1 |
227 |
jeremybenn |
/* Helper routines for C++ support in GDB.
|
2 |
|
|
Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
Contributed by David Carlton and by Kealia, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "cp-support.h"
|
24 |
|
|
#include "gdb_obstack.h"
|
25 |
|
|
#include "symtab.h"
|
26 |
|
|
#include "symfile.h"
|
27 |
|
|
#include "gdb_assert.h"
|
28 |
|
|
#include "block.h"
|
29 |
|
|
#include "objfiles.h"
|
30 |
|
|
#include "gdbtypes.h"
|
31 |
|
|
#include "dictionary.h"
|
32 |
|
|
#include "command.h"
|
33 |
|
|
#include "frame.h"
|
34 |
|
|
#include "buildsym.h"
|
35 |
|
|
|
36 |
|
|
static struct symbol *lookup_namespace_scope (const char *name,
|
37 |
|
|
const char *linkage_name,
|
38 |
|
|
const struct block *block,
|
39 |
|
|
const domain_enum domain,
|
40 |
|
|
const char *scope,
|
41 |
|
|
int scope_len);
|
42 |
|
|
|
43 |
|
|
static struct symbol *lookup_symbol_file (const char *name,
|
44 |
|
|
const char *linkage_name,
|
45 |
|
|
const struct block *block,
|
46 |
|
|
const domain_enum domain,
|
47 |
|
|
int anonymous_namespace);
|
48 |
|
|
|
49 |
|
|
static struct type *cp_lookup_transparent_type_loop (const char *name,
|
50 |
|
|
const char *scope,
|
51 |
|
|
int scope_len);
|
52 |
|
|
|
53 |
|
|
static void initialize_namespace_symtab (struct objfile *objfile);
|
54 |
|
|
|
55 |
|
|
static struct block *get_possible_namespace_block (struct objfile *objfile);
|
56 |
|
|
|
57 |
|
|
static void free_namespace_block (struct symtab *symtab);
|
58 |
|
|
|
59 |
|
|
static int check_possible_namespace_symbols_loop (const char *name,
|
60 |
|
|
int len,
|
61 |
|
|
struct objfile *objfile);
|
62 |
|
|
|
63 |
|
|
static int check_one_possible_namespace_symbol (const char *name,
|
64 |
|
|
int len,
|
65 |
|
|
struct objfile *objfile);
|
66 |
|
|
|
67 |
|
|
static struct symbol *lookup_possible_namespace_symbol (const char *name);
|
68 |
|
|
|
69 |
|
|
static void maintenance_cplus_namespace (char *args, int from_tty);
|
70 |
|
|
|
71 |
|
|
/* Check to see if SYMBOL refers to an object contained within an
|
72 |
|
|
anonymous namespace; if so, add an appropriate using directive. */
|
73 |
|
|
|
74 |
|
|
/* Optimize away strlen ("(anonymous namespace)"). */
|
75 |
|
|
|
76 |
|
|
#define ANONYMOUS_NAMESPACE_LEN 21
|
77 |
|
|
|
78 |
|
|
void
|
79 |
|
|
cp_scan_for_anonymous_namespaces (const struct symbol *symbol)
|
80 |
|
|
{
|
81 |
|
|
if (SYMBOL_DEMANGLED_NAME (symbol) != NULL)
|
82 |
|
|
{
|
83 |
|
|
const char *name = SYMBOL_DEMANGLED_NAME (symbol);
|
84 |
|
|
unsigned int previous_component;
|
85 |
|
|
unsigned int next_component;
|
86 |
|
|
const char *len;
|
87 |
|
|
|
88 |
|
|
/* Start with a quick-and-dirty check for mention of "(anonymous
|
89 |
|
|
namespace)". */
|
90 |
|
|
|
91 |
|
|
if (!cp_is_anonymous (name))
|
92 |
|
|
return;
|
93 |
|
|
|
94 |
|
|
previous_component = 0;
|
95 |
|
|
next_component = cp_find_first_component (name + previous_component);
|
96 |
|
|
|
97 |
|
|
while (name[next_component] == ':')
|
98 |
|
|
{
|
99 |
|
|
if ((next_component - previous_component) == ANONYMOUS_NAMESPACE_LEN
|
100 |
|
|
&& strncmp (name + previous_component,
|
101 |
|
|
"(anonymous namespace)",
|
102 |
|
|
ANONYMOUS_NAMESPACE_LEN) == 0)
|
103 |
|
|
{
|
104 |
|
|
int dest_len = (previous_component == 0 ? 0 : previous_component - 2);
|
105 |
|
|
int src_len = next_component;
|
106 |
|
|
|
107 |
|
|
char *dest = alloca (dest_len + 1);
|
108 |
|
|
char *src = alloca (src_len + 1);
|
109 |
|
|
|
110 |
|
|
memcpy (dest, name, dest_len);
|
111 |
|
|
memcpy (src, name, src_len);
|
112 |
|
|
|
113 |
|
|
dest[dest_len] = '\0';
|
114 |
|
|
src[src_len] = '\0';
|
115 |
|
|
|
116 |
|
|
/* We've found a component of the name that's an
|
117 |
|
|
anonymous namespace. So add symbols in it to the
|
118 |
|
|
namespace given by the previous component if there is
|
119 |
|
|
one, or to the global namespace if there isn't. */
|
120 |
|
|
cp_add_using_directive (dest, src, NULL);
|
121 |
|
|
}
|
122 |
|
|
/* The "+ 2" is for the "::". */
|
123 |
|
|
previous_component = next_component + 2;
|
124 |
|
|
next_component = (previous_component
|
125 |
|
|
+ cp_find_first_component (name
|
126 |
|
|
+ previous_component));
|
127 |
|
|
}
|
128 |
|
|
}
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
/* Add a using directive to using_list. If the using directive in question
|
132 |
|
|
has already been added, don't add it twice. */
|
133 |
|
|
|
134 |
|
|
void
|
135 |
|
|
cp_add_using_directive (const char *dest, const char *src, const char *alias)
|
136 |
|
|
{
|
137 |
|
|
struct using_direct *current;
|
138 |
|
|
struct using_direct *new;
