|
|
200 |
|
|
/* This is used to keep the bfd arch_info in sync with the disassembly
|
201 |
|
|
style. */
|
202 |
|
|
static void set_disassembly_style_sfunc(char *, int,
|
203 |
|
|
struct cmd_list_element *);
|
204 |
|
|
static void set_disassembly_style (void);
|
205 |
|
|
|
206 |
|
|
static void convert_from_extended (const struct floatformat *, const void *,
|
207 |
|
|
void *, int);
|
208 |
|
|
static void convert_to_extended (const struct floatformat *, void *,
|
209 |
|
|
const void *, int);
|
210 |
|
|
|
211 |
|
|
static void arm_neon_quad_read (struct gdbarch *gdbarch,
|
212 |
|
|
struct regcache *regcache,
|
213 |
|
|
int regnum, gdb_byte *buf);
|
214 |
|
|
static void arm_neon_quad_write (struct gdbarch *gdbarch,
|
215 |
|
|
struct regcache *regcache,
|
216 |
|
|
int regnum, const gdb_byte *buf);
|
217 |
|
|
|
218 |
|
|
struct arm_prologue_cache
|
219 |
|
|
{
|
220 |
|
|
/* The stack pointer at the time this frame was created; i.e. the
|
221 |
|
|
caller's stack pointer when this function was called. It is used
|
222 |
|
|
to identify this frame. */
|
223 |
|
|
CORE_ADDR prev_sp;
|
224 |
|
|
|
225 |
|
|
/* The frame base for this frame is just prev_sp - frame size.
|
226 |
|
|
FRAMESIZE is the distance from the frame pointer to the
|
227 |
|
|
initial stack pointer. */
|
228 |
|
|
|
229 |
|
|
int framesize;
|
230 |
|
|
|
231 |
|
|
/* The register used to hold the frame pointer for this frame. */
|
232 |
|
|
int framereg;
|
233 |
|
|
|
234 |
|
|
/* Saved register offsets. */
|
235 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
236 |
|
|
};
|
237 |
|
|
|
238 |
|
|
/* Architecture version for displaced stepping. This effects the behaviour of
|
239 |
|
|
certain instructions, and really should not be hard-wired. */
|
240 |
|
|
|
241 |
|
|
#define DISPLACED_STEPPING_ARCH_VERSION 5
|
242 |
|
|
|
243 |
|
|
/* Addresses for calling Thumb functions have the bit 0 set.
|
244 |
|
|
Here are some macros to test, set, or clear bit 0 of addresses. */
|
245 |
|
|
#define IS_THUMB_ADDR(addr) ((addr) & 1)
|
246 |
|
|
#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
|
247 |
|
|
#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
|
248 |
|
|
|
249 |
|
|
/* Set to true if the 32-bit mode is in use. */
|
250 |
|
|
|
251 |
|
|
int arm_apcs_32 = 1;
|
252 |
|
|
|
253 |
|
|
/* Determine if FRAME is executing in Thumb mode. */
|
254 |
|
|
|
255 |
|
|
static int
|
256 |
|
|
arm_frame_is_thumb (struct frame_info *frame)
|
257 |
|
|
{
|
258 |
|
|
CORE_ADDR cpsr;
|
259 |
|
|
|
260 |
|
|
/* Every ARM frame unwinder can unwind the T bit of the CPSR, either
|
261 |
|
|
directly (from a signal frame or dummy frame) or by interpreting
|
262 |
|
|
the saved LR (from a prologue or DWARF frame). So consult it and
|
263 |
|
|
trust the unwinders. */
|
264 |
|
|
cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
|
265 |
|
|
|
266 |
|
|
return (cpsr & CPSR_T) != 0;
|
267 |
|
|
}
|
268 |
|
|
|
269 |
|
|
/* Callback for VEC_lower_bound. */
|
270 |
|
|
|
271 |
|
|
static inline int
|
272 |
|
|
arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
|
273 |
|
|
const struct arm_mapping_symbol *rhs)
|
274 |
|
|
{
|
275 |
|
|
return lhs->value < rhs->value;
|
276 |
|
|
}
|
277 |
|
|
|
278 |
|
|
/* Search for the mapping symbol covering MEMADDR. If one is found,
|
279 |
|
|
return its type. Otherwise, return 0. If START is non-NULL,
|
280 |
|
|
set *START to the location of the mapping symbol. */
|
281 |
|
|
|
282 |
|
|
static char
|
283 |
|
|
arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
|
284 |
|
|
{
|
285 |
|
|
struct obj_section *sec;
|
286 |
|
|
|
287 |
|
|
/* If there are mapping symbols, consult them. */
|
288 |
|
|
sec = find_pc_section (memaddr);
|
289 |
|
|
if (sec != NULL)
|
290 |
|
|
{
|
291 |
|
|
struct arm_per_objfile *data;
|
292 |
|
|
VEC(arm_mapping_symbol_s) *map;
|
293 |
|
|
struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
|
294 |
|
|
|
295 |
|
|
unsigned int idx;
|
296 |
|
|
|
297 |
|
|
data = objfile_data (sec->objfile, arm_objfile_data_key);
|
298 |
|
|
if (data != NULL)
|
299 |
|
|
{
|
300 |
|
|
map = data->section_maps[sec->the_bfd_section->index];
|
301 |
|
|
if (!VEC_empty (arm_mapping_symbol_s, map))
|
302 |
|
|
{
|
303 |
|
|
struct arm_mapping_symbol *map_sym;
|
304 |
|
|
|
305 |
|
|
idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
|
306 |
|
|
arm_compare_mapping_symbols);
|
307 |
|
|
|
308 |
|
|
/* VEC_lower_bound finds the earliest ordered insertion
|
309 |
|
|
point. If the following symbol starts at this exact
|
310 |
|
|
address, we use that; otherwise, the preceding
|
311 |
|
|
mapping symbol covers this address. */
|
312 |
|
|
if (idx < VEC_length (arm_mapping_symbol_s, map))
|
313 |
|
|
{
|
314 |
|
|
map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
|
315 |
|
|
if (map_sym->value == map_key.value)
|
316 |
|
|
{
|
317 |
|
|
if (start)
|
318 |
|
|
*start = map_sym->value + obj_section_addr (sec);
|
319 |
|
|
return map_sym->type;
|
320 |
|
|
}
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
if (idx > 0)
|
324 |
|
|
{
|
325 |
|
|
map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
|
326 |
|
|
if (start)
|
327 |
|
|
*start = map_sym->value + obj_section_addr (sec);
|
328 |
|
|
return map_sym->type;
|
329 |
|
|
}
|
330 |
|
|
}
|
331 |
|
|
}
|
332 |
|
|
}
|
333 |
|
|
|
334 |
|
|
return 0;
|
335 |
|
|
}
|
336 |
|
|
|
337 |
|
|
/* Determine if the program counter specified in MEMADDR is in a Thumb
|
338 |
|
|
function. This function should be called for addresses unrelated to
|
339 |
|
|
any executing frame; otherwise, prefer arm_frame_is_thumb. */
|
340 |
|
|
|
341 |
|
|
static int
|
342 |
|
|
arm_pc_is_thumb (CORE_ADDR memaddr)
|
343 |
|
|
{
|
344 |
|
|
struct obj_section *sec;
|
345 |
|
|
struct minimal_symbol *sym;
|
346 |
|
|
char type;
|
347 |
|
|
|
348 |
|
|
/* If bit 0 of the address is set, assume this is a Thumb address. */
|
349 |
|
|
if (IS_THUMB_ADDR (memaddr))
|
350 |
|
|
return 1;
|
351 |
|
|
|
352 |
|
|
/* If the user wants to override the symbol table, let him. */
|
353 |
|
|
if (strcmp (arm_force_mode_string, "arm") == 0)
|
354 |
|
|
return 0;
|
355 |
|
|
if (strcmp (arm_force_mode_string, "thumb") == 0)
|
356 |
|
|
return 1;
|
357 |
|
|
|
358 |
|
|
/* If there are mapping symbols, consult them. */
|
359 |
|
|
type = arm_find_mapping_symbol (memaddr, NULL);
|
360 |
|
|
if (type)
|
361 |
|
|
return type == 't';
|
362 |
|
|
|
363 |
|
|
/* Thumb functions have a "special" bit set in minimal symbols. */
|
364 |
|
|
sym = lookup_minimal_symbol_by_pc (memaddr);
|
365 |
|
|
if (sym)
|
366 |
|
|
return (MSYMBOL_IS_SPECIAL (sym));
|
367 |
|
|
|
368 |
|
|
/* If the user wants to override the fallback mode, let them. */
|
369 |
|
|
if (strcmp (arm_fallback_mode_string, "arm") == 0)
|
370 |
|
|
return 0;
|
371 |
|
|
if (strcmp (arm_fallback_mode_string, "thumb") == 0)
|
372 |
|
|
return 1;
|
373 |
|
|
|
374 |
|
|
/* If we couldn't find any symbol, but we're talking to a running
|
375 |
|
|
target, then trust the current value of $cpsr. This lets
|
376 |
|
|
"display/i $pc" always show the correct mode (though if there is
|
377 |
|
|
a symbol table we will not reach here, so it still may not be
|
378 |
|
|
displayed in the mode it will be executed). */
|
379 |
|
|
if (target_has_registers)
|
380 |
|
|
return arm_frame_is_thumb (get_current_frame ());
|
381 |
|
|
|
382 |
|
|
/* Otherwise we're out of luck; we assume ARM. */
|
383 |
|
|
return 0;
|
384 |
|
|
}
|
385 |
|
|
|
386 |
|
|
/* Remove useless bits from addresses in a running program. */
|
387 |
|
|
static CORE_ADDR
|
388 |
|
|
arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
|
389 |
|
|
{
|
390 |
|
|
if (arm_apcs_32)
|
391 |
|
|
return UNMAKE_THUMB_ADDR (val);
|
392 |
|
|
else
|
393 |
|
|
return (val & 0x03fffffc);
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
/* When reading symbols, we need to zap the low bit of the address,
|
397 |
|
|
which may be set to 1 for Thumb functions. */
|
398 |
|
|
static CORE_ADDR
|
399 |
|
|
arm_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR val)
|
400 |
|
|
{
|
401 |
|
|
return val & ~1;
|
402 |
|
|
}
|
403 |
|
|
|
404 |
|
|
/* Analyze a Thumb prologue, looking for a recognizable stack frame
|
405 |
|
|
and frame pointer. Scan until we encounter a store that could
|
406 |
|
|
clobber the stack frame unexpectedly, or an unknown instruction. */
|
407 |
|
|
|
408 |
|
|
static CORE_ADDR
|
409 |
|
|
thumb_analyze_prologue (struct gdbarch *gdbarch,
|
410 |
|
|
CORE_ADDR start, CORE_ADDR limit,
|
411 |
|
|
struct arm_prologue_cache *cache)
|
412 |
|
|
{
|
413 |
|
|
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
|
414 |
|
|
int i;
|
415 |
|
|
pv_t regs[16];
|
416 |
|
|
struct pv_area *stack;
|
417 |
|
|
struct cleanup *back_to;
|
418 |
|
|
CORE_ADDR offset;
|
419 |
|
|
|
420 |
|
|
for (i = 0; i < 16; i++)
|
421 |
|
|
regs[i] = pv_register (i, 0);
|
422 |
|
|
stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
|
423 |
|
|
back_to = make_cleanup_free_pv_area (stack);
|
424 |
|
|
|
425 |
|
|
while (start < limit)
|
426 |
|
|
{
|
427 |
|
|
unsigned short insn;
|
428 |
|
|
|
429 |
|
|
insn = read_memory_unsigned_integer (start, 2, byte_order_for_code);
|
430 |
|
|
|
431 |
|
|
if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
|
432 |
|
|
{
|
433 |
|
|
int regno;
|
434 |
|
|
int mask;
|
435 |
|
|
|
436 |
|
|
if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
|
437 |
|
|
break;
|
438 |
|
|
|
439 |
|
|
/* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
|
440 |
|
|
whether to save LR (R14). */
|
441 |
|
|
mask = (insn & 0xff) | ((insn & 0x100) << 6);
|
442 |
|
|
|
443 |
|
|
/* Calculate offsets of saved R0-R7 and LR. */
|
444 |
|
|
for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
|
445 |
|
|
if (mask & (1 << regno))
|
446 |
|
|
{
|
447 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
|
448 |
|
|
-4);
|
449 |
|
|
pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
|
450 |
|
|
}
|
451 |
|
|
}
|
452 |
|
|
else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
|
453 |
|
|
sub sp, #simm */
|
454 |
|
|
{
|
455 |
|
|
offset = (insn & 0x7f) << 2; /* get scaled offset */
|
456 |
|
|
if (insn & 0x80) /* Check for SUB. */
|
457 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
|
458 |
|
|
-offset);
|
459 |
|
|
else
|
460 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
|
461 |
|
|
offset);
|
462 |
|
|
}
|
463 |
|
|
else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
|
464 |
|
|
regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
|
465 |
|
|
(insn & 0xff) << 2);
|
466 |
|
|
else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
|
467 |
|
|
{
|
468 |
|
|
int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
|
469 |
|
|
int src_reg = (insn & 0x78) >> 3;
|
470 |
|
|
regs[dst_reg] = regs[src_reg];
|
471 |
|
|
}
|
472 |
|
|
else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
|
473 |
|
|
{
|
474 |
|
|
/* Handle stores to the stack. Normally pushes are used,
|
475 |
|
|
but with GCC -mtpcs-frame, there may be other stores
|
476 |
|
|
in the prologue to create the frame. */
|
477 |
|
|
int regno = (insn >> 8) & 0x7;
|
478 |
|
|
pv_t addr;
|
479 |
|
|
|
480 |
|
|
offset = (insn & 0xff) << 2;
|
481 |
|
|
addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
|
482 |
|
|
|
483 |
|
|
if (pv_area_store_would_trash (stack, addr))
|
484 |
|
|
break;
|
485 |
|
|
|
486 |
|
|
pv_area_store (stack, addr, 4, regs[regno]);
|
487 |
|
|
}
|
488 |
|
|
else
|
489 |
|
|
{
|
490 |
|
|
/* We don't know what this instruction is. We're finished
|
491 |
|
|
scanning. NOTE: Recognizing more safe-to-ignore
|
492 |
|
|
instructions here will improve support for optimized
|
493 |
|
|
code. */
|
494 |
|
|
break;
|
495 |
|
|
}
|
496 |
|
|
|
497 |
|
|
start += 2;
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
if (cache == NULL)
|
501 |
|
|
{
|
502 |
|
|
do_cleanups (back_to);
|
503 |
|
|
return start;
|
504 |
|
|
}
|
505 |
|
|
|
506 |
|
|
if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
|
507 |
|
|
{
|
508 |
|
|
/* Frame pointer is fp. Frame size is constant. */
|
509 |
|
|
cache->framereg = ARM_FP_REGNUM;
|
510 |
|
|
cache->framesize = -regs[ARM_FP_REGNUM].k;
|
511 |
|
|
}
|
512 |
|
|
else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
|
513 |
|
|
{
|
514 |
|
|
/* Frame pointer is r7. Frame size is constant. */
|
515 |
|
|
cache->framereg = THUMB_FP_REGNUM;
|
516 |
|
|
cache->framesize = -regs[THUMB_FP_REGNUM].k;
|
517 |
|
|
}
|
518 |
|
|
else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
|
519 |
|
|
{
|
520 |
|
|
/* Try the stack pointer... this is a bit desperate. */
|
521 |
|
|
cache->framereg = ARM_SP_REGNUM;
|
522 |
|
|
cache->framesize = -regs[ARM_SP_REGNUM].k;
|
523 |
|
|
}
|
524 |
|
|
else
|
525 |
|
|
{
|
526 |
|
|
/* We're just out of luck. We don't know where the frame is. */
|
527 |
|
|
cache->framereg = -1;
|
528 |
|
|
cache->framesize = 0;
|
529 |
|
|
}
|
530 |
|
|
|
531 |
|
|
for (i = 0; i < 16; i++)
|
532 |
|
|
if (pv_area_find_reg (stack, gdbarch, i, &offset))
|
533 |
|
|
cache->saved_regs[i].addr = offset;
|
534 |
|
|
|
535 |
|
|
do_cleanups (back_to);
|
536 |
|
|
return start;
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
/* Advance the PC across any function entry prologue instructions to
|
540 |
|
|
reach some "real" code.
|
541 |
|
|
|
542 |
|
|
The APCS (ARM Procedure Call Standard) defines the following
|
543 |
|
|
prologue:
|
544 |
|
|
|
545 |
|
|
mov ip, sp
|
546 |
|
|
[stmfd sp!, {a1,a2,a3,a4}]
|
547 |
|
|
stmfd sp!, {...,fp,ip,lr,pc}
|
548 |
|
|
[stfe f7, [sp, #-12]!]
|
549 |
|
|
[stfe f6, [sp, #-12]!]
|
550 |
|
|
[stfe f5, [sp, #-12]!]
|
551 |
|
|
[stfe f4, [sp, #-12]!]
|
552 |
|
|
sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
|
553 |
|
|
|
554 |
|
|
static CORE_ADDR
|
555 |
|
|
arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
556 |
|
|
{
|
557 |
|
|
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
|
558 |
|
|
unsigned long inst;
|
559 |
|
|
CORE_ADDR skip_pc;
|
560 |
|
|
CORE_ADDR func_addr, limit_pc;
|
561 |
|
|
struct symtab_and_line sal;
|
562 |
|
|
|
563 |
|
|
/* If we're in a dummy frame, don't even try to skip the prologue. */
|
564 |
|
|
if (deprecated_pc_in_call_dummy (gdbarch, pc))
|
565 |
|
|
return pc;
|
566 |
|
|
|
567 |
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
568 |
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
569 |
|
|
is greater. */
|
570 |
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
571 |
|
|
{
|
572 |
|
|
CORE_ADDR post_prologue_pc
|
573 |
|
|
= skip_prologue_using_sal (gdbarch, func_addr);
|
574 |
|
|
if (post_prologue_pc != 0)
|
575 |
|
|
return max (pc, post_prologue_pc);
|
576 |
|
|
}
|
577 |
|
|
|
578 |
|
|
/* Can't determine prologue from the symbol table, need to examine
|
579 |
|
|
instructions. */
|
580 |
|
|
|
581 |
|
|
/* Find an upper limit on the function prologue using the debug
|
582 |
|
|
information. If the debug information could not be used to provide
|
583 |
|
|
that bound, then use an arbitrary large number as the upper bound. */
|
584 |
|
|
/* Like arm_scan_prologue, stop no later than pc + 64. */
|
585 |
|
|
limit_pc = skip_prologue_using_sal (gdbarch, pc);
|
586 |
|
|
if (limit_pc == 0)
|
587 |
|
|
limit_pc = pc + 64; /* Magic. */
|
588 |
|
|
|
589 |
|
|
|
590 |
|
|
/* Check if this is Thumb code. */
|
591 |
|
|
if (arm_pc_is_thumb (pc))
|
592 |
|
|
return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
|
593 |
|
|
|
594 |
|
|
for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4)
|
595 |
|
|
{
|
596 |
|
|
inst = read_memory_unsigned_integer (skip_pc, 4, byte_order_for_code);
|
597 |
|
|
|
598 |
|
|
/* "mov ip, sp" is no longer a required part of the prologue. */
|
599 |
|
|
if (inst == 0xe1a0c00d) /* mov ip, sp */
|
600 |
|
|
continue;
|
601 |
|
|
|
602 |
|
|
if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
|
603 |
|
|
continue;
|
604 |
|
|
|
605 |
|
|
if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
|
606 |
|
|
continue;
|
607 |
|
|
|
608 |
|
|
/* Some prologues begin with "str lr, [sp, #-4]!". */
|
609 |
|
|
if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
|
610 |
|
|
continue;
|
611 |
|
|
|
612 |
|
|
if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
|
613 |
|
|
continue;
|
614 |
|
|
|
615 |
|
|
if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
|
616 |
|
|
continue;
|
617 |
|
|
|
618 |
|
|
/* Any insns after this point may float into the code, if it makes
|
619 |
|
|
for better instruction scheduling, so we skip them only if we
|
620 |
|
|
find them, but still consider the function to be frame-ful. */
|
621 |
|
|
|
622 |
|
|
/* We may have either one sfmfd instruction here, or several stfe
|
623 |
|
|
insns, depending on the version of floating point code we
|
624 |
|
|
support. */
|
625 |
|
|
if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
|
626 |
|
|
continue;
|
627 |
|
|
|
628 |
|
|
if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
|
629 |
|
|
continue;
|
630 |
|
|
|
631 |
|
|
if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
|
632 |
|
|
continue;
|
633 |
|
|
|
634 |
|
|
if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
|
635 |
|
|
continue;
|
636 |
|
|
|
637 |
|
|
if ((inst & 0xffffc000) == 0xe54b0000 /* strb r(0123),[r11,#-nn] */
|
638 |
|
|
|| (inst & 0xffffc0f0) == 0xe14b00b0 /* strh r(0123),[r11,#-nn] */
|
639 |
|
|
|| (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
|
640 |
|
|
continue;
|
641 |
|
|
|
642 |
|
|
if ((inst & 0xffffc000) == 0xe5cd0000 /* strb r(0123),[sp,#nn] */
|
643 |
|
|
|| (inst & 0xffffc0f0) == 0xe1cd00b0 /* strh r(0123),[sp,#nn] */
|
644 |
|
|
|| (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
|
645 |
|
|
continue;
|
646 |
|
|
|
647 |
|
|
/* Un-recognized instruction; stop scanning. */
|
648 |
|
|
break;
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
return skip_pc; /* End of prologue */
|
652 |
|
|
}
|
653 |
|
|
|
654 |
|
|
/* *INDENT-OFF* */
|
655 |
|
|
/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
|
656 |
|
|
This function decodes a Thumb function prologue to determine:
|
657 |
|
|
1) the size of the stack frame
|
658 |
|
|
2) which registers are saved on it
|
659 |
|
|
3) the offsets of saved regs
|
660 |
|
|
4) the offset from the stack pointer to the frame pointer
|
661 |
|
|
|
662 |
|
|
A typical Thumb function prologue would create this stack frame
|
663 |
|
|
(offsets relative to FP)
|
664 |
|
|
old SP -> 24 stack parameters
|
665 |
|
|
20 LR
|
666 |
|
|
16 R7
|
667 |
|
|
R7 -> 0 local variables (16 bytes)
|
668 |
|
|
SP -> -12 additional stack space (12 bytes)
|
669 |
|
|
The frame size would thus be 36 bytes, and the frame offset would be
|
670 |
|
|
12 bytes. The frame register is R7.
|
671 |
|
|
|
672 |
|
|
The comments for thumb_skip_prolog() describe the algorithm we use
|
673 |
|
|
to detect the end of the prolog. */
|
674 |
|
|
/* *INDENT-ON* */
|
675 |
|
|
|
676 |
|
|
static void
|
677 |
|
|
thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
|
678 |
|
|
CORE_ADDR block_addr, struct arm_prologue_cache *cache)
|
679 |
|
|
{
|
680 |
|
|
CORE_ADDR prologue_start;
|
681 |
|
|
CORE_ADDR prologue_end;
|
682 |
|
|
CORE_ADDR current_pc;
|
683 |
|
|
|
684 |
|
|
if (find_pc_partial_function (block_addr, NULL, &prologue_start,
|
685 |
|
|
&prologue_end))
|
686 |
|
|
{
|
687 |
|
|
struct symtab_and_line sal = find_pc_line (prologue_start, 0);
|
688 |
|
|
|
689 |
|
|
if (sal.line == 0) /* no line info, use current PC */
|
690 |
|
|
prologue_end = prev_pc;
|
691 |
|
|
else if (sal.end < prologue_end) /* next line begins after fn end */
|
692 |
|
|
prologue_end = sal.end; /* (probably means no prologue) */
|
693 |
|
|
}
|
694 |
|
|
else
|
695 |
|
|
/* We're in the boondocks: we have no idea where the start of the
|
696 |
|
|
function is. */
|
697 |
|
|
return;
|
698 |
|
|
|
699 |
|
|
prologue_end = min (prologue_end, prev_pc);
|
700 |
|
|
|
701 |
|
|
thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
/* This function decodes an ARM function prologue to determine:
|
705 |
|
|
1) the size of the stack frame
|
706 |
|
|
2) which registers are saved on it
|
707 |
|
|
3) the offsets of saved regs
|
708 |
|
|
4) the offset from the stack pointer to the frame pointer
|
709 |
|
|
This information is stored in the "extra" fields of the frame_info.
|
710 |
|
|
|
711 |
|
|
There are two basic forms for the ARM prologue. The fixed argument
|
712 |
|
|
function call will look like:
|
713 |
|
|
|
714 |
|
|
mov ip, sp
|
715 |
|
|
stmfd sp!, {fp, ip, lr, pc}
|
716 |
|
|
sub fp, ip, #4
|
717 |
|
|
[sub sp, sp, #4]
|
718 |
|
|
|
719 |
|
|
Which would create this stack frame (offsets relative to FP):
|
720 |
|
|
IP -> 4 (caller's stack)
|
721 |
|
|
FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
|
722 |
|
|
-4 LR (return address in caller)
|
723 |
|
|
-8 IP (copy of caller's SP)
|
724 |
|
|
-12 FP (caller's FP)
|
725 |
|
|
SP -> -28 Local variables
|
726 |
|
|
|
727 |
|
|
The frame size would thus be 32 bytes, and the frame offset would be
|
728 |
|
|
28 bytes. The stmfd call can also save any of the vN registers it
|
729 |
|
|
plans to use, which increases the frame size accordingly.
|
730 |
|
|
|
731 |
|
|
Note: The stored PC is 8 off of the STMFD instruction that stored it
|
732 |
|
|
because the ARM Store instructions always store PC + 8 when you read
|
733 |
|
|
the PC register.
|
734 |
|
|
|
735 |
|
|
A variable argument function call will look like:
|
736 |
|
|
|
737 |
|
|
mov ip, sp
|
738 |
|
|
stmfd sp!, {a1, a2, a3, a4}
|
739 |
|
|
stmfd sp!, {fp, ip, lr, pc}
|
740 |
|
|
sub fp, ip, #20
|
741 |
|
|
|
742 |
|
|
Which would create this stack frame (offsets relative to FP):
|
743 |
|
|
IP -> 20 (caller's stack)
|
744 |
|
|
16 A4
|
745 |
|
|
12 A3
|
746 |
|
|
8 A2
|
747 |
|
|
4 A1
|
748 |
|
|
FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
|
749 |
|
|
-4 LR (return address in caller)
|
750 |
|
|
-8 IP (copy of caller's SP)
|
751 |
|
|
-12 FP (caller's FP)
|
752 |
|
|
SP -> -28 Local variables
|
753 |
|
|
|
754 |
|
|
The frame size would thus be 48 bytes, and the frame offset would be
|
755 |
|
|
28 bytes.
|
756 |
|
|
|
757 |
|
|
There is another potential complication, which is that the optimizer
|
758 |
|
|
will try to separate the store of fp in the "stmfd" instruction from
|
759 |
|
|
the "sub fp, ip, #NN" instruction. Almost anything can be there, so
|
760 |
|
|
we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
|
761 |
|
|
|
762 |
|
|
Also, note, the original version of the ARM toolchain claimed that there
|
763 |
|
|
should be an
|
764 |
|
|
|
765 |
|
|
instruction at the end of the prologue. I have never seen GCC produce
|
766 |
|
|
this, and the ARM docs don't mention it. We still test for it below in
|
767 |
|
|
case it happens...
|
768 |
|
|
|
769 |
|
|
*/
|
770 |
|
|
|
771 |
|
|
static void
|
772 |
|
|
arm_scan_prologue (struct frame_info *this_frame,
|
773 |
|
|
struct arm_prologue_cache *cache)
|
774 |
|
|
{
|
775 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
776 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
777 |
|
|
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
|
778 |
|
|
int regno;
|
779 |
|
|
CORE_ADDR prologue_start, prologue_end, current_pc;
|
780 |
|
|
CORE_ADDR prev_pc = get_frame_pc (this_frame);
|
781 |
|
|
CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
|
782 |
|
|
pv_t regs[ARM_FPS_REGNUM];
|
783 |
|
|
struct pv_area *stack;
|
784 |
|
|
struct cleanup *back_to;
|
785 |
|
|
CORE_ADDR offset;
|
786 |
|
|
|
787 |
|
|
/* Assume there is no frame until proven otherwise. */
|
788 |
|
|
cache->framereg = ARM_SP_REGNUM;
|
789 |
|
|
cache->framesize = 0;
|
790 |
|
|
|
791 |
|
|
/* Check for Thumb prologue. */
|
792 |
|
|
if (arm_frame_is_thumb (this_frame))
|
793 |
|
|
{
|
794 |
|
|
thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
|
795 |
|
|
return;
|
796 |
|
|
}
|
797 |
|
|
|
798 |
|
|
/* Find the function prologue. If we can't find the function in
|
799 |
|
|
the symbol table, peek in the stack frame to find the PC. */
|
800 |
|
|
if (find_pc_partial_function (block_addr, NULL, &prologue_start,
|
801 |
|
|
&prologue_end))
|
802 |
|
|
{
|
803 |
|
|
/* One way to find the end of the prologue (which works well
|
804 |
|
|
for unoptimized code) is to do the following:
|
805 |
|
|
|
806 |
|
|
struct symtab_and_line sal = find_pc_line (prologue_start, 0);
|
807 |
|
|
|
808 |
|
|
if (sal.line == 0)
|
809 |
|
|
prologue_end = prev_pc;
|
810 |
|
|
else if (sal.end < prologue_end)
|
811 |
|
|
prologue_end = sal.end;
|
812 |
|
|
|
813 |
|
|
This mechanism is very accurate so long as the optimizer
|
814 |
|
|
doesn't move any instructions from the function body into the
|
815 |
|
|
prologue. If this happens, sal.end will be the last
|
816 |
|
|
instruction in the first hunk of prologue code just before
|
817 |
|
|
the first instruction that the scheduler has moved from
|
818 |
|
|
the body to the prologue.
|
819 |
|
|
|
820 |
|
|
In order to make sure that we scan all of the prologue
|
821 |
|
|
instructions, we use a slightly less accurate mechanism which
|
822 |
|
|
may scan more than necessary. To help compensate for this
|
823 |
|
|
lack of accuracy, the prologue scanning loop below contains
|
824 |
|
|
several clauses which'll cause the loop to terminate early if
|
825 |
|
|
an implausible prologue instruction is encountered.
|
826 |
|
|
|
827 |
|
|
The expression
|
828 |
|
|
|
829 |
|
|
prologue_start + 64
|
830 |
|
|
|
831 |
|
|
is a suitable endpoint since it accounts for the largest
|
832 |
|
|
possible prologue plus up to five instructions inserted by
|
833 |
|
|
the scheduler. */
|
834 |
|
|
|
835 |
|
|
if (prologue_end > prologue_start + 64)
|
836 |
|
|
{
|
837 |
|
|
prologue_end = prologue_start + 64; /* See above. */
|
838 |
|
|
}
|
839 |
|
|
}
|
840 |
|
|
else
|
841 |
|
|
{
|
842 |
|
|
/* We have no symbol information. Our only option is to assume this
|
843 |
|
|
function has a standard stack frame and the normal frame register.
|
844 |
|
|
Then, we can find the value of our frame pointer on entrance to
|
845 |
|
|
the callee (or at the present moment if this is the innermost frame).
|
846 |
|
|
The value stored there should be the address of the stmfd + 8. */
|
847 |
|
|
CORE_ADDR frame_loc;
|
848 |
|
|
LONGEST return_value;
|
849 |
|
|
|
850 |
|
|
frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
|
851 |
|
|
if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value))
|
852 |
|
|
return;
|
853 |
|
|
else
|
854 |
|
|
{
|
855 |
|
|
prologue_start = gdbarch_addr_bits_remove
|
856 |
|
|
(gdbarch, return_value) - 8;
|
857 |
|
|
prologue_end = prologue_start + 64; /* See above. */
|
858 |
|
|
}
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
if (prev_pc < prologue_end)
|
862 |
|
|
prologue_end = prev_pc;
|
863 |
|
|
|
864 |
|
|
/* Now search the prologue looking for instructions that set up the
|
865 |
|
|
frame pointer, adjust the stack pointer, and save registers.
|
866 |
|
|
|
867 |
|
|
Be careful, however, and if it doesn't look like a prologue,
|
868 |
|
|
don't try to scan it. If, for instance, a frameless function
|
869 |
|
|
begins with stmfd sp!, then we will tell ourselves there is
|
870 |
|
|
a frame, which will confuse stack traceback, as well as "finish"
|
871 |
|
|
and other operations that rely on a knowledge of the stack
|
872 |
|
|
traceback.
|
873 |
|
|
|
874 |
|
|
In the APCS, the prologue should start with "mov ip, sp" so
|
875 |
|
|
if we don't see this as the first insn, we will stop.
|
876 |
|
|
|
877 |
|
|
[Note: This doesn't seem to be true any longer, so it's now an
|
878 |
|
|
optional part of the prologue. - Kevin Buettner, 2001-11-20]
|
879 |
|
|
|
880 |
|
|
[Note further: The "mov ip,sp" only seems to be missing in
|
881 |
|
|
frameless functions at optimization level "-O2" or above,
|
882 |
|
|
in which case it is often (but not always) replaced by
|
883 |
|
|
"str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
|
884 |
|
|
|
885 |
|
|
for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
|
886 |
|
|
regs[regno] = pv_register (regno, 0);
|
887 |
|
|
stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
|
888 |
|
|
back_to = make_cleanup_free_pv_area (stack);
|
889 |
|
|
|
890 |
|
|
for (current_pc = prologue_start;
|
891 |
|
|
current_pc < prologue_end;
|
892 |
|
|
current_pc += 4)
|
893 |
|
|
{
|
894 |
|
|
unsigned int insn
|
895 |
|
|
= read_memory_unsigned_integer (current_pc, 4, byte_order_for_code);
|
896 |
|
|
|
897 |
|
|
if (insn == 0xe1a0c00d) /* mov ip, sp */
|
898 |
|
|
{
|
899 |
|
|
regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
|
900 |
|
|
continue;
|
901 |
|
|
}
|
902 |
|
|
else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
|
903 |
|
|
{
|
904 |
|
|
unsigned imm = insn & 0xff; /* immediate value */
|
905 |
|
|
unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
|
906 |
|
|
imm = (imm >> rot) | (imm << (32 - rot));
|
907 |
|
|
regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], imm);
|
908 |
|
|
continue;
|
909 |
|
|
}
|
910 |
|
|
else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
|
911 |
|
|
{
|
912 |
|
|
unsigned imm = insn & 0xff; /* immediate value */
|
913 |
|
|
unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
|
914 |
|
|
imm = (imm >> rot) | (imm << (32 - rot));
|
915 |
|
|
regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
|
916 |
|
|
continue;
|
917 |
|
|
}
|
918 |
|
|
else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
|
919 |
|
|
{
|
920 |
|
|
if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
|
921 |
|
|
break;
|
922 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
|
923 |
|
|
pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[ARM_LR_REGNUM]);
|
924 |
|
|
continue;
|
925 |
|
|
}
|
926 |
|
|
else if ((insn & 0xffff0000) == 0xe92d0000)
|
927 |
|
|
/* stmfd sp!, {..., fp, ip, lr, pc}
|
928 |
|
|
or
|
929 |
|
|
stmfd sp!, {a1, a2, a3, a4} */
|
930 |
|
|
{
|
931 |
|
|
int mask = insn & 0xffff;
|
932 |
|
|
|
933 |
|
|
if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
|
934 |
|
|
break;
|
935 |
|
|
|
936 |
|
|
/* Calculate offsets of saved registers. */
|
937 |
|
|
for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
|
938 |
|
|
if (mask & (1 << regno))
|
939 |
|
|
{
|
940 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
|
941 |
|
|
pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
|
942 |
|
|
}
|
943 |
|
|
}
|
944 |
|
|
else if ((insn & 0xffffc000) == 0xe54b0000 /* strb rx,[r11,#-n] */
|
945 |
|
|
|| (insn & 0xffffc0f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
|
946 |
|
|
|| (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
|
947 |
|
|
{
|
948 |
|
|
/* No need to add this to saved_regs -- it's just an arg reg. */
|
949 |
|
|
continue;
|
950 |
|
|
}
|
951 |
|
|
else if ((insn & 0xffffc000) == 0xe5cd0000 /* strb rx,[sp,#n] */
|
952 |
|
|
|| (insn & 0xffffc0f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
|
953 |
|
|
|| (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
|
954 |
|
|
{
|
955 |
|
|
/* No need to add this to saved_regs -- it's just an arg reg. */
|
956 |
|
|
continue;
|
957 |
|
|
}
|
958 |
|
|
else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
|
959 |
|
|
{
|
960 |
|
|
unsigned imm = insn & 0xff; /* immediate value */
|
961 |
|
|
unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
|
962 |
|
|
imm = (imm >> rot) | (imm << (32 - rot));
|
963 |
|
|
regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
|
964 |
|
|
}
|
965 |
|
|
else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
|
966 |
|
|
{
|
967 |
|
|
unsigned imm = insn & 0xff; /* immediate value */
|
968 |
|
|
unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
|
969 |
|
|
imm = (imm >> rot) | (imm << (32 - rot));
|
970 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
|
971 |
|
|
}
|
972 |
|
|
else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
|
973 |
|
|
&& gdbarch_tdep (gdbarch)->have_fpa_registers)
|
974 |
|
|
{
|
975 |
|
|
if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
|
976 |
|
|
break;
|
977 |
|
|
|
978 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
|
979 |
|
|
regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
|
980 |
|
|
pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
|
981 |
|
|
}
|
982 |
|
|
else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
|
983 |
|
|
&& gdbarch_tdep (gdbarch)->have_fpa_registers)
|
984 |
|
|
{
|
985 |
|
|
int n_saved_fp_regs;
|
986 |
|
|
unsigned int fp_start_reg, fp_bound_reg;
|
987 |
|
|
|
988 |
|
|
if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
|
989 |
|
|
break;
|
990 |
|
|
|
991 |
|
|
if ((insn & 0x800) == 0x800) /* N0 is set */
|
992 |
|
|
{
|
993 |
|
|
if ((insn & 0x40000) == 0x40000) /* N1 is set */
|
994 |
|
|
n_saved_fp_regs = 3;
|
995 |
|
|
else
|
996 |
|
|
n_saved_fp_regs = 1;
|
997 |
|
|
}
|
998 |
|
|
else
|
999 |
|
|
{
|
1000 |
|
|
if ((insn & 0x40000) == 0x40000) /* N1 is set */
|
1001 |
|
|
n_saved_fp_regs = 2;
|
1002 |
|
|
else
|
1003 |
|
|
n_saved_fp_regs = 4;
|
1004 |
|
|
}
|
1005 |
|
|
|
1006 |
|
|
fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
|
1007 |
|
|
fp_bound_reg = fp_start_reg + n_saved_fp_regs;
|
1008 |
|
|
for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
|
1009 |
|
|
{
|
1010 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
|
1011 |
|
|
pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
|
1012 |
|
|
regs[fp_start_reg++]);
|
1013 |
|
|
}
|
1014 |
|
|
}
|
1015 |
|
|
else if ((insn & 0xf0000000) != 0xe0000000)
|
1016 |
|
|
break; /* Condition not true, exit early */
|
1017 |
|
|
else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
|
1018 |
|
|
break; /* Don't scan past a block load */
|
1019 |
|
|
else
|
1020 |
|
|
/* The optimizer might shove anything into the prologue,
|
1021 |
|
|
so we just skip what we don't recognize. */
|
1022 |
|
|
continue;
|
1023 |
|
|
}
|
1024 |
|
|
|
1025 |
|
|
/* The frame size is just the distance from the frame register
|
1026 |
|
|
to the original stack pointer. */
|
1027 |
|
|
if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
|
1028 |
|
|
{
|
1029 |
|
|
/* Frame pointer is fp. */
|
1030 |
|
|
cache->framereg = ARM_FP_REGNUM;
|
1031 |
|
|
cache->framesize = -regs[ARM_FP_REGNUM].k;
|
1032 |
|
|
}
|
1033 |
|
|
else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
|
1034 |
|
|
{
|
1035 |
|
|
/* Try the stack pointer... this is a bit desperate. */
|
1036 |
|
|
cache->framereg = ARM_SP_REGNUM;
|
1037 |
|
|
cache->framesize = -regs[ARM_SP_REGNUM].k;
|
1038 |
|
|
}
|
1039 |
|
|
else
|
1040 |
|
|
{
|
1041 |
|
|
/* We're just out of luck. We don't know where the frame is. */
|
1042 |
|
|
cache->framereg = -1;
|
1043 |
|
|
cache->framesize = 0;
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
|
1047 |
|
|
if (pv_area_find_reg (stack, gdbarch, regno, &offset))
|
1048 |
|
|
cache->saved_regs[regno].addr = offset;
|
1049 |
|
|
|
1050 |
|
|
do_cleanups (back_to);
|
1051 |
|
|
}
|
1052 |
|
|
|
1053 |
|
|
static struct arm_prologue_cache *
|
1054 |
|
|
arm_make_prologue_cache (struct frame_info *this_frame)
|
1055 |
|
|
{
|
1056 |
|
|
int reg;
|
1057 |
|
|
struct arm_prologue_cache *cache;
|
1058 |
|
|
CORE_ADDR unwound_fp;
|
1059 |
|
|
|
1060 |
|
|
cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
|
1061 |
|
|
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
1062 |
|
|
|
1063 |
|
|
arm_scan_prologue (this_frame, cache);
|
1064 |
|
|
|
1065 |
|
|
unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
|
1066 |
|
|
if (unwound_fp == 0)
|
1067 |
|
|
return cache;
|
1068 |
|
|
|
1069 |
|
|
cache->prev_sp = unwound_fp + cache->framesize;
|
1070 |
|
|
|
1071 |
|
|
/* Calculate actual addresses of saved registers using offsets
|
1072 |
|
|
determined by arm_scan_prologue. */
|
1073 |
|
|
for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
|
1074 |
|
|
if (trad_frame_addr_p (cache->saved_regs, reg))
|
1075 |
|
|
cache->saved_regs[reg].addr += cache->prev_sp;
|
1076 |
|
|
|
1077 |
|
|
return cache;
|
1078 |
|
|
}
|
1079 |
|
|
|
1080 |
|
|
/* Our frame ID for a normal frame is the current function's starting PC
|
1081 |
|
|
and the caller's SP when we were called. */
|
1082 |
|
|
|
1083 |
|
|
static void
|
1084 |
|
|
arm_prologue_this_id (struct frame_info *this_frame,
|
1085 |
|
|
void **this_cache,
|
1086 |
|
|
struct frame_id *this_id)
|
1087 |
|
|
{
|
1088 |
|
|
struct arm_prologue_cache *cache;
|
1089 |
|
|
struct frame_id id;
|
1090 |
|
|
CORE_ADDR pc, func;
|
1091 |
|
|
|
1092 |
|
|
if (*this_cache == NULL)
|
1093 |
|
|
*this_cache = arm_make_prologue_cache (this_frame);
|
1094 |
|
|
cache = *this_cache;
|
1095 |
|
|
|
1096 |
|
|
/* This is meant to halt the backtrace at "_start". */
|
1097 |
|
|
pc = get_frame_pc (this_frame);
|
1098 |
|
|
if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
|
1099 |
|
|
return;
|
1100 |
|
|
|
1101 |
|
|
/* If we've hit a wall, stop. */
|
1102 |
|
|
if (cache->prev_sp == 0)
|
1103 |
|
|
return;
|
1104 |
|
|
|
1105 |
|
|
func = get_frame_func (this_frame);
|
1106 |
|
|
id = frame_id_build (cache->prev_sp, func);
|
1107 |
|
|
*this_id = id;
|
1108 |
|
|
}
|
1109 |
|
|
|
1110 |
|
|
static struct value *
|
1111 |
|
|
arm_prologue_prev_register (struct frame_info *this_frame,
|
1112 |
|
|
void **this_cache,
|
1113 |
|
|
int prev_regnum)
|
1114 |
|
|
{
|
1115 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1116 |
|
|
struct arm_prologue_cache *cache;
|
1117 |
|
|
|
1118 |
|
|
if (*this_cache == NULL)
|
1119 |
|
|
*this_cache = arm_make_prologue_cache (this_frame);
|
1120 |
|
|
cache = *this_cache;
|
1121 |
|
|
|
1122 |
|
|
/* If we are asked to unwind the PC, then we need to return the LR
|
1123 |
|
|
instead. The prologue may save PC, but it will point into this
|
1124 |
|
|
frame's prologue, not the next frame's resume location. Also
|
1125 |
|
|
strip the saved T bit. A valid LR may have the low bit set, but
|
1126 |
|
|
a valid PC never does. */
|
1127 |
|
|
if (prev_regnum == ARM_PC_REGNUM)
|
1128 |
|
|
{
|
1129 |
|
|
CORE_ADDR lr;
|
1130 |
|
|
|
1131 |
|
|
lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
|
1132 |
|
|
return frame_unwind_got_constant (this_frame, prev_regnum,
|
1133 |
|
|
arm_addr_bits_remove (gdbarch, lr));
|
1134 |
|
|
}
|
1135 |
|
|
|
1136 |
|
|
/* SP is generally not saved to the stack, but this frame is
|
1137 |
|
|
identified by the next frame's stack pointer at the time of the call.