|
139 |
|
|
|
140 |
|
|
/* Has it already been added? */
|
141 |
|
|
|
142 |
|
|
for (current = using_directives; current != NULL; current = current->next)
|
143 |
|
|
{
|
144 |
|
|
if (strcmp (current->import_src, src) == 0
|
145 |
|
|
&& strcmp (current->import_dest, dest) == 0)
|
146 |
|
|
return;
|
147 |
|
|
}
|
148 |
|
|
|
149 |
|
|
using_directives = cp_add_using (dest, src, alias, using_directives);
|
150 |
|
|
|
151 |
|
|
}
|
152 |
|
|
|
153 |
|
|
/* Record the namespace that the function defined by SYMBOL was
|
154 |
|
|
defined in, if necessary. BLOCK is the associated block; use
|
155 |
|
|
OBSTACK for allocation. */
|
156 |
|
|
|
157 |
|
|
void
|
158 |
|
|
cp_set_block_scope (const struct symbol *symbol,
|
159 |
|
|
struct block *block,
|
160 |
|
|
struct obstack *obstack,
|
161 |
|
|
const char *processing_current_prefix,
|
162 |
|
|
int processing_has_namespace_info)
|
163 |
|
|
{
|
164 |
|
|
if (processing_has_namespace_info)
|
165 |
|
|
{
|
166 |
|
|
block_set_scope
|
167 |
|
|
(block, obsavestring (processing_current_prefix,
|
168 |
|
|
strlen (processing_current_prefix),
|
169 |
|
|
obstack),
|
170 |
|
|
obstack);
|
171 |
|
|
}
|
172 |
|
|
else if (SYMBOL_DEMANGLED_NAME (symbol) != NULL)
|
173 |
|
|
{
|
174 |
|
|
/* Try to figure out the appropriate namespace from the
|
175 |
|
|
demangled name. */
|
176 |
|
|
|
177 |
|
|
/* FIXME: carlton/2003-04-15: If the function in question is
|
178 |
|
|
a method of a class, the name will actually include the
|
179 |
|
|
name of the class as well. This should be harmless, but
|
180 |
|
|
is a little unfortunate. */
|
181 |
|
|
|
182 |
|
|
const char *name = SYMBOL_DEMANGLED_NAME (symbol);
|
183 |
|
|
unsigned int prefix_len = cp_entire_prefix_len (name);
|
184 |
|
|
|
185 |
|
|
block_set_scope (block,
|
186 |
|
|
obsavestring (name, prefix_len, obstack),
|
187 |
|
|
obstack);
|
188 |
|
|
}
|
189 |
|
|
}
|
190 |
|
|
|
191 |
|
|
/* Test whether or not NAMESPACE looks like it mentions an anonymous
|
192 |
|
|
namespace; return nonzero if so. */
|
193 |
|
|
|
194 |
|
|
int
|
195 |
|
|
cp_is_anonymous (const char *namespace)
|
196 |
|
|
{
|
197 |
|
|
return (strstr (namespace, "(anonymous namespace)")
|
198 |
|
|
!= NULL);
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
/* Create a new struct using direct which imports the namespace SRC into the
|
202 |
|
|
scope DEST. ALIAS is the name of the imported namespace in the current
|
203 |
|
|
scope. If ALIAS is NULL then the namespace is known by its original name.
|
204 |
|
|
Set its next member in the linked list to NEXT; allocate all memory
|
205 |
|
|
using xmalloc. It copies the strings, so NAME can be a temporary
|
206 |
|
|
string. */
|
207 |
|
|
|
208 |
|
|
struct using_direct *
|
209 |
|
|
cp_add_using (const char *dest,
|
210 |
|
|
const char *src,
|
211 |
|
|
const char *alias,
|
212 |
|
|
struct using_direct *next)
|
213 |
|
|
{
|
214 |
|
|
struct using_direct *retval;
|
215 |
|
|
|
216 |
|
|
retval = xmalloc (sizeof (struct using_direct));
|
217 |
|
|
retval->import_src = savestring (src, strlen(src));
|
218 |
|
|
retval->import_dest = savestring (dest, strlen(dest));
|
219 |
|
|
|
220 |
|
|
if (alias != NULL)
|
221 |
|
|
retval->alias = savestring (alias, strlen (alias));
|
222 |
|
|
else
|
223 |
|
|
retval->alias = NULL;
|
224 |
|
|
|
225 |
|
|
retval->next = next;
|
226 |
|
|
retval->searched = 0;
|
227 |
|
|
|
228 |
|
|
return retval;
|
229 |
|
|
}
|
230 |
|
|
|
231 |
|
|
/* The C++-specific version of name lookup for static and global
|
232 |
|
|
names. This makes sure that names get looked for in all namespaces
|
233 |
|
|
that are in scope. NAME is the natural name of the symbol that
|
234 |
|
|
we're looking for, LINKAGE_NAME (which is optional) is its linkage
|
235 |
|
|
name, BLOCK is the block that we're searching within, DOMAIN says
|
236 |
|
|
what kind of symbols we're looking for, and if SYMTAB is non-NULL,
|
237 |
|
|
we should store the symtab where we found the symbol in it. */
|
238 |
|
|
|
239 |
|
|
struct symbol *
|
240 |
|
|
cp_lookup_symbol_nonlocal (const char *name,
|
241 |
|
|
const char *linkage_name,
|
242 |
|
|
const struct block *block,
|
243 |
|
|
const domain_enum domain)
|
244 |
|
|
{
|
245 |
|
|
struct symbol *sym;
|
246 |
|
|
const char *scope = block_scope (block);
|
247 |
|
|
|
248 |
|
|
sym = lookup_namespace_scope (name, linkage_name, block, domain, scope, 0);
|
249 |
|
|
if (sym != NULL)
|
250 |
|
|
return sym;
|
251 |
|
|
|
252 |
|
|
return cp_lookup_symbol_namespace (scope, name, linkage_name, block, domain,
|
253 |
|
|
1);
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