|
1138 |
|
|
The value was already reconstructed into PREV_SP. */
|
1139 |
|
|
if (prev_regnum == ARM_SP_REGNUM)
|
1140 |
|
|
return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
|
1141 |
|
|
|
1142 |
|
|
/* The CPSR may have been changed by the call instruction and by the
|
1143 |
|
|
called function. The only bit we can reconstruct is the T bit,
|
1144 |
|
|
by checking the low bit of LR as of the call. This is a reliable
|
1145 |
|
|
indicator of Thumb-ness except for some ARM v4T pre-interworking
|
1146 |
|
|
Thumb code, which could get away with a clear low bit as long as
|
1147 |
|
|
the called function did not use bx. Guess that all other
|
1148 |
|
|
bits are unchanged; the condition flags are presumably lost,
|
1149 |
|
|
but the processor status is likely valid. */
|
1150 |
|
|
if (prev_regnum == ARM_PS_REGNUM)
|
1151 |
|
|
{
|
1152 |
|
|
CORE_ADDR lr, cpsr;
|
1153 |
|
|
|
1154 |
|
|
cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
|
1155 |
|
|
lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
|
1156 |
|
|
if (IS_THUMB_ADDR (lr))
|
1157 |
|
|
cpsr |= CPSR_T;
|
1158 |
|
|
else
|
1159 |
|
|
cpsr &= ~CPSR_T;
|
1160 |
|
|
return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
|
1161 |
|
|
}
|
1162 |
|
|
|
1163 |
|
|
return trad_frame_get_prev_register (this_frame, cache->saved_regs,
|
1164 |
|
|
prev_regnum);
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
struct frame_unwind arm_prologue_unwind = {
|
1168 |
|
|
NORMAL_FRAME,
|
1169 |
|
|
arm_prologue_this_id,
|
1170 |
|
|
arm_prologue_prev_register,
|
1171 |
|
|
NULL,
|
1172 |
|
|
default_frame_sniffer
|
1173 |
|
|
};
|
1174 |
|
|
|
1175 |
|
|
static struct arm_prologue_cache *
|
1176 |
|
|
arm_make_stub_cache (struct frame_info *this_frame)
|
1177 |
|
|
{
|
1178 |
|
|
int reg;
|
1179 |
|
|
struct arm_prologue_cache *cache;
|
1180 |
|
|
CORE_ADDR unwound_fp;
|
1181 |
|
|
|
1182 |
|
|
cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
|
1183 |
|
|
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
1184 |
|
|
|
1185 |
|
|
cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
1186 |
|
|
|
1187 |
|
|
return cache;
|
1188 |
|
|
}
|
1189 |
|
|
|
1190 |
|
|
/* Our frame ID for a stub frame is the current SP and LR. */
|
1191 |
|
|
|
1192 |
|
|
static void
|
1193 |
|
|
arm_stub_this_id (struct frame_info *this_frame,
|
1194 |
|
|
void **this_cache,
|
1195 |
|
|
struct frame_id *this_id)
|
1196 |
|
|
{
|
1197 |
|
|
struct arm_prologue_cache *cache;
|
1198 |
|
|
|
1199 |
|
|
if (*this_cache == NULL)
|
1200 |
|
|
*this_cache = arm_make_stub_cache (this_frame);
|
1201 |
|
|
cache = *this_cache;
|
1202 |
|
|
|
1203 |
|
|
*this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
|
1204 |
|
|
}
|
1205 |
|
|
|
1206 |
|
|
static int
|
1207 |
|
|
arm_stub_unwind_sniffer (const struct frame_unwind *self,
|
1208 |
|
|
struct frame_info *this_frame,
|
1209 |
|
|
void **this_prologue_cache)
|
1210 |
|
|
{
|
1211 |
|
|
CORE_ADDR addr_in_block;
|
1212 |
|
|
char dummy[4];
|
1213 |
|
|
|
1214 |
|
|
addr_in_block = get_frame_address_in_block (this_frame);
|
1215 |
|
|
if (in_plt_section (addr_in_block, NULL)
|
1216 |
|
|
|| target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
|
1217 |
|
|
return 1;
|
1218 |
|
|
|
1219 |
|
|
return 0;
|
1220 |
|
|
}
|
1221 |
|
|
|
1222 |
|
|
struct frame_unwind arm_stub_unwind = {
|
1223 |
|
|
NORMAL_FRAME,
|
1224 |
|
|
arm_stub_this_id,
|
1225 |
|
|
arm_prologue_prev_register,
|
1226 |
|
|
NULL,
|
1227 |
|
|
arm_stub_unwind_sniffer
|
1228 |
|
|
};
|
1229 |
|
|
|
1230 |
|
|
static CORE_ADDR
|
1231 |
|
|
arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
|
1232 |
|
|
{
|
1233 |
|
|
struct arm_prologue_cache *cache;
|
1234 |
|
|
|
1235 |
|
|
if (*this_cache == NULL)
|
1236 |
|
|
*this_cache = arm_make_prologue_cache (this_frame);
|
1237 |
|
|
cache = *this_cache;
|
1238 |
|
|
|
1239 |
|
|
return cache->prev_sp - cache->framesize;
|
1240 |
|
|
}
|
1241 |
|
|
|
1242 |
|
|
struct frame_base arm_normal_base = {
|
1243 |
|
|
&arm_prologue_unwind,
|
1244 |
|
|
arm_normal_frame_base,
|
1245 |
|
|
arm_normal_frame_base,
|
1246 |
|
|
arm_normal_frame_base
|
1247 |
|
|
};
|
1248 |
|
|
|
1249 |
|
|
/* Assuming THIS_FRAME is a dummy, return the frame ID of that
|
1250 |
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
1251 |
|
|
saved by save_dummy_frame_tos() and returned from
|
1252 |
|
|
arm_push_dummy_call, and the PC needs to match the dummy frame's
|
1253 |
|
|
breakpoint. */
|
1254 |
|
|
|
1255 |
|
|
static struct frame_id
|
1256 |
|
|
arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
1257 |
|
|
{
|
1258 |
|
|
return frame_id_build (get_frame_register_unsigned (this_frame, ARM_SP_REGNUM),
|
1259 |
|
|
get_frame_pc (this_frame));
|
1260 |
|
|
}
|
1261 |
|
|
|
1262 |
|
|
/* Given THIS_FRAME, find the previous frame's resume PC (which will
|
1263 |
|
|
be used to construct the previous frame's ID, after looking up the
|
1264 |
|
|
containing function). */
|
1265 |
|
|
|
1266 |
|
|
static CORE_ADDR
|
1267 |
|
|
arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
1268 |
|
|
{
|
1269 |
|
|
CORE_ADDR pc;
|
1270 |
|
|
pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
|
1271 |
|
|
return arm_addr_bits_remove (gdbarch, pc);
|
1272 |
|
|
}
|
1273 |
|
|
|
1274 |
|
|
static CORE_ADDR
|
1275 |
|
|
arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
1276 |
|
|
{
|
1277 |
|
|
return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
|
1278 |
|
|
}
|
1279 |
|
|
|
1280 |
|
|
static struct value *
|
1281 |
|
|
arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
|
1282 |
|
|
int regnum)
|
1283 |
|
|
{
|
1284 |
|
|
struct gdbarch * gdbarch = get_frame_arch (this_frame);
|
1285 |
|
|
CORE_ADDR lr, cpsr;
|
1286 |
|
|
|
1287 |
|
|
switch (regnum)
|
1288 |
|
|
{
|
1289 |
|
|
case ARM_PC_REGNUM:
|
1290 |
|
|
/* The PC is normally copied from the return column, which
|
1291 |
|
|
describes saves of LR. However, that version may have an
|
1292 |
|
|
extra bit set to indicate Thumb state. The bit is not
|
1293 |
|
|
part of the PC. */
|
1294 |
|
|
lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
|
1295 |
|
|
return frame_unwind_got_constant (this_frame, regnum,
|
1296 |
|
|
arm_addr_bits_remove (gdbarch, lr));
|
1297 |
|
|
|
1298 |
|
|
case ARM_PS_REGNUM:
|
1299 |
|
|
/* Reconstruct the T bit; see arm_prologue_prev_register for details. */
|
1300 |
|
|
cpsr = get_frame_register_unsigned (this_frame, regnum);
|
1301 |
|
|
lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
|
1302 |
|
|
if (IS_THUMB_ADDR (lr))
|
1303 |
|
|
cpsr |= CPSR_T;
|
1304 |
|
|
else
|
1305 |
|
|
cpsr &= ~CPSR_T;
|
1306 |
|
|
return frame_unwind_got_constant (this_frame, regnum, cpsr);
|
1307 |
|
|
|
1308 |
|
|
default:
|
1309 |
|
|
internal_error (__FILE__, __LINE__,
|
1310 |
|
|
_("Unexpected register %d"), regnum);
|
1311 |
|
|
}
|
1312 |
|
|
}
|
1313 |
|
|
|
1314 |
|
|
static void
|
1315 |
|
|
arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
|
1316 |
|
|
struct dwarf2_frame_state_reg *reg,
|
1317 |
|
|
struct frame_info *this_frame)
|
1318 |
|
|
{
|
1319 |
|
|
switch (regnum)
|
1320 |
|
|
{
|
1321 |
|
|
case ARM_PC_REGNUM:
|
1322 |
|
|
case ARM_PS_REGNUM:
|
1323 |
|
|
reg->how = DWARF2_FRAME_REG_FN;
|
1324 |
|
|
reg->loc.fn = arm_dwarf2_prev_register;
|
1325 |
|
|
break;
|
1326 |
|
|
case ARM_SP_REGNUM:
|
1327 |
|
|
reg->how = DWARF2_FRAME_REG_CFA;
|
1328 |
|
|
break;
|
1329 |
|
|
}
|
1330 |
|
|
}
|
1331 |
|
|
|
1332 |
|
|
/* When arguments must be pushed onto the stack, they go on in reverse
|
1333 |
|
|
order. The code below implements a FILO (stack) to do this. */
|
1334 |
|
|
|
1335 |
|
|
struct stack_item
|
1336 |
|
|
{
|
1337 |
|
|
int len;
|
1338 |
|
|
struct stack_item *prev;
|
1339 |
|
|
void *data;
|
1340 |
|
|
};
|
1341 |
|
|
|
1342 |
|
|
static struct stack_item *
|
1343 |
|
|
push_stack_item (struct stack_item *prev, void *contents, int len)
|
1344 |
|
|
{
|
1345 |
|
|
struct stack_item *si;
|
1346 |
|
|
si = xmalloc (sizeof (struct stack_item));
|
1347 |
|
|
si->data = xmalloc (len);
|
1348 |
|
|
si->len = len;
|
1349 |
|
|
si->prev = prev;
|
1350 |
|
|
memcpy (si->data, contents, len);
|
1351 |
|
|
return si;
|
1352 |
|
|
}
|
1353 |
|
|
|
1354 |
|
|
static struct stack_item *
|
1355 |
|
|
pop_stack_item (struct stack_item *si)
|
1356 |
|
|
{
|
1357 |
|
|
struct stack_item *dead = si;
|
1358 |
|
|
si = si->prev;
|
1359 |
|
|
xfree (dead->data);
|
1360 |
|
|
xfree (dead);
|
1361 |
|
|
return si;
|
1362 |
|
|
}
|
1363 |
|
|
|
1364 |
|
|
|
1365 |
|
|
/* Return the alignment (in bytes) of the given type. */
|
1366 |
|
|
|
1367 |
|
|
static int
|
1368 |
|
|
arm_type_align (struct type *t)
|
1369 |
|
|
{
|
1370 |
|
|
int n;
|
1371 |
|
|
int align;
|
1372 |
|
|
int falign;
|
1373 |
|
|
|
1374 |
|
|
t = check_typedef (t);
|
1375 |
|
|
switch (TYPE_CODE (t))
|
1376 |
|
|
{
|
1377 |
|
|
default:
|
1378 |
|
|
/* Should never happen. */
|
1379 |
|
|
internal_error (__FILE__, __LINE__, _("unknown type alignment"));
|
1380 |
|
|
return 4;
|
1381 |
|
|
|
1382 |
|
|
case TYPE_CODE_PTR:
|
1383 |
|
|
case TYPE_CODE_ENUM:
|
1384 |
|
|
case TYPE_CODE_INT:
|
1385 |
|
|
case TYPE_CODE_FLT:
|
1386 |
|
|
case TYPE_CODE_SET:
|
1387 |
|
|
case TYPE_CODE_RANGE:
|
1388 |
|
|
case TYPE_CODE_BITSTRING:
|
1389 |
|
|
case TYPE_CODE_REF:
|
1390 |
|
|
case TYPE_CODE_CHAR:
|
1391 |
|
|
case TYPE_CODE_BOOL:
|
1392 |
|
|
return TYPE_LENGTH (t);
|
1393 |
|
|
|
1394 |
|
|
case TYPE_CODE_ARRAY:
|
1395 |
|
|
case TYPE_CODE_COMPLEX:
|
1396 |
|
|
/* TODO: What about vector types? */
|
1397 |
|
|
return arm_type_align (TYPE_TARGET_TYPE (t));
|
1398 |
|
|
|
1399 |
|
|
case TYPE_CODE_STRUCT:
|
1400 |
|
|
case TYPE_CODE_UNION:
|
1401 |
|
|
align = 1;
|
1402 |
|
|
for (n = 0; n < TYPE_NFIELDS (t); n++)
|
1403 |
|
|
{
|
1404 |
|
|
falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
|
1405 |
|
|
if (falign > align)
|
1406 |
|
|
align = falign;
|
1407 |
|
|
}
|
1408 |
|
|
return align;
|
1409 |
|
|
}
|
1410 |
|
|
}
|
1411 |
|
|
|
1412 |
|
|
/* Possible base types for a candidate for passing and returning in
|
1413 |
|
|
VFP registers. */
|
1414 |
|
|
|
1415 |
|
|
enum arm_vfp_cprc_base_type
|
1416 |
|
|
{
|
1417 |
|
|
VFP_CPRC_UNKNOWN,
|
1418 |
|
|
VFP_CPRC_SINGLE,
|
1419 |
|
|
VFP_CPRC_DOUBLE,
|
1420 |
|
|
VFP_CPRC_VEC64,
|
1421 |
|
|
VFP_CPRC_VEC128
|
1422 |
|
|
};
|
1423 |
|
|
|
1424 |
|
|
/* The length of one element of base type B. */
|
1425 |
|
|
|
1426 |
|
|
static unsigned
|
1427 |
|
|
arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
|
1428 |
|
|
{
|
1429 |
|
|
switch (b)
|
1430 |
|
|
{
|
1431 |
|
|
case VFP_CPRC_SINGLE:
|
1432 |
|
|
return 4;
|
1433 |
|
|
case VFP_CPRC_DOUBLE:
|
1434 |
|
|
return 8;
|
1435 |
|
|
case VFP_CPRC_VEC64:
|
1436 |
|
|
return 8;
|
1437 |
|
|
case VFP_CPRC_VEC128:
|
1438 |
|
|
return 16;
|
1439 |
|
|
default:
|
1440 |
|
|
internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
|
1441 |
|
|
(int) b);
|
1442 |
|
|
}
|
1443 |
|
|
}
|
1444 |
|
|
|
1445 |
|
|
/* The character ('s', 'd' or 'q') for the type of VFP register used
|
1446 |
|
|
for passing base type B. */
|
1447 |
|
|
|
1448 |
|
|
static int
|
1449 |
|
|
arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
|
1450 |
|
|
{
|
1451 |
|
|
switch (b)
|
1452 |
|
|
{
|
1453 |
|
|
case VFP_CPRC_SINGLE:
|
1454 |
|
|
return 's';
|
1455 |
|
|
case VFP_CPRC_DOUBLE:
|
1456 |
|
|
return 'd';
|
1457 |
|
|
case VFP_CPRC_VEC64:
|
1458 |
|
|
return 'd';
|
1459 |
|
|
case VFP_CPRC_VEC128:
|
1460 |
|
|
return 'q';
|
1461 |
|
|
default:
|
1462 |
|
|
internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
|
1463 |
|
|
(int) b);
|
1464 |
|
|
}
|
1465 |
|
|
}
|
1466 |
|
|
|
1467 |
|
|
/* Determine whether T may be part of a candidate for passing and
|
1468 |
|
|
returning in VFP registers, ignoring the limit on the total number
|
1469 |
|
|
of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
|
1470 |
|
|
classification of the first valid component found; if it is not
|
1471 |
|
|
VFP_CPRC_UNKNOWN, all components must have the same classification
|
1472 |
|
|
as *BASE_TYPE. If it is found that T contains a type not permitted
|
1473 |
|
|
for passing and returning in VFP registers, a type differently
|
1474 |
|
|
classified from *BASE_TYPE, or two types differently classified
|
1475 |
|
|
from each other, return -1, otherwise return the total number of
|
1476 |
|
|
base-type elements found (possibly 0 in an empty structure or
|
1477 |
|
|
array). Vectors and complex types are not currently supported,
|
1478 |
|
|
matching the generic AAPCS support. */
|
1479 |
|
|
|
1480 |
|
|
static int
|
1481 |
|
|
arm_vfp_cprc_sub_candidate (struct type *t,
|
1482 |
|
|
enum arm_vfp_cprc_base_type *base_type)
|
1483 |
|
|
{
|
1484 |
|
|
t = check_typedef (t);
|
1485 |
|
|
switch (TYPE_CODE (t))
|
1486 |
|
|
{
|
1487 |
|
|
case TYPE_CODE_FLT:
|
1488 |
|
|
switch (TYPE_LENGTH (t))
|
1489 |
|
|
{
|
1490 |
|
|
case 4:
|
1491 |
|
|
if (*base_type == VFP_CPRC_UNKNOWN)
|
1492 |
|
|
*base_type = VFP_CPRC_SINGLE;
|
1493 |
|
|
else if (*base_type != VFP_CPRC_SINGLE)
|
1494 |
|
|
return -1;
|
1495 |
|
|
return 1;
|
1496 |
|
|
|
1497 |
|
|
case 8:
|
1498 |
|
|
if (*base_type == VFP_CPRC_UNKNOWN)
|
1499 |
|
|
*base_type = VFP_CPRC_DOUBLE;
|
1500 |
|
|
else if (*base_type != VFP_CPRC_DOUBLE)
|
1501 |
|
|
return -1;
|
1502 |
|
|
return 1;
|
1503 |
|
|
|
1504 |
|
|
default:
|
1505 |
|
|
return -1;
|
1506 |
|
|
}
|
1507 |
|
|
break;
|
1508 |
|
|
|
1509 |
|
|
case TYPE_CODE_ARRAY:
|
1510 |
|
|
{
|
1511 |
|
|
int count;
|
1512 |
|
|
unsigned unitlen;
|
1513 |
|
|
count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), base_type);
|
1514 |
|
|
if (count == -1)
|
1515 |
|
|
return -1;
|
1516 |
|
|
if (TYPE_LENGTH (t) == 0)
|
1517 |
|
|
{
|
1518 |
|
|
gdb_assert (count == 0);
|
1519 |
|
|
return 0;
|
1520 |
|
|
}
|
1521 |
|
|
else if (count == 0)
|
1522 |
|
|
return -1;
|
1523 |
|
|
unitlen = arm_vfp_cprc_unit_length (*base_type);
|
1524 |
|
|
gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
|
1525 |
|
|
return TYPE_LENGTH (t) / unitlen;
|
1526 |
|
|
}
|
1527 |
|
|
break;
|
1528 |
|
|
|
1529 |
|
|
case TYPE_CODE_STRUCT:
|
1530 |
|
|
{
|
1531 |
|
|
int count = 0;
|
1532 |
|
|
unsigned unitlen;
|
1533 |
|
|
int i;
|
1534 |
|
|
for (i = 0; i < TYPE_NFIELDS (t); i++)
|
1535 |
|
|
{
|
1536 |
|
|
int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
|
1537 |
|
|
base_type);
|
1538 |
|
|
if (sub_count == -1)
|
1539 |
|
|
return -1;
|
1540 |
|
|
count += sub_count;
|
1541 |
|
|
}
|
1542 |
|
|
if (TYPE_LENGTH (t) == 0)
|
1543 |
|
|
{
|
1544 |
|
|
gdb_assert (count == 0);
|
1545 |
|
|
return 0;
|
1546 |
|
|
}
|
1547 |
|
|
else if (count == 0)
|
1548 |
|
|
return -1;
|
1549 |
|
|
unitlen = arm_vfp_cprc_unit_length (*base_type);
|
1550 |
|
|
if (TYPE_LENGTH (t) != unitlen * count)
|
1551 |
|
|
return -1;
|
1552 |
|
|
return count;
|
1553 |
|
|
}
|
1554 |
|
|
|
1555 |
|
|
case TYPE_CODE_UNION:
|
1556 |
|
|
{
|
1557 |
|
|
int count = 0;
|
1558 |
|
|
unsigned unitlen;
|
1559 |
|
|
int i;
|
1560 |
|
|
for (i = 0; i < TYPE_NFIELDS (t); i++)
|
1561 |
|
|
{
|
1562 |
|
|
int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
|
1563 |
|
|
base_type);
|
1564 |
|
|
if (sub_count == -1)
|
1565 |
|
|
return -1;
|
1566 |
|
|
count = (count > sub_count ? count : sub_count);
|
1567 |
|
|
}
|
1568 |
|
|
if (TYPE_LENGTH (t) == 0)
|
1569 |
|
|
{
|
1570 |
|
|
gdb_assert (count == 0);
|
1571 |
|
|
return 0;
|
1572 |
|
|
}
|
1573 |
|
|
else if (count == 0)
|
1574 |
|
|
return -1;
|
1575 |
|
|
unitlen = arm_vfp_cprc_unit_length (*base_type);
|
1576 |
|
|
if (TYPE_LENGTH (t) != unitlen * count)
|
1577 |
|
|
return -1;
|
1578 |
|
|
return count;
|
1579 |
|
|
}
|
1580 |
|
|
|
1581 |
|
|
default:
|
1582 |
|
|
break;
|
1583 |
|
|
}
|
1584 |
|
|
|
1585 |
|
|
return -1;
|
1586 |
|
|
}
|
1587 |
|
|
|
1588 |
|
|
/* Determine whether T is a VFP co-processor register candidate (CPRC)
|
1589 |
|
|
if passed to or returned from a non-variadic function with the VFP
|
1590 |
|
|
ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
|
1591 |
|
|
*BASE_TYPE to the base type for T and *COUNT to the number of
|
1592 |
|
|
elements of that base type before returning. */
|
1593 |
|
|
|
1594 |
|
|
static int
|
1595 |
|
|
arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
|
1596 |
|
|
int *count)
|
1597 |
|
|
{
|
1598 |
|
|
enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
|
1599 |
|
|
int c = arm_vfp_cprc_sub_candidate (t, &b);
|
1600 |
|
|
if (c <= 0 || c > 4)
|
1601 |
|
|
return 0;
|
1602 |
|
|
*base_type = b;
|
1603 |
|
|
*count = c;
|
1604 |
|
|
return 1;
|
1605 |
|
|
}
|
1606 |
|
|
|
1607 |
|
|
/* Return 1 if the VFP ABI should be used for passing arguments to and
|
1608 |
|
|
returning values from a function of type FUNC_TYPE, 0
|
1609 |
|
|
otherwise. */
|
1610 |
|
|
|
1611 |
|
|
static int
|
1612 |
|
|
arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
|
1613 |
|
|
{
|
1614 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1615 |
|
|
/* Variadic functions always use the base ABI. Assume that functions
|
1616 |
|
|
without debug info are not variadic. */
|
1617 |
|
|
if (func_type && TYPE_VARARGS (check_typedef (func_type)))
|
1618 |
|
|
return 0;
|
1619 |
|
|
/* The VFP ABI is only supported as a variant of AAPCS. */
|
1620 |
|
|
if (tdep->arm_abi != ARM_ABI_AAPCS)
|
1621 |
|
|
return 0;
|
1622 |
|
|
return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
|
1623 |
|
|
}
|
1624 |
|
|
|
1625 |
|
|
/* We currently only support passing parameters in integer registers, which
|
1626 |
|
|
conforms with GCC's default model, and VFP argument passing following
|
1627 |
|
|
the VFP variant of AAPCS. Several other variants exist and
|
1628 |
|
|
we should probably support some of them based on the selected ABI. */
|
1629 |
|
|
|
1630 |
|
|
static CORE_ADDR
|
1631 |
|
|
arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
1632 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
|
1633 |
|
|
struct value **args, CORE_ADDR sp, int struct_return,
|
1634 |
|
|
CORE_ADDR struct_addr)
|
1635 |
|
|
{
|
1636 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1637 |
|
|
int argnum;
|
1638 |
|
|
int argreg;
|
1639 |
|
|
int nstack;
|
1640 |
|
|
struct stack_item *si = NULL;
|
1641 |
|
|
int use_vfp_abi;
|
1642 |
|
|
struct type *ftype;
|
1643 |
|
|
unsigned vfp_regs_free = (1 << 16) - 1;
|
1644 |
|
|
|
1645 |
|
|
/* Determine the type of this function and whether the VFP ABI
|
1646 |
|
|
applies. */
|
1647 |
|
|
ftype = check_typedef (value_type (function));
|
1648 |
|
|
if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
|
1649 |
|
|
ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
|
1650 |
|
|
use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
|
1651 |
|
|
|
1652 |
|
|
/* Set the return address. For the ARM, the return breakpoint is
|
1653 |
|
|
always at BP_ADDR. */
|
1654 |
|
|
if (arm_pc_is_thumb (bp_addr))
|
1655 |
|
|
bp_addr |= 1;
|
1656 |
|
|
regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
|
1657 |
|
|
|
1658 |
|
|
/* Walk through the list of args and determine how large a temporary
|
1659 |
|
|
stack is required. Need to take care here as structs may be
|
1660 |
|
|
passed on the stack, and we have to to push them. */
|
1661 |
|
|
nstack = 0;
|
1662 |
|
|
|
1663 |
|
|
argreg = ARM_A1_REGNUM;
|
1664 |
|
|
nstack = 0;
|
1665 |
|
|
|
1666 |
|
|
/* The struct_return pointer occupies the first parameter
|
1667 |
|
|
passing register. */
|
1668 |
|
|
if (struct_return)
|
1669 |
|
|
{
|
1670 |
|
|
if (arm_debug)
|
1671 |
|
|
fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
|
1672 |
|
|
gdbarch_register_name (gdbarch, argreg),
|
1673 |
|
|
paddress (gdbarch, struct_addr));
|
1674 |
|
|
regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
|
1675 |
|
|
argreg++;
|
1676 |
|
|
}
|
1677 |
|
|
|
1678 |
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
1679 |
|
|
{
|
1680 |
|
|
int len;
|
1681 |
|
|
struct type *arg_type;
|
1682 |
|
|
struct type *target_type;
|
1683 |
|
|
enum type_code typecode;
|
1684 |
|
|
bfd_byte *val;
|
1685 |
|
|
int align;
|
1686 |
|
|
enum arm_vfp_cprc_base_type vfp_base_type;
|
1687 |
|
|
int vfp_base_count;
|
1688 |
|
|
int may_use_core_reg = 1;
|
1689 |
|
|
|
1690 |
|
|
arg_type = check_typedef (value_type (args[argnum]));
|
1691 |
|
|
len = TYPE_LENGTH (arg_type);
|
1692 |
|
|
target_type = TYPE_TARGET_TYPE (arg_type);
|
1693 |
|
|
typecode = TYPE_CODE (arg_type);
|
1694 |
|
|
val = value_contents_writeable (args[argnum]);
|
1695 |
|
|
|
1696 |
|
|
align = arm_type_align (arg_type);
|
1697 |
|
|
/* Round alignment up to a whole number of words. */
|
1698 |
|
|
align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
|
1699 |
|
|
/* Different ABIs have different maximum alignments. */
|
1700 |
|
|
if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
|
1701 |
|
|
{
|
1702 |
|
|
/* The APCS ABI only requires word alignment. */
|
1703 |
|
|
align = INT_REGISTER_SIZE;
|
1704 |
|
|
}
|
1705 |
|
|
else
|
1706 |
|
|
{
|
1707 |
|
|
/* The AAPCS requires at most doubleword alignment. */
|
1708 |
|
|
if (align > INT_REGISTER_SIZE * 2)
|
1709 |
|
|
align = INT_REGISTER_SIZE * 2;
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
if (use_vfp_abi
|
1713 |
|
|
&& arm_vfp_call_candidate (arg_type, &vfp_base_type,
|
1714 |
|
|
&vfp_base_count))
|
1715 |
|
|
{
|
1716 |
|
|
int regno;
|
1717 |
|
|
int unit_length;
|
1718 |
|
|
int shift;
|
1719 |
|
|
unsigned mask;
|
1720 |
|
|
|
1721 |
|
|
/* Because this is a CPRC it cannot go in a core register or
|
1722 |
|
|
cause a core register to be skipped for alignment.
|
1723 |
|
|
Either it goes in VFP registers and the rest of this loop
|
1724 |
|
|
iteration is skipped for this argument, or it goes on the
|
1725 |
|
|
stack (and the stack alignment code is correct for this
|
1726 |
|
|
case). */
|
1727 |
|
|
may_use_core_reg = 0;
|
1728 |
|
|
|
1729 |
|
|
unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
|
1730 |
|
|
shift = unit_length / 4;
|
1731 |
|
|
mask = (1 << (shift * vfp_base_count)) - 1;
|
1732 |
|
|
for (regno = 0; regno < 16; regno += shift)
|
1733 |
|
|
if (((vfp_regs_free >> regno) & mask) == mask)
|
1734 |
|
|
break;
|
1735 |
|
|
|
1736 |
|
|
if (regno < 16)
|
1737 |
|
|
{
|
1738 |
|
|
int reg_char;
|
1739 |
|
|
int reg_scaled;
|
1740 |
|
|
int i;
|
1741 |
|
|
|
1742 |
|
|
vfp_regs_free &= ~(mask << regno);
|
1743 |
|
|
reg_scaled = regno / shift;
|
1744 |
|
|
reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
|
1745 |
|
|
for (i = 0; i < vfp_base_count; i++)
|
1746 |
|
|
{
|
1747 |
|
|
char name_buf[4];
|
1748 |
|
|
int regnum;
|
1749 |
|
|
if (reg_char == 'q')
|
1750 |
|
|
arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
|
1751 |
|
|
val + i * unit_length);
|
1752 |
|
|
else
|
1753 |
|
|
{
|
1754 |
|
|
sprintf (name_buf, "%c%d", reg_char, reg_scaled + i);
|
1755 |
|
|
regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
|
1756 |
|
|
strlen (name_buf));
|
1757 |
|
|
regcache_cooked_write (regcache, regnum,
|
1758 |
|
|
val + i * unit_length);
|
1759 |
|
|
}
|
1760 |
|
|
}
|
1761 |
|
|
continue;
|
1762 |
|
|
}
|
1763 |
|
|
else
|
1764 |
|
|
{
|
1765 |
|
|
/* This CPRC could not go in VFP registers, so all VFP
|
1766 |
|
|
registers are now marked as used. */
|
1767 |
|
|
vfp_regs_free = 0;
|
1768 |
|
|
}
|
1769 |
|
|
}
|
1770 |
|
|
|
1771 |
|
|
/* Push stack padding for dowubleword alignment. */
|
1772 |
|
|
if (nstack & (align - 1))
|
1773 |
|
|
{
|
1774 |
|
|
si = push_stack_item (si, val, INT_REGISTER_SIZE);
|
1775 |
|
|
nstack += INT_REGISTER_SIZE;
|
1776 |
|
|
}
|
1777 |
|
|
|
1778 |
|
|
/* Doubleword aligned quantities must go in even register pairs. */
|
1779 |
|
|
if (may_use_core_reg
|
1780 |
|
|
&& argreg <= ARM_LAST_ARG_REGNUM
|
1781 |
|
|
&& align > INT_REGISTER_SIZE
|
1782 |
|
|
&& argreg & 1)
|
1783 |
|
|
argreg++;
|
1784 |
|
|
|
1785 |
|
|
/* If the argument is a pointer to a function, and it is a
|
1786 |
|
|
Thumb function, create a LOCAL copy of the value and set
|
1787 |
|
|
the THUMB bit in it. */
|
1788 |
|
|
if (TYPE_CODE_PTR == typecode
|
1789 |
|
|
&& target_type != NULL
|
1790 |
|
|
&& TYPE_CODE_FUNC == TYPE_CODE (target_type))
|
1791 |
|
|
{
|
1792 |
|
|
CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
|
1793 |
|
|
if (arm_pc_is_thumb (regval))
|
1794 |
|
|
{
|
1795 |
|
|
val = alloca (len);
|
1796 |
|
|
store_unsigned_integer (val, len, byte_order,
|
1797 |
|
|
MAKE_THUMB_ADDR (regval));
|
1798 |
|
|
}
|
1799 |
|
|
}
|
1800 |
|
|
|
1801 |
|
|
/* Copy the argument to general registers or the stack in
|
1802 |
|
|
register-sized pieces. Large arguments are split between
|
1803 |
|
|
registers and stack. */
|
1804 |
|
|
while (len > 0)
|
1805 |
|
|
{
|
1806 |
|
|
int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
|
1807 |
|
|
|
1808 |
|
|
if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
|
1809 |
|
|
{
|
1810 |
|
|
/* The argument is being passed in a general purpose
|
1811 |
|
|
register. */
|
1812 |
|
|
CORE_ADDR regval
|
1813 |
|
|
= extract_unsigned_integer (val, partial_len, byte_order);
|
1814 |
|
|
if (byte_order == BFD_ENDIAN_BIG)
|
1815 |
|
|
regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
|
1816 |
|
|
if (arm_debug)
|
1817 |
|
|
fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
|
1818 |
|
|
argnum,
|
1819 |
|
|
gdbarch_register_name
|
1820 |
|
|
(gdbarch, argreg),
|
1821 |
|
|
phex (regval, INT_REGISTER_SIZE));
|
1822 |
|
|
regcache_cooked_write_unsigned (regcache, argreg, regval);
|
1823 |
|
|
argreg++;
|
1824 |
|
|
}
|
1825 |
|
|
else
|
1826 |
|
|
{
|
1827 |
|
|
/* Push the arguments onto the stack. */
|
1828 |
|
|
if (arm_debug)
|
1829 |
|
|
fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
|
1830 |
|
|
argnum, nstack);
|
1831 |
|
|
si = push_stack_item (si, val, INT_REGISTER_SIZE);
|
1832 |
|
|
nstack += INT_REGISTER_SIZE;
|
1833 |
|
|
}
|
1834 |
|
|
|
1835 |
|
|
len -= partial_len;
|
1836 |
|
|
val += partial_len;
|
1837 |
|
|
}
|
1838 |
|
|
}
|
1839 |
|
|
/* If we have an odd number of words to push, then decrement the stack
|
1840 |
|
|
by one word now, so first stack argument will be dword aligned. */
|
1841 |
|
|
if (nstack & 4)
|
1842 |
|
|
sp -= 4;
|
1843 |
|
|
|
1844 |
|
|
while (si)
|
1845 |
|
|
{
|
1846 |
|
|
sp -= si->len;
|
1847 |
|
|
write_memory (sp, si->data, si->len);
|
1848 |
|
|
si = pop_stack_item (si);
|
1849 |
|
|
}
|
1850 |
|
|
|
1851 |
|
|
/* Finally, update teh SP register. */
|
1852 |
|
|
regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
|
1853 |
|
|
|
1854 |
|
|
return sp;
|
1855 |
|
|
}
|
1856 |
|
|
|
1857 |
|
|
|
1858 |
|
|
/* Always align the frame to an 8-byte boundary. This is required on
|
1859 |
|
|
some platforms and harmless on the rest. */
|
1860 |
|
|
|
1861 |
|
|
static CORE_ADDR
|
1862 |
|
|
arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
1863 |
|
|
{
|
1864 |
|
|
/* Align the stack to eight bytes. */
|
1865 |
|
|
return sp & ~ (CORE_ADDR) 7;
|
1866 |
|
|
}
|
1867 |
|
|
|
1868 |
|
|
static void
|
1869 |
|
|
print_fpu_flags (int flags)
|
1870 |
|
|
{
|
1871 |
|
|
if (flags & (1 << 0))
|
1872 |
|
|
fputs ("IVO ", stdout);
|
1873 |
|
|
if (flags & (1 << 1))
|
1874 |
|
|
fputs ("DVZ ", stdout);
|
1875 |
|
|
if (flags & (1 << 2))
|
1876 |
|
|
fputs ("OFL ", stdout);
|
1877 |
|
|
if (flags & (1 << 3))
|
1878 |
|
|
fputs ("UFL ", stdout);
|
1879 |
|
|
if (flags & (1 << 4))
|
1880 |
|
|
fputs ("INX ", stdout);
|
1881 |
|
|
putchar ('\n');
|
1882 |
|
|
}
|
1883 |
|
|
|
1884 |
|
|
/* Print interesting information about the floating point processor
|
1885 |
|
|
(if present) or emulator. */
|
1886 |
|
|
static void
|
1887 |
|
|
arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
|
1888 |
|
|
struct frame_info *frame, const char *args)
|
1889 |
|
|
{
|
1890 |
|
|
unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
|
1891 |
|
|
int type;
|
1892 |
|
|
|
1893 |
|
|
type = (status >> 24) & 127;
|
1894 |
|
|
if (status & (1 << 31))
|
1895 |
|
|
printf (_("Hardware FPU type %d\n"), type);
|
1896 |
|
|
else
|
1897 |
|
|
printf (_("Software FPU type %d\n"), type);
|
1898 |
|
|
/* i18n: [floating point unit] mask */
|
1899 |
|
|
fputs (_("mask: "), stdout);
|
1900 |
|
|
print_fpu_flags (status >> 16);
|
1901 |
|
|
/* i18n: [floating point unit] flags */
|
1902 |
|
|
fputs (_("flags: "), stdout);
|
1903 |
|
|
print_fpu_flags (status);
|
1904 |
|
|
}
|
1905 |
|
|
|
1906 |
|
|
/* Construct the ARM extended floating point type. */
|
1907 |
|
|
static struct type *
|
1908 |
|
|
arm_ext_type (struct gdbarch *gdbarch)
|
1909 |
|
|
{
|
1910 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1911 |
|
|
|
1912 |
|
|
if (!tdep->arm_ext_type)
|
1913 |
|
|
tdep->arm_ext_type
|
1914 |
|
|
= arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
|
1915 |
|
|
floatformats_arm_ext);
|
1916 |
|
|
|
1917 |
|
|
return tdep->arm_ext_type;
|
1918 |
|
|
}
|
1919 |
|
|
|
1920 |
|
|
static struct type *
|
1921 |
|
|
arm_neon_double_type (struct gdbarch *gdbarch)
|
1922 |
|
|
{
|
1923 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1924 |
|
|
|
1925 |
|
|
if (tdep->neon_double_type == NULL)
|
1926 |
|
|
{
|
1927 |
|
|
struct type *t, *elem;
|
1928 |
|
|
|
1929 |
|
|
t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
|
1930 |
|
|
TYPE_CODE_UNION);
|
1931 |
|
|
elem = builtin_type (gdbarch)->builtin_uint8;
|
1932 |
|
|
append_composite_type_field (t, "u8", init_vector_type (elem, 8));
|
1933 |
|
|
elem = builtin_type (gdbarch)->builtin_uint16;
|
1934 |
|
|
append_composite_type_field (t, "u16", init_vector_type (elem, 4));
|
1935 |
|
|
elem = builtin_type (gdbarch)->builtin_uint32;
|
1936 |
|
|
append_composite_type_field (t, "u32", init_vector_type (elem, 2));
|
1937 |
|
|
elem = builtin_type (gdbarch)->builtin_uint64;
|
1938 |
|
|
append_composite_type_field (t, "u64", elem);
|
1939 |
|
|
elem = builtin_type (gdbarch)->builtin_float;
|
1940 |
|
|
append_composite_type_field (t, "f32", init_vector_type (elem, 2));
|
1941 |
|
|
elem = builtin_type (gdbarch)->builtin_double;
|
1942 |
|
|
append_composite_type_field (t, "f64", elem);
|
1943 |
|
|
|
1944 |
|
|
TYPE_VECTOR (t) = 1;
|
1945 |
|
|
TYPE_NAME (t) = "neon_d";
|
1946 |
|
|
tdep->neon_double_type = t;
|
1947 |
|
|
}
|
1948 |
|
|
|
1949 |
|
|
return tdep->neon_double_type;
|
1950 |
|
|
}
|
1951 |
|
|
|
1952 |
|
|
/* FIXME: The vector types are not correctly ordered on big-endian
|
1953 |
|
|
targets. Just as s0 is the low bits of d0, d0[0] is also the low
|
1954 |
|
|
bits of d0 - regardless of what unit size is being held in d0. So
|
1955 |
|
|
the offset of the first uint8 in d0 is 7, but the offset of the
|
1956 |
|
|
first float is 4. This code works as-is for little-endian
|
1957 |
|
|
targets. */
|
1958 |
|
|
|
1959 |
|
|
static struct type *
|
1960 |
|
|
arm_neon_quad_type (struct gdbarch *gdbarch)
|
1961 |
|
|
{
|
1962 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1963 |
|
|
|
1964 |
|
|
if (tdep->neon_quad_type == NULL)
|
1965 |
|
|
{
|
1966 |
|
|
struct type *t, *elem;
|
1967 |
|
|
|
1968 |
|
|
t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
|
1969 |
|
|
TYPE_CODE_UNION);
|
1970 |
|
|
elem = builtin_type (gdbarch)->builtin_uint8;
|
1971 |
|
|
append_composite_type_field (t, "u8", init_vector_type (elem, 16));
|
1972 |
|
|
elem = builtin_type (gdbarch)->builtin_uint16;
|
1973 |
|
|
append_composite_type_field (t, "u16", init_vector_type (elem, 8));
|
1974 |
|
|
elem = builtin_type (gdbarch)->builtin_uint32;
|
1975 |
|
|
append_composite_type_field (t, "u32", init_vector_type (elem, 4));
|
1976 |
|
|
elem = builtin_type (gdbarch)->builtin_uint64;
|
1977 |
|
|
append_composite_type_field (t, "u64", init_vector_type (elem, 2));
|
1978 |
|
|
elem = builtin_type (gdbarch)->builtin_float;
|
1979 |
|
|
append_composite_type_field (t, "f32", init_vector_type (elem, 4));
|
1980 |
|
|
elem = builtin_type (gdbarch)->builtin_double;
|
1981 |
|
|
append_composite_type_field (t, "f64", init_vector_type (elem, 2));
|
1982 |
|
|
|
1983 |
|
|
TYPE_VECTOR (t) = 1;
|
1984 |
|
|
TYPE_NAME (t) = "neon_q";
|
1985 |
|
|
tdep->neon_quad_type = t;
|
1986 |
|
|
}
|
1987 |
|
|
|
1988 |
|
|
return tdep->neon_quad_type;
|
1989 |
|
|
}
|
1990 |
|
|
|
1991 |
|
|
/* Return the GDB type object for the "standard" data type of data in
|
1992 |
|
|
register N. */
|
1993 |
|
|
|
1994 |
|
|
static struct type *
|
1995 |
|
|
arm_register_type (struct gdbarch *gdbarch, int regnum)
|
1996 |
|
|
{
|
1997 |
|
|
int num_regs = gdbarch_num_regs (gdbarch);
|
1998 |
|
|
|
1999 |
|
|
if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
|
2000 |
|
|
&& regnum >= num_regs && regnum < num_regs + 32)
|
2001 |
|
|
return builtin_type (gdbarch)->builtin_float;
|
2002 |
|
|
|
2003 |
|
|
if (gdbarch_tdep (gdbarch)->have_neon_pseudos
|
2004 |
|
|
&& regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
|
2005 |
|
|
return arm_neon_quad_type (gdbarch);
|
2006 |
|
|
|
2007 |
|
|
/* If the target description has register information, we are only
|
2008 |
|
|
in this function so that we can override the types of
|
2009 |
|
|
double-precision registers for NEON. */
|
2010 |
|
|
if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
|
2011 |
|
|
{
|
2012 |
|
|
struct type *t = tdesc_register_type (gdbarch, regnum);
|
2013 |
|
|
|
2014 |
|
|
if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
|
2015 |
|
|
&& TYPE_CODE (t) == TYPE_CODE_FLT
|
2016 |
|
|
&& gdbarch_tdep (gdbarch)->have_neon)
|
2017 |
|
|
return arm_neon_double_type (gdbarch);
|
2018 |
|
|
else
|
2019 |
|
|
return t;
|
2020 |
|
|
}
|
2021 |
|
|
|
2022 |
|
|
if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
|
2023 |
|
|
{
|
2024 |
|
|
if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
|
2025 |
|
|
return builtin_type (gdbarch)->builtin_void;
|
2026 |
|
|
|
2027 |
|
|
return arm_ext_type (gdbarch);
|
2028 |
|
|
}
|
2029 |
|
|
else if (regnum == ARM_SP_REGNUM)
|
2030 |
|
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
2031 |
|
|
else if (regnum == ARM_PC_REGNUM)
|
2032 |
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
2033 |
|
|
else if (regnum >= ARRAY_SIZE (arm_register_names))
|
2034 |
|
|
/* These registers are only supported on targets which supply
|
2035 |
|
|
an XML description. */
|
2036 |
|
|
return builtin_type (gdbarch)->builtin_int0;
|
2037 |
|
|
else
|
2038 |
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
2039 |
|
|
}
|
2040 |
|
|
|
2041 |
|
|
/* Map a DWARF register REGNUM onto the appropriate GDB register
|
2042 |
|
|
number. */
|
2043 |
|
|
|
2044 |
|
|
static int
|
2045 |
|
|
arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
2046 |
|
|
{
|
2047 |
|
|
/* Core integer regs. */
|
2048 |
|
|
if (reg >= 0 && reg <= 15)
|
2049 |
|
|
return reg;
|
2050 |
|
|
|
2051 |
|
|
/* Legacy FPA encoding. These were once used in a way which
|
2052 |
|
|
overlapped with VFP register numbering, so their use is
|
2053 |
|
|
discouraged, but GDB doesn't support the ARM toolchain
|
2054 |
|
|
which used them for VFP. */
|
2055 |
|
|
if (reg >= 16 && reg <= 23)
|
2056 |
|
|
return ARM_F0_REGNUM + reg - 16;
|
2057 |
|
|
|
2058 |
|
|
/* New assignments for the FPA registers. */
|
2059 |
|
|
if (reg >= 96 && reg <= 103)
|
2060 |
|
|
return ARM_F0_REGNUM + reg - 96;
|
2061 |
|
|
|
2062 |
|
|
/* WMMX register assignments. */
|
2063 |
|
|
if (reg >= 104 && reg <= 111)
|
2064 |
|
|
return ARM_WCGR0_REGNUM + reg - 104;
|
2065 |
|
|
|
2066 |
|
|
if (reg >= 112 && reg <= 127)
|
2067 |
|
|
return ARM_WR0_REGNUM + reg - 112;
|
2068 |
|
|
|
2069 |
|
|
if (reg >= 192 && reg <= 199)
|
2070 |
|
|
return ARM_WC0_REGNUM + reg - 192;
|
2071 |
|
|
|
2072 |
|
|
/* VFP v2 registers. A double precision value is actually
|
2073 |
|
|
in d1 rather than s2, but the ABI only defines numbering
|
2074 |
|
|
for the single precision registers. This will "just work"
|
2075 |
|
|
in GDB for little endian targets (we'll read eight bytes,
|
2076 |
|
|
starting in s0 and then progressing to s1), but will be
|
2077 |
|
|
reversed on big endian targets with VFP. This won't
|
2078 |
|
|
be a problem for the new Neon quad registers; you're supposed
|
2079 |
|
|
to use DW_OP_piece for those. */
|
2080 |
|
|
if (reg >= 64 && reg <= 95)
|
2081 |
|
|
{
|
2082 |
|
|
char name_buf[4];
|
2083 |
|
|
|
2084 |
|
|
sprintf (name_buf, "s%d", reg - 64);
|
2085 |
|
|
return user_reg_map_name_to_regnum (gdbarch, name_buf,
|
2086 |
|
|
strlen (name_buf));
|
2087 |
|
|
}
|
2088 |
|
|
|
2089 |
|
|
/* VFP v3 / Neon registers. This range is also used for VFP v2
|
2090 |
|
|
registers, except that it now describes d0 instead of s0. */
|
2091 |
|
|
if (reg >= 256 && reg <= 287)
|
2092 |
|
|
{
|
2093 |
|
|
char name_buf[4];
|
2094 |
|
|
|
2095 |
|
|
sprintf (name_buf, "d%d", reg - 256);
|
2096 |
|
|
return user_reg_map_name_to_regnum (gdbarch, name_buf,
|
2097 |
|
|
strlen (name_buf));
|
2098 |
|
|
}
|
2099 |
|
|
|
2100 |
|
|
return -1;
|
2101 |
|
|
}
|
2102 |
|
|
|
2103 |
|
|
/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
|
2104 |
|
|
static int
|
2105 |
|
|
arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
|
2106 |
|
|
{
|
2107 |
|
|
int reg = regnum;
|
2108 |
|
|
gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
|
2109 |
|
|
|
2110 |
|
|
if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
|
2111 |
|
|
return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
|
2112 |
|
|
|
2113 |
|
|
if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
|
2114 |
|
|
return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
|
2115 |
|
|
|
2116 |
|
|
if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
|
2117 |
|
|
return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
|
2118 |
|
|
|
2119 |
|
|
if (reg < NUM_GREGS)
|
2120 |
|
|
return SIM_ARM_R0_REGNUM + reg;
|
2121 |
|
|
reg -= NUM_GREGS;
|
2122 |
|
|
|
2123 |
|
|
if (reg < NUM_FREGS)
|
2124 |
|
|
return SIM_ARM_FP0_REGNUM + reg;
|
2125 |
|
|
reg -= NUM_FREGS;
|
2126 |
|
|
|
2127 |
|
|
if (reg < NUM_SREGS)
|
2128 |
|
|
return SIM_ARM_FPS_REGNUM + reg;
|
2129 |
|
|
reg -= NUM_SREGS;
|
2130 |
|
|
|
2131 |
|
|
internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
|
2132 |
|
|
}
|
2133 |
|
|
|
2134 |
|
|
/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
|
2135 |
|
|
convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
|
2136 |
|
|
It is thought that this is is the floating-point register format on
|
2137 |
|
|
little-endian systems. */
|
2138 |
|
|
|
2139 |
|
|
static void
|
2140 |
|
|
convert_from_extended (const struct floatformat *fmt, const void *ptr,
|
2141 |
|
|
void *dbl, int endianess)
|
2142 |
|
|
{
|
2143 |
|
|
DOUBLEST d;
|
2144 |
|
|
|
2145 |
|
|
if (endianess == BFD_ENDIAN_BIG)
|
2146 |
|
|
floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
|
2147 |
|
|
else
|
2148 |
|
|
floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
|
2149 |
|
|
ptr, &d);
|
2150 |
|
|
floatformat_from_doublest (fmt, &d, dbl);
|
2151 |
|
|
}
|
2152 |
|
|
|
2153 |
|
|
static void
|
2154 |
|
|
convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
|
2155 |
|
|
int endianess)
|
2156 |
|
|
{
|
2157 |
|
|
DOUBLEST d;
|
2158 |
|
|
|
2159 |
|
|
floatformat_to_doublest (fmt, ptr, &d);
|
2160 |
|
|
if (endianess == BFD_ENDIAN_BIG)
|
2161 |
|
|
floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
|
2162 |
|
|
else
|
2163 |
|
|
floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
|
2164 |
|
|
&d, dbl);
|
2165 |
|
|
}
|
2166 |
|
|
|
2167 |
|
|
static int
|
2168 |
|
|
condition_true (unsigned long cond, unsigned long status_reg)
|
2169 |
|
|
{
|
2170 |
|
|
if (cond == INST_AL || cond == INST_NV)
|
2171 |
|
|
return 1;
|
2172 |
|
|
|
2173 |
|
|
switch (cond)
|
2174 |
|
|
{
|
2175 |
|
|
case INST_EQ:
|
2176 |
|
|
return ((status_reg & FLAG_Z) != 0);
|
2177 |
|
|
case INST_NE:
|
2178 |
|
|
return ((status_reg & FLAG_Z) == 0);
|
2179 |
|
|
case INST_CS:
|
2180 |
|
|
return ((status_reg & FLAG_C) != 0);
|
2181 |
|
|
case INST_CC:
|
2182 |
|
|
return ((status_reg & FLAG_C) == 0);
|
2183 |
|
|
case INST_MI:
|
2184 |
|
|
return ((status_reg & FLAG_N) != 0);
|
2185 |
|
|
case INST_PL:
|
2186 |
|
|
return ((status_reg & FLAG_N) == 0);
|
2187 |
|
|
case INST_VS:
|
2188 |
|
|
return ((status_reg & FLAG_V) != 0);
|
2189 |
|
|
case INST_VC:
|
2190 |
|
|
return ((status_reg & FLAG_V) == 0);
|
2191 |
|
|
case INST_HI:
|
2192 |
|
|
return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
|
2193 |
|
|
case INST_LS:
|
2194 |
|
|
return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
|
2195 |
|
|
case INST_GE:
|
2196 |
|
|
return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
|
2197 |
|
|
case INST_LT:
|
2198 |
|
|
return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
|
2199 |
|
|
case INST_GT:
|
2200 |
|
|
return (((status_reg & FLAG_Z) == 0)
|
2201 |
|
|
&& (((status_reg & FLAG_N) == 0)
|
2202 |
|
|
== ((status_reg & FLAG_V) == 0)));
|
2203 |
|
|
case INST_LE:
|
2204 |
|
|
return (((status_reg & FLAG_Z) != 0)
|
2205 |
|
|
|| (((status_reg & FLAG_N) == 0)
|
2206 |
|
|
!= ((status_reg & FLAG_V) == 0)));
|
2207 |
|
|
}
|
2208 |
|
|
return 1;
|
2209 |
|
|
}
|
2210 |
|
|
|
2211 |
|
|
/* Support routines for single stepping. Calculate the next PC value. */
|
2212 |
|
|
#define submask(x) ((1L << ((x) + 1)) - 1)
|
2213 |
|
|
#define bit(obj,st) (((obj) >> (st)) & 1)
|
2214 |
|
|
#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
|
2215 |
|
|
#define sbits(obj,st,fn) \
|
2216 |
|
|
((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
|
2217 |
|
|
#define BranchDest(addr,instr) \
|
2218 |
|
|
((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
|
2219 |
|
|
#define ARM_PC_32 1
|
2220 |
|
|
|
2221 |
|
|
static unsigned long
|
2222 |
|
|
shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
|
2223 |
|
|
unsigned long pc_val, unsigned long status_reg)
|
2224 |
|
|
{
|
2225 |
|
|
unsigned long res, shift;
|
2226 |
|
|
int rm = bits (inst, 0, 3);
|
2227 |
|
|
unsigned long shifttype = bits (inst, 5, 6);
|
2228 |
|
|
|
2229 |
|
|
if (bit (inst, 4))
|
2230 |
|
|
{
|
2231 |
|
|
int rs = bits (inst, 8, 11);
|
2232 |
|
|
shift = (rs == 15 ? pc_val + 8
|
2233 |
|
|
: get_frame_register_unsigned (frame, rs)) & 0xFF;
|
2234 |
|
|
}
|
2235 |
|
|
else
|
2236 |
|
|
shift = bits (inst, 7, 11);
|
2237 |
|
|
|
2238 |
|
|
res = (rm == 15
|
2239 |
|
|
? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
|
2240 |
|
|
+ (bit (inst, 4) ? 12 : 8))
|
2241 |
|
|
: get_frame_register_unsigned (frame, rm));
|
2242 |
|
|
|
2243 |
|
|
switch (shifttype)
|
2244 |
|
|
{
|
2245 |
|
|
case 0: /* LSL */
|
2246 |
|
|
res = shift >= 32 ? 0 : res << shift;
|
2247 |
|
|
break;
|
2248 |
|
|
|
2249 |
|
|
case 1: /* LSR */
|
2250 |
|
|
res = shift >= 32 ? 0 : res >> shift;
|
2251 |
|
|
break;
|
2252 |
|
|
|
2253 |
|
|
case 2: /* ASR */
|
2254 |
|
|
if (shift >= 32)
|
2255 |
|
|
shift = 31;
|
2256 |
|
|
res = ((res & 0x80000000L)
|
2257 |
|
|
? ~((~res) >> shift) : res >> shift);
|
2258 |
|
|
break;
|
2259 |
|
|
|
2260 |
|
|
case 3: /* ROR/RRX */
|
2261 |
|
|
shift &= 31;
|
2262 |
|
|
if (shift == 0)
|
2263 |
|
|
res = (res >> 1) | (carry ? 0x80000000L : 0);
|
2264 |
|
|
else
|
2265 |
|
|
res = (res >> shift) | (res << (32 - shift));
|
2266 |
|
|
break;
|
2267 |
|
|
}
|
2268 |
|
|
|
2269 |
|
|
return res & 0xffffffff;
|
2270 |
|
|
}
|
2271 |
|
|
|
2272 |
|
|
/* Return number of 1-bits in VAL. */
|
2273 |
|
|
|
2274 |
|
|
static int
|
2275 |
|
|
bitcount (unsigned long val)
|
2276 |
|
|
{
|
2277 |
|
|
int nbits;
|
2278 |
|
|
for (nbits = 0; val != 0; nbits++)
|
2279 |
|
|
val &= val - 1; /* delete rightmost 1-bit in val */
|
2280 |
|
|
return nbits;
|
2281 |
|
|
}
|
2282 |
|
|
|
2283 |
|
|
/* Return the size in bytes of the complete Thumb instruction whose
|
2284 |
|
|
first halfword is INST1. */
|
2285 |
|
|
|
2286 |
|
|
static int
|
2287 |
|
|
thumb_insn_size (unsigned short inst1)
|
2288 |
|
|
{
|
2289 |
|
|
if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
|
2290 |
|
|
return 4;
|
2291 |
|
|
else
|
2292 |
|
|
return 2;
|
2293 |
|
|
}
|
2294 |
|
|
|
2295 |
|
|
static int
|
2296 |
|
|
thumb_advance_itstate (unsigned int itstate)
|
2297 |
|
|
{
|
2298 |
|
|
/* Preserve IT[7:5], the first three bits of the condition. Shift
|
2299 |
|
|
the upcoming condition flags left by one bit. */
|
2300 |
|
|
itstate = (itstate & 0xe0) | ((itstate << 1) & 0x1f);
|
2301 |
|
|
|
2302 |
|
|
/* If we have finished the IT block, clear the state. */
|
2303 |
|
|
if ((itstate & 0x0f) == 0)
|
2304 |
|
|
itstate = 0;
|
2305 |
|
|
|
2306 |
|
|
return itstate;
|
2307 |
|
|
}
|
2308 |
|
|
|
2309 |
|
|
/* Find the next PC after the current instruction executes. In some
|
2310 |
|
|
cases we can not statically determine the answer (see the IT state
|
2311 |
|
|
handling in this function); in that case, a breakpoint may be
|
2312 |
|
|
inserted in addition to the returned PC, which will be used to set
|
2313 |
|
|
another breakpoint by our caller. */
|
2314 |
|
|
|
2315 |
|
|
static CORE_ADDR
|
2316 |
|
|
thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
|
2317 |
|
|
{
|
2318 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
2319 |
|
|
struct address_space *aspace = get_frame_address_space (frame);
|
2320 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2321 |
|
|
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
|
2322 |
|
|
unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
|
2323 |
|
|
unsigned short inst1;
|
2324 |
|
|
CORE_ADDR nextpc = pc + 2; /* default is next instruction */
|
2325 |
|
|
unsigned long offset;
|
2326 |
|
|
ULONGEST status, itstate;
|
2327 |
|
|
|
2328 |
|
|
inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
|
2329 |
|
|
|
2330 |
|
|
/* Thumb-2 conditional execution support. There are eight bits in
|
2331 |
|
|
the CPSR which describe conditional execution state. Once
|
2332 |
|
|
reconstructed (they're in a funny order), the low five bits
|
2333 |
|
|
describe the low bit of the condition for each instruction and
|
2334 |
|
|
how many instructions remain. The high three bits describe the
|
2335 |
|
|
base condition. One of the low four bits will be set if an IT
|
2336 |
|
|
block is active. These bits read as zero on earlier
|
2337 |
|
|
processors. */
|
2338 |
|
|
status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
|
2339 |
|
|
itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3);
|
2340 |
|
|
|
2341 |
|
|
/* If-Then handling. On GNU/Linux, where this routine is used, we
|
2342 |
|
|
use an undefined instruction as a breakpoint. Unlike BKPT, IT
|
2343 |
|
|
can disable execution of the undefined instruction. So we might
|
2344 |
|
|
miss the breakpoint if we set it on a skipped conditional
|
2345 |
|
|
instruction. Because conditional instructions can change the
|
2346 |
|
|
flags, affecting the execution of further instructions, we may
|
2347 |
|
|
need to set two breakpoints. */
|
2348 |
|
|
|
2349 |
|
|
if (gdbarch_tdep (gdbarch)->thumb2_breakpoint != NULL)
|
2350 |
|
|
{
|
2351 |
|
|
if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
|
2352 |
|
|
{
|
2353 |
|
|
/* An IT instruction. Because this instruction does not
|
2354 |
|
|
modify the flags, we can accurately predict the next
|
2355 |
|
|
executed instruction. */
|
2356 |
|
|
itstate = inst1 & 0x00ff;
|
2357 |
|
|
pc += thumb_insn_size (inst1);
|
2358 |
|
|
|
2359 |
|
|
while (itstate != 0 && ! condition_true (itstate >> 4, status))
|
2360 |
|
|
{
|
2361 |
|
|
inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
|
2362 |
|
|
pc += thumb_insn_size (inst1);
|
2363 |
|
|
itstate = thumb_advance_itstate (itstate);
|
2364 |
|
|
}
|
2365 |
|
|
|
2366 |
|
|
return pc;
|
2367 |
|
|
}
|
2368 |
|
|
else if (itstate != 0)
|
2369 |
|
|
{
|
2370 |
|
|
/* We are in a conditional block. Check the condition. */
|
2371 |
|
|
if (! condition_true (itstate >> 4, status))
|
2372 |
|
|
{
|
2373 |
|
|
/* Advance to the next executed instruction. */
|
2374 |
|
|
pc += thumb_insn_size (inst1);
|
2375 |
|
|
itstate = thumb_advance_itstate (itstate);
|
2376 |
|
|
|
2377 |
|
|
while (itstate != 0 && ! condition_true (itstate >> 4, status))
|
2378 |
|
|
{
|
2379 |
|
|
inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
|
2380 |
|
|
pc += thumb_insn_size (inst1);
|
2381 |
|
|
itstate = thumb_advance_itstate (itstate);
|
2382 |
|
|
}
|
2383 |
|
|
|
2384 |
|
|
return pc;
|
2385 |
|
|
}
|
2386 |
|
|
else if ((itstate & 0x0f) == 0x08)
|
2387 |
|
|
{
|
2388 |
|
|
/* This is the last instruction of the conditional
|
2389 |
|
|
block, and it is executed. We can handle it normally
|
2390 |
|
|
because the following instruction is not conditional,
|
2391 |
|
|
and we must handle it normally because it is
|
2392 |
|
|
permitted to branch. Fall through. */
|
2393 |
|
|
}
|
2394 |
|
|
else
|
2395 |
|
|
{
|
2396 |
|
|
int cond_negated;
|
2397 |
|
|
|
2398 |
|
|
/* There are conditional instructions after this one.
|
2399 |
|
|
If this instruction modifies the flags, then we can
|
2400 |
|
|
not predict what the next executed instruction will
|
2401 |
|
|
be. Fortunately, this instruction is architecturally
|
2402 |
|
|
forbidden to branch; we know it will fall through.