/* Look up NAME in the C++ namespace NAMESPACE. Other arguments are as in
|
257 |
|
|
cp_lookup_symbol_nonlocal. */
|
258 |
|
|
|
259 |
|
|
static struct symbol *
|
260 |
|
|
cp_lookup_symbol_in_namespace (const char *namespace,
|
261 |
|
|
const char *name,
|
262 |
|
|
const char *linkage_name,
|
263 |
|
|
const struct block *block,
|
264 |
|
|
const domain_enum domain)
|
265 |
|
|
{
|
266 |
|
|
if (namespace[0] == '\0')
|
267 |
|
|
{
|
268 |
|
|
return lookup_symbol_file (name, linkage_name, block,
|
269 |
|
|
domain, 0);
|
270 |
|
|
}
|
271 |
|
|
else
|
272 |
|
|
{
|
273 |
|
|
char *concatenated_name = alloca (strlen (namespace) + 2 +
|
274 |
|
|
strlen (name+ 1));
|
275 |
|
|
strcpy (concatenated_name, namespace);
|
276 |
|
|
strcat (concatenated_name, "::");
|
277 |
|
|
strcat (concatenated_name, name);
|
278 |
|
|
return lookup_symbol_file (concatenated_name, linkage_name,
|
279 |
|
|
block, domain,cp_is_anonymous (namespace));
|
280 |
|
|
}
|
281 |
|
|
}
|
282 |
|
|
|
283 |
|
|
/* Used for cleanups to reset the "searched" flag incase
|
284 |
|
|
of an error. */
|
285 |
|
|
|
286 |
|
|
static void
|
287 |
|
|
reset_directive_searched (void *data)
|
288 |
|
|
{
|
289 |
|
|
struct using_direct *direct = data;
|
290 |
|
|
direct->searched = 0;
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
/* Search for NAME by applying all import statements belonging
|
294 |
|
|
to BLOCK which are applicable in SCOPE.
|
295 |
|
|
If SEARCH_PARENTS the search will include imports which are applicable in
|
296 |
|
|
parents of SCOPE.
|
297 |
|
|
Example:
|
298 |
|
|
|
299 |
|
|
namespace A{
|
300 |
|
|
using namespace X;
|
301 |
|
|
namespace B{
|
302 |
|
|
using namespace Y;
|
303 |
|
|
}
|
304 |
|
|
}
|
305 |
|
|
|
306 |
|
|
If SCOPE is "A::B" and SEARCH_PARENTS is true the imports of namespaces X
|
307 |
|
|
and Y will be considered. If SEARCH_PARENTS is false only the import of Y
|
308 |
|
|
is considered. */
|
309 |
|
|
|
310 |
|
|
static struct symbol *
|
311 |
|
|
cp_lookup_symbol_imports (const char *scope,
|
312 |
|
|
const char *name,
|
313 |
|
|
const char *linkage_name,
|
314 |
|
|
const struct block *block,
|
315 |
|
|
const domain_enum domain,
|
316 |
|
|
const int search_parents)
|
317 |
|
|
{
|
318 |
|
|
struct using_direct *current;
|
319 |
|
|
struct symbol *sym;
|
320 |
|
|
int len;
|
321 |
|
|
int directive_match;
|
322 |
|
|
struct cleanup *searched_cleanup;
|
323 |
|
|
|
324 |
|
|
/* First, try to find the symbol in the given namespace. */
|
325 |
|
|
sym = cp_lookup_symbol_in_namespace (scope, name, linkage_name, block,
|
326 |
|
|
domain);
|
327 |
|
|
if (sym != NULL)
|
328 |
|
|
return sym;
|
329 |
|
|
|
330 |
|
|
/* Go through the using directives. If any of them add new
|
331 |
|
|
names to the namespace we're searching in, see if we can find a
|
332 |
|
|
match by applying them. */
|
333 |
|
|
|
334 |
|
|
for (current = block_using (block);
|
335 |
|
|
current != NULL;
|
336 |
|
|
current = current->next)
|
337 |
|
|
{
|
338 |
|
|
len = strlen (current->import_dest);
|
339 |
|
|
directive_match = (search_parents
|
340 |
|
|
? (strncmp (scope, current->import_dest,
|
341 |
|
|
strlen (current->import_dest)) == 0
|
342 |
|
|
&& (len == 0
|
343 |
|
|
|| scope[len] == ':' || scope[len] == '\0'))
|
344 |
|
|
: strcmp (scope, current->import_dest) == 0);
|
345 |
|
|
|
346 |
|
|
/* If the import destination is the current scope or one of its ancestors then
|
347 |
|
|
it is applicable. */
|
348 |
|
|
if (directive_match && !current->searched)
|
349 |
|
|
{
|
350 |
|
|
/* Mark this import as searched so that the recursive call does not
|
351 |
|
|
search it again. */
|
352 |
|
|
current->searched = 1;
|
353 |
|
|
searched_cleanup = make_cleanup (reset_directive_searched, current);
|
354 |
|
|
|
355 |
|
|
if (current->alias != NULL && strcmp (name, current->alias) == 0)
|
356 |
|
|
/* If the import is creating an alias and the alias matches the
|
357 |
|
|
sought name. Pass current->import_src as the NAME to direct the
|
358 |
|
|
search towards the aliased namespace. */
|
359 |
|
|
{
|
360 |
|
|
sym = cp_lookup_symbol_in_namespace (scope,
|
361 |
|
|
current->import_src,
|
362 |
|
|
linkage_name,
|
363 |
|
|
block,
|
364 |
|
|
domain);
|
365 |
|
|
}
|
366 |
|
|
else if (current->alias == NULL)
|
367 |
|
|
{
|
368 |
|
|
/* If this import statement creates no alias, pass current->inner as
|
369 |
|
|
NAMESPACE to direct the search towards the imported namespace. */
|
370 |
|
|
sym = cp_lookup_symbol_imports (current->import_src,
|
371 |
|
|
name,
|
372 |
|
|
linkage_name,
|
373 |
|
|
block,
|
374 |
|
|
domain,
|
375 |
|
|
0);
|
376 |
|
|