|
2403 |
|
|
Start by skipping past it. */
|
2404 |
|
|
pc += thumb_insn_size (inst1);
|
2405 |
|
|
itstate = thumb_advance_itstate (itstate);
|
2406 |
|
|
|
2407 |
|
|
/* Set a breakpoint on the following instruction. */
|
2408 |
|
|
gdb_assert ((itstate & 0x0f) != 0);
|
2409 |
|
|
insert_single_step_breakpoint (gdbarch, aspace, pc);
|
2410 |
|
|
cond_negated = (itstate >> 4) & 1;
|
2411 |
|
|
|
2412 |
|
|
/* Skip all following instructions with the same
|
2413 |
|
|
condition. If there is a later instruction in the IT
|
2414 |
|
|
block with the opposite condition, set the other
|
2415 |
|
|
breakpoint there. If not, then set a breakpoint on
|
2416 |
|
|
the instruction after the IT block. */
|
2417 |
|
|
do
|
2418 |
|
|
{
|
2419 |
|
|
inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
|
2420 |
|
|
pc += thumb_insn_size (inst1);
|
2421 |
|
|
itstate = thumb_advance_itstate (itstate);
|
2422 |
|
|
}
|
2423 |
|
|
while (itstate != 0 && ((itstate >> 4) & 1) == cond_negated);
|
2424 |
|
|
|
2425 |
|
|
return pc;
|
2426 |
|
|
}
|
2427 |
|
|
}
|
2428 |
|
|
}
|
2429 |
|
|
else if (itstate & 0x0f)
|
2430 |
|
|
{
|
2431 |
|
|
/* We are in a conditional block. Check the condition. */
|
2432 |
|
|
int cond = itstate >> 4;
|
2433 |
|
|
|
2434 |
|
|
if (! condition_true (cond, status))
|
2435 |
|
|
{
|
2436 |
|
|
/* Advance to the next instruction. All the 32-bit
|
2437 |
|
|
instructions share a common prefix. */
|
2438 |
|
|
if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
|
2439 |
|
|
return pc + 4;
|
2440 |
|
|
else
|
2441 |
|
|
return pc + 2;
|
2442 |
|
|
}
|
2443 |
|
|
|
2444 |
|
|
/* Otherwise, handle the instruction normally. */
|
2445 |
|
|
}
|
2446 |
|
|
|
2447 |
|
|
if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
|
2448 |
|
|
{
|
2449 |
|
|
CORE_ADDR sp;
|
2450 |
|
|
|
2451 |
|
|
/* Fetch the saved PC from the stack. It's stored above
|
2452 |
|
|
all of the other registers. */
|
2453 |
|
|
offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
|
2454 |
|
|
sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
|
2455 |
|
|
nextpc = read_memory_unsigned_integer (sp + offset, 4, byte_order);
|
2456 |
|
|
nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
|
2457 |
|
|
if (nextpc == pc)
|
2458 |
|
|
error (_("Infinite loop detected"));
|
2459 |
|
|
}
|
2460 |
|
|
else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
|
2461 |
|
|
{
|
2462 |
|
|
unsigned long cond = bits (inst1, 8, 11);
|
2463 |
|
|
if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
|
2464 |
|
|
nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
|
2465 |
|
|
}
|
2466 |
|
|
else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
|
2467 |
|
|
{
|
2468 |
|
|
nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
|
2469 |
|
|
}
|
2470 |
|
|
else if ((inst1 & 0xe000) == 0xe000) /* 32-bit instruction */
|
2471 |
|
|
{
|
2472 |
|
|
unsigned short inst2;
|
2473 |
|
|
inst2 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
|
2474 |
|
|
|
2475 |
|
|
/* Default to the next instruction. */
|
2476 |
|
|
nextpc = pc + 4;
|
2477 |
|
|
|
2478 |
|
|
if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
|
2479 |
|
|
{
|
2480 |
|
|
/* Branches and miscellaneous control instructions. */
|
2481 |
|
|
|
2482 |
|
|
if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
|
2483 |
|
|
{
|
2484 |
|
|
/* B, BL, BLX. */
|
2485 |
|
|
int j1, j2, imm1, imm2;
|
2486 |
|
|
|
2487 |
|
|
imm1 = sbits (inst1, 0, 10);
|
2488 |
|
|
imm2 = bits (inst2, 0, 10);
|
2489 |
|
|
j1 = bit (inst2, 13);
|
2490 |
|
|
j2 = bit (inst2, 11);
|
2491 |
|
|
|
2492 |
|
|
offset = ((imm1 << 12) + (imm2 << 1));
|
2493 |
|
|
offset ^= ((!j2) << 22) | ((!j1) << 23);
|
2494 |
|
|
|
2495 |
|
|
nextpc = pc_val + offset;
|
2496 |
|
|
/* For BLX make sure to clear the low bits. */
|
2497 |
|
|
if (bit (inst2, 12) == 0)
|
2498 |
|
|
nextpc = nextpc & 0xfffffffc;
|
2499 |
|
|
}
|
2500 |
|
|
else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
|
2501 |
|
|
{
|
2502 |
|
|
/* SUBS PC, LR, #imm8. */
|
2503 |
|
|
nextpc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
|
2504 |
|
|
nextpc -= inst2 & 0x00ff;
|
2505 |
|
|
}
|
2506 |
|
|
else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
|
2507 |
|
|
{
|
2508 |
|
|
/* Conditional branch. */
|
2509 |
|
|
if (condition_true (bits (inst1, 6, 9), status))
|
2510 |
|
|
{
|
2511 |
|
|
int sign, j1, j2, imm1, imm2;
|
2512 |
|
|
|
2513 |
|
|
sign = sbits (inst1, 10, 10);
|
2514 |
|
|
imm1 = bits (inst1, 0, 5);
|
2515 |
|
|
imm2 = bits (inst2, 0, 10);
|
2516 |
|
|
j1 = bit (inst2, 13);
|
2517 |
|
|
j2 = bit (inst2, 11);
|
2518 |
|
|
|
2519 |
|
|
offset = (sign << 20) + (j2 << 19) + (j1 << 18);
|
2520 |
|
|
offset += (imm1 << 12) + (imm2 << 1);
|
2521 |
|
|
|
2522 |
|
|
nextpc = pc_val + offset;
|
2523 |
|
|
}
|
2524 |
|
|
}
|
2525 |
|
|
}
|
2526 |
|
|
else if ((inst1 & 0xfe50) == 0xe810)
|
2527 |
|
|
{
|
2528 |
|
|
/* Load multiple or RFE. */
|
2529 |
|
|
int rn, offset, load_pc = 1;
|
2530 |
|
|
|
2531 |
|
|
rn = bits (inst1, 0, 3);
|
2532 |
|
|
if (bit (inst1, 7) && !bit (inst1, 8))
|
2533 |
|
|
{
|
2534 |
|
|
/* LDMIA or POP */
|
2535 |
|
|
if (!bit (inst2, 15))
|
2536 |
|
|
load_pc = 0;
|
2537 |
|
|
offset = bitcount (inst2) * 4 - 4;
|
2538 |
|
|
}
|
2539 |
|
|
else if (!bit (inst1, 7) && bit (inst1, 8))
|
2540 |
|
|
{
|
2541 |
|
|
/* LDMDB */
|
2542 |
|
|
if (!bit (inst2, 15))
|
2543 |
|
|
load_pc = 0;
|
2544 |
|
|
offset = -4;
|
2545 |
|
|
}
|
2546 |
|
|
else if (bit (inst1, 7) && bit (inst1, 8))
|
2547 |
|
|
{
|
2548 |
|
|
/* RFEIA */
|
2549 |
|
|
offset = 0;
|
2550 |
|
|
}
|
2551 |
|
|
else if (!bit (inst1, 7) && !bit (inst1, 8))
|
2552 |
|
|
{
|
2553 |
|
|
/* RFEDB */
|
2554 |
|
|
offset = -8;
|
2555 |
|
|
}
|
2556 |
|
|
else
|
2557 |
|
|
load_pc = 0;
|
2558 |
|
|
|
2559 |
|
|
if (load_pc)
|
2560 |
|
|
{
|
2561 |
|
|
CORE_ADDR addr = get_frame_register_unsigned (frame, rn);
|
2562 |
|
|
nextpc = get_frame_memory_unsigned (frame, addr + offset, 4);
|
2563 |
|
|
}
|
2564 |
|
|
}
|
2565 |
|
|
else if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
|
2566 |
|
|
{
|
2567 |
|
|
/* MOV PC or MOVS PC. */
|
2568 |
|
|
nextpc = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
|
2569 |
|
|
}
|
2570 |
|
|
else if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
|
2571 |
|
|
{
|
2572 |
|
|
/* LDR PC. */
|
2573 |
|
|
CORE_ADDR base;
|
2574 |
|
|
int rn, load_pc = 1;
|
2575 |
|
|
|
2576 |
|
|
rn = bits (inst1, 0, 3);
|
2577 |
|
|
base = get_frame_register_unsigned (frame, rn);
|
2578 |
|
|
if (rn == 15)
|
2579 |
|
|
{
|
2580 |
|
|
base = (base + 4) & ~(CORE_ADDR) 0x3;
|
2581 |
|
|
if (bit (inst1, 7))
|
2582 |
|
|
base += bits (inst2, 0, 11);
|
2583 |
|
|
else
|
2584 |
|
|
base -= bits (inst2, 0, 11);
|
2585 |
|
|
}
|
2586 |
|
|
else if (bit (inst1, 7))
|
2587 |
|
|
base += bits (inst2, 0, 11);
|
2588 |
|
|
else if (bit (inst2, 11))
|
2589 |
|
|
{
|
2590 |
|
|
if (bit (inst2, 10))
|
2591 |
|
|
{
|
2592 |
|
|
if (bit (inst2, 9))
|
2593 |
|
|
base += bits (inst2, 0, 7);
|
2594 |
|
|
else
|
2595 |
|
|
base -= bits (inst2, 0, 7);
|
2596 |
|
|
}
|
2597 |
|
|
}
|
2598 |
|
|
else if ((inst2 & 0x0fc0) == 0x0000)
|
2599 |
|
|
{
|
2600 |
|
|
int shift = bits (inst2, 4, 5), rm = bits (inst2, 0, 3);
|
2601 |
|
|
base += get_frame_register_unsigned (frame, rm) << shift;
|
2602 |
|
|
}
|
2603 |
|
|
else
|
2604 |
|
|
/* Reserved. */
|
2605 |
|
|
load_pc = 0;
|
2606 |
|
|
|
2607 |
|
|
if (load_pc)
|
2608 |
|
|
nextpc = get_frame_memory_unsigned (frame, base, 4);
|
2609 |
|
|
}
|
2610 |
|
|
else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
|
2611 |
|
|
{
|
2612 |
|
|
/* TBB. */
|
2613 |
|
|
CORE_ADDR table, offset, length;
|
2614 |
|
|
|
2615 |
|
|
table = get_frame_register_unsigned (frame, bits (inst1, 0, 3));
|
2616 |
|
|
offset = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
|
2617 |
|
|
length = 2 * get_frame_memory_unsigned (frame, table + offset, 1);
|
2618 |
|
|
nextpc = pc_val + length;
|
2619 |
|
|
}
|
2620 |
|
|
else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
|
2621 |
|
|
{
|
2622 |
|
|
/* TBH. */
|
2623 |
|
|
CORE_ADDR table, offset, length;
|
2624 |
|
|
|
2625 |
|
|
table = get_frame_register_unsigned (frame, bits (inst1, 0, 3));
|
2626 |
|
|
offset = 2 * get_frame_register_unsigned (frame, bits (inst2, 0, 3));
|
2627 |
|
|
length = 2 * get_frame_memory_unsigned (frame, table + offset, 2);
|
2628 |
|
|
nextpc = pc_val + length;
|
2629 |
|
|
}
|
2630 |
|
|
}
|
2631 |
|
|
else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
|
2632 |
|
|
{
|
2633 |
|
|
if (bits (inst1, 3, 6) == 0x0f)
|
2634 |
|
|
nextpc = pc_val;
|
2635 |
|
|
else
|
2636 |
|
|
nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
|
2637 |
|
|
|
2638 |
|
|
nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
|
2639 |
|
|
if (nextpc == pc)
|
2640 |
|
|
error (_("Infinite loop detected"));
|
2641 |
|
|
}
|
2642 |
|
|
else if ((inst1 & 0xf500) == 0xb100)
|
2643 |
|
|
{
|
2644 |
|
|
/* CBNZ or CBZ. */
|
2645 |
|
|
int imm = (bit (inst1, 9) << 6) + (bits (inst1, 3, 7) << 1);
|
2646 |
|
|
ULONGEST reg = get_frame_register_unsigned (frame, bits (inst1, 0, 2));
|
2647 |
|
|
|
2648 |
|
|
if (bit (inst1, 11) && reg != 0)
|
2649 |
|
|
nextpc = pc_val + imm;
|
2650 |
|
|
else if (!bit (inst1, 11) && reg == 0)
|
2651 |
|
|
nextpc = pc_val + imm;
|
2652 |
|
|
}
|
2653 |
|
|
|
2654 |
|
|
return nextpc;
|
2655 |
|
|
}
|
2656 |
|
|
|
2657 |
|
|
CORE_ADDR
|
2658 |
|
|
arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
|
2659 |
|
|
{
|
2660 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
2661 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2662 |
|
|
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
|
2663 |
|
|
unsigned long pc_val;
|
2664 |
|
|
unsigned long this_instr;
|
2665 |
|
|
unsigned long status;
|
2666 |
|
|
CORE_ADDR nextpc;
|
2667 |
|
|
|
2668 |
|
|
if (arm_frame_is_thumb (frame))
|
2669 |
|
|
return thumb_get_next_pc (frame, pc);
|
2670 |
|
|
|
2671 |
|
|
pc_val = (unsigned long) pc;
|
2672 |
|
|
this_instr = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
|
2673 |
|
|
|
2674 |
|
|
status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
|
2675 |
|
|
nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
|
2676 |
|
|
|
2677 |
|
|
if (bits (this_instr, 28, 31) == INST_NV)
|
2678 |
|
|
switch (bits (this_instr, 24, 27))
|
2679 |
|
|
{
|
2680 |
|
|
case 0xa:
|
2681 |
|
|
case 0xb:
|
2682 |
|
|
{
|
2683 |
|
|
/* Branch with Link and change to Thumb. */
|
2684 |
|
|
nextpc = BranchDest (pc, this_instr);
|
2685 |
|
|
nextpc |= bit (this_instr, 24) << 1;
|
2686 |
|
|
|
2687 |
|
|
nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
|
2688 |
|
|
if (nextpc == pc)
|
2689 |
|
|
error (_("Infinite loop detected"));
|
2690 |
|
|
break;
|
2691 |
|
|
}
|
2692 |
|
|
case 0xc:
|
2693 |
|
|
case 0xd:
|
2694 |
|
|
case 0xe:
|
2695 |
|
|
/* Coprocessor register transfer. */
|
2696 |
|
|
if (bits (this_instr, 12, 15) == 15)
|
2697 |
|
|
error (_("Invalid update to pc in instruction"));
|
2698 |
|
|
break;
|
2699 |
|
|
}
|
2700 |
|
|
else if (condition_true (bits (this_instr, 28, 31), status))
|
2701 |
|
|
{
|
2702 |
|
|
switch (bits (this_instr, 24, 27))
|
2703 |
|
|
{
|
2704 |
|
|
case 0x0:
|
2705 |
|
|
case 0x1: /* data processing */
|
2706 |
|
|
case 0x2:
|
2707 |
|
|
case 0x3:
|
2708 |
|
|
{
|
2709 |
|
|
unsigned long operand1, operand2, result = 0;
|
2710 |
|
|
unsigned long rn;
|
2711 |
|
|
int c;
|
2712 |
|
|
|
2713 |
|
|
if (bits (this_instr, 12, 15) != 15)
|
2714 |
|
|
break;
|
2715 |
|
|
|
2716 |
|
|
if (bits (this_instr, 22, 25) == 0
|
2717 |
|
|
&& bits (this_instr, 4, 7) == 9) /* multiply */
|
2718 |
|
|
error (_("Invalid update to pc in instruction"));
|
2719 |
|
|
|
2720 |
|
|
/* BX <reg>, BLX <reg> */
|
2721 |
|
|
if (bits (this_instr, 4, 27) == 0x12fff1
|
2722 |
|
|
|| bits (this_instr, 4, 27) == 0x12fff3)
|
2723 |
|
|
{
|
2724 |
|
|
rn = bits (this_instr, 0, 3);
|
2725 |
|
|
result = (rn == 15) ? pc_val + 8
|
2726 |
|
|
: get_frame_register_unsigned (frame, rn);
|
2727 |
|
|
nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
|
2728 |
|
|
(gdbarch, result);
|
2729 |
|
|
|
2730 |
|
|
if (nextpc == pc)
|
2731 |
|
|
error (_("Infinite loop detected"));
|
2732 |
|
|
|
2733 |
|
|
return nextpc;
|
2734 |
|
|
}
|
2735 |
|
|
|
2736 |
|
|
/* Multiply into PC */
|
2737 |
|
|
c = (status & FLAG_C) ? 1 : 0;
|
2738 |
|
|
rn = bits (this_instr, 16, 19);
|
2739 |
|
|
operand1 = (rn == 15) ? pc_val + 8
|
2740 |
|
|
: get_frame_register_unsigned (frame, rn);
|
2741 |
|
|
|
2742 |
|
|
if (bit (this_instr, 25))
|
2743 |
|
|
{
|
2744 |
|
|
unsigned long immval = bits (this_instr, 0, 7);
|
2745 |
|
|
unsigned long rotate = 2 * bits (this_instr, 8, 11);
|
2746 |
|
|
operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
|
2747 |
|
|
& 0xffffffff;
|
2748 |
|
|
}
|
2749 |
|
|
else /* operand 2 is a shifted register */
|
2750 |
|
|
operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
|
2751 |
|
|
|
2752 |
|
|
switch (bits (this_instr, 21, 24))
|
2753 |
|
|
{
|
2754 |
|
|
case 0x0: /*and */
|
2755 |
|
|
result = operand1 & operand2;
|
2756 |
|
|
break;
|
2757 |
|
|
|
2758 |
|
|
case 0x1: /*eor */
|
2759 |
|
|
result = operand1 ^ operand2;
|
2760 |
|
|
break;
|
2761 |
|
|
|
2762 |
|
|
case 0x2: /*sub */
|
2763 |
|
|
result = operand1 - operand2;
|
2764 |
|
|
break;
|
2765 |
|
|
|
2766 |
|
|
case 0x3: /*rsb */
|
2767 |
|
|
result = operand2 - operand1;
|
2768 |
|
|
break;
|
2769 |
|
|
|
2770 |
|
|
case 0x4: /*add */
|
2771 |
|
|
result = operand1 + operand2;
|
2772 |
|
|
break;
|
2773 |
|
|
|
2774 |
|
|
case 0x5: /*adc */
|
2775 |
|
|
result = operand1 + operand2 + c;
|
2776 |
|
|
break;
|
2777 |
|
|
|
2778 |
|
|
case 0x6: /*sbc */
|
2779 |
|
|
result = operand1 - operand2 + c;
|
2780 |
|
|
break;
|
2781 |
|
|
|
2782 |
|
|
case 0x7: /*rsc */
|
2783 |
|
|
result = operand2 - operand1 + c;
|
2784 |
|
|
break;
|
2785 |
|
|
|
2786 |
|
|
case 0x8:
|
2787 |
|
|
case 0x9:
|
2788 |
|
|
case 0xa:
|
2789 |
|
|
case 0xb: /* tst, teq, cmp, cmn */
|
2790 |
|
|
result = (unsigned long) nextpc;
|
2791 |
|
|
break;
|
2792 |
|
|
|
2793 |
|
|
case 0xc: /*orr */
|
2794 |
|
|
result = operand1 | operand2;
|
2795 |
|
|
break;
|
2796 |
|
|
|
2797 |
|
|
case 0xd: /*mov */
|
2798 |
|
|
/* Always step into a function. */
|
2799 |
|
|
result = operand2;
|
2800 |
|
|
break;
|
2801 |
|
|
|
2802 |
|
|
case 0xe: /*bic */
|
2803 |
|
|
result = operand1 & ~operand2;
|
2804 |
|
|
break;
|
2805 |
|
|
|
2806 |
|
|
case 0xf: /*mvn */
|
2807 |
|
|
result = ~operand2;
|
2808 |
|
|
break;
|
2809 |
|
|
}
|
2810 |
|
|
nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
|
2811 |
|
|
(gdbarch, result);
|
2812 |
|
|
|
2813 |
|
|
if (nextpc == pc)
|
2814 |
|
|
error (_("Infinite loop detected"));
|
2815 |
|
|
break;
|
2816 |
|
|
}
|
2817 |
|
|
|
2818 |
|
|
case 0x4:
|
2819 |
|
|
case 0x5: /* data transfer */
|
2820 |
|
|
case 0x6:
|
2821 |
|
|
case 0x7:
|
2822 |
|
|
if (bit (this_instr, 20))
|
2823 |
|
|
{
|
2824 |
|
|
/* load */
|
2825 |
|
|
if (bits (this_instr, 12, 15) == 15)
|
2826 |
|
|
{
|
2827 |
|
|
/* rd == pc */
|
2828 |
|
|
unsigned long rn;
|
2829 |
|
|
unsigned long base;
|
2830 |
|
|
|
2831 |
|
|
if (bit (this_instr, 22))
|
2832 |
|
|
error (_("Invalid update to pc in instruction"));
|
2833 |
|
|
|
2834 |
|
|
/* byte write to PC */
|
2835 |
|
|
rn = bits (this_instr, 16, 19);
|
2836 |
|
|
base = (rn == 15) ? pc_val + 8
|
2837 |
|
|
: get_frame_register_unsigned (frame, rn);
|
2838 |
|
|
if (bit (this_instr, 24))
|
2839 |
|
|
{
|
2840 |
|
|
/* pre-indexed */
|
2841 |
|
|
int c = (status & FLAG_C) ? 1 : 0;
|
2842 |
|
|
unsigned long offset =
|
2843 |
|
|
(bit (this_instr, 25)
|
2844 |
|
|
? shifted_reg_val (frame, this_instr, c, pc_val, status)
|
2845 |
|
|
: bits (this_instr, 0, 11));
|
2846 |
|
|
|
2847 |
|
|
if (bit (this_instr, 23))
|
2848 |
|
|
base += offset;
|
2849 |
|
|
else
|
2850 |
|
|
base -= offset;
|
2851 |
|
|
}
|
2852 |
|
|
nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
|
2853 |
|
|
4, byte_order);
|
2854 |
|
|
|
2855 |
|
|
nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
|
2856 |
|
|
|
2857 |
|
|
if (nextpc == pc)
|
2858 |
|
|
error (_("Infinite loop detected"));
|
2859 |
|
|
}
|
2860 |
|
|
}
|
2861 |
|
|
break;
|
2862 |
|
|
|
2863 |
|
|
case 0x8:
|
2864 |
|
|
case 0x9: /* block transfer */
|
2865 |
|
|
if (bit (this_instr, 20))
|
2866 |
|
|
{
|
2867 |
|
|
/* LDM */
|
2868 |
|
|
if (bit (this_instr, 15))
|
2869 |
|
|
{
|
2870 |
|
|
/* loading pc */
|
2871 |
|
|
int offset = 0;
|
2872 |
|
|
|
2873 |
|
|
if (bit (this_instr, 23))
|
2874 |
|
|
{
|
2875 |
|
|
/* up */
|
2876 |
|
|
unsigned long reglist = bits (this_instr, 0, 14);
|
2877 |
|
|
offset = bitcount (reglist) * 4;
|
2878 |
|
|
if (bit (this_instr, 24)) /* pre */
|
2879 |
|
|
offset += 4;
|
2880 |
|
|
}
|
2881 |
|
|
else if (bit (this_instr, 24))
|
2882 |
|
|
offset = -4;
|
2883 |
|
|
|
2884 |
|
|
{
|
2885 |
|
|
unsigned long rn_val =
|
2886 |
|
|
get_frame_register_unsigned (frame,
|
2887 |
|
|
bits (this_instr, 16, 19));
|
2888 |
|
|
nextpc =
|
2889 |
|
|
(CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
|
2890 |
|
|
+ offset),
|
2891 |
|
|
4, byte_order);
|
2892 |
|
|
}
|
2893 |
|
|
nextpc = gdbarch_addr_bits_remove
|
2894 |
|
|
(gdbarch, nextpc);
|
2895 |
|
|
if (nextpc == pc)
|
2896 |
|
|
error (_("Infinite loop detected"));
|
2897 |
|
|
}
|
2898 |
|
|
}
|
2899 |
|
|
break;
|
2900 |
|
|
|
2901 |
|
|
case 0xb: /* branch & link */
|
2902 |
|
|
case 0xa: /* branch */
|
2903 |
|
|
{
|
2904 |
|
|
nextpc = BranchDest (pc, this_instr);
|
2905 |
|
|
|
2906 |
|
|
nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
|
2907 |
|
|
if (nextpc == pc)
|
2908 |
|
|
error (_("Infinite loop detected"));
|
2909 |
|
|
break;
|
2910 |
|
|
}
|
2911 |
|
|
|
2912 |
|
|
case 0xc:
|
2913 |
|
|
case 0xd:
|
2914 |
|
|
case 0xe: /* coproc ops */
|
2915 |
|
|
case 0xf: /* SWI */
|
2916 |
|
|
break;
|
2917 |
|
|
|
2918 |
|
|
default:
|
2919 |
|
|
fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
|
2920 |
|
|
return (pc);
|
2921 |
|
|
}
|
2922 |
|
|
}
|
2923 |
|
|
|
2924 |
|
|
return nextpc;
|
2925 |
|
|
}
|
2926 |
|
|
|
2927 |
|
|
/* single_step() is called just before we want to resume the inferior,
|
2928 |
|
|
if we want to single-step it but there is no hardware or kernel
|
2929 |
|
|
single-step support. We find the target of the coming instruction
|
2930 |
|
|
and breakpoint it. */
|
2931 |
|
|
|
2932 |
|
|
int
|
2933 |
|
|
arm_software_single_step (struct frame_info *frame)
|
2934 |
|
|
{
|
2935 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
2936 |
|
|
struct address_space *aspace = get_frame_address_space (frame);
|
2937 |
|
|
|
2938 |
|
|
/* NOTE: This may insert the wrong breakpoint instruction when
|
2939 |
|
|
single-stepping over a mode-changing instruction, if the
|
2940 |
|
|
CPSR heuristics are used. */
|
2941 |
|
|
|
2942 |
|
|
CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
|
2943 |
|
|
insert_single_step_breakpoint (gdbarch, aspace, next_pc);
|
2944 |
|
|
|
2945 |
|
|
return 1;
|
2946 |
|
|
}
|
2947 |
|
|
|
2948 |
|
|
/* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
|
2949 |
|
|
the buffer to be NEW_LEN bytes ending at ENDADDR. Return
|
2950 |
|
|
NULL if an error occurs. BUF is freed. */
|
2951 |
|
|
|
2952 |
|
|
static gdb_byte *
|
2953 |
|
|
extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
|
2954 |
|
|
int old_len, int new_len)
|
2955 |
|
|
{
|
2956 |
|
|
gdb_byte *new_buf, *middle;
|
2957 |
|
|
int bytes_to_read = new_len - old_len;
|
2958 |
|
|
|
2959 |
|
|
new_buf = xmalloc (new_len);
|
2960 |
|
|
memcpy (new_buf + bytes_to_read, buf, old_len);
|
2961 |
|
|
xfree (buf);
|
2962 |
|
|
if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0)
|
2963 |
|
|
{
|
2964 |
|
|
xfree (new_buf);
|
2965 |
|
|
return NULL;
|
2966 |
|
|
}
|
2967 |
|
|
return new_buf;
|
2968 |
|
|
}
|
2969 |
|
|
|
2970 |
|
|
/* An IT block is at most the 2-byte IT instruction followed by
|
2971 |
|
|
four 4-byte instructions. The furthest back we must search to
|
2972 |
|
|
find an IT block that affects the current instruction is thus
|
2973 |
|
|
2 + 3 * 4 == 14 bytes. */
|
2974 |
|
|
#define MAX_IT_BLOCK_PREFIX 14
|
2975 |
|
|
|
2976 |
|
|
/* Use a quick scan if there are more than this many bytes of
|
2977 |
|
|
code. */
|
2978 |
|
|
#define IT_SCAN_THRESHOLD 32
|
2979 |
|
|
|
2980 |
|
|
/* Adjust a breakpoint's address to move breakpoints out of IT blocks.
|
2981 |
|
|
A breakpoint in an IT block may not be hit, depending on the
|
2982 |
|
|
condition flags. */
|
2983 |
|
|
static CORE_ADDR
|
2984 |
|
|
arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
|
2985 |
|
|
{
|
2986 |
|
|
gdb_byte *buf;
|
2987 |
|
|
char map_type;
|
2988 |
|
|
CORE_ADDR boundary, func_start;
|
2989 |
|
|
int buf_len, buf2_len;
|
2990 |
|
|
enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
|
2991 |
|
|
int i, any, last_it, last_it_count;
|
2992 |
|
|
|
2993 |
|
|
/* If we are using BKPT breakpoints, none of this is necessary. */
|
2994 |
|
|
if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
|
2995 |
|
|
return bpaddr;
|
2996 |
|
|
|
2997 |
|
|
/* ARM mode does not have this problem. */
|
2998 |
|
|
if (!arm_pc_is_thumb (bpaddr))
|
2999 |
|
|
return bpaddr;
|
3000 |
|
|
|
3001 |
|
|
/* We are setting a breakpoint in Thumb code that could potentially
|
3002 |
|
|
contain an IT block. The first step is to find how much Thumb
|
3003 |
|
|
code there is; we do not need to read outside of known Thumb
|
3004 |
|
|
sequences. */
|
3005 |
|
|
map_type = arm_find_mapping_symbol (bpaddr, &boundary);
|
3006 |
|
|
if (map_type == 0)
|
3007 |
|
|
/* Thumb-2 code must have mapping symbols to have a chance. */
|
3008 |
|
|
return bpaddr;
|
3009 |
|
|
|
3010 |
|
|
bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
|
3011 |
|
|
|
3012 |
|
|
if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
|
3013 |
|
|
&& func_start > boundary)
|
3014 |
|
|
boundary = func_start;
|
3015 |
|
|
|
3016 |
|
|
/* Search for a candidate IT instruction. We have to do some fancy
|
3017 |
|
|
footwork to distinguish a real IT instruction from the second
|
3018 |
|
|
half of a 32-bit instruction, but there is no need for that if
|
3019 |
|
|
there's no candidate. */
|
3020 |
|
|
buf_len = min (bpaddr - boundary, MAX_IT_BLOCK_PREFIX);
|
3021 |
|
|
if (buf_len == 0)
|
3022 |
|
|
/* No room for an IT instruction. */
|
3023 |
|
|
return bpaddr;
|
3024 |
|
|
|
3025 |
|
|
buf = xmalloc (buf_len);
|
3026 |
|
|
if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0)
|
3027 |
|
|
return bpaddr;
|
3028 |
|
|
any = 0;
|
3029 |
|
|
for (i = 0; i < buf_len; i += 2)
|
3030 |
|
|
{
|
3031 |
|
|
unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
|
3032 |
|
|
if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
|
3033 |
|
|
{
|
3034 |
|
|
any = 1;
|
3035 |
|
|
break;
|
3036 |
|
|
}
|
3037 |
|
|
}
|
3038 |
|
|
if (any == 0)
|
3039 |
|
|
{
|
3040 |
|
|
xfree (buf);
|
3041 |
|
|
return bpaddr;
|
3042 |
|
|
}
|
3043 |
|
|
|
3044 |
|
|
/* OK, the code bytes before this instruction contain at least one
|
3045 |
|
|
halfword which resembles an IT instruction. We know that it's
|
3046 |
|
|
Thumb code, but there are still two possibilities. Either the
|
3047 |
|
|
halfword really is an IT instruction, or it is the second half of
|
3048 |
|
|
a 32-bit Thumb instruction. The only way we can tell is to
|
3049 |
|
|
scan forwards from a known instruction boundary. */
|
3050 |
|
|
if (bpaddr - boundary > IT_SCAN_THRESHOLD)
|
3051 |
|
|
{
|
3052 |
|
|
int definite;
|
3053 |
|
|
|
3054 |
|
|
/* There's a lot of code before this instruction. Start with an
|
3055 |
|
|
optimistic search; it's easy to recognize halfwords that can
|
3056 |
|
|
not be the start of a 32-bit instruction, and use that to
|
3057 |
|
|
lock on to the instruction boundaries. */
|
3058 |
|
|
buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
|
3059 |
|
|
if (buf == NULL)
|
3060 |
|
|
return bpaddr;
|
3061 |
|
|
buf_len = IT_SCAN_THRESHOLD;
|
3062 |
|
|
|
3063 |
|
|
definite = 0;
|
3064 |
|
|
for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
|
3065 |
|
|
{
|
3066 |
|
|
unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
|
3067 |
|
|
if (thumb_insn_size (inst1) == 2)
|
3068 |
|
|
{
|
3069 |
|
|
definite = 1;
|
3070 |
|
|
break;
|
3071 |
|
|
}
|
3072 |
|
|
}
|
3073 |
|
|
|
3074 |
|
|
/* At this point, if DEFINITE, BUF[I] is the first place we
|
3075 |
|
|
are sure that we know the instruction boundaries, and it is far
|
3076 |
|
|
enough from BPADDR that we could not miss an IT instruction
|
3077 |
|
|
affecting BPADDR. If ! DEFINITE, give up - start from a
|
3078 |
|
|
known boundary. */
|
3079 |
|
|
if (! definite)
|
3080 |
|
|
{
|
3081 |
|
|
buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
|
3082 |
|
|
if (buf == NULL)
|
3083 |
|
|
return bpaddr;
|
3084 |
|
|
buf_len = bpaddr - boundary;
|
3085 |
|
|
i = 0;
|
3086 |
|
|
}
|
3087 |
|
|
}
|
3088 |
|
|
else
|
3089 |
|
|
{
|
3090 |
|
|
buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
|
3091 |
|
|
if (buf == NULL)
|
3092 |
|
|
return bpaddr;
|
3093 |
|
|
buf_len = bpaddr - boundary;
|
3094 |
|
|
i = 0;
|
3095 |
|
|
}
|
3096 |
|
|
|
3097 |
|
|
/* Scan forwards. Find the last IT instruction before BPADDR. */
|
3098 |
|
|
last_it = -1;
|
3099 |
|
|
last_it_count = 0;
|
3100 |
|
|
while (i < buf_len)
|
3101 |
|
|
{
|
3102 |
|
|
unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
|
3103 |
|
|
last_it_count--;
|
3104 |
|
|
if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
|
3105 |
|
|
{
|
3106 |
|
|
last_it = i;
|
3107 |
|
|
if (inst1 & 0x0001)
|
3108 |
|
|
last_it_count = 4;
|
3109 |
|
|
else if (inst1 & 0x0002)
|
3110 |
|
|
last_it_count = 3;
|
3111 |
|
|
else if (inst1 & 0x0004)
|
3112 |
|
|
last_it_count = 2;
|
3113 |
|
|
else
|
3114 |
|
|
last_it_count = 1;
|
3115 |
|
|
}
|
3116 |
|
|
i += thumb_insn_size (inst1);
|
3117 |
|
|
}
|
3118 |
|
|
|
3119 |
|
|
xfree (buf);
|
3120 |
|
|
|
3121 |
|
|
if (last_it == -1)
|
3122 |
|
|
/* There wasn't really an IT instruction after all. */
|
3123 |
|
|
return bpaddr;
|
3124 |
|
|
|
3125 |
|
|
if (last_it_count < 1)
|
3126 |
|
|
/* It was too far away. */
|
3127 |
|
|
return bpaddr;
|
3128 |
|
|
|
3129 |
|
|
/* This really is a trouble spot. Move the breakpoint to the IT
|
3130 |
|
|
instruction. */
|
3131 |
|
|
return bpaddr - buf_len + last_it;
|
3132 |
|
|
}
|
3133 |
|
|
|
3134 |
|
|
/* ARM displaced stepping support.
|
3135 |
|
|
|
3136 |
|
|
Generally ARM displaced stepping works as follows:
|
3137 |
|
|
|
3138 |
|
|
1. When an instruction is to be single-stepped, it is first decoded by
|
3139 |
|
|
arm_process_displaced_insn (called from arm_displaced_step_copy_insn).
|
3140 |
|
|
Depending on the type of instruction, it is then copied to a scratch
|
3141 |
|
|
location, possibly in a modified form. The copy_* set of functions
|
3142 |
|
|
performs such modification, as necessary. A breakpoint is placed after
|
3143 |
|
|
the modified instruction in the scratch space to return control to GDB.
|
3144 |
|
|
Note in particular that instructions which modify the PC will no longer
|
3145 |
|
|
do so after modification.
|
3146 |
|
|
|
3147 |
|
|
2. The instruction is single-stepped, by setting the PC to the scratch
|
3148 |
|
|
location address, and resuming. Control returns to GDB when the
|
3149 |
|
|
breakpoint is hit.
|
3150 |
|
|
|
3151 |
|
|
3. A cleanup function (cleanup_*) is called corresponding to the copy_*
|
3152 |
|
|
function used for the current instruction. This function's job is to
|
3153 |
|
|
put the CPU/memory state back to what it would have been if the
|
3154 |
|
|
instruction had been executed unmodified in its original location. */
|
3155 |
|
|
|
3156 |
|
|
/* NOP instruction (mov r0, r0). */
|
3157 |
|
|
#define ARM_NOP 0xe1a00000
|
3158 |
|
|
|
3159 |
|
|
/* Helper for register reads for displaced stepping. In particular, this
|
3160 |
|
|
returns the PC as it would be seen by the instruction at its original
|
3161 |
|
|
location. */
|
3162 |
|
|
|
3163 |
|
|
ULONGEST
|
3164 |
|
|
displaced_read_reg (struct regcache *regs, CORE_ADDR from, int regno)
|
3165 |
|
|
{
|
3166 |
|
|
ULONGEST ret;
|
3167 |
|
|
|
3168 |
|
|
if (regno == 15)
|
3169 |
|
|
{
|
3170 |
|
|
if (debug_displaced)
|
3171 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
|
3172 |
|
|
(unsigned long) from + 8);
|
3173 |
|
|
return (ULONGEST) from + 8; /* Pipeline offset. */
|
3174 |
|
|
}
|
3175 |
|
|
else
|
3176 |
|
|
{
|
3177 |
|
|
regcache_cooked_read_unsigned (regs, regno, &ret);
|
3178 |
|
|
if (debug_displaced)
|
3179 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
|
3180 |
|
|
regno, (unsigned long) ret);
|
3181 |
|
|
return ret;
|
3182 |
|
|
}
|
3183 |
|
|
}
|
3184 |
|
|
|
3185 |
|
|
static int
|
3186 |
|
|
displaced_in_arm_mode (struct regcache *regs)
|
3187 |
|
|
{
|
3188 |
|
|
ULONGEST ps;
|
3189 |
|
|
|
3190 |
|
|
regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
|
3191 |
|
|
|
3192 |
|
|
return (ps & CPSR_T) == 0;
|
3193 |
|
|
}
|
3194 |
|
|
|
3195 |
|
|
/* Write to the PC as from a branch instruction. */
|
3196 |
|
|
|
3197 |
|
|
static void
|
3198 |
|
|
branch_write_pc (struct regcache *regs, ULONGEST val)
|
3199 |
|
|
{
|
3200 |
|
|
if (displaced_in_arm_mode (regs))
|
3201 |
|
|
/* Note: If bits 0/1 are set, this branch would be unpredictable for
|
3202 |
|
|
architecture versions < 6. */
|
3203 |
|
|
regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & ~(ULONGEST) 0x3);
|
3204 |
|
|
else
|
3205 |
|
|
regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & ~(ULONGEST) 0x1);
|
3206 |
|
|
}
|
3207 |
|
|
|
3208 |
|
|
/* Write to the PC as from a branch-exchange instruction. */
|
3209 |
|
|
|
3210 |
|
|
static void
|
3211 |
|
|
bx_write_pc (struct regcache *regs, ULONGEST val)
|
3212 |
|
|
{
|
3213 |
|
|
ULONGEST ps;
|
3214 |
|
|
|
3215 |
|
|
regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
|
3216 |
|
|
|
3217 |
|
|
if ((val & 1) == 1)
|
3218 |
|
|
{
|
3219 |
|
|
regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | CPSR_T);
|
3220 |
|
|
regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
|
3221 |
|
|
}
|
3222 |
|
|
else if ((val & 2) == 0)
|
3223 |
|
|
{
|
3224 |
|
|
regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM,
|
3225 |
|
|
ps & ~(ULONGEST) CPSR_T);
|
3226 |
|
|
regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
|
3227 |
|
|
}
|
3228 |
|
|
else
|
3229 |
|
|
{
|
3230 |
|
|
/* Unpredictable behaviour. Try to do something sensible (switch to ARM
|
3231 |
|
|
mode, align dest to 4 bytes). */
|
3232 |
|
|
warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
|
3233 |
|
|
regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM,
|
3234 |
|
|
ps & ~(ULONGEST) CPSR_T);
|
3235 |
|
|
regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
|
3236 |
|
|
}
|
3237 |
|
|
}
|
3238 |
|
|
|
3239 |
|
|
/* Write to the PC as if from a load instruction. */
|
3240 |
|
|
|
3241 |
|
|
static void
|
3242 |
|
|
load_write_pc (struct regcache *regs, ULONGEST val)
|
3243 |
|
|
{
|
3244 |
|
|
if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
|
3245 |
|
|
bx_write_pc (regs, val);
|
3246 |
|
|
else
|
3247 |
|
|
branch_write_pc (regs, val);
|
3248 |
|
|
}
|
3249 |
|
|
|
3250 |
|
|
/* Write to the PC as if from an ALU instruction. */
|
3251 |
|
|
|
3252 |
|
|
static void
|
3253 |
|
|
alu_write_pc (struct regcache *regs, ULONGEST val)
|
3254 |
|
|
{
|
3255 |
|
|
if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && displaced_in_arm_mode (regs))
|
3256 |
|
|
bx_write_pc (regs, val);
|
3257 |
|
|
else
|
3258 |
|
|
branch_write_pc (regs, val);
|
3259 |
|
|
}
|
3260 |
|
|
|
3261 |
|
|
/* Helper for writing to registers for displaced stepping. Writing to the PC
|
3262 |
|
|
has a varying effects depending on the instruction which does the write:
|
3263 |
|
|
this is controlled by the WRITE_PC argument. */
|
3264 |
|
|
|
3265 |
|
|
void
|
3266 |
|
|
displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
|
3267 |
|
|
int regno, ULONGEST val, enum pc_write_style write_pc)
|
3268 |
|
|
{
|
3269 |
|
|
if (regno == 15)
|
3270 |
|
|
{
|
3271 |
|
|
if (debug_displaced)
|
3272 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
|
3273 |
|
|
(unsigned long) val);
|
3274 |
|
|
switch (write_pc)
|
3275 |
|
|
{
|
3276 |
|
|
case BRANCH_WRITE_PC:
|
3277 |
|
|
branch_write_pc (regs, val);
|
3278 |
|
|
break;
|
3279 |
|
|
|
3280 |
|
|
case BX_WRITE_PC:
|
3281 |
|
|
bx_write_pc (regs, val);
|
3282 |
|
|
break;
|
3283 |
|
|
|
3284 |
|
|
case LOAD_WRITE_PC:
|
3285 |
|
|
load_write_pc (regs, val);
|
3286 |
|
|
break;
|
3287 |
|
|
|
3288 |
|
|
case ALU_WRITE_PC:
|
3289 |
|
|
alu_write_pc (regs, val);
|
3290 |
|
|
break;
|
3291 |
|
|
|
3292 |
|
|
case CANNOT_WRITE_PC:
|
3293 |
|
|
warning (_("Instruction wrote to PC in an unexpected way when "
|
3294 |
|
|
"single-stepping"));
|
3295 |
|
|
break;
|
3296 |
|
|
|
3297 |
|
|
default:
|
3298 |
|
|
internal_error (__FILE__, __LINE__,
|
3299 |
|
|
_("Invalid argument to displaced_write_reg"));
|
3300 |
|
|
}
|
3301 |
|
|
|
3302 |
|
|
dsc->wrote_to_pc = 1;
|
3303 |
|
|
}
|
3304 |
|
|
else
|
3305 |
|
|
{
|
3306 |
|
|
if (debug_displaced)
|
3307 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
|
3308 |
|
|
regno, (unsigned long) val);
|
3309 |
|
|
regcache_cooked_write_unsigned (regs, regno, val);
|
3310 |
|
|
}
|
3311 |
|
|
}
|
3312 |
|
|
|
3313 |
|
|
/* This function is used to concisely determine if an instruction INSN
|
3314 |
|
|
references PC. Register fields of interest in INSN should have the
|
3315 |
|
|
corresponding fields of BITMASK set to 0b1111. The function returns return 1
|
3316 |
|
|
if any of these fields in INSN reference the PC (also 0b1111, r15), else it
|
3317 |
|
|
returns 0. */
|
3318 |
|
|
|
3319 |
|
|
static int
|
3320 |
|
|
insn_references_pc (uint32_t insn, uint32_t bitmask)
|
3321 |
|
|
{
|
3322 |
|
|
uint32_t lowbit = 1;
|
3323 |
|
|
|
3324 |
|
|
while (bitmask != 0)
|
3325 |
|
|
{
|
3326 |
|
|
uint32_t mask;
|
3327 |
|
|
|
3328 |
|
|
for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
|
3329 |
|
|
;
|
3330 |
|
|
|
3331 |
|
|
if (!lowbit)
|
3332 |
|
|
break;
|
3333 |
|
|
|
3334 |
|
|
mask = lowbit * 0xf;
|
3335 |
|
|
|
3336 |
|
|
if ((insn & mask) == mask)
|
3337 |
|
|
return 1;
|
3338 |
|
|
|
3339 |
|
|
bitmask &= ~mask;
|
3340 |
|
|
}
|
3341 |
|
|
|
3342 |
|
|
return 0;
|
3343 |
|
|
}
|
3344 |
|
|
|
3345 |
|
|
/* The simplest copy function. Many instructions have the same effect no
|
3346 |
|
|
matter what address they are executed at: in those cases, use this. */
|
3347 |
|
|
|
3348 |
|
|
static int
|
3349 |
|
|
copy_unmodified (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, uint32_t insn,
|
3350 |
|
|
const char *iname, struct displaced_step_closure *dsc)
|
3351 |
|
|
{
|
3352 |
|
|
if (debug_displaced)
|
3353 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
|
3354 |
|
|
"opcode/class '%s' unmodified\n", (unsigned long) insn,
|
3355 |
|
|
iname);
|
3356 |
|
|
|
3357 |
|
|
dsc->modinsn[0] = insn;
|
3358 |
|
|
|
3359 |
|
|
return 0;
|
3360 |
|
|
}
|
3361 |
|
|
|
3362 |
|
|
/* Preload instructions with immediate offset. */
|
3363 |
|
|
|
3364 |
|
|
static void
|
3365 |
|
|
cleanup_preload (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
|
3366 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
3367 |
|
|
{
|
3368 |
|
|
displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
|
3369 |
|
|
if (!dsc->u.preload.immed)
|
3370 |
|
|
displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
|
3371 |
|
|
}
|
3372 |
|
|
|
3373 |
|
|
static int
|
3374 |
|
|
copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
|
3375 |
|
|
struct displaced_step_closure *dsc)
|
3376 |
|
|
{
|
3377 |
|
|
unsigned int rn = bits (insn, 16, 19);
|
3378 |
|
|
ULONGEST rn_val;
|
3379 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
3380 |
|
|
|
3381 |
|
|
if (!insn_references_pc (insn, 0x000f0000ul))
|
3382 |
|
|
return copy_unmodified (gdbarch, insn, "preload", dsc);
|
3383 |
|
|
|
3384 |
|
|
if (debug_displaced)
|
3385 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
|
3386 |
|
|
(unsigned long) insn);
|
3387 |
|
|
|
3388 |
|
|
/* Preload instructions:
|
3389 |
|
|
|
3390 |
|
|
{pli/pld} [rn, #+/-imm]
|
3391 |
|
|
->
|
3392 |
|
|
{pli/pld} [r0, #+/-imm]. */
|
3393 |
|
|
|
3394 |
|
|
dsc->tmp[0] = displaced_read_reg (regs, from, 0);
|
3395 |
|
|
rn_val = displaced_read_reg (regs, from, rn);
|
3396 |
|
|
displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
|
3397 |
|
|
|
3398 |
|
|
dsc->u.preload.immed = 1;
|
3399 |
|
|
|
3400 |
|
|
dsc->modinsn[0] = insn & 0xfff0ffff;
|
3401 |
|
|
|
3402 |
|
|
dsc->cleanup = &cleanup_preload;
|
3403 |
|
|
|
3404 |
|
|
return 0;
|
3405 |
|
|
}
|
3406 |
|
|
|
3407 |
|
|
/* Preload instructions with register offset. */
|
3408 |
|
|
|
3409 |
|
|
static int
|
3410 |
|
|
copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
|
3411 |
|
|
struct displaced_step_closure *dsc)
|
3412 |
|
|
{
|
3413 |
|
|
unsigned int rn = bits (insn, 16, 19);
|
3414 |
|
|
unsigned int rm = bits (insn, 0, 3);
|
3415 |
|
|
ULONGEST rn_val, rm_val;
|
3416 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
3417 |
|
|
|
3418 |
|
|
if (!insn_references_pc (insn, 0x000f000ful))
|
3419 |
|
|
return copy_unmodified (gdbarch, insn, "preload reg", dsc);
|
3420 |
|
|
|
3421 |
|
|
if (debug_displaced)
|
3422 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
|
3423 |
|
|
(unsigned long) insn);
|
3424 |
|
|
|
3425 |
|
|
/* Preload register-offset instructions:
|
3426 |
|
|
|
3427 |
|
|
{pli/pld} [rn, rm {, shift}]
|
3428 |
|
|
->
|
3429 |
|
|
{pli/pld} [r0, r1 {, shift}]. */
|
3430 |
|
|
|
3431 |
|
|
dsc->tmp[0] = displaced_read_reg (regs, from, 0);
|
3432 |
|
|
dsc->tmp[1] = displaced_read_reg (regs, from, 1);
|
3433 |
|
|
rn_val = displaced_read_reg (regs, from, rn);
|
3434 |
|
|
rm_val = displaced_read_reg (regs, from, rm);
|
3435 |
|
|
displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
|
3436 |
|
|
displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
|
3437 |
|
|
|
3438 |
|
|
dsc->u.preload.immed = 0;
|
3439 |
|
|
|
3440 |
|
|
dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
|
3441 |
|
|
|
3442 |
|
|
dsc->cleanup = &cleanup_preload;
|
3443 |
|
|
|
3444 |
|
|
return 0;
|
3445 |
|
|
}
|
3446 |
|
|
|
3447 |
|
|
/* Copy/cleanup coprocessor load and store instructions. */
|
3448 |
|
|
|
3449 |
|
|
static void
|
3450 |
|
|
cleanup_copro_load_store (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
|
3451 |
|
|
struct regcache *regs,
|
3452 |
|
|
struct displaced_step_closure *dsc)
|
3453 |
|
|
{
|
3454 |
|
|
ULONGEST rn_val = displaced_read_reg (regs, dsc->insn_addr, 0);
|
3455 |
|
|
|
3456 |
|
|
displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
|
3457 |
|
|
|
3458 |
|
|
if (dsc->u.ldst.writeback)
|
3459 |
|
|
displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
|
3460 |
|
|
}
|
3461 |
|
|
|
3462 |
|
|
static int
|
3463 |
|
|
copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
|
3464 |
|
|
struct regcache *regs,
|
3465 |
|
|
struct displaced_step_closure *dsc)
|
3466 |
|
|
{
|
3467 |
|
|
unsigned int rn = bits (insn, 16, 19);
|
3468 |
|
|
ULONGEST rn_val;
|
3469 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
3470 |
|
|
|
3471 |
|
|
if (!insn_references_pc (insn, 0x000f0000ul))
|
3472 |
|
|
return copy_unmodified (gdbarch, insn, "copro load/store", dsc);
|
3473 |
|
|
|
3474 |
|
|
if (debug_displaced)
|
3475 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
|
3476 |
|
|
"load/store insn %.8lx\n", (unsigned long) insn);
|
3477 |
|
|
|
3478 |
|
|
/* Coprocessor load/store instructions:
|
3479 |
|
|
|
3480 |
|
|
{stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
|
3481 |
|
|
->
|
3482 |
|
|
{stc/stc2} [r0, #+/-imm].
|
3483 |
|
|
|
3484 |
|
|
ldc/ldc2 are handled identically. */
|
3485 |
|
|
|
3486 |
|
|
dsc->tmp[0] = displaced_read_reg (regs, from, 0);
|
3487 |
|
|
rn_val = displaced_read_reg (regs, from, rn);
|
3488 |
|
|
displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
|
3489 |
|
|
|
3490 |
|
|
dsc->u.ldst.writeback = bit (insn, 25);
|
3491 |
|
|
dsc->u.ldst.rn = rn;
|
3492 |
|
|
|
3493 |
|
|
dsc->modinsn[0] = insn & 0xfff0ffff;
|
3494 |
|
|
|
3495 |
|
|
dsc->cleanup = &cleanup_copro_load_store;
|
3496 |
|
|
|
3497 |
|
|
return 0;
|
3498 |
|
|
}
|
3499 |
|
|
|
3500 |
|
|
/* Clean up branch instructions (actually perform the branch, by setting
|
3501 |
|
|
PC). */
|
3502 |
|
|
|
3503 |
|
|
static void
|
3504 |
|
|
cleanup_branch (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, struct regcache *regs,
|
3505 |
|
|
struct displaced_step_closure *dsc)
|
3506 |
|
|
{
|
3507 |
|
|
ULONGEST from = dsc->insn_addr;
|
3508 |
|
|
uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM);
|
3509 |
|
|
int branch_taken = condition_true (dsc->u.branch.cond, status);
|
3510 |
|
|
enum pc_write_style write_pc = dsc->u.branch.exchange
|
3511 |
|
|
? BX_WRITE_PC : BRANCH_WRITE_PC;
|
3512 |
|
|
|
3513 |
|
|
if (!branch_taken)
|
3514 |
|
|
return;
|
3515 |
|
|
|
3516 |
|
|
if (dsc->u.branch.link)
|
3517 |
|
|
{
|
3518 |
|
|
ULONGEST pc = displaced_read_reg (regs, from, 15);
|
3519 |
|
|
displaced_write_reg (regs, dsc, 14, pc - 4, CANNOT_WRITE_PC);
|
3520 |
|
|
}
|
3521 |
|
|
|
3522 |
|
|
displaced_write_reg (regs, dsc, 15, dsc->u.branch.dest, write_pc);
|
3523 |
|
|
}
|
3524 |
|
|
|
3525 |
|
|
/* Copy B/BL/BLX instructions with immediate destinations. */
|
3526 |
|
|
|
3527 |
|
|
static int
|
3528 |
|
|
copy_b_bl_blx (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, uint32_t insn,
|
3529 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
3530 |
|
|
{
|
3531 |
|
|
unsigned int cond = bits (insn, 28, 31);
|
3532 |
|
|
int exchange = (cond == 0xf);
|
3533 |
|
|
int link = exchange || bit (insn, 24);
|
3534 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
3535 |
|
|
long offset;
|
3536 |
|
|
|
3537 |
|
|
if (debug_displaced)
|
3538 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
|
3539 |
|
|
"%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
|
3540 |
|
|
(unsigned long) insn);
|
3541 |
|
|
|
3542 |
|
|
/* Implement "BL<cond> <label>" as:
|
3543 |
|
|
|
3544 |
|
|
Preparation: cond <- instruction condition
|
3545 |
|
|
Insn: mov r0, r0 (nop)
|
3546 |
|
|
Cleanup: if (condition true) { r14 <- pc; pc <- label }.
|
3547 |
|
|
|
3548 |
|
|
B<cond> similar, but don't set r14 in cleanup. */
|
3549 |
|
|
|
3550 |
|
|
if (exchange)
|
3551 |
|
|
/* For BLX, set bit 0 of the destination. The cleanup_branch function will
|
3552 |
|
|
then arrange the switch into Thumb mode. */
|
3553 |
|
|
offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
|
3554 |
|
|
else
|
3555 |
|
|
offset = bits (insn, 0, 23) << 2;
|
3556 |
|
|
|
3557 |
|
|
if (bit (offset, 25))
|
3558 |
|
|
offset = offset | ~0x3ffffff;
|
3559 |
|
|
|
3560 |
|
|
dsc->u.branch.cond = cond;
|
3561 |
|
|
dsc->u.branch.link = link;
|
3562 |
|
|
dsc->u.branch.exchange = exchange;
|
3563 |
|
|
dsc->u.branch.dest = from + 8 + offset;
|
3564 |
|
|
|
3565 |
|
|
dsc->modinsn[0] = ARM_NOP;
|
3566 |
|
|
|
3567 |
|
|
dsc->cleanup = &cleanup_branch;
|
3568 |
|
|
|
3569 |
|
|
return 0;
|
3570 |
|
|
}
|
3571 |
|
|
|
3572 |
|
|
/* Copy BX/BLX with register-specified destinations. */
|
3573 |
|
|
|
3574 |
|
|
static int
|
3575 |
|
|
copy_bx_blx_reg (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, uint32_t insn,
|
3576 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
3577 |
|
|
{
|
3578 |
|
|
unsigned int cond = bits (insn, 28, 31);
|
3579 |
|
|
/* BX: x12xxx1x
|
3580 |
|
|
BLX: x12xxx3x. */
|
3581 |
|
|
int link = bit (insn, 5);
|
3582 |
|
|
unsigned int rm = bits (insn, 0, 3);
|
3583 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
3584 |
|
|
|
3585 |
|
|
if (debug_displaced)
|
3586 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying %s register insn "
|
3587 |
|
|
"%.8lx\n", (link) ? "blx" : "bx", (unsigned long) insn);
|
3588 |
|
|
|
3589 |
|
|
/* Implement {BX,BLX}<cond> <reg>" as:
|
3590 |
|
|
|
3591 |
|
|
Preparation: cond <- instruction condition
|
3592 |
|
|
Insn: mov r0, r0 (nop)
|
3593 |
|
|
Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
|
3594 |
|
|
|
3595 |
|
|
Don't set r14 in cleanup for BX. */
|
3596 |
|
|
|
3597 |
|
|
dsc->u.branch.dest = displaced_read_reg (regs, from, rm);
|
3598 |
|
|
|
3599 |
|
|
dsc->u.branch.cond = cond;
|
3600 |
|
|
dsc->u.branch.link = link;
|
3601 |
|
|
dsc->u.branch.exchange = 1;
|
3602 |
|
|
|
3603 |
|
|
dsc->modinsn[0] = ARM_NOP;
|
3604 |
|
|
|
3605 |
|
|
dsc->cleanup = &cleanup_branch;
|
3606 |
|
|
|
3607 |
|
|
return 0;
|
3608 |
|
|
}
|
3609 |
|
|
|
3610 |
|
|
/* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
|
3611 |
|
|
|
3612 |
|
|
static void
|
3613 |
|
|
cleanup_alu_imm (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
|
3614 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
3615 |
|
|
{
|
3616 |
|
|
ULONGEST rd_val = displaced_read_reg (regs, dsc->insn_addr, 0);
|
3617 |
|
|
displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
|
3618 |
|
|
displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
|
3619 |
|
|
displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
|
3620 |
|
|
}
|
3621 |
|
|
|
3622 |
|
|
static int
|
3623 |
|
|
copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
|
3624 |
|
|
struct displaced_step_closure *dsc)
|
3625 |
|
|
{
|
3626 |
|
|
unsigned int rn = bits (insn, 16, 19);
|
3627 |
|
|
unsigned int rd = bits (insn, 12, 15);
|
3628 |
|
|
unsigned int op = bits (insn, 21, 24);
|
3629 |
|
|
int is_mov = (op == 0xd);
|
3630 |
|
|
ULONGEST rd_val, rn_val;
|
3631 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
3632 |
|
|
|
3633 |
|
|
if (!insn_references_pc (insn, 0x000ff000ul))
|
3634 |
|
|
return copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
|
3635 |
|
|
|
3636 |
|
|
if (debug_displaced)
|
3637 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
|
3638 |
|
|
"%.8lx\n", is_mov ? "move" : "ALU",
|
3639 |
|
|
(unsigned long) insn);
|
3640 |
|
|
|
3641 |
|
|
/* Instruction is of form:
|
3642 |
|
|
|
3643 |
|
|
<op><cond> rd, [rn,] #imm
|
3644 |
|
|
|
3645 |
|
|
Rewrite as:
|
3646 |
|
|
|
3647 |
|
|
Preparation: tmp1, tmp2 <- r0, r1;
|
3648 |
|
|
r0, r1 <- rd, rn
|
3649 |
|
|
Insn: <op><cond> r0, r1, #imm
|
3650 |
|
|
Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
|
3651 |
|
|
*/
|
3652 |
|
|
|
3653 |
|
|
dsc->tmp[0] = displaced_read_reg (regs, from, 0);
|
3654 |
|
|
dsc->tmp[1] = displaced_read_reg (regs, from, 1);
|
3655 |
|
|
rn_val = displaced_read_reg (regs, from, rn);
|
3656 |
|
|
rd_val = displaced_read_reg (regs, from, rd);
|
3657 |
|
|
displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
|
3658 |
|
|
displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
|
3659 |
|
|
dsc->rd = rd;
|
3660 |
|
|
|
3661 |
|
|
if (is_mov)
|
3662 |
|
|
dsc->modinsn[0] = insn & 0xfff00fff;
|
3663 |
|
|
else
|
3664 |
|
|
dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
|
3665 |
|
|
|
3666 |
|
|
dsc->cleanup = &cleanup_alu_imm;
|
3667 |
|
|
|
3668 |
|
|
return 0;
|
3669 |
|
|
}
|
3670 |
|
|
|
3671 |
|
|
/* Copy/cleanup arithmetic/logic insns with register RHS. */
|
3672 |
|
|
|
3673 |
|
|
static void
|
3674 |
|
|
cleanup_alu_reg (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
|
3675 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
3676 |
|
|
{
|
3677 |
|
|
ULONGEST rd_val;
|
3678 |
|
|
int i;
|
3679 |
|
|
|
3680 |
|
|
rd_val = displaced_read_reg (regs, dsc->insn_addr, 0);
|
3681 |
|
|
|
3682 |
|
|
for (i = 0; i < 3; i++)
|
3683 |
|
|
displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
|
3684 |
|
|
|
3685 |
|
|
displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
|
3686 |
|
|
}
|
3687 |
|
|
|
3688 |
|
|
static int
|
3689 |
|
|
copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
|
3690 |
|
|
struct displaced_step_closure *dsc)
|
3691 |
|
|
{
|
3692 |
|
|
unsigned int rn = bits (insn, 16, 19);
|
3693 |
|
|
unsigned int rm = bits (insn, 0, 3);
|
3694 |
|
|
unsigned int rd = bits (insn, 12, 15);
|
3695 |
|
|
unsigned int op = bits (insn, 21, 24);
|
3696 |
|
|
int is_mov = (op == 0xd);
|
3697 |
|
|
ULONGEST rd_val, rn_val, rm_val;
|
3698 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
3699 |
|
|
|
3700 |
|
|
if (!insn_references_pc (insn, 0x000ff00ful))
|
3701 |
|
|
return copy_unmodified (gdbarch, insn, "ALU reg", dsc);
|
3702 |
|
|
|
3703 |
|
|
if (debug_displaced)
|
3704 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
|
3705 |
|
|
is_mov ? "move" : "ALU", (unsigned long) insn);
|
3706 |
|
|
|
3707 |
|
|
/* Instruction is of form:
|
3708 |
|
|
|
3709 |
|
|
<op><cond> rd, [rn,] rm [, <shift>]
|
3710 |
|
|
|
3711 |
|
|
Rewrite as:
|
3712 |
|
|
|
3713 |
|
|
Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
|
3714 |
|
|
r0, r1, r2 <- rd, rn, rm
|
3715 |
|
|
Insn: <op><cond> r0, r1, r2 [, <shift>]
|
3716 |
|
|
Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
|
3717 |
|
|
*/
|
3718 |
|
|
|
3719 |
|
|
dsc->tmp[0] = displaced_read_reg (regs, from, 0);
|
3720 |
|
|
dsc->tmp[1] = displaced_read_reg (regs, from, 1);
|
3721 |
|
|
dsc->tmp[2] = displaced_read_reg (regs, from, 2);
|
3722 |
|
|
rd_val = displaced_read_reg (regs, from, rd);
|
3723 |
|
|
rn_val = displaced_read_reg (regs, from, rn);
|
3724 |
|
|
rm_val = displaced_read_reg (regs, from, rm);
|
3725 |
|
|
displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
|
3726 |
|
|
displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
|
3727 |
|
|
displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
|
3728 |
|
|
dsc->rd = rd;
|
3729 |
|
|
|
3730 |
|
|
if (is_mov)
|
3731 |
|
|
dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
|
3732 |
|
|
else
|
3733 |
|
|
dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
|
3734 |
|
|
|
3735 |
|
|
dsc->cleanup = &cleanup_alu_reg;
|
3736 |
|
|
|
3737 |
|
|
return 0;
|
3738 |
|
|
}
|
3739 |
|
|
|
3740 |
|
|
/* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
|
3741 |
|
|
|
3742 |
|
|
static void
|
3743 |
|
|
cleanup_alu_shifted_reg (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
|
3744 |
|
|
struct regcache *regs,
|
3745 |
|
|
struct displaced_step_closure *dsc)
|
3746 |
|
|
{
|
3747 |
|
|
ULONGEST rd_val = displaced_read_reg (regs, dsc->insn_addr, 0);
|
3748 |
|
|
int i;
|
3749 |
|
|
|
3750 |
|
|
for (i = 0; i < 4; i++)
|
3751 |
|
|
displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
|
3752 |
|
|
|
3753 |
|
|
displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
|
3754 |
|
|
}
|
3755 |
|
|
|
3756 |
|
|
static int
|
3757 |
|
|
copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
|
3758 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
3759 |
|
|
{
|
3760 |
|
|
unsigned int rn = bits (insn, 16, 19);
|
3761 |
|
|
unsigned int rm = bits (insn, 0, 3);
|
3762 |
|
|
unsigned int rd = bits (insn, 12, 15);
|
3763 |
|
|
unsigned int rs = bits (insn, 8, 11);
|
3764 |
|
|
unsigned int op = bits (insn, 21, 24);
|
3765 |
|
|
int is_mov = (op == 0xd), i;
|
3766 |
|
|
ULONGEST rd_val, rn_val, rm_val, rs_val;
|
3767 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
3768 |
|
|
|
3769 |
|
|
if (!insn_references_pc (insn, 0x000fff0ful))
|
3770 |
|
|
return copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
|
3771 |
|
|
|
3772 |
|
|
if (debug_displaced)
|
3773 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
|
3774 |
|
|
"%.8lx\n", is_mov ? "move" : "ALU",
|
3775 |
|
|
(unsigned long) insn);
|
3776 |
|
|
|
3777 |
|
|
/* Instruction is of form:
|
3778 |
|
|
|
3779 |
|
|
<op><cond> rd, [rn,] rm, <shift> rs
|
3780 |
|
|
|
3781 |
|
|
Rewrite as:
|
3782 |
|
|
|
3783 |
|
|
Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
|
3784 |
|
|
r0, r1, r2, r3 <- rd, rn, rm, rs
|
3785 |
|
|
Insn: <op><cond> r0, r1, r2, <shift> r3
|
3786 |
|
|
Cleanup: tmp5 <- r0
|
3787 |
|
|
r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
|
3788 |
|
|
rd <- tmp5
|
3789 |
|
|
*/
|
3790 |
|
|
|
3791 |
|
|
for (i = 0; i < 4; i++)
|
3792 |
|
|
dsc->tmp[i] = displaced_read_reg (regs, from, i);
|
3793 |
|
|
|
3794 |
|
|
rd_val = displaced_read_reg (regs, from, rd);
|
3795 |
|
|
rn_val = displaced_read_reg (regs, from, rn);
|
3796 |
|
|
rm_val = displaced_read_reg (regs, from, rm);
|
3797 |
|
|
rs_val = displaced_read_reg (regs, from, rs);
|
3798 |
|
|
displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
|
3799 |
|
|
displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
|
3800 |
|
|
displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
|
3801 |
|
|
displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
|
3802 |
|
|
dsc->rd = rd;
|
3803 |
|
|
|
3804 |
|
|
if (is_mov)
|
3805 |
|
|
dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
|
3806 |
|
|
else
|
3807 |
|
|
dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
|
3808 |
|
|
|
3809 |
|
|
dsc->cleanup = &cleanup_alu_shifted_reg;
|
3810 |
|
|
|
3811 |
|
|
return 0;
|
3812 |
|
|
}
|
3813 |
|
|
|
3814 |
|
|
/* Clean up load instructions. */
|
3815 |
|
|
|
3816 |
|
|
static void
|
3817 |
|
|
cleanup_load (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, struct regcache *regs,
|
3818 |
|
|
struct displaced_step_closure *dsc)
|
3819 |
|
|
{
|
3820 |
|
|
ULONGEST rt_val, rt_val2 = 0, rn_val;
|
3821 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
3822 |
|
|
|
3823 |
|
|
rt_val = displaced_read_reg (regs, from, 0);
|
3824 |
|
|
if (dsc->u.ldst.xfersize == 8)
|
3825 |
|
|
rt_val2 = displaced_read_reg (regs, from, 1);
|
3826 |
|
|
rn_val = displaced_read_reg (regs, from, 2);
|
3827 |
|
|
|
3828 |
|
|
displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
|
3829 |
|
|
if (dsc->u.ldst.xfersize > 4)
|
3830 |
|
|
displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
|
3831 |
|
|
displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
|
3832 |
|
|
if (!dsc->u.ldst.immed)
|
3833 |
|
|
displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
|
3834 |
|
|
|
3835 |
|
|
/* Handle register writeback. */
|
3836 |
|
|
if (dsc->u.ldst.writeback)
|
3837 |
|
|
displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
|
3838 |
|
|
/* Put result in right place. */
|
3839 |
|
|
displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
|
3840 |
|
|
if (dsc->u.ldst.xfersize == 8)
|
3841 |
|
|
displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
|
3842 |
|
|
}
|
3843 |
|
|
|
3844 |
|
|
/* Clean up store instructions. */
|
3845 |
|
|
|
3846 |
|
|
static void
|
3847 |
|
|
cleanup_store (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, struct regcache *regs,
|
3848 |
|
|
struct displaced_step_closure *dsc)
|
3849 |
|
|
{
|
3850 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
3851 |
|
|
ULONGEST rn_val = displaced_read_reg (regs, from, 2);
|
3852 |
|
|
|
3853 |
|
|
displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
|
3854 |
|
|
if (dsc->u.ldst.xfersize > 4)
|
3855 |
|
|
displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
|
3856 |
|
|
displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
|
3857 |
|
|
if (!dsc->u.ldst.immed)
|
3858 |
|
|
displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
|
3859 |
|
|
if (!dsc->u.ldst.restore_r4)
|
3860 |
|
|
displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
|
3861 |
|
|
|
3862 |
|
|
/* Writeback. */
|
3863 |
|
|
if (dsc->u.ldst.writeback)
|
3864 |
|
|
displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
|
3865 |
|
|
}
|
3866 |
|
|
|
3867 |
|
|
/* Copy "extra" load/store instructions. These are halfword/doubleword
|
3868 |
|
|
transfers, which have a different encoding to byte/word transfers. */
|
3869 |
|
|
|
3870 |
|
|
static int
|
3871 |
|
|
copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unpriveleged,
|
3872 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
3873 |
|
|
{
|
3874 |
|
|
unsigned int op1 = bits (insn, 20, 24);
|
3875 |
|
|
unsigned int op2 = bits (insn, 5, 6);
|
3876 |
|
|
unsigned int rt = bits (insn, 12, 15);
|
3877 |
|
|
unsigned int rn = bits (insn, 16, 19);
|
3878 |
|
|
unsigned int rm = bits (insn, 0, 3);
|
3879 |
|
|
char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
|
3880 |
|
|
char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
|
3881 |
|
|
int immed = (op1 & 0x4) != 0;
|
3882 |
|
|
int opcode;
|
3883 |
|
|
ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
|
3884 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
3885 |
|
|
|
3886 |
|
|
if (!insn_references_pc (insn, 0x000ff00ful))
|
3887 |
|
|
return copy_unmodified (gdbarch, insn, "extra load/store", dsc);
|
3888 |
|
|
|
3889 |
|
|
if (debug_displaced)
|
3890 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
|
3891 |
|
|
"insn %.8lx\n", unpriveleged ? "unpriveleged " : "",
|
3892 |
|
|
(unsigned long) insn);
|
3893 |
|
|
|
3894 |
|
|
opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
|
3895 |
|
|
|
3896 |
|
|
if (opcode < 0)
|
3897 |
|
|
internal_error (__FILE__, __LINE__,
|
3898 |
|
|
_("copy_extra_ld_st: instruction decode error"));
|
3899 |
|
|
|
3900 |
|
|
dsc->tmp[0] = displaced_read_reg (regs, from, 0);
|
3901 |
|
|
dsc->tmp[1] = displaced_read_reg (regs, from, 1);
|
3902 |
|
|
dsc->tmp[2] = displaced_read_reg (regs, from, 2);
|
3903 |
|
|
if (!immed)
|
3904 |
|
|
dsc->tmp[3] = displaced_read_reg (regs, from, 3);
|
3905 |
|
|
|
3906 |
|
|
rt_val = displaced_read_reg (regs, from, rt);
|
3907 |
|
|
if (bytesize[opcode] == 8)
|
3908 |
|
|
rt_val2 = displaced_read_reg (regs, from, rt + 1);
|
3909 |
|
|
rn_val = displaced_read_reg (regs, from, rn);
|
3910 |
|
|
if (!immed)
|
3911 |
|
|
rm_val = displaced_read_reg (regs, from, rm);
|
3912 |
|
|
|
3913 |
|
|
displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
|
3914 |
|
|
if (bytesize[opcode] == 8)
|
3915 |
|
|
displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
|
3916 |
|
|
displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
|
3917 |
|
|
if (!immed)
|
3918 |
|
|
displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
|
3919 |
|
|
|
3920 |
|
|
dsc->rd = rt;
|
3921 |
|
|
dsc->u.ldst.xfersize = bytesize[opcode];
|
3922 |
|
|
dsc->u.ldst.rn = rn;
|
3923 |
|
|
dsc->u.ldst.immed = immed;
|
3924 |
|
|
dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
|
3925 |
|
|
dsc->u.ldst.restore_r4 = 0;
|
3926 |
|
|
|
3927 |
|
|
if (immed)
|
3928 |
|
|
/* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
|
3929 |
|
|
->
|
3930 |
|
|
{ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
|
3931 |
|
|
dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
|
3932 |
|
|
else
|
3933 |
|
|
/* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
|
3934 |
|
|
->
|
3935 |
|
|
{ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
|
3936 |
|
|
dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
|
3937 |
|
|
|
3938 |
|
|
dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
|
3939 |
|
|
|
3940 |
|
|
return 0;
|
3941 |
|
|
}
|
3942 |
|
|
|
3943 |
|
|
/* Copy byte/word loads and stores. */
|
3944 |
|
|
|
3945 |
|
|
static int
|
3946 |
|
|
copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
|
3947 |
|
|
struct regcache *regs,
|
3948 |
|
|
struct displaced_step_closure *dsc, int load, int byte,
|
3949 |
|
|
int usermode)
|
3950 |
|
|
{
|
3951 |
|
|
int immed = !bit (insn, 25);
|
3952 |
|
|
unsigned int rt = bits (insn, 12, 15);
|
3953 |
|
|
unsigned int rn = bits (insn, 16, 19);
|
3954 |
|
|
unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
|
3955 |
|
|
ULONGEST rt_val, rn_val, rm_val = 0;
|
3956 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
3957 |
|
|
|
3958 |
|
|
if (!insn_references_pc (insn, 0x000ff00ful))
|
3959 |
|
|
return copy_unmodified (gdbarch, insn, "load/store", dsc);
|
3960 |
|
|
|
3961 |
|
|
if (debug_displaced)
|
3962 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying %s%s insn %.8lx\n",
|
3963 |
|
|
load ? (byte ? "ldrb" : "ldr")
|
3964 |
|
|
: (byte ? "strb" : "str"), usermode ? "t" : "",
|
3965 |
|
|
(unsigned long) insn);
|
3966 |
|
|
|
3967 |
|
|
dsc->tmp[0] = displaced_read_reg (regs, from, 0);
|
3968 |
|
|
dsc->tmp[2] = displaced_read_reg (regs, from, 2);
|
3969 |
|
|
if (!immed)
|
3970 |
|
|
dsc->tmp[3] = displaced_read_reg (regs, from, 3);
|
3971 |
|
|
if (!load)
|
3972 |
|
|
dsc->tmp[4] = displaced_read_reg (regs, from, 4);
|
3973 |
|
|
|
3974 |
|
|
rt_val = displaced_read_reg (regs, from, rt);
|
3975 |
|
|
rn_val = displaced_read_reg (regs, from, rn);
|
3976 |
|
|
if (!immed)
|
3977 |
|
|
rm_val = displaced_read_reg (regs, from, rm);
|
3978 |
|
|
|
3979 |
|
|
displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
|
3980 |
|
|
displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
|
3981 |
|
|
if (!immed)
|
3982 |
|
|
displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
|
3983 |
|
|
|
3984 |
|
|
dsc->rd = rt;
|
3985 |
|
|
dsc->u.ldst.xfersize = byte ? 1 : 4;
|
3986 |
|
|
dsc->u.ldst.rn = rn;
|
3987 |
|
|
dsc->u.ldst.immed = immed;
|
3988 |
|
|
dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
|
3989 |
|
|
|
3990 |
|
|
/* To write PC we can do:
|
3991 |
|
|
|
3992 |
|
|
scratch+0: str pc, temp (*temp = scratch + 8 + offset)
|
3993 |
|
|
scratch+4: ldr r4, temp
|
3994 |
|
|
scratch+8: sub r4, r4, pc (r4 = scratch + 8 + offset - scratch - 8 - 8)
|
3995 |
|
|
scratch+12: add r4, r4, #8 (r4 = offset)
|
3996 |
|
|
scratch+16: add r0, r0, r4
|
3997 |
|
|
scratch+20: str r0, [r2, #imm] (or str r0, [r2, r3])
|
3998 |
|
|
scratch+24: <temp>
|
3999 |
|
|
|
4000 |
|
|
Otherwise we don't know what value to write for PC, since the offset is
|
4001 |
|
|
architecture-dependent (sometimes PC+8, sometimes PC+12). */
|
4002 |
|
|
|
4003 |
|
|
if (load || rt != 15)
|
4004 |
|
|
{
|
4005 |
|
|
dsc->u.ldst.restore_r4 = 0;
|
4006 |
|
|
|
4007 |
|
|
if (immed)
|
4008 |
|
|
/* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
|
4009 |
|
|
->
|
4010 |
|
|
{ldr,str}[b]<cond> r0, [r2, #imm]. */
|
4011 |
|
|
dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
|
4012 |
|
|
else
|
4013 |
|
|
/* {ldr,str}[b]<cond> rt, [rn, rm], etc.
|
4014 |
|
|
->
|
4015 |
|
|
{ldr,str}[b]<cond> r0, [r2, r3]. */
|
4016 |
|
|
dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
|
4017 |
|
|
}
|
4018 |
|
|
else
|
4019 |
|
|
{
|
4020 |
|
|
/* We need to use r4 as scratch. Make sure it's restored afterwards. */
|
4021 |
|
|
dsc->u.ldst.restore_r4 = 1;
|
4022 |
|
|
|
4023 |
|
|
dsc->modinsn[0] = 0xe58ff014; /* str pc, [pc, #20]. */
|
4024 |
|
|
dsc->modinsn[1] = 0xe59f4010; /* ldr r4, [pc, #16]. */
|
4025 |
|
|
dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
|
4026 |
|
|
dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
|
4027 |
|
|
dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
|
4028 |
|
|
|
4029 |
|
|
/* As above. */
|
4030 |
|
|
if (immed)
|
4031 |
|
|
dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
|
4032 |
|
|
else
|
4033 |
|
|
dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
|
4034 |
|
|
|
4035 |
|
|
dsc->modinsn[6] = 0x0; /* breakpoint location. */
|
4036 |
|
|
dsc->modinsn[7] = 0x0; /* scratch space. */
|
4037 |
|
|
|
4038 |
|
|
dsc->numinsns = 6;
|
4039 |
|
|
}
|
4040 |
|
|
|
4041 |
|
|
dsc->cleanup = load ? &cleanup_load : &cleanup_store;
|
4042 |
|
|
|
4043 |
|
|
return 0;
|
4044 |
|
|
}
|
4045 |
|
|
|
4046 |
|
|
/* Cleanup LDM instructions with fully-populated register list. This is an
|
4047 |
|
|
unfortunate corner case: it's impossible to implement correctly by modifying
|
4048 |
|
|
the instruction. The issue is as follows: we have an instruction,
|
4049 |
|
|
|
4050 |
|
|
ldm rN, {r0-r15}
|
4051 |
|
|
|
4052 |
|
|
which we must rewrite to avoid loading PC. A possible solution would be to
|
4053 |
|
|
do the load in two halves, something like (with suitable cleanup
|
4054 |
|
|
afterwards):
|
4055 |
|
|
|
4056 |
|
|
mov r8, rN
|
4057 |
|
|
ldm[id][ab] r8!, {r0-r7}
|
4058 |
|
|
str r7, <temp>
|
4059 |
|
|
ldm[id][ab] r8, {r7-r14}
|
4060 |
|
|
<bkpt>
|
4061 |
|
|
|
4062 |
|
|
but at present there's no suitable place for <temp>, since the scratch space
|
4063 |
|
|
is overwritten before the cleanup routine is called. For now, we simply
|
4064 |
|
|
emulate the instruction. */
|
4065 |
|
|
|
4066 |
|
|
static void
|
4067 |
|
|
cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
|
4068 |
|
|
struct displaced_step_closure *dsc)
|
4069 |
|
|
{
|
4070 |
|
|
ULONGEST from = dsc->insn_addr;
|
4071 |
|
|
int inc = dsc->u.block.increment;
|
4072 |
|
|
int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
|
4073 |
|
|
int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
|
4074 |
|
|
uint32_t regmask = dsc->u.block.regmask;
|
4075 |
|
|
int regno = inc ? 0 : 15;
|
4076 |
|
|
CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
|
4077 |
|
|
int exception_return = dsc->u.block.load && dsc->u.block.user
|
4078 |
|
|
&& (regmask & 0x8000) != 0;
|
4079 |
|
|
uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM);
|
4080 |
|
|
int do_transfer = condition_true (dsc->u.block.cond, status);
|
4081 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
4082 |
|
|
|
4083 |
|
|
if (!do_transfer)
|
4084 |
|
|
return;
|
4085 |
|
|
|
4086 |
|
|
/* If the instruction is ldm rN, {...pc}^, I don't think there's anything
|
4087 |
|
|
sensible we can do here. Complain loudly. */
|
4088 |
|
|
if (exception_return)
|
4089 |
|
|
error (_("Cannot single-step exception return"));
|
4090 |
|
|
|
4091 |
|
|
/* We don't handle any stores here for now. */
|
4092 |
|
|
gdb_assert (dsc->u.block.load != 0);
|
4093 |
|
|
|
4094 |
|
|
if (debug_displaced)
|
4095 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
|
4096 |
|
|
"%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
|
4097 |
|
|
dsc->u.block.increment ? "inc" : "dec",
|
4098 |
|
|
dsc->u.block.before ? "before" : "after");
|
4099 |
|
|
|
4100 |
|
|
while (regmask)
|
4101 |
|
|
{
|
4102 |
|
|
uint32_t memword;
|
4103 |
|
|
|
4104 |
|
|
if (inc)
|
4105 |
|
|
while (regno <= 15 && (regmask & (1 << regno)) == 0)
|
4106 |
|
|
regno++;
|
4107 |
|
|
else
|
4108 |
|
|
while (regno >= 0 && (regmask & (1 << regno)) == 0)
|
4109 |
|
|
regno--;
|
4110 |
|
|
|
4111 |
|
|
xfer_addr += bump_before;
|
4112 |
|
|
|
4113 |
|
|
memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
|
4114 |
|
|
displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
|
4115 |
|
|
|
4116 |
|
|
xfer_addr += bump_after;
|
4117 |
|
|
|
4118 |
|
|
regmask &= ~(1 << regno);
|
4119 |
|
|
}
|
4120 |
|
|
|
4121 |
|
|
if (dsc->u.block.writeback)
|
4122 |
|
|
displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
|
4123 |
|
|
CANNOT_WRITE_PC);
|
4124 |
|
|
}
|
4125 |
|
|
|
4126 |
|
|
/* Clean up an STM which included the PC in the register list. */
|
4127 |
|
|
|
4128 |
|
|
static void
|
4129 |
|
|
cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
|
4130 |
|
|
struct displaced_step_closure *dsc)
|
4131 |
|
|
{
|
4132 |
|
|
ULONGEST from = dsc->insn_addr;
|
4133 |
|
|
uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM);
|
4134 |
|
|
int store_executed = condition_true (dsc->u.block.cond, status);
|
4135 |
|
|
CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
|
4136 |
|
|
CORE_ADDR stm_insn_addr;
|
4137 |
|
|
uint32_t pc_val;
|
4138 |
|
|
long offset;
|
4139 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
4140 |
|
|
|
4141 |
|
|
/* If condition code fails, there's nothing else to do. */
|
4142 |
|
|
if (!store_executed)
|
4143 |
|
|
return;
|
4144 |
|
|
|
4145 |
|
|
if (dsc->u.block.increment)
|
4146 |
|
|
{
|
4147 |
|
|
pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
|
4148 |
|
|
|
4149 |
|
|
if (dsc->u.block.before)
|
4150 |
|
|
pc_stored_at += 4;
|
4151 |
|
|
}
|
4152 |
|
|
else
|
4153 |
|
|
{
|
4154 |
|
|
pc_stored_at = dsc->u.block.xfer_addr;
|
4155 |
|
|
|
4156 |
|
|
if (dsc->u.block.before)
|
4157 |
|
|
pc_stored_at -= 4;
|
4158 |
|
|
}
|
4159 |
|
|
|
4160 |
|
|
pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
|
4161 |
|
|
stm_insn_addr = dsc->scratch_base;
|
4162 |
|
|
offset = pc_val - stm_insn_addr;
|
4163 |
|
|
|
4164 |
|
|
if (debug_displaced)
|
4165 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
|
4166 |
|
|
"STM instruction\n", offset);
|
4167 |
|
|
|
4168 |
|
|
/* Rewrite the stored PC to the proper value for the non-displaced original
|
4169 |
|
|
instruction. */
|
4170 |
|
|
write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
|
4171 |
|
|
dsc->insn_addr + offset);
|
4172 |
|
|
}
|
4173 |
|
|
|
4174 |
|
|
/* Clean up an LDM which includes the PC in the register list. We clumped all
|
4175 |
|
|
the registers in the transferred list into a contiguous range r0...rX (to
|
4176 |
|
|
avoid loading PC directly and losing control of the debugged program), so we
|
4177 |
|
|
must undo that here. */
|
4178 |
|
|
|
4179 |
|
|
static void
|
4180 |
|
|
cleanup_block_load_pc (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
|
4181 |
|
|
struct regcache *regs,
|
4182 |
|
|
struct displaced_step_closure *dsc)
|
4183 |
|
|
{
|
4184 |
|
|
ULONGEST from = dsc->insn_addr;
|
4185 |
|
|
uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM);
|
4186 |
|
|
int load_executed = condition_true (dsc->u.block.cond, status), i;
|
4187 |
|
|
unsigned int mask = dsc->u.block.regmask, write_reg = 15;
|
4188 |
|
|
unsigned int regs_loaded = bitcount (mask);
|
4189 |
|
|
unsigned int num_to_shuffle = regs_loaded, clobbered;
|
4190 |
|
|
|
4191 |
|
|
/* The method employed here will fail if the register list is fully populated
|
4192 |
|
|
(we need to avoid loading PC directly). */
|
4193 |
|
|
gdb_assert (num_to_shuffle < 16);
|
4194 |
|
|
|
4195 |
|
|
if (!load_executed)
|
4196 |
|
|
return;
|
4197 |
|
|
|
4198 |
|
|
clobbered = (1 << num_to_shuffle) - 1;
|
4199 |
|
|
|
4200 |
|
|
while (num_to_shuffle > 0)
|
4201 |
|
|
{
|
4202 |
|
|
if ((mask & (1 << write_reg)) != 0)
|
4203 |
|
|
{
|
4204 |
|
|
unsigned int read_reg = num_to_shuffle - 1;
|
4205 |
|
|
|
4206 |
|
|
if (read_reg != write_reg)
|
4207 |
|
|
{
|
4208 |
|
|
ULONGEST rval = displaced_read_reg (regs, from, read_reg);
|
4209 |
|
|
displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
|
4210 |
|
|
if (debug_displaced)
|
4211 |
|
|
fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
|
4212 |
|
|
"loaded register r%d to r%d\n"), read_reg,
|
4213 |
|
|
write_reg);
|
4214 |
|
|
}
|
4215 |
|
|
else if (debug_displaced)
|
4216 |
|
|
fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
|
4217 |
|
|
"r%d already in the right place\n"),
|
4218 |
|
|
write_reg);
|
4219 |
|
|
|
4220 |
|
|
clobbered &= ~(1 << write_reg);
|
4221 |
|
|
|
4222 |
|
|
num_to_shuffle--;
|
4223 |
|
|
}
|
4224 |
|
|
|
4225 |
|
|
write_reg--;
|
4226 |
|
|
}
|
4227 |
|
|
|
4228 |
|
|
/* Restore any registers we scribbled over. */
|
4229 |
|
|
for (write_reg = 0; clobbered != 0; write_reg++)
|
4230 |
|
|
{
|
4231 |
|
|
if ((clobbered & (1 << write_reg)) != 0)
|
4232 |
|
|
{
|
4233 |
|
|
displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
|
4234 |
|
|
CANNOT_WRITE_PC);
|
4235 |
|
|
if (debug_displaced)
|
4236 |
|
|
fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
|
4237 |
|
|
"clobbered register r%d\n"), write_reg);
|
4238 |
|
|
clobbered &= ~(1 << write_reg);
|
4239 |
|
|
}
|
4240 |
|
|
}
|
4241 |
|
|
|
4242 |
|
|
/* Perform register writeback manually. */
|
4243 |
|
|
if (dsc->u.block.writeback)
|
4244 |
|
|
{
|
4245 |
|
|
ULONGEST new_rn_val = dsc->u.block.xfer_addr;
|
4246 |
|
|
|
4247 |
|
|
if (dsc->u.block.increment)
|
4248 |
|
|
new_rn_val += regs_loaded * 4;
|
4249 |
|
|
else
|
4250 |
|
|
new_rn_val -= regs_loaded * 4;
|
4251 |
|
|
|
4252 |
|
|
displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
|
4253 |
|
|
CANNOT_WRITE_PC);
|
4254 |
|
|
}
|
4255 |
|
|
}
|
4256 |
|
|
|
4257 |
|
|
/* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
|
4258 |
|
|
in user-level code (in particular exception return, ldm rn, {...pc}^). */
|
4259 |
|
|
|
4260 |
|
|
static int
|
4261 |
|
|
copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
|
4262 |
|
|
struct displaced_step_closure *dsc)
|
4263 |
|
|
{
|
4264 |
|
|
int load = bit (insn, 20);
|
4265 |
|
|
int user = bit (insn, 22);
|
4266 |
|
|
int increment = bit (insn, 23);
|
4267 |
|
|
int before = bit (insn, 24);
|
4268 |
|
|
int writeback = bit (insn, 21);
|
4269 |
|
|
int rn = bits (insn, 16, 19);
|
4270 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
4271 |
|
|
|
4272 |
|
|
/* Block transfers which don't mention PC can be run directly out-of-line. */
|
4273 |
|
|
if (rn != 15 && (insn & 0x8000) == 0)
|
4274 |
|
|
return copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
|
4275 |
|
|
|
4276 |
|
|
if (rn == 15)
|
4277 |
|
|
{
|
4278 |
|
|
warning (_("displaced: Unpredictable LDM or STM with base register r15"));
|
4279 |
|
|
return copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
|
4280 |
|
|
}
|
4281 |
|
|
|
4282 |
|
|
if (debug_displaced)
|
4283 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
|
4284 |
|
|
"%.8lx\n", (unsigned long) insn);
|
4285 |
|
|
|
4286 |
|
|
dsc->u.block.xfer_addr = displaced_read_reg (regs, from, rn);
|
4287 |
|
|
dsc->u.block.rn = rn;
|
4288 |
|
|
|
4289 |
|
|
dsc->u.block.load = load;
|
4290 |
|
|
dsc->u.block.user = user;
|
4291 |
|
|
dsc->u.block.increment = increment;
|
4292 |
|
|
dsc->u.block.before = before;
|
4293 |
|
|
dsc->u.block.writeback = writeback;
|
4294 |
|
|
dsc->u.block.cond = bits (insn, 28, 31);
|
4295 |
|
|
|
4296 |
|
|
dsc->u.block.regmask = insn & 0xffff;
|
4297 |
|
|
|
4298 |
|
|
if (load)
|
4299 |
|
|
{
|
4300 |
|
|
if ((insn & 0xffff) == 0xffff)
|
4301 |
|
|
{
|
4302 |
|
|
/* LDM with a fully-populated register list. This case is
|
4303 |
|
|
particularly tricky. Implement for now by fully emulating the
|
4304 |
|
|
instruction (which might not behave perfectly in all cases, but
|
4305 |
|
|
these instructions should be rare enough for that not to matter
|
4306 |
|
|
too much). */
|
4307 |
|
|
dsc->modinsn[0] = ARM_NOP;
|
4308 |
|
|
|
4309 |
|
|
dsc->cleanup = &cleanup_block_load_all;
|
4310 |
|
|
}
|
4311 |
|
|
else
|
4312 |
|
|
{
|
4313 |
|
|
/* LDM of a list of registers which includes PC. Implement by
|
4314 |
|
|
rewriting the list of registers to be transferred into a
|
4315 |
|
|
contiguous chunk r0...rX before doing the transfer, then shuffling
|
4316 |
|
|
registers into the correct places in the cleanup routine. */
|
4317 |
|
|
unsigned int regmask = insn & 0xffff;
|
4318 |
|
|
unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1;
|
4319 |
|
|
unsigned int to = 0, from = 0, i, new_rn;
|
4320 |
|
|
|
4321 |
|
|
for (i = 0; i < num_in_list; i++)
|
4322 |
|
|
dsc->tmp[i] = displaced_read_reg (regs, from, i);
|
4323 |
|
|
|
4324 |
|
|
/* Writeback makes things complicated. We need to avoid clobbering
|
4325 |
|
|
the base register with one of the registers in our modified
|
4326 |
|
|
register list, but just using a different register can't work in
|
4327 |
|
|
all cases, e.g.:
|
4328 |
|
|
|
4329 |
|
|
ldm r14!, {r0-r13,pc}
|
4330 |
|
|
|
4331 |
|
|
which would need to be rewritten as:
|
4332 |
|
|
|
4333 |
|
|
ldm rN!, {r0-r14}
|
4334 |
|
|
|
4335 |
|
|
but that can't work, because there's no free register for N.