}
|
377 |
|
|
current->searched = 0;
|
378 |
|
|
discard_cleanups (searched_cleanup);
|
379 |
|
|
|
380 |
|
|
if (sym != NULL)
|
381 |
|
|
return sym;
|
382 |
|
|
}
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
return NULL;
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
/* Searches for NAME in the current namespace, and by applying relevant import
|
389 |
|
|
statements belonging to BLOCK and its parents. SCOPE is the namespace scope
|
390 |
|
|
of the context in which the search is being evaluated. */
|
391 |
|
|
|
392 |
|
|
struct symbol*
|
393 |
|
|
cp_lookup_symbol_namespace (const char *scope,
|
394 |
|
|
const char *name,
|
395 |
|
|
const char *linkage_name,
|
396 |
|
|
const struct block *block,
|
397 |
|
|
const domain_enum domain,
|
398 |
|
|
const int search_parents)
|
399 |
|
|
{
|
400 |
|
|
struct symbol *sym;
|
401 |
|
|
|
402 |
|
|
/* Search for name in namespaces imported to this and parent blocks. */
|
403 |
|
|
while (block != NULL)
|
404 |
|
|
{
|
405 |
|
|
sym = cp_lookup_symbol_imports (scope, name, linkage_name, block, domain,
|
406 |
|
|
search_parents);
|
407 |
|
|
|
408 |
|
|
if (sym)
|
409 |
|
|
return sym;
|
410 |
|
|
|
411 |
|
|
block = BLOCK_SUPERBLOCK (block);
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
return NULL;
|
415 |
|
|
}
|
416 |
|
|
|
417 |
|
|
/* Lookup NAME at namespace scope (or, in C terms, in static and
|
418 |
|
|
global variables). SCOPE is the namespace that the current
|
419 |
|
|
function is defined within; only consider namespaces whose length
|
420 |
|
|
is at least SCOPE_LEN. Other arguments are as in
|
421 |
|
|
cp_lookup_symbol_nonlocal.
|
422 |
|
|
|
423 |
|
|
For example, if we're within a function A::B::f and looking for a
|
424 |
|
|
symbol x, this will get called with NAME = "x", SCOPE = "A::B", and
|
425 |
|
|
SCOPE_LEN = 0. It then calls itself with NAME and SCOPE the same,
|
426 |
|
|
but with SCOPE_LEN = 1. And then it calls itself with NAME and
|
427 |
|
|
SCOPE the same, but with SCOPE_LEN = 4. This third call looks for
|
428 |
|
|
"A::B::x"; if it doesn't find it, then the second call looks for
|
429 |
|
|
"A::x", and if that call fails, then the first call looks for
|
430 |
|
|
"x". */
|
431 |
|
|
|
432 |
|
|
static struct symbol *
|
433 |
|
|
lookup_namespace_scope (const char *name,
|
434 |
|
|
const char *linkage_name,
|
435 |
|
|
const struct block *block,
|
436 |
|
|
const domain_enum domain,
|
437 |
|
|
const char *scope,
|
438 |
|
|
int scope_len)
|
439 |
|
|
{
|
440 |
|
|
char *namespace;
|
441 |
|
|
|
442 |
|
|
if (scope[scope_len] != '\0')
|
443 |
|
|
{
|
444 |
|
|
/* Recursively search for names in child namespaces first. */
|
445 |
|
|
|
446 |
|
|
struct symbol *sym;
|
447 |
|
|
int new_scope_len = scope_len;
|
448 |
|
|
|
449 |
|
|
/* If the current scope is followed by "::", skip past that. */
|
450 |
|
|
if (new_scope_len != 0)
|
451 |
|
|
{
|
452 |
|
|
gdb_assert (scope[new_scope_len] == ':');
|
453 |
|
|
new_scope_len += 2;
|
454 |
|
|
}
|
455 |
|
|
new_scope_len += cp_find_first_component (scope + new_scope_len);
|
456 |
|
|
sym = lookup_namespace_scope (name, linkage_name, block,
|
457 |
|
|
domain, scope, new_scope_len);
|
458 |
|
|
if (sym != NULL)
|
459 |
|
|
return sym;
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
/* Okay, we didn't find a match in our children, so look for the
|
463 |
|
|
name in the current namespace. */
|
464 |
|
|
|
465 |
|
|
namespace = alloca (scope_len + 1);
|
466 |
|
|
strncpy (namespace, scope, scope_len);
|
467 |
|
|
namespace[scope_len] = '\0';
|
468 |
|
|
return cp_lookup_symbol_in_namespace (namespace, name, linkage_name,
|
469 |
|
|
block, domain);
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
/* Look up NAME in BLOCK's static block and in global blocks. If
|
473 |
|
|
ANONYMOUS_NAMESPACE is nonzero, the symbol in question is located
|
474 |
|
|
within an anonymous namespace. Other arguments are as in
|
475 |
|
|
cp_lookup_symbol_nonlocal. */
|
476 |
|
|
|
477 |
|
|
static struct symbol *
|
478 |
|
|
lookup_symbol_file (const char *name,
|
479 |
|
|
const char *linkage_name,
|
480 |
|
|
const struct block *block,
|
481 |
|
|
const domain_enum domain,
|
482 |
|
|
int anonymous_namespace)
|
483 |
|
|
{
|
484 |
|
|
struct symbol *sym = NULL;
|
485 |
|
|
|
486 |
|
|
sym = lookup_symbol_static (name, linkage_name, block, domain);
|
487 |
|
|
if (sym != NULL)
|
488 |
|
|
return sym;
|
489 |
|
|
|
490 |
|
|
if (anonymous_namespace)
|
491 |
|
|
{
|
492 |
|
|
/* Symbols defined in anonymous namespaces have external linkage
|
493 |
|
|
but should be treated as local to a single file nonetheless.