|
4336 |
|
|
|
4337 |
|
|
Solve this by turning off the writeback bit, and emulating
|
4338 |
|
|
writeback manually in the cleanup routine. */
|
4339 |
|
|
|
4340 |
|
|
if (writeback)
|
4341 |
|
|
insn &= ~(1 << 21);
|
4342 |
|
|
|
4343 |
|
|
new_regmask = (1 << num_in_list) - 1;
|
4344 |
|
|
|
4345 |
|
|
if (debug_displaced)
|
4346 |
|
|
fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
|
4347 |
|
|
"{..., pc}: original reg list %.4x, modified "
|
4348 |
|
|
"list %.4x\n"), rn, writeback ? "!" : "",
|
4349 |
|
|
(int) insn & 0xffff, new_regmask);
|
4350 |
|
|
|
4351 |
|
|
dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
|
4352 |
|
|
|
4353 |
|
|
dsc->cleanup = &cleanup_block_load_pc;
|
4354 |
|
|
}
|
4355 |
|
|
}
|
4356 |
|
|
else
|
4357 |
|
|
{
|
4358 |
|
|
/* STM of a list of registers which includes PC. Run the instruction
|
4359 |
|
|
as-is, but out of line: this will store the wrong value for the PC,
|
4360 |
|
|
so we must manually fix up the memory in the cleanup routine.
|
4361 |
|
|
Doing things this way has the advantage that we can auto-detect
|
4362 |
|
|
the offset of the PC write (which is architecture-dependent) in
|
4363 |
|
|
the cleanup routine. */
|
4364 |
|
|
dsc->modinsn[0] = insn;
|
4365 |
|
|
|
4366 |
|
|
dsc->cleanup = &cleanup_block_store_pc;
|
4367 |
|
|
}
|
4368 |
|
|
|
4369 |
|
|
return 0;
|
4370 |
|
|
}
|
4371 |
|
|
|
4372 |
|
|
/* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
|
4373 |
|
|
for Linux, where some SVC instructions must be treated specially. */
|
4374 |
|
|
|
4375 |
|
|
static void
|
4376 |
|
|
cleanup_svc (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, struct regcache *regs,
|
4377 |
|
|
struct displaced_step_closure *dsc)
|
4378 |
|
|
{
|
4379 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
4380 |
|
|
CORE_ADDR resume_addr = from + 4;
|
4381 |
|
|
|
4382 |
|
|
if (debug_displaced)
|
4383 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
|
4384 |
|
|
"%.8lx\n", (unsigned long) resume_addr);
|
4385 |
|
|
|
4386 |
|
|
displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
|
4387 |
|
|
}
|
4388 |
|
|
|
4389 |
|
|
static int
|
4390 |
|
|
copy_svc (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
|
4391 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
4392 |
|
|
{
|
4393 |
|
|
CORE_ADDR from = dsc->insn_addr;
|
4394 |
|
|
|
4395 |
|
|
/* Allow OS-specific code to override SVC handling. */
|
4396 |
|
|
if (dsc->u.svc.copy_svc_os)
|
4397 |
|
|
return dsc->u.svc.copy_svc_os (gdbarch, insn, to, regs, dsc);
|
4398 |
|
|
|
4399 |
|
|
if (debug_displaced)
|
4400 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
|
4401 |
|
|
(unsigned long) insn);
|
4402 |
|
|
|
4403 |
|
|
/* Preparation: none.
|
4404 |
|
|
Insn: unmodified svc.
|
4405 |
|
|
Cleanup: pc <- insn_addr + 4. */
|
4406 |
|
|
|
4407 |
|
|
dsc->modinsn[0] = insn;
|
4408 |
|
|
|
4409 |
|
|
dsc->cleanup = &cleanup_svc;
|
4410 |
|
|
/* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
|
4411 |
|
|
instruction. */
|
4412 |
|
|
dsc->wrote_to_pc = 1;
|
4413 |
|
|
|
4414 |
|
|
return 0;
|
4415 |
|
|
}
|
4416 |
|
|
|
4417 |
|
|
/* Copy undefined instructions. */
|
4418 |
|
|
|
4419 |
|
|
static int
|
4420 |
|
|
copy_undef (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, uint32_t insn,
|
4421 |
|
|
struct displaced_step_closure *dsc)
|
4422 |
|
|
{
|
4423 |
|
|
if (debug_displaced)
|
4424 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn %.8lx\n",
|
4425 |
|
|
(unsigned long) insn);
|
4426 |
|
|
|
4427 |
|
|
dsc->modinsn[0] = insn;
|
4428 |
|
|
|
4429 |
|
|
return 0;
|
4430 |
|
|
}
|
4431 |
|
|
|
4432 |
|
|
/* Copy unpredictable instructions. */
|
4433 |
|
|
|
4434 |
|
|
static int
|
4435 |
|
|
copy_unpred (struct gdbarch *gdbarch ATTRIBUTE_UNUSED, uint32_t insn,
|
4436 |
|
|
struct displaced_step_closure *dsc)
|
4437 |
|
|
{
|
4438 |
|
|
if (debug_displaced)
|
4439 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
|
4440 |
|
|
"%.8lx\n", (unsigned long) insn);
|
4441 |
|
|
|
4442 |
|
|
dsc->modinsn[0] = insn;
|
4443 |
|
|
|
4444 |
|
|
return 0;
|
4445 |
|
|
}
|
4446 |
|
|
|
4447 |
|
|
/* The decode_* functions are instruction decoding helpers. They mostly follow
|
4448 |
|
|
the presentation in the ARM ARM. */
|
4449 |
|
|
|
4450 |
|
|
static int
|
4451 |
|
|
decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
|
4452 |
|
|
struct regcache *regs,
|
4453 |
|
|
struct displaced_step_closure *dsc)
|
4454 |
|
|
{
|
4455 |
|
|
unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
|
4456 |
|
|
unsigned int rn = bits (insn, 16, 19);
|
4457 |
|
|
|
4458 |
|
|
if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
|
4459 |
|
|
return copy_unmodified (gdbarch, insn, "cps", dsc);
|
4460 |
|
|
else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
|
4461 |
|
|
return copy_unmodified (gdbarch, insn, "setend", dsc);
|
4462 |
|
|
else if ((op1 & 0x60) == 0x20)
|
4463 |
|
|
return copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
|
4464 |
|
|
else if ((op1 & 0x71) == 0x40)
|
4465 |
|
|
return copy_unmodified (gdbarch, insn, "neon elt/struct load/store", dsc);
|
4466 |
|
|
else if ((op1 & 0x77) == 0x41)
|
4467 |
|
|
return copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
|
4468 |
|
|
else if ((op1 & 0x77) == 0x45)
|
4469 |
|
|
return copy_preload (gdbarch, insn, regs, dsc); /* pli. */
|
4470 |
|
|
else if ((op1 & 0x77) == 0x51)
|
4471 |
|
|
{
|
4472 |
|
|
if (rn != 0xf)
|
4473 |
|
|
return copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
|
4474 |
|
|
else
|
4475 |
|
|
return copy_unpred (gdbarch, insn, dsc);
|
4476 |
|
|
}
|
4477 |
|
|
else if ((op1 & 0x77) == 0x55)
|
4478 |
|
|
return copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
|
4479 |
|
|
else if (op1 == 0x57)
|
4480 |
|
|
switch (op2)
|
4481 |
|
|
{
|
4482 |
|
|
case 0x1: return copy_unmodified (gdbarch, insn, "clrex", dsc);
|
4483 |
|
|
case 0x4: return copy_unmodified (gdbarch, insn, "dsb", dsc);
|
4484 |
|
|
case 0x5: return copy_unmodified (gdbarch, insn, "dmb", dsc);
|
4485 |
|
|
case 0x6: return copy_unmodified (gdbarch, insn, "isb", dsc);
|
4486 |
|
|
default: return copy_unpred (gdbarch, insn, dsc);
|
4487 |
|
|
}
|
4488 |
|
|
else if ((op1 & 0x63) == 0x43)
|
4489 |
|
|
return copy_unpred (gdbarch, insn, dsc);
|
4490 |
|
|
else if ((op2 & 0x1) == 0x0)
|
4491 |
|
|
switch (op1 & ~0x80)
|
4492 |
|
|
{
|
4493 |
|
|
case 0x61:
|
4494 |
|
|
return copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
|
4495 |
|
|
case 0x65:
|
4496 |
|
|
return copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
|
4497 |
|
|
case 0x71: case 0x75:
|
4498 |
|
|
/* pld/pldw reg. */
|
4499 |
|
|
return copy_preload_reg (gdbarch, insn, regs, dsc);
|
4500 |
|
|
case 0x63: case 0x67: case 0x73: case 0x77:
|
4501 |
|
|
return copy_unpred (gdbarch, insn, dsc);
|
4502 |
|
|
default:
|
4503 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4504 |
|
|
}
|
4505 |
|
|
else
|
4506 |
|
|
return copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
|
4507 |
|
|
}
|
4508 |
|
|
|
4509 |
|
|
static int
|
4510 |
|
|
decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
|
4511 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
4512 |
|
|
{
|
4513 |
|
|
if (bit (insn, 27) == 0)
|
4514 |
|
|
return decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
|
4515 |
|
|
/* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
|
4516 |
|
|
else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
|
4517 |
|
|
{
|
4518 |
|
|
case 0x0: case 0x2:
|
4519 |
|
|
return copy_unmodified (gdbarch, insn, "srs", dsc);
|
4520 |
|
|
|
4521 |
|
|
case 0x1: case 0x3:
|
4522 |
|
|
return copy_unmodified (gdbarch, insn, "rfe", dsc);
|
4523 |
|
|
|
4524 |
|
|
case 0x4: case 0x5: case 0x6: case 0x7:
|
4525 |
|
|
return copy_b_bl_blx (gdbarch, insn, regs, dsc);
|
4526 |
|
|
|
4527 |
|
|
case 0x8:
|
4528 |
|
|
switch ((insn & 0xe00000) >> 21)
|
4529 |
|
|
{
|
4530 |
|
|
case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
|
4531 |
|
|
/* stc/stc2. */
|
4532 |
|
|
return copy_copro_load_store (gdbarch, insn, regs, dsc);
|
4533 |
|
|
|
4534 |
|
|
case 0x2:
|
4535 |
|
|
return copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
|
4536 |
|
|
|
4537 |
|
|
default:
|
4538 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4539 |
|
|
}
|
4540 |
|
|
|
4541 |
|
|
case 0x9:
|
4542 |
|
|
{
|
4543 |
|
|
int rn_f = (bits (insn, 16, 19) == 0xf);
|
4544 |
|
|
switch ((insn & 0xe00000) >> 21)
|
4545 |
|
|
{
|
4546 |
|
|
case 0x1: case 0x3:
|
4547 |
|
|
/* ldc/ldc2 imm (undefined for rn == pc). */
|
4548 |
|
|
return rn_f ? copy_undef (gdbarch, insn, dsc)
|
4549 |
|
|
: copy_copro_load_store (gdbarch, insn, regs, dsc);
|
4550 |
|
|
|
4551 |
|
|
case 0x2:
|
4552 |
|
|
return copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
|
4553 |
|
|
|
4554 |
|
|
case 0x4: case 0x5: case 0x6: case 0x7:
|
4555 |
|
|
/* ldc/ldc2 lit (undefined for rn != pc). */
|
4556 |
|
|
return rn_f ? copy_copro_load_store (gdbarch, insn, regs, dsc)
|
4557 |
|
|
: copy_undef (gdbarch, insn, dsc);
|
4558 |
|
|
|
4559 |
|
|
default:
|
4560 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4561 |
|
|
}
|
4562 |
|
|
}
|
4563 |
|
|
|
4564 |
|
|
case 0xa:
|
4565 |
|
|
return copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
|
4566 |
|
|
|
4567 |
|
|
case 0xb:
|
4568 |
|
|
if (bits (insn, 16, 19) == 0xf)
|
4569 |
|
|
/* ldc/ldc2 lit. */
|
4570 |
|
|
return copy_copro_load_store (gdbarch, insn, regs, dsc);
|
4571 |
|
|
else
|
4572 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4573 |
|
|
|
4574 |
|
|
case 0xc:
|
4575 |
|
|
if (bit (insn, 4))
|
4576 |
|
|
return copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
|
4577 |
|
|
else
|
4578 |
|
|
return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
|
4579 |
|
|
|
4580 |
|
|
case 0xd:
|
4581 |
|
|
if (bit (insn, 4))
|
4582 |
|
|
return copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
|
4583 |
|
|
else
|
4584 |
|
|
return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
|
4585 |
|
|
|
4586 |
|
|
default:
|
4587 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4588 |
|
|
}
|
4589 |
|
|
}
|
4590 |
|
|
|
4591 |
|
|
/* Decode miscellaneous instructions in dp/misc encoding space. */
|
4592 |
|
|
|
4593 |
|
|
static int
|
4594 |
|
|
decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
|
4595 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
4596 |
|
|
{
|
4597 |
|
|
unsigned int op2 = bits (insn, 4, 6);
|
4598 |
|
|
unsigned int op = bits (insn, 21, 22);
|
4599 |
|
|
unsigned int op1 = bits (insn, 16, 19);
|
4600 |
|
|
|
4601 |
|
|
switch (op2)
|
4602 |
|
|
{
|
4603 |
|
|
case 0x0:
|
4604 |
|
|
return copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
|
4605 |
|
|
|
4606 |
|
|
case 0x1:
|
4607 |
|
|
if (op == 0x1) /* bx. */
|
4608 |
|
|
return copy_bx_blx_reg (gdbarch, insn, regs, dsc);
|
4609 |
|
|
else if (op == 0x3)
|
4610 |
|
|
return copy_unmodified (gdbarch, insn, "clz", dsc);
|
4611 |
|
|
else
|
4612 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4613 |
|
|
|
4614 |
|
|
case 0x2:
|
4615 |
|
|
if (op == 0x1)
|
4616 |
|
|
/* Not really supported. */
|
4617 |
|
|
return copy_unmodified (gdbarch, insn, "bxj", dsc);
|
4618 |
|
|
else
|
4619 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4620 |
|
|
|
4621 |
|
|
case 0x3:
|
4622 |
|
|
if (op == 0x1)
|
4623 |
|
|
return copy_bx_blx_reg (gdbarch, insn, regs, dsc); /* blx register. */
|
4624 |
|
|
else
|
4625 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4626 |
|
|
|
4627 |
|
|
case 0x5:
|
4628 |
|
|
return copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
|
4629 |
|
|
|
4630 |
|
|
case 0x7:
|
4631 |
|
|
if (op == 0x1)
|
4632 |
|
|
return copy_unmodified (gdbarch, insn, "bkpt", dsc);
|
4633 |
|
|
else if (op == 0x3)
|
4634 |
|
|
/* Not really supported. */
|
4635 |
|
|
return copy_unmodified (gdbarch, insn, "smc", dsc);
|
4636 |
|
|
|
4637 |
|
|
default:
|
4638 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4639 |
|
|
}
|
4640 |
|
|
}
|
4641 |
|
|
|
4642 |
|
|
static int
|
4643 |
|
|
decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
|
4644 |
|
|
struct displaced_step_closure *dsc)
|
4645 |
|
|
{
|
4646 |
|
|
if (bit (insn, 25))
|
4647 |
|
|
switch (bits (insn, 20, 24))
|
4648 |
|
|
{
|
4649 |
|
|
case 0x10:
|
4650 |
|
|
return copy_unmodified (gdbarch, insn, "movw", dsc);
|
4651 |
|
|
|
4652 |
|
|
case 0x14:
|
4653 |
|
|
return copy_unmodified (gdbarch, insn, "movt", dsc);
|
4654 |
|
|
|
4655 |
|
|
case 0x12: case 0x16:
|
4656 |
|
|
return copy_unmodified (gdbarch, insn, "msr imm", dsc);
|
4657 |
|
|
|
4658 |
|
|
default:
|
4659 |
|
|
return copy_alu_imm (gdbarch, insn, regs, dsc);
|
4660 |
|
|
}
|
4661 |
|
|
else
|
4662 |
|
|
{
|
4663 |
|
|
uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
|
4664 |
|
|
|
4665 |
|
|
if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
|
4666 |
|
|
return copy_alu_reg (gdbarch, insn, regs, dsc);
|
4667 |
|
|
else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
|
4668 |
|
|
return copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
|
4669 |
|
|
else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
|
4670 |
|
|
return decode_miscellaneous (gdbarch, insn, regs, dsc);
|
4671 |
|
|
else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
|
4672 |
|
|
return copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
|
4673 |
|
|
else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
|
4674 |
|
|
return copy_unmodified (gdbarch, insn, "mul/mla", dsc);
|
4675 |
|
|
else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
|
4676 |
|
|
return copy_unmodified (gdbarch, insn, "synch", dsc);
|
4677 |
|
|
else if (op2 == 0xb || (op2 & 0xd) == 0xd)
|
4678 |
|
|
/* 2nd arg means "unpriveleged". */
|
4679 |
|
|
return copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
|
4680 |
|
|
dsc);
|
4681 |
|
|
}
|
4682 |
|
|
|
4683 |
|
|
/* Should be unreachable. */
|
4684 |
|
|
return 1;
|
4685 |
|
|
}
|
4686 |
|
|
|
4687 |
|
|
static int
|
4688 |
|
|
decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
|
4689 |
|
|
struct regcache *regs,
|
4690 |
|
|
struct displaced_step_closure *dsc)
|
4691 |
|
|
{
|
4692 |
|
|
int a = bit (insn, 25), b = bit (insn, 4);
|
4693 |
|
|
uint32_t op1 = bits (insn, 20, 24);
|
4694 |
|
|
int rn_f = bits (insn, 16, 19) == 0xf;
|
4695 |
|
|
|
4696 |
|
|
if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
|
4697 |
|
|
|| (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
|
4698 |
|
|
return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 0, 0);
|
4699 |
|
|
else if ((!a && (op1 & 0x17) == 0x02)
|
4700 |
|
|
|| (a && (op1 & 0x17) == 0x02 && !b))
|
4701 |
|
|
return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 0, 1);
|
4702 |
|
|
else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
|
4703 |
|
|
|| (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
|
4704 |
|
|
return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 0, 0);
|
4705 |
|
|
else if ((!a && (op1 & 0x17) == 0x03)
|
4706 |
|
|
|| (a && (op1 & 0x17) == 0x03 && !b))
|
4707 |
|
|
return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 0, 1);
|
4708 |
|
|
else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
|
4709 |
|
|
|| (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
|
4710 |
|
|
return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
|
4711 |
|
|
else if ((!a && (op1 & 0x17) == 0x06)
|
4712 |
|
|
|| (a && (op1 & 0x17) == 0x06 && !b))
|
4713 |
|
|
return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
|
4714 |
|
|
else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
|
4715 |
|
|
|| (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
|
4716 |
|
|
return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
|
4717 |
|
|
else if ((!a && (op1 & 0x17) == 0x07)
|
4718 |
|
|
|| (a && (op1 & 0x17) == 0x07 && !b))
|
4719 |
|
|
return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
|
4720 |
|
|
|
4721 |
|
|
/* Should be unreachable. */
|
4722 |
|
|
return 1;
|
4723 |
|
|
}
|
4724 |
|
|
|
4725 |
|
|
static int
|
4726 |
|
|
decode_media (struct gdbarch *gdbarch, uint32_t insn,
|
4727 |
|
|
struct displaced_step_closure *dsc)
|
4728 |
|
|
{
|
4729 |
|
|
switch (bits (insn, 20, 24))
|
4730 |
|
|
{
|
4731 |
|
|
case 0x00: case 0x01: case 0x02: case 0x03:
|
4732 |
|
|
return copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
|
4733 |
|
|
|
4734 |
|
|
case 0x04: case 0x05: case 0x06: case 0x07:
|
4735 |
|
|
return copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
|
4736 |
|
|
|
4737 |
|
|
case 0x08: case 0x09: case 0x0a: case 0x0b:
|
4738 |
|
|
case 0x0c: case 0x0d: case 0x0e: case 0x0f:
|
4739 |
|
|
return copy_unmodified (gdbarch, insn,
|
4740 |
|
|
"decode/pack/unpack/saturate/reverse", dsc);
|
4741 |
|
|
|
4742 |
|
|
case 0x18:
|
4743 |
|
|
if (bits (insn, 5, 7) == 0) /* op2. */
|
4744 |
|
|
{
|
4745 |
|
|
if (bits (insn, 12, 15) == 0xf)
|
4746 |
|
|
return copy_unmodified (gdbarch, insn, "usad8", dsc);
|
4747 |
|
|
else
|
4748 |
|
|
return copy_unmodified (gdbarch, insn, "usada8", dsc);
|
4749 |
|
|
}
|
4750 |
|
|
else
|
4751 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4752 |
|
|
|
4753 |
|
|
case 0x1a: case 0x1b:
|
4754 |
|
|
if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
|
4755 |
|
|
return copy_unmodified (gdbarch, insn, "sbfx", dsc);
|
4756 |
|
|
else
|
4757 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4758 |
|
|
|
4759 |
|
|
case 0x1c: case 0x1d:
|
4760 |
|
|
if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
|
4761 |
|
|
{
|
4762 |
|
|
if (bits (insn, 0, 3) == 0xf)
|
4763 |
|
|
return copy_unmodified (gdbarch, insn, "bfc", dsc);
|
4764 |
|
|
else
|
4765 |
|
|
return copy_unmodified (gdbarch, insn, "bfi", dsc);
|
4766 |
|
|
}
|
4767 |
|
|
else
|
4768 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4769 |
|
|
|
4770 |
|
|
case 0x1e: case 0x1f:
|
4771 |
|
|
if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
|
4772 |
|
|
return copy_unmodified (gdbarch, insn, "ubfx", dsc);
|
4773 |
|
|
else
|
4774 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4775 |
|
|
}
|
4776 |
|
|
|
4777 |
|
|
/* Should be unreachable. */
|
4778 |
|
|
return 1;
|
4779 |
|
|
}
|
4780 |
|
|
|
4781 |
|
|
static int
|
4782 |
|
|
decode_b_bl_ldmstm (struct gdbarch *gdbarch, int32_t insn,
|
4783 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
4784 |
|
|
{
|
4785 |
|
|
if (bit (insn, 25))
|
4786 |
|
|
return copy_b_bl_blx (gdbarch, insn, regs, dsc);
|
4787 |
|
|
else
|
4788 |
|
|
return copy_block_xfer (gdbarch, insn, regs, dsc);
|
4789 |
|
|
}
|
4790 |
|
|
|
4791 |
|
|
static int
|
4792 |
|
|
decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
|
4793 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
4794 |
|
|
{
|
4795 |
|
|
unsigned int opcode = bits (insn, 20, 24);
|
4796 |
|
|
|
4797 |
|
|
switch (opcode)
|
4798 |
|
|
{
|
4799 |
|
|
case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
|
4800 |
|
|
return copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
|
4801 |
|
|
|
4802 |
|
|
case 0x08: case 0x0a: case 0x0c: case 0x0e:
|
4803 |
|
|
case 0x12: case 0x16:
|
4804 |
|
|
return copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
|
4805 |
|
|
|
4806 |
|
|
case 0x09: case 0x0b: case 0x0d: case 0x0f:
|
4807 |
|
|
case 0x13: case 0x17:
|
4808 |
|
|
return copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
|
4809 |
|
|
|
4810 |
|
|
case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
|
4811 |
|
|
case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
|
4812 |
|
|
/* Note: no writeback for these instructions. Bit 25 will always be
|
4813 |
|
|
zero though (via caller), so the following works OK. */
|
4814 |
|
|
return copy_copro_load_store (gdbarch, insn, regs, dsc);
|
4815 |
|
|
}
|
4816 |
|
|
|
4817 |
|
|
/* Should be unreachable. */
|
4818 |
|
|
return 1;
|
4819 |
|
|
}
|
4820 |
|
|
|
4821 |
|
|
static int
|
4822 |
|
|
decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
|
4823 |
|
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
4824 |
|
|
{
|
4825 |
|
|
unsigned int op1 = bits (insn, 20, 25);
|
4826 |
|
|
int op = bit (insn, 4);
|
4827 |
|
|
unsigned int coproc = bits (insn, 8, 11);
|
4828 |
|
|
unsigned int rn = bits (insn, 16, 19);
|
4829 |
|
|
|
4830 |
|
|
if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
|
4831 |
|
|
return decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
|
4832 |
|
|
else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
|
4833 |
|
|
&& (coproc & 0xe) != 0xa)
|
4834 |
|
|
/* stc/stc2. */
|
4835 |
|
|
return copy_copro_load_store (gdbarch, insn, regs, dsc);
|
4836 |
|
|
else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
|
4837 |
|
|
&& (coproc & 0xe) != 0xa)
|
4838 |
|
|
/* ldc/ldc2 imm/lit. */
|
4839 |
|
|
return copy_copro_load_store (gdbarch, insn, regs, dsc);
|
4840 |
|
|
else if ((op1 & 0x3e) == 0x00)
|
4841 |
|
|
return copy_undef (gdbarch, insn, dsc);
|
4842 |
|
|
else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
|
4843 |
|
|
return copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
|
4844 |
|
|
else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
|
4845 |
|
|
return copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
|
4846 |
|
|
else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
|
4847 |
|
|
return copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
|
4848 |
|
|
else if ((op1 & 0x30) == 0x20 && !op)
|
4849 |
|
|
{
|
4850 |
|
|
if ((coproc & 0xe) == 0xa)
|
4851 |
|
|
return copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
|
4852 |
|
|
else
|
4853 |
|
|
return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
|
4854 |
|
|
}
|
4855 |
|
|
else if ((op1 & 0x30) == 0x20 && op)
|
4856 |
|
|
return copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
|
4857 |
|
|
else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
|
4858 |
|
|
return copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
|
4859 |
|
|
else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
|
4860 |
|
|
return copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
|
4861 |
|
|
else if ((op1 & 0x30) == 0x30)
|
4862 |
|
|
return copy_svc (gdbarch, insn, to, regs, dsc);
|
4863 |
|
|
else
|
4864 |
|
|
return copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
|
4865 |
|
|
}
|
4866 |
|
|
|
4867 |
|
|
void
|
4868 |
|
|
arm_process_displaced_insn (struct gdbarch *gdbarch, uint32_t insn,
|
4869 |
|
|
CORE_ADDR from, CORE_ADDR to, struct regcache *regs,
|
4870 |
|
|
struct displaced_step_closure *dsc)
|
4871 |
|
|
{
|
4872 |
|
|
int err = 0;
|
4873 |
|
|
|
4874 |
|
|
if (!displaced_in_arm_mode (regs))
|
4875 |
|
|
error (_("Displaced stepping is only supported in ARM mode"));
|
4876 |
|
|
|
4877 |
|
|
/* Most displaced instructions use a 1-instruction scratch space, so set this
|
4878 |
|
|
here and override below if/when necessary. */
|
4879 |
|
|
dsc->numinsns = 1;
|
4880 |
|
|
dsc->insn_addr = from;
|
4881 |
|
|
dsc->scratch_base = to;
|
4882 |
|
|
dsc->cleanup = NULL;
|
4883 |
|
|
dsc->wrote_to_pc = 0;
|
4884 |
|
|
|
4885 |
|
|
if ((insn & 0xf0000000) == 0xf0000000)
|
4886 |
|
|
err = decode_unconditional (gdbarch, insn, regs, dsc);
|
4887 |
|
|
else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
|
4888 |
|
|
{
|
4889 |
|
|
case 0x0: case 0x1: case 0x2: case 0x3:
|
4890 |
|
|
err = decode_dp_misc (gdbarch, insn, regs, dsc);
|
4891 |
|
|
break;
|
4892 |
|
|
|
4893 |
|
|
case 0x4: case 0x5: case 0x6:
|
4894 |
|
|
err = decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
|
4895 |
|
|
break;
|
4896 |
|
|
|
4897 |
|
|
case 0x7:
|
4898 |
|
|
err = decode_media (gdbarch, insn, dsc);
|
4899 |
|
|
break;
|
4900 |
|
|
|
4901 |
|
|
case 0x8: case 0x9: case 0xa: case 0xb:
|
4902 |
|
|
err = decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
|
4903 |
|
|
break;
|
4904 |
|
|
|
4905 |
|
|
case 0xc: case 0xd: case 0xe: case 0xf:
|
4906 |
|
|
err = decode_svc_copro (gdbarch, insn, to, regs, dsc);
|
4907 |
|
|
break;
|
4908 |
|
|
}
|
4909 |
|
|
|
4910 |
|
|
if (err)
|
4911 |
|
|
internal_error (__FILE__, __LINE__,
|
4912 |
|
|
_("arm_process_displaced_insn: Instruction decode error"));
|
4913 |
|
|
}
|
4914 |
|
|
|
4915 |
|
|
/* Actually set up the scratch space for a displaced instruction. */
|
4916 |
|
|
|
4917 |
|
|
void
|
4918 |
|
|
arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
|
4919 |
|
|
CORE_ADDR to, struct displaced_step_closure *dsc)
|
4920 |
|
|
{
|
4921 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
4922 |
|
|
unsigned int i;
|
4923 |
|
|
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
|
4924 |
|
|
|
4925 |
|
|
/* Poke modified instruction(s). */
|
4926 |
|
|
for (i = 0; i < dsc->numinsns; i++)
|
4927 |
|
|
{
|
4928 |
|
|
if (debug_displaced)
|
4929 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: writing insn %.8lx at "
|
4930 |
|
|
"%.8lx\n", (unsigned long) dsc->modinsn[i],
|
4931 |
|
|
(unsigned long) to + i * 4);
|
4932 |
|
|
write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code,
|
4933 |
|
|
dsc->modinsn[i]);
|
4934 |
|
|
}
|
4935 |
|
|
|
4936 |
|
|
/* Put breakpoint afterwards. */
|
4937 |
|
|
write_memory (to + dsc->numinsns * 4, tdep->arm_breakpoint,
|
4938 |
|
|
tdep->arm_breakpoint_size);
|
4939 |
|
|
|
4940 |
|
|
if (debug_displaced)
|
4941 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
|
4942 |
|
|
paddress (gdbarch, from), paddress (gdbarch, to));
|
4943 |
|
|
}
|
4944 |
|
|
|
4945 |
|
|
/* Entry point for copying an instruction into scratch space for displaced
|
4946 |
|
|
stepping. */
|
4947 |
|
|
|
4948 |
|
|
struct displaced_step_closure *
|
4949 |
|
|
arm_displaced_step_copy_insn (struct gdbarch *gdbarch,
|
4950 |
|
|
CORE_ADDR from, CORE_ADDR to,
|
4951 |
|
|
struct regcache *regs)
|
4952 |
|
|
{
|
4953 |
|
|
struct displaced_step_closure *dsc
|
4954 |
|
|
= xmalloc (sizeof (struct displaced_step_closure));
|
4955 |
|
|
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
|
4956 |
|
|
uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
|
4957 |
|
|
|
4958 |
|
|
if (debug_displaced)
|
4959 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
|
4960 |
|
|
"at %.8lx\n", (unsigned long) insn,
|
4961 |
|
|
(unsigned long) from);
|
4962 |
|
|
|
4963 |
|
|
arm_process_displaced_insn (gdbarch, insn, from, to, regs, dsc);
|
4964 |
|
|
arm_displaced_init_closure (gdbarch, from, to, dsc);
|
4965 |
|
|
|
4966 |
|
|
return dsc;
|
4967 |
|
|
}
|
4968 |
|
|
|
4969 |
|
|
/* Entry point for cleaning things up after a displaced instruction has been
|
4970 |
|
|
single-stepped. */
|
4971 |
|
|
|
4972 |
|
|
void
|
4973 |
|
|
arm_displaced_step_fixup (struct gdbarch *gdbarch,
|
4974 |
|
|
struct displaced_step_closure *dsc,
|
4975 |
|
|
CORE_ADDR from, CORE_ADDR to,
|
4976 |
|
|
struct regcache *regs)
|
4977 |
|
|
{
|
4978 |
|
|
if (dsc->cleanup)
|
4979 |
|
|
dsc->cleanup (gdbarch, regs, dsc);
|
4980 |
|
|
|
4981 |
|
|
if (!dsc->wrote_to_pc)
|
4982 |
|
|
regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, dsc->insn_addr + 4);
|
4983 |
|
|
}
|
4984 |
|
|
|
4985 |
|
|
#include "bfd-in2.h"
|
4986 |
|
|
#include "libcoff.h"
|
4987 |
|
|
|
4988 |
|
|
static int
|
4989 |
|
|
gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
|
4990 |
|
|
{
|
4991 |
|
|
if (arm_pc_is_thumb (memaddr))
|
4992 |
|
|
{
|
4993 |
|
|
static asymbol *asym;
|
4994 |
|
|
static combined_entry_type ce;
|
4995 |
|
|
static struct coff_symbol_struct csym;
|
4996 |
|
|
static struct bfd fake_bfd;
|
4997 |
|
|
static bfd_target fake_target;
|
4998 |
|
|
|
4999 |
|
|
if (csym.native == NULL)
|
5000 |
|
|
{
|
5001 |
|
|
/* Create a fake symbol vector containing a Thumb symbol.
|
5002 |
|
|
This is solely so that the code in print_insn_little_arm()
|
5003 |
|
|
and print_insn_big_arm() in opcodes/arm-dis.c will detect
|
5004 |
|
|
the presence of a Thumb symbol and switch to decoding
|
5005 |
|
|
Thumb instructions. */
|
5006 |
|
|
|
5007 |
|
|
fake_target.flavour = bfd_target_coff_flavour;
|
5008 |
|
|
fake_bfd.xvec = &fake_target;
|
5009 |
|
|
ce.u.syment.n_sclass = C_THUMBEXTFUNC;
|
5010 |
|
|
csym.native = &ce;
|
5011 |
|
|
csym.symbol.the_bfd = &fake_bfd;
|
5012 |
|
|
csym.symbol.name = "fake";
|
5013 |
|
|
asym = (asymbol *) & csym;
|
5014 |
|
|
}
|
5015 |
|
|
|
5016 |
|
|
memaddr = UNMAKE_THUMB_ADDR (memaddr);
|
5017 |
|
|
info->symbols = &asym;
|
5018 |
|
|
}
|
5019 |
|
|
else
|
5020 |
|
|
info->symbols = NULL;
|
5021 |
|
|
|
5022 |
|
|
if (info->endian == BFD_ENDIAN_BIG)
|
5023 |
|
|
return print_insn_big_arm (memaddr, info);
|
5024 |
|
|
else
|
5025 |
|
|
return print_insn_little_arm (memaddr, info);
|
5026 |
|
|
}
|
5027 |
|
|
|
5028 |
|
|
/* The following define instruction sequences that will cause ARM
|
5029 |
|
|
cpu's to take an undefined instruction trap. These are used to
|
5030 |
|
|
signal a breakpoint to GDB.
|
5031 |
|
|
|
5032 |
|
|
The newer ARMv4T cpu's are capable of operating in ARM or Thumb
|
5033 |
|
|
modes. A different instruction is required for each mode. The ARM
|
5034 |
|
|
cpu's can also be big or little endian. Thus four different
|
5035 |
|
|
instructions are needed to support all cases.
|
5036 |
|
|
|
5037 |
|
|
Note: ARMv4 defines several new instructions that will take the
|
5038 |
|
|
undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
|
5039 |
|
|
not in fact add the new instructions. The new undefined
|
5040 |
|
|
instructions in ARMv4 are all instructions that had no defined
|
5041 |
|
|
behaviour in earlier chips. There is no guarantee that they will
|
5042 |
|
|
raise an exception, but may be treated as NOP's. In practice, it
|
5043 |
|
|
may only safe to rely on instructions matching:
|
5044 |
|
|
|
5045 |
|
|
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
|
5046 |
|
|
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
|
5047 |
|
|
C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
|
5048 |
|
|
|
5049 |
|
|
Even this may only true if the condition predicate is true. The
|
5050 |
|
|
following use a condition predicate of ALWAYS so it is always TRUE.