|
494 |
|
|
So we only search the current file's global block. */
|
495 |
|
|
|
496 |
|
|
const struct block *global_block = block_global_block (block);
|
497 |
|
|
|
498 |
|
|
if (global_block != NULL)
|
499 |
|
|
sym = lookup_symbol_aux_block (name, linkage_name, global_block,
|
500 |
|
|
domain);
|
501 |
|
|
}
|
502 |
|
|
else
|
503 |
|
|
{
|
504 |
|
|
sym = lookup_symbol_global (name, linkage_name, block, domain);
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
if (sym != NULL)
|
508 |
|
|
return sym;
|
509 |
|
|
|
510 |
|
|
/* Now call "lookup_possible_namespace_symbol". Symbols in here
|
511 |
|
|
claim to be associated to namespaces, but this claim might be
|
512 |
|
|
incorrect: the names in question might actually correspond to
|
513 |
|
|
classes instead of namespaces. But if they correspond to
|
514 |
|
|
classes, then we should have found a match for them above. So if
|
515 |
|
|
we find them now, they should be genuine. */
|
516 |
|
|
|
517 |
|
|
/* FIXME: carlton/2003-06-12: This is a hack and should eventually
|
518 |
|
|
be deleted: see comments below. */
|
519 |
|
|
|
520 |
|
|
if (domain == VAR_DOMAIN)
|
521 |
|
|
{
|
522 |
|
|
sym = lookup_possible_namespace_symbol (name);
|
523 |
|
|
if (sym != NULL)
|
524 |
|
|
return sym;
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
return NULL;
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
/* Look up a type named NESTED_NAME that is nested inside the C++
|
531 |
|
|
class or namespace given by PARENT_TYPE, from within the context
|
532 |
|
|
given by BLOCK. Return NULL if there is no such nested type. */
|
533 |
|
|
|
534 |
|
|
struct type *
|
535 |
|
|
cp_lookup_nested_type (struct type *parent_type,
|
536 |
|
|
const char *nested_name,
|
537 |
|
|
const struct block *block)
|
538 |
|
|
{
|
539 |
|
|
switch (TYPE_CODE (parent_type))
|
540 |
|
|
{
|
541 |
|
|
case TYPE_CODE_STRUCT:
|
542 |
|
|
case TYPE_CODE_NAMESPACE:
|
543 |
|
|
{
|
544 |
|
|
/* NOTE: carlton/2003-11-10: We don't treat C++ class members
|
545 |
|
|
of classes like, say, data or function members. Instead,
|
546 |
|
|
they're just represented by symbols whose names are
|
547 |
|
|
qualified by the name of the surrounding class. This is
|
548 |
|
|
just like members of namespaces; in particular,
|
549 |
|
|
lookup_symbol_namespace works when looking them up. */
|
550 |
|
|
|
551 |
|
|
const char *parent_name = TYPE_TAG_NAME (parent_type);
|
552 |
|
|
struct symbol *sym = cp_lookup_symbol_in_namespace (parent_name,
|
553 |
|
|
nested_name,
|
554 |
|
|
NULL,
|
555 |
|
|
block,
|
556 |
|
|
VAR_DOMAIN);
|
557 |
|
|
if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
|
558 |
|
|
return NULL;
|
559 |
|
|
else
|
560 |
|
|
return SYMBOL_TYPE (sym);
|
561 |
|
|
}
|
562 |
|
|
default:
|
563 |
|
|
internal_error (__FILE__, __LINE__,
|
564 |
|
|
_("cp_lookup_nested_type called on a non-aggregate type."));
|
565 |
|
|
}
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
/* The C++-version of lookup_transparent_type. */
|
569 |
|
|
|
570 |
|
|
/* FIXME: carlton/2004-01-16: The problem that this is trying to
|
571 |
|
|
address is that, unfortunately, sometimes NAME is wrong: it may not
|
572 |
|
|
include the name of namespaces enclosing the type in question.
|
573 |
|
|
lookup_transparent_type gets called when the the type in question
|
574 |
|
|
is a declaration, and we're trying to find its definition; but, for
|
575 |
|
|
declarations, our type name deduction mechanism doesn't work.
|
576 |
|
|
There's nothing we can do to fix this in general, I think, in the
|
577 |
|
|
absence of debug information about namespaces (I've filed PR
|
578 |
|
|
gdb/1511 about this); until such debug information becomes more
|
579 |
|
|
prevalent, one heuristic which sometimes looks is to search for the
|
580 |
|
|
definition in namespaces containing the current namespace.
|
581 |
|
|
|
582 |
|
|
We should delete this functions once the appropriate debug
|
583 |
|
|
information becomes more widespread. (GCC 3.4 will be the first
|
584 |
|
|
released version of GCC with such information.) */
|
585 |
|
|
|
586 |
|
|
struct type *
|
587 |
|
|
cp_lookup_transparent_type (const char *name)
|
588 |
|
|
{
|
589 |
|
|
/* First, try the honest way of looking up the definition. */
|
590 |
|
|
struct type *t = basic_lookup_transparent_type (name);
|
591 |
|
|
const char *scope;
|
592 |
|
|
|
593 |
|
|
if (t != NULL)
|
594 |
|
|
return t;
|
595 |
|
|
|
596 |
|
|
/* If that doesn't work and we're within a namespace, look there
|
597 |
|
|
instead. */
|
598 |
|
|
scope = block_scope (get_selected_block (0));
|
599 |
|
|
|
600 |
|
|
if (scope[0] == '\0')
|
601 |
|
|
return NULL;
|
602 |
|
|
|
603 |
|
|
return cp_lookup_transparent_type_loop (name, scope, 0);
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
/* Lookup the the type definition associated to NAME in
|
607 |
|
|
namespaces/classes containing SCOPE whose name is strictly longer
|
608 |
|
|
than LENGTH. LENGTH must be the index of the start of a
|
609 |
|
|
component of SCOPE. */
|
610 |
|
|
|
611 |
|
|
static struct type *
|
612 |
|
|
cp_lookup_transparent_type_loop (const char *name, const char *scope,
|
613 |
|
|
int length)
|
614 |
|
|
{
|
615 |
|
|
int scope_length = length + cp_find_first_component (scope + length);
|
616 |
|
|
char *full_name;
|
617 |
|
|
|
618 |
|
|
/* If the current scope is followed by "::", look in the next
|
619 |
|
|
component. */
|
620 |
|
|
if (scope[scope_length] == ':')
|
621 |
|
|
{
|
622 |
|
|
struct type *retval
|
623 |
|
|
= cp_lookup_transparent_type_loop (name, scope, scope_length + 2);
|
624 |
|
|
if (retval != NULL)
|
625 |
|
|
return retval;
|
626 |
|
|
}
|
627 |
|
|
|
628 |
|
|
full_name = alloca (scope_length + 2 + strlen (name) + 1);
|
629 |
|
|
strncpy (full_name, scope, scope_length);
|
630 |
|
|
strncpy (full_name + scope_length, "::", 2);
|
631 |
|
|
strcpy (full_name + scope_length + 2, name);
|
632 |
|
|
|
633 |
|
|
return basic_lookup_transparent_type (full_name);
|
634 |
|
|
}
|
635 |
|
|
|
636 |
|
|
/* Now come functions for dealing with symbols associated to
|
637 |
|
|
namespaces. (They're used to store the namespaces themselves, not
|
638 |
|
|
objects that live in the namespaces.) These symbols come in two
|
639 |
|
|
varieties: if we run into a DW_TAG_namespace DIE, then we know that
|
640 |
|
|
we have a namespace, so dwarf2read.c creates a symbol for it just
|
641 |
|
|
like normal. But, unfortunately, versions of GCC through at least
|
642 |
|
|
3.3 don't generate those DIE's. Our solution is to try to guess
|
643 |
|
|
their existence by looking at demangled names. This might cause us
|
644 |
|
|
to misidentify classes as namespaces, however. So we put those
|
645 |
|
|
symbols in a special block (one per objfile), and we only search
|
646 |
|
|
that block as a last resort. */
|
647 |
|
|
|
648 |
|
|
/* FIXME: carlton/2003-06-12: Once versions of GCC that generate
|
649 |
|
|
DW_TAG_namespace have been out for a year or two, we should get rid
|
650 |
|
|
of all of this "possible namespace" nonsense. */
|
651 |
|
|
|
652 |
|
|
/* Allocate everything necessary for the possible namespace block
|
653 |
|
|
associated to OBJFILE. */
|
654 |
|
|
|
655 |
|
|
static void
|
656 |
|
|
initialize_namespace_symtab (struct objfile *objfile)
|
657 |
|
|
{
|
658 |
|
|
struct symtab *namespace_symtab;
|
659 |
|
|
struct blockvector *bv;
|
660 |
|
|
struct block *bl;
|
661 |
|
|
|
662 |
|
|
namespace_symtab = allocate_symtab ("<<C++-namespaces>>", objfile);