|
5051 |
|
|
|
5052 |
|
|
There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
|
5053 |
|
|
and NetBSD all use a software interrupt rather than an undefined
|
5054 |
|
|
instruction to force a trap. This can be handled by by the
|
5055 |
|
|
abi-specific code during establishment of the gdbarch vector. */
|
5056 |
|
|
|
5057 |
|
|
#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
|
5058 |
|
|
#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
|
5059 |
|
|
#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
|
5060 |
|
|
#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
|
5061 |
|
|
|
5062 |
|
|
static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
|
5063 |
|
|
static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
|
5064 |
|
|
static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
|
5065 |
|
|
static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
|
5066 |
|
|
|
5067 |
|
|
/* Determine the type and size of breakpoint to insert at PCPTR. Uses
|
5068 |
|
|
the program counter value to determine whether a 16-bit or 32-bit
|
5069 |
|
|
breakpoint should be used. It returns a pointer to a string of
|
5070 |
|
|
bytes that encode a breakpoint instruction, stores the length of
|
5071 |
|
|
the string to *lenptr, and adjusts the program counter (if
|
5072 |
|
|
necessary) to point to the actual memory location where the
|
5073 |
|
|
breakpoint should be inserted. */
|
5074 |
|
|
|
5075 |
|
|
static const unsigned char *
|
5076 |
|
|
arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
|
5077 |
|
|
{
|
5078 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
5079 |
|
|
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
|
5080 |
|
|
|
5081 |
|
|
if (arm_pc_is_thumb (*pcptr))
|
5082 |
|
|
{
|
5083 |
|
|
*pcptr = UNMAKE_THUMB_ADDR (*pcptr);
|
5084 |
|
|
|
5085 |
|
|
/* If we have a separate 32-bit breakpoint instruction for Thumb-2,
|
5086 |
|
|
check whether we are replacing a 32-bit instruction. */
|
5087 |
|
|
if (tdep->thumb2_breakpoint != NULL)
|
5088 |
|
|
{
|
5089 |
|
|
gdb_byte buf[2];
|
5090 |
|
|
if (target_read_memory (*pcptr, buf, 2) == 0)
|
5091 |
|
|
{
|
5092 |
|
|
unsigned short inst1;
|
5093 |
|
|
inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
|
5094 |
|
|
if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
|
5095 |
|
|
{
|
5096 |
|
|
*lenptr = tdep->thumb2_breakpoint_size;
|
5097 |
|
|
return tdep->thumb2_breakpoint;
|
5098 |
|
|
}
|
5099 |
|
|
}
|
5100 |
|
|
}
|
5101 |
|
|
|
5102 |
|
|
*lenptr = tdep->thumb_breakpoint_size;
|
5103 |
|
|
return tdep->thumb_breakpoint;
|
5104 |
|
|
}
|
5105 |
|
|
else
|
5106 |
|
|
{
|
5107 |
|
|
*lenptr = tdep->arm_breakpoint_size;
|
5108 |
|
|
return tdep->arm_breakpoint;
|
5109 |
|
|
}
|
5110 |
|
|
}
|
5111 |
|
|
|
5112 |
|
|
static void
|
5113 |
|
|
arm_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
|
5114 |
|
|
int *kindptr)
|
5115 |
|
|
{
|
5116 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
5117 |
|
|
|
5118 |
|
|
arm_breakpoint_from_pc (gdbarch, pcptr, kindptr);
|
5119 |
|
|
|
5120 |
|
|
if (arm_pc_is_thumb (*pcptr) && *kindptr == 4)
|
5121 |
|
|
/* The documented magic value for a 32-bit Thumb-2 breakpoint, so
|
5122 |
|
|
that this is not confused with a 32-bit ARM breakpoint. */
|
5123 |
|
|
*kindptr = 3;
|
5124 |
|
|
}
|
5125 |
|
|
|
5126 |
|
|
/* Extract from an array REGBUF containing the (raw) register state a
|
5127 |
|
|
function return value of type TYPE, and copy that, in virtual
|
5128 |
|
|
format, into VALBUF. */
|
5129 |
|
|
|
5130 |
|
|
static void
|
5131 |
|
|
arm_extract_return_value (struct type *type, struct regcache *regs,
|
5132 |
|
|
gdb_byte *valbuf)
|
5133 |
|
|
{
|
5134 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regs);
|
5135 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
5136 |
|
|
|
5137 |
|
|
if (TYPE_CODE_FLT == TYPE_CODE (type))
|
5138 |
|
|
{
|
5139 |
|
|
switch (gdbarch_tdep (gdbarch)->fp_model)
|
5140 |
|
|
{
|
5141 |
|
|
case ARM_FLOAT_FPA:
|
5142 |
|
|
{
|
5143 |
|
|
/* The value is in register F0 in internal format. We need to
|
5144 |
|
|
extract the raw value and then convert it to the desired
|
5145 |
|
|
internal type. */
|
5146 |
|
|
bfd_byte tmpbuf[FP_REGISTER_SIZE];
|
5147 |
|
|
|
5148 |
|
|
regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
|
5149 |
|
|
convert_from_extended (floatformat_from_type (type), tmpbuf,
|
5150 |
|
|
valbuf, gdbarch_byte_order (gdbarch));
|
5151 |
|
|
}
|
5152 |
|
|
break;
|
5153 |
|
|
|
5154 |
|
|
case ARM_FLOAT_SOFT_FPA:
|
5155 |
|
|
case ARM_FLOAT_SOFT_VFP:
|
5156 |
|
|
/* ARM_FLOAT_VFP can arise if this is a variadic function so
|
5157 |
|
|
not using the VFP ABI code. */
|
5158 |
|
|
case ARM_FLOAT_VFP:
|
5159 |
|
|
regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
|
5160 |
|
|
if (TYPE_LENGTH (type) > 4)
|
5161 |
|
|
regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
|
5162 |
|
|
valbuf + INT_REGISTER_SIZE);
|
5163 |
|
|
break;
|
5164 |
|
|
|
5165 |
|
|
default:
|
5166 |
|
|
internal_error
|
5167 |
|
|
(__FILE__, __LINE__,
|
5168 |
|
|
_("arm_extract_return_value: Floating point model not supported"));
|
5169 |
|
|
break;
|
5170 |
|
|
}
|
5171 |
|
|
}
|
5172 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_INT
|
5173 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_CHAR
|
5174 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_BOOL
|
5175 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_PTR
|
5176 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_REF
|
5177 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_ENUM)
|
5178 |
|
|
{
|
5179 |
|
|
/* If the the type is a plain integer, then the access is
|
5180 |
|
|
straight-forward. Otherwise we have to play around a bit more. */
|
5181 |
|
|
int len = TYPE_LENGTH (type);
|
5182 |
|
|
int regno = ARM_A1_REGNUM;
|
5183 |
|
|
ULONGEST tmp;
|
5184 |
|
|
|
5185 |
|
|
while (len > 0)
|
5186 |
|
|
{
|
5187 |
|
|
/* By using store_unsigned_integer we avoid having to do
|
5188 |
|
|
anything special for small big-endian values. */
|
5189 |
|
|
regcache_cooked_read_unsigned (regs, regno++, &tmp);
|
5190 |
|
|
store_unsigned_integer (valbuf,
|
5191 |
|
|
(len > INT_REGISTER_SIZE
|
5192 |
|
|
? INT_REGISTER_SIZE : len),
|
5193 |
|
|
byte_order, tmp);
|
5194 |
|
|
len -= INT_REGISTER_SIZE;
|
5195 |
|
|
valbuf += INT_REGISTER_SIZE;
|
5196 |
|
|
}
|
5197 |
|
|
}
|
5198 |
|
|
else
|
5199 |
|
|
{
|
5200 |
|
|
/* For a structure or union the behaviour is as if the value had
|
5201 |
|
|
been stored to word-aligned memory and then loaded into
|
5202 |
|
|
registers with 32-bit load instruction(s). */
|
5203 |
|
|
int len = TYPE_LENGTH (type);
|
5204 |
|
|
int regno = ARM_A1_REGNUM;
|
5205 |
|
|
bfd_byte tmpbuf[INT_REGISTER_SIZE];
|
5206 |
|
|
|
5207 |
|
|
while (len > 0)
|
5208 |
|
|
{
|
5209 |
|
|
regcache_cooked_read (regs, regno++, tmpbuf);
|
5210 |
|
|
memcpy (valbuf, tmpbuf,
|
5211 |
|
|
len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
|
5212 |
|
|
len -= INT_REGISTER_SIZE;
|
5213 |
|
|
valbuf += INT_REGISTER_SIZE;
|
5214 |
|
|
}
|
5215 |
|
|
}
|
5216 |
|
|
}
|
5217 |
|
|
|
5218 |
|
|
|
5219 |
|
|
/* Will a function return an aggregate type in memory or in a
|
5220 |
|
|
register? Return 0 if an aggregate type can be returned in a
|
5221 |
|
|
register, 1 if it must be returned in memory. */
|
5222 |
|
|
|
5223 |
|
|
static int
|
5224 |
|
|
arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
|
5225 |
|
|
{
|
5226 |
|
|
int nRc;
|
5227 |
|
|
enum type_code code;
|
5228 |
|
|
|
5229 |
|
|
CHECK_TYPEDEF (type);
|
5230 |
|
|
|
5231 |
|
|
/* In the ARM ABI, "integer" like aggregate types are returned in
|
5232 |
|
|
registers. For an aggregate type to be integer like, its size
|
5233 |
|
|
must be less than or equal to INT_REGISTER_SIZE and the
|
5234 |
|
|
offset of each addressable subfield must be zero. Note that bit
|
5235 |
|
|
fields are not addressable, and all addressable subfields of
|
5236 |
|
|
unions always start at offset zero.
|
5237 |
|
|
|
5238 |
|
|
This function is based on the behaviour of GCC 2.95.1.
|
5239 |
|
|
See: gcc/arm.c: arm_return_in_memory() for details.
|
5240 |
|
|
|
5241 |
|
|
Note: All versions of GCC before GCC 2.95.2 do not set up the
|
5242 |
|
|
parameters correctly for a function returning the following
|
5243 |
|
|
structure: struct { float f;}; This should be returned in memory,
|
5244 |
|
|
not a register. Richard Earnshaw sent me a patch, but I do not
|
5245 |
|
|
know of any way to detect if a function like the above has been
|
5246 |
|
|
compiled with the correct calling convention. */
|
5247 |
|
|
|
5248 |
|
|
/* All aggregate types that won't fit in a register must be returned
|
5249 |
|
|
in memory. */
|
5250 |
|
|
if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
|
5251 |
|
|
{
|
5252 |
|
|
return 1;
|
5253 |
|
|
}
|
5254 |
|
|
|
5255 |
|
|
/* The AAPCS says all aggregates not larger than a word are returned
|
5256 |
|
|
in a register. */
|
5257 |
|
|
if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
|
5258 |
|
|
return 0;
|
5259 |
|
|
|
5260 |
|
|
/* The only aggregate types that can be returned in a register are
|
5261 |
|
|
structs and unions. Arrays must be returned in memory. */
|
5262 |
|
|
code = TYPE_CODE (type);
|
5263 |
|
|
if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
|
5264 |
|
|
{
|
5265 |
|
|
return 1;
|
5266 |
|
|
}
|
5267 |
|
|
|
5268 |
|
|
/* Assume all other aggregate types can be returned in a register.
|
5269 |
|
|
Run a check for structures, unions and arrays. */
|
5270 |
|
|
nRc = 0;
|
5271 |
|
|
|
5272 |
|
|
if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
|
5273 |
|
|
{
|
5274 |
|
|
int i;
|
5275 |
|
|
/* Need to check if this struct/union is "integer" like. For
|
5276 |
|
|
this to be true, its size must be less than or equal to
|
5277 |
|
|
INT_REGISTER_SIZE and the offset of each addressable
|
5278 |
|
|
subfield must be zero. Note that bit fields are not
|
5279 |
|
|
addressable, and unions always start at offset zero. If any
|
5280 |
|
|
of the subfields is a floating point type, the struct/union
|
5281 |
|
|
cannot be an integer type. */
|
5282 |
|
|
|
5283 |
|
|
/* For each field in the object, check:
|
5284 |
|
|
1) Is it FP? --> yes, nRc = 1;
|
5285 |
|
|
2) Is it addressable (bitpos != 0) and
|
5286 |
|
|
not packed (bitsize == 0)?
|
5287 |
|
|
--> yes, nRc = 1
|
5288 |
|
|
*/
|
5289 |
|
|
|
5290 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
5291 |
|
|
{
|
5292 |
|
|
enum type_code field_type_code;
|
5293 |
|
|
field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
|
5294 |
|
|
|
5295 |
|
|
/* Is it a floating point type field? */
|
5296 |
|
|
if (field_type_code == TYPE_CODE_FLT)
|
5297 |
|
|
{
|
5298 |
|
|
nRc = 1;
|
5299 |
|
|
break;
|
5300 |
|
|
}
|
5301 |
|
|
|
5302 |
|
|
/* If bitpos != 0, then we have to care about it. */
|
5303 |
|
|
if (TYPE_FIELD_BITPOS (type, i) != 0)
|
5304 |
|
|
{
|
5305 |
|
|
/* Bitfields are not addressable. If the field bitsize is
|
5306 |
|
|
zero, then the field is not packed. Hence it cannot be
|
5307 |
|
|
a bitfield or any other packed type. */
|
5308 |
|
|
if (TYPE_FIELD_BITSIZE (type, i) == 0)
|
5309 |
|
|
{
|
5310 |
|
|
nRc = 1;
|
5311 |
|
|
break;
|
5312 |
|
|
}
|
5313 |
|
|
}
|
5314 |
|
|
}
|
5315 |
|
|
}
|
5316 |
|
|
|
5317 |
|
|
return nRc;
|
5318 |
|
|
}
|
5319 |
|
|
|
5320 |
|
|
/* Write into appropriate registers a function return value of type
|
5321 |
|
|
TYPE, given in virtual format. */
|
5322 |
|
|
|
5323 |
|
|
static void
|
5324 |
|
|
arm_store_return_value (struct type *type, struct regcache *regs,
|
5325 |
|
|
const gdb_byte *valbuf)
|
5326 |
|
|
{
|
5327 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regs);
|
5328 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
5329 |
|
|
|
5330 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
5331 |
|
|
{
|
5332 |
|
|
char buf[MAX_REGISTER_SIZE];
|
5333 |
|
|
|
5334 |
|
|
switch (gdbarch_tdep (gdbarch)->fp_model)
|
5335 |
|
|
{
|
5336 |
|
|
case ARM_FLOAT_FPA:
|
5337 |
|
|
|
5338 |
|
|
convert_to_extended (floatformat_from_type (type), buf, valbuf,
|
5339 |
|
|
gdbarch_byte_order (gdbarch));
|
5340 |
|
|
regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
|
5341 |
|
|
break;
|
5342 |
|
|
|
5343 |
|
|
case ARM_FLOAT_SOFT_FPA:
|
5344 |
|
|
case ARM_FLOAT_SOFT_VFP:
|
5345 |
|
|
/* ARM_FLOAT_VFP can arise if this is a variadic function so
|
5346 |
|
|
not using the VFP ABI code. */
|
5347 |
|
|
case ARM_FLOAT_VFP:
|
5348 |
|
|
regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
|
5349 |
|
|
if (TYPE_LENGTH (type) > 4)
|
5350 |
|
|
regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
|
5351 |
|
|
valbuf + INT_REGISTER_SIZE);
|
5352 |
|
|
break;
|
5353 |
|
|
|
5354 |
|
|
default:
|
5355 |
|
|
internal_error
|
5356 |
|
|
(__FILE__, __LINE__,
|
5357 |
|
|
_("arm_store_return_value: Floating point model not supported"));
|
5358 |
|
|
break;
|
5359 |
|
|
}
|
5360 |
|
|
}
|
5361 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_INT
|
5362 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_CHAR
|
5363 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_BOOL
|
5364 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_PTR
|
5365 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_REF
|
5366 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_ENUM)
|
5367 |
|
|
{
|
5368 |
|
|
if (TYPE_LENGTH (type) <= 4)
|
5369 |
|
|
{
|
5370 |
|
|
/* Values of one word or less are zero/sign-extended and
|
5371 |
|
|
returned in r0. */
|
5372 |
|
|
bfd_byte tmpbuf[INT_REGISTER_SIZE];
|
5373 |
|
|
LONGEST val = unpack_long (type, valbuf);
|
5374 |
|
|
|
5375 |
|
|
store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
|
5376 |
|
|
regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
|
5377 |
|
|
}
|
5378 |
|
|
else
|
5379 |
|
|
{
|
5380 |
|
|
/* Integral values greater than one word are stored in consecutive
|
5381 |
|
|
registers starting with r0. This will always be a multiple of
|
5382 |
|
|
the regiser size. */
|
5383 |
|
|
int len = TYPE_LENGTH (type);
|
5384 |
|
|
int regno = ARM_A1_REGNUM;
|
5385 |
|
|
|
5386 |
|
|
while (len > 0)
|
5387 |
|
|
{
|
5388 |
|
|
regcache_cooked_write (regs, regno++, valbuf);
|
5389 |
|
|
len -= INT_REGISTER_SIZE;
|
5390 |
|
|
valbuf += INT_REGISTER_SIZE;
|
5391 |
|
|
}
|
5392 |
|
|
}
|
5393 |
|
|
}
|
5394 |
|
|
else
|
5395 |
|
|
{
|
5396 |
|
|
/* For a structure or union the behaviour is as if the value had
|
5397 |
|
|
been stored to word-aligned memory and then loaded into
|
5398 |
|
|
registers with 32-bit load instruction(s). */
|
5399 |
|
|
int len = TYPE_LENGTH (type);
|
5400 |
|
|
int regno = ARM_A1_REGNUM;
|
5401 |
|
|
bfd_byte tmpbuf[INT_REGISTER_SIZE];
|
5402 |
|
|
|
5403 |
|
|
while (len > 0)
|
5404 |
|
|
{
|
5405 |
|
|
memcpy (tmpbuf, valbuf,
|
5406 |
|
|
len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
|
5407 |
|
|
regcache_cooked_write (regs, regno++, tmpbuf);
|
5408 |
|
|
len -= INT_REGISTER_SIZE;
|
5409 |
|
|
valbuf += INT_REGISTER_SIZE;
|
5410 |
|
|
}
|
5411 |
|
|
}
|
5412 |
|
|
}
|
5413 |
|
|
|
5414 |
|
|
|
5415 |
|
|
/* Handle function return values. */
|
5416 |
|
|
|
5417 |
|
|
static enum return_value_convention
|
5418 |
|
|
arm_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
5419 |
|
|
struct type *valtype, struct regcache *regcache,
|
5420 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
5421 |
|
|
{
|
5422 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
5423 |
|
|
enum arm_vfp_cprc_base_type vfp_base_type;
|
5424 |
|
|
int vfp_base_count;
|
5425 |
|
|
|
5426 |
|
|
if (arm_vfp_abi_for_function (gdbarch, func_type)
|
5427 |
|
|
&& arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
|
5428 |
|
|
{
|
5429 |
|
|
int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
|
5430 |
|
|
int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
|
5431 |
|
|
int i;
|
5432 |
|
|
for (i = 0; i < vfp_base_count; i++)
|
5433 |
|
|
{
|
5434 |
|
|
if (reg_char == 'q')
|
5435 |
|
|
{
|
5436 |
|
|
if (writebuf)
|
5437 |
|
|
arm_neon_quad_write (gdbarch, regcache, i,
|
5438 |
|
|
writebuf + i * unit_length);
|
5439 |
|
|
|
5440 |
|
|
if (readbuf)
|
5441 |
|
|
arm_neon_quad_read (gdbarch, regcache, i,
|
5442 |
|
|
readbuf + i * unit_length);
|
5443 |
|
|
}
|
5444 |
|
|
else
|
5445 |
|
|
{
|
5446 |
|
|
char name_buf[4];
|
5447 |
|
|
int regnum;
|
5448 |
|
|
|
5449 |
|
|
sprintf (name_buf, "%c%d", reg_char, i);
|
5450 |
|
|
regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
|
5451 |
|
|
strlen (name_buf));
|
5452 |
|
|
if (writebuf)
|
5453 |
|
|
regcache_cooked_write (regcache, regnum,
|
5454 |
|
|
writebuf + i * unit_length);
|
5455 |
|
|
if (readbuf)
|
5456 |
|
|
regcache_cooked_read (regcache, regnum,
|
5457 |
|
|
readbuf + i * unit_length);
|
5458 |
|
|
}
|
5459 |
|
|
}
|
5460 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
5461 |
|
|
}
|
5462 |
|
|
|
5463 |
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
5464 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|
5465 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
|
5466 |
|
|
{
|
5467 |
|
|
if (tdep->struct_return == pcc_struct_return
|
5468 |
|
|
|| arm_return_in_memory (gdbarch, valtype))
|
5469 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
5470 |
|
|
}
|
5471 |
|
|
|
5472 |
|
|
if (writebuf)
|
5473 |
|
|
arm_store_return_value (valtype, regcache, writebuf);
|
5474 |
|
|
|
5475 |
|
|
if (readbuf)
|
5476 |
|
|
arm_extract_return_value (valtype, regcache, readbuf);
|
5477 |
|
|
|
5478 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
5479 |
|
|
}
|
5480 |
|
|
|
5481 |
|
|
|
5482 |
|
|
static int
|
5483 |
|
|
arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
5484 |
|
|
{
|
5485 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
5486 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
5487 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
5488 |
|
|
CORE_ADDR jb_addr;
|
5489 |
|
|
char buf[INT_REGISTER_SIZE];
|
5490 |
|
|
|
5491 |
|
|
jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
|
5492 |
|
|
|
5493 |
|
|
if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
|
5494 |
|
|
INT_REGISTER_SIZE))
|
5495 |
|
|
return 0;
|
5496 |
|
|
|
5497 |
|
|
*pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
|
5498 |
|
|
return 1;
|
5499 |
|
|
}
|
5500 |
|
|
|
5501 |
|
|
/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
|
5502 |
|
|
return the target PC. Otherwise return 0. */
|
5503 |
|
|
|
5504 |
|
|
CORE_ADDR
|
5505 |
|
|
arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
|
5506 |
|
|
{
|
5507 |
|
|
char *name;
|
5508 |
|
|
int namelen;
|
5509 |
|
|
CORE_ADDR start_addr;
|
5510 |
|
|
|
5511 |
|
|
/* Find the starting address and name of the function containing the PC. */
|
5512 |
|
|
if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
|
5513 |
|
|
return 0;
|
5514 |
|
|
|
5515 |
|
|
/* If PC is in a Thumb call or return stub, return the address of the
|
5516 |
|
|
target PC, which is in a register. The thunk functions are called
|
5517 |
|
|
_call_via_xx, where x is the register name. The possible names
|
5518 |
|
|
are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
|
5519 |
|
|
functions, named __ARM_call_via_r[0-7]. */
|
5520 |
|
|
if (strncmp (name, "_call_via_", 10) == 0
|
5521 |
|
|
|| strncmp (name, "__ARM_call_via_", strlen ("__ARM_call_via_")) == 0)
|
5522 |
|
|
{
|
5523 |
|
|
/* Use the name suffix to determine which register contains the
|
5524 |
|
|
target PC. */
|
5525 |
|
|
static char *table[15] =
|
5526 |
|
|
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
5527 |
|
|
"r8", "r9", "sl", "fp", "ip", "sp", "lr"
|
5528 |
|
|
};
|
5529 |
|
|
int regno;
|
5530 |
|
|
int offset = strlen (name) - 2;
|
5531 |
|
|
|
5532 |
|
|
for (regno = 0; regno <= 14; regno++)
|
5533 |
|
|
if (strcmp (&name[offset], table[regno]) == 0)
|
5534 |
|
|
return get_frame_register_unsigned (frame, regno);
|
5535 |
|
|
}
|
5536 |
|
|
|
5537 |
|
|
/* GNU ld generates __foo_from_arm or __foo_from_thumb for
|
5538 |
|
|
non-interworking calls to foo. We could decode the stubs
|
5539 |
|
|
to find the target but it's easier to use the symbol table. */
|
5540 |
|
|
namelen = strlen (name);
|
5541 |
|
|
if (name[0] == '_' && name[1] == '_'
|
5542 |
|
|
&& ((namelen > 2 + strlen ("_from_thumb")
|
5543 |
|
|
&& strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
|
5544 |
|
|
strlen ("_from_thumb")) == 0)
|
5545 |
|
|
|| (namelen > 2 + strlen ("_from_arm")
|
5546 |
|
|
&& strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
|
5547 |
|
|
strlen ("_from_arm")) == 0)))
|
5548 |
|
|
{
|
5549 |
|
|
char *target_name;
|
5550 |
|
|
int target_len = namelen - 2;
|
5551 |
|
|
struct minimal_symbol *minsym;
|
5552 |
|
|
struct objfile *objfile;
|
5553 |
|
|
struct obj_section *sec;
|
5554 |
|
|
|
5555 |
|
|
if (name[namelen - 1] == 'b')
|
5556 |
|
|
target_len -= strlen ("_from_thumb");
|
5557 |
|
|
else
|
5558 |
|
|
target_len -= strlen ("_from_arm");
|
5559 |
|
|
|
5560 |
|
|
target_name = alloca (target_len + 1);
|
5561 |
|
|
memcpy (target_name, name + 2, target_len);
|
5562 |
|
|
target_name[target_len] = '\0';
|
5563 |
|
|
|
5564 |
|
|
sec = find_pc_section (pc);
|
5565 |
|
|
objfile = (sec == NULL) ? NULL : sec->objfile;
|
5566 |
|
|
minsym = lookup_minimal_symbol (target_name, NULL, objfile);
|
5567 |
|
|
if (minsym != NULL)
|
5568 |
|
|
return SYMBOL_VALUE_ADDRESS (minsym);
|
5569 |
|
|
else
|
5570 |
|
|
return 0;
|
5571 |
|
|
}
|
5572 |
|
|
|
5573 |
|
|
return 0; /* not a stub */
|
5574 |
|
|
}
|
5575 |
|
|
|
5576 |
|
|
static void
|
5577 |
|
|
set_arm_command (char *args, int from_tty)
|
5578 |
|
|
{
|
5579 |
|
|
printf_unfiltered (_("\
|
5580 |
|
|
\"set arm\" must be followed by an apporpriate subcommand.\n"));
|
5581 |
|
|
help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
|
5582 |
|
|
}
|
5583 |
|
|
|
5584 |
|
|
static void
|
5585 |
|
|
show_arm_command (char *args, int from_tty)
|
5586 |
|
|
{
|
5587 |
|
|
cmd_show_list (showarmcmdlist, from_tty, "");
|
5588 |
|
|
}
|
5589 |
|
|
|
5590 |
|
|
static void
|
5591 |
|
|
arm_update_current_architecture (void)
|
5592 |
|
|
{
|
5593 |
|
|
struct gdbarch_info info;
|
5594 |
|
|
|
5595 |
|
|
/* If the current architecture is not ARM, we have nothing to do. */
|
5596 |
|
|
if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_arm)
|
5597 |
|
|
return;
|
5598 |
|
|
|
5599 |
|
|
/* Update the architecture. */
|
5600 |
|
|
gdbarch_info_init (&info);
|
5601 |
|
|
|
5602 |
|
|
if (!gdbarch_update_p (info))
|
5603 |
|
|
internal_error (__FILE__, __LINE__, "could not update architecture");
|
5604 |
|
|
}
|
5605 |
|
|
|
5606 |
|
|
static void
|
5607 |
|
|
set_fp_model_sfunc (char *args, int from_tty,
|
5608 |
|
|
struct cmd_list_element *c)
|
5609 |
|
|
{
|
5610 |
|
|
enum arm_float_model fp_model;
|
5611 |
|
|
|
5612 |
|
|
for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
|
5613 |
|
|
if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
|
5614 |
|
|
{
|
5615 |
|
|
arm_fp_model = fp_model;
|
5616 |
|
|
break;
|
5617 |
|
|
}
|
5618 |
|
|
|
5619 |
|
|
if (fp_model == ARM_FLOAT_LAST)
|
5620 |
|
|
internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
|
5621 |
|
|
current_fp_model);
|
5622 |
|
|
|
5623 |
|
|
arm_update_current_architecture ();
|
5624 |
|
|
}
|
5625 |
|
|
|
5626 |
|
|
static void
|
5627 |
|
|
show_fp_model (struct ui_file *file, int from_tty,
|
5628 |
|
|
struct cmd_list_element *c, const char *value)
|
5629 |
|
|
{
|
5630 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
|
5631 |
|
|
|
5632 |
|
|
if (arm_fp_model == ARM_FLOAT_AUTO
|
5633 |
|
|
&& gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
|
5634 |
|
|
fprintf_filtered (file, _("\
|
5635 |
|
|
The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
|
5636 |
|
|
fp_model_strings[tdep->fp_model]);
|
5637 |
|
|
else
|
5638 |
|
|
fprintf_filtered (file, _("\
|
5639 |
|
|
The current ARM floating point model is \"%s\".\n"),
|
5640 |
|
|
fp_model_strings[arm_fp_model]);
|
5641 |
|
|
}
|
5642 |
|
|
|
5643 |
|
|
static void
|
5644 |
|
|
arm_set_abi (char *args, int from_tty,
|
5645 |
|
|
struct cmd_list_element *c)
|
5646 |
|
|
{
|
5647 |
|
|
enum arm_abi_kind arm_abi;
|
5648 |
|
|
|
5649 |
|
|
for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
|
5650 |
|
|
if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
|
5651 |
|
|
{
|
5652 |
|
|
arm_abi_global = arm_abi;
|
5653 |
|
|
break;
|
5654 |
|
|
}
|
5655 |
|
|
|
5656 |
|
|
if (arm_abi == ARM_ABI_LAST)
|
5657 |
|
|
internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
|
5658 |
|
|
arm_abi_string);
|
5659 |
|
|
|
5660 |
|
|
arm_update_current_architecture ();
|
5661 |
|
|
}
|
5662 |
|
|
|
5663 |
|
|
static void
|
5664 |
|
|
arm_show_abi (struct ui_file *file, int from_tty,
|
5665 |
|
|
struct cmd_list_element *c, const char *value)
|
5666 |
|
|
{
|
5667 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
|
5668 |
|
|
|
5669 |
|
|
if (arm_abi_global == ARM_ABI_AUTO
|
5670 |
|
|
&& gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
|
5671 |
|
|
fprintf_filtered (file, _("\
|
5672 |
|
|
The current ARM ABI is \"auto\" (currently \"%s\").\n"),
|
5673 |
|
|
arm_abi_strings[tdep->arm_abi]);
|
5674 |
|
|
else
|
5675 |
|
|
fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
|
5676 |
|
|
arm_abi_string);
|
5677 |
|
|
}
|
5678 |
|
|
|
5679 |
|
|
static void
|
5680 |
|
|
arm_show_fallback_mode (struct ui_file *file, int from_tty,
|
5681 |
|
|
struct cmd_list_element *c, const char *value)
|
5682 |
|
|
{
|
5683 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
|
5684 |
|
|
|
5685 |
|
|
fprintf_filtered (file, _("\
|
5686 |
|
|
The current execution mode assumed (when symbols are unavailable) is \"%s\".\n"),
|
5687 |
|
|
arm_fallback_mode_string);
|
5688 |
|
|
}
|
5689 |
|
|
|
5690 |
|
|
static void
|
5691 |
|
|
arm_show_force_mode (struct ui_file *file, int from_tty,
|
5692 |
|
|
struct cmd_list_element *c, const char *value)
|
5693 |
|
|
{
|
5694 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
|
5695 |
|
|
|
5696 |
|
|
fprintf_filtered (file, _("\
|
5697 |
|
|
The current execution mode assumed (even when symbols are available) is \"%s\".\n"),
|
5698 |
|
|
arm_force_mode_string);
|
5699 |
|
|
}
|
5700 |
|
|
|
5701 |
|
|
/* If the user changes the register disassembly style used for info
|
5702 |
|
|
register and other commands, we have to also switch the style used
|
5703 |
|
|
in opcodes for disassembly output. This function is run in the "set
|
5704 |
|
|
arm disassembly" command, and does that. */
|
5705 |
|
|
|
5706 |
|
|
static void
|
5707 |
|
|
set_disassembly_style_sfunc (char *args, int from_tty,
|
5708 |
|
|
struct cmd_list_element *c)
|
5709 |
|
|
{
|
5710 |
|
|
set_disassembly_style ();
|
5711 |
|
|
}
|
5712 |
|
|
|
5713 |
|
|
/* Return the ARM register name corresponding to register I. */
|
5714 |
|
|
static const char *
|
5715 |
|
|
arm_register_name (struct gdbarch *gdbarch, int i)
|
5716 |
|
|
{
|
5717 |
|
|
const int num_regs = gdbarch_num_regs (gdbarch);
|
5718 |
|
|
|
5719 |
|
|
if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
|
5720 |
|
|
&& i >= num_regs && i < num_regs + 32)
|
5721 |
|
|
{
|
5722 |
|
|
static const char *const vfp_pseudo_names[] = {
|
5723 |
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
5724 |
|
|
"s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
|
5725 |
|
|
"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
|
5726 |
|
|
"s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
|
5727 |
|
|
};
|
5728 |
|
|
|
5729 |
|
|
return vfp_pseudo_names[i - num_regs];
|
5730 |
|
|
}
|
5731 |
|
|
|
5732 |
|
|
if (gdbarch_tdep (gdbarch)->have_neon_pseudos
|
5733 |
|
|
&& i >= num_regs + 32 && i < num_regs + 32 + 16)
|
5734 |
|
|
{
|
5735 |
|
|
static const char *const neon_pseudo_names[] = {
|
5736 |
|
|
"q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
|
5737 |
|
|
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
|
5738 |
|
|
};
|
5739 |
|
|
|
5740 |
|
|
return neon_pseudo_names[i - num_regs - 32];
|
5741 |
|
|
}
|
5742 |
|
|
|
5743 |
|
|
if (i >= ARRAY_SIZE (arm_register_names))
|
5744 |
|
|
/* These registers are only supported on targets which supply
|
5745 |
|
|
an XML description. */
|
5746 |
|
|
return "";
|
5747 |
|
|
|
5748 |
|
|
return arm_register_names[i];
|
5749 |
|
|
}
|
5750 |
|
|
|
5751 |
|
|
static void
|
5752 |
|
|
set_disassembly_style (void)
|
5753 |
|
|
{
|
5754 |
|
|
int current;
|
5755 |
|
|
|
5756 |
|
|
/* Find the style that the user wants. */
|
5757 |
|
|
for (current = 0; current < num_disassembly_options; current++)
|
5758 |
|
|
if (disassembly_style == valid_disassembly_styles[current])
|
5759 |
|
|
break;
|
5760 |
|
|
gdb_assert (current < num_disassembly_options);
|
5761 |
|
|
|
5762 |
|
|
/* Synchronize the disassembler. */
|
5763 |
|
|
set_arm_regname_option (current);
|
5764 |
|
|
}
|
5765 |
|
|
|
5766 |
|
|
/* Test whether the coff symbol specific value corresponds to a Thumb
|
5767 |
|
|
function. */
|
5768 |
|
|
|
5769 |
|
|
static int
|
5770 |
|
|
coff_sym_is_thumb (int val)
|
5771 |
|
|
{
|
5772 |
|
|
return (val == C_THUMBEXT
|
5773 |
|
|
|| val == C_THUMBSTAT
|
5774 |
|
|
|| val == C_THUMBEXTFUNC
|
5775 |
|
|
|| val == C_THUMBSTATFUNC
|
5776 |
|
|
|| val == C_THUMBLABEL);
|
5777 |
|
|
}
|
5778 |
|
|
|
5779 |
|
|
/* arm_coff_make_msymbol_special()
|
5780 |
|
|
arm_elf_make_msymbol_special()
|
5781 |
|
|
|
5782 |
|
|
These functions test whether the COFF or ELF symbol corresponds to
|
5783 |
|
|
an address in thumb code, and set a "special" bit in a minimal
|
5784 |
|
|
symbol to indicate that it does. */
|
5785 |
|
|
|
5786 |
|
|
static void
|
5787 |
|
|
arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
|
5788 |
|
|
{
|
5789 |
|
|
/* Thumb symbols are of type STT_LOPROC, (synonymous with
|
5790 |
|
|
STT_ARM_TFUNC). */
|
5791 |
|
|
if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
|
5792 |
|
|
== STT_LOPROC)
|
5793 |
|
|
MSYMBOL_SET_SPECIAL (msym);
|
5794 |
|
|
}
|
5795 |
|
|
|
5796 |
|
|
static void
|
5797 |
|
|
arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
|
5798 |
|
|
{
|
5799 |
|
|
if (coff_sym_is_thumb (val))
|
5800 |
|
|
MSYMBOL_SET_SPECIAL (msym);
|
5801 |
|
|
}
|
5802 |
|
|
|
5803 |
|
|
static void
|
5804 |
|
|
arm_objfile_data_free (struct objfile *objfile, void *arg)
|
5805 |
|
|
{
|
5806 |
|
|
struct arm_per_objfile *data = arg;
|
5807 |
|
|
unsigned int i;
|
5808 |
|
|
|
5809 |
|
|
for (i = 0; i < objfile->obfd->section_count; i++)
|
5810 |
|
|
VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
|
5811 |
|
|
}
|
5812 |
|
|
|
5813 |
|
|
static void
|
5814 |
|
|
arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
|
5815 |
|
|
asymbol *sym)
|
5816 |
|
|
{
|
5817 |
|
|
const char *name = bfd_asymbol_name (sym);
|
5818 |
|
|
struct arm_per_objfile *data;
|
5819 |
|
|
VEC(arm_mapping_symbol_s) **map_p;
|
5820 |
|
|
struct arm_mapping_symbol new_map_sym;
|
5821 |
|
|
|
5822 |
|
|
gdb_assert (name[0] == '$');
|
5823 |
|
|
if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
|
5824 |
|
|
return;
|
5825 |
|
|
|
5826 |
|
|
data = objfile_data (objfile, arm_objfile_data_key);
|
5827 |
|
|
if (data == NULL)
|
5828 |
|
|
{
|
5829 |
|
|
data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
5830 |
|
|
struct arm_per_objfile);
|
5831 |
|
|
set_objfile_data (objfile, arm_objfile_data_key, data);
|
5832 |
|
|
data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
|
5833 |
|
|
objfile->obfd->section_count,
|
5834 |
|
|
VEC(arm_mapping_symbol_s) *);
|
5835 |
|
|
}
|
5836 |
|
|
map_p = &data->section_maps[bfd_get_section (sym)->index];
|
5837 |
|
|
|
5838 |
|
|
new_map_sym.value = sym->value;
|
5839 |
|
|
new_map_sym.type = name[1];
|
5840 |
|
|
|
5841 |
|
|
/* Assume that most mapping symbols appear in order of increasing
|
5842 |
|
|
value. If they were randomly distributed, it would be faster to
|
5843 |
|
|
always push here and then sort at first use. */
|
5844 |
|
|
if (!VEC_empty (arm_mapping_symbol_s, *map_p))
|
5845 |
|
|
{
|
5846 |
|
|
struct arm_mapping_symbol *prev_map_sym;
|
5847 |
|
|
|
5848 |
|
|
prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
|
5849 |
|
|
if (prev_map_sym->value >= sym->value)
|
5850 |
|
|
{
|
5851 |
|
|
unsigned int idx;
|
5852 |
|
|
idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
|
5853 |
|
|
arm_compare_mapping_symbols);
|
5854 |
|
|
VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
|
5855 |
|
|
return;
|
5856 |
|
|
}
|
5857 |
|
|
}
|
5858 |
|
|
|
5859 |
|
|
VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
|
5860 |
|
|
}
|
5861 |
|
|
|
5862 |
|
|
static void
|
5863 |
|
|
arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
5864 |
|
|
{
|
5865 |
|
|
regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
|
5866 |
|
|
|
5867 |
|
|
/* If necessary, set the T bit. */
|
5868 |
|
|
if (arm_apcs_32)
|
5869 |
|
|
{
|
5870 |
|
|
ULONGEST val;
|
5871 |
|
|
regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
|
5872 |
|
|
if (arm_pc_is_thumb (pc))
|
5873 |
|
|
regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | CPSR_T);
|
5874 |
|
|
else
|
5875 |
|
|
regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
|
5876 |
|
|
val & ~(ULONGEST) CPSR_T);
|
5877 |
|
|
}
|
5878 |
|
|
}
|
5879 |
|
|
|
5880 |
|
|
/* Read the contents of a NEON quad register, by reading from two
|
5881 |
|
|
double registers. This is used to implement the quad pseudo
|
5882 |
|
|
registers, and for argument passing in case the quad registers are
|
5883 |
|
|
missing; vectors are passed in quad registers when using the VFP
|
5884 |
|
|
ABI, even if a NEON unit is not present. REGNUM is the index of
|
5885 |
|
|
the quad register, in [0, 15]. */
|
5886 |
|
|
|
5887 |
|
|
static void
|
5888 |
|
|
arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
5889 |
|
|
int regnum, gdb_byte *buf)
|
5890 |
|
|
{
|
5891 |
|
|
char name_buf[4];
|
5892 |
|
|
gdb_byte reg_buf[8];
|
5893 |
|
|
int offset, double_regnum;
|
5894 |
|
|
|
5895 |
|
|
sprintf (name_buf, "d%d", regnum << 1);
|
5896 |
|
|
double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
|
5897 |
|
|
strlen (name_buf));
|
5898 |
|
|
|
5899 |
|
|
/* d0 is always the least significant half of q0. */
|
5900 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
5901 |
|
|
offset = 8;
|
5902 |
|
|
else
|
5903 |
|
|
offset = 0;
|
5904 |
|
|
|
5905 |
|
|
regcache_raw_read (regcache, double_regnum, reg_buf);
|
5906 |
|
|
memcpy (buf + offset, reg_buf, 8);
|
5907 |
|
|
|
5908 |
|
|
offset = 8 - offset;
|
5909 |
|
|
regcache_raw_read (regcache, double_regnum + 1, reg_buf);
|
5910 |
|
|
memcpy (buf + offset, reg_buf, 8);
|
5911 |
|
|
}
|
5912 |
|
|
|
5913 |
|
|
static void
|
5914 |
|
|
arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
5915 |
|
|
int regnum, gdb_byte *buf)
|
5916 |
|
|
{
|
5917 |
|
|
const int num_regs = gdbarch_num_regs (gdbarch);
|
5918 |
|
|
char name_buf[4];
|
5919 |
|
|
gdb_byte reg_buf[8];
|
5920 |
|
|
int offset, double_regnum;
|
5921 |
|
|
|
5922 |
|
|
gdb_assert (regnum >= num_regs);
|
5923 |
|
|
regnum -= num_regs;
|
5924 |
|
|
|
5925 |
|
|
if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
|
5926 |
|
|
/* Quad-precision register. */
|
5927 |
|
|
arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
|
5928 |
|
|
else
|
5929 |
|
|
{
|
5930 |
|
|
/* Single-precision register. */
|
5931 |
|
|
gdb_assert (regnum < 32);
|
5932 |
|
|
|
5933 |
|
|
/* s0 is always the least significant half of d0. */
|
5934 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
5935 |
|
|
offset = (regnum & 1) ? 0 : 4;
|
5936 |
|
|
else
|
5937 |
|
|
offset = (regnum & 1) ? 4 : 0;
|
5938 |
|
|
|
5939 |
|
|
sprintf (name_buf, "d%d", regnum >> 1);
|
5940 |
|
|
double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
|
5941 |
|
|
strlen (name_buf));
|
5942 |
|
|
|
5943 |
|
|
regcache_raw_read (regcache, double_regnum, reg_buf);
|
5944 |
|
|
memcpy (buf, reg_buf + offset, 4);
|
5945 |
|
|
}
|
5946 |
|
|
}
|
5947 |
|
|
|
5948 |
|
|
/* Store the contents of BUF to a NEON quad register, by writing to
|
5949 |
|
|
two double registers. This is used to implement the quad pseudo
|
5950 |
|
|
registers, and for argument passing in case the quad registers are
|
5951 |
|
|
missing; vectors are passed in quad registers when using the VFP
|
5952 |
|
|
ABI, even if a NEON unit is not present. REGNUM is the index
|
5953 |
|
|
of the quad register, in [0, 15]. */
|
5954 |
|
|
|
5955 |
|
|
static void
|
5956 |
|
|
arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
5957 |
|
|
int regnum, const gdb_byte *buf)
|
5958 |
|
|
{
|
5959 |
|
|
char name_buf[4];
|
5960 |
|
|
gdb_byte reg_buf[8];
|
5961 |
|
|
int offset, double_regnum;
|
5962 |
|
|
|
5963 |
|
|
sprintf (name_buf, "d%d", regnum << 1);
|
5964 |
|
|
double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
|
5965 |
|
|
strlen (name_buf));
|
5966 |
|
|
|
5967 |
|
|
/* d0 is always the least significant half of q0. */
|
5968 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
5969 |
|
|
offset = 8;
|
5970 |
|
|
else
|
5971 |
|
|
offset = 0;
|
5972 |
|
|
|
5973 |
|
|
regcache_raw_write (regcache, double_regnum, buf + offset);
|
5974 |
|
|
offset = 8 - offset;
|
5975 |
|
|
regcache_raw_write (regcache, double_regnum + 1, buf + offset);
|
5976 |
|
|
}
|
5977 |
|
|
|
5978 |
|
|
static void
|
5979 |
|
|
arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
5980 |
|
|
int regnum, const gdb_byte *buf)
|
5981 |
|
|
{
|
5982 |
|
|
const int num_regs = gdbarch_num_regs (gdbarch);
|
5983 |
|
|
char name_buf[4];
|
5984 |
|
|
gdb_byte reg_buf[8];
|
5985 |
|
|
int offset, double_regnum;
|
5986 |
|
|
|
5987 |
|
|
gdb_assert (regnum >= num_regs);
|
5988 |
|
|
regnum -= num_regs;
|
5989 |
|
|
|
5990 |
|
|
if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
|
5991 |
|
|
/* Quad-precision register. */
|
5992 |
|
|
arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
|
5993 |
|
|
else
|
5994 |
|
|
{
|
5995 |
|
|
/* Single-precision register. */
|
5996 |
|
|
gdb_assert (regnum < 32);
|
5997 |
|
|
|
5998 |
|
|
/* s0 is always the least significant half of d0. */
|
5999 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
6000 |
|
|
offset = (regnum & 1) ? 0 : 4;
|
6001 |
|
|
else
|
6002 |
|
|
offset = (regnum & 1) ? 4 : 0;
|
6003 |
|
|
|
6004 |
|
|
sprintf (name_buf, "d%d", regnum >> 1);
|
6005 |
|
|
double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
|
6006 |
|
|
strlen (name_buf));
|
6007 |
|
|
|
6008 |
|
|
regcache_raw_read (regcache, double_regnum, reg_buf);
|
6009 |
|
|
memcpy (reg_buf + offset, buf, 4);
|
6010 |
|
|
regcache_raw_write (regcache, double_regnum, reg_buf);
|
6011 |
|
|
}
|
6012 |
|
|
}
|
6013 |
|
|
|
6014 |
|
|
static struct value *
|
6015 |
|
|
value_of_arm_user_reg (struct frame_info *frame, const void *baton)
|
6016 |
|
|
{
|
6017 |
|
|
const int *reg_p = baton;
|
6018 |
|
|
return value_of_register (*reg_p, frame);
|
6019 |
|
|
}
|
6020 |
|
|
|
6021 |
|
|
static enum gdb_osabi
|
6022 |
|
|
arm_elf_osabi_sniffer (bfd *abfd)
|
6023 |
|
|
{
|
6024 |
|
|
unsigned int elfosabi;
|
6025 |
|
|
enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
|
6026 |
|
|
|
6027 |
|
|
elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
|
6028 |
|
|
|
6029 |
|
|
if (elfosabi == ELFOSABI_ARM)
|
6030 |
|
|
/* GNU tools use this value. Check note sections in this case,
|
6031 |
|
|
as well. */
|
6032 |
|
|
bfd_map_over_sections (abfd,
|
6033 |
|
|
generic_elf_osabi_sniff_abi_tag_sections,
|
6034 |
|
|
&osabi);
|
6035 |
|
|
|
6036 |
|
|
/* Anything else will be handled by the generic ELF sniffer. */
|
6037 |
|
|
return osabi;
|
6038 |
|
|
}
|
6039 |
|
|
|
6040 |
|
|
|
6041 |
|
|
/* Initialize the current architecture based on INFO. If possible,
|
6042 |
|
|
re-use an architecture from ARCHES, which is a list of
|
6043 |
|
|
architectures already created during this debugging session.