|
663 |
|
|
namespace_symtab->language = language_cplus;
|
664 |
|
|
namespace_symtab->free_code = free_nothing;
|
665 |
|
|
namespace_symtab->dirname = NULL;
|
666 |
|
|
|
667 |
|
|
bv = obstack_alloc (&objfile->objfile_obstack,
|
668 |
|
|
sizeof (struct blockvector)
|
669 |
|
|
+ FIRST_LOCAL_BLOCK * sizeof (struct block *));
|
670 |
|
|
BLOCKVECTOR_NBLOCKS (bv) = FIRST_LOCAL_BLOCK + 1;
|
671 |
|
|
BLOCKVECTOR (namespace_symtab) = bv;
|
672 |
|
|
|
673 |
|
|
/* Allocate empty GLOBAL_BLOCK and STATIC_BLOCK. */
|
674 |
|
|
|
675 |
|
|
bl = allocate_block (&objfile->objfile_obstack);
|
676 |
|
|
BLOCK_DICT (bl) = dict_create_linear (&objfile->objfile_obstack,
|
677 |
|
|
NULL);
|
678 |
|
|
BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK) = bl;
|
679 |
|
|
bl = allocate_block (&objfile->objfile_obstack);
|
680 |
|
|
BLOCK_DICT (bl) = dict_create_linear (&objfile->objfile_obstack,
|
681 |
|
|
NULL);
|
682 |
|
|
BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK) = bl;
|
683 |
|
|
|
684 |
|
|
/* Allocate the possible namespace block; we put it where the first
|
685 |
|
|
local block will live, though I don't think there's any need to
|
686 |
|
|
pretend that it's actually a local block (e.g. by setting
|
687 |
|
|
BLOCK_SUPERBLOCK appropriately). We don't use the global or
|
688 |
|
|
static block because we don't want it searched during the normal
|
689 |
|
|
search of all global/static blocks in lookup_symbol: we only want
|
690 |
|
|
it used as a last resort. */
|
691 |
|
|
|
692 |
|
|
/* NOTE: carlton/2003-09-11: I considered not associating the fake
|
693 |
|
|
symbols to a block/symtab at all. But that would cause problems
|
694 |
|
|
with lookup_symbol's SYMTAB argument and with block_found, so
|
695 |
|
|
having a symtab/block for this purpose seems like the best
|
696 |
|
|
solution for now. */
|
697 |
|
|
|
698 |
|
|
bl = allocate_block (&objfile->objfile_obstack);
|
699 |
|
|
BLOCK_DICT (bl) = dict_create_hashed_expandable ();
|
700 |
|
|
BLOCKVECTOR_BLOCK (bv, FIRST_LOCAL_BLOCK) = bl;
|
701 |
|
|
|
702 |
|
|
namespace_symtab->free_func = free_namespace_block;
|
703 |
|
|
|
704 |
|
|
objfile->cp_namespace_symtab = namespace_symtab;
|
705 |
|
|
}
|
706 |
|
|
|
707 |
|
|
/* Locate the possible namespace block associated to OBJFILE,
|
708 |
|
|
allocating it if necessary. */
|
709 |
|
|
|
710 |
|
|
static struct block *
|
711 |
|
|
get_possible_namespace_block (struct objfile *objfile)
|
712 |
|
|
{
|
713 |
|
|
if (objfile->cp_namespace_symtab == NULL)
|
714 |
|
|
initialize_namespace_symtab (objfile);
|
715 |
|
|
|
716 |
|
|
return BLOCKVECTOR_BLOCK (BLOCKVECTOR (objfile->cp_namespace_symtab),
|
717 |
|
|
FIRST_LOCAL_BLOCK);
|
718 |
|
|
}
|
719 |
|
|
|
720 |
|
|
/* Free the dictionary associated to the possible namespace block. */
|
721 |
|
|
|
722 |
|
|
static void
|
723 |
|
|
free_namespace_block (struct symtab *symtab)
|
724 |
|
|
{
|
725 |
|
|
struct block *possible_namespace_block;
|
726 |
|
|
|
727 |
|
|
possible_namespace_block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab),
|
728 |
|
|
FIRST_LOCAL_BLOCK);
|
729 |
|
|
gdb_assert (possible_namespace_block != NULL);
|
730 |
|
|
dict_free (BLOCK_DICT (possible_namespace_block));
|
731 |
|
|
}
|
732 |
|
|
|
733 |
|
|
/* Ensure that there are symbols in the possible namespace block
|
734 |
|
|
associated to OBJFILE for all initial substrings of NAME that look
|
735 |
|
|
like namespaces or classes. NAME should end in a member variable:
|
736 |
|
|
it shouldn't consist solely of namespaces. */
|
737 |
|
|
|
738 |
|
|
void
|
739 |
|
|
cp_check_possible_namespace_symbols (const char *name, struct objfile *objfile)
|
740 |
|
|
{
|
741 |
|
|
check_possible_namespace_symbols_loop (name,
|
742 |
|
|
cp_find_first_component (name),
|
743 |
|
|
objfile);
|
744 |
|
|
}
|
745 |
|
|
|
746 |
|
|
/* This is a helper loop for cp_check_possible_namespace_symbols; it
|
747 |
|
|
ensures that there are symbols in the possible namespace block
|
748 |
|
|
associated to OBJFILE for all namespaces that are initial
|
749 |
|
|
substrings of NAME of length at least LEN. It returns 1 if a
|
750 |
|
|
previous loop had already created the shortest such symbol and 0
|
751 |
|
|
otherwise.
|
752 |
|
|
|
753 |
|
|
This function assumes that if there is already a symbol associated
|
754 |
|
|
to a substring of NAME of a given length, then there are already
|
755 |
|
|
symbols associated to all substrings of NAME whose length is less
|
756 |
|
|
than that length. So if cp_check_possible_namespace_symbols has
|
757 |
|
|
been called once with argument "A::B::C::member", then that will
|
758 |
|
|
create symbols "A", "A::B", and "A::B::C". If it is then later
|
759 |
|
|
called with argument "A::B::D::member", then the new call will
|
760 |
|
|
generate a new symbol for "A::B::D", but once it sees that "A::B"
|
761 |
|
|
has already been created, it doesn't bother checking to see if "A"
|
762 |
|
|
has also been created. */
|
763 |
|
|
|
764 |
|
|
static int
|
765 |
|
|
check_possible_namespace_symbols_loop (const char *name, int len,
|
766 |
|
|
struct objfile *objfile)
|
767 |
|
|
{
|
768 |
|
|
if (name[len] == ':')
|
769 |
|
|
{
|
770 |
|
|
int done;
|
771 |
|
|
int next_len = len + 2;
|
772 |
|
|
|
773 |
|
|
next_len += cp_find_first_component (name + next_len);
|
774 |
|
|
done = check_possible_namespace_symbols_loop (name, next_len,
|
775 |
|
|
objfile);
|
776 |
|
|
|
777 |
|
|
if (!done)
|
778 |
|
|
done = check_one_possible_namespace_symbol (name, len, objfile);
|
779 |
|
|
|
780 |
|
|
return done;
|
781 |
|
|
}
|
782 |
|
|
else
|
783 |
|
|
return 0;
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
/* Check to see if there's already a possible namespace symbol in
|
787 |
|
|
OBJFILE whose name is the initial substring of NAME of length LEN.
|
788 |
|
|
If not, create one and return 0; otherwise, return 1. */
|
789 |
|
|
|
790 |
|
|
static int
|
791 |
|
|
check_one_possible_namespace_symbol (const char *name, int len,
|
792 |
|
|
struct objfile *objfile)
|
793 |
|
|
{
|
794 |
|
|
struct block *block = get_possible_namespace_block (objfile);
|
795 |
|
|
char *name_copy = alloca (len + 1);
|
796 |
|
|
struct symbol *sym;
|
797 |
|
|
|
798 |
|
|
memcpy (name_copy, name, len);
|
799 |
|
|
name_copy[len] = '\0';
|
800 |
|
|
sym = lookup_block_symbol (block, name_copy, NULL, VAR_DOMAIN);
|
801 |
|
|
|
802 |
|
|
if (sym == NULL)
|
803 |
|
|
{
|
804 |
|
|
struct type *type;
|
805 |
|
|
|
806 |
|
|
type = init_type (TYPE_CODE_NAMESPACE, 0, 0, name_copy, objfile);
|
807 |
|
|
|
808 |
|
|
TYPE_TAG_NAME (type) = TYPE_NAME (type);
|
809 |
|
|
|
810 |
|
|
sym = obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
|
811 |
|
|
memset (sym, 0, sizeof (struct symbol));
|
812 |
|
|
SYMBOL_LANGUAGE (sym) = language_cplus;
|
813 |
|
|
/* Note that init_type copied the name to the objfile's
|
814 |
|
|
obstack. */
|
815 |
|
|
SYMBOL_SET_NAMES (sym, TYPE_NAME (type), len, 0, objfile);
|
816 |
|
|
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
817 |
|
|
SYMBOL_TYPE (sym) = type;
|
818 |
|
|
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
819 |
|
|
|
820 |
|
|
dict_add_symbol (BLOCK_DICT (block), sym);
|
821 |
|
|
|
822 |
|
|
return 0;
|
823 |
|
|
}
|
824 |
|
|
else
|
825 |
|
|
return 1;
|
826 |
|
|
}
|
827 |
|
|
|
828 |
|
|
/* Look for a symbol named NAME in all the possible namespace blocks.
|
829 |
|
|
If one is found, return it. */
|
830 |
|
|
|
831 |
|
|
static struct symbol *
|
832 |
|
|
lookup_possible_namespace_symbol (const char *name)
|
833 |
|
|
{
|
834 |
|
|
struct objfile *objfile;
|
835 |
|
|
|
836 |
|
|
ALL_OBJFILES (objfile)
|
837 |
|
|
{
|
838 |
|
|
struct symbol *sym;
|
839 |
|
|
|
840 |
|
|
sym = lookup_block_symbol (get_possible_namespace_block (objfile),
|
841 |
|
|
name, NULL, VAR_DOMAIN);
|
842 |
|
|
|
843 |
|
|
if (sym != NULL)
|
844 |
|
|
return sym;
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
return NULL;
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
/* Print out all the possible namespace symbols. */
|
851 |
|
|
|
852 |
|
|
static void
|
853 |
|
|
maintenance_cplus_namespace (char *args, int from_tty)
|
854 |
|
|
{
|
855 |
|
|
struct objfile *objfile;
|
856 |
|
|
printf_unfiltered (_("Possible namespaces:\n"));
|
857 |
|
|
ALL_OBJFILES (objfile)
|
858 |
|
|
{
|
859 |
|
|
struct dict_iterator iter;
|
860 |
|
|
struct symbol *sym;
|
861 |
|
|
|
862 |
|
|
ALL_BLOCK_SYMBOLS (get_possible_namespace_block (objfile), iter, sym)
|
863 |
|
|
{
|
864 |
|
|
printf_unfiltered ("%s\n", SYMBOL_PRINT_NAME (sym));
|
865 |
|
|
}
|
866 |
|
|
}
|
867 |
|
|
}
|
868 |
|
|
|
869 |
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
870 |
|
|
extern initialize_file_ftype _initialize_cp_namespace;
|
871 |
|
|
|
872 |
|
|
void
|
873 |
|
|
_initialize_cp_namespace (void)
|
874 |
|
|
{
|
875 |
|
|
add_cmd ("namespace", class_maintenance, maintenance_cplus_namespace,
|
876 |
|
|
_("Print the list of possible C++ namespaces."),
|
877 |
|
|
&maint_cplus_cmd_list);
|
878 |
|
|
}
|