|
6044 |
|
|
|
6045 |
|
|
Called e.g. at program startup, when reading a core file, and when
|
6046 |
|
|
reading a binary file. */
|
6047 |
|
|
|
6048 |
|
|
static struct gdbarch *
|
6049 |
|
|
arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
6050 |
|
|
{
|
6051 |
|
|
struct gdbarch_tdep *tdep;
|
6052 |
|
|
struct gdbarch *gdbarch;
|
6053 |
|
|
struct gdbarch_list *best_arch;
|
6054 |
|
|
enum arm_abi_kind arm_abi = arm_abi_global;
|
6055 |
|
|
enum arm_float_model fp_model = arm_fp_model;
|
6056 |
|
|
struct tdesc_arch_data *tdesc_data = NULL;
|
6057 |
|
|
int i;
|
6058 |
|
|
int have_vfp_registers = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
|
6059 |
|
|
int have_neon = 0;
|
6060 |
|
|
int have_fpa_registers = 1;
|
6061 |
|
|
|
6062 |
|
|
/* Check any target description for validity. */
|
6063 |
|
|
if (tdesc_has_registers (info.target_desc))
|
6064 |
|
|
{
|
6065 |
|
|
/* For most registers we require GDB's default names; but also allow
|
6066 |
|
|
the numeric names for sp / lr / pc, as a convenience. */
|
6067 |
|
|
static const char *const arm_sp_names[] = { "r13", "sp", NULL };
|
6068 |
|
|
static const char *const arm_lr_names[] = { "r14", "lr", NULL };
|
6069 |
|
|
static const char *const arm_pc_names[] = { "r15", "pc", NULL };
|
6070 |
|
|
|
6071 |
|
|
const struct tdesc_feature *feature;
|
6072 |
|
|
int valid_p;
|
6073 |
|
|
|
6074 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
6075 |
|
|
"org.gnu.gdb.arm.core");
|
6076 |
|
|
if (feature == NULL)
|
6077 |
|
|
return NULL;
|
6078 |
|
|
|
6079 |
|
|
tdesc_data = tdesc_data_alloc ();
|
6080 |
|
|
|
6081 |
|
|
valid_p = 1;
|
6082 |
|
|
for (i = 0; i < ARM_SP_REGNUM; i++)
|
6083 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
|
6084 |
|
|
arm_register_names[i]);
|
6085 |
|
|
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
6086 |
|
|
ARM_SP_REGNUM,
|
6087 |
|
|
arm_sp_names);
|
6088 |
|
|
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
6089 |
|
|
ARM_LR_REGNUM,
|
6090 |
|
|
arm_lr_names);
|
6091 |
|
|
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
6092 |
|
|
ARM_PC_REGNUM,
|
6093 |
|
|
arm_pc_names);
|
6094 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
6095 |
|
|
ARM_PS_REGNUM, "cpsr");
|
6096 |
|
|
|
6097 |
|
|
if (!valid_p)
|
6098 |
|
|
{
|
6099 |
|
|
tdesc_data_cleanup (tdesc_data);
|
6100 |
|
|
return NULL;
|
6101 |
|
|
}
|
6102 |
|
|
|
6103 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
6104 |
|
|
"org.gnu.gdb.arm.fpa");
|
6105 |
|
|
if (feature != NULL)
|
6106 |
|
|
{
|
6107 |
|
|
valid_p = 1;
|
6108 |
|
|
for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
|
6109 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
|
6110 |
|
|
arm_register_names[i]);
|
6111 |
|
|
if (!valid_p)
|
6112 |
|
|
{
|
6113 |
|
|
tdesc_data_cleanup (tdesc_data);
|
6114 |
|
|
return NULL;
|
6115 |
|
|
}
|
6116 |
|
|
}
|
6117 |
|
|
else
|
6118 |
|
|
have_fpa_registers = 0;
|
6119 |
|
|
|
6120 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
6121 |
|
|
"org.gnu.gdb.xscale.iwmmxt");
|
6122 |
|
|
if (feature != NULL)
|
6123 |
|
|
{
|
6124 |
|
|
static const char *const iwmmxt_names[] = {
|
6125 |
|
|
"wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
|
6126 |
|
|
"wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
|
6127 |
|
|
"wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
|
6128 |
|
|
"wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
|
6129 |
|
|
};
|
6130 |
|
|
|
6131 |
|
|
valid_p = 1;
|
6132 |
|
|
for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
|
6133 |
|
|
valid_p
|
6134 |
|
|
&= tdesc_numbered_register (feature, tdesc_data, i,
|
6135 |
|
|
iwmmxt_names[i - ARM_WR0_REGNUM]);
|
6136 |
|
|
|
6137 |
|
|
/* Check for the control registers, but do not fail if they
|
6138 |
|
|
are missing. */
|
6139 |
|
|
for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
|
6140 |
|
|
tdesc_numbered_register (feature, tdesc_data, i,
|
6141 |
|
|
iwmmxt_names[i - ARM_WR0_REGNUM]);
|
6142 |
|
|
|
6143 |
|
|
for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
|
6144 |
|
|
valid_p
|
6145 |
|
|
&= tdesc_numbered_register (feature, tdesc_data, i,
|
6146 |
|
|
iwmmxt_names[i - ARM_WR0_REGNUM]);
|
6147 |
|
|
|
6148 |
|
|
if (!valid_p)
|
6149 |
|
|
{
|
6150 |
|
|
tdesc_data_cleanup (tdesc_data);
|
6151 |
|
|
return NULL;
|
6152 |
|
|
}
|
6153 |
|
|
}
|
6154 |
|
|
|
6155 |
|
|
/* If we have a VFP unit, check whether the single precision registers
|
6156 |
|
|
are present. If not, then we will synthesize them as pseudo
|
6157 |
|
|
registers. */
|
6158 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
6159 |
|
|
"org.gnu.gdb.arm.vfp");
|
6160 |
|
|
if (feature != NULL)
|
6161 |
|
|
{
|
6162 |
|
|
static const char *const vfp_double_names[] = {
|
6163 |
|
|
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
|
6164 |
|
|
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
|
6165 |
|
|
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
|
6166 |
|
|
"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
|
6167 |
|
|
};
|
6168 |
|
|
|
6169 |
|
|
/* Require the double precision registers. There must be either
|
6170 |
|
|
16 or 32. */
|
6171 |
|
|
valid_p = 1;
|
6172 |
|
|
for (i = 0; i < 32; i++)
|
6173 |
|
|
{
|
6174 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
6175 |
|
|
ARM_D0_REGNUM + i,
|
6176 |
|
|
vfp_double_names[i]);
|
6177 |
|
|
if (!valid_p)
|
6178 |
|
|
break;
|
6179 |
|
|
}
|
6180 |
|
|
|
6181 |
|
|
if (!valid_p && i != 16)
|
6182 |
|
|
{
|
6183 |
|
|
tdesc_data_cleanup (tdesc_data);
|
6184 |
|
|
return NULL;
|
6185 |
|
|
}
|
6186 |
|
|
|
6187 |
|
|
if (tdesc_unnumbered_register (feature, "s0") == 0)
|
6188 |
|
|
have_vfp_pseudos = 1;
|
6189 |
|
|
|
6190 |
|
|
have_vfp_registers = 1;
|
6191 |
|
|
|
6192 |
|
|
/* If we have VFP, also check for NEON. The architecture allows
|
6193 |
|
|
NEON without VFP (integer vector operations only), but GDB
|
6194 |
|
|
does not support that. */
|
6195 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
6196 |
|
|
"org.gnu.gdb.arm.neon");
|
6197 |
|
|
if (feature != NULL)
|
6198 |
|
|
{
|
6199 |
|
|
/* NEON requires 32 double-precision registers. */
|
6200 |
|
|
if (i != 32)
|
6201 |
|
|
{
|
6202 |
|
|
tdesc_data_cleanup (tdesc_data);
|
6203 |
|
|
return NULL;
|
6204 |
|
|
}
|
6205 |
|
|
|
6206 |
|
|
/* If there are quad registers defined by the stub, use
|
6207 |
|
|
their type; otherwise (normally) provide them with
|
6208 |
|
|
the default type. */
|
6209 |
|
|
if (tdesc_unnumbered_register (feature, "q0") == 0)
|
6210 |
|
|
have_neon_pseudos = 1;
|
6211 |
|
|
|
6212 |
|
|
have_neon = 1;
|
6213 |
|
|
}
|
6214 |
|
|
}
|
6215 |
|
|
}
|
6216 |
|
|
|
6217 |
|
|
/* If we have an object to base this architecture on, try to determine
|
6218 |
|
|
its ABI. */
|
6219 |
|
|
|
6220 |
|
|
if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
|
6221 |
|
|
{
|
6222 |
|
|
int ei_osabi, e_flags;
|
6223 |
|
|
|
6224 |
|
|
switch (bfd_get_flavour (info.abfd))
|
6225 |
|
|
{
|
6226 |
|
|
case bfd_target_aout_flavour:
|
6227 |
|
|
/* Assume it's an old APCS-style ABI. */
|
6228 |
|
|
arm_abi = ARM_ABI_APCS;
|
6229 |
|
|
break;
|
6230 |
|
|
|
6231 |
|
|
case bfd_target_coff_flavour:
|
6232 |
|
|
/* Assume it's an old APCS-style ABI. */
|
6233 |
|
|
/* XXX WinCE? */
|
6234 |
|
|
arm_abi = ARM_ABI_APCS;
|
6235 |
|
|
break;
|
6236 |
|
|
|
6237 |
|
|
case bfd_target_elf_flavour:
|
6238 |
|
|
ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
|
6239 |
|
|
e_flags = elf_elfheader (info.abfd)->e_flags;
|
6240 |
|
|
|
6241 |
|
|
if (ei_osabi == ELFOSABI_ARM)
|
6242 |
|
|
{
|
6243 |
|
|
/* GNU tools used to use this value, but do not for EABI
|
6244 |
|
|
objects. There's nowhere to tag an EABI version
|
6245 |
|
|
anyway, so assume APCS. */
|
6246 |
|
|
arm_abi = ARM_ABI_APCS;
|
6247 |
|
|
}
|
6248 |
|
|
else if (ei_osabi == ELFOSABI_NONE)
|
6249 |
|
|
{
|
6250 |
|
|
int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
|
6251 |
|
|
|
6252 |
|
|
switch (eabi_ver)
|
6253 |
|
|
{
|
6254 |
|
|
case EF_ARM_EABI_UNKNOWN:
|
6255 |
|
|
/* Assume GNU tools. */
|
6256 |
|
|
arm_abi = ARM_ABI_APCS;
|
6257 |
|
|
break;
|
6258 |
|
|
|
6259 |
|
|
case EF_ARM_EABI_VER4:
|
6260 |
|
|
case EF_ARM_EABI_VER5:
|
6261 |
|
|
arm_abi = ARM_ABI_AAPCS;
|
6262 |
|
|
/* EABI binaries default to VFP float ordering.
|
6263 |
|
|
They may also contain build attributes that can
|
6264 |
|
|
be used to identify if the VFP argument-passing
|
6265 |
|
|
ABI is in use. */
|
6266 |
|
|
if (fp_model == ARM_FLOAT_AUTO)
|
6267 |
|
|
{
|
6268 |
|
|
#ifdef HAVE_ELF
|
6269 |
|
|
switch (bfd_elf_get_obj_attr_int (info.abfd,
|
6270 |
|
|
OBJ_ATTR_PROC,
|
6271 |
|
|
Tag_ABI_VFP_args))
|
6272 |
|
|
{
|
6273 |
|
|
case 0:
|
6274 |
|
|
/* "The user intended FP parameter/result
|
6275 |
|
|
passing to conform to AAPCS, base
|
6276 |
|
|
variant". */
|
6277 |
|
|
fp_model = ARM_FLOAT_SOFT_VFP;
|
6278 |
|
|
break;
|
6279 |
|
|
case 1:
|
6280 |
|
|
/* "The user intended FP parameter/result
|
6281 |
|
|
passing to conform to AAPCS, VFP
|
6282 |
|
|
variant". */
|
6283 |
|
|
fp_model = ARM_FLOAT_VFP;
|
6284 |
|
|
break;
|
6285 |
|
|
case 2:
|
6286 |
|
|
/* "The user intended FP parameter/result
|
6287 |
|
|
passing to conform to tool chain-specific
|
6288 |
|
|
conventions" - we don't know any such
|
6289 |
|
|
conventions, so leave it as "auto". */
|
6290 |
|
|
break;
|
6291 |
|
|
default:
|
6292 |
|
|
/* Attribute value not mentioned in the
|
6293 |
|
|
October 2008 ABI, so leave it as
|
6294 |
|
|
"auto". */
|
6295 |
|
|
break;
|
6296 |
|
|
}
|
6297 |
|
|
#else
|
6298 |
|
|
fp_model = ARM_FLOAT_SOFT_VFP;
|
6299 |
|
|
#endif
|
6300 |
|
|
}
|
6301 |
|
|
break;
|
6302 |
|
|
|
6303 |
|
|
default:
|
6304 |
|
|
/* Leave it as "auto". */
|
6305 |
|
|
warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
|
6306 |
|
|
break;
|
6307 |
|
|
}
|
6308 |
|
|
}
|
6309 |
|
|
|
6310 |
|
|
if (fp_model == ARM_FLOAT_AUTO)
|
6311 |
|
|
{
|
6312 |
|
|
int e_flags = elf_elfheader (info.abfd)->e_flags;
|
6313 |
|
|
|
6314 |
|
|
switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
|
6315 |
|
|
{
|
6316 |
|
|
case 0:
|
6317 |
|
|
/* Leave it as "auto". Strictly speaking this case
|
6318 |
|
|
means FPA, but almost nobody uses that now, and
|
6319 |
|
|
many toolchains fail to set the appropriate bits
|
6320 |
|
|
for the floating-point model they use. */
|
6321 |
|
|
break;
|
6322 |
|
|
case EF_ARM_SOFT_FLOAT:
|
6323 |
|
|
fp_model = ARM_FLOAT_SOFT_FPA;
|
6324 |
|
|
break;
|
6325 |
|
|
case EF_ARM_VFP_FLOAT:
|
6326 |
|
|
fp_model = ARM_FLOAT_VFP;
|
6327 |
|
|
break;
|
6328 |
|
|
case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
|
6329 |
|
|
fp_model = ARM_FLOAT_SOFT_VFP;
|
6330 |
|
|
break;
|
6331 |
|
|
}
|
6332 |
|
|
}
|
6333 |
|
|
|
6334 |
|
|
if (e_flags & EF_ARM_BE8)
|
6335 |
|
|
info.byte_order_for_code = BFD_ENDIAN_LITTLE;
|
6336 |
|
|
|
6337 |
|
|
break;
|
6338 |
|
|
|
6339 |
|
|
default:
|
6340 |
|
|
/* Leave it as "auto". */
|
6341 |
|
|
break;
|
6342 |
|
|
}
|
6343 |
|
|
}
|
6344 |
|
|
|
6345 |
|
|
/* If there is already a candidate, use it. */
|
6346 |
|
|
for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
|
6347 |
|
|
best_arch != NULL;
|
6348 |
|
|
best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
|
6349 |
|
|
{
|
6350 |
|
|
if (arm_abi != ARM_ABI_AUTO
|
6351 |
|
|
&& arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
|
6352 |
|
|
continue;
|
6353 |
|
|
|
6354 |
|
|
if (fp_model != ARM_FLOAT_AUTO
|
6355 |
|
|
&& fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
|
6356 |
|
|
continue;
|
6357 |
|
|
|
6358 |
|
|
/* There are various other properties in tdep that we do not
|
6359 |
|
|
need to check here: those derived from a target description,
|
6360 |
|
|
since gdbarches with a different target description are
|
6361 |
|
|
automatically disqualified. */
|
6362 |
|
|
|
6363 |
|
|
/* Found a match. */
|
6364 |
|
|
break;
|
6365 |
|
|
}
|
6366 |
|
|
|
6367 |
|
|
if (best_arch != NULL)
|
6368 |
|
|
{
|
6369 |
|
|
if (tdesc_data != NULL)
|
6370 |
|
|
tdesc_data_cleanup (tdesc_data);
|
6371 |
|
|
return best_arch->gdbarch;
|
6372 |
|
|
}
|
6373 |
|
|
|
6374 |
|
|
tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
|
6375 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
6376 |
|
|
|
6377 |
|
|
/* Record additional information about the architecture we are defining.
|
6378 |
|
|
These are gdbarch discriminators, like the OSABI. */
|
6379 |
|
|
tdep->arm_abi = arm_abi;
|
6380 |
|
|
tdep->fp_model = fp_model;
|
6381 |
|
|
tdep->have_fpa_registers = have_fpa_registers;
|
6382 |
|
|
tdep->have_vfp_registers = have_vfp_registers;
|
6383 |
|
|
tdep->have_vfp_pseudos = have_vfp_pseudos;
|
6384 |
|
|
tdep->have_neon_pseudos = have_neon_pseudos;
|
6385 |
|
|
tdep->have_neon = have_neon;
|
6386 |
|
|
|
6387 |
|
|
/* Breakpoints. */
|
6388 |
|
|
switch (info.byte_order_for_code)
|
6389 |
|
|
{
|
6390 |
|
|
case BFD_ENDIAN_BIG:
|
6391 |
|
|
tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
|
6392 |
|
|
tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
|
6393 |
|
|
tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
|
6394 |
|
|
tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
|
6395 |
|
|
|
6396 |
|
|
break;
|
6397 |
|
|
|
6398 |
|
|
case BFD_ENDIAN_LITTLE:
|
6399 |
|
|
tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
|
6400 |
|
|
tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
|
6401 |
|
|
tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
|
6402 |
|
|
tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
|
6403 |
|
|
|
6404 |
|
|
break;
|
6405 |
|
|
|
6406 |
|
|
default:
|
6407 |
|
|
internal_error (__FILE__, __LINE__,
|
6408 |
|
|
_("arm_gdbarch_init: bad byte order for float format"));
|
6409 |
|
|
}
|
6410 |
|
|
|
6411 |
|
|
/* On ARM targets char defaults to unsigned. */
|
6412 |
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
6413 |
|
|
|
6414 |
|
|
/* Note: for displaced stepping, this includes the breakpoint, and one word
|
6415 |
|
|
of additional scratch space. This setting isn't used for anything beside
|
6416 |
|
|
displaced stepping at present. */
|
6417 |
|
|
set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
|
6418 |
|
|
|
6419 |
|
|
/* This should be low enough for everything. */
|
6420 |
|
|
tdep->lowest_pc = 0x20;
|
6421 |
|
|
tdep->jb_pc = -1; /* Longjump support not enabled by default. */
|
6422 |
|
|
|
6423 |
|
|
/* The default, for both APCS and AAPCS, is to return small
|
6424 |
|
|
structures in registers. */
|
6425 |
|
|
tdep->struct_return = reg_struct_return;
|
6426 |
|
|
|
6427 |
|
|
set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
|
6428 |
|
|
set_gdbarch_frame_align (gdbarch, arm_frame_align);
|
6429 |
|
|
|
6430 |
|
|
set_gdbarch_write_pc (gdbarch, arm_write_pc);
|
6431 |
|
|
|
6432 |
|
|
/* Frame handling. */
|
6433 |
|
|
set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
|
6434 |
|
|
set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
|
6435 |
|
|
set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
|
6436 |
|
|
|
6437 |
|
|
frame_base_set_default (gdbarch, &arm_normal_base);
|
6438 |
|
|
|
6439 |
|
|
/* Address manipulation. */
|
6440 |
|
|
set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
|
6441 |
|
|
set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
|
6442 |
|
|
|
6443 |
|
|
/* Advance PC across function entry code. */
|
6444 |
|
|
set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
|
6445 |
|
|
|
6446 |
|
|
/* Skip trampolines. */
|
6447 |
|
|
set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
|
6448 |
|
|
|
6449 |
|
|
/* The stack grows downward. */
|
6450 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
6451 |
|
|
|
6452 |
|
|
/* Breakpoint manipulation. */
|
6453 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
|
6454 |
|
|
set_gdbarch_remote_breakpoint_from_pc (gdbarch,
|
6455 |
|
|
arm_remote_breakpoint_from_pc);
|
6456 |
|
|
|
6457 |
|
|
/* Information about registers, etc. */
|
6458 |
|
|
set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
|
6459 |
|
|
set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
|
6460 |
|
|
set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
|
6461 |
|
|
set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
|
6462 |
|
|
set_gdbarch_register_type (gdbarch, arm_register_type);
|
6463 |
|
|
|
6464 |
|
|
/* This "info float" is FPA-specific. Use the generic version if we
|
6465 |
|
|
do not have FPA. */
|
6466 |
|
|
if (gdbarch_tdep (gdbarch)->have_fpa_registers)
|
6467 |
|
|
set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
|
6468 |
|
|
|
6469 |
|
|
/* Internal <-> external register number maps. */
|
6470 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
|
6471 |
|
|
set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
|
6472 |
|
|
|
6473 |
|
|
set_gdbarch_register_name (gdbarch, arm_register_name);
|
6474 |
|
|
|
6475 |
|
|
/* Returning results. */
|
6476 |
|
|
set_gdbarch_return_value (gdbarch, arm_return_value);
|
6477 |
|
|
|
6478 |
|
|
/* Disassembly. */
|
6479 |
|
|
set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
|
6480 |
|
|
|
6481 |
|
|
/* Minsymbol frobbing. */
|
6482 |
|
|
set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
|
6483 |
|
|
set_gdbarch_coff_make_msymbol_special (gdbarch,
|
6484 |
|
|
arm_coff_make_msymbol_special);
|
6485 |
|
|
set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
|
6486 |
|
|
|
6487 |
|
|
/* Thumb-2 IT block support. */
|
6488 |
|
|
set_gdbarch_adjust_breakpoint_address (gdbarch,
|
6489 |
|
|
arm_adjust_breakpoint_address);
|
6490 |
|
|
|
6491 |
|
|
/* Virtual tables. */
|
6492 |
|
|
set_gdbarch_vbit_in_delta (gdbarch, 1);
|
6493 |
|
|
|
6494 |
|
|
/* Hook in the ABI-specific overrides, if they have been registered. */
|
6495 |
|
|
gdbarch_init_osabi (info, gdbarch);
|
6496 |
|
|
|
6497 |
|
|
dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
|
6498 |
|
|
|
6499 |
|
|
/* Add some default predicates. */
|
6500 |
|
|
frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
|
6501 |
|
|
dwarf2_append_unwinders (gdbarch);
|
6502 |
|
|
frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
|
6503 |
|
|
|
6504 |
|
|
/* Now we have tuned the configuration, set a few final things,
|
6505 |
|
|
based on what the OS ABI has told us. */
|
6506 |
|
|
|
6507 |
|
|
/* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
|
6508 |
|
|
binaries are always marked. */
|
6509 |
|
|
if (tdep->arm_abi == ARM_ABI_AUTO)
|
6510 |
|
|
tdep->arm_abi = ARM_ABI_APCS;
|
6511 |
|
|
|
6512 |
|
|
/* We used to default to FPA for generic ARM, but almost nobody
|
6513 |
|
|
uses that now, and we now provide a way for the user to force
|
6514 |
|
|
the model. So default to the most useful variant. */
|
6515 |
|
|
if (tdep->fp_model == ARM_FLOAT_AUTO)
|
6516 |
|
|
tdep->fp_model = ARM_FLOAT_SOFT_FPA;
|
6517 |
|
|
|
6518 |
|
|
if (tdep->jb_pc >= 0)
|
6519 |
|
|
set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
|
6520 |
|
|
|
6521 |
|
|
/* Floating point sizes and format. */
|
6522 |
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
6523 |
|
|
if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
|
6524 |
|
|
{
|
6525 |
|
|
set_gdbarch_double_format
|
6526 |
|
|
(gdbarch, floatformats_ieee_double_littlebyte_bigword);
|
6527 |
|
|
set_gdbarch_long_double_format
|
6528 |
|
|
(gdbarch, floatformats_ieee_double_littlebyte_bigword);
|
6529 |
|
|
}
|
6530 |
|
|
else
|
6531 |
|
|
{
|
6532 |
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
|
6533 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
6534 |
|
|
}
|
6535 |
|
|
|
6536 |
|
|
if (have_vfp_pseudos)
|
6537 |
|
|
{
|
6538 |
|
|
/* NOTE: These are the only pseudo registers used by
|
6539 |
|
|
the ARM target at the moment. If more are added, a
|
6540 |
|
|
little more care in numbering will be needed. */
|
6541 |
|
|
|
6542 |
|
|
int num_pseudos = 32;
|
6543 |
|
|
if (have_neon_pseudos)
|
6544 |
|
|
num_pseudos += 16;
|
6545 |
|
|
set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
|
6546 |
|
|
set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
|
6547 |
|
|
set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
|
6548 |
|
|
}
|
6549 |
|
|
|
6550 |
|
|
if (tdesc_data)
|
6551 |
|
|
{
|
6552 |
|
|
set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
|
6553 |
|
|
|
6554 |
|
|
tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
|
6555 |
|
|
|
6556 |
|
|
/* Override tdesc_register_type to adjust the types of VFP
|
6557 |
|
|
registers for NEON. */
|
6558 |
|
|
set_gdbarch_register_type (gdbarch, arm_register_type);
|
6559 |
|
|
}
|
6560 |
|
|
|
6561 |
|
|
/* Add standard register aliases. We add aliases even for those
|
6562 |
|
|
nanes which are used by the current architecture - it's simpler,
|
6563 |
|
|
and does no harm, since nothing ever lists user registers. */
|
6564 |
|
|
for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
|
6565 |
|
|
user_reg_add (gdbarch, arm_register_aliases[i].name,
|
6566 |
|
|
value_of_arm_user_reg, &arm_register_aliases[i].regnum);
|
6567 |
|
|
|
6568 |
|
|
return gdbarch;
|
6569 |
|
|
}
|
6570 |
|
|
|
6571 |
|
|
static void
|
6572 |
|
|
arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
6573 |
|
|
{
|
6574 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
6575 |
|
|
|
6576 |
|
|
if (tdep == NULL)
|
6577 |
|
|
return;
|
6578 |
|
|
|
6579 |
|
|
fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
|
6580 |
|
|
(unsigned long) tdep->lowest_pc);
|
6581 |
|
|
}
|
6582 |
|
|
|
6583 |
|
|
extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
|
6584 |
|
|
|
6585 |
|
|
void
|
6586 |
|
|
_initialize_arm_tdep (void)
|
6587 |
|
|
{
|
6588 |
|
|
struct ui_file *stb;
|
6589 |
|
|
long length;
|
6590 |
|
|
struct cmd_list_element *new_set, *new_show;
|
6591 |
|
|
const char *setname;
|
6592 |
|
|
const char *setdesc;
|
6593 |
|
|
const char *const *regnames;
|
6594 |
|
|
int numregs, i, j;
|
6595 |
|
|
static char *helptext;
|
6596 |
|
|
char regdesc[1024], *rdptr = regdesc;
|
6597 |
|
|
size_t rest = sizeof (regdesc);
|
6598 |
|
|
|
6599 |
|
|
gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
|
6600 |
|
|
|
6601 |
|
|
arm_objfile_data_key
|
6602 |
|
|
= register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
|
6603 |
|
|
|
6604 |
|
|
/* Register an ELF OS ABI sniffer for ARM binaries. */
|
6605 |
|
|
gdbarch_register_osabi_sniffer (bfd_arch_arm,
|
6606 |
|
|
bfd_target_elf_flavour,
|
6607 |
|
|
arm_elf_osabi_sniffer);
|
6608 |
|
|
|
6609 |
|
|
/* Get the number of possible sets of register names defined in opcodes. */
|
6610 |
|
|
num_disassembly_options = get_arm_regname_num_options ();
|
6611 |
|
|
|
6612 |
|
|
/* Add root prefix command for all "set arm"/"show arm" commands. */
|
6613 |
|
|
add_prefix_cmd ("arm", no_class, set_arm_command,
|
6614 |
|
|
_("Various ARM-specific commands."),
|
6615 |
|
|
&setarmcmdlist, "set arm ", 0, &setlist);
|
6616 |
|
|
|
6617 |
|
|
add_prefix_cmd ("arm", no_class, show_arm_command,
|
6618 |
|
|
_("Various ARM-specific commands."),
|
6619 |
|
|
&showarmcmdlist, "show arm ", 0, &showlist);
|
6620 |
|
|
|
6621 |
|
|
/* Sync the opcode insn printer with our register viewer. */
|
6622 |
|
|
parse_arm_disassembler_option ("reg-names-std");
|
6623 |
|
|
|
6624 |
|
|
/* Initialize the array that will be passed to
|
6625 |
|
|
add_setshow_enum_cmd(). */
|
6626 |
|
|
valid_disassembly_styles
|
6627 |
|
|
= xmalloc ((num_disassembly_options + 1) * sizeof (char *));
|
6628 |
|
|
for (i = 0; i < num_disassembly_options; i++)
|
6629 |
|
|
{
|
6630 |
|
|
numregs = get_arm_regnames (i, &setname, &setdesc, ®names);
|
6631 |
|
|
valid_disassembly_styles[i] = setname;
|
6632 |
|
|
length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
|
6633 |
|
|
rdptr += length;
|
6634 |
|
|
rest -= length;
|
6635 |
|
|
/* When we find the default names, tell the disassembler to use
|
6636 |
|
|
them. */
|
6637 |
|
|
if (!strcmp (setname, "std"))
|
6638 |
|
|
{
|
6639 |
|
|
disassembly_style = setname;
|
6640 |
|
|
set_arm_regname_option (i);
|
6641 |
|
|
}
|
6642 |
|
|
}
|
6643 |
|
|
/* Mark the end of valid options. */
|
6644 |
|
|
valid_disassembly_styles[num_disassembly_options] = NULL;
|
6645 |
|
|
|
6646 |
|
|
/* Create the help text. */
|
6647 |
|
|
stb = mem_fileopen ();
|
6648 |
|
|
fprintf_unfiltered (stb, "%s%s%s",
|
6649 |
|
|
_("The valid values are:\n"),
|
6650 |
|
|
regdesc,
|
6651 |
|
|
_("The default is \"std\"."));
|
6652 |
|
|
helptext = ui_file_xstrdup (stb, NULL);
|
6653 |
|
|
ui_file_delete (stb);
|
6654 |
|
|
|
6655 |
|
|
add_setshow_enum_cmd("disassembler", no_class,
|
6656 |
|
|
valid_disassembly_styles, &disassembly_style,
|
6657 |
|
|
_("Set the disassembly style."),
|
6658 |
|
|
_("Show the disassembly style."),
|
6659 |
|
|
helptext,
|
6660 |
|
|
set_disassembly_style_sfunc,
|
6661 |
|
|
NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
|
6662 |
|
|
&setarmcmdlist, &showarmcmdlist);
|
6663 |
|
|
|
6664 |
|
|
add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
|
6665 |
|
|
_("Set usage of ARM 32-bit mode."),
|
6666 |
|
|
_("Show usage of ARM 32-bit mode."),
|
6667 |
|
|
_("When off, a 26-bit PC will be used."),
|
6668 |
|
|
NULL,
|
6669 |
|
|
NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
|
6670 |
|
|
&setarmcmdlist, &showarmcmdlist);
|
6671 |
|
|
|
6672 |
|
|
/* Add a command to allow the user to force the FPU model. */
|
6673 |
|
|
add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model,
|
6674 |
|
|
_("Set the floating point type."),
|
6675 |
|
|
_("Show the floating point type."),
|
6676 |
|
|
_("auto - Determine the FP typefrom the OS-ABI.\n\
|
6677 |
|
|
softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
|
6678 |
|
|
fpa - FPA co-processor (GCC compiled).\n\
|
6679 |
|
|
softvfp - Software FP with pure-endian doubles.\n\
|
6680 |
|
|
vfp - VFP co-processor."),
|
6681 |
|
|
set_fp_model_sfunc, show_fp_model,
|
6682 |
|
|
&setarmcmdlist, &showarmcmdlist);
|
6683 |
|
|
|
6684 |
|
|
/* Add a command to allow the user to force the ABI. */
|
6685 |
|
|
add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
|
6686 |
|
|
_("Set the ABI."),
|
6687 |
|
|
_("Show the ABI."),
|
6688 |
|
|
NULL, arm_set_abi, arm_show_abi,
|
6689 |
|
|
&setarmcmdlist, &showarmcmdlist);
|
6690 |
|
|
|
6691 |
|
|
/* Add two commands to allow the user to force the assumed
|
6692 |
|
|
execution mode. */
|
6693 |
|
|
add_setshow_enum_cmd ("fallback-mode", class_support,
|
6694 |
|
|
arm_mode_strings, &arm_fallback_mode_string,
|
6695 |
|
|
_("Set the mode assumed when symbols are unavailable."),
|
6696 |
|
|
_("Show the mode assumed when symbols are unavailable."),
|
6697 |
|
|
NULL, NULL, arm_show_fallback_mode,
|
6698 |
|
|
&setarmcmdlist, &showarmcmdlist);
|
6699 |
|
|
add_setshow_enum_cmd ("force-mode", class_support,
|
6700 |
|
|
arm_mode_strings, &arm_force_mode_string,
|
6701 |
|
|
_("Set the mode assumed even when symbols are available."),
|
6702 |
|
|
_("Show the mode assumed even when symbols are available."),
|
6703 |
|
|
NULL, NULL, arm_show_force_mode,
|
6704 |
|
|
&setarmcmdlist, &showarmcmdlist);
|
6705 |
|
|
|
6706 |
|
|
/* Debugging flag. */
|
6707 |
|
|
add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
|
6708 |
|
|
_("Set ARM debugging."),
|
6709 |
|
|
_("Show ARM debugging."),
|
6710 |
|
|
_("When on, arm-specific debugging is enabled."),
|
6711 |
|
|
NULL,
|
6712 |
|
|
NULL, /* FIXME: i18n: "ARM debugging is %s. */
|
6713 |
|
|
&setdebuglist, &showdebuglist);
|
6714 |
|
|
}
